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Zusammenfassung: In der vorliegenden Arbeit werden mit Hilfe der Methoden lin-
earer und nichtlinearer Zeitreihenanalysen die zeitlichen Eigenschaften von BL Lac-
Objekten in ausführlicher Art und Weise untersucht. Trotz in großer Menge gesam-
melter Daten haben die Variabilitätsuntersuchungen der letzten zwanzig Jahre keine
wesentlichen Ansatzpunkte für das Verständnis der Verhaltensweise dieser Objekte
geliefert. Üblicherweise wird sich auf unklare Zeitreihenanalysemethoden ohne jegliche
mathematische Grundlage berufen, welche zu fehlerhaften Einschätzungen der Zeit-
eigenschaften und schließlich zu Missinterpretationen in der Modellierung der betra-
chteten Systemdynamik führen.
Anhand der bekannten Quellen Mrk 421 und Mrk 501 sollen zunächst die Mängel
einiger aktueller Zeitreihenanalysemethoden aufgezeigt und die Notwendigkeit des Ein-
satzes der Zeitreihenanalyse höherer Ordnung demonstriert werden. Präsentiert wird
dann eine eingehende Betrachtung moderner nichtlinearer Analysemethoden zusam-
men mit Beispielen, die es erlauben, auch für astronomische Zeitreihen Anwendung
zu finden. Anschließend werden diese Methoden auf den Datensatz aus der durch
RXTE über einen Zeitraum von neun Jahren gewonnenen Röntgenlichtuntersuchung
der Quelle Mrk 421, angewendet. Dies soll die Beantwortung der folgenden Fragen er-
möglichen: Ist eine Erklärung des Variabilitätsverhaltens dieser Quellen auf der Basis
weniger physikalischer Parameter (deterministisches System) möglich oder ist dieses
das Ergebnis zahlreicher Komponenten eines stochastischen Systems?
Schließlich werden die Ergebnisse der längsten Multiwellenlängen-Kampagne für BL
Lac-Objekte, durchgeführt zwischen August und September 2004, vorgestellt. Die
Quelle wurde hierbei sowohl von H.E.S.S. mit hochenergetischen γ-Strahlen (>100
GeV), als auch durch Röntgenstrahlen (2–10 keV) von RXTE und dem optischen R-
Band dreier erdgebundener Observatorien beobachtet.

Abstract: In this work the time properties of the BL Lac objects are elaborated in a
detailed manner through linear and nonlinear time series analysis methods. In spite of
the large amount of available data in the last 20 years, the variability studies have not
provided major progress for understanding the behavior of these objects. Vague time
series analysis methods, lacking any mathematical foundation, are usually invoked
revealing erroneous time properties in the data sets which then act misleadingly for
modeling the dynamics of the system under study.
The flaws of some of the current time series analysis methods are reviewed thoroughly
throughout this work for specific sources (Mrk 421, Mrk 501) and the need of employ-
ing higher order time series analysis methods is demonstrated. An extensive descrip-
tion of the modern nonlinear analysis methods is presented together with examples
being implemented in a way to be applicable to astronomical time series. Then, these
methods are applied to the X-ray data set of Mrk 421, obtained by RXTE, covering
a time period of 9 years, giving some hints to answer the question: Is it possible to
explain the variability behavior of these sources based on few physical parameters
(deterministic system), or is it the result of numerous components yielding from a
stochastic system?
Finally the results from the longest multiwavelength campaign, conducted during
August–September 2004, for the BL Lac object PKS 2155-304 are presented. The
source was observed in the very high energy γ-rays (>100 GeV) by H.E.S.S., in the
X-rays (2–10 keV) by RXTE and in the optical (R-band) by three terrestrial observa-
tories.
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Chapter 1

INTRODUCTION

Time series analysis in astronomical research played a crucial role in the historical development of
the field. Until the twentieth century, the heavens could be studied only with the human eye or
with very simple telescopes used as “vision enhancers”. From this perspective the sky contains only

the Sun, the Moon and the planets whose position exhibits diurnal, monthly and annual periodicities.
Together with these objects stars and nebulae are also present but they seem to be completely unchanged
with respect to all their observed characteristics (motion and brightness).

Simple methods of registering the consecutive positions of the Sun and the moon for several years
created the first calendars. Astronomers in the Middle East had discerned saros, the 18.6 year cycle of
eclipses. The pre-Columbian Mayans developed a detailed calendar based on eclipses and the periodic
motion of Venus. All these methods comprised the first systematic study of astrophysical objects in terms
of time series analysis. One could say that Tycho Brahe who accurately measured and tabulated planetary
positions over decades together with his assistant Johanes Keppler who derived empirical relations from the
given time series data sets regarding the planetary motions, were the first methodical time series analysts
of modern astronomy.

During the last century sophisticated technological extensions of the human eye permit a deeper view
of the universe. The charge-coupled devices (CCDs) mounted in the focus of the telescope permit more
sensitive and more accurate measurements of the brightness and the color of an object than that achieved
with the human eye. Moreover, modern telescopes and detectors overcome the eye’s restriction to a narrow
range of wavelengths of light, spanning only a factor of 2, and permit a study of the sky over an incredible
range of 1020 in wavelength.

The key to understand the rising interest in astronomical time series is that many objects in the
sky which are innocuous or even invisible at optical wavelengths are spectacularly variable in brightness or
other properties at other wavelengths. Astrophysical objects that were considered to be constant luminosity
sources appear nowadays to be variable in various time scales. Variable stars, accretion binaries, pulsars
and active galactic nuclei consist only a small fraction of the “zoo” of temporally variable astronomical
beasts. This thesis deals only with the latter category of these objects but the time series methods used
to analyze the behavior of these sources are applicable to any astrophysical source.

1.1 The Astronomical Time Series

While there is an enormous range of specific methodologies concerning the time series analysis of a given
data set coming from a particular system, astronomical time series exhibit some special peculiarities. The
already existing methods that have been developed from statisticians and mathematicians in order to be
applicable in natural, social and health sciences as well as in engineering or even psychology can not be
used directly in astronomical data sets. The latter differ in several aspects from the classical data sets with
respect to their structure and the nature of their elements.

1



1.2. The Active Galactic Nuclei

Firstly, the times of observations are often discontinuous and irregular. Observations in the optical
regime can be interrupted by either the rise of the Sun or by the weather conditions. Concerning the satellite
experiments the Earth occultations as well as the charged particles cause an inhomogeneous acquisition rate
of the data. Therefore appropriate methods which are not affected from the sampling should be applied
to the given data sets. In the case of interpolated data sets application of any analysis method should be
thoroughly checked through simulations.

Secondly, the data are often acquired with noise, yielding measurement uncertainties which may also
differ from observation to observation. These uncertainties can be taken into account by observing back-
ground regions and calibration sources. Thus, heteroscedastically weighted time series methods with known
measurement errors/uncertainties errors are often needed.

Thirdly, it is usually assumed that a time series data set is linear and Gaussian. The simple and widely
used method of linear regression based on the method of least squares, assumes Gaussianity concerning
the parent distribution of the measurements. Linearity is also another “silent” assumption which is hidden
behind the majority of the analyses methods. Autocorrelation and structure functions (SFs) make use
only of the first two moments of the data set (i.e. mean value and variance) appropriate to fully describe
Gaussian distributions of data sets coming from linear systems. Hence higher order time series analyses
must be employed in order to use all the available information existing in the data sets.

Fourthly, there are few cases only which the scientific goal of an astronomical time series study is the
prediction or the forecast. Rather, the astrophysicist seeks to characterize the time variations in terms of a
physical model involving parameters that yield from a given analysis method. The main drawback of this
approach especially in the field of active galactic nuclei (AGN) is that the origin of the variations is most
of the times ignored. Therefore, whatever “time feature”, is emerged from an analysis method, it is directly
used to fulfill the needs of a model as an “appropriate” and “convenient” time scale element, irrespective
of which part of the AGN is modeled (accretion disk or emitting regions in the jet). It is often a great
challenge to link the results of a statistical analysis with specific physical source parameters in a way of
having “one-to-one” correspondence.

Nevertheless, even flawless astronomical data sets which have the appropriate form and they are ready
to accept any conventional analysis method, are sometimes treated with “vague” statistical methodologies.
The latter are usually formulated based on more intuitional rather than mathematical arguments. An
examination of the astronomical literature on variable objects reveals a surprising disregard for well con-
solidate time series analysis methods developed for other applications. Standard texts in time series and
statistics are rarely consulted. The result of this insularity is that unnecessary methodological development
occurs and methods may be accepted without careful evaluation of their mathematical merits or opera-
tional deficiencies. The reason behind this tendency is probably reflecting an effort of filling roughly the
major gap that exists between the time properties of the deterministic and the random physical processes.
A “fake” characteristic time scale can be used as a handle to pass from a completely random data set to
something with fixed time properties. This inexistent time scales which are supposed to be embedded in
the data sets most of the times create confusion and misunderstandings.

Concerning the AGN, in spite the fact of the large amount of available data in the last 30 years the
variability studies have not provided major progress. Phenomenological methods are usually applied and
peculiar time scales are derived with no mathematical support of their physical meaning. In this thesis
examples concerning the aforementioned problems are going to be discussed in a thorough and detailed
manner. At the same time numerous firmly established time series analysis methods are going to be
presented and applied in astronomical data sets originating mainly from a special class of the AGN objects
known as BL Lacertae (sect.1.2.1).

1.2 The Active Galactic Nuclei

1.2.1 General properties-Taxonomy

The term active galactic nuclei (AGN) denotes the ensemble of extragalactic objects sharing one common
characteristic, which distinguishes them from all the other galaxies in the Universe, being that the emission
from the nucleus largely outshines that of the whole galaxy. Various subclasses forming the AGN popu-
lation, e.g. radio galaxies, quasars or Seyfert galaxies, have been known for quite a long time but only in
relatively recent years attempts have been made to unify them in a coherent picture. According to this
unified view all AGN subclasses share a common mechanism of energy production, the accretion of matter
onto a supermassive black hole in their center. Their different observational properties arise, to a large
degree, from their intrinsically anisotropic geometry and radiation pattern, from absorption as well as from

2



1.2. The Active Galactic Nuclei

relativistic effects.
The first property of this objects is that they emit radiation over the entire electromagnetic spectrum

having a bolometric luminosity Lbol ≥ 1044 erg sec−1 sometimes reaching up to 1048 erg sec−1. In com-
parison, normal galaxies have Lbol ≤ 1042 erg sec−1 and the bulk of their luminosity is emitted in the
visible band, essentially produced by stars. Another property of AGN is that their spectra over the whole
electromagnetic band are essentially of non-thermal origin contrary to normal galaxies where the spectrum
is given by the integration of the stars, thermal spectra. Some AGN also reveal strong radio and X-ray
emission in the form of spectacular jets. Finally the basic characteristic which is the major concern of this
thesis is the variability. The observed emission of these objects is highly variable in all energy bands on
time scales raging from years down to minutes. All these properties indicate that powerful physical mech-
anisms with very high efficiency (higher from the nuclear processes) originate inside these extragalactic
objects. Despite the fact that AGN consist ∼ 1% of the total galaxy population they consist an excellent
site of studying unexplored physical processes.

Concerning the taxonomy of AGN there is a general but not universally accepted scheme. They are
divided into two main categories according to their radio emission (fig.1.1). In radio-quiet galaxies, the
ratio of the galaxy’s 5 GHz luminosity to its optical luminosity in the B-band (4400 Å) is generally less
than 10. In the opposite case the galaxy is considered radio-loud. Roughly 85% of AGN are hosted in
radio-quiet galaxies.

The radio-quiet galaxies which are not known to be γ-ray emitters can be further subdivided in two
classes. The first class consists of the quasi-stellar objects (QSOs) where the host galaxy is not resolved,
leaving only the AGN visible. The second class includes the Seyfert galaxies where, in contrast to the
previous case, the host galaxy is visible. The Seyfert galaxies come into two different species type I and
type II. The former exhibit both narrow and broad emission lines as well as a strong non-stellar continuum
and the latter exhibit only narrow lines and a weaker non-stellar continuum.

The radio-loud galaxies (also called quasars) come in two flavors, Fanaroff-Riley (FR) type I and II.
The FR I galaxies are generally less luminous than their type II counterparts and they tend to have a
weaker optical emission as well. The radio emission of the former galaxies is classified as core dominated

as opposed to the lobe dominated emission region of the latter.
Of primary interest to very high-energy (VHE) γ-ray astronomy (>100GeV) is a subclass of FR I galaxies

called BL Lacertae (BL Lac), named after the name of their prototype that was originally mistaken for a
star. BL Lac have flat or inverted radio spectra with a smooth and featureless continuum and also emission
lines are entirely absent or very weak unlike all other kind of AGN. Among all the AGN they exhibit the
most variable emission, their flux is beamed and additionally they exhibit high polarization reaching values
up to 30%. The current general radiation model for the case of BL Lac objects consists of the synchrotron
emission from accelerated electrons at low energies and the inverse Compton (IC) emission, via photon
scattering, at high energies (γ-rays). These processes form a broad band two component shape spectrum,
covering 20 orders of magnitude, with two well defined peaks, one in the IR/optical or UV/X-ray band (due
to synchrotron) and the other in the γ-ray regime (due to IC), separated by ∼ 9 decades in frequency. The
position of the synchrotron peak distinguishes the BL Lac into high-energy peaked (HBL) and low-energy
peaked (LBL). It turns out that most of the HBL are TeV γ-ray sources and most of the LBL are EGRET
sources (i.e. GeV sources).

Finally the FR II galaxies are divided into the flat spectrum radio quasars (FSRQ) flat and steep
spectrum radio quasar (SSRQ). The first category is the analog of the BL Lac and both of them form
separate category called blazars. It must be remarked that the optical spectra of BL Lac and FSRQ differ
greatly. In fact, whereas FSRQ show strong broad emission lines, BL Lac have either weak emission lines
of typical equivalent width (EW) of less than 5 Å or no emission lines at all in their optical spectra. The
reason of putting them in a common category is because they share the same continuum properties such
as strong variability and high polarization.

1.2.2 Orientation scenario

All the different types of objects presented in sect.1.2.1 are usually explained in terms of an orientation
scenario of the AGN with respect to the viewing angle (Urry & Padovani 1995). In general type I objects
are viewed close to the jet axis and type II are view perpendicular to it (fig.1.2).

Concerning the radio-quiet galaxies, Seyfert I generally exhibit broad and narrow lines meaning that
the AGN is viewed from the observer at a small angle from the jet axis therefore both the broad-line region
(BLR) and the narrow-line region (NLR) are visible. In the opposite case of Seyfert II the AGN is viewed
along the plane of the torus therefore the BLR is obscured and only the NRL is visible.
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Figure 1.1: The taxonomy of AGN. The BL Lac and the FSRQ can be joined into one category, named
blazars, depicting the ultra-variable character of these objects among all the AGN.

In the radio-loud regime, blazars are thought to be oriented such as their jets are aligned very close to the
line of sight resulting “exotic” relativistic phenomena, such as the relativistic beaming and the superluminal
motion.

If a source of radiation moves with relativistic velocities towards the observer the intensity of the
radiation will be amplified by Doppler boosting in the direction of motion. The time intervals measured
in the observer’s frame will be shorter than in the rest frame of the source and consequently the measured
frequencies will be higher. These effects are all direct consequences of the Lorentz transformations of special
relativity and they are known as relativistic beaming. The parameter which quantifies the relativistic
beaming is the Doppler factor:

δ =
1

Γ(1 − β cos θ)
(1.1)

where Γ is the bulk Lorentz factor and θ is the angle between the line of sight of the observer and the
direction of motion of the source.

The specific intensity of the source I(ν) in the observer’s frame, is boosted with respect to that of the
source rest frame I ′(ν′)

I(ν) = δ3I ′(ν′)
(
erg sec−1cm−2Hz−1sr−1

)
(1.2)

where primed quantities refer to the rest frame of the source.
In many blazars single radio components (i.e. blobs) have been seen moving at apparent velocities uapp

greater than the speed of light c. This has been interpreted as an effect of relativistic beaming in the
following way. When a source is moving at a velocity u close to c along a direction forming a small angle
with the observer’s line of sight it “runs after” its emitting photons. This reduces the time intervals between
the emission of two photons as measured in the observer’s frame and the source appears to move faster
than it actually does. The apparent velocity uapp, is given by

uapp =
u sin θ

c − u cos θ
c (1.3)

Therefore for small angles of sight 0 < cos θ < 2uc/(c2 + u2), the observed velocities exceed the speed of
light: uapp > c.

1.2.3 The SED of blazars

One defining characteristic of the AGN is their variable emission in almost all energy bands (sect.1.2.1).
Among them the blazars are the most variable specie and as such they exhibit a very variable behavior rang-
ing from minutes (Racine 1970; Miller et al. 1989; Papadakis et al. 2004) up to decades (Teräsranta et al.
2005). The usual way to illustrate the multiwavelength energy output of blazars (and general all the AGN)
is through the so called spectral energy distribution (SED). This is a broad band spectrum covering the
whole range of frequencies, from radio to γ-rays, and it is generally represented in a log(νfν) versus ν plot.
Such a plot has the advantage of showing approximately the emitted energy per unit logarithmic frequency
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Figure 1.2: Schematic representation of the AGN orientation scenario (after Urry & Padovani 1995).

interval (or per decade of frequency), indicating immediately in which band most of the energy is released.
The SED of blazars is characterized by two distinct components: one from radio to X-rays peaking at
UV/soft X-rays and another one peaking at MeV-to-TeV γ-rays (Ulrich et al. 1997). The lower frequency
component is attributed to synchrotron radiation of relativistic particles in magnetic fields. The higher
frequency component is usually interpreted as IC radiation of “seed” photons coming either internally
from the jet’s synchrotron radiation, synchrotron self-Compton (SSC) or externally from various radiating
sources (e.g. UV photons from the accretion disk, emission line clouds). The X-ray band comprises the
link between these two regions therefore information about the temporal behavior of the source can greatly
constrain the jet physics by providing information about the time properties of the radiation mechanism.

The time evolution of the SED (only in the X-ray regime) of the two most well studied BL Lac type
blazars Mrk 421 (z=0.031) and Mrk 501 (z=0.033) during flaring events is shown in fig.1.3 (Xue et al.
2006). Several physical parameters for these two sources can be derived by fitting their SED with an SSC
model. The general idea of the SSC model is that the observed X-ray emission comes from upscattered
synchrotron photons (via the IC process) by the same population of electrons, assumed to follow a power-
law, that has created them in the first place (via the synchrotron process). The derived source parameters
are the power-law index of the emitting electrons, their maximum Lorenz factor, their total energy density
and the magnetic field of the emitting source. The fixed model parameters are the Doppler factor δ, the
minimum Lorenz factor of the electrons and the source size. The latter is the only parameter derived
directly from the light curves and specifically from their time properties which are claimed to be directly
connected with the linear size of the source (sect.8.1.1). This example shows an approach of how the time
properties of a given data set can be used in order to probe into the physical parameters of the source.

1.2.4 The BL Lac object Mrk 421

Modeling the SED of the BL Lac objects is one way of deriving source parameters in a completely model
depended way. In this work a try is made to extract as many information as possible directly from the
light curves of these objects without making any assumption about the underlying radiation processes.
The central point that one has to elucidate concerning the variability characteristics of the BL Lac objects
is to check thoroughly for fixed time signatures in their flux variations which might be conserved for
extended time periods. Thus sources providing with huge data sets must be employed in order to analyze
their variability behavior homogeneously throughout the years. Probably the most extensively observed
and well studied BL Lac object is Mrk 421 due to its interesting ultra-variable behavior. Among all
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Figure 1.3: [Top panel] The light curves of the
two BL Lac objects Mrk 421 and Mrk 501 during
a flaring episode as registered by the PCU2 on
board RXTE in the 2–60 keV energy band (taken
from Xue et al. 2006). Detailed information about
PCU2 and RXTE can be found in sect.2.1.
[Bottom panel] The time evolution of the SED,
focused in the X-ray regime, of the two BL Lac
objects during the flaring events. The solid line
represents the best fit models for the SSC scenario
(taken from Xue et al. 2006).

the BL Lac, Mrk 421 (z=0.031) is the most bright source in the X-rays and it is the first extragalactic
source detected in VHE (Punch et al. 1992). From the early X-ray observations with the European X-ray

observatory satellite (EXOSAT) (George et al. 1988), Mrk 421 exhibited a very active behavior on ksec
timescales together with spectral variations on daily time scales. Then observations with better X-ray time
coverage of the source, conducted by ASCA and Rossi X-ray Timing Explorer (RXTE) started to reveal
flares on time scales of about a day (Takahashi et al. 1996), fact that was firmly established in the late
nineties with extended X-rays observations lasting around 10 days (Takahashi et al. 2000; Tanihata et al.
2001). Through simultaneous multifrequency campaigns it has been seen that the VHE flux behavior of
the source shows correlations with the X-rays on daily time scales (Macomb et al. 1995) down to hourly
time scales (Maraschi et al. 1999; Aharonian et al. 2003). In sub-hour time scales this correlation tends
to loose (Błażejowski et al. 2005; Rebillot et al. 2006) declaring the fact that possibly some of the source
parameters such as the volume may be changed with respect to time. Since for the last 10 years the RXTE
satellite continues to observe Mrk 421 on a regular basis, these observations are going to be used for the
analysis purposes of this thesis.

The chapter, following this introduction, contains a description of the basic instrumentation properties
of the RXTE satellite together with the data analysis reduction procedures. In chap.3 some of the most
powerful time series analysis methods are presented in a compact and comprehensible way adjusted to
the needs of the astronomical data sets. The basic theories behind these methods together with simple
examples are shown in order to familiarize the reader fully with concepts that are rarely used in the field
of BL Lac astronomy. Then in chap.4 the main data sets which are used in this work concerning the BL
Lac object Mrk 421 are presented. These consist of the X-ray observations obtained by the PCA and the
ASM (instruments onboard RXTE) covering a time period of roughly 9 years. Up to now these are the
biggest data sets, in this energy band, homogeneously analyzed for the given source and due to their length
they give an additional opportunity to check about the validity of the debatable ASM data. In chap.5 the
flaws of one of the most extensively used time series analysis method, the SF, are presented thoroughly
through a series of simulations concerning some past ASCA X-ray observations of Mrk 501. The method
is proven to be inappropriate for studying the time properties of BL Lac objects. A robust study of the
latter necessitates the need of taking into account the higher order statistical moments of the data sets
by making use of higher order time series analysis. Exactly this kind of analysis is performed in Chap.6
for the case of Mrk 421, aiming to reveal any possible evidence of deterministic behavior embedded in the
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short and/or in the long-term variability behavior of the source. The VHE variability behavior of another
BL Lac object PKS 2155-304, during the period during August–September 2004, is presented in chap.7
as it was registered in the VHE by the High Energy Stereoscopic System (H.E.S.S.), in the X-ray band
(2–10 keV) by RXTE and in the optical regime (R-band) by three terrestrial observatories. Finally chap.8
contains a discussion concerning the main results of this work, dealing mainly with BL Lac light curves,
and their impact on the derivation of physical source parameters.
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Chapter 2

INSTRUMENTATION AND DATA

ANALYSIS

In this chapter the four instruments onboard the Rossi X-ray timing explorer (RXTE) satellite together
with the data reduction methods are described in a concisely way. The proportional counter array

(PCA) together with the high energy X-ray timing experiment (HEXTE) and the all sky monitor

(ASM) consist the scientific instruments of the mission whereas the experimental data system (EDS) is the
processing unit. The products coming from the three instruments are reduced based on the software, the
methods and the criteria provided by GSFC/NASA.

2.1 The Rossi X-Ray Timing Explorer Satellite

The RXTE satellite, launched on 30/12/1995, is a NASA mission maintained and controlled by GSFC/NASA.
The main characteristic of RXTE, as it is stated from its name, is the unprecedented time resolution since
it was launched dedicated for observing variability processes of X-ray sources. Time scales from microsec-
onds up to years can be covered by an instantaneous spectral range of 2 to 250 keV. Therefore historical
archives containing the X-ray activity of the sources can be created and time series analysis on a long look
basis can be conducted. The main characteristics of the observatory are listed in tab.2.1.

Table 2.1: Characteristics of the RXTE observatory
Launch date 30 December 1995
Launch vehicle Delta-7920-10 rocket
Height 565–585 km
Total mass 3035 kg
Orbit type low-earth circular
Period ∼ 90 min
Inclination 22.99◦

2.1.1 An overview of the onboard instruments

The mission carries in total three observing experiments and one microprocessor-based electronics package
that controls the data acquisition. A set of five large area xenon proportional counter units (PCUs) forms
the PCA sensitive in the energy range of 2–60 keV. Then, two large area sodium iodide scintillators sensitive
in the energy range of 15–200 keV compose the HEXTE. Both of them are equipped with collimators yielding
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Rossi X-ray Timing Explorer

Figure 2.1: Arrangement of RXTE’s instrumentation (taken from the web:
http://heasarc.gsfc.nasa.gov/docs/xte/xte_images.html).

Table 2.2: General properties of the instruments onboard RXTE
PCA HEXTE ASM

Energy range 2–60 keV 15–200 keV 2–12 keV
Energy resolution <18% at 6 keV 15% at 60 keV —
Time sampling 1 msec 8 µsec 90 minutes

FOV 1◦ FWHM 1◦ FWHM 6◦ × 90◦ FWHM/camera
Detectors 5 PCUs 2 clust. of 4 scintill.count. 3 scanning cameras

Collecting area 6500 cm2 2×800 cm2 90 cm2

a FWHM of one degree. Finally, the ASM consists of three wide FOV scanning detectors, sensitive in the
2–10 keV energy range, monitors constantly 80% of the sky in every orbit. The events from both the PCA
and the ASM are processed on board by the EDS in contradiction to HEXTE having its own built in
data processor system. The EDS consists of 8 parallel processing systems known as event analyzers (EAs)
which can carry out different analyses in parallel on the incoming data streams. The fig.2.1 shows the
arrangement of the experiments upon the satellite and tab.2.2 lists some of their general properties.

The first experiment was developed by GSFC/NASA the second by CASS/UCSD and the other two
by MIT.

2.1.2 Instrumentation properties of the PCA

The PCA experiment (Jahoda et al. 1996) consists of 5 sealed and collimated (1◦ FWHM), xenon-methane
(Xe-CH4) multi-anode PCUs sensitive to the energy range of 2–60 keV. The total effective area (fig.2.2) is
3000 cm2 at 3 keV, 6000 cm2 at 10 keV and 800 cm2 at 50 keV. Since the 5 PCUs (numbered as PCU0,
PCU1, PCU2, PCU3, PCU4) were designed to be essentially identical and operate independently all of the
following description will refer to only a single detector module (fig.2.3).

Each PCU is covered with a thermal shield of aluminized Kapton polyimide 8.46 µm thick. This shield
is part of the passive thermal design of PCA and each detector is thermally connected to the RXTE
spacecraft. The thermal shield is not illuminated by direct sunlight except for observations which are
conducted less than 45◦ away from the Sun. The collimating system of each unit consists of 5 collimator

modules. Each module is formed from 76.2 µm beryllium-copper (Be-Cu) sheets which are tin-coated,
stamped into half-hexagonal form, stacked and then heated causing the tin coating to solder the sheets
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Figure 2.2: The effective area of the PCA as a function of the energy response of the complete PCA
experiment for the propane and the xenon sections (taken from Schlegel 2006).

Figure 2.3: Transversal view of one PCU (taken from the web:
http://heasarc.gsfc.nasa.gov/docs/xte/xte_images.html).
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Table 2.3: PCU signal chains
VP All propane anodes connected together
XL1 and XR1 1st xenon layer of two interleaved sets of anodes
XL2 and XR2 2nd xenon layer of two interleaved sets of anodes
XL3 and XR3 3rd xenon layer of two interleaved sets of anodes
VX Xenon veto layer
ALPHA Events from the calibration source detector

together. Each module is a cube of 20.32 cm on a side and each hexagonal cell is 3.175 mm across the flats.
The bottom surface is polished and coated with a small amount of uralane to protect the Mylar window.
Finally, each of the five modules has a 1 cm2 mirror attached to the front surface which were used in order
to align them within their surrounding frame before they were fixed in position with epoxy.

Immediately behind the collimator is a 0.508 mm beryllium-copper shoe which duplicates the foot-
print of the first interior grid. A second window is held between the first and the second grid. These two
windows together with the first grid form the boundaries a 1.3 cm deep volume filled with propane (VP).
The propane (CH3CH2CH3) volume serves as an electron veto region and charged particle anticoincidence
shield, antico propane layer. The propane detector has twenty successive anodes across its width, spaced
1.3 cm apart. Each anode is separated from the other by thin solid aluminum walls that support the second
window. The nominal pressure of propane is 1.05 atm. The double gas volume design requires that this
pressure is less than or equal to the pressure behind the second window at all times during the filling and
the operation of the detector.

Below the second window is the xenon volume. This consists of four wire grids, each with twenty
anodes at the same spatial arrangement as for the propane volume. These anodes are separated by wire
wall cathodes (5 across cell side) and this volume is normally filled with xenon plus 10% methane at a total
pressure of 1.10 atm. All anode and cathode wires are made from gold coated stainless steel wire 50.8 µm
in diameter. The wires are installed under tension sufficient to stay taut at the lowest survival temperature
of -25◦ C. The upper three of the 4 xenon grids are used for the X-ray detections.

The bottom of the four xenon anode layers together with the nearest ones on the remaining two sides
of the detector form a veto chamber for charged particles. The lowest surface ground plane of the bottom
layer is defined by a beryllium-cooper back plate. Additionally this provides some shielding from events
created at the rear of the counter. An Americium-241 (241Am) source is mounted on this plate, providing
a continuous low energy calibration signal of the tagged events. Ultimately each PCU contains a stack of
electronics producing signals from nine independent anode chains summarized in tab.2.3.

In order to estimate the sensitivity levels of the three xenon layers for all the PCUs, it is assumed
that a 1 mCrab source has a spectrum N(E) = 0.005E−1.7 photons sec−1cm−2 absorbed by an equivalent
neutral hydrogen (H I) column of NH I=3×1020 atoms cm−2. The estimated count rates summed over the
five detectors are shown in tab.2.4. The signal to noise ratio S/N is defined as

S/N =
st

√

(s + cb + ib)t
(2.1)

where t is the time duration of the observation, s is the source count rate and cb and ib are the cosmic and
instrumental background count rates respectively. Based on tab.2.4 the S/N as a function of time for the
three layers for the PCA detector is shown in fig.2.4.

The energy resolution over the whole area of each PCU is exceedingly uniform and has a typical value
for the xenon layers of 18% at 6 keV and 9% at 22 keV. The propane layer has a resolution of 18% at 5.9
keV. Externally each PCU is covered by a graded shield of tantalium (Ta), 1.524 mm thick over tin (Sn) to
reduce the X-ray background flux can absorb the hard X-ray and γ-ray events generated in the spacecraft
by cosmic ray impacts. The tin thickness (0.508 mm) is chosen to absorb escaped photons generated from
interactions in the outer tantalium layer.

The electronics which are mounted on the back side of the detector consist of the following parts (for
more details see Schlegel 2006, sect.4.2.3, p.28), charge sensitive amplifiers (CSAs), shaping amplifier (SA),
test pulse generator (TPG), analog digital converter (ADC), remote interface (RIF), low voltage power
supply (LVPS) and high voltage power supply (HVPS).
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Figure 2.4: The S/N of the PCA layers as a function of time after summing the signals coming from all
five PCUs for a source of 1 mCrab with a spectrum N(E) = 0.005E−1.7 photons sec−1cm−2 absorbed by
NHI=3×1020atoms cm−2.

Table 2.4: Sensitivity of PCA xenon layers in the energy band of 2–10 keV
PCA xenon layer Source Cosmic background Instrumental background

1st 10.20 8.54 7.66
2nd 0.52 0.47 3.16
3rd 0.13 0.07 3.36

2.1.3 The HEXTE

The HEXTE (Hink et al. 1992) (fig.2.5) consists of two clusters each one containing four phoswich (“phos-
phor sandwich”) (NaI,CsI) scintillation detectors which are sensitive in the energy range of 15–200 keV.
The total collecting area of the detector is 1600 cm2 and the energy resolution of it is 15% at 60 keV. Each
cluster can “rock” (beamswitch) along mutually orthogonal directions to provide background measurements
1.5◦ or 3.0◦ away from the source every 16 to 128 sec. Automatic gain control is provided by using a ra-
dioactive source (241Am) mounted in each detector’s FOV. In contrast to PCA and ASM both the time
tagging of the events (with a time resolution of 8 µsec) and the telemetry stream, having an average data
rate of 5 kb sec−1, are performed within HEXTE by its own processing unit. Data products include event
mode, binned spectra and light curves, and a burst-triggered event buffer.

2.1.4 Instrumentation Properties of the ASM

The ASM (Levine et al. 1996) performs a nearly continuous monitoring of the X-ray sky. As such, it
provides a record of the history of the X-ray sky during the lifetime of RXTE. The ASM consists of three
basically scanning shadow cameras (SShCs) mounted on a rotating drive assembly (fig.2.6). Each camera
has a FOV of 6◦×90◦ i.e. FWHM (and a FWZI of (φ× θ)=(12◦ × 110◦)) and all of them cover about 80%
of the sky upon the completion of one full rotation lasting 90 min. Two of the cameras share the same look
direction but are canted by ±12◦ from each other, while the third camera looks in a direction parallel to
the ASM drive axis. When the cameras rotated through 360◦, the combined SShC exposure areas cover
the entire sky, expect for a 45◦ half-angle cone centered toward the base of the instrument. The assembly
dwells at a fixed position for ∼ 90 sec, followed by a rotation of 6◦.

Each SShC has a position sensitive proportional counter, and the data is analyzed to give the total
source intensity in the 2–12 keV energy band. The SShC consists mainly of a position sensitive proportional

counter (PSPC), a mask plate, a collimator, a thermal shield and electronics. The PSPC is actually a multi-
wire proportional counter used for the detection and measurement of the position of each X-ray event in
the coordinate perpendicular to the slits in the mask plate. The latter is a thin aluminum sheet, penetrated
by a number of parallel slits and its role is to cast X-ray events of every X-ray source in the SShC FOV
upon the PSPC. The collimator holds the slit mask in the desired position with respect to the PSPC and
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Figure 2.5: The HEXTE experiment and the spatial arrangement of the eight phoswich scintillators (taken
from the web: http://mamacass.ucsd.edu/hexte/pictures/).

partially defines the overall FOV. Finally the thermal shield (layer like form) is situated in the slit mask
and helps moderate temperature swings of the SShCs.

Sensitivity

In order to estimate the sensitivity of the ASM detector the SShC position histogram data have been
simulated for a variety of X-ray source intensities, assuming that the source is in the center of the FOV,
the SShC dwell time is 100 sec (the interval of the data accumulation lasts typically ∼ 90 sec), the position
histograms include events from the full instrumental energy 2–10 keV and the total background is 49 counts
sec−1SShC−1. The fig.2.7 shows the probability of obtaining a detection with a significance above 3σ as a
function of X-ray intensity, the latter expressed in mCrab (1 mCrab≃1.06 µJy at 5.2 keV and a 10 mCrab
source is estimated to produce a net count rate of 0.91 counts sec−1SShC−1). These simulations indicate
that X-ray sources with intensities above 20 mCrab are detected at or above the 3σ significance level more
than 90% of the time in a series of 100 sec dwells.

In practice, X-ray sources are not always centered in the FOV, and also for fields in the Galactic bulge
there are likely to be a number of sources in the FOV at one time. On the other hand, these factors will
be compensated, to some degree, by the fact that a source will appear in several dwells per celestial scan,
given the geometry of the 3-SShC system and the nominal plan of 6◦ rotations between the dwells.

Energy Resolution

Detailed spectral studies of the registered events are not possible to be conducted with the ASM due to the
lack of energy resolution. The whole experiment is able to categorize events in only three energy channels
(1.3–3 keV, 3–5 keV and 5–12 keV) resulting a really poor energy resolution of the overall system.

2.1.5 The EDS interface

The EDS allows the observer to recover the most desired information by providing multiple-data processing
options (from observations taken by PCA and ASM) on board the RXTE spacecraft. The EDS consists of
three major types of subsystems: 6 PCA EAs, 2 ASM EAs, 2 system managers and 1 power distribution
board. The data system can tag the relative arrival time of each event with an accuracy of 1µsec.

The large effective area and excellent time resolution capability of the PCA creates a great strain on
telemetry resources. If the date were to be telemetered simply as 48 bits (i.e. time, detector and energy
information) per individual PCA event, the nominal sustained PCA telemetry rate limit of ∼ 20 kb sec−1

would be exceeded for average total count rates above ∼ 420 counts sec−1. This limit is equivalent to an
X-ray source with intensity of only ∼ 50 mCrab and makes no allowance for non source background. Thus
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Figure 2.6: Schematic representation of the ASM and one SShC (taken from Schlegel 2006).

1 SShC

Figure 2.7: First order estimate (for fields without bright sources) of the ASM’s detection threshold per
celestial scan which nominally corresponds to a timescale of ∼ 90 min, i.e. 1 satellite orbit (taken from
Schlegel 2006).
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2.2. Data Reduction Procedures for the Proportional Counter Array

the EDS serves to compress the PCA data by means of time and energy binning. All the events detected
from the PCA are transferred to the EDS without any selection criteria. There each PCA EA receives data
from the five PCUs where the time tagging (down to 1µsec) is added as well as other reduction procedures
(e.g. pulse profile averaging, Fourier power spectra) are carried out.

Similarly for the ASM the amount of raw information on an event by event basis is enormous to be
telemetered directly to the ground. At 28 bits per event (i.e. not considering the time bits) the diffuse
X-ray background emission (∼ 40 counts SShC−1) generates a raw data of 3.360 kb sec−1 which is above
the nominal ASM telemetry rate of ∼ 3 kb sec−1. Therefore in a similar way as before EDS compress the
ASM data in two ways. The first ASM EA accumulates the data in the form of position histograms and
the second one produces time series, background and pulse height spectra data products.

2.2 Data Reduction Procedures for the Proportional Counter Ar-

ray

2.2.1 Data reduction software

The software used for reducing the PCA data is the HEAsoft v.6.0 provided by GSFC/NASA1. It
is explicitly designed for research and advanced studies of scientific astronomical observations in flexible

image transport system (FITS) format. The software consists of a collection of commands, tools and
scripts coming from three major programs. The first program is the FTOOLS (Blackburn 1995) being
appropriate for manipulating FITS files. This program contains also a file browser/editor/plotter with a
graphical user interface, fv (Pence et al. 1997) as well as a library of C and Fortran subroutines for reading
and writing data files in FITS data format, CFITSIO (Pence 1999). The second program is the XANADU
which is appropriate for processing the data and producing scientific products. It consists of a spectral
analysis program xspec (Arnaud 1996), a timing analysis program xronos (Stella & Angelini 1992) and an
X-ray imaging program ximage (Giommi et al. 1992). Finally the last program comprising the HEAsoft

collection is XSTAR (Bautista & Kallman 1999) appropriate for calculating the physical conditions and
emission spectra of photoionized gases.

2.2.2 Data quality selection criteria

The PCA data are reduced based on the recommended criteria provided by GSFC/NASA2. Initially all the
observations obtained with the EDS configuration Standard-2 (Std2) mode are selected using the FTOOL
xdf. The Std2 configuration is a type of binned mode running for all observations. Files containing Std2
data are in science array format (i.e. data binned at regular intervals by the spacecraft electronics). The
science data are comprised by thirty columns of pulse-height histograms (i.e. energy spectra), one for each
anode of each PCU, accumulated every 16 seconds.

For each Std2 observation a filter file is created using the FTOOL Perl script xtefilt containing infor-
mation about the housekeeping data and the status of the satellite as well as its instruments within each
observation. These files are then combined into a total one using the FTOOL fmerge listing as a function of
time the values of various parameters such as: observing activity of all PCUs, Earth occultations, pointing
offsets, high electron contamination and satellite passages from the south Atlantic anomaly (SAA).

The final step in order to select the optimum observations (i.e. observations taken under optimum
conditions) is to choose those Std2 observations for which the all the aforementioned parameters are
fulfilling some optimum observing criteria at the same time. The good time interval file (GTI), produced
by the FTOOL maketime, contains exactly a list of times when all the parameters are within their allowed
range at the same time. The range for each parameter is specified based on the following criteria:

• The elevation angle between the Earth’s limb and the source should be grater than 10◦.

• The offset between the source position and the satellite pointing should be grater than 0.02◦.

• The time since SAA should be grater than 30 minutes. The SAA is caused due to the displacement of
the center of the Earth’s magnetic field with respect to its geographical center (by 280 miles) as well
as the displacement between the magnetic and geographic poles of the Earth3. For satellite orbits

1http://heasarc.gsfc.nasa.gov/ftools/
2http://heasarc.gsfc.nasa.gov/docs/xte/xhp_proc_analysis.html
3The location of the north magnetic pole in 2005 was 82◦ 07′ North, 114◦ 04′ West, near Ellesmere Island, in Canada.

Since 1970 its rate of motion has been accelerated from 9 km/year to 41 km/year and if it maintains its present speed and
direction it will reach Siberia around 2055.
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2.2. Data Reduction Procedures for the Proportional Counter Array

tilted between 20◦–45◦ against Earth’s equator and orbiting altitudes of ∼ 550 km (such as RXTE
see tab.2.1), SAA becomes important because the spacecraft in those orbits periodically pass through
a zone of a very high particle flux compared to the usual one outside this zone.

• Since the PCA is subject to contamination from electrons trapped in the Earth’s magnetosphere or
from solar flare activity, events based on this nature should be rejected in order not to be misinter-
preted as source events. Such electrons, measured by the coincidence of events between the PCUs’
antico propane layer and either of the two anodes in the first layer, increase the background at low
energies. The parameter characterizing this activity is called ELECTRON2 and it is set to be smaller
than 0.1 (see also sect.2.2.5).

Thus, only the Std2 observations which have been obtained within these “good times” are selected and
these observations are those ones from which the scientific products are going to be extracted.

2.2.3 Background estimation

Previous proportional counter experiments in Earth orbit had successfully modeled the instrument back-
ground as a function of one parameter e.g. the A2 experiment on board the first high energy astrophysical

observatory (HEAO-1) (Boldt & Garmire 1975) or several parameters e.g. Ginga (Hayashida et al. 1989).
Some experiments such as the (EXOSAT) had also employed offset detectors (Taylor et al. 1981). While
some early concepts for the PCAs included offset or movable detectors, the flight detectors are all fixed
on the RXTE spacecraft and they are all pointing along the science axis (see fig.2.1). While the sky
background is assumed to be constant at any one pointing position, the internal background may vary as
the detectors move through different ambient conditions. Throughout the entire mission the background
model is continuously evolving around a basic scheme. In the current implementation it consists of three
parameters:

1. particle-induced background, arising from interactions between radiation or particles in the orbital
environment with both the detector and the spacecraft.

2. the diffuse X-ray background emission entering through the collimator as X-rays.

3. the activation in the SAA.

The particle induced components are modeled by analyzing Earth data from the entire mission. The main
particle component is found to be well correlated with many of the PCA anticoincidence rates, which
are used to flag and veto non X-ray events. Many such rates are available and the current model uses
the so-called Q6 rate, which measures coincidences that activate six of the eight PCU anode chains. In
this way GSFC/NASA provides two parametrized files of the background one for the “faint” (<40 counts
sec−1PCU−1) and one for the “bright” sources (>40 counts sec−1PCU−1). In addition to this primary
particle component the satellite’s passage through SAA induces radioactive decay terms into background.
These can be accounted for by correlating the positional history of the satellite with the PCA count rate
during occultations. The sky background is determined by subtracting the predicted particle components
from “blank sky” pointings, averaging over several positions.

The final step for the data reduction is to create the background files corresponding to the selected “good
time” Std2 observations. For this purpose the FTOOL pcabackest is used having as a primary function the
estimation of the variable internal background component of every observation. In addition this FTOOL
is capable of adding a constant term to approximate the sky background (coming from the aforementioned
averaging procedure). It is assumed that the internal background varies on a relatively long time scale
with respect to the 16 sec time resolution of the Std2 PCA observations. The basic idea is that the model
can be evaluated once every 16 sec, and from that an equivalent of a Std2 data file can be created for each
anode chain of each PCU. At the end for every Std2 data file a background file is produced with the same
time duration as defined by the GTI files.

2.2.4 Scientific products

Light Curves

This is the last step for the production of the light curves and spectra. By making use of the FTOOL
saextrct, the “source plus background” the light curves of the source are produced from the selected Std2
files together with the “background” light curves coming from the background files (sect.2.2.3).
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All PCUs have three xenon layers (X1, X2, X3) each one consisting of two anode chains: left (L) and
right (R) (tab.2.3). The 1st layer (XL1–XR1) detects roughly 90 percent of the cosmic photons and 50
percent of the internal instrumental background (tab.2.4). Therefore in order to improve the S/N (fig.2.4)
events from the second and the third layer are excluded and only those from the first one are used in order
to produce the scientific products. Finally the source light curves are produce after subtracting the two
aforementioned light curves with the xronos command lcmath. In order to plot the light curves and save
them in an ascii form file, the xronos routine lcurve and the xronos Perl script flc2ascii are used respectively.

Spectra

The production of the source spectrum is done in a similar way firstly by producing separately the “source
plus background” spectrum and the “background spectrum” , and then disentangling the two. Note here
that the latter is created based on the chosen parametrized background model file. In order to disentangle
these two spectra and get the source spectrum alone the detector’s response is necessary. The PCA
response matrices are notionally divided in two parts: the ancillary response file (ARF), which accounts
for the detector windows and collimator response and the redistribution matrix function (RMF), which
accounts for the redistribution of photon energy amongst detector channels by the detecting medium. The
product of the two is known as the response matrix (RSP) and this is used by the xspec program in order
to produce the source spectrum. The PCA response depends on primarily three parameters4:

• Gain settings: The overall gain settings of the PCA have been changed five times since launch for
operational reasons. These changes are significant and therefore data from more than one gain epoch
should not be analyzed spectrally with the same RSP. It should be stressed here the fact that it is
preferable to create the RSPs for all the observations, even if they are falling in the same epoch, due
to the fact that there are small differences of the order of 2.2% due to small mission malfunctions
(e.g. voltage fluctuations5).

• PCU ID: Individual PCUs have slightly different gains and moreover not all PCUs may be on at the
same time during the data acquisition. Therefore, it is important to match the detector IDs of the
response with those of the data.

• Anode ID: To boost the S/N , the spectra are extracted from just the top layer (anodes X1L, X1R)
of the PCUs (see tab.2.4). The anodes included in the response should match those of the data.

For these reasons the Perl script pcarsp is employed in order to create from the “source plus back-
ground” spectrum file the appropriate ARF and RMF products and combine them to the corresponding
RSP. This script uses also the calibration database (CALDB) provided by HEASARC6 in order to consider
for the estimation of the RSP the correct gain settings of the satellite during the corresponding observing
period.

In order to fit the resulted source spectrum one can choose between additive or multiplicative spectral
models of xspec. The selected model is then combined with the response matrix and the results of the
fitted parameters are given together with the goodness of the fit (i.e. χ2 and NHP). In AGN astronomy
among the most common models in use are the power-law and the broken power-law. These models should
be usually combined with an interstellar absorption photoelectric model in order to reflect the internal
properties of the source which are independent from the intermediate material. The xspec uses for the
effective absorption cross section per hydrogen atom as a function of energy (in 0.03–10 keV) the model of
Morrison & McCammon (1983). The NHI for a given source can be left as a free fit parameter or it can be
specified by using the FTOOL nh. The latter program is using the H I map of Dickey & Lockman (1990)
and requires as inputs the source’s coordinates i.e. right ascension and declination.

2.2.5 Unfiltered background events

The background flaring activity, mainly caused by electrons, in sub-hour timescales can create some times
artefacts which can be misinterpreted as source events. Low-energy electrons may be registered as X-ray
events when they fail to trigger any of the vetoing logics of the detector (sect.2.1.2). The course of these

4A fourth parameter could be considered the channel binning. Although the response does not in fact depend on how the
spectrum is binned, xspec requires that the binning of the response and that of the spectral files (“source plus background” and
“background”) should be identical.

5The complete list with the mission events can be found in: http://heasarc.nasa.gov/docs/xte/whatsnew/big.html
6http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/
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2.3. Data Reduction Procedures for the All-Sky Monitor

Figure 2.8: [Left panels] The upper plot shows the sub-hour flaring event of Mrk 501 during 1998 May
15–29 as reported by Catanese & Sambruna (2000) and the bottom plot shows the simultaneous behavior
of the background electron events (denoted by Electron2). The vertical dashed line indicates the 200 sec
lead of the X-ray flare with respect to the electron flare (taken from Xue & Cui 2005).
[Right panels] A similar X-ray event, occurring ∼ 1.5 h earlier, induced also by an electron flare (taken
from Xue & Cui 2005).
Both light curves give the count rate in the energy range of 2–10 keV and the RXTE mission elapsed time

(MET) is defined as the number of seconds since 1994 January 1 00:00:00 (UT).

events throughout an observation can be checked simply by plotting the parameter ELECTRON2, from the
filter file (sect.2.2.2), as a function of time. Source flaring events occurring together with electron events
is an indication of artefact flares not attributed to the source. For the case of the BL Lac object Mrk 501
a sub-hour flare was reported by Catanese & Sambruna (2000) which has been proven to be induced by
an electron event by Xue & Cui (2005). The upper panels of fig.2.8 show two such events occurred during
these observations of Mrk 501 between May 15–29, 1998 and the bottom panels show the corresponding
behavior of the electron contamination parameter during these events.

In order to take into account these kind of unfiltered background events together with the X-ray light
curves the ELECTRON2 parameter is plotted as a function of time and a thorough check is conducted for
event correspondence. The X-ray events which appear to lead an electron flare by 100-500 sec are excluded
from the overall analysis.

2.3 Data Reduction Procedures for the All-Sky Monitor

The ASM observations are becoming publicly available7 by the ASM team at CSR/MIT in two forms. The
first form is the dwell observations in which all the data points are given with a time resolution of ∼ 90
sec. Each point represents the fitted flux originating from each ASM dwell (see sect.2.1.4) and it is given
together with a flux error and the observation time (in MJD). Together with each point a set of additional
information is also available in order to check about the dwell quality. This consists of the number of
sources in the FOV, the Earth’s angle with respect to the ASM axes, the exposure time, number of SShCs
in operational mode, the reduced χ2 of the flux fit, the long-axis angle θ and the short-axis angle φ.

The second form is the one-day average observations in which each data point represents the one-day
average of the fitted source fluxes coming from selected ASM dwells and it is given together with an a
flux error and the mean observation time (in MJD). The selection criteria applied in order to choose the
optimum dwells are the following: The number of sources in the FOV should be less than 16, the earth
angle should be greater than 75◦, the exposure time should be greater than 30 sec, the reduced χ2 of the
fit should be less than 1.5, the long-axis angle should have an angle θ between −41.5◦ and 46◦ and at the
same time the short-axis should be lying in an angle φ between −5◦ and 5◦.

7http://xte.mit.edu/
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Chapter 3

TIME SERIES ANALYSIS IN ASTRONOMY

Most of the time series analysis methods applied in astronomy are appropriate only for linear
systems. However there is no reason why multi-component complex astrophysical systems such
as AGN should generate emission through linear processes. The assumption of linearity is often

made more for mathematical and computational convenience rather than it is believed to be true. In this
chapter both the methods of linear and nonlinear time series are described in a compact and comprehensible
way. Concerning the former there is a rich and extremely well written literature (e.g. Priestley 1981;
Bendat & Piersol 1986; Brockwell & Davis 2002; Chatfield 2003) that focuses on various levels of both
theory and applications allowing the reader to easily understand through examples the applicability of a
given method. Moreover most of the times ready-to-use computer routines are also provided which can
be then applied directly on a given data set. Concerning the nonlinear methods the literature is much
more dispersed and untidy. The main sources of information, concerning a given method, are spread
out in a extremely wide field of disciplines: physics, topology, economics, medicine, biology etc. In this
chapter a try is made to present in a simple and comprehensible way the various nonlinear analysis tools
giving a step-by-step methodology on how they can be applied directly on a data set. Additionally the
physical interpretation of the results is discussed in depth helping to understand further when and why a
given method should be applied and what are the capabilities/limitations of it. Despite the fact that all
the nonlinear time series analysis methods make use of numerous topological theorems, based on a strict
mathematical nomenclature, this chapter aims more to present the physical connection of these theorems
with the given analysis methods rather than to go into the mathematical implications of them.

3.1 Basic Categories of Physical Systems

The physical systems can be broadly classified as being either deterministic or nondeterministic. The
former are those which can be described by a small number of explicit mathematic relations (usually ≤
15), low-dimensional systems (see sect.3.4.1) and their course in time can be readily predicted. In contrast
the latter can not be usually described by exact mathematic relationships or the number of the equations
is prohibitive in order to perform any analytical computation concerning their time evolution. The data
sets yielding from both systems are named after them (i.e. deterministic data set, nondeterministic data
set) and can be used in order to classify them further in smaller categories.

The general classification scheme of deterministic systems, is given in fig.3.1 after Bendat & Piersol
(1986). The basic discriminating tool used to categorize the various types of deterministic systems is the
power spectral density (PSD) (sect.3.3.1) of their data sets. Data representing deterministic phenomena
can be categorized as being either periodic or nonperiodic. Periodic can be further categorized as being
either sinusoidal or complex periodic. Nonperiodic data can be further categorized as being almost periodic
or transient. In sinusoidal data, coming from sinusoidal systems e.g. the position of an unbalanced rotating
weight as function of time, the PSD consists only of a single line at the cyclical frequency of the system.
Complex periodic data e.g. a vibrating string, present various spectral lines in their PSD in frequencies
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Figure 3.1: The classification scheme of deterministic and random systems (after Bendat & Piersol 1986).

that are all integral multiples of a fundamental frequency (harmonics). Conversely, almost periodic data
e.g. systems mixing two or more unrelated periodic phenomena, exhibit a PSD also with lines but with no
fundamental frequency (i.e. the fundamental period is infinitely long)1. Finally the transient nonperiodic

data can be still explained by means of an explicit relation but this time the PSD is a continuous function.
This means that the spectral power is not produced by some discrete frequencies but rather by a continuous
range of frequencies. A data set exhibiting this kind of behavior can represent the free vibration of a damped
mechanical system after removing the excitation form.

Usually the outcome of a nondeterministic physical systems is a random (or stochastic) data set in
the sense that each observation of the phenomenon is unique and can not be described by few explicit
independent variables (< 15), high-dimensional systems (see sect.3.4.1). Roughly speaking the number
of independent variables is the same with the number of equations needed in order to fully describe
the system. Random processes in nature are extremely common and they are met usually in systems
comprising of multiple elements (e.g. particles). The output voltage of a resistor as a function of time
and the microscopic pressure exerted in the walls of a container containing a gas are some of the systems
producing random (or noisy) processes. Of course all the systems in nature can be described by a finite
number of equations and in this sense all the systems can be seen as deterministic but this representation
is computationally not feasible and practically not interesting for stochastic systems. Consider that in
order to describe classically the behavior of 1 mole of He, having ∼ 6·1023 atoms, one would need a set of
3×6 ·1023+3×6 ·1023 equations for the position and the velocity of the atoms respectively in order be able
to fully describe the system. Practically speaking the behavior of a deterministic system described by more
than 15 independent variables converges to that of a stochastic system. Stochastic data sets yielding are
random in nature and must be described in terms of probabilistic statements and statistical averages. The
following classification (fig.3.1), after Bendat & Piersol (1986), aims to categorize the various random data
sets based on their statistical properties. In the statistical literature concerning the time series the terms
random, stochastic, nondeterministic and noise processes/data sets are used exactly in the same context.

Consider a collection of light curves {xn(t)}, produced by a random process x(t) with n denoting the
nth, output of the process (fig.3.2). The mean value of the realization of the random process at some time
t1 can be computed by taking the instantaneous value of each time series of the ensemble at time t1.

〈x(t1)〉 = lim
N→∞

1

N

N∑

n=1

xn(t1) (3.1)

In a similar way, the autocovariance function between the values of the random process at two different
times can be computed by taking the ensemble average of the product of instantaneous values at two times
t1 and t1 + τ .

Vx,x(t1, t1 + τ) = lim
N→∞

1

N

N∑

n=1

[xn(t1) − 〈x(t1)〉] [xn(t1 + τ) − 〈x(t1 + τ)〉] (3.2)

For the general case where 〈x(t1)〉 and Vx,x(t1, t1 +τ) vary as time t1 varies then the stochastic process x(t)
is said to be nonstationary. For the special case where these quantities remain constant as time t1 varies,

1Specifically, the sum of two or more sinusoids will be periodic only when the ratio of all possible pairs of frequencies form
rational numbers.
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Figure 3.2: Collection of light curves (time series) defining a random process (after Bendat & Piersol 1986).

〈x(t1)〉 = 〈x(t)〉 and Vx,x(t1, t1 + τ) = Vx,x(τ), the process is said to be weakly stationary or stationary in
the wide sense. Finally when all possible moments and joint moments are time invariant the stochastic
process is said to be strongly stationary in the strict sense.

Therefore the statistical properties of a random process can be determined by computing ensemble
averages at specific time instants. Nevertheless in most of cases it is possible to describe the properties
of a stationary random process by computing time averages over a specific time series (i.e. a light curve
obtained in a specific time period T ). For example consider for the kth output of a random process, the
mean value and the autocovariance function of this sample are given respectively by the following relations

〈xk(t)〉 = lim
T→∞

1

T

∫ T

0

xk(t)dt (3.3)

and

Vxk,xk
(τ) = lim

T→∞

1

T

∫ T

0

[xk(t) − 〈xk(t)〉] [(xk(t + τ) − 〈xk(t + τ)〉] dt (3.4)

If the random process x(t) is stationary and both 〈xk(t)〉 and Vxk,xk
(τ) do not differ when computed

over different sample functions (e.g. light curves) the random process is said to be ergodic. For ergodic
random processes the time-averaged mean value and autocovariance function (as well as all the other time-
averaged properties) are equal to the corresponding ensemble averaged values, that is 〈xk(t)〉 = 〈x(t)〉
and Vxk,xk

(τ) = Vx,x(τ). Note here that only stationary random processes can be ergodic and as such
is the most important class of random processes since all the statistical properties can be determined by
performing time averages over a single time series produced by the observed system.

3.1.1 Noise processes

The PSD (sect.3.3.1) of a random system is well represented by a power-law P(f) ∝ f−a with 0 ≤ a < 3
(see eq.3.10). Usually a special name for the noise process is given after the value of a.
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Figure 3.3: [Top panels] The left light curve represents a white noise process produced by a sequence of
IID variables (2000 points). The right light curve represents a red noise process produced by summing
cumulatively the outcome of the white noise process.
[Bottom panels] The periodogram estimates (eq.3.11), represented by the points, of the white and the red
noise processes respectively (left-right plots). The solid line represent the underlying PSD (eq.3.10) going
as f0, in the case of the white noise, and f−2 in the case of the red noise.

• white noise for a=0 (fig.3.3). If {xt} is a sequence of uncorrelated random variables each with zero
mean and variance S2 then {x(t)} is stationary having an autocovariance function Vx,x(t, t+ τ) = S2

for τ = 0 and Vx,x(t, t + τ) = 0 for τ 6= 0 independent of t. Such a sequence is referred to as
white noise: {xt} ∼ WN(0, S2). Data sets in which the observations are independent and identically
distributed (IID) random variables are white noise processes but the opposite is not true. The first
order autoregressive conditional heteroscedasticity model (ARCH) (Engle 1982) is a strictly stationary
white noise process but it is not an IID sequence since it is not Gaussian. Only a strictly Gaussian
white noise process consists of a sequence of IID variables.

• red noise (or random walk) for a=2 (fig.3.3). The red noise process {st}, t = 0, 1, 2, . . . with s0 = 0 is
obtained by cumulatively integrating IID random variables {xt, t = 0, 1, 2, . . .}: st = x1 + x2 + . . . xt

for t = 1, 2, . . . and it has a mean value of zero and variance tS2. Since the autocovariance function:
Vx,x(t, t + τ) = tS2 depends on time the process is nonstationary. A random walk process, consisting
of a sequence of discrete steps of fixed length in one dimension (Brownian motion), is known to have
an average distance between N successive steps equal to

√

2N/π ≈
√

N (e.g. Harwit 2006).

There is a lot of perhaps unnecessary nomenclature concerning the “colors of noise” (pink, orange, green
etc.). In practice, in AGN astronomy PSD with 1 < a < 3 usually are mentioned as red noise spectra
(Green et al. 1993; Lawrence & Papadakis 1993; Vaughan et al. 2003). These kind of spectra appear in all
the BL Lac objects depicting exactly the fact that all the time scales are mixed in such away resulting
an aperiodic behavior (no frequency is favored) with decreasing variability amplitude as the time scales
become shorter (larger frequencies).

24



3.2. Linear, Nonlinear and Chaotic Dynamical Systems

3.1.2 Noise in the time series

It is desirable for every time series analysis method to have the biggest possible data set one can get. The
bigger the data set is the more information about the underlying mechanism can be extracted since more
accurate estimations of its statistical properties can be derived. Nevertheless, even if the problem of few
data points is solved there is the issue of the noise.

There are two types of noise in time series depending on whether or not they affect the feature outcome
of the process it self.

• Observational noise: It originates from the instruments (e.g. CCDs, scintillators) that are used in
order to register the signal. All the instruments have a given precision specifying a corresponding
measurement uncertainty. The observational noise also includes the uncertainties due to photon
statistics. Since the majority of astronomical detectors measure number of N events in a specific time
interval δt there is an uncertainty associated with these measurements specified by the Poissonian
statistics, 1/

√
N . This kind of noise does not affect the feature evolution of the time series. Especially

in the astrophysical systems the latter is affected only by the underlying dynamical process which is
unrelated to the observational method.

• Dynamical noise: It originates from the dynamical process itself affecting the state of the system
and hence altering its future course in time. By the time it is embodied into the realization of the
process it comprises an inextricable part of the data set and has to be taken into account for the
future evolution of the system. In order to see how dramatically the variable behavior of a dynamical
system can change due dynamical noise check the example in sect.3.2.1.

These two kind of noises n(t) are annexed to the time series in an additive or in a multiplicative way.
Usually the parent distribution of the noise component is unknown and a Gaussian distribution is then
considered with a given mean value and variance specified from the data set. One should always test the
sensitivity of the results with respect to the chosen distribution if the latter is not known a priori.

3.1.3 The influence of the observational noise

The errors of the data points in the PCA/ASM light curves (sect.2.2.4, sect.2.3), are symmetric around
the actual estimates, meaning that the distribution of the parent distribution is considered to be Gaussian.
The question now is: How one can take into account these errors during the application of a statistical
method in order to check how much they affect the result of the given method? By taking into account
these errors one can consolidate the significance of a statistical result based on the quality of the data.

A neat and simple method to incorporate the measurements errors into a statistical method is through
Monte Carlo simulations (Press et al. 1992). During each simulation every measurement is replaced by a
randomly selected value coming from a Gaussian distribution having as mean the data point’s actual value
and as standard deviation its error. The same procedure is then repeated 1000 times and every time the
same statistical method, intended to be used for analyzing the original data set, is applied to the surrogated
light curves yielding an ensemble of results. Based on the distribution of the latter one can check how the
measurement errors affect the method and up to which significance level the results are robust.

3.2 Linear, Nonlinear and Chaotic Dynamical Systems

A dynamical system provides a mathematical representation of a physical system based on a set of equa-
tions. The form of these equations describes the evolution of the physical system as a function of a single
or multiple variables (e.g. time t, position (x, y, z)) characterizing at the same time its behavior. If the be-
havior of a system (no matter how much complicated and noisy is) can be analyzed as a sum of responses
of simpler components then the system in principle can be characterized as linear. Strictly speaking a
dynamical system is linear if the response characteristics are additive (superposition) and homogeneous

(scaling). The term additive means that the output to a sum of inputs is equal to the sum of the outputs
produced by each input individually. The term homogeneous means that the output to a sum of inputs
is equal to the sum of the outputs produced by the input alone. Consider a system whose properties are
described by an operator L. Then the system’s outcome in two valid inputs x1(t) and x2(t) is y1(t) and
y2(t) respectively. Then the system is linear (the equation and the operator is called linear) if and only if

Lx1(t) = y1(t)
Lx2(t) = y2(t)

}

⇒ L [λ1x1(t) + λ2x2(t)] = λ1Lx1(t) + λ2Lx2(t) = λ1y1(t) + λ2y2(t) (3.5)
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3.2. Linear, Nonlinear and Chaotic Dynamical Systems

Nonlinear systems include all the other dynamical systems that do not meet the requirements of the
linear systems. Crudely speaking, a nonlinear system is one whose behavior is not simply the sum of its
parts or their multiples and as such it is often difficult (or impossible) to model it. Moreover its evolution
with respect to a given variable e.g. time, is sometimes difficult to predict or even impossible after a
given time duration. Typical nonlinear systems are the simple pendulum, the Van der Pol oscillator, the
Navier-Stokes equations etc.

A really interesting category of nonlinear systems are the chaotic systems. Chaotic systems have
the unique ability to appear, through their realization, as random systems but in fact they comprise a
special category of nonlinear systems characterized by a small number of independent variables (≤ 15) i.e.
deterministic. One could give a loose definition by stating that a chaotic system is a pure deterministic
nonlinear physical system with an apparent stochastic behavior.

3.2.1 Intermittency

A special category of nonlinear physical systems can exhibit segments of relative constant values (laminar
phase) interspersed by erratic bursts. These sudden transitions from a low quiescent state to a higher
more variable one are known as “intermittent” events and the phenomenon as such is called intermittency

(Pomeau & Manneville 1980). Intermittent behavior can be triggered by either stochastic noise or nonlin-
earities and threshold exceedance (Platt et al. 1993). The “passage” to an apparent stochastic behavior is
chaotic in nature and occurs aperiodically with no fixed duration.

In order to get a more vivid idea about how such a behavior can occur, consider the nonlinear dynamical
system of an asymmetric “double-well” potential V (xt) (fig.3.4), with xt being its displacement from 0

V (xt) = ((xt − 6)2 − 1.5)((xt − 8.5)2 + 0.1) (3.6)

having equilibrium points, specified by the equation dV (xt)/dxt = 0, g1=5.561 (stable) g2=7.746 (unstable)
g3=8.444 (stable). Consider also that the system suffers the influence of a white noise process nt coming
from a Gaussian parent distribution with zero mean and unit variance, then the realization of the process
can be described in a form of time series after integrating the evolution equation

dV (xt)

dxt
= −dxt

dt
+ knt (3.7)

where knt is the noise component of the dynamical process with k being a factor tuning firstly the nature
of the noise process i.e. additive or multiplicative (sect.3.1.2) and secondly its power. In the case of having
an additive noise process, k =const., and its value determines the energy region (A or B in fig.3.4) where
the system is going to be evolved.

For small values of k the system experience very rarely large deviations from g1 (fig.3.5,(a)) that can
result a transition from A to B and therefore it evolves almost always in region A. For bigger values of k
the system is able to “jump” to the higher energy state region B but it can only stay there for relatively
short time periods (fig.3.5,(b)). Exactly this sudden and short duration transitions of the nonlinear system
from A to B are characterized as intermittent behavior and they are triggered entirely by the stochastic
noise component. The physical reason for this short-time duration stay within region B is due to the fact
that this energy state is not surrounded by high “energy walls”, as region A, therefore under the influence
of even small perturbations, coming from the noise process, the system can easily escape from there and
return back to A.

In the case of multiplicative noise k ∝ xt (fig.3.5,(c)) the situation is slightly different in the sense that
this time the intermittent transitions from A to B occur more often, since as the displacement of the system
increases towards the higher energy state B (on the right side of g1), the power of the noise component
gradually augments as well (this of course applies also for the left “wing” of g1). Therefore the increasing
course of the system is perturbated successively more and more from the noise component, and once the
system exceeds g2 it enters the energy valley B where there another stable equilibrium point exists, g3.
Thus the system can also be evolved around it for longer time duration, in comparison to the k =const.
case, since now the noise component is much more active. This burst-like activity is another expression of
the intermittent behavior of the source.

The histogram in fig.3.5,(d) shows exactly the number of xt events that occur in every case for 10000
events of the processes. It can be seen that for the cases (b) and (d) the main difference is that for the latter
there are much more intermittent events occurring with higher displacement due to the multiplicative nature
of the noise process. All the aforementioned sudden transitions from A to B emerge from the combination
of the nonlinear nature of the process (i.e. shape of the V (xt) eq.3.6, fig.3.4) and the noise component.
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Figure 3.4: The asymmetric “double-well” potential V (xt) = ((xt−6)2−1.5)((xt−8.5)2+0.1) with xt being
its displacement from 0 and equilibrium points g1=5.561 (stable) g2=7.746 (unstable) g3=8.444 (stable).
The two valleys A and B define the two energetic levels of the system.

3.3 Linear Methods

3.3.1 The PSD

In general a continuous physical process can be described either in the time domain by the values of some
equation X as a function of time t, e.g. X(t), or else in the frequency domain where the process is specified
by giving its amplitude Y as a function of frequency f , that is Y (f). The functions X(t) (X : R → R) and
Y (f) (Y : C → R, indicating phase also) are two different representations of the same process completely
equivalent. These two representations are connected by means of the Fourier transform equations

Y (f) =

∫ +∞

−∞

X(t)e2πftdt ⇔ X(t) =

∫ +∞

−∞

Y (f)e−2πftdf (3.8)

In physics the primary way of describing a physical process is simply by representing a characteristic
quantity of it (e.g. velocity, distance, electric current, temperature etc.) as a function of time, X(t). Then,
having this function it is possible to estimate Y (f) and find whether or not some sinusoidal components
are dominant.

The power contained in the frequency interval between f and f +df is the sum of the modulus-squared
of the sinusoidal amplitudes Y (f) and Y (−f).

P(f) = |Y (f)|2 + |Y (−f)|2, 0 ≤ f < ∞ (3.9)

The P(f) consists the power spectral density (PSD) of X(t) and since X(t) ∈ R

P(f) = 2|Y (f)|2 (3.10)

The aforementioned method is appropriate to study a continuous real-valued process described by a
continuous function X(t) in the frequency domain. The next thing that one should query is the following:
In case that X(t) is given in a discretized form, x(t), is it possible to estimate the PSD of the process
described by X(t)? This is actually the usual case in astrophysics where a quantity (e.g. flux) coming
from a continuous process is discretized due to observational sampling. Consider an evenly sampled light
curve comprising a series of fluxes xi with measurements errors σerr,i measured at discrete times ti (i =
1, 2, . . . , N) with a sampling time ∆t. These measurements comprise a discretization of the continuous
function X(t) describing the emission process of the observed source.
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Figure 3.5: Time series composed from 10000 points after integrating eq.3.7 using a ∆t = 0.1, for three
different noise components knt. Here only the first 300 realizations are shown. The horizontal dashed lines
indicate the two stable equilibrium points, g1=5.561 and g3=8.444.
[Top panels] (a) k = 6 (b) k = 10.
[Bottom panels] (c) k = 3xt (d) The histograms of the data sets (corresponding colors) for the complete
data sets 10000 points long with a bin size of 0.05.
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3.3. Linear Methods

In this case the natural estimate of P(f) in a given frequency f is given by the periodogram, P (f),
being the modulus-squared of the discrete Fourier transform (DFT) of the light curve at N/2 evenly spaced
frequencies fj = j/N∆t with j running from 1 to N/2 with fN/2 ≡ fNyq where fNyq is the Nyquist critical
frequency.

P (fj) =
2∆t

N
︸︷︷︸

C

∣
∣
∣
∣

N∑

i=1

xie
2πfjti

∣
∣
∣
∣

2

= C

[∣
∣
∣
∣

N∑

i=1

xi cos(2πfjti)

∣
∣
∣
∣

2

+

∣
∣
∣
∣

N∑

i=1

xi sin(2πfjti)

∣
∣
∣
∣

2
]

(3.11)

Note here that the periodogram as an even function has the same shape between negative and positive
frequencies. Therefore the parameter 2 in the normalization constant C is used in order to take into
account the existing power in the negative frequencies, since the summation is dome only over the positive
fj, resulting the “one-sided” periodogram.

3.3.2 Binning the periodogram of a random process

In general the periodogram of a random process is a very fluctuating function and shows a great scatter
around the underlying PSD (see fig.3.3). For a nondeterministic (see sect.3.1) Gaussian process the real
and the imaginary parts of eq.3.11 follow a Gaussian distribution therefore the periodogram in a specific
frequency is distributed as χ2 distribution with two DOF, χ2

2, around the PSD (Vaughan et al. 2003).

P (fj) = P(fj)
χ2

2

2
(3.12)

Neither by sampling a longer stretch of data at a given sample rate ∆t nor by resampling the same stretch
of data with a faster sampling rate ameliorates the accuracy of the periodogram estimates at a given
frequency bin fj. For the first case the reason is that more data points N simply produce estimates at a
greater number of discrete frequencies fj since fj = j/N∆t. The Nyquist critical frequency remains the
same but there is finer frequency resolution. For the second case with a finer sampling interval the Nyquist
critical frequency extends to higher frequencies but the frequency resolution remains the same. This means
that for real data the periodogram is an inconsistent estimator of the underlying PSD.

In order to reduce this scatter the periodogram must be smoothed in some fashion by averaging over the
frequency bins. An average over M consecutive discrete frequencies reduces the scatter by a factor of 1/

√
M .

The main disadvantage of this method is that in order to have the distributions of the smoothed estimates
close to Gaussian (appropriate for applying linear regression) one needs to average around 50 periodogram
points. This leads both to severe bias in the lowest frequency points and to a substantial loss in frequency
resolution. The optimum way to face this problem is to work with the logarithm of the periodogram rather
than the periodogram itself (Papadakis & Lawrence 1993). The probability distribution function of the
logarithm of the periodogram is more symmetric (i.e. Gaussian) than the distribution of the periodogram.
Also the variances of the logarithm of the periodogram estimates are known, since they do not depend on
the unknown value of the PSD. Finally especially for power-law like spectra P(f) ∝ f−a the estimates
of the logarithm of the power density based on grouping of the logarithmic periodogram estimates are
not biased due to the linear relationship between log(P(f)) and log f . Briefly the method consists of the
following steps.

• The periodogram P (fj) is estimated and the logarithm of it is computed, log(P (fj)). Then the
logarithmic periodogram ordinates are grouped in n sets of size M and their average value is estimated

〈log(P (favg,i))〉 =
1

M

∑

j

log(P (fj)) (3.13)

where the index j varies over M consecutive periodogram ordinates and the index i varies over the n
subsets into which the logarithmic periodogram estimates are grouped. For the frequency favg,i the
geometric mean frequency of each group is considered

favg,i =




∏

j

fj





1/M

(3.14)

By taking the mean value of the logarithm of eq.3.12 it is obvious that the logarithmic periodogram
estimates are biased in the sense that 〈log(P (fj))〉 = 〈log(P(fj))〉 + 〈log(χ2

2/2)〉 although 〈P (fj)〉 =
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3.3. Linear Methods

P(fj). However this is a constant bias 〈log(χ2
2/2)〉 = −0.253 (Abramowitz & Stegun 1970) therefore

by adding 0.253 to each one of the logarithms of the periodogram estimates the resulted values consist
unbiased estimates of the logarithm of the power spectral density

log(P(favg,i)) = 〈log(P (favg,i))〉 + 0.253 (3.15)

• The variance of the logarithm of the periodogram is independent of the frequency and known, in
contrast with the variance of the periodogram estimates. By taking the variance of the logarithm of
eq.3.12 this reads var[log(χ2

2/2)] ≈ 0.310 (Abramowitz & Stegun 1970). In this sense the variance of
the binned logarithmic periodogram

var[log(P(favg,i))] =
0.310

M
(3.16)

3.3.3 The variance and the PSD

The PSD of a continuous process in a given frequency f , P(f) reveals the distribution of the variability
power corresponding to a given frequency (Vaughan et al. 2003). The integration of this function between
two frequencies f1 and f2 yields the contribution to the expectation value of the intrinsic, “true, inherent”,
variance, of the under study system, due to variations between the corresponding time scales ( 1

f1
, 1

f2
). As

it is dictated from Parserval’s theorem

〈
S2
〉

=

∫ f2

f1

P(f)df (3.17)

Since the “natural” estimate of the PSD in the case of discrete data is the periodogram P (f), the
integrated periodogram yields the observed variance of the given data set consisting a realization of the
process. Consequently, the total variance of a data set is equal to the value of the integrated periodogram
over the frequency range (f1, fNyq) in the theoretical limit of N → ∞ (practically N > 100)

N/2
∑

i=1

P (fj)∆f = S2 (3.18)

where S2 is the unbiased estimator2 of the variance of a data set xi, with an arithmetic mean x, and it is
defined as

S2 =
1

N − 1

N∑

i=1

(xi − x)2 (3.19)

Also due to the fact that the periodogram in a specific frequency is distributed as x2
2 around the PSD

(eq.3.12), the variance is a sum of x2
2 distributions weighted by the PSD

S2 =
1

N∆t

N/2
∑

i=1

P(fi)χ
2
2 (3.20)

Thus while the expectation value of the variance is equal to the integrated PSD (eq.3.17) each realization
of the process, given in a form of time series, might have a different variance even if the parent variability
process is stationary (see sect.6.1). These fluctuations can be understood in a statistical sense since they
are governed by the Gaussian statistical rules of noise processes. In the field of AGN this means that the
statistical properties between two or more light curves obtained in different periods might be different but
the physical parameters of the system responsible for the variability may remain the same. The method
presented in sect.6.1 aims exactly to distinguish between random fluctuations resulted from a stationary
and thus unaltered physical system and changes coming from genuine differences concerning the parameters
of the physical process.

2Concerning the terms unbiased and biased estimator of the variance there is a long discussion going on in various statistical
books (e.g. Bendat & Piersol 1986) which is absolutely necessary in order to consolidate the correct mathematical definition
of the quantity but inessential for the statistical analysis of almost any real-life data set. The sample variance, having in
the denominator N instead of N − 1, is considered to be a “biased” version of the sample’s variance since it requires an a

priori knowledge of the mean, x, rather than a direct estimation of it from the data set. Of course the impact of this matter
concerning the pragmatic needs of any statistical method with adequate number of points is simply unimportant e.g. for 200
points the results differ by 0.002%.
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Figure 3.6: The most commonly used window functions in the PSD estimation (after Press et al. 1992).

3.3.4 Aliasing and windowing effects

The periodogram should be calculated up to Nyquist critical frequency fNyq since for higher frequency
values fa the estimated power is a combination of true power at fa and its aliases 2fa±fNyq, 4fa±fNyq, ....
This effect “folds back” in a way power from high frequencies to lower ones. Nevertheless in the case of a
power-law-like PSD the spectral density decreases logarithmically as frequency increases so the fold-back

power from low to high frequencies is small compared to the observed value. Moreover this aliasing effect
affects only the high frequency part of the periodogram by flattening it which is dominated anyhow from
the experimental noise. Finally the astronomical data are not simply sampled but they are averaged over
specific time intervals ∆t fact that further reduces the amount of the power which id aliased back.

Apart from the aliasing effects windowing effects are also present. Obtaining a sample of N observations
xi from a continuous process X(t) and calculating the periodogram is effectively equivalent with multiplying
a continuous function by a rectangular window function of time (fig.3.6), being 1 for ti (i = 1, . . . , N) and 0
elsewhere. By the convolution theorem this “multiplication” is equivalent with the convolution of the data’s
Fourier transform with the window’s Fourier transform. Since the latter turns “on” and “off” suddenly (i.e.
in zero time) substantial components at high frequencies appear with an oscillatory lobe-form transferring
power from low to high frequencies. This effect which is known as spectral leakage and it is affected mainly
by the shape of the window function. Several types of window functions exist in general (Welch, Parzen,
Barlett, Hamm, Blackman-Harris, Tukey, Kaiser etc.) but for the purpose of AGN time series analysis
there is effectively no difference between them. A useful general rule concerning the window functions is
that the smoother the window function goes from 0 to 1 and then back to 0, the less power “leaks” to
adjacent frequency bins. An approximate formula giving the number of bins where the leakage is extended
towards the one direction noffset around a given frequency is the following (Press et al. 1992)

noffset ≈
N

rise and fall time
(3.21)

Throughout this work, for the computation of the periodogram the Welch window function is used
(fig.3.6) given by

wj = 1 −
(

j − N
2

N
2

)2

(3.22)

3.3.5 The SF

The use of the structure function (SF) in time series analysis was first introduced by Provenzale et al.
(1992). The first order SF for a time series data set x(t), represents a measurement of the mean squared
difference between all the values, N , which are separated in time by τ (time delay), (x(t), x(t + τ)). In
simple words, it consists the mean estimate of the variance (eq.3.19) of the data points which are separated
in time by τ .

SF (τ) =
1

N

N∑

i=1

(xi − xi+τ )2 =
〈
(x(t) − x(t + τ))2

〉
(3.23)
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Figure 3.7: Schematic representation of the shape of the SF for a red noise process characterized by two
plateaus and one slope, β, situated between the letters A and B (the SF shape after Hughes et al. 1992).

The shape of the SF for a red noise process (sect.3.1.1) is ideally described in a log-log representation
by three components (Hughes et al. 1992): a slope between two plateaus (fig.3.7). The first “break” A
is indicative of the variance of the measurements errors and the second “break” B gives an estimation
concerning the sample variance.

The SF as a general statistical method was introduced by Kolmogorov (1941a,b) in order to discern
scaling patterns in turbulent flows. In the field of astrophysics it was introduced in the middle 1980s by
Simonetti et al. (1985) as a simple and capable function to describe the variability properties of extra-
galactic radio sources. Thenceforth it has been extensively used in the time series analysis of AGN light
curves with a completely wrong and misleading way, concerning especially the physical interpretation of
the abscissa of the second “break” B, which is supposed to indicate a characteristic time property of the
observed system. As it is shown in chap.5, completely random red noise data sets, representing artificial
light curves, show exactly the same “breaks” as the observed ones, indicating that this quantity has nothing
to do with any “characteristic time scale” embedded in the data set.

Concerning the slope of the SF, β, in the case of a white noise process (sect.3.1.1) it is equal to zero
depicting exactly the fact that the mean variance between all the possible values is the same. For the case
of a red noise process it can be shown that β = 1 (see following sections).

SF and ACF

For a stationary real process x(t), i = 1, 2, . . . , T , there is a direct relation between the SF and the ACF,
R1,1(τ) (eq.3.44) of the process. The autocovariance function of a time process x(t) is defined in a discrete
form by eq.3.4

Vx,x(τ) =
〈(

x(t) − x(t)
)(

x(t + τ) − x(t)
)〉

(3.24)

By expanding the terms inside the mean and considering that for a stationary process x(t) = x(t + τ) =
〈

x(t)
〉

= const. this reads

Vx,x(τ) = 〈x(t)x(t + τ)〉 − x(t)
2

(3.25)

The variance S2 of a process x(t) is defined based on 3.19 having in the denominator N instead of
N − 1 (i.e. the biased estimator) due to the fact that theoretically x(t) is estimated directly from the
parent distribution and not from the data set (see footnote on sect.3.3.3).
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S2 =

〈(

x(t) − x(t)
)2
〉

(3.26)

Expansion of the terms inside the mean yields

S2 = x(t)2 − x(t)
2

= Vx,x(0) (3.27)

From eq.3.23

SF (τ) = x(t)2 − 2 〈x(t)x(t + τ)〉 + x(t + τ)2 (3.28)

By means of eq.3.27

SF (τ) = 2
(

S2 + x(t)2 − 〈x(t)x(t + τ)〉
)

(3.29)

Finally from eq.3.25 and eq.3.44 the SF for a stationary process is given by

SF (τ) = 2
(
S2 − Vx,x(τ)

)

= 2S2

(

1 − Vx,x(τ)

S2

)

= 2S2 (1 − R1,1(τ)) (3.30)

Based on eq.3.30 the normalized SF (NSF) is defined as:

NSF (τ) =
SF (τ)

S2

= 2 (1 − R1,1(τ)) (3.31)

As t → ∞, R1,1(τ) → 0 (i.e. there is no linear correlation between the various measurements) meaning that
SF (τ) → 2 and NSF (τ) → 2S2. In real life time series as the time delay τ increases the linear correlation
between the measurements is gradually diminishing till the value τuncor where the measurements with
separation time τ ≥ τuncor have zero linear correlation. This means that as τ increases the SF is increasing
(eq.3.30) till the value τbreak = τuncor and from then on it continues its course around a fixed level 2S2.
Since in real time series there is no infinite number of observations some times the observed segments of the
parent distribution (data sets) might no be representative of the latter (heteroscedasticity, see sect.3.6.2).
A direct consequence of that is either the occurrence of SF “break” at τbreak 6= τuncor or the absence of a
clear plateau where the distribution of points after τuncor is continuously increasing or decreasing without
having a fixed mean value around 2S2.

SF and PSD

There is also a direct relation between the SF and the PSD (sect.3.3.1) being valid under some certain
conditions which are rarely taken into account. Consider a zero mean stationary real time process x(t)
with an autocovariance function (eq.3.25)

Vx,x(τ) = 〈x(t)x(t + τ)〉 = 〈x(t)x∗(t + τ)〉 (3.32)

where the asterisk denotes complex conjugation. By rewriting the terms inside the mean as a function of
their Fourier transform, Y (f), this relation reads

Vx,x(τ) =

〈∫ +∞

−∞

Y (f)e−2πiftdf

∫ +∞

−∞

Y ∗(f)e2πif(t+τ)df

〉

=

〈∫ +∞

−∞

Y (f)Y ∗(f)e2πifτdf

〉

=

〈∫ ∞

−∞

∣
∣Y (f)

∣
∣
2
e2πifτdf

〉

(3.33)
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and since none of the terms is varying as a function of τ (stationarity)

Vx,x(τ) =

∫ ∞

−∞

∣
∣Y (f)

∣
∣
2
e2πifτdf (3.34)

According to eq.3.30

SF (τ) = 2 [Vx,x(0) − Vx,x(τ)]

= 2

[∫ ∞

−∞

∣
∣Y (f)

∣
∣
2
df −

∫ ∞

−∞

∣
∣Y (f)

∣
∣
2
e2πifτdf

]

= 2

∫ ∞

−∞

(1 − e2πifτ )
∣
∣Y (f)

∣
∣
2
df

(3.35)

Based on the Euler’s formula, eiκ = cos(κ)+ i sin(κ), and ignoring the imaginary part which expresses only
the phases

SF (τ) =

∫ ∞

−∞

(1 − cos(2πfτ))
∣
∣Y (f)

∣
∣
2
df (3.36)

Considering eq.3.10 and the fact that the PSD is defined for 0 ≤ f < ∞ (eq.3.9)

SF (τ) = 2

∫ ∞

0

(1 − cos(2πfτ))P(f)df (3.37)

For the majority of AGN the PSD can be well represented by a power-law P(f) = κf−a, with 1 < a < 3
(sect.3.1.1) and κ a positive constant. For this range of parameters the integration in eq.3.37 has an
analytical solution

SF (τ) = −2aπa−1τa−1Γ(1 − a) sin
(aπ

2

)

(3.38)

where Γ(x) is the (complete) Gamma function. That means that under the assumptions of

• stationarity

• zero mean data set

• f ∈ [0,∞]

• 1 < a < 3

SF (τ) ∝ τa−1, meaning that β = a − 1. For a red noise process, a = 2 (sect.3.1.1) which fulfills all the
aforementioned assumptions, the slope of the SF is β = 1. Usually authors blindly pass from the SF slope β
to the PSD slope a and vice versa without examining if the data set meet the aforementioned requirements
(e.g. Takahashi et al. 2000).

3.3.6 Simulations and artificial light curves

Probably the most important issue in the time series analysis is to test how significant is a result coming
from a given statistical method. In this section the method of Timmer & Koenig (1995) is reviewed as
being the most appropriate one of producing a whole variety of stochastic time series exhibiting the same
power-law-like PSD (sect.3.1.1) as that of the observed light curve.

The key point of this algorithm is that it randomizes both the phase and the amplitude of the Fourier
transform of the data set (eq.3.11) according to the noisy nature of the process (eq.3.12). This is the
most robust method of producing artificial light curves mimicking the first order statistical properties of a
given data set. The previous method in use was developed by Done et al. (1992) but has a major flaw in
the following sense. The randomization is done only in the phases of the Fourier components leaving the
amplitude of each frequency fixed (i.e. deterministic) and equal to the square root of the spectrum at the
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given frequency. Therefore it does not take into account the randomness of the periodogram according to
the χ2

2 distribution (eq.3.12). This imperfection of the method creates a trend to the simulated light curves
caused by the dominating lowest frequency. Actually by not taking into account the random nature of the
amplitudes is equivalent of ignoring the intrinsic scatter in the powers of the process.

Based on Timmer & Koenig (1995) one can produce an ensemble of possible light curves having the
same spectral index a and the same the first and second statistical moments with the under study data
set. The procedure is described briefly here

1. A power-law shape of PSD P(f) ∝ f−a is chosen based on the given data set.

2. For each Fourier frequency fj two Gaussian distributed random numbers are produced and multiplied

by
√

1
2P(fj). Then this result is used as the real and imaginary part of the Fourier transform of

the desired data. This emerges from the theory of spectral estimation (Priestley 1981) showing that
P (fj) is a complex Gaussian random number variable3: P (fj) = N (0, 1

2P(f)) + iN (0, 1
2P(f)) whose

variance does not depend on the number of data points.

3. In order to obtain a real valued time series the Fourier components for the negative frequencies are
chosen according to P (−fj) = P ∗(fj) where the asterisk denotes complex conjugation.

4. Finally the desired light curve is obtained by inverse discrete Fourier transform (IDFT) of P (f) from
the frequency domain to the time domain.

As it is referred in sect.3.3.4 periodograms measured from real data tend to be biased by aliasing effects.
Therefore if there is significant power at frequencies below the lowest frequency probed by the periodogram
(reflecting time scales longer than the length of the observations) this can give rise to slow varying trends
in the light curve which contribute to the variance of the system. This effect can be taken into account
in the simulations by generating a longer light curve, 10 times longer than the under study light curve
(e.g. Edelson et al. 2002), from a PSD that extends to very low frequencies (i.e. long time scales) and then
truncate it to the desired length. In this way power on time scales much longer than those covered from
the resultant light curve segment, is taken into account.

3.4 Nonlinear Methods

The scope of this section is to present in a simple and comprehensible way some of the most recent and
robust time series analysis methods that are going to be applied in the following chapters to astrophysical
data sets. The main caveat of a direct application of these methods to a given data set is that they
have been developed for systems whose evolution equations are known (i.e. the physical system is known).
Therefore they are applied in a sense directly to the physical system (i.e. to its equations) and hence its time
evolutionary behavior can be predicted up to a certain degree. Additionally, noise processes can be added
to the system in the form of pseudorandom numbers originating from a fixed distribution and a complete
statistical study of it can be performed by analyzing several realizations. Note here that even though the
evolution equations of the system are known the existence of a noise process affects the evolution of the
system in such a way that its behavior after some time can not be readily predicted. Another advantage
of knowing the evolution equations of the system in advance is that for every realization of the system the
sampling pattern, the time resolution and most importantly the number of points can be specified by the
needs of the under study problem.

In complete contradiction, the purpose of analyzing astronomical data sets is initially to reveal some
characteristics of the evolution equation of the system and not to predict (at least as a first step). Only the
outcome of the underlying physical parameters, comprising the physical system, is known in the form of
the observed light curve and based on that one should extract as much information as possible concerning
the laws (i.e. the equations) that rule them. Moreover the time extension of a given data set is fixed as
well as the sampling patterns therefore there is no a priori knowledge whether or not the data set can
adequately to describe in a representative manner the statistical properties of the system. Finally one
should always keep in mind that some of these methods have been developed for continuous dynamical
systems and application of them to discrete signals might hide some dangers concerning especially the
asymptotic behavior of the system (Noakes 1986; Krivine et al. 2004).

The basic steps of analyzing data coming from nonlinear dynamical systems are the same with those
applied to linear systems differing only in the analysis methods followed for each step. In tab.3.1 the basic

3N (0, S2) represents a zero mean Gaussian distribution with variance S2.
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procedures are shown in a condensed form. Roughly speaking the main parameter that one has to define
in linear systems is the (PSD) or better the Fourier space of the data set. The Fourier space comprises
a robust representation of the system, since it forms an orthonormal basis, of the initial signal in the
frequency domain. The advantage of representing a system in this domain is that one can readily discern
its dominant components, if there are any, select them and study them separately from the overall system.
The peak frequencies are the invariants of the system and based on them in the case of deterministic
physical systems (fig.3.1) the time evolution of the system can be studied analytically.

From the other hand in the case of the nonlinear systems end especially for the chaotic ones the
representation of the system in the Fourier space is not always if at all possible since the data sets,
comprising the “solutions” of the dynamical equations, can not be always expanded into convergent Fourier
series. As it is shown by Miles (1984) for the simple case of a weak nonlinear oscillator there are only some
frequency ranges that can be probed through Fourier analysis. In the case of nonlinear systems the basic
parameter that one has to specify is the phase space through the method of phase reconstruction. The
basic characteristics of the reconstructed phase space should remain the same with those of the genuine
phase space.

Table 3.1: Time series analysis methods of linear and nonlinear data sets
Procedure Linear signals Nonlinear signals

Separation of the signal’s Separation of the signal’s
continuous spectrum from the continuous spectrum from

“thin-zone” spectrum. the “thin-zone” spectrum.
Noise subtraction For the case of a stationary The methods of principal component

signal it is convenient to analysis (Prin.Comp.Anal) or the radial
apply a linear filter in a basis functions (RBFs) are
given spectral region. appropriate.

By making use of the Fourier By applying the method of delays (MOD)
Phase space transformation, the data set to the data set the genuine
specification is transformed into linear relations phase space can be reconstructed

of the Fourier parameters: in m embedding dimensions
x(f) =

∑
x(t)e−2πftdt. ~Xi = {xi, xi+τ , . . . , xi+(m−1)τ}.

Based on the reconstructed phase
The peak frequencies and the space the invariants of the

Classification resonance frequencies are resolved. trajectories are estimated (e.g. the
of the signal These quantities are invariants and correlation dimension, the Lyapunov

independent of the initial conditions. exponents). These quantities are
independent of the initial conditions.

3.4.1 The phase space

The phase space of a dynamical system is the mathematical space (manifold) whose coordinates are the
independent variables describing the evolution of the system as a function of time. For example if a system
needs 3 independent variables in order to be fully described then the system has a dimension equals to 3.
Based on the discussion of sect.3.1 deterministic systems are characterized by low-dimensionality (≤15) as
opposed to stochastic systems characterized by high-dimensionality (>15).

Consider the simple case of an linear autonomous dynamical system (i.e. A does not depend on time
t) in an m-dimensional Euclidean phase space described from the differential equation

d~y(t)

dt
= A~y(t) (3.39)

where ~y(t) = {y1(t), y2(t), . . . , ym(t)} and A is a constant m × m matrix. The trajectories (i.e. general
solutions) of eq.3.39 reveal the evolution of the system as t→ ∞:

• They converge to zero if the real part of all eigenvalues of A is negative.

• They diverge to infinity if the real part of at least one eigenvalue of A is positive.
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Figure 3.8: [Left panel] The realization of the Hénon dynamical system as described by eq.3.41 with
x0 = y0 = 0.1. The red curve represents the xt component and the blue the yt.
[Right panel] The two-dimensional phase space of the Hénon dynamical process.

• They oscillate if all the eigenvalues of A form complex conjugate pairs with zero real part.

Note here that in discrete time the analogue of eq.3.39 is the difference equation

~yt+1 = A~yt (3.40)

For the analysis of nonlinear dynamical systems this linear approach is not adequate to fully describe
the evolution of the system (i.e. for all t and for all initial conditions). Linear methods usually help to
study the system locally around a known solution and for limited time periods. Therefore the nonlinear
terms in the analysis method should also be considered in order to study the system globally.

The Hénon discrete-time dynamical system (Hénon 1976) is probably the simplest two dimensional
nonlinear chaotic system and hence it is appropriate to use in order to understand the physical meaning
of the phase space. The system is described by the following coupled difference equations for α=1.4 and
β=1.3

xt = 1 − αx2
t−1 + yt−1

yt = βxt−1 (3.41)

In fig.3.8 is shown the realization of each component of the process (left panel) together with the phase
space (right panel) of the system. The dynamical system is described by two equations therefore its phase
space can be fully represented in to two dimensions.

Another example of a continuous dynamical nonlinear system is the Lorenz dynamical system (Lorenz
1963) consisting of three coupled differential equations for σ = 10, ρ = 28, β = 8/3

dx

dt
= σ(y(t) − x(t))

dy

dt
= x(t)(ρ − z(t)) − y(t)

dz

dt
= x(t)y(t) − βz(t) (3.42)

The realization of the individual system’s components together with the phase space of the process are
shown in fig.3.9. Since the process consists of three equations each one representing the evolution of each
independent variable as a function of time, its phase space can be fully described into three dimensions.

Inside the phase space of each dynamical system a structure is formed representing all the possible
states that the system can be found. This structure, theoretically consists of points in the case of discrete
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Figure 3.9: [Left panel] The realization of the components of the Lorenz dynamical system as described by
eq.3.42 with x(0) = z(0) = 0, y(0) = 1.
[Right panel] The three-dimensional phase space of the Lorenz dynamical process.

systems and lines in the case of continuous systems both of them forming a trajectory pattern in the phase
space known as attractor. Practically since for the continuous systems most of the times an integration step
∆t is needed in order to specify the attractor’s trajectories the latter consist also of points. The definition
of the term attractor together with some ambiguities existing in the literature can be found in Strogatz
(1998). Concerning the purposes of this study one can loosely define it as a set to which all neighboring
trajectories converge. There are a lot of types of attractors in the literature concerning the dynamical
systems having as most representative the point, the limit circle, the toroidal and the strange (or chaotic)
attractor. For the rest of this study whatever structure is formed within the phase space it will be called
attractor.

3.4.2 The phase space reconstruction

Consider the general case of a dynamical system ~s, either linear or nonlinear, evolving to its genuine/physical
phase space comprising of a d-dimensional manifold M

d (fig.3.10). This practically means that ~s can be
described by d independent variables each one consisting an axis of the genuine phase space. Every state of
the system at a given time instant is a function of the previous states and this can be expressed in a form
of a discrete function ~st+1 = ft(~st) (general case of eq.3.40). Exactly this function ft forms the genuine
trajectories of the attractor in the physical d-dimensional phase space. The evolution of this system is
mapped through a function h in the Euclidean space R (h : M

d → R) in the form of the observed time
series xt = h(~st) for t = (1, 2, . . . , N). The function h consists practically the projection of the vector
components of ~s, into a time series data set and this is exactly the stage where also the discretization and
the observational noise (sect.3.1.2) attached to the data set. Despite the fact that h maps the information
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Figure 3.10: Schematic representation of the phase reconstruction. The system is evolved into its physical
(i.e. genuine) phase space, being a d-dimensional manifold M

d and through the function ft it forms their its
genuine attractor. Via h some of the components of the system are projected in the form of the observed
time series, xt in the set of R. Based on xt the phase space can be reconstructed in the Rm by forming the
m-dimensional delayed vectors ~Xt. In order the reconstruction to be equivalent with the smooth attractor’s
transformation from M

d to Rm, through the immersion function Φ, the dimensionality of the reconstructed
phase space should be m ≥ 2d + 1 as it is dictated from the delay embedding theorem (Takens 1981).

only from specific components of M
d, the evolution of the system in time is a result of the ensemble of its

components therefore one could say that its course in time towards any direction is a result of d-equations.
The fundamental question that now arises is: Since neither h nor ft are known, how is it possible

to reconstruct the genuine phase space in order to form the initial attractor of the system, revealing the
physics governing its evolution, having as the only tool the observed time series data set? The method
which is usually applied in order to answer this question has been developed by Packard et al. (1980) and
it is known as method of delays. The basic idea is that after applying a smooth transformation (i.e. a
map between manifolds which is differentiable and has a differentiable inverse transforming, also called
diffeomorphism) to the observed time series data set, some of the geometrical invariants of the genuine
attractor are maintained. These invariants are the correlation dimension, the Lyapunov exponents and the
eigenvalues of fixed points.

Based on the MOD an embedding dimension m together with a time delay τ are chosen and the vectors
(delay vectors) ~Xi = {xi, xi+τ , . . . , xi+(m−1)τ} for i = 1, 2, . . . , L with L = N − (m − 1)τ are formed
(tab.3.2). If m and τ are chosen correctly then the ~Xi vectors form in the m-dimensional Euclidean space
Rm an equivalent representation of the initial physical phase space. In this case, the original attractor
(in d dimensions) is mapped through a function Φ to a structure in the reconstructed phase space (m
dimensions) in which the former preserves all the aforementioned invariants of the latter but without
preserving the geometrical shapes and structures. The only crucial parameter that should be determined
in order to achieve a robust reconstruction of the physical phase space (e.g. the one containing the genuine
attractor) is the time window τw = (m− 1)τ , involving both the embedding dimension and the time delay.
In sect.3.4.3 the optimum selection criteria for both m and τ are discussed thoroughly.

The physical concept behind the MOD is that the combination of the future and the past values of a
time series data set at a given time instant t contains information about the non-observed independent
variables needed to be specified in order to fully describe the system. This combination is achieved through
the delay vectors ~Xi whose components, the delay variables {xi, xi+τ , . . . , xi+(m−1)τ} are going to be used
in the same manner as the genuine unknown variables in order to reconstruct a space describing the
structure of the phase trajectories (attractor) of the system. In the case of a linear/nonlinear system the
delay variables are a linear/nonlinear combination of the “true” independent variable of the system.

In this point the Lorenz dynamical system (eq.3.42) is used in order to check how the MOD is practically
working (fig.3.11). Assuming that only the y(t) component is observed (i.e. it is the only one projected
and discretized by the unknown function h having no observational noise) the phase space is reconstructed
in m = 2 and m = 3 dimensions respectively. In both cases the time delay has been chosen to be τ=8
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Figure 3.11: [Left panel] The reconstruction of Lorenz dynamical system in two dimensions (m=2) using
only the y(t) component with a time delay τ=8 and an integration step δT =0.01.
[Right panel] The reconstruction of Lorenz dynamical system in three dimensions (m=3) using only the
y(t) component with a time delay τ=8 and an integration step δT =0.01.

Table 3.2: Examples of several delay vectors ~Xi for the time series (x1, x2, . . . , x10)

m τ Delay variables L Delay vectors ~Xi

2 1 {xi, xi+1} 9 ~X1 = (x1, x2), ~X2 = (x2, x3), . . . , ~X9 = (x9, x10)

3 1 {xi, xi+1, xi+2} 8 ~X1 = (x1, x2, x3), ~X2 = (x2, x3, x4), . . . , ~X8 = (x8, x9, x10)

3 2 {xi, xi+2, xi+4} 6 ~X1 = (x1, x3, x5), ~X2 = (x2, x4, x6), . . . , ~X6 = (x6, x8, x10)

4 2 {xi, xi+2, xi+4, xi+6} 4 ~X1 = (x1, x3, x5, x7), ~X2 = (x2, x4, x6, x8), . . . , ~X4 = (x4, x6, x8, x10)

4 3 {xi, xi+3, xi+6, xi+9} 1 ~X1 = (x1, x4, x7, x10)

(see sect.3.4.3). By an “eye inspection” of the results shown in fig.3.11 one can readily distinguish some
attractor features resembling to those of the genuine attractor’s phase space (fig.3.9, right panel). The fact
that in the 3-dimensional reconstructed phase space the attractor is somehow distorted in comparison to
the original one is due to the smooth transformation that has been applied to the data set. This is expected
since the coordinates that have been used for the reconstruction {y(t), y(t + 0.08), y(t + 0.16)} are simply
different from the original ones {x(t), y(t), z(t)}. Despite this distortion the power of the MOD is that the
reconstructed attractor (in both m = 2 and m = 3) conserves some unchanged quantities and these are
exactly the geometrical invariants that are going to be used in order to reveal the dynamics of the whole
process. The question now is the following: Which one of the two reconstructed phase spaces of fig.3.11
is more appropriate in order to study these invariants? This issue is discussed in sect.3.4.3 where some
optimum selection criteria concerning the choice of both the embedding dimension m and the time delay
τ are presented.

3.4.3 Selection of the time window

The basic quantity that should be accurately tuned in order the reconstructed phase space to be an
equivalent version of the original one is the time window τw = (m − 1)τ . This means that the selection of
the embedding dimension m and time delay τ should be done based on some optimum selection criteria.
In the case of m there is a series of topological theorems and definitions that ensure the equivalency of the
two spaces but it is aside from the scope of this study to refer to them with all the strict mathematical
formalism. Only the physical application of these theories is going to be discussed in the frame work of the
time series analysis. Concerning the selection of the τ the methods are more empirical depending each time
on the under study data set. The selection of m defines automatically the number of the delay variables,
comprising the components of the delay vectors, and the value of τ defines which measurements xi are
going to form these variables (see tab.3.2).
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The selection of m

Based on fig.3.10 the m-dimensional phase space is reconstructed by using the observed data set xk. In
order this phase space to be equivalent with the genuine d-dimensional phase space some criteria should be
fulfilled.

In topology, two algebraic structures (in this case the genuine and the reconstructed phase spaces) are
equivalent if there is an immersion (embedding function) Φ that maps the genuine attractor’s trajectories
to the reconstructed phase space in such a way that they preserve their orientation. In the case that Φ is
a continuous and bijective (one-to-one correspondence) function then it is called homomorphism. If Φ is
infinitely differentiable then the transformation between the d-dimensional and m-dimensional phase space
is called smooth.

The Whitney’s theorem states that any differentiable d-dimensional manifold (in this case where the
genuine phase space is defined) can be smoothly embedded in an Euclidean space having 2d+1 dimensions.
This immersion should be done by the embedding function Φ which is continuous, bijective and smooth:
Φ : Md → R2d+1.

The application of this theorem in the field of dynamical systems and by extension to time series was
introduced by Takens (1981) in the form of the delay embedding theorem. Basically this theorem gives the
conditions under which a dynamical system can be robustly reconstructed from a sequence of observations
comprising its realization. In order the reconstruction in a given dimension m to be correct it should
preserve those properties of the attractor that do not change under smooth coordinate transformations
ignoring the fact that the geometric shapes and the structures of the trajectories alter. The only condition
necessary to preserve these invariants is that m ≥ 2d+1. One of the latest developments in the embedding
methodologies (embedology) came from Sauer et al. (1991) proving that in order to Φ to be continuous,
bijective and smooth it is enough m ≥ 2d.

Consequently the main thing that should be kept in mind concerning the choice of m is that the correctly
reconstructed trajectories of the attractor:

• preserve their orientation

• have with the genuine trajectories a one-to-one correspondence

• do not intersect among themselves

• preserve some characteristics quantities unchanged (invariants)

if and only if m ≥ 2d. Obviously the selection of m automatically sets the number of the components/delay
variables of the delay vectors (tab.3.2).

The selection of τ

The parameter of the time delay τ is directly connected with the quality of the reconstruction. Practically
its value defines which measurements xi are going to be chosen in order to form the components (delay
variables) of the delayed vectors. Despite the selection of m, if the vector components are not chosen
correctly (i.e. if τ is not chosen correctly) then the reconstructed phase trajectories will be distorted
(suppressed or stretched). The result is that neither specific trajectory structures can be readily discerned
nor the invariants of the system can be correctly estimated. The main considerations concerning the
selection of τ are two:

1. Small values of τ force the components of the delay vectors ~Xi to be spatially correlated resulting
a distribution of points which “oversamples” only a small part of the whole extension of attractor in
the phase space (fig.3.12, left panel). These values are distributed around the diagonal of the phase
space hiding all the information about the genuine attractor trajectories.

2. Big values of τ result an inhomogeneous coverage of the phase space, due to the complete lack of any
spatial correlation of the delay variables. Therefore it is not possible to extract any information con-
cerning possible attractor’s structures corresponding to features of the genuine trajectories (fig.3.12,
right panel).

The optimum choice should be the one forming components consisting of independent points up to a given
degree with relatively small τ . A first approximation would simply be to consider the ACF of the data set
and find for which τ it becomes zero. In this case it is ensured that the data sample is completely released
from linear correlations but not from possible higher order correlations. Therefore the use of higher order
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Figure 3.12: A wrong reconstruction of the Lorenz dynamical system in two dimensions (m=2) by using
only the y(t) component (see for comparison left panel of fig.3.11).
[Left panel] For a time delay τ=1 and an integration step δT =0.01. There is a suppression of all the points
around the diagonal of the phase space due to the spatial correlation of the values.
[Right panel] For a time delay τ=1000 and an integration step δT =0.01. There is a spread of all the points
around the space due the total spatial decorrelation of the values.

correlations (Albano et al. 1991) is mandatory in order to check the exact behavior of τ and make the
appropriate selection for the MOD.

The usual linear ACF for a zero mean time series yi, where yi = xi − (
∑N

i=1 xi)/N with a standard
deviation S is given by

R1,1(τ) =

∑N−τ
i=1 yiyi+τ

NS2
(3.43)

The linear ACF is actually a version of the autocovariance function (eq.3.4, in its discrete form where the
integration has been replaced by the sum over all N) normalized to the sample variance S2 (eq.3.19).

R1,1(τ) = Vy,y(τ)/S2 (3.44)

Some of the higher order correlations are

R2,1(τ) =
N
∑N−τ

i=1 y2
i yi+τ

(N − 1)(N − 2)S3
(3.45)

R3,1(τ) =
N(N + 1)

∑N−τ
i=1 y3

i yi+τ

(N − 1)(N − 2)(N − 3)S4
− 3R1,1(τ) (3.46)

R4(τ) =
N(N + 1)

∑N−3τ
i=1 yiyi+τyi+2τyi+3τ

(N − 1)(N − 2)(N − 3)S4
−

R1,1(τ)2 − R1,1(2τ)2 − R1,1(τ)R1,1(2τ) (3.47)

The skewness (the degree of the asymmetry of a distribution around its mean) and the kurtosis (the
peakedness or flatness of a distribution) of yi is given by R2,1(0) and R3,1(0) = R4(0) respectively.

For the selection of τ the relations 3.44, 3.45, 3.46 and 3.47 must be plotted as a function of τ and
the abscissa of the point where all the functions have an extremum simultaneously for the first time,
coincidence time τc, gives the optimum value of τ which is appropriate for the MOD (Albano et al. 1991).
Note here that this point should not be the one where two or more correlation functions become zero
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Figure 3.13: [Left panel] The higher order correlations of the data set described in fig.3.11 for the Lorenz
system. The vertical thick line indicates the coincidence time τc = 0.08 when there is simultaneous
occurrence of the extrema for the first time. Since the resultant points are arrayed in a very dense form
they have been replaced with the corresponding lines indicating their course.
[Right panel] The same as the previous for the xt component of the Hénon discrete system (eq.3.41). The
simultaneous occurrence of the extrema for the first time happens at tc=3. Note that the various lines
intend only to guide only the eye.

(often the first intersection point happens to have an ordinate around zero) because then at that given τ
the data set becomes completely independent (decorrelated) and thus the phase space can not be efficiently
reconstructed.

The reconstruction of the Lorenz attractor in 2 and 3 embedding dimensions respectively (fig.3.11, left
panel) was done by using a time delay of τ = 8. Based on the aforementioned method since the data set
has a τc=0.08 (fig.3.13, right panel) that means that the optimum time delay is at τ = 8 (∆t = 0.01).
Therefore the selected delay variables should be separated by 0.08 time units. Application of the same
method in 1000 realizations of the xt component of Hénon system (eq.3.41) yields a coincidence time of
τc = 3.

3.4.4 Dimensions

The dimension of the attractor in the reconstructed phase space is probably one of the most intently studied
invariant quantities (Farmer et al. 1983). As discussed in sect.3.4.1 the number of independent variables
needed to be determined (in a form of differential or difference equations) in order to fully describe the
evolution of the dynamical system defines the dimension of it and it is always an integer.

Loosely speaking the dimension D is simply connected with the physical quantity of volume V (not
only in 3-dimensions) the latter being connected with the length L. The general scaling relation for the
volume is given by

VD ∝ LD (3.48)

For D = 1 the length L fully specifies the one dimensional volume element which is in this case a line. For
D = 2 (or D = 3) the volume element is the area (or 3-dimensional volume) in two (or three) dimensions.
The prefix hyper is usually used in order to generalize quantities and shapes from 3-dimensions to higher
dimensions such as hypervolume, hypersphere, hyper-cube etc. Equation 3.48 becomes more accurate if it
is expressed as a function of N boxes of side r, defining a grid, in a given dimension (see fig.3.14).

VD = Nrr
D (3.49)
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Figure 3.14: [Left panel] A 2-dimensional grid consisting of Nr square-cells (i.e. 3-dimensional degenerated
cubes) covering a 2-dimensional phase space. Each cell has a side-length of r and occupies a 2-dimensional

volume i.e. covers an area, of r2. All the cells cover an area of Nrr
2.

[Right panel] A 3-dimensional grid consisting of Nr cubes covering a 3-dimensional phase space. Each cube
has an edge-length of r and occupies a volume of r3. All the cubes occupy a volume of Nrr

3

What is the volume of the attractor in this reconstructed phase space? This quantity is the key
parameter that one has to specify in order to pass from the attractor’s structure, which can be quantified
by the volume, to its dimensionality. In this context, the term “volume” itself is unambiguous since the
reconstructed attractor consists of points. In order to elucidate this quantity one needs to think as follows:
Consider that the attractor of a data set, xt, is formed, based on the MOD, into the two-dimensional
phase space m = 2, which has as delay variables {xt, xt+k} and it is covered by a grid of a certain length
r1 (fig.3.15, left panel). The number of squares including more than one attractor’s point are measured,
Nr, yielding for the given grid configuration a pair (r1, Nr1

). By increasing the resolution of the grid to
r2 (fig.3.15, right panel), meaning that r1 > r2, the same counting procedure is performed and a set of
(r2, Nr2

) values is again specified. Then by taking the logarithms of both sides of eq.3.49 one can estimate
D simply by linear regression based on the method of least squares4 (Bevington & Robinson 1992)

log Nr = D log

(
1

r

)

+ const. (3.50)

The same exactly procedure is performed in m = 3, 4, . . . embedding dimensions yielding each time a
new value of D. If the number of D converges to a fixed value D0 as m increases then that means that this
is the dimension of the attractor. Most of the times D0 is a non integer number and it is always D0 ≤ m.
Having estimated the dimensionality D0 of the attractor, the dimension (number of independent variables)
of the dynamical system equals to the smaller integer greater or equal of D0, ⌈D0⌉.

The aforementioned method concerning the estimation of D0 it is actually the result expected for the
asymptotic limit of eq.3.50, r → 0 (meaning also that Nr → ∞ in the case of continuous dynamical systems
with infinite attractor’s resolution), as m increases

D0 = lim
r→0

log Nr

log
(

1
r

)

∣
∣
∣
∣
m→∞

(3.51)

For a stochastic process (sect.3.1) D0 never converges to a given number or it converges practically to
unrealistic big numbers of dimensions (grater than 15) meaning that parameters affecting the system’s
evolution can not be easily (or not at all) analytically manipulated.

There is a big variety of different kinds of dimensions in the literature concerning the dimensional-
ity of a dynamical systems and all of them are directly related with the volume of the attractor in the
phase space. The aforementioned quantity D0 is called capacity dimension or box-counting dimension. If
instead of boxes (hyperboxes) the same method is applied for spheres (hyperspheres) then the resultant

4Henceforth the method of least squares is going to be used for linear regression unless otherwise noted.
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Figure 3.15: [Left-Right panel] The reconstructed attractor (points) in two dimensions, m = 2, for two
different grid configurations r1 (left panel) and r2 (right panel), r1 > r2.

dimension is called Hausdorff dimension (Hausdorff 1918; Duvall et al. 2000). One of the most com-
monly used quantities for characterizing the dimensionality of the under study system is the correlation

dimension D2 (Grassberger & Procaccia 1983a) (see sect.3.4.5) through the estimation of the correlation
integral. Application of these methods to the Hénon dynamical system (eq.3.41) yields a capacity di-
mension of D0 = 1.261 ± 0.003 (Russell et al. 1980) and a correlation dimension of D2 = 1.25 ± 0.02
(Grassberger & Procaccia 1983a). Differences between the methods are expected, due to the different
counting procedures, but the main result of both methods is that one needs ⌈D0⌉ = ⌈D2⌉ = 2 equations to
fully describe the system fact which is true based on eq.3.41. For the case of the Lorenz dynamical system
D0 = 2.05 ± 0.01 and D2 = 2.06 ± 0.01 (Grassberger & Procaccia 1983a) yielding a consistent result for
the number of independent variables needed to describe the system, being ⌈D0⌉ = ⌈D2⌉ = 3.

3.4.5 The correlation dimension

Usually the correlation dimension D2 is the most commonly used quantity characterizing the dimensionality
of a dynamical system (e.g. Brandstater & Swinney 1987; Sato et al. 1988). Due to the efficient and quick
algorithms that have been developed for estimating it, firstly by Grassberger & Procaccia (1983a,b) and
then by Theiler (1987), most of the researchers prefer it over the other dimensions (sect.3.4.4). The main
idea for the computation of the correlation dimension is the same as the one of the capacity dimension.

After reconstructing the phase space of the attractor for a given m (based on the MOD, see sect.3.4.2),
m-dimensional hyperspheres are then formed having as centers the attractor’s points with equal radius rk.
By finding for the ensemble of hyperspheres how many of them contain at least one attractor’s point (except
from the one at the center of each hypersphere) the probability of this to happen is estimated. Exactly
this probability value is the correlation integral Cm(rk) and can be readily estimated by comparing the
distances of all the reconstructed phase points with the rk

Cm(rk) =
2
∑L

i=1

∑L
j=1,j 6=i H(rk − ‖ ~Xi − ~Xj‖)

L(L − 1)
(3.52)

where H(x) is the Heaviside step function using the convection H(0) = 1 (instead of 1/2) and || · || is the
Euclidean norm defined in Rm

‖ ~Xi − ~Xj‖ =

√
√
√
√

m∑

i=k

(Xi,k − Xj,k)2 (3.53)

The radius of the hyperspheres, rk, at a given m is defined as

rk = Rλk (3.54)
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where R is the statistical range R = max[xi] − min[xi] of the data set xi and the parameter λ defines the
“scaling region” taking values usually around 0.5%5. A thorough discussion concerning the choice of the
“scaling region” can be found in (Elner 1988).

A much more neat computational way usually used to estimate the Cm(rk), based on eq.3.52, is the
following

Cm(rk) =
2
∑L−1

i=1

∑L
j=i+1 H(rk − ‖ ~Xi − ~Xj‖)

L(L − 1)
(3.55)

Methodology

In general the correlation dimension is given by:

D2,m = lim
r→0

log Cm(r)

log r
(3.56)

meaning that

Cm(r) ∝ rD2,m (3.57)

and it is practically calculated for a given m by linear regression over all rk.

log Cm(rk) = D2,m log rk + const. (3.58)

At a given embedding dimension m, the radius rk is gradually increasing k = 1, . . . , 20 and each time
Cm(rk) is estimated. Then by linear regression for the pairs (log Cm(rk), log rk) over all the successive
triads {(r1, r2, r3), (r2, r3, r4), . . . , (r17, r18, r19), (r18, r19, r20)} 18 values of D2,m come up. In the same
fashion these estimates are again binned into 12 successive heptads and from each one of them a mean
value and a standard deviation for D2,m is derived. The mean value having the smallest standard deviation
consists the correlation dimension of the data set at a given m.

The same procedure is then repeated for successive values of m (m = 1, 2, . . . , 20) and in the case
of a non stochastic system the representation of (log Cm(rk), log rk) at small rk after some embedding
dimension and on exhibits the same slope. This means that D2,m gradually reaches a plateau (i.e. remains
unchanged) at a certain value of mpl and on. Hence, D2,m converges finally to a constant value consisting
the value of the correlation dimension of the system, D2. As shown by Ding et al. (1993) the onset of this
convergence is starting for m ≥ D2 and therefore mpl equals to the smaller integer greater or equal for D2,
mpl = ⌈D2⌉. This practically means that for a system which has a correlation dimension of e.g. 2.6 the
onset of the plateau will be at mpl = 3.

Consider 1000 realizations of the xt component of the Hénon dynamical system (eq.3.41). The various
estimates of the correlation integral at various embedding dimensions m for several radii rk are shown in
the left panel of fig.3.16. Concerning the reconstruction of the phase space the optimum time delay is set to
τ = 3 based on the method of higher order correlations (fig.3.13, left panel). In the right panel of fig.3.16
the slopes, i.e. D2,m, of the successive estimates are shown as a function of radius rk (i.e. mean value
of every heptad). It can be seen that for small values of rk (∼ 10−1.35) the estimates of the correlation
dimension for m > 1 converge around a mean value of 1.206± 0.003. A more detailed estimation of it can
be achieved by following the aforementioned methodology after depicting from each heptad the estimate
with the smaller standard deviation for each m. Fig.3.17 shows the various estimates of the D2,m as a
function of m together with the plateau. The onset of the plateau is at mpl=2 determining a value of the
correlation dimension D2 = 1.252± 0.003, which is in accordance with the already well known value of the
system’s correlation dimension D2 = 1.25 ± 0.02 (Grassberger & Procaccia 1983a). Therefore this result
agrees completely with the fact that the system can be fully described by ⌈D2⌉ = 2 difference equations.
This is exactly the interesting information that one should try to extract initially from a given data set. Are
the observed data a result of a low-dimensional process or they consist the outcome of a high-dimensional
system where the big number of the contributing parameters classifies it as a stochastic process?

In true physical systems the lack of stabilization for the values of Cm(rk) can imply apart from the
stochasticity either the existence of noise in the data set (dynamical and/or observational, see sect.3.1.2)
and/or few number of data points. Concerning the former as shown by Ben-Mizrachi et al. (1984) one
should expect a broken power-law behavior of Cm(r) versus r, instead of a simple power-law (eq.3.57).

5Note that when Cm(rk) is used as a nonlinear discriminating statistic e.g. in the method of surrogates (see sect.6.3.3 and
Theiler et al. 1992) then λk =const.=50%.
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Figure 3.16: [Left panel] The logarithm of the correlation integral Cm(rk) as a function of the logarithm
of the radius rk = k · 2.557 · 0.005 (k = 1, . . . , 20) for m = 1, . . . , 12 (top to bottom plot). The different
line-styles correspond to different m in order to be easier to find the correspondence with the plot in the
right panel. Every five dimensions the same line-style is repeated.
[Right panel] The correlation dimension D2,m as a function of the logarithm of the radius rk. Note that
for m > 1 and for small radius rk the values cluster around 1.206± 0.003.

The first slope should be equal to the embedding dimension and the second one should be equal to the
correlation dimension of the data set without the noise influence. The identification of such slopes is a quiet
difficult and tricky issue due to the fact that as the radius r increases it tends to occupy the whole extension
of the attractor in the reconstructed phase space (due to the finite number of points) yielding a slope for
the correlation integral, D2, equal to zero. For the latter reason, concerning the lack of stabilization,
one should always consider the maximum value of the correlation dimension D2,max, that is feasible to be
estimated given a data set of N elements. Based on Eckmann & Ruelle (1992) D2,max = 2 log N and bigger
values should be excluded since they are not meaningful. That practically means that from a data set of
1000 points one can estimate physical meaningful correlation dimensions up to D2,max = 6.

Physical interpretation of the method

The physical concept behind the aforementioned methodology concerning the estimation of D2 can be
understood as it follows (fig.3.18). Consider the genuine phase space of a 2-dimensional dynamical system
{x(t), y(t)} (fig.3.18, top-left panel) and suppose that only the x(t) component can be observed i.e. only
this is projected through the function h (see fig.3.10). From this component the reconstructed phase space
of the system in one dimension is then formed (fig.3.18, top-right panel). The line element rk in one
dimension plays the role of hyper sphere (circle in 2-dimensions, sphere in 3-dimensions) and the arrows
indicate the points that have a distance smaller than the one indicated by the line element i.e. correlated
values. These points appear to be close neighbors but actually after further immersion of the system into
two dimensions only two pairs remain as “true” correlated values (i.e. “true” close neighbors). Embedding
the system into three dimensions does not change anything since the distances of all the points remain
the same and thus the number of the correlated points remains the same as that in two dimensions. This
happens simply because during the transition to a bigger dimension the distances of two points (eq.3.53)
can either be increased or at the very best remain the same. This means that the probability (i.e. the
correlation integral) of having a “false” close neighbor diminishes as the embedding dimension becomes
bigger.

Therefore through immersions of the data set into successive embedding dimensions m the overall
structures of the formed attractor start to remain unchanged at the point when the genuine dimensionality
of the system has been reached. The attractor does not “need” to be extended further to more dimensions
since all its points are adequately and equivalently described as the ones in the genuine phase space.
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Figure 3.17: The correlation dimension D2,m as a function of the embedding dimension m. The solid line
indicates the plateau determining a value of the correlation dimension D2 = 1.252 ± 0.003, as this yields
from linear regression (χ2 = 9.37 for 10 DOF yielding a NHP=0.497).

The “projection” effects that are responsible for the “false” close neighbors (i.e. “false” correlated pairs)
gradually diminish and at the end the structure of the attractor stabilizes making it equivalent with the
genuine attractor and thus appropriate to extract information about the physical parameters of the system.

3.5 The Principal Component Analysis

The principal component analysis (Prin.Comp.Anal.) is an efficient method that can be used in order to
reconstruct the phase space of a dynamical system, given a realization of it in a form of time series. The
method is based on the computation of an algorithm known as singular value decomposition (SVD) used
initially in the generalized theory of information by Bertero & Pike (1982). The method was introduced
in the field of time series by Broomhead & King (1986) after studying the well known dynamical system
of Lorenz (eq.3.42). The method as such has some advantages over the MOD but it suffers as well from
some drawbacks. The main advantage of reconstructing the phase space following the Prin.Comp.Anal. is
that the method is able to deal with small and noisy data sets (Vautard et al. 1992). Also the selection
of an optimum time window tw is much more flexible than in the case of MOD (sect.3.4.3) since a time
delay of τ = 1 (i.e. equal to the sampling rate) is sufficient for almost all the cases. The main disadvantage
of the method, as it is claimed by Paluš & Dvořák (1992), is that the SVD is by nature a linear method
therefore it can give distorted and misleading results when dominant nonlinear structures are present.
Despite this claim up to know the method have been successively used in a wide field of nonlinear sciences
(e.g. atmospheric physics, stock market analysis, solitonic physics) yielding robust results. Of course
the dynamical noise of a data set is not something that can be always treated linearly but us a first
approximation the method can give an idea about the dimensionality of the system especially when there
is an a priori knowledge/indication of a noisy data set.

The physical interpretation of the method is the undermentioned. Consider a 2-dimensional dynamical
system that suffers the influence of a small amplitude white noise process (not necessarily Gaussian).
The trajectories in the phase space are mainly driven by the two main components (since the system is
2-dimensional) but the noise process perturbates slightly their course by almost the same displacement
towards the two directions. Due to the stochasticity of the noise process no direction towards the two
dimensions of the genuine phase space is preferred. As it is discussed in sect.3.4.2 the reconstructed phase
space consists actually the projection of a d-dimensional manifold into m dimensions through an embedding
function Φ. Once again the question is: What is d? i.e. what is the dimensionality of the genuine system?
Note here that d is equal to the number of axes (independent variables) of the genuine phase space.
Based on the Prin.Comp.Anal. the points form a hyperellipsoid in the m-dimensional phase space and by
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Figure 3.18: [Top-left panel] The genuine phase space consists of two components x(t), y(t) (2-dimensional).
[Top-right panel] Reconstruction of the system in one dimension based on x(t). Estimation of the correlation
integral for a given radius rk, being a line element in this space, yields five correlated pair points indicated
by the arrows.
[Bottom-left panel] Reconstruction of the system in two dimensions based on x(t). Estimation of the
correlation integral for a given radius rk, yields two correlated paired values indicated by the arrows. The
circle at the top left corner of the plot indicate the volume element in the 2-dimensional space, being an
area.
[Bottom-right panel] Further embedding into three dimensions does not change anything since the number
of the correlated pairs remains the same as the one in two dimensions i.e. 2, corresponding to the number
of the “true” correlated values in the genuine phase space for the given radius rk. The sphere at the top
right corner of the plot indicate the volume element of radius rk in the 3-dimensional space.
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direct specification of the main hyperaxes one can distinguish the major components, consisting the physical
interesting part of the system, from the noise components. Consider that the aforementioned 2-dimensional
system lacking the influence of the noise component. Then the Prin.Comp.Anal. will result an ensemble
of points forming an ellipse having 2 main axes. Consider now the presence of the noise, the resulting
pattern will be a hyperellipsoid with more than three main axes, two “big ones” representing the two major
components and a lot of smaller ones, of almost equal length, representing the noise influence. For higher
dimensional dynamical systems one can specify the entire group of the main hyperaxes and plot them in
decreasing order. Such a plot shows that gradually as the main axes-values are decreasing a plateau is
formed indicating the onset of the noise component. Application of the Prin.Comp.Anal. to a white noise
process in the m-dimensional phase space will result an m-dimensional hypersphere, being the version of a
hyperellipsoid, having this time equal all the main axes.

3.5.1 Methodology

Consider a time series data set xt (t = 1, . . . , N) which is embedded into m dimensions with a time delay
τ (usually τ = 1). Then as in MOD the delay vectors ~Xi = {xi, xi+τ , . . . , xi+(m−1)τ} for i = 1, 2, . . . , L
with L = N − (m − 1)τ are formed.

1. Initially the real L × m matrix, known as trajectory matrix, is formed

T =
1√
L








~X1

~X2

...
~XL








=
1√
L








x1 x1+τ . . . x1+(m−1)τ

x2 x2+τ . . . x2+(m−1)τ

...
...

...
xL xL+τ . . . xL+(m−1)τ








(3.59)

and the mean value of each column is subtracted from the corresponding column resulting T0. The
matrix T and its transpose may be thought as linear maps between M

d and Rm.

2. The next step is to find the SVD of the numerical matrix T0. The decomposed matrix is written into
the form

T0 = U · W · V T (3.60)

• U is an L×L orthogonal matrix (i.e. consists of orthogonal columns: UT U = UUT = IL where
the symbol T denotes the transpose of the matrix and IL is the identity matrix of size L) having
as columns the rows of the eigenvector matrix of T0T

T
0 (left eigenvectors of T0). In the general

case where T0 is not a real matrix U is an L × L unitary matrix.

• W is a L×m matrix with non negative numbers on the diagonal wi (singular values of T0) and
zeros off the diagonal. The singular values on the diagonal are sorted from the biggest to the
smallest value and they are equal to the square root of the eigenvalues of the matrix T0T

T
0 (or

T T
0 T0).

• V is an m × m orthogonal matrix having as rows the columns of the eigenvector matrix of
T T

0 T0 (right eigenvectors of T0). The matrix Ξ = T T
0 T0 is called covariance matrix of T0. It

consists an estimation of the mean time correlation (i.e. not spatially) between all the pairs in
the m-dimensional phase space. In the general case where T0 is not a real matrix then in eq.3.60
instead of V T the conjugate transpose of V appears, V ∗.

From this procedure only the diagonal elements of W , wj and the matrix V are of interest.

3. The singular values of T0, wj are then normalized

σj = log

(

wj
∑m

j=1 wj

)

(3.61)

4. The dot product of each m-dimensional row-vector element of matrix V , vj
T (the vj consists a column

element of the matrix V T) , with the m-dimensional delayed vector ~Xi is then estimated

yi,j = vj
T ~Xi (3.62)
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Figure 3.19: [Left panel] The logarithm of the normalized singular vectors for m = 8. A plateau after
j ∼ 2 − 3 is formed revealing that the dimensionality of the system is between 2 and 3. The onset of the
plateau is due to the noise level.
[Right panel] The reconstructed Hénon system into m = 2 dimensions based on 1000 realizations of the xt

component with noise (open circles) and without noise (filled circles).

with i = 1, . . . , L and j = 1, . . . , m, representing the value of the ~Xi vector in the j dimension of
the m-dimensional reconstructed phase space. Then the singular vectors can be formed at a given
embedding dimension m

~ym = {y1,m, y2,m, . . . , yL,m} (3.63)

comprising the reconstructed phase space of the attractor at the given m. The ~ym = V T0 consist
actually the projection of T0 (i.e. phase trajectory) in the basis of the singular vectors of the m-
dimensional space.

The first singular values wj , (j = 1, . . . , q) are large and they characterize the main trajectory in the
reconstructed m-dimensional phase space of the attractor. The other m − q singular values represent the
noise level which needs theoretically infinite number of components (i.e. dimensions) in order to be fully
represented due to its stochastic nature.

Consider once again 1000 realizations of the xt component of the Hénon dynamical system (eq.3.41)
but this time an additional white noise component is added coming from a uniform distribution in the
range [−0.1, 0.1]. The time delay is set to τ = 1 and the embedding dimension is set to 8 since the genuine
dimensionality of the system is only 2. The results of the Prin.Comp.Anal. are shown in the left panel
of fig.3.19. It can be seen that after j ∼ 2 − 3 a plateau is formed being indicative for the existence
of the noise. The dimensionality of the Hénon system can therefore being derived to be between 2 and
3 being consistent with the genuine dimensionality of the system. The right panel of fig.3.19 shows the
reconstructed attractor (open circles) based on the two dimensional singular vectors, ~y2. In the same plot
the ~y2 vectors are plotted for the xt component but this time without the noise influence (filled circles).
The bulk structure of the attractors coincide for scales grater than ∼ 0.02 length units. Despite the lack
of trajectory definition, concerning the noisy version of the xt component, the Prin.Comp.Anal. is able to
distinguish the deterministic part of the Hénon system from the noisy component.

3.6 Long-Term Memory Analysis

3.6.1 The existence of cycles and the Hurst exponent

The first analysis method usually applied in a time series data set coming from a given source is the PSD
(sect.3.3.1). The application of this method indirectly implies the existence of patterns in the data set
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that can be broke down into a sum of sinusoids with different frequencies and amplitudes. Unfortunately
there is no intuitive reason for believing that the underlying radiation mechanism of an AGN producing
the observed AGN flux is structured on the basis of periodic cycles. This can be readily seen from the form
of their PSD exhibiting no significant peaks (sect.3.1.1).

In the case that a multicomponent physical system, such the one of an AGN (sect.1.2.1), does not exhibit
any periodic cycles at all within its realizations, possible nonperiodic cycles might still be present. These
nonperiodic patterns usually demonstrate the same statistical behavior without having neither the same
time duration nor fixed occurrence times in comparison to the classical periodic systems. The term “same
statistical behavior” implies that the system retains a kind of memory (long-term memory) concerning its
past variability behavior, which can be expressed through a statistical quantity (e.g. the variance) and
continues its course in time accordingly to the existence tendency.

The existence of a long-term memory embedded in a time series data set is usually studied through
the estimation of the Hurst exponent H (Hurst 1951) based on the method of rescaled range analysis,
(R/S) (Mandelbrot 1972). Roughly speaking the method consists of the following steps. The data set is
partitioned into non-overlapping subsets of the same length NA and then the cumulative deviation DA is
estimated for each one of them. Finally the statistical range RA and the standard deviation SA for all the
subsets are computed and a mean value of their ratio (R/S)NA

is derived. The same exactly procedure
is then repeated having another partitioning configuration of different NA. Then H can be estimated by
linear regression as it consists the slope of the straight line passing through the points ((R/S)NA

, NA) in
a log-log representation.

Under the null hypothesis of no long-term dependence H = 0.5, meaning that the data set is simply
the realization of a random walk process (i.e. a sequence of discrete steps of fixed length, sect.3.1.1). For
data sets exhibiting positive long-term dependence (persistency) a value of H > 0.5 is expected in contrast
to antipersistent behavior in which H < 0.5. Time series characterized by persistency (antipersistency)
scale faster (slower) than the square root of time (sect.3.1.1) meaning that the system covers more (less)
“distance” than a random walk process. A persistent behavior implies that an increasing or decreasing
trend will probably continue the same course in the next time instant ∆t in contrast to an antipersistent
behavior which tends to reverse itself around the mean. The Hurst exponent H gives exactly the probability
of a time series to continue the same course (increasing or decreasing) during the next time step ∆t. Note
here that the existence of a long-term memory does not imply any periodic behavior but rather a circular
dependence of similar statistical behavior (i.e. persistency or antipersistency) in time scales having unequal
duration. Exactly these nonperiodic cycles are characterized by an average time duration but within these
cycles the various flaring events occur in various time scales.

3.6.2 Methodology

Estimation of the Hurst exponent through the rescaled range analysis

Consider a stationary time series data set (sect.3.1) consisting of N measurements, xi, measured at discrete
times ti with (i = 1, . . . , N) separated by ∆t time units.

Starting from the beginning, the data set is partitioned into A non-overlapping subsets of NA successive
number of points. This procedure is performed for NA = 2, . . . , N and the last points which can not form
a complete subset are simply dropped. The total number of subsets for a given NA is equal to the greatest
integer less than or equal to N/NA, therefore A = 1, . . . , ⌊N/NA⌋. At the end there are N − 1 groups each
one consisting of A subsets of NA points. The total number of points within each group is A × NA and
should be the closest possible to N .

Initially the arithmetic mean, the standard deviation (see eq.3.19) and the cumulative deviation respec-
tively for every subset (among the A) consisting of NA points within a group, is estimated

xA =

∑NA

n=1 xn,A

NA
(3.64)

SA =

√
∑NA

n=1(xn,A − xA)2

NA − 1
(3.65)

DA =
k∑

n=1

(xn,A − xA) for k = 1, . . . , NA (3.66)
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Then, the statistical range of DA, RA, is estimated and it is normalized to the SA. That gives the rescaled
range statistic for a given subset of a given group

RA

SA
=

1

SA
(max[DA] − min[DA]) (3.67)

Finally the mean value of the rescaled range statistics is computed for all subsets A within the same group
and the same exactly computations are performed for all the N − 1 groups

(
R

S

)

NA

=

∑⌊N/NA⌋
A=1

(
RA

SA

)

⌊N/NA⌋
for NA = 1, . . . , N − 1 (3.68)

The Hurst exponent H for the initial data set is then computed based on the following relation

(
R

S

)

n

= CnH (3.69)

and by taking the logarithms of both sides this yields

log

(
R

S

)

n

= log C + H log n (3.70)

The plot of (R/S)n versus n in a log-log representation (i.e. eq.3.70) consists of a steep curve followed
at the point (Np, (R/S)Np

) by a plateau in case that the system exhibits indeed a long-term memory. The
abscissa of this point Np (inflection point or local maximum) defines the mean time duration (i.e. Np ×∆t)
when the long-term memory of the system starts to dissipate. The corresponding group, consisting of
subsets each one being Np×∆t time units long, displays the biggest deviations from the mean and therefore
it will be the one with the dominant trend. Practically the Hurst exponent H is equal to the slope of the
linear regression model fitted to the ensemble of points {(2, (R/S)2), (3, (R/S)3), . . . , (Np, (R/S)Np

)}.
The aforementioned methodology is known as classical R/S analysis since it is the original one proposed

by Mandelbrot (1972) for the estimation of the Hurst exponent. In general there is a big variety of methods
aiming to a more robust and less biased estimation of H (e.g. Lo 1991; Moody & Wu 1991; Hauser 1997).
All methods different from the aforementioned analysis only in the normalization factor of RA, SA (eq.3.67).
As it was shown from Davies & Harte (1987) the conventional R/S analysis using a Hurst regression can
be biased towards accepting a long-term dependence hypothesis even when the true process is first order
autoregressive (AR) (e.g. Priestley 1981). Moreover another crucial issue is that the measurements of
a data set might exhibit short-range dependences (i.e. autocorrelations) fact that make them depended.
Usually small data sets have statistical different properties from their parent distributions in the sense
that they might have significant different SA from their parent distribution (heteroscedasticity) (Lancaster
1968; Levenbach 1973). A final matter is that the various estimates ((R/S)NA

, NA) might be distributed
around non-Gaussian distributions converging very slowly as NA → ∞ to Gaussian distributions. All these
issues give raise to biases concerning the estimations of the coefficients of the linear regression model. In
order to incorporate these biases Lo (1991) proposed the adjusted R/S analysis which uses instead of SA

(eq.3.65) the quantity SLA

SLA =

√
√
√
√γ̂(0) + 2

q
∑

i=1

((

1 − i

q + 1

)

γ̂(i)

)

(3.71)

where γ̂(i) is the sample autocovariance function (eq.3.4) but this time divided by NA − 1 instead of NA

(see sect.3.3.3). The reason is simply that for i = 0 this relation should be identical to the one of the
standard deviation SA (eq.3.65).

γ̂(i) =

∑NA−i
j=1 (xj,A − xA)(xj+i,A − xA)

NA − 1
(3.72)

and
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Figure 3.20: The expected values of (R/S)n, E ((R/S)n), as they are estimated from eq.3.77 (Anis & Lloyd
1976) and eq.3.79 (Peters 1994).

q =

⌊(
3N

2

)1/3(
2p

1 − p2

)2/3 ⌋

(3.73)

with p being the first order autocorrelation coefficient of the data p = γ̂(1)/γ̂(0). Note here that eq.3.71
for q = 0 gives the usual estimate of the standard deviation eq.3.65.

V statistic

The V statistic (Peters 1994) gives the probability of having a long-term behavior embedded in the under
study data set. A one dimensional random walk process is known to have an average distance between N
successive steps equal to

√

2N/π ≈
√

N (sect.3.1.1).
In the general case of having a stationary data set consisting of N points the term average distance can

be expressed by means of eq.3.68 which is actually expressing the biggest deviation of the subsets, consisting
of NA points, from the mean value. If the data set is a realization of a random process then (R/S)NA

is
expected to scale as (R/S)NA

∝ √
NA. Therefore the variable VNA

is defined having an arithmetic mean
value u which is estimated from all the N − 1 groups where

VNA
=

(R/S)NA√
NA

(3.74)

u =

∑N
NA=2 VNA

N − 1
(3.75)

and the probability distribution function of V (Lo 1991) is given by

FV (u) = 1 + 2

∞∑

l=1

(1 − 4l2u2)e−2(lu)2 (3.76)

having a mean value and standard deviation of 1.25 and 0.27 respectively. After estimating u the probability
of having in the data set a long-term memory behavior is computed from eq.3.76.
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The expected value of R/S

Apart from the fact that a small data set might not be representative of the statistical properties of the un-
derlying mechanism, its moderate length can also affect the result of H i.e. overestimating/underestimating
it. In this sense the outcome of the method is up to a certain degree biased due to the limited number of
observations. Therefore in order to have an idea about the degree of this bias the R/S method is estimated
for a random walk process with equal length with the under study data set, yielding the expected values
of (R/S)n, E ((R/S)n) for every n. These values then can be directly compared with the ones produced
directly from the true data set.

The (R/S)n statistic for a random walk process (eq.3.70) is an asymptote such that the value of the
Hurst exponent is gradually converging to H = 0.5 as the length of the N−1 groups is increasing (N → ∞) .
Thus, in order to reject or accept the null hypothesis (i.e. random walk) the estimated values of the (R/S)n

statistic, coming from the data set, should be compared to their expected value E ((R/S)n), coming from a
random walk process having the same number groups (i.e. points). However in order to estimate correctly
E ((R/S)n) one should take into account the aforementioned biases which will result at the end H 6= 0.5
even for the null hypothesis due to the limited length of the data set.

The expected value of (R/S)n was firstly estimated by Anis & Lloyd (1976)

E ((R/S)n) =
Γ(n−1

2 )√
πΓ(n

2 )

n−1∑

i=1

√

n − i

i
(3.77)

where Γ(x) is the (complete) Gamma function.
Peters (1994) showed that eq.3.77 performs poorly for n < 20 and hence he multiplied it with an

empirically derived correction term

E ((R/S)n) =
n − 0.5

n

Γ(n−1
2 )√

πΓ(n
2 )

n−1∑

i=1

√

n − i

i
(3.78)

Based on the Stirling’s approximation n! ≈
√

2πn(n/e)n for n → ∞, eq.3.78 reads

E ((R/S)n) =
n − 0.5

n

√

2

nπ

n−1∑

i=1

√

n − i

i
(3.79)

From fig.3.20 it can be seen that eq.3.77 for n < 20 overestimates E ((R/S)n). The overestimation factor,
simply by subtracting the two plots, goes as ∼ n−0.39.
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Chapter 4

X-RAY OBSERVATIONS OF MRK 421

This chapter contains a detailed description of the PCA and ASM data sets of Mrk 421 which are
going to be used in the next chapters in order to study the short and long term variability behavior
of the source in the X-ray band. Some cautions concerning the data analysis procedures should be

taken since the observations were obtained with different electronic configurations of the RXTE satellite
throughout the years. Another important issue that is discussed here is the fact that ASM instrument
is not in general as sensitive as the PCA and thus there are a lot of accusations in the literature, based
on rather superficial criteria, concerning its reliability. A direct comparison between the two instruments
is conducted via their data sets in order to check whether the ASM observations of Mrk 421 are indeed
representative of the source state.

4.1 The Proportional Counter Array Data Set

All the archival data of Mrk 421, obtained by the PCA instrument (sect.2.1.2) on board RXTE since its
launching date (December 1995), are selected and analyzed in a strictly homogeneous way. The whole data
set consists of 14 campaigns and has an actual observational time of about 1.5 Msec (92468 observations
of 16 sec) covering a time period of 3200 days. Tab.4.1 shows the exact time window of each observation
together with the total observing time within it.

Table 4.1: Time coverage and total duration of the PCA observations of Mrk 421
Earliest obs. Latest obs. Total obs. time

Proposal number Date Time Date Time (in ksec)
10341 1/3/96 06:08:00 1/3/96 06:46:56 1,856
10345 15/3/96 13:18:24 19/4/96 02:01:04 57,808
20341 2/4/97 03:30:24 3/6/97 06:34:40 63,312
30261 24/3/98 00:52:16 13/4/98 07:37:36 33,520
30262 18/4/98 11:36:00 8/5/98 20:58:40 153,168
30269 26/2/98 13:27:44 25/7/98 22:40:48 86,064
40182 5/2/00 03:33:52 8/5/00 22:23:34 31,584
50190 24/01/01 01:04:48 6/2/01 16:10:08 52,624
60145 18/3/01 03:30:24 1/4/01 09:07:44 291,616
70161 2/12/02 04:33:04 14/1/03 13:10:08 110,912
80172 26/02/03 14:49:36 6/3/03 11:24:32 231,472
80173 20/02/03 03:05:52 13/05/04 05:41:04 261,136
90138 10/05/04 09:10:40 21/05/04 04:43:44 30,816
90148 18/04/04 03:26:08 22/12/04 12:17:36 73,600
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Table 4.2: Time extension of the gain Epochs and the scaling factors
(a) For 2–5 keV and 2–10 keV

Scaling factors
Gain Epoch Start time End time 2–5 keV 2–10 keV

1 Launch 21/3/96-18:33:00 1.024±0.002 1.027±0.002
2 21/3/96-18:33:00 15/4/96-23:05:00 1.004±0.004 1.015±0.002
3 15/4/96-23:05:00 22/3/99-17:38 1.000 1.000
4 22/3/99-17:39 13/5/00 00:00:00 0.904±0.012 0.934±0.008
5 13/5/00-00:00:00 2006 0.857±0.003 0.892±0.005

(b) For 2–15 keV and 5–10 keV

Scaling factors
Gain Epoch Start time End time 2–15 keV 5–10 keV

1 Launch 21/3/96-18:33:00 1.028±0.001 0.993±0.003
2 21/3/96-18:33:00 15/4/96-23:05:00 1.018±0.002 1.020±0.003
3 15/4/96-23:05:00 22/3/99-17:38 1.000 1.000
4 22/3/99-17:39 13/5/00 00:00:00 0.938±0.001 1.030±0.002
5 13/5/00-00:00:00 2006 0.891±0.001 0.836±0.002

4.1.1 Homogeneity of the data set

Owing to operational constrains most of the PCUs are often switched off. The PCU3 and PCU4 are most
of the time not in operational mode due to electrological problems occurred during October–November
1998. The automatic procedures that turn off these two PCUs in case of contingent breakdowns were
not fully re-enabled after an earlier spacecraft computer crash. The PCU1 experienced a sequence of four
break downs in March 1999 and in order not to cause a total break down of the detector is also switched
off. Finally after May 2000 the pressure in the antico propane layer of PCU0 (fig.2.3) began decreasing
resulting an increased background rate and a different gain. The xenon layer of PCU0 is still functional
but the background rates are increased. The contamination events caused by the low-energy electrons
entering the detector are now much more significant. This is particular relevant for variability studies of
relatively week sources such as Mrk 421. Therefore in order to form the most homogeneous observational
sample only those observations obtained by the PCU2 are selected and analyzed following the procedures
described in detail in sect.2.2.

Despite the fact that all the selected observations were taken with the same detector, the electronic
configurations of the PCA have been changed five times since 1996 and hence the gain settings of the
instrument are different for these five epochs. These electronic adjustments (e.g. voltage modifications),
made by GSFC/NASA, are mainly conducted in order to bring all the PCUs around the same sensitivity
level after the detector’s discharge problems. As a consequence all the source count rates, obtained during
these ∼ 9 years, have to be rescaled to a common gain Epoch if one wants to compare possible different
variability stages of the source in a statistical manner and make statements concerning the overall variability
level of the source.

The rescaling of the X-ray detectors, such as the PCA, to a common gain level is usually done by
comparing the flux level of a constant X-ray source throughout the years (e.g. Crab Nebula, Jahoda et al.
2006). Therefore the observations of the supernova remnant Cassiopeia A (Cas A), obtained during these
five epochs, are analyzed and compared with respect to their X-ray count rate level. Initially the five Cas A
data sets are reduced and a mean count rate with an error is derived for each epoch. Then the ratio of each
epochal mean values to that of Epoch 3 is computed and the resultant rescaling factors are then used in
order to calibrate the various observations from the data set of Mrk 421 to the latter gain Epoch (tab.4.2
(a) and (b)). The reason of choosing the gain settings of Epoch 3 as the optimum ones is that during this
period the detector was in fully operational mode (apart from the last 6 months) and the response of the
detector as well as the background model were performing better than any other epoch.

Note here that neglecting the gain corrections concerning the observation obtained before Epoch 3
results an underestimation of the count rate (in the 2–10 keV) band of ∼ 3.0±0.5%. For those observations
taken after Epoch 3 the count rates are overestimated (6.0–10.0)±0.3%, depending on the source state.
Tab.4.2 contains the time duration of these five epochs together with the scaling factors for different energy
bands and tab.4.3 shows the gain Epochs for all the observations.
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Another issue needed to be taken under consideration is the choice of the correct parametrized back-
ground model file. In sect.2.2.3 is mentioned that the selection of a background file (“faint” or “bright”)
strictly depends on the source state. During these ten years of observational coverage of Mrk 421, the
source exhibits both “faint” and “bright” states therefore it is not optimum to use the same background
file in order to produce the ensemble of scientific products. All the observations have been reduced with
both background models and after checking the mean count rate it was then decided about the choice of
the most appropriate model. Concerning Mrk 421 four out of the fourteen campaigns are characterized as
“bright” and the remaining 10 as “faint” (tab.4.3).

It should be stretched out the fact that the background subtraction process is the dominant source
of systematic errors during the reduction procedure. Since before choosing the appropriate background
model the data are reduced using both models an overestimation factor can be derived for the case of using
a “faint” model for a “bright” source state. This factor is negligible for the overall light curve 0.5±0.3%
(lasting on average 90–100 ksec) but can be significantly increased for individual short lasting flaring events
(lasting 1–2h) reaching up to the value of 8±0.4%.

Table 4.3: The gain Epochs and the background models for the PCA observations of Mrk 421
Proposal number Gain Epoch Background model file

10341 Epoch 1 Faint
10345a Epoch 1,2,3 Faint
20341 Epoch 3 Faint
30261 Epoch 3 Faint
30262 Epoch 3 Faint
30269 Epoch 3 Faint
40182 Epoch 4 Faint
50190 Epoch 5 Bright
60145 Epoch 5 Bright
70161 Epoch 5 Faint
80172 Epoch 5 Faint
80173 Epoch 5 Bright
90138 Epoch 5 Faint
90148 Epoch 5 Bright

aDuring this observation the gain Epoch was changed three times.

4.1.2 Light curves

All the observing periods of Mrk 421, in the 2–10 keV energy range are shown in fig.4.1. In general the
sampling of these public available data is highly uneven. The original observations were conducted having
a wide variety of sampling patterns and duration due to the different scientific purposes. Mainly these
proposals are part of multifrequency campaigns having sometimes very special and particular configurations
concerning their observing plans. Simultaneous coverage of observations performed by Čerenkov arrays,
optical telescopes, radio receivers as well as general XBL monitoring programs show the copiousness of
the observing modes. At the same time some other proposals are triggered instantaneously either from
the ASM or from ground-based Čerenkov telescopes whenever the X-ray or γ-ray flux of a source, exceeds
some limit values.

The combined version of all the observations is shown in fig.4.2 characterizing fully the source states
during these nine years. Morphologically, based on this plot there are 8 observing periods separated roughly
by one year. Two huge flares separated by three years are the most dramatic events reaching up a count
rate of 155 counts sec−1PCU2−1. During the other periods the source seems to be in a relative quiescent
state with a mean count rate around 30±8 counts sec−1PCU2−1.

4.2 The All-Sky Monitor Data Set

More than 350 sources have been observed by ASM during the last 10 years. Galactic sources such as
pulsars X-ray binaries and supernova remnants as well as extragalactic sources such as nebulae, Seyfert
galaxies and blazars. Concerning the extragalactic objects ASM can be employed as a trigger whenever a
source is on a flaring state since the data sets are available on a daily basis. Among the extragalactic sources
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Figure 4.1: The individual observations of Mrk 421 during the period 1996-2005. All the count rates are
given in the energy band of 2–10 keV and the bin size is 90 min (∼ 1 RXTE orbit). The only exception is
the observation 10341 for which a bin size of 128 ksec has been used since it has a total time duration of
∼ 1.9 ksec i.e. less than an orbit.
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Figure 4.2: The combined observations of Mrk 421 during the period 1996–2005. The count rate is given
in the energy band of 2–10 keV and the bin size is 90 min (∼ 1 RXTE orbit).

Mrk 421 is one of which ASM has been used extensively either for triggering multifrequency campaigns or
for its direct measurements on a daily or on a dwell-by-dwell basis (sect.2.3). The overall variability behavior
of the source during the past ten years can be seen in fig.4.3 in which each point consists the average of
15 daily average values each one of them coming from a set of dwell observations fulfilling some criteria
(sect.2.3). Five flaring events can be readily discerned embedded in an overall quiescent state around
0.3±0.2 counts sec−1. Up to now no statistical analysis of any kind have been conducted for the given data
set. In chap.6 the first thorough higher order time series analysis is conducted yielding interesting results.

4.3 Comparison of the All-Sky Monitor and the Proportional Counter

Array Observations

4.3.1 Morphological comparison

Irrespective of the nominal accuracy of the ASM, derived for bright-stable X-ray sources in the center
of the FOV and not being situated very close to the Galactic bulge (see sect.2.1.4 and fig.2.7), the best
assessment of its reliability concerning variable and low flux sources, such as Mrk 421, comes from direct
comparison of ASM fluxes with measurements taken with more sensitive narrow-field instruments such as
PCA.

In fig.4.4 the common time period of the two light curves (fig.4.2, fig.4.3) is shown in a comparative
way with the dashed lines indicating the correspondence of four source events between the two detectors.
This plot depicts two basic features concerning the PCA and the ASM data sets. Firstly, it shows that
the PCA data set consists mainly of observations taken during high energy source states. Even though
the periods that were characterized as relative quiescent (sect.4.1.2) they seem to be taken during burst
activity. Only the first two PCA periods can be characterized as “truly” quiescent based on this sample.
Secondly, the relatively good “by eye” correspondence between the measurements of two detectors seems
prominent in order to check for further reliability of the ASM data set in smaller time scales.
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Figure 4.3: The light curve of Mrk 421 as registered from ASM during the period 1996–2006. The count
rate is given in the energy band of 2–10 keV and the bin size is 15 days. The horizontal dashed line indicates
the apparent “quiescent” state of the source around 0.3±0.2 counts sec−1.

4.3.2 Quantitive comparison

The first think that one should check based on a statistical study is up to which degree the dwell observations
can be considered reliable since the ASM suffers from large systematics (e.g. enhanced noise from bright
sources in the FOV). Up to now the use of ASM data for detailed temporal analysis is usually disfavored
(Kataoka et al. 2002; Uttley et al. 2002) since for a given PCA observation it is not possible to establish
any apparent (i.e. “by eye”) correlation between the two data sets. Due to the fact that ASM is not as
sensitive as a pointing instrument the reliability of the observed variability patterns depends strongly on
the properties of the observed source such as position and number of sources within the ASM FOV.

For the case of Mrk 421 from a total number of 37240 dwell observations (fig.4.3) ∼ 1800 do not fulfill
all of the filtering criteria (sect.2.3). For the majority of dwells the number of sources in the ASM FOV
is continuously below 16 for 3% of them the field becomes unusually crowded 8 sources compared to the
usual 1–2 sources contributing to increased background events. Also the long-axis angle θ is for 2% of the
dwells out of the given range −41.5◦<θ <46◦. Therefore individual dwell events can indicate erroneously
flaring source activity which is actually attributed to the background.

The best way to check about the reliability of the ensemble of the dwell observations of Mrk 421, is to
correlate them with observations taken from a pointing instrument such as PCA. Especially for the case of
this source this procedure is the most robust method since its PCA archive is the biggest one among all
the AGN and therefore one can find a significant big number of strictly simultaneous data pairs taken with
both instruments. This work has been already performed by Emmanoulopoulos et al. (2005) in which all
the 90 min dwell observations have been gathered together and compared with the simultaneous PCA data
during the period 15/3/96–6/3/03 (fig.4.3). During these 2500 days a total of 33677 dwell observations
were obtained by ASM and 69621 measurements of 16 sec (∼ 1.1 Msec) were obtained by PCA.

Initially both data sets are averaged in daily bins forming a set of 168 data points and plotted versus
each other (fig.4.5). Despite the overall correspondence of the intensities measured by both instruments,
there is considerable scatter and significant outliers. Fitting the data to a straight line, y = ax + b and
taking into account only the measurement errors of ASM (in the case of the PCA these are practically
negligible ∼ 0.1 counts sec−1PCU2−1) yields a = 0.041±0.002 and b = 0.087±0.047 with a poor reduced χ2
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Figure 4.4: The common observations between PCA and ASM for Mrk 421 during the period 1996–2006.
The dotted lines indicate the correspondence between the PCA and the ASM for four flaring events. Details
for the PCA and ASM points are given in fig.4.2 and fig.4.3 respectively.
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Figure 4.5: The ASM versus the PCA daily average measurements. The errors associated with the PCA
measurements are ∼ 0.1 counts sec−1PCU2−1. The arrows A, B, C indicate three badly affected values
from the binning.

of 3.24 for 166 DOF and a NHP of 0. Among the most significant outliers in fig.4.5 are the points indicated
by the arrows A, B, C having a deviation of 3σ, 3.7σ and 1.6σ respectively. The reason of these deviations
is that within these days there is no direct overlap between the observations of the two instruments as seen
in fig.4.6. During the period 15/3/96–6/3/03 the number of dwells within a day changes as shown in fig4.7
hence the probability of having exactly only one dwell observation within a day is ∼ 10%.

In order to overcome the difficulty of the problematic binning a more precise method is followed. All the
16 sec PCA observation lying within the 90 minutes ASM dwell observations are binned forming a sample
of 173 data points. The time overlap between the measurements ranges between 88% and 100% and the
time offset during the selection criteria is set to 0.0001 day (or 8.64 sec). In fig.4.8 the measurements of the
two detectors are plotted the one versus the other together with two linear fit models, y = ax. The first
model (solid line) takes into account only the ASM measurement errors σASM and the second one considers
additionally the PCA measurements errors, σPCA, (Fasano & Vio 1988). The values of a coming from the
two methods are consistent within the errors 0.042±0.001 and 0.041±0.002 respectively, therefore the first
method is going to be used further on. The reduced χ2 yields a value of 1.871 for 172 DOF having a NHP
of 2.64 × 10−11.

4.3.3 Reliability limit of the ASM dwell observations

As the source count rate augments the scatter around the fitted line becomes smaller since the detector’s
response is better. Thus the query is: what is the lowest ASM count rate limit that one can trust? In
order to answer this question the following analysis is performed.

Successively by excluding each time the first data point with the smallest ASM count rate (from left to
the right of fig.4.8), subsets are formed containing fewer points in the lower ASM count rate regime. Every
time the reduced χ2 value between the remaining values and the model is estimated (fig.4.9). The latter
quantity is expected to reach a plateau, since the fit is driven every time from the points with higher count
rate, depicting the fact that above the given ASM count rate the detector is linearly responding to the
source count rate (fig.4.9). The determination of the plateau level is done by fitting successively a constant
line to all points each time excluding the point with the highest ASM count rate (from the right to the
left of fig.4.9). The fit quality starts to a given point to worsen indicating the onset of the plateau. The
outcome for Mrk 421 is that a dwell ASM observation above 2.0 ± 0.1 counts sec−1 can be a significant
detection since that is the lowest-limit-value of the detectors’ detection range.

Usually in observing campaigns, especially the ones triggered from ground-based Čerenkov telescopes,
due to the lack of simultaneous X-ray coverage of the observed source the use of the ASM detector is
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Figure 4.6: A time-zoom on the points A, B, C of fig.4.5 indicating that the two data sets do not overlap
in time. The squares represent the PCA observations binned in 5440 sec (the PCA count rate is shown on
the left axis) and the triangles represent the ASM dwell observations lasting ∼ 90 sec (the ASM count rate
is shown on the right axis).
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Figure 4.7: The distribution of the number of the dwell observations within a day for the period 15/3/96–
6/3/03.

66



4.3. Comparison of the All-Sky Monitor and the Proportional Counter Array Observations

0 20 40 60 80 100 120 140

-4
-2

0
2
4

-2

0

2

4

6 2-10 keV

R
es

id
ua

ls
HΣ

A
SM
L

PCA count rate Hsec-1PCU2-1L

A
SM

co
un

tr
at

e
Hs

ec
-

1 L

Figure 4.8: [Top panel] The ASM versus the PCA simultaneous measurements with a time offset of 0.0001
day. Both lines represent a linear fit model of the form y = ax. The solid line is the result of the linear
fit taking into account only the ASM measurement errors σASM (yielding an a of 0.042±0.001) and the
dashed line shows the result of the fit considering additionally the measurement errors coming from PCA
σPCA (yielding an a of 0.041±0.002). For the same exposure time of 90 min, the mean value of the ratio
σASM/σPCA is of the order of 2 (1.85 ± 0.05).
[Bottom panel] The residuals of the linear fit, taking into account only the ASM measurement errors σASM,
in units of σASM.

favored. Before using the ASM data one should perform a similar analysis in order to check the reliability
of the instrument for the given source. The parameters described in sect.2.3 change from source to source
therefore the result should be a function of them.

A direct application of the aforementioned method is performed for the case of Mrk 421 in (Aharonian et al.
2005a). During April 2004, a coordinated multi-wavelength campaign monitored the activity of Mrk 421 in
the radio, the optical, the X-ray, and the γ-ray regimes (Cui et al. 2005). The source was seen to be active
in X-rays where observations with the PCA were performed. These observations were not simultaneous
with the observations with the H.E.S.S. array, but by combining the PCA with the ASM data a good tem-
poral coverage overlapping with the H.E.S.S. observations can be achieved. An average of 4 counts sec−1

was detected by the ASM during the first weeks of April. This is sufficiently high to probe the activity of
Mrk 421 during the individual ASM dwell observations.

The Whipple 10 m Čerenkov telescope was observing Mrk 421 simultaneously with the RXTE satellite
(Cui et al. 2005) starting generally within a few hours after the H.E.S.S. pointings. In fig.4.10, the different
observations are combined such that the observed count rate is normalized to the average flux count rate
during the time between MJD 53107 and MJD 53116. The preliminary Whipple light curve is derived
from the count rate which is not corrected for different zenith angles of observations. The ASM light curve
and the 1σ uncertainty band is obtained by calculating the sliding average over five dwells. The horizontal
dashed line indicates the lower level up to which we can rely on PCU measurements.
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simultaneous PCA-ASM data set. The x-axis denotes the first value of the ASM count rate for each data
set. The horizontal solid line represents the plateau and the vertical dashed line represents the abscissa of
this onset in units of ASM count rate.
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Figure 4.10: The relative changes of the flux with respect to the average observed during the multi-
wavelength campaign in April 2004 (included in Aharonian et al. 2005a).
[Top panel] H.E.S.S. flux above 2 TeV (filled circles), Whipple (crosses, preliminary count rate without
correction for varying zenith angles Cui et al. (2005). According to previous observations, the energy
threshold is estimated to be approximately 400 GeV (Krennrich et al. 2002)).
[Bottom panel] PCU (open triangles, count rate), ASM (1σ error band, see text for details). The dashed
horizontal line indicates the lowest reliable count rate concerning the ASM (the Whipple and RXTE PCU
data are taken from Cui et al. 2005).

68



Chapter 5

THE STRUCTURE FUNCTION AND THE

TIME SCALES

The serious misapplication of the structure function (SF) (sect.3.3.5) in the field of blazar astronomy
during the last 15 years has created the fallacy that “characteristic” time scales do exist in the
data sets of these objects. The basic idea is that the abscissa of the “break” point (see point B in

fig.3.7) indicates a time scale which is somehow directly connected with a source property. This thought
has created confusion among astrophysicists who associate this time scale with several physical quantities
without giving most of the times any clear justification about why this should be the case. There are a lot of
ambiguous terms connected with the abscissa of the “break” point1 such as characteristic time scale, hidden

time scale, quasi periodic time pattern etc. that have nothing to do with either the physics of the source or
with any true time property embedded in the data set itself. These time scales are supposed to be directly
connected with the linear size of the emission region in the case of the BL Lac objects (e.g. Wagner et al.
1996; Takahashi et al. 2000) or with the physical source time properties such as Keplerian, thermal and
viscous time scales for the case of the Seyfert galaxies (e.g. Czerny et al. 2003). This phenomenon appears
only in the field of astrophysics probably due to the fact that standard texts in time series analysis are rarely
consulted. Sometimes also vague methodologies are employed in order to consolidate a pseudo-accuracy of
the results in order to appear more “convincing”. The main drawback from this misuse of the SF is that
fictitious time scales, coming usually from completely random data sets, are accepted creating the idea
that well defined time patterns do exist in these sources. In this chapter the long-look X-ray observations
of Mrk 501, obtained by ASCA on March 2000, (Tanihata et al. 2001) are reviewed since they comprise
the first X-ray data set from which a 1 day “characteristic” time scale is claimed through the use of the SF.
Based on simulations it is shown that this time scale is simply an artefact which depends on the duration
of the observations and which is unrelated to any physical source property.

5.1 The Fake “Characteristic” Time Scale of One Day

Besides Mrk 421, two equally well studied BL Lac sources (sect.1.2.1) are Mrk 501 (z=0.033) and PKS 2155-
304 (z=0.117) both of them detected in the VHE γ-rays by Quinn et al. (1996) and Chadwick et al. (1999)
respectively. At the end of 1990s the X-ray satellite ASCA (Tanaka et al. 1994) performed three “long look”,
uninterrupted and continuous observational campaigns for these objects covering the X-ray band (∼ 2–10
keV). Initially Mrk 421 was observed for 7 days during April 1998 (Takahashi et al. 2000; Tanihata et al.
2001) and then Mrk 501 and PKS 2155-304 during March and May 2000 respectively for 10 days each
(Tanihata et al. 2001).

In order to elucidate the matter of the breaks in the SF the ASCA data set of Mrk 501 is chosen, since
it is the biggest among the three consisting of 191 observations and having a time resolution of 4096 sec

1Henceforth the abscissa of the “break” point is going to be referred simply as a break.
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(fig.5.1). The given campaign is claimed to have a “characteristic” time scale of almost a day as a result
of the SF analysis (fig.5.2). Exactly these observations consolidated the idea that something special is
happening in these sources in the X-ray regime during this time scale, which is directly connected with the
light crossing time in the emission region2. Based on the algorithm presented in sect.3.3.6, 2000 thousand
purely random artificial light curves, are produced having the same length3, the same PSD, the same mean
value, 6 counts sec−1 and the same standard deviation, S = 0.19, as the light curve of Mrk 501. The are
two questions that should be answered: How do their SFs look like? In case that their SFs exhibit breaks
when do these breaks occur?

In order to estimate the PSD of the original data set, its periodogram is computed (sect.3.3.1) together
with the corresponding errors due to measurement uncertainties (see below) (fig.5.3, red points). After
binning the logarithm of the periodogram (sect.3.3.2) its slope can be then robustly specified (see e.g.
Ferrero et al. (2006)) through linear regression based on the least squares method. For the computation
of the binned logarithmic periodogram n = 16 sets are formed each one having M = 12 observations
and the estimates of the logarithm of the PSD, log(P(favg,i)) (eq.3.15) at the geometric mean frequencies
favg,i (eq.3.14) are then derived (fig.5.3). The double error bar lines indicate firstly the variance of the
binned logarithmic periodogram at the various frequencies being 0.026 (eq.3.16) and secondly the errors
due to the measurements uncertainties. The latter have been computed by using the method described in
sect.3.1.3 by producing 1000 artificial light curves from the original light curve of Mrk 501. Firstly all the
periodograms were estimated and then the logarithmic estimates of them were calculated by using exactly
the same procedure as the one applied to the original light curve (i.e. same n, M). Based on the distribution
of the periodogram values at the various frequencies fj , the errors of the periodogram estimates due to
measurement uncertainties can be derived. The uncertainty of the log(P(favg,i)) at each frequency favg,i

is taken as the standard deviation of the distribution of the 1000 logarithmic periodogram estimates at
favg,i. Finally the slope of the PSD of the original light curve is estimated to be a = 1.68 ± 0.07 and this
together with its mean value and standard deviation comprise the basic ingredients for the production of
the 2000 artificial light curves.

The basic idea behind this experiment is to check whether or not the claimed “characteristic” time scale
of one day can occur in light curves of the same length which are completely random in nature meaning that
both their phases and amplitudes are random. The surrogated light curves have exactly the same variability
power for all the time scales (i.e. all frequencies) as the light curve of Mrk 501 (fig.5.1) since they have been
produced based on the genuine PSD. After producing the artificial light curves their corresponding SFs are
estimated. The SFs are derived following exactly the same methodology as in Tanihata et al. (2001) (eq.1,
eq.2 and eq.3) in order not to introduce systematic deviations due to different formulas. For a light curve
consisting of data points f(i) which have an uncertainty of a standard deviation σf (i) the SF is given

SF (τ) =
1

N(τ)

∑

w(i)w(i + τ)[f(i + τ) − f(i)]2 (5.1)

where N(τ) =
∑

w(i)w(i+τ) and w(i) ∝ f(i)/σf(i). The main difference between eq.5.1 and eq.3.23 is the
weighting factor w(i) which is considered to be an efficient modification of the usual formula incorporating
the statistical errors. Note that the introduction of w(i) is lacking any justification since it appears more
like an intuitional term rather than a rigorous mathematical quantity. Since at this point the interesting
thing is the result of the method and not the method itself the same methodology is applied. Note here that
the uncertainties of the given data set are so small that scarcely affect the SF results. The measurement
errors, σf (i), are of the order of 2% in comparison to the measurements, f(i), therefore the resulted SF
estimates after ignoring the errors differ on average only by 1.7%.

Since the artificial light curves do not have any errors the genuine statistical errors from the original
light curve are annexed to the surrogated values. For the particular data set this can be done since the er-
rors and the count rate of the genuine Mrk 501 data set are not correlated. The linear correlation coefficient
is 0.018, meaning that the probability of a value like this or bigger yielding from a random sample of 191
uncorrelated measurements is 0.80 (Bevington & Robinson 1992). More than 70% of the measurements
uncertainties are around 0.020±0.05 therefore it can be considered that they are drawn from a Gaussian
distribution with the corresponding mean value and standard deviation. In fig.5.4 two of those artificial
light curves are shown with their corresponding SFs.

2The time t that the light needs to travel a distance R going from the one side of the emission region to the other is
t = R/c where c is the speed of light (causality argument). If the source has a Doppler factor δ and a redshift z then in the
observer’s frame t = (R/c)(1 + z)/δ (e.g. Wagner et al. 1996).

3Initially the light curves are 10 times longer and afterwards they are chopped to the desired length of 191 points (see
sect.3.3.6).
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Figure 5.1: The X-ray light curve of Mrk 501 as registered by ASCA during March 2000 (Tanihata et al.
2001) with binning time of 4096 sec. The light curve is normalized to its mean being 6 counts sec−1 (the
measurements are taken from fig.1 of Tanihata et al. 2001).
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Figure 5.2: The SF of Mrk 501 as computed from the ASCA light curve shown in fig.5.1. The points have
a separation time of 4096 sec or 0.0474 days. The “characteristic” time scale occurs at 0.88 days (i.e. ∼ 1
day) (in perfect agreement with the top panel of fig.4 in Tanihata et al. 2001).
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Figure 5.3: The logarithm of the PSD of Mrk 501 as a function of the logarithm of the frequency. The
dashed line shows the estimate of the periodogram (blue points) as it is computed from eq.3.11. The errors
of the periodogram have been derived based on the methodology presented at sect.3.1.3 by producing
1000 artificial light curves from the original light curve of Mrk 501. The red points represent the binned
estimates of the periodogram (eq.3.15) for M = 12 and n = 16. The short error bars indicate the variance
of the binned logarithmic periodogram at a given frequency being 0.026 (eq.3.16) and the longer ones
the uncertainties based on measurements errors estimated from the 1000 aforementioned simulated light
curves. The arrow shows an example about how the distribution of the binned logarithmic periodogram
looks like for the first frequency bin at 6.83 µHz (or ∼ 146.4 ksec) as it comes up directly from the simulated
light curves. The solid line represents the linear fit to the logarithmic periodogram estimates yielding a
power-law index of −1.68± 0.07 yielding a χ2 of 3.52 for 7 DOF with NHP=0.833.

It seems that in the literature there is no explicit methodology concerning the specification of the SF
break. Most authors employ arbitrary “eye selection criteria” in order to specify it (sometimes referring
to it as observed break) without giving any explicit description of the methodology (e.g. Hughes et al.
1992; Lainela & Valtaoja 1993; Takahashi et al. 2000; Tanihata et al. 2001; Czerny et al. 2003). In order
to determine the SF break the following methodology is applied to the ensemble of artificial light curves. For
large values of τ (i.e. comparable to the time extend of the data set) the SF is expected to be equal to 2S2

where S2 is the sample variance (sect.3.3.5). Based on that for every artificial data set the ACF, R1,1(τ), is
computed and the value τuncor is specified. Then for every SF an interpolated version of it is produced and
the time tbreak when its value equals for the first time to 2S2 is specified. If 0.8τuncor ≤ τbreak ≤ 1.2τuncor

and the distribution of the following SF points (i.e. SF(τ > 1.2τuncor)) has a maximum (most probable
value) around the value of 2S2 then that means that a clear plateau is formed. If the inequality is valid
but the distribution of points do not have a maximum around 2S2 then that means that there is a break
followed by an increase or decrease in the values of the SF.

It should be mentioned here that this procedure does not aim to introduce a methodology for specifying
breaks in the SF but rather to mimic the “eye selection criteria”. The issue that is tested here is how
representative and characteristic are the breaks of a completely random sample sharing the same statistical
properties with the under study light curve.

From the 2000 light curves 1883 exhibit a break, based on the aforementioned criteria, whose distribu-
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Figure 5.4: [Top panels] Two artificial light curves sharing the same second order statistical properties with
the light curve of Mrk 501 (fig.5.1). The measurements errors are taken from the genuine light curve.
[Bottom panels] The SFs of the two artificial light curves.
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Figure 5.5: The distribution of the SF breaks coming from the 1883 artificial light curves for the case of the
ASCA data of Mrk 501. The mean value and the standard deviation of the distribution are 0.923±0.007
and 0.320 days respectively. The histogram bins have a length of 0.04 days.

tion is shown in fig.5.5. The distribution of the SF breaks has a mean value of 0.923±0.007 days and a
standard deviation of 0.320 days. It is clear from this plot that for a purely random process having the
same PSD the same second order moments and the same length as the ASCA light curve of Mrk 501, a
SF break of 0.88 is quiet possible to occur. Performing a simple hypothesis test between the mean value
of the distribution and the observed SF break 0.88 days, yields the result that up to significance level of
2.4% the latter value can be considered that it is drawn from the former distribution.

This example proves robustly that there is nothing characteristic concerning the time scales in the flares
of the light curve of Mrk 501 as registered by ASCA in March 2000. This can simply be the result of a
random process having the same second order statistical properties and the same length as the observed
light curve. Concerning the length of the light curve it is expected that longer data sets from Mrk 501,
having the same statistical properties, will exhibit breaks in their SFs at longer time scales depicting exactly
the fact that this break has nothing to do with any physical properties of the flares whatsoever.

The need of a long-term light curve for Mrk 501 necessitates the use of ASM (sect.2.1.4), similarly as
in the case of Mrk 421 (sect.4.2). The ASM light curve of Mrk 501 is retrieved for the period January 1996
till January 2001 (1770 days) binned into 15 days time bins (in total 118) and normalized to its mean being
0.62 counts sec−1 (fig.5.6). The sample was chosen as such in order to include the ASCA observations
taken during March 2000 and at the same time to have as much as possible the same statistical properties.
The ASM light curve has a standard deviation of S = 0.21 and its PSD, as it is estimated from the log-
arithmic periodogram, has a power-law index of −1.62 ± 0.05. Once again 2000 artificial light curves are
produced having a length of 118 points (bins of 15 days) and their SF is estimated. Following the same
selection criteria, from the 2000 samples 1956 exhibit breaks whose distribution is shown in the left panel
of fig.5.7. The mean value and the standard deviation of their distribution is 399.81±0.25 days and 11.27
days respectively. The SF of the original ASM light curve is also shown in the right panel of fig.5.7 having
a maximum at 402 days.

This is exactly what is expected from the simulations of random data sets having the same second
order statistical properties as the ones of the ASM light curve of Mrk 501 during this period. A hypothesis
test, similar to the one performed for the ASCA data set, yields that up to a significance level of 1.7% the
observed break can be considered as a result of the aforementioned distribution.

74



5.1. The Fake “Characteristic” Time Scale of One Day

250 500 750 1000 1250 1500 1750
MJD-50000

0

0.5

1

1.5

2

2.5

3

3.5

N
or

m
al

iz
ed

co
un

tr
at

e

Figure 5.6: The X-ray light curve of Mrk 501 as registered by ASM during the period January 1996 till
January 2001 in bins of 15 days. The light curve is normalized to its mean being 0.62 counts sec−1.

5.1.1 The SF and the shot model

In Tanihata et al. (2001) an effort is made to interpret the SF features (i.e. the slope and the break)
tuning “structural” flare parameters such as the rise and decay times as well as the separation time of
them. Simulated light curves are then produced and the resulted SFs are examined. The light curves are
regarded as a superposition of various flares or shots occurring randomly, following a Poisson distribution
with average number of shots during a time unit, r. Each shot is considered to have a simple triangular
shape, with rise time scale τr, decay time scale τd, and occurrence time of the shot tp. The intensity of
each shot is also set randomly, but the number density follows a power-law distribution n ∝ α−1.5. Having
this,

f(t) =

{
α(t − (tp − τr)), for t ≤ tp
−α(t − (tp + τd)), for t ≥ tp

(5.2)

the following cases are considered

• Symmetric shots: τr = τd = τ

1. Varying times τ = 10 and τ = 100, and fixed average number of shots per time unit r = 1.

2. Varying number of shots per unit time r = 0.1, r = 1 and r = 10, with fixed τ = 50.

3. Randomly varying times τ between τmin = 10 and τmax = 100 with average number of shots per
time unit r = 1.

• Nonsymmetric shots: τd = 100 and τr = 1, τr = 10, τr = 100 with fixed average number of shots per
time unit r = 1.

The main results from the simulations are that the time scales of individual shots, τ , determine the location
of the break in the SF (fig.5.8, left panel), result which is independent on the shot occurring rates r. When
τ takes a range of time scales a deviation from a slope of 2 happens at tmin and the break occurs at τmax.
Finally when the rise and the decay timescales of the shots are different then the break occurs at the
timescale which is the shortest of the two.
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Figure 5.7: [Left panel] The distribution of the SF breaks coming from the 1956 artificial light curves for
the case of the ASM data of Mrk 501. The mean value and the standard deviation of the distribution is
399.81±0.25 days and 11.27 days respectively. The histogram bins have a length of 15 days.
[Right panel] The SF of Mrk 501 as computed from the ASM light curve shown in fig.5.6. The points have
a separation time of 15 days. The break denoting a “characteristic” time scale occurs at 402 days.

For the case of Mrk 501 the basic claim is that since its SF has a clear break ∼ 10 ksec (fig.5.2) its light
curve should consist of shots with time scales of τ = 10 ksec. This scenario (i.e. fixed τ) can be readily
rejected based on the PSD of the data set. Since the shots have the same duration (i.e. the same τ) the
Fourier components are going to depict this timescale, represented by the corresponding frequency f , and
each sinusoid has only to adjust its amplitude since the intensity of each shot is not the same. For τ = 10
and τ = 100 a feature with a frequency f = (10/2000)−1 and f = (100/2000)−1 respectively is expected
to be appeared in the PSD of such data sets (fig.5.8, right panel). The genuine PSD of Mrk 501 (fig.5.3)
does not exhibit any indication of any periodic pattern of this nature therefore symmetric flares with fixed
time scales is not a physical possible scenario.

In addition to the last point there is more fundamental problem concerning the shot model scenario.
The model can not reproduce long lasting flaring events which produce breaks in the SF of the order of
years. From fig.5.6 it can be seen that variations of ∼ 400 days do exist in the light curve of Mrk 501
resulting a break in the SF at ∼ 400 days (fig.5.7, right panel). Shot models consisting of flares with time
scales of the order of ∼ 10 ksec can not reproduce so extended long-term variations appearing as breaks in
the SF.

5.1.2 The SF and its linear properties

One of the issues that it is of primary importance is the fact that SF makes use only of the first two statistical
moments of the data set (i.e. mean value and variance) (sect.1.1) ignoring all the higher statistical moments
that possibly exist. The latter can be very insightful concerning the nature of the process responsible for
the observed variability. Consider the following linear and nonlinear dynamical systems respectively

dx(t)

dt
= 0.9x(t) + n(t) (5.3)

and

dy(t)

dt
= 8 − 0.54y(t)1/3 − (1.5 − n(t))

√

y(t) (5.4)

where n(t) is a standard zero mean white noise component coming from a Gaussian distribution having a
standard deviation of 7 for the linear system and 1.75 for the nonlinear system. For the nonlinear case the

76



5.1. The Fake “Characteristic” Time Scale of One Day

1 5 10 50 100 5001000
q Hseparation timeL

0.01

0.1

1

N
SF
Hq
L

Τ=100

Τ=10

5 10 50 100 5001000
f HfrequencyL

10

-510

-7

0.001

0.1

10

PD
S
Hf
L

Τ=100

Τ=10

Figure 5.8: [Left panel] Reproduction of the results of Tanihata et al. (2001) for the case of symmetric
flares with τ = 10 and τ = 100. Instead of the SFs the NSFs (eq.3.31) are plotted in order to avoid the
proposed arbitrary scaling. The breaks occur respectively at q = 10 and q = 100.
[Right panel] The PSD in the case of τ = 10 shows a clear periodic pattern with a frequency f = 200. For
the case of τ = 100 a solid line is plotted among the various estimates in order to guide the eye. A periodic
pattern with frequency 20 can be discerned (5 peaks every 100 frequency units).

values of y(t) are rescaled, by adding the constant value of 80, to have the same mean value and variance
with those of the linear light curve being 100 and 300 respectively. Moreover measurement errors are added
to both data sets by simply assuming Poissonian noise (i.e. for the linear ∝ x(t)−1/2 and for the nonlinear
∝ y(t)−1/2). The first 1000 realizations of the two processes, after integrating their evolution equations
(eq.5.3, eq.5.4), are shown in fig.5.9 together with their histograms.

To allow a meaningful comparison of the SFs coming from the two systems the NSFs (eq.3.31) are
estimated and plotted together (fig.5.10, left panel). The errors of the NSF points were computed based
on the methodology presented in sect.3.1.3 and reflect how the measurement errors affect the various NSF
estimates. Phenomenologically both the NSFs increase following the same course and their breaks occur
at the same time, t = 46.7 time units. If these two data sets were light curves that had been observed from
two different BL Lac objects, based on the SF method one would conclude that they exhibit exactly the
same time properties and a “characteristic” time scale of ∼ 47 time units. These statements are in a way
misleading since they tend to equate the parameters which are tuning the variability behavior of the two
systems. Moreover the breaks of the NSFs do not give any real information about the systems since their
evolution equations do not favor any time scale of the order of ∼ 47 time units. In order now to test up
to which significance level the two NSFs can originate from the same parent distribution, up to the break
point (null hypothesis H0), the Kolmogorov-Smirnov test is applied (Press et al. 1992). This yields for the
first 100 NSFs estimates a maximum value of absolute difference between the two cumulative distribution
functions D = 0.163 (fig.5.10, right panel). Therefore H0 is accepted at a significance level of 1%4 since
the critical value is Dc,0.01 = 1.63N

−1/2
e = 0.230 where Ne is the effective number of points5.

The main outcome from this example is that in case that two time series data sets share the same
statistical properties, up to the second order terms, but they originate from completely different physical
systems i.e. different variability processes, the SF method can not discern any difference concerning the
properties of the two processes. Erroneously the two realizations appear as they come from the same
underlying process and also that possible deviations between them can be understood in the framework of
statistical fluctuations.

4The significance level 1% represents the probability of rejecting H0 while it is correct.
5For two data sets consisting of N1 and N2 points respectively, Ne = N1N2/(N1 + N2).
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Figure 5.9: [Top panels] Time series generated by the linear (left) and the nonlinear (right) models given
by eq.5.3, eq.5.4 respectively. Each one consists of 1000 points separated by 1 time unit.
[Bottom panels] The distributions of the measurements for the two systems (left, linear and right, nonlin-
ear). The first two statistical moments (i.e. mean value and variance) are by construction tuned to 100
and 300 respectively.
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Figure 5.10: [Left panel] The NSF for the two systems as it is computed for the measurements shown in the
top panel of fig.5.9. The black points represent the linear system and the red points the nonlinear system.
[Right panel] The CDFs of the first 100 NSF estimates for the two systems, linear (black points) and
nonlinear (red points). The maximum value of absolute difference between the two CDFs is indicated by
the blue line D = 0.163.

5.2 First Order Time Series Analysis Modeling

The previous sections show clearly that there is nothing characteristic in the light curve of Mrk 501 which
can be directly connected with any physical property of the source. The question now is, what information
can be extracted from the ASCA data set using only the first two statistical moments of it? The answer
to this question comes after applying some of the standard linear time series analysis methods (i.e. well
established methods based on exact mathematical theorems) adjusted to the needs of astronomical data
sets. The latter, for the case of Mrk 501, focuses only to the matter of the measurements errors (sect.3.1.3)
since the data points are equidistant in time.

In any type of statistical analysis the art of model fitting requires the existence of a “bank” of standard
types of models from which the analyst selects the particular one best fitting to the data. Exactly the
same strategy applies equally well (or should be applied) to time series analysis. Before considering the
problem of model selection it is firstly optimum to formulate a general class of models which appear to
offer plausible descriptions for a broad range of different types of series. One of the first ideas was that a
time series xt may be regarded as being made up of three types of variations classical decomposition model

(Chatfield 2003)

• A trend mt describing the long-term behavior of the series.

• A seasonal component st(T ) describing the cyclical variations of the system having a known period
T .

• A noise component nt purely random in nature that is stationary (sect.3.1).

xt = mt + st(T ) + nt (5.5)

The light curve of Mrk 501 (fig.5.4) suggests that the time series data set might be nonstationary (sect.3.1)
since an increasing trend can be readily distinguished. In fig.5.11 the successive estimates of the mean
normalized count rate, MNCR, indicate that as time goes on MNCR is increasing. Therefore the data set is
characterized as nonstationary since it does not have a well defined mean value.

A seasonal component is not present in the ASCA data set of Mrk 501 as it can be seen from the peri-
odogram estimation (fig.5.3, blue points), meaning that there is no dominant harmonic component present
in the data set. In order to obtain a more quantitative estimate of the latter statement the periodograms
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Figure 5.11: The filled circles represent the successive estimates of the mean normalized count rate MNCR by
including each time the next data point following the last entry, of the ASCA light curve of Mrk 501 (fig.5.4).
These estimates do not converge to unity because the normalization of the light curve, being its mean
value (6 counts sec−1) estimated by Tanihata et al. (2001), is not taking into account the measurements
errors. By ignoring the measurements errors the values of MNCR converge finally to unity (open circles).
Concerning the morphology of both curves, the values of MNCR are characterized by an increasing trend
with respect to time depicting the nonstationary behavior of the data set.

of the 2000 artificial light curves, produced in sect.5.1, are shown together with the periodogram estimates
of the original ASCA light curve (fig.5.3) in fig.5.12 (the former with black points and the latter with blue
points). Based on the distribution of the 2000 periodograms, for every frequency bin, fj, a significance level
(red-dotted lines) around its mean (red-solid line) can be established depicting the probability of having a
given amplitude value, as a result of a nonharmonic process. By construction the simulated light curves
do not have any harmonic components in their structure therefore the distribution of their periodogram
amplitudes, at a given fj , yields the probability of getting a given amplitude as a result of a purely random
noise process. The red lines concerning the mean and the significances are the result of the interpolation
of the corresponding points (mean, +1σ,+2σ, -1σ, -3σ, -5σ) as they come directly from the distribution
of the periodogram amplitudes at the various fj . No information can be extracted for the values of the
interpolated quantities between two adjacent frequency bins. Since the highest periodogram amplitude of
Mrk 501’s light curve is only two standards deviations (+2σ, where “+” denotes that is situated on the
right side of the mean value) away from the expected (mean) value, one concludes that there is no harmonic
component embedded in the data set.

After resolving a trend in the data set and rejecting the existence of a harmonic component, how one
can specify the noise component? As a first try one can simply fit to the data set xt (fig.5.1) a straight
line and check the behavior of the residuals. Based on the usual linear regression method a linear fit of the
form y(t) = αt + β yields α = 0.00058 ± 0.00004 and β = 0.754 ± 0.018. The residuals, xt − y(t) of the
fit together with their ACF, R1,1(τ), (for the first 100 estimates, till τ = 409.6 ksec) are shown in the left
panel of fig.5.13. The errors of the residuals come from error propagation (i.e.

√

(δxt)2 + (δy(t))2) and the
errors of the ACF are estimated based on the procedure described in sect.3.1.3 by varying normally the
residual values 1000 times.

As it is proven in Priestley (1981) for a white noise process the distribution of the R1,1(τ) for τ > 0
can be very well approximated by a Gaussian distribution having a mean value 0 and standard deviation
1/

√
N where N is the number of points in the data set. Hence around 95% of the sample autocorrelations

should fall between the bounds ±1.96/
√

N (dashed lines in the ACF plot of fig.5.13) since 1.96 is the 0.95
quantile of the Gaussian distribution. The ACF of the linear fit residuals has 53 value out of the range of
±1.96/

√
N = ±0.142 therefore the residuals can not be characterized as white noise. Therefore a simple

linear model seems to be inappropriate to describe the data set.
Nevertheless the ACF of the residuals can be used as a very insightful tool in order to choose the appro-
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Figure 5.12: The logarithm of the PSD as a function of the logarithm of the frequency for the 2000 artificial
light curves (sect.5.1) is plotted with black points. Blue points represent the PSD of Mrk 501 as it is shown
in fig.5.4. Based on the distribution of the 2000 periodograms in every frequency bin, fj , a significance
level (red-dotted lines) around its mean (solid red line) is established. The line between two adjacent bins
is the result of linear interpolation and is used only to guide the eye along to the various frequencies.

priate model for the data set in the following sense. The first autocorrelations seem to decay geometrically6

since the ratio r = R1,1(τ +1)/R1,1(τ) for the first time lags, τ = 1, . . . , 4 can be well fitted, through linear
regression, by a constant line r = 0.932 ± 0.051 (fig.5.14, left panel) suggesting that an AR(1) model of
r ≈ 0.93 might be appropriate.

To check the appropriateness of such a model the paired values from the original light curve (fig.5.1) are
formed: (x1, x2), (x2, x3), . . . , (x190, x191) and plotted together (fig.5.14, right panel). This plot suggests
that a linear relationship between the values of the data set does indeed exist. A linear model fit of the
form xi+1 = rxi, by taking into account the errors in both directions7 (Fasano & Vio 1988), yields an
r = 0.971 ± 0.020 suggesting an AR(1) model of the form

xi+1 = 0.971xi + ni (5.6)

is appropriate for the data set. Note that the value of r derived from this fit is consistent with the empirical
one derived by the ratio of the ACF (r = 0.932 ± 0.051).

The nature of the noise component, ni, is specified through the residuals of this fit ni = xi+1 − 0.971xi

(fig.5.15, left panel). In order ni to be consistent with white noise its ACF should have 95% of its estimates
inside the range ±0.142. In order to estimate the ACF of ni together with its uncertainties firstly the errors
of ni are estimated based on error propagation from all the involved parameters (xi, xi+1, r) and then the
ACF uncertainties are estimated based on 1000 simulations (sect.3.1.3). The first 100 ACF (fig.5.15, right
panel) estimates of ni give 6 measurements outside this range depicting the fact that the noise component
is consistent with a white noise process having a variance 0.0025 ± 0.0011. Therefore the fitted AR(1)
model (eq.5.6) is the appropriate model for the ASCA light curve of Mrk 501.

6When the ratio of all the consecutive terms of a time series data set equals to a constant: yt+1/yt = r then the terms yt

are of the form yt = y0rt and the data train comprises the simplest case of geometric time series.
7The uncertainties on both axes should be considered since both of them contribute with the same weighting factors in

the fit.
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Figure 5.13: [Left panel] The residuals xt − y(t) after subtracting the linear fit y(t) = αt + β (α =
0.00058± 0.00004, β = 0.754± 0.018) from the observed ASCA data set xt shown in fig.5.1.
[Right panel] The ACF of the residuals together with the boundaries (dashed lines) denoting the area
±0.142, where 95% of the estimates should have been falling if the residuals were white noise.
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Figure 5.14: [Left panel] The ratio r for the first five ACF estimates τ = 1, . . . , 4 can be fitted by a constant
line r = 0.932± 0.051.
[Right panel] The linear relationship between the values xi and xi+1 for i = 1, . . . , 190 is fitted with the
linear model xi+1 = rxi with r = 0.971 ± 0.020. The fit takes into account the errors on both axes
(Fasano & Vio 1988).
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Figure 5.15: [Left panel] The residuals ni estimated by ni = xi+1 − 0.971xi.
[Right panel] The ACF of ni. The dashed lines indicate the bounds ±0.142, where 95% of the estimates
should have been falling in the case of a white noise. Six out of the one hundred estimates fall outside this
range fact that verifies that ni consists is a purely noise component.
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Chapter 6

TIME SERIES VARIABILITY STUDIES OF

MRK 421

In the following sections the X-ray time properties of Mrk 421 are examined thoroughly through a direct
application of the time series analysis methods, presented in chap.3, to the two data sets presented
in chap.4. The first data set consists of the PCA observations, having a temporal resolution of a few

minutes, and the second one consists of the 15-day time-averaged ASM observations, both of them covering
a time period of 9 years. The former is used in order to check whether or not the short-term variability
behavior of the source is characterized from any time property which is preserved throughout the years.
The latter data set is used in order to unveil the dimensionality of the source on a long-term basis and
determine the number of parameters being responsible for the observed variations.

6.1 Power-Law Spectra and Stationarity

As mentioned in sect.3.1 the AGN light curves exhibit PSD functions (sect.3.3.1) which can be well repre-
sented by power-laws P(f) ∝ f−a with 1 < a < 3. Initially, the lack of any characteristic time feature in
the shape of their PSDs indicates that none of the processes happening inside the source, as they are seen
through the jet (sect.1.2.2), have any periodic time properties. Moreover this also demonstrates that none
of the existing time scales, coming from different source components, prevails over the others.

The existence of a significant peak in the PSD at a given frequency fc is a direct indication for the exis-
tence of a harmonical time behavior embedded in the source with a period of f−1

c . These kind of peaks have
been observed by Mittaz & Branduardi-Raymont (1989), in the X-ray band using EXOSAT (sect.2.2.3),
for the case of the Seyfert galaxy NGC 6814, having a period of 12 ksec. As shown by Done et al. (1992)
this periodic component is responsible for 75% of the total source variability. Additionally “breaks” in the
PSD show that the observed variability can be explained in the sense of two dominant components and as
such the “break” frequency can be used to estimate some physical parameters of the source. This kind of
“broken” PSD has been seen by Papadakis et al. (2002) in the case of the narrow-line type I Seyfert galaxy
(sect.1.2.1) Ark 564, using ASCA X-ray observations. The break occurs at ∼ 2 × 10−3 Hz and from this
estimate one can derive the black hole mass and the accretion rate in the source.

In contrast, for the case of BL Lac objects there are no particular “fixed” patterns in their PSD which
can be used as handles to disentangle the properties of the various emission regions. Since these objects
point their powerful jets towards the observer their light curves comprise the summation of the emission
coming from the various regions inside these jets. Examination of specific details in their light curves is
not insightful at all since each light curve is only one realization of the underlying process1, stochastic

1The term underlying process refers to the ensemble of the emission activity occurring within the jet. It comprise the
result of all the radiation processes as they are mapped through the jet in the observed light curve and it characterizes the
variability behavior of the source.
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or chaotic (i.e. high- or low-dimensionality, see sect.3.1 and sect.3.2), drawn from the ensemble of light
curves that can be generated from the source. That means that two light curves from the same source
might have completely different statistical characteristics, as they are described by the first two statistical
moments, even if the physical parameters describing the variable emission process remain the same. Every
new realization looks different from the previous ones i.e. different mean values and variances, and these
changes can simply reflect the statistical fluctuations which are inherent in the nature of the variability
process as opposed to genuine changes in the nature of the process itself (Vaughan et al. 2003).

The characterization of individual flaring events is in a sense meaningless since phenomenological argu-
ments do not help to gain any information concerning the physical source parameters. In order to give an
example, some phrases from Cui (2004) for the case of Mrk 421 are presented in the following itemization
form

• The light curve phenomenology is complex.

• There is hardly any time period that resembles a “quiescent state”.

• Smaller flares are nearly always present.

• The source is by no means quiet.

• Two larger flares are recognizable.

• Superimposed on them are many “spikes”.

• Coexistence of flares on different time scales.

• Coexistence of flares on a wide range of scales.

• The flares seem to occur at all time scales.

• The seemingly scale-invariant nature of flaring activities.

All the aforementioned statements do not give any interesting information concerning any physical or any
time property of Mrk 421. Through this kind of unnecessary phenomenological description the analy-
sis does not conclude to any final statement concerning the most important questions dealing with the
variability properties of the source: ARE ALL THE TIME PROPERTIES IN THE DATA SETS COM-
PLETELY RANDOM? ARE THERE ANY TIME PROPERTIES PRESERVED THROUGHOUT THE
OBSERVATIONS?

For the last 20 years individual light curve studies have been conducted extensively without any major
progress or any final well defined results, despite the fact of the large amount of available data. Different
observations, for the same source, give different source parameters being completely inconsistent among
them. For the case of BL Lac objects a crucial model parameter is the Doppler factor δ (eq.1.1) character-
izing the bulk velocity of the source Γ. For the case of Mrk 421 the values for this parameter range from
δ & 10 (Gaidos et al. 1996) up to 20–30 (Maraschi et al. 1999) and even larger δ > 50 (Krawczynski et al.
2001). Remarkably direct Very Long Baseline Array (VLBA) observations of the parsec-scale radio jet of
the source reveals apparent blob speeds of only (0.10 ± 0.02)c (Piner & Edwards 2005). The main reason
firstly for this parameter divergence and secondly for this discrepancy between models and observations
might be that all the models use some parameters derived directly from the light curve. Such a parameter
is the time scale of fastest flares which is considered to be an upper limit for the linear dimensions of the
source. Of course this parameter can change from one data set to another not just due to physical reasons
i.e. different source size, but also due to statistical fluctuations.

Physical processes with red noise PSD have intrinsically the ability to change their statistical moments
even if the physical properties of the underlying process itself remain unchanged throughout the observing
period. Therefore since the statistical moments change with time, based on the definition of stationarity in
sect.3.1, these processes appear always nonstationary even though they might have genuinely a well defined
mean value and variance (Vaughan et al. 2003). The top panel of fig.6.1 shows an artificial light curve, 3000
points long, produced from a well defined PSD with a spectral index a = 2 (sect.3.3.6). Since the PSD does
not vary with time the variability power as a function of temporal frequency remains the same and thus
the system is considered to be emerged from a genuine stationary process. Therefore it would have been
reasonable to expect the resulting time series, consisting a realization of this process, appear stationary
but this is not the case. The artificial light curve is partitioned into 150 segments each one consisting of
20 consecutive points, yielding 150 estimates for the variance, S2, of the process (fig.6.1, middle panel).
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Figure 6.1: [Top panel] Artificial light curves
3000 points long created by a PSD with a spec-
tral index a = 2.
[Middle panel] Estimates of the variance S2 mea-
sured from segments (150) of 20 consecutive
points. The estimates are not consistent with
the constant line fit y = 3.478 ± 0.265 since
χ2=1571.32 for 149 DOF corresponding to a
NHP of 0.
[Bottom panel] Average variance

〈
S2
〉

measured
by binning the individual variances into groups
of 20 consecutive estimates. The dotted line rep-
resents the constant line fit y = 3.277 ± 0.133
having a χ2=0.093 for 6 DOF and NHP=1 (af-
ter Vaughan et al. 2003).

It is clear that S2 is not consistent with being constant since a constant line fit yields y = 3.478 ± 0.265
having a χ2=1571.32 for 149 DOF (NHP=0). Therefore the variance changes with time fact that has
nothing to do with measurement errors whatsoever, since the simulation has zero errors. It is evident that
significant variations in the variance of a light curve (i.e. significant variability) are not sufficient to claim
that the variability process is nonstationary i.e. the physical properties of the source have changed. The
simulated process has a constant PSD, representing a system where the physical parameters responsible
for the variability do not change with time, but through its realization the latter appear to be different.

On the other hand it is also possible that the underlying process responsible for the observed variability
does indeed change with time (e.g. the PSD changes) in which case the variability process can be charac-
terized as genuine nonstationary. In this case the physical parameters responsible for the variable process
in the source change significantly with time and thus each variance level corresponds to a different set of
parameters.

As the purpose of time series analysis is to gain insight into the process through statistical approach, not
through the features of specific realizations, a more robust approach is needed to determine whether the data
are produced by a genuine stationary or nonstationary process. It is more insightful to consider whether the
expectation values of the variance

〈
S2
〉

are time-variable (Bendat & Piersol 1986; Vaughan et al. 2003).
The bottom panel of fig.6.1 shows the

〈
S2
〉

estimates together with their standard deviation as they
are derived after binning the individual variance estimates S2 (fig.6.1, middle panel) into groups of 20
consecutive estimates. The estimates are consistent with a constant fit line y = 3.277±0.133 with χ2=0.093
for 6 DOF having NHP=1, fact that reveals the true nature of the process being stationary. The deviations
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Figure 6.2: The distribution of S2 (left panel) and

〈
S2
〉

(right panel) as it is estimated from the 300000
point long artificial light curve. In total there are 15000 estimates of S2, each one calculated from 20
consecutive points, and 750 estimates of

〈
S2
〉
, each one calculated from 20 consecutive S2 estimates.

in the estimates of
〈
S2
〉

are governed by the normal Gaussian statistics in contrast to those of S2. This
can be seen in fig.6.2 where the distributions of S2 and

〈
S2
〉

is shown as they result from an extended
version of the same simulation 300000 points long.

6.2 Mrk 421 and Stationarity

6.2.1 General methods for estimating the mean variance

The point that should be elucidated is whether or not the observed erratic variability of Mrk 421 is the
fluctuational outcome of the same radiation mechanism, preserving the same physical properties throughout
the entire observing time period, or the result of true changes in the physical variability parameters of the
source. As discussed in sect.6.1 it is more insightful to consider the expectation values of the statistical
moments of a specific realization and check whether or not they vary with time. Significant variations of
these quantities which are not expected up to a certain confidence level by Gaussian fluctuations, unveil
that the observed variability is the outcome of a true nonstationary emission process caused by different
physical properties of the emission region. The basic concept behind this idea is that different emission
states of the same variability process or different variability emission regions within the jet of the BL Lac,
should have different statistical properties reflecting exactly the fact of this alteration.

As discussed by Vaughan et al. (2003), if the process responsible for the flux variability in a source is
stationary then its PSD should be constant in time. Therefore, light curves taken at different time periods
should have the same PSD, estimated through their binned logarithmic periodogram (sect.3.3.2), at a given
confidence level. That means that the expectation value of variance will be the same from epoch to epoch
(eq.3.17) but individual variance estimates will fluctuate following eq.3.20. In Papadakis & Lawrence
(1995) another method suitable for testing whether large AGN data sets display evidence for genuine
nonstationarity is suggested, again by comparing PSD derived from light curves obtained at different time
periods. In particular they form the test statistic S based on the ratio of two normalized periodograms
and if this deviates significantly from its expected value for stationary data (〈S〉 = 0) then the hypothesis
that the data set is stationary can be rejected at some confidence level.

Both methods aim to check whether the mean variance of the process (eq.3.17) differs significantly
from observation to observation by comparing the PSDs of the corresponding observations. This indirect
methodology of checking whether or not the mean variance of the process changes as a function of time
over a given period can be quiet complicated and sometimes uncertain especially when the data sets are
irregularly sampled. There is no straightforward way to estimate the PSD of a “gappy” data set without
making a number of additional simulations (Uttley et al. 2002) in order to check the spectral behavior of
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the data set in time scales equal to the gap duration (e.g. the arbitrary leakage in adjacent frequencies).
Also one should also include the measurements uncertainties in order to check how they affect the PSD
estimates in the various frequencies again through simulations (sect.3.1.3).

Ideally all the aforementioned procedures, involving comparison of the various PSD, at the end should be
consistent with the

〈
S2
〉

estimates. Of course a most robust and direct way to specify the mean variance
〈
S2
〉

of a light curve is directly from the data set itself without making any simulations at all. Given
sufficient number of data one can simply test whether the expectation values of the variance, estimated
directly from an ensemble of light curves, at the various observed epochs are consistent with a stationary
process as it is done in the simulation in sect.6.1 (fig.6.1). The basic quantity that one has to specify is
the standard deviation of the mean variance

〈
S2
〉

(i.e. the error bars of fig.6.1) consisting an estimate of
the expected scatter. Ideally this uncertainty can be obtained directly from the data set, by measuring the
standard deviation of multiple mean variances. In the case of not sufficiently large data sets a shape for
the PSD is assumed and after producing a number of simulated light curves (sect.3.3.6) the distribution
of the variances, S2, expected for a stationary process can be formed. This allows to estimate the limits
within which S2 is expected to be distributed under the assumption of a stationary underlying process
(Vaughan et al. 2003).

6.2.2 Stationarity analysis of the PCA data set

In order to check about genuine intrinsic changes in the variability behavior of Mrk 421 (i.e. nonstationar-
ity), the PCA data set (see sect.4.1 and fig.4.2) is chosen since it consists the biggest collection of data ever
taken for a BL Lac from PCA (1.5 Msec). As such it can be used in order to estimate directly the mean
variance

〈
S2
〉

for every observing period together with an error coming from the various variance estimates
S2. There is no need to compare the PSD from the various observing periods since their estimation might
be quite tricky and ambiguous due to the numerous gaps. Additionally for a given observation there is no
need to make any simulations in order to estimate the expected scatter of the variance S2 coming from
a stationary process with the same PSD as a given observation. Both the expected value of the variance
〈
S2
〉

and its error can be directly and unambiguously specified by the data set itself.
The artificial light curve used in sect.6.1 is an idealized version of a real data set in the sense that it

does not have flux uncertainties. The data set of Mrk 421, as every real light curve, contains measurements
uncertainties adding more variance to the data set. In order to estimate the genuine intrinsic variance
of the source the excess variance is employed (Nandra et al. 1997) consisting the outcome of the variance
after subtraction of the measurements errors.

Assume a light curve comprising a time series of fluxes xi with errors σerr,i measured at discrete times
ti, with (i = 1, 2, ..., N). Then

σ2 = S2 − σ2
err (6.1)

where S2 is the flux variance of the light curve given by eq.3.19. and σ2
err is the mean square error

σ2
err =

1

N

N∑

i=1

σ2
err,i (6.2)

The normalized excess variance σ2
N is given by

σ2
N = σ2/x2 (6.3)

The 14 archived observations (tab.4.1 and fig.6.3) are separated into 8 periods each one covering roughly
120 days on a yearly basis. Then for each period the count rate is binned in 64-sec bins and the latter are
collected in groups lying within one satellite orbit (∼ 5440 sec, tab.2.1). Therefore for each period there
are 5440-sec time spans consisting of successive 64-sec binned observations. In order to estimate σ2

N for
each orbit and then its mean value with the corresponding error within each observing period it should be
first ensured that there is a large number of points able to yield a statistical robust estimate of both the
excess variance (within an orbit) and its mean value (within a period). Therefore, two selection criteria are
applied to the data set choosing only those periods consisting of more than 20 orbits each one consisting of
more than 20 consecutive 64-sec bins. Note here that since data gaps within an orbit reduce the statistical
significance on the estimated value of σ2

N , orbits with data gaps shorter than 1280 sec (20×64) are rejected.
The final sample consists of 5 periods as the only ones fulfilling the aforementioned selection criteria.

After selecting these optimum periods for each orbit within them the σ2
N is calculated from a sample of

20 successive 64-sec data bins. For those orbits consisting of more than twenty 64-sec observations a sliding
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Figure 6.3: [Top panel] The light curve of Mrk 421 as shown in fig.4.2. In combination with the bottom
panel it shows which periods are finally included in the estimation of σ2

N .
[Bottom panel] The σ2

N for the five campaigns. A constant line fit for the four campaigns (occurring at
MJD 50554, MJD 50928, MJD 52690 and MJD 53081) yields y = (2.72 ± 0.28)10−4 with reduced χ2 of
0.815 for 3 DOF.

window of 20 successive observations is used in order to estimate a mean value of σ2
N within each orbit.

Finally for each observing period one can readily compute an overall mean of value of normalized excess
variance, σ2

N together with an error (fig.6.3) based on the estimated orbital mean values of σ2
N making use

of the usual weighted mean/standard deviation formulas (e.g. Bevington & Robinson 1992).
From fig.6.3 it can be seen that four out of the five campaigns, occurring at MJD 50554, MJD 50928,

MJD 52690 and MJD 53081, appear to have the same statistical properties concerning the mean value of
σ2

N . Differences of the mean values can be well attributed to random fluctuations expected from Gaussian
statistics. A constant line fit to these measurements yields a value of (2.72 ± 0.28) × 10−4 which actually
represents a measure of the mean value and the standard deviation of the parent distribution where these
fluctuations originate. The σ2

N for the third campaign, MJD 51991, differs significantly from the other four
in the sense that its deviation above the mean value (∼ 6.8 standard deviations) can not be interpreted
in the frame of random fluctuations. During this campaign the variability properties of the source change
dramatically indicating that the physical properties of the underlying process are different from the ones
of the other four campaigns. In this sense one can readily distinguish two intrinsic variability states of the
source yielding a nonstationary behavior.

This is the first time that something like this is deduced directly from observations for a BL Lac object
and especially for the case of Mrk 421 can be used in order to distinguish at least two variability states of
the source. This of course does not exclude the existence of other states which can be simply not manifested
in the given time period. These states are characterized from statistically significantly different variability
properties therefore it is reasonable to consider that the variable emission comes either from two different
emitting regions within the jet or from the same emitting region in which its physical parameters responsible
of the emission vary between two stages. Based on the first scenario since Mrk 421 is a BL Lac object its
jet points towards us forming a small angle with the line of sight, 1◦ (Piner et al. 1999; Piner & Edwards
2005) and hence numerous jet components (at least two) with different physical properties being situated
at different regions contribute to the observed X-ray light. Based on the second scenario the emission
region is the same but its physical properties (e.g. geometrical dimensions, magnetic field) change between
at least two levels.
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Figure 6.4: The histogram of the increments ∆xt, having a bin size of 2. In order to specify the slope of
the wings of the distribution a linear regression model is fitted (solid line) having a slope of −0.196±0.013.
The dashed line represents the same fit, having a slope of −0.335± 0.009, in the case that the increments,
∆xt, having a mean value of −0.095 and standard deviation of 6.920, were distributed Gaussian.

6.2.3 Intermittent behavior

The existence of a nonstationarity variable behavior is the first direct indication (i.e. through observations)
that Mrk 421 has the ability to undergo transitions between at least two energetic levels characterized by
different variability properties. This intermittent dynamical behavior (see sect.3.2.1) allows the source to
change significantly and suddenly its long-term statistical properties due to genuine alteration of the source
physical parameters. The significance of this change can be established based on the value of the normalized
excess variance during this period, derived in the previous section, being 6.8 standard deviations above its
usual long-term values.

Concerning now the time duration of the transition the only secure statement that can be made should
come from the ASM light curve (fig.4.4) since the time coverage of these observations is much more
representative for the overall source behavior. In fact fig.4.4 shows that the period where the value of
the normalized excess variance deviates, MJD 51991, coincides with an epoch of high source activity.
This high source state lasts around a year posing an upper limit of equal duration for the transition time.
Additionally, from the ASM light curve one would expect that at least during two more periods MJD 52690
and MJD 53081, where the PCA normalized excess variance estimates are low, could have been parts of
intermittent events. Unfortunately for these periods the PCA observations sample only the left wings of
the flaring events making it impossible to distinguish whether these states belong to a truly intermittent
event or simply to the usual quiescent source state.

In case that these events are part of an intermittent behavior then an indirect evidence can be arisen
from the histogram of the increments ∆xt = xt+τ − xt (fig.6.4), where xt represent the data points of
the observed long look PCA light curve and τ = 5440 (Paladin & Vulpiani 1987; Vio et al. 1992). The
histogram shows that big differences in two adjacent values of the data set can occur more often than
expected from Gaussian statistical fluctuations. The tail of the distribution can be well fitted by an
exponential power-law ∝ exp (−0.196∆xt) with a much flatter index from the one expected from the
corresponding Gaussian distribution ∝ exp (−0.335∆xt). The parameters of the Gaussian distribution are
the mean value and the standard deviation of the increments, −0.095 and 6.920 respectively. The existence
of broad exponential tails implies a probability of large increments which is much larger than the one
expected from Gaussian distribution. That means that in the PCA light curve there are indications of such
events, occurring more often than expected, which they might belong to bigger intermittent flares.
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6.3 The Short-Term Variability Behavior of Mrk 421

6.3.1 Nonlinearity and burst activity

Based on the analysis of the previous sections (sect.6.2.2, sect.6.2.3) it is evident that Mrk 421 exhibits
nonstationary variable behavior representing genuine differences in its emission properties. Following that,
the next step needed in order to probe more into the time properties of the underlying variability process
is to check whether or not the physical mechanism responsible for the emission can be considered as either
linear or nonlinear in its dynamical representation (sect.3.2).

As it is discussed in sect.3.2 dynamical systems described by nonlinear equations are quiet difficult or
even impossible to predict their behavior since they appear through their realization as random. Therefore
on certain occasions they can be confused with simple linear stochastic systems which are by construction
purely random processes. An early and important finding of quasar variability is the recognition of its
unpredictable variability nature which was thought initially to be purely stochastic (for the case of 3C 273
by Manwell & Simon 1968). A shot-noise process (sect.5.1.1) was considered to be the appropriate model
for explaining the temporal behavior of the source. Based on this random event model, shots occur following
a Poisson distribution having a fixed average number of events per unit time, connected with the variance
of the light curve, and a fixed time duration (see also Terrell & Olsen 1970). Unfortunately shot-noise
processes have PSD which do not change (within the statistical fluctuations) with time and thus the mean
variance

〈
S2
〉

remains the same with time (sect.6.2.1).
In this setting, sudden bursts of very large amplitude embedded in the light curves of AGN can not

be interpreted by linear stochastic processes, in which shot-noise processes belong to, comprising the most
important limitation of these models (Vio et al. 1991). This kind of burst behavior has been seen for several
sources such as 3C 446 (Barbieri et al. 1990), OJ 287 (Valtaoja et al. 2000), 3C 345 Kidger (1989), 3C 390.3
(Leighly & O’Brien 1997), NGC 4051 (Green et al. 1999). For the last three sources it has been shown
from the same authors (except for 3C 345 shown by Vio et al. 1991) that a nonlinear physical mechanism
is responsible for their erratic flux variability proving profoundly that methods from the nonlinear theory
must necessary be employed in order to understand the number of parameters affecting the evolution of
the system (sect.3.1). This is probably the most fundamental parameter that one has to specify since
it characterizes the nature of the underlying process being stochastic, in the case that the luminosity
variations depend on numerous physical parameters, or deterministic when few parameters convolved in a
nonlinear way designate the course of the system.

6.3.2 Nonlinearity tests

Various models and tests have been developed to trace possible nonlinearities embedded in a data set. In
general there are three big categories of tests that one can choose, depending on the case:

• frequency domain test: This test was developed by Subba Rao & Gabr (1980) and it was improved
by Hinich (1982). The only restriction that the data set should fulfill is that it should consist from
equidistant measurements.

• time domain tests: They are divided into two categories portmanteau tests and the Lagrange multiplier

tests. The former consists of two subcategories. Firstly the χ2 tests applied mainly by Maravall (1983);
Luukkonen et al. (1988); Li & McLeod (1986); Davies & Petruccelli (1986); Lawrance & Lewis (1985).
It seems that these tests are more appropriate to test the adequacy of a given model (linear or non-
linear) based on the study of residuals than to detect a nonlinear behavior embedded in the data set.
Secondly the additivity tests which are based on Tukey’s one DOF test for non-additivity (Keenan
1985; Tsay 1986). These tests detect second order nonlinearities but they are not appropriate for
data sets with errors.
The Lagrange multiplier tests consist of the likelihood ratio test, the Wald test and the score test

(Saikkonen & Lukens 1988; Buse 1982; Guegan & Pham 1992; Guegan & Wandji 1996). These tests
allow to find certain nonlinearities such as self-exciting threshold autoregression (SETAR) (Ghaddar & Tong
1981; Clements et al. 2003) and exponential autoregression (EAR or ExpAr) (see Lawrance & Lewis
1980).

• non-parametric tests: These test are constructed using kernel methods and are able to detect nonlin-
earities and measure their strength but they can not describe their detailed structure (Hjellvik & Tjostheim
1995).
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Figure 6.5: The two longest and most densely sampled data sets DS1 (left panel) and DS2 (right panel)
for Mrk 421 coming from the PCA data set (tab.4.1). The former consists part of the proposal 60145 and
the latter is the complete data set of the proposal 80172 (see fig.4.1).

• statistical tests: These are the most robust tests for identifying nonlinearities in a time series data set.
Firstly one specifies some linear process comprising the null hypothesis and then generates surrogate
data sets which are consistent with that. Finally a discriminating statistic is computed for the original
time series and for each one of the surrogate data sets. If the values between the original data set and
the ensemble of surrogates differ significantly then the null hypothesis is rejected and nonlinearity
is detected. This method was first developed by Theiler et al. (1992) and from then on it has been
updated in several aspects making it more sensitive for data sets that there is an a priori knowledge
of the behavior of the system that they come from (e.g. pseudoperiodic behavior Small et al. 2001)
or for unevenly sampled time series2 (Schmitz & Schreiber 1999). This is the method that is going
to be used in order to trace possible nonlinearities in the long and the short-term variability behavior
of Mrk 421. More details about the method are presented in sect.6.3.3.

6.3.3 Linear or nonlinear source behavior? The method of surrogates

In order to check for a possible non linear dynamical behavior embedded in Mrk 421 for small time scales
such as days the method of surrogates Theiler et al. (1992) is applied to two of the most densely sampled
PCA data sets DS1 and DS2, consisting of 107 and 125 points respectively (fig.6.5). In total there are 5
and 15 missing points respectively in DS1 and DS2 filled with linear interpolated values between adjacent
observations. Since these data sets form almost two uninterrupted sequence of measurements this makes
them the most appropriate samples for short-term variability studies. Moreover they are obtained during
two different time periods where the variability activity of the source differs significantly. DS1 maps part
of the intermittent event occurred around MJD 51991 having a mean count rate of around 65 counts
sec−1PCU2−1 and DS2 maps the source behavior during a relatively quiescent period around MJD 52690
having a mean count rate of around 15 counts sec−1PCU2−1.

The method of surrogates consists mainly of two parts. Initially a linear process is specified having the
same first two statistical moments (mean, variance) identical with the observed time series and therefore
the same PSD. This linear process consists the null hypothesis H0, preserving all the linear properties of
the original data set and based on that all the surrogated data sets are produced. Then a discriminating
statistic is calculated for both the original data set and the surrogate time series and for the latter a
mean value with an error is derived. Finally H0 is accepted or rejected based on the significance of the
difference of the given statistic between the real and the artificial light curves, yielding a detection or not
of nonlinearity.

2The time series should consist of more than 1000 points.

93



6.3. The Short-Term Variability Behavior of Mrk 421

The surrogate data sets were produced by randomizing both the phase and the amplitude of the Fourier
transform of the original data according to sect.3.3.6. It should be stretched again the fact that this method
can produce an ensemble of non deterministic linear time series exhibiting the same power spectrum as the
real data set taking correctly into account the intrinsic scatter in the powers following a χ2 distribution
with 2 DOF, χ2

2 (eq.3.12).
The discriminating statistic should not be derived from the first and second order statistical properties

of the data sets since by definition the surrogates have been created in such a way to preserve these linear
properties being identical with those of the original data. The best choice is to choose a nonlinear statistic
which can serve two purposes at the same time, rejecting H0 and characterize the nature of nonlinearity
(low-dimensional chaotic process as opposed to stochastic process). Therefore the value of the correlation
integral Cm(rk) (eq.3.52) at a given radius rk in the m-dimensional reconstructed phase space (sect.3.4.2)
is computed which is one of the primarily quantities used in order to specify the dimension correlation
dimension D2 (sect.3.4.5) of a dynamical system.

It is important to note that in the context of the surrogate data sets Cm(rk) is not calculated in order
to derive D2 but instead to be used as a nonlinear estimator for establishing a measure of the difference
between the original and the artificial data sets for a given embedding dimensions m. The reason is that
Cm(rk) is derived for a given fixed value of hypersphere-radius, rk, (eq.3.54) and it is not the result of an
asymptotic convergence as it is dictated from eq.3.56. Therefore since the rk is fixed for all the embedding
dimensions D2 can not be derived from eq.3.58. In case that nonlinearity is detected then the things are
easier concerning the derivation of D2 since the optimum time delay has been already chosen and the only
remaining issue is the estimation of Cm(rk) at the various rk, k = 1, . . . , 20.

Application of the method to the two data sets (DS1 and DS2) requires the specification of their PSD
spectral index, a, in order to produce 2000 artificial light curves (N = 2000) for each one of them. The
PSDs are estimated after binning the logarithm of the periodogram (sect.3.3.2) taking also into account
the measurements errors (sect.3.1.3) yielding a1 = 1.82±0.26 and a2 = 2.10±0.18. In order to reconstruct
the phase space of DS1 and DS2 the optimum time delay is chosen based on the method of higher order
correlations (sect.3.4.3). The simultaneous occurrence of the extrema (coincidence time, τc) in eq.3.44,
eq.3.46 and eq.3.47 is for DS1 at τc,1=6 bins of 5440 sec and for DS2 at τc,2=10 bins of 5440 sec (fig.6.6).
Based on these values the time window τw = (m − 1)τc is defined and by applying the MOD (sect.3.4.2)
the phase space of the system is reconstructed into m successive embedding dimensions (m = 1, . . . , 20).
Finally for each m the value of Cm(rk) is estimated for a given fixed radius rk = 0.5R (eq.3.54). For the
case of DS1, R1 = 132/ and for DS2, R2 = 18/. In order to estimate the uncertainty of Cm(rk) coming
from the errors of the data points the same computations are repeated 1000 times (sect.3.1.3) having fixed
the values of τc,1, τc,2, R1 and R2.

The correlation integral is then estimated for the surrogates of each data set, following exactly the same
procedure i.e. same τc and rk, for all the embedding dimensions m = 1, . . . , 20. Then for each m a mean
value µH0

and a standard deviation σH0
of the correlation integral can be estimated from the ensemble of

the surrogates. The top panels of fig.6.7 show the estimates of Cm(rk) for DS1 and DS2 (black points)
together with the interpolated estimates of 10 randomly selected surrogates. The interpolation aims only
to guide the eye since the embedding dimension m takes only integer values.

For each one of the two data sets (DS1 and DS2) there are two values for the correlation integral, one
coming directly from the data set itself, Cm(rk), and one coming from the surrogates, µH0

. If these values
different significantly then nonlinearity is present in the corresponding data set. In order to establish a
measure of the significance Sm concerning the difference between the values of Cm(rk) and µH0

, at a given
embedding dimension m, the following quantity is defined

Sm =
|Cm(rk) − µH0

|
σH0

(6.4)

Under the assumption of Gaussianity, concerning the distribution of the correlation integral at a given m
for the N surrogates, one can compute the errors on the significance by the standard error propagation

∆Sm =
√

(1 + S2
m/2)/N (6.5)

Note here that for the case of multiple realizations of the observed process, ND, it is possible to compare
the two distributions (observed data and surrogate) directly using either the Kolmogorov-Smirnov(Press et al.
1992) or the Mann-Whitney test (Mann & Whitney 1947). From the observed process a mean value of
Cm(rk) can be computed together with an uncertainty σD, yielding an error in the significance

∆Sm =
√

(1 + S2
m/2)/N + (σ

D
/σH0

)2/ND (6.6)
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Figure 6.6: The higher order correlations R3,1(τ), R4(τ) together with the ACF R1,1(τ) for DS1 (left panel)
and DS2 (right panel). The vertical dashed lines indicate the simultaneous occurrence of the extrema for
all the correlations. For DS1 τc,1=6 and for DS2 τc,2=10.

For σD = 0 one gets eq.6.5.
The bottom panels of fig.6.7 shows ∆Sm for the two data sets DS1 and DS2. The assumption concerning

the Gaussianity of the surrogated values of the correlation integral at a given m has been checked and
confirmed by forming the histogram for each m. Therefore one can estimate the probability of observing a
significance Sm or larger (at a given m) if the null hypothesis is true based on the relation, PH0

(≥ Sm) =
erf
(
Sm/

√
2
)
, where erf indicates the error function encountered in integrating the Gaussian distribution.

There is no indication of any nonlinear behavior embedded in both the data sets since none of the estimated
deviations are significant. Thus DS1 and DS2 can be considered as the output of a linear process. This
of course does not exclude the possible existence of a nonlinear dynamical behavior manifesting itself in
much longer time scales. The only secure statement that can be made is that the given data sets for the
given time extension do not exhibit any significant sign of nonlinearity. At the same time one should note
that the number of points plays a major role in the whole analysis since the more the points the better
and more complete representation of the phase space can be achieved.

6.3.4 Is there any memory?

In this section the possible existence of a “memory trend” embedded in the data sets DS1 and DS2 (fig.6.5)
is going to be examined via the estimation of the Hurst exponent, H (sect.3.6). Once again it should be
noted that in this context the term “memory” is used in order to indicate a circular dependence of similar
statistical properties without implying any periodicity. In case that such nonperiodic patterns do indeed
exist in the data set then they correspond to a statistical tendency which can not be picked up from the
PSD due to the nonharmonical nature of the events.

Before applying the methodology presented in sect.3.6.2 it should be ensured that the data sets are
stationary (Peters 1994) in order to have a statistical meaningful values of sample mean (and variance). The
point here is that despite the fact that in a time series one can always find a mean value3, in the case that
the values of the data set continuously increasing with time then the mean value is not representative of the
behavior of the data set. For a nonstationary data set xt the backwards difference operator ∇xt = xt−xt−1

is appropriate to make it stationary (Brockwell & Davis 2002).
After filtering the two data sets with the stationary operator the estimation of the Hurst exponent is

straightforward. The two methods, presented in sect.3.6.2 which differ with respect to the normalization
of the statistical range RA for a given subset (eq.3.67), are applied to the two data sets. The first method

3In the pathological situation where the parent distribution is a Cauchy distribution then the estimation of a mean value
is completely meaningless and wrong since by definition it can not be defined.
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Figure 6.7: [Top panels] The values of Cm(rk) for DS1 and DS2 (black points) together with 10 randomly
chosen surrogates from an ensemble of 2000. The correlation integral is estimated for τc,1 = 6 bins of 5440
sec and rk = 66 (DS1) and for τc,2 = 10 bins of 5440 sec and rk = 9 (DS2). The errors for the estimates
of the correlation integral for the original data sets have been computed based on the procedure described
in sect.3.1.3 for 1000 light curve variations.
[Bottom panels] The significance (in units of σH0

) concerning the difference between the value of the
correlation integral coming from the original data set, Cm(rk), and the ensemble of the 2000 surrogates,
µH0

, as it is estimated from eq.6.4. The error bars are estimated based on eq.6.5. The right axes shows
the probability of observing a significance of Sm or larger if the null hypothesis is true.
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uses for normalization the usual standard deviation, SA (eq.3.65) and the other one the SLA (eq.3.71). In
order to take into account the measurements errors the two methods are applied to 1000 artificial light
curves whose points represent Gaussian random values distributed based on the original data sets DS1
and DS2 (see sect.3.1.3). The left panels of fig.6.8 contain the results based on the classical R/S analysis
(first method) (Mandelbrot 1972) and the right panels contain the results after applying the adjusted R/S
method (second method) (Lo 1991).

Concerning the first method for DS1 (fig.6.8, top-left panel) there is an indication of a persistent
behavior since H = 0.602± 0.008 with a probability of having a long-term memory trend, based on the V
statistic (eq.3.76) being 29.5% for V = 1.09. The time scale when the system’s memory starts to dissipate
is around 4.66 days (Np=74 and each time bin is 5440 sec or 6.30×10−2 days), indicated by the arrow. In
the same plot the gray points indicate the estimates coming from a random walk process (eq.3.79) in order
to be compared with the results. The differences between the two populations of points are significant
fact that indicates that based on this classical R/S method the data set can not be considered as simple
random walk. For the case of DS2 (fig.6.8, bottom-left panel) the situation is similar since a persistent
behavior with a Hurst exponent of H = 0.640± 0.009 is favored and the memory dissipation starts around
5.29 days.

Concerning the adjusted R/S method for DS1 (fig.6.8, top-right panel) the results differ significantly
from those derived with the classical method. An antipersistent behavior appears to be embedded in the
data set since H = 0.426 ± 0.010 but this time the measurements do not differ significantly from a purely
red noise process above 1.5 days. Nevertheless the time scale when the system’s memory starts to dissipate
is around 4.91 days comparable with the one derived previously. Similarly in the case of DS2 (fig.6.8,
bottom-right plot) an antipersistent behavior seems to be the case since H = 0.400± 0.013 with a memory
of around ∼ 5.1 days.

Considering the fact that the adjusted method suffers from less biases such as short range dependence
and heteroscedasticity, with respect to the classical method, one should rely on these results. The main
concern that one may have before accepting the results of the adjusted method is that the time scales
concerning the memory dissipation (4.91 days and 5.1 days for DS1 and DS2 respectively) are too long in
comparison to the total length of the data sets (6.7 days for DS1 and 7.9 days for DS2) or in other words
the data sets are too small in order to be able to unveil a 5 day nonperiodic cycle as a standard time
property of Mrk 421. Peters (1994) states that the time series should be long enough in order to contain
at least 8 potential cycles of finite memory periods. Based on that DS1 and DS2 are capable to reveal
potential memory cycles of the order of ∼ 0.8 − 1 days. Also Aydogan & Booth (1988) suggest that each
group should consist of more than 15 number of subsets, ⌊N/NA⌋. For DS1 the latter relation is fulfilled
for n = 6 and for DS2 for n = 7 corresponding roughly to 0.4 days. Therefore based on these authors if a
memory trend was embedded in the data set it should have been of the order of half a day in order to be
revealed.

It seems that data sets coming from different variability states of Mrk 421 tend to have the same time
and structural “memory” properties. The fact that different methodologies alter the outcomes for both
data sets in the same way raises some skepticism. This could well be attributed to the small time extent
of the data sets. It is not possible, based on any statistical method, to reveal a time property embedded
in a system being of the order of the data set’s duration. Even data sets originating from purely periodic
systems must cover in time more than half the system’s period in order to be able to recover their harmonics
in the PSD. Therefore bigger data sets should be employed in order to consolidate the existence of any
“memory trend” in the variability process of Mrk 421.

6.4 The Long-Term Variability Behavior of Mrk 421

6.4.1 Linear or nonlinear?

The study of the long-term variability behavior of Mrk 421 is performed based on the 15-day binned
ASM light curve (fig.4.3) consisting of 256 points. Based on a purely phenomenological base the “burst-
like” flares superimposed to the quiescent state (∼ 0.3 counts sec−1) predispose for the existence of a
nonlinear underlying process. Once again the method of surrogates is going to be used (sect.6.3.3) in order
to check possible deviations from linearity. The crucial point here is that one has really to take into account
the measurement uncertainties because they are almost twice as large as those of DS1 and DS2 (these are
the PCA data sets used in sect.6.3.3). This can be readily seen from fig.4.8 where for the same exposure
time σASM/σPCA ≈ 2.

Initially the parameters that should be estimated are the spectral index a of the PSD and the optimum
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Figure 6.8: [Left panels] The (R/S) method based on the classical methodology proposed by Mandelbrot
(1972). The black points represent the estimates for the data set, together with their errors. The grey
points indicate the expected values of the rescaled range, E ((R/S)n) coming from a random walk process
as given by eq.3.79. The arrows show the onset of the plateau, defining the mean time duration when the
memory of the system stars to dissipate.
[Right panels] The adjusted (R/S) method as proposed by Lo (1991).
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Figure 6.9: The higher order correlations R3,1(τ), R4(τ) together with the ACF R1,1(τ) for the ASM data
set. The vertical dashed line indicates the simultaneous occurrence of the extrema for all the correlations
yielding at τc = 13 bins of 15 days (195 days).

time delay τc. The first quantity is used in order to produce the surrogate light curves and the second in
order to reconstruct the phase space of the system. The binned logarithmic periodogram (sect.3.3.2) yields
a spectral index of a = 1.81 ± 0.18 which is then used in order to produce 2000 surrogates retaining the
linear properties of the ASM data set. Based on the method of higher order correlations (sect.3.4.3) the
simultaneous occurrence of the extrema is at τc=13 bins of 15 days (195 days) (fig.6.9). The phase space of
the original data set and that of the surrogates is reconstructed into m successive embedding dimensions
(m = 1, . . . , 18) and for each one of them the correlation integral, Cm(rk), is estimated (fig.6.10, left panel)
for a given fixed radius rk = 0.5R, having a statistical range R = 4.28 (eq.3.54). From the right panel of
fig.6.10 the detection of nonlinearity corroborates the initial phenomenological arguments. A significance of
more than 5σH0

for all embedding dimensions m provides a strong indication that the long-term behavior
of the source should be considered that originates from a nonlinear process.

6.4.2 Dimensionality and the correlation dimension

Following the positive detection of nonlinearity, the next parameter that one has to specify is the number
of the components affecting the evolution of the system. This is a fundamental step that probes into the
dimensionality of the underlying process (sect.3.4.1, sect3.4.4) and tries to answer the question: Is this
variable behavior a result of few physical parameters (i.e. less than 15) characterizing a low-dimensional
system or it comprises the outcome of an extravagant number of parameters resulting a stochastic system
(high-dimensionality)?

In order to answer this question the correlation dimension D2 (sect.3.4.5) is going to be estimated by
using the correlation integral, Cm(rk) (eq.3.52) at given embedding dimensions m (m = 1, . . . , 20) for an
ensemble of radii rk (eq.3.54), k = 1, . . . , 20. In order the system to have a low-dimensional behavior,
meaning small number of equations/parameters that affect it, the correlation dimension as a function of
m should gradually increase and at certain point it should reach a plateau indicating the dimensionality of
the system, usually at m < 15. Contrarily, for a stochastic process one expects Cm(rk) to be continuously
increasing as m increases depicting the fact that numerous parameters affect the evolution of the system
therefore more dimensions (i.e. equations) are needed to describe the system.

A very crucial issue concerning the ASM data set is the existence of noise. In order to take that into
account the method presented in sect.3.1.3 is followed for deriving the distribution of D2,m at a given m
but this time for 100 artificial light curves due to computational time restrictions. The optimum time
delay needed for the immersion of the ASM data set into the various embedding dimensions m, has been
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Figure 6.10: [Left panel] The values of Cm(rk) for the ASM data set (black points) together with 10
surrogates drawn from the 2000 artificial light curves. The correlation integral is estimated for m = 1, . . . , 18
with τ=13 bins of 15 days and rk = 2.14. The errors for the estimates of the correlation integral for the
original ASM data set have been computed based on the procedure described in sect.3.1.3 for 1000 light
curve variations. The various estimates of Cm(rk) coming from the 10 surrogates are shown only till m = 17
for plotting reasons.
[Right panel] The significance (in units of σH0

) concerning the difference between the value of the correlation
integral coming from the original data set, Cm(rk), and the ensemble (2000) of the surrogates, µH0

, as it is
estimated from eq.6.4. The error bars are estimated based on eq.6.5. The right axes shows the probability
of observing a significance Sm or larger if the null hypothesis is true.

already chosen for the method of surrogates (sect.6.4.1) and it is equal to τc=13 bins of 15 days (fig.6.9).
Additionally in sect.6.4.1 the statistical range has been also estimated and it is equal to R = 4.28.

The correlation integral as a function of the phase radius rk for m = 1, . . . , 20 together with the
various slope estimates (i.e. D2,m) coming for the successive heptads (see sect.3.4.5) are shown in fig.6.11.
Note here that the plots do not contain the error bars since they are used only for visual inspection of
the dynamical behavior of the system4. For embedding dimensions m > 5 one can see that the are no
estimates for the Cm(rk) at small radii. This happens because the correlation integral at a given m (eq.3.52)
compares actually the radius rk with the distances between all the phase points (by constructing nominal
hyper-spheres of radius rk around each point) and checks how many of these points are closer than rk (i.e.
included in the hyper-spheres). If all the distances are grater than rk then Cm(rk) = 0. As the radius
becomes bigger the probability of having more and more points inside the hyper-spheres is increasing and
when it becomes bigger from the smallest existing distance, between all the phase points then Cm(rk) 6= 0.
The fact that as m increases less estimates towards the smaller radii are feasible, is a first indication of
possible dynamical noise (sect.3.1.2) embedded in the data set of the ASM detector. For small embedding
dimensions several “false” correlations (due to “false” close neighbors) are counted during the calculation of
the correlation integral. As the dimension becomes bigger some of the “false” close neighbors disentangle
and they are not anymore included in the counting procedure resulting sometimes a complete absence of
correlated pairs if at the same time there are no “true” close neighbors among the phase points. Practically
that means that the data set is comprised from an ensemble of values which are spatially (i.e. in the genuine
phase space of the system) unrelated. This effect can be caused by noise component which “fills” in a way
the process during its realization (i.e. light curve) with uncorrelated values.

Usually a rough idea about the dimensionality of the system can be obtained from the plot of D2,m

versus the phase radii rk as in the case of the Hénon system (fig.3.16, right panel). Unfortunately for the
ASM data set this does not seem to be the case since there is no obvious indication of any convergence
of the D2,m estimates at small rk (fig.6.11, right panel). The most robust statement concerning the
dimensionality of the system can be derived from the final estimates of the correlation dimension D2,m

4The errors have been estimated and they are going to be used later in order to derive the uncertainty of D2,m at a given
m (fig.6.12).
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Figure 6.11: [Left panel] The logarithm of the correlation integral Cm(rk) as a function of the logarithm
of the radius rk = k · 4.28 · 0.005 (k = 1, . . . , 20) for m = 1, . . . , 20 (top to bottom plot). The different
line-styles correspond to different m in order to be easier to find the correspondence with the plot in the
right panel. Every five dimensions the same line-style is repeated.
[Right panel] The correlation dimension D2,m as a function of the logarithm of the radius rk.
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Figure 6.12: The correlation dimension D2,m as a function of the embedding dimension m. The dashed line
depicts the limit of the meaningful estimates of D2,m based on the length of the data set Eckmann & Ruelle
(1992).
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at a given embedding dimension m (fig.6.12). The error bars include the errors due to measurements
uncertainties, as they are derived from the simulations. Since the data set has a length of 256 points based
on the formula provided by Eckmann & Ruelle (1992) the estimates of D2,m are meaningful till the value
2 · log 256 = 4.816 corresponding to m = 14. Up to this dimension there is no well defined plateau fact that
reveals the large number of parameters affecting the system. A constant line fit between m = 9 to m = 14
has χ2 = 15.718 for 5 DOF with a very low NHP of 0.0077. Therefore no claim of stabilization of the
correlation dimension can be made concerning the ASM data set for Mrk 421 at least for D2,m < 4.816.

Ignoring momentarily the meaningfulness of the estimates above m = 14 it seems that there is an
apparent stabilization of the correlation dimension for m ≥ 15. A constant line fit gives D2,m = 7.00±0.15
having a χ2 = 1.70 for 5 DOF with a very high NHP of 0.89. If this plateau had been derived from a
data set of more than

√
107 = 3162 points (after the formula of Eckmann & Ruelle 1992) then that would

imply that the behavior of the system is the outcome of only 7 major components. Unfortunately this is
not the case but still this small indication can trigger a further investigation concerning the dimensionality
of the system by employing the method of Prin.Comp.Anal. (sect.3.5). Since the length of the ASM data
set affects the outcome of the correlation dimension the Prin.Comp.Anal. is supposed to overcome this
problem in case that something does indeed exist above m = 15. Additionally this method is less influenced
by the noise components being another source of confusion for the estimation of the correlation dimension
as it is shown and explained in this section.

6.4.3 Dimensionality and the Prin.Comp.Anal.

In the previous section it was shown that the ASM observations of Mrk 421 compose a noisy data set
whose number of measurements does not allow the derivation of any meaningful estimate of the correlation
dimension above ∼ 5. Since the Prin.Comp.Anal. (sect.3.5) is able to specify the dimensionality of a
system5, even in the case of small and noise data sets (Vautard et al. 1992), the method is employed in order
to investigate further the number of components affecting the time evolution of Mrk 421. A short note here
concerning the term “small” data set, which is sometimes completely ambiguously and vaguely understood,
is that it refers to data sets which have enough measurements to allow a full statistical description of
their parent distribution. For example an ensemble of 30 randomly Gaussian distributed measurements is
enough to describe the statistical properties of their parent distribution by deriving the first two statistical
moments. Specification of higher order statistical moments of complicated parent distributions may require
lengthier data sets consisting of more than 300 points. Despite the fact that a data set might be 100%
representative of the parent distribution some methods need more data points than others in order to yield
a statistical meaningful estimate of a quantity. In this regard the Prin.Comp.Anal. is much more robust
from the correlation integral, for specifying the dimensionality of a system, but it suffers at the same from
precision lacking.

The results of the method are shown in fig.6.13 yielding a pretty clear picture about the dimensionality
of the system6. Firstly, it seems that the complexity of the system is stochastic (as opposed to determin-
istic) and secondly there is a strong indication that the realization of the underlying variability process is
severely affected by the noise component. The first ascertainment is attributed to the fact that there is
no stabilization of the normalized singular values since their estimates are continuously decreasing without
forming any plateau revealing clearly that numerous components affecting the evolution of the system.
The second argument can be justified from the fact that the singular value estimates up to i = 22 they do
not become zero. That means that a new hyper-axis is formed in the hyper-ellipsoid every time that an
immersion in a higher dimension takes place. A schematic description of the 22-dimensional reconstructed
phase space is the following: There are in total L = 256− (22 − 1) = 235 phase points, each one requiring
22 components (i.e. numbers) in order its position to be fully specified. The lengths of the major axes of
the nominal hyper-ellipsoid consist the singular values and the vectors defining the axes are the singular
vectors. The fact that the singular values decrease as the immersion increases does not mean that the
first components are more dominant than the last ones. Each estimate takes place in a different dimension
therefore only the formation of a plateau is considered to be the distinctive feature depicting exactly those
dimensions which do not alter the geometry of the formed attractor.

For the ASM data set of Mrk 421 there is no particular elongation towards any direction favoring
any particular group of singular vectors. Usually in true physical systems plots similar to fig.6.13 show

5As shown in sect.3.5 the Prin.Comp.Anal. method provides a rougher estimation of the system’s dimensionality from that
of the correlation dimension, D2, e.g. for the Hénon system D2 = 1.252 ± 0.003 and the result of the Prin.Comp.Anal. is
between 2 and 3.

6Once again the errors represent the weight of the measurement uncertainties to the various estimates. They are estimated
from 100 artificial light curves following the same methodology described in sect.3.1.3.
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Figure 6.13: The logarithm of the normalized singular values for m = 22. Note the sudden transition of
the estimates around the 6th and the 7th singular values.

deviations from a smooth decay. These deviations are checked by examining the form of the components
of the singular vectors corresponding to the respective singular values (Broomhead et al. 1987). In the
case of Mrk 421 there is a “suspicious” feature between j = 6 and j = 7. If this transition is due to a
passage from a band of high significant singular vectors (i.e. leading the course of the system) to a group
of low significance singular vectors then the form of the latter will differ significantly from those of j < 7.
Theoretically the latter should have the shape of orthogonal polynomials7 of j − 1 order. The plot of the
four successive singular vectors (eq.3.63) situated around the transition region (y5,22, y6,22, y7,22, y8,22) is
shown in fig.6.14. Since their form is complicated and random without any indication of orthogonality the
conclusion is that the sudden transition is not a result of a different significance level between the singular
values but probably is caused due to nonlinearities which are embedded in the data set. As discussed in
sect.3.5 since the Prin.Comp.Anal. is based on the SVD which is a linear method therefore distortions can
arise from strong nonlinear behavior such as the observed sudden burst activity.

The results coming from the Prin.Comp.Anal. are in accordance with those coming from the correlation
dimension (sect.6.4.2). It is evident that there is no deterministic mechanism governing the underlying
process responsible for the variability of Mrk 421. Numerous parameters are involved and affect the outcome
of every realization which is observed in the X-rays. Trying to understand individual light curve features
is not insightful at all since the observed photons consist the outcome of an additive process as it is seen
through the jet. There is nothing characteristic which is “hidden” in the data set that can point towards
any specific direction concerning some leading physical parameters of Mrk 421.

7Just as Fourier series provide a convenient method of expanding a periodic function in a series of linearly independent
sinusoidal terms, orthogonal polynomials provide a natural way to solve, expand, and interpret solutions to many types of
important differential equations. Orthogonal polynomials have a given order and morphologically the bigger the order of a
polynomial the more complicated its representation.
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Figure 6.14: The components of the four successive singular vectors (y5,22, y6,22, y7,22, y8,22) situated around
the transition region between j = 6 and j = 7. Their form is complicated and random without any
indication of orthogonality.

104



Chapter 7

The H.E.S.S. MULTIWAVELENGTH

CAMPAIGN OF PKS 2155-304

As discussed in sect.1.2.1 the BL Lac objects are of primary interest to VHE γ-ray astronomy since
some of them are able through the IC process to scatter photons to “exotic” energies above 100
GeV. The time series analysis methods, presented in the previous chapters for the X-ray light

curves, can not be easily applied to light curves originating from the VHE regime due to observational
restrictions. Big uncertainties combined with poor source coverage yield time series data sets that can be
treated only in a phenomenological fashion with very general and rough analysis methods (e.g. correlation
analysis). Among all the BL Lac objects probably the most prominent candidate for conducting variability
studies is the HBL object (see sect.1.2.1) PKS 2155-304. This southern hemisphere source is regularly
observed by a new generation Čerenkov array H.E.S.S., being located in Namibia. The sensitivity levels of
H.E.S.S. in combination with the convenient zenith angle of the source, brings PKS 2155-304 in the first
place of the most extensively observed and well-studied VHE sources. Since the emission of the BL Lac
objects covers a vast energy range of the electromagnetic spectrum (more than 15 decades in frequency),
copious multifrequency campaigns, usually following the observing plan of the VHE observatories, are
conducted covering simultaneously the X-ray, the optical and sometimes the radio energy bands. The
results of a completely new and unpublished multifrequency campaign conducted during the period of
August–September 2004, concerning PKS 2155-304 are presented in this chapter.

7.1 Previous Observations of PKS 2155-304

The HBL object PKS 2155-304 (z=0.117) was firstly discovered in the X-rays by the HEAO-1 (see, sect.2.2.3)
satellite (Schwartz et al. 1979; Griffiths et al. 1979). Nowadays it is firmly established as one of the
brightest extragalactic X-ray sources in the sky since it can be detected on a regular basis e.g. ROSAT
(Brinkmann et al. 1994), Beppo satellite per astronomia X (BeppoSAX) (Chiappetti & Torroni 1997),
RXTE (Vestrand & Sreekumar 1999) and Chandra (Nicastro et al. 2002). The first γ-ray emission in the
energy range of 30 MeV–10 GeV was detected from PKS 2155-304 by the energetic gamma ray experiment

telescope (EGRET) detector onboard Compton gamma ray observatory (CGRO) mission (Vestrand et al.
1995).

The first evidence of VHE emission from the source was reported by Chadwick et al. (1999) for energies
above 300 GeV using the University of Durham Mark 6 atmospheric Čerenkov telescope, with a significance
of ∼ 6 standard deviations above the background (σ). Since then a lot of observations were conducted from
other Čerenkov telescopes without yielding any significant detection. The CANGAROO experiment tried
to detect the source during 1999 (Nishijima et al. 2001), 2000 and 2001 (Nakase & Cangaroo Collaboration
2003) yielding only upper limits. The first robust detection of PKS 2155-304 was made by H.E.S.S. at a
45σ significance level, corresponding to 169 half an hour runs between 2002 and 2003 (Aharonian et al.
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7.2. The Observing Campaign during August–September 2004

2005b). From then on, during all the H.E.S.S. observations, the source is detected on a permanent basis.
At the same time simultaneous multifrequency observations covering the energy bands of the X-ray, the
optical and the radio regime are performed aiming to map the overall behavior of the source across the
whole electromagnetic spectrum. The first campaign as such was carried out during October–November
2003 (Aharonian et al. 2005c) and one more was conducted during August–September 2004 the results of
which are going to be discussed here.

7.1.1 Variability properties in VHE

In the first claimed detection of the source Chadwick et al. (1999) there was an indication of monthly
variations concerning the flux of the source (5 monthly averaged points with the biggest deviation between
two points being 4 standard deviations) but no variations on daily time scales was observed.

During the first robust detection of the source (Aharonian et al. 2005b) the VHE flux was found to be
variable in time scales of months, nights and even hours but without any evidence of spectral variability
with respect to time.

Finally the first multifrequency campaign of PKS 2155-304 (Aharonian et al. 2005c) was interesting in
the sense that no correlations could be established between any of the observed wave bands (optical, X-rays,
γ-rays).

7.2 The Observing Campaign during August–September 2004

7.2.1 The VHE observations

The H.E.S.S. detector

The H.E.S.S. experiment (Hinton 2004) consists of four atmospheric Čerenkov telescopes operating stereo-
scopically. Each telescope consists of a tesselated 13 m diameter (107 m2 surface area) mirror, focusing the
Čerenkov light from the showers of secondary particles, created by the interaction of γ-rays in the atmo-
sphere onto a camera in the focal plane. Each camera consists of 960 photomultipliers with a pixel size of
0.16◦, providing with a FOV of 5◦. The array is located in Khomas highlands in Namibia (−23◦ 16′, 16◦ 30′,
1835 m AMSL). The angular resolution of the stereo system is better than 0.1◦ per event. The energy
threshold of H.E.S.S. is about 100 GeV (at zenith) with spectral measurements possible above ∼ 150 GeV
with an energy resolution of 15%. For the data set of PKS 2155-304 the time averaged spectrum has an
energy threshold of 228 GeV.

The VHE data

The H.E.S.S. observations start basically with a small observing period between 14–20 of July 2004 and
they continue to the main observing period between 6–26 August 2004 and 6–11 September 2004. The
ensemble of the observations consist of 105 observing runs each one lasting on average 28 min (fig.7.1, left
panel).

The data were taken in the Wobble mode where the source direction is positioned ±0.5◦ in declination
relative to the centre of the FOV of the camera during observations. This allows for both on-source
observations and simultaneous estimation of the background induced by charged cosmic rays. The data
reported here are selected and analyzed with the “standard analysis” (described in sect.4 of Aharonian et al.
2005b). Concerning the background a ring of radius of ∼ 0.5◦ around a trial source position is used in order
to provide the background estimate (fig.7.1, right panel). This yields a total of 12122 on-source events and
40934 off-source events with an on-off normalization of 0.090 corresponding to a significance of ∼ 102σ
(eq.17 in Li & Ma 1983).

The photon index Γ derived from the time-averaged spectrum (see below the power-law fit) is used as
a fixed parameter to estimate the integral flux above 200 GeV for each run. This integrated flux takes into
account the effective area and threshold variations due to the source movement through the sky. The overall
light curve (fig.7.2, top panel) is inconsistent with a constant flux since a constant fit has a χ2 = 582.50
for 104 DOF yielding a NHP=0. On a run-by-run basis within a night there is no strong evidence for
significant variations. From the whole data set only four nights are slightly deviate from a constant flux
MJD 53225, MJD 53229, MJD 53232 and MJD 53233 (fig.7.3, top panels).

The methods used here for the energy reconstruction of each event and for determining the overall
spectrum are described in sect.6 of Aharonian et al. (2005b). The measured time-average spectrum is
fitted by three models (fig.7.4):
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Figure 7.1: [Left panel] Histogram of the duration of the H.E.S.S. runs.
[Right panel] Schematic representation of the ring-model on an event map of 5 hours of
H.E.S.S. observations of PKS 2155-304 during 2002–2003 (Aharonian et al. 2005b) (taken from Berge et al.
2006).

• The first model is a power-law of the form

dN

dE
= I0

(
E

E0

)−Γ

(7.1)

where I0 is the flux normalization in 1 TeV and Γ is the photon index. The fit yields Γ = −3.56±0.06
and I0 = (2.22± 0.13)× 10−12 cm−2sec−1TeV−1, having a χ2 fit of 27.47 for 10 DOF yielding a NHP
of 0.002. This photon index is used in order to estimate the integral flux above 200 GeV on a run
basis as shown in the top light curve of fig.7.2.

• The second model is a broken power-law of the form

dN

dE
=







I0

(
E
E0

)−Γ1

, E ≥ Ebreak

I0

(
Ebreak

E0

)Γ2−Γ1
(

E
E0

)−Γ2

, E < Ebreak

(7.2)

where Ebreak is the energy corresponding to the spectral break in units of TeV and Γ1, Γ2 are the
spectral indices below and above the energy break. The fitting procedure is performed in a recursive
way by fixing the value of Ebreak within the range of 0.2 TeV to 4.7 TeV in steps of 0.01 TeV. For
every step the NHP of the fit is estimated and the one having the biggest value is then selected. The
optimum NHP is 0.82 (χ2 = 4.36, 9 DOF) for Ebreak = 0.39 TeV yielding I0 = (4.47± 0.46)× 10−12

cm−2sec−1TeV−1, Γ1 = 3.00 ± 0.09 and Γ2 = 3.79 ± 0.04.

• The third model is a power-law with exponential cut-off of the form

dN

dE
= I0

(
E

E0

)−Γ

e−
E

Ecut (7.3)

where Ecut is the cut-off energy in TeV. The fit yields I0 = (4.57 ± 1.26) × 10−12 cm−2sec−1TeV−1,
Γ = −3.14± 0.16 and Ecut = 1.39 ± 0.54 TeV, having a χ2 fit of 15.29 for 9 DOF yielding a NHP of
0.08.
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Figure 7.2: The light curves of PKS 2155-304 during the multiwavelength campaign of 2004.
[Top panel] The H.E.S.S. light curves above 200 GeV binned in run lengths, each one lasting ∼ 28 min.
[Middle panel] The RXTE light curve, coming from PCU2, between 2–10 keV with a bin size of 512 sec.
[Bottom panel] The R-band magnitude registered from the optical telescopes of KVA, SSO and ROTSE.
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MJD 53232-53233 August 15-16 2004
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MJD 53233-53234 August 16-17 2004
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Figure 7.3: Intranight variations in the VHE and X-ray band. The top panels show the flux variations in
the VHE regime above 200 GeV and the bottom ones show the X-ray variations in the 2–10 keV energy
range. For these four nights in the VHE regime the χ2 chance probability to a constant flux fit (indicated
by the dashed line) gives for MJD 53225, MJD 53229, MJD 53232 and MJD 53233: 0.052, 0.023, 0.030
and 0.032 respectively.
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Figure 7.4: [Top panel] The VHE time-averaged spectrum of PKS 2155-304 as registered by H.E.S.S. The
various lines represent the best fits to a power-law (P.L.), a broken power-law (B.P.L.) and a power-law
with exponential cut-off (P.L.E.C.).
[Bottom panel] The residuals (measurements−model) of the various fits in units of (σ) i.e. the statistical
error of each measurement.

7.2.2 The X-ray observations

The RXTE satellite

The X-ray data were obtained by the RXTE satellite (sect.2.1) during the periods of 5–26 August and
8–16 September. From all the onboard satellite experiments only PCA (sect.2.1.2) data are used for the
analysis since it is the most sensitive instrument for AGN studies in comparison to HEXTE (Cui 2004).
During the campaign only PCU0 and PCU2 were in fully operational mode among the five PCUs due to
contingent breakdowns (see sect.4.1.1). Moreover since PCU0 has no longer the front antico propane layer
(sect.2.2.5 and fig.2.3) it is much more susceptible in background events induced by particles therefore only
the PCU2 data were used. In fact similar “fake” flaring events as the ones reported by Xue & Cui (2005)
(fig.2.8) are also present in this data set coming from the PCU0 (fig.7.5).

The X-ray data

The total duration of the PCA observations for these two months is 152.352 ksec distributed in ∼ 3 thirty-
minute runs within each night. Concerning the observations of the ASM detector (sect.2.1.4), obtained
during this period, they are checked but they do not seem to be very interesting since they are marginally
consistent with being constant (fig.7.6).

The X-ray light curve from the whole campaign is derived following the analysis described in detail
in sect.2.2. Concerning the background estimation (sect.2.2.3) the “faint” background model file was used
since the source count rate is less than 40 counts sec−1PCU2−1. The light curve is shown in the middle
panel of fig.7.2 in bins of 512 sec. The very good time coverage between the VHE and the X-ray observations
can be also seen in fig.7.3.

The overall X-ray spectrum is estimated based on the procedure described in sect.2.2.4. It is fitted by
a power-law with absorption having a NH I of 1.69×1020cm−2. This yields a flux in the 2–10 keV energy
range of F2−10keV = (2.80± 0.01)× 10−11erg cm−2 sec−1. The same spectral model with the same NH I for
the months of August (92 ksec) and September (60.5 ksec) yields F2−10keV =(2.52±0.02)×10−11 erg cm−2

sec−1 and F2−10keV =(3.21±0.02)×10−11erg cm−2 sec−1 respectively. The results of the spectral fits are
shown in tab.7.1 and the overall spectrum in fig.7.7.
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Figure 7.5: [Top panel] The count rate of PCU2
during 3 orbits on MJD 53260. Correctly the
detector does not respond to the background
events shown in the bottom panel.
[Middle panel] During the same observing pe-
riod PCU0 registers three flares corresponding
to the background events shown in the bottom
panel.
[Bottom panel] The background events during
the observed period indicated by the ELEC-
TRON2 parameter (sect.2.2.2).
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Figure 7.6: The ASM light curve for PKS 2155-304 for the period 5 August–16 September in daily bins. A
constant fit, shown by the dashed line, yields y=0.164±0.055 having a χ2 of 76.49 for 43 DOF and a NHP
of 0.001.
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Table 7.1: Spectral fits: power-law with NH I=1.69×1020cm−2

Month Spectral index Norm. ×10−2 ∗ χ2 (for 38 DOF)

August 3.06±0.04 4.29+0.24
−0.23 49.8

September 3.03±0.04 5.31+0.30
−0.28 43.6

Total 3.05± 0.02 4.72+0.15
−0.14 117.56

∗in units of photons keV−1cm−2sec−1 at 1 keV.

Figure 7.7: [Top panel] The X-ray spectrum derived from the summed August and September 2004 data
using PCU2, fitted by a power-law model having a fixed absorption NH=1.69×1020cm−2 (folded model).
[Bottom panel] The residuals between the data and the model.

A broken power-law fit with the same absorption of NH I=1.69×1020cm−2 does not seem to ameliorate
significantly the goodness of the fit. For the August data set it yields an integrated flux in the 2–10 keV
band of (2.44+0.02

−0.12)×10−11erg cm−2sec−1. For the September data set the fitting procedure can not trace a
minimum in the χ2 space in order to derive the errors for the fitted parameters. Therefore the break-energy,
Ebr, is fixed to the resulted August fit value yielding an integrated flux of (3.16+0.04

−0.06)×10−11erg cm−2sec−1.
The total flux for both months (after fixing Ebr to the August’s value) is F2−10 keV = (2.72±0.02)×10−11erg
cm−2sec−1. The results of the spectral fits are shown in tab.7.2.

Table 7.2: Spectral fits: broken power-law with NH I=1.69×1020cm−2

Month Spectral index, Γ1 Spectral index, Γ2 Ebr
∗ Norm. ×10−2 † χ2/DOF

August 2.91+0.11
−0.16 3.16+0.09

−0.07 4.71+0.90
−0.70 3.50+0.55

−0.66 42.2/36
September 2.95±0.01 3.09±0.07 4.71 (fixed) 4.71+0.67

−0.60 41.38/37
Total 2.93±0.06 3.13±0.04 4.71 (fixed) 3.98+0.32

−0.30 101.92/37

∗in units of keV.
†in units of photons keV−1cm−2sec−1 at 1 keV.
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7.2.3 The optical observations

The optical telescopes

Optical photometric observations of PKS 2155-304 were performed during August–September 2004 with
three telescopes from three different observatories. The difference among the longitudes of the telescopes
involved allowed to reduce the gaps in the data trains due to bad weather and daylight. The telescopes
are:

• the Kungliga Vetenskapsakademien telescope (KVA telescope), at the Observatorio del Roque de Los
Muchachos, located in La Palma, Spain (−16◦ 26′ 60.00′′, 28◦ 46′ 0.12′′, 2330 m AMSL). The telescope
is operated remotely through internet connection by the staff of the Tuorla observatory in Finland.
It is composed of a 60-cm f/15 Cassegrain reflector and it is equipped with a CCD polarimeter
devoted to polarimetry only. Moreover it has a 35-cm f/11 SCT auxiliary telescope equipped with
BVRI filter wheel and a CCD which are devoted to multi-band photometry. The latter was used
for the observations of PKS 2155-304 being the southernmost observations ever performed with the
KVA since the telescope’s declination lower limit is δ ∼ −30◦. A total of 439 R-band photometric
data points were obtained during 13 nights between August 3 and September 23. Due to its low
declination, the target could be followed for less than 4 hours per night and the number of frames per
night varied from 9 to 50, with an average of ∼ 38. During 4 nights in September (Sep. 8–9, 9–10,
12 and 22–23), simultaneous polarimetric observations were also performed (Ciprini et al. 2006).

• the 40-inch (101.6 cm) telescope of the ANU at Siding Spring observatory (SSO) near Coonabarabran
in Australia (−31◦ 16′ 24.24′′, 149◦ 3′ 45.00′′, 1135 m AMSL). The telescope has an f/8 setup and it
was used for BVRI multi-band photometry using a single-CCD detector. PKS 2155-304 was observed
from August 6 to August 19 for 11 nights yielding a total of 1188 photometric measurements (B-band:
157, V-band:128, R-band: 727, I-band:176) varying from 38 to 160 frames per night with average
number 85. Due to the optimum observatory’s geographical latitude the source could be followed for
∼ 10 hours per night depending on the weather conditions.

• the robotic optical transient search experiment III (ROTSE-III) telescope (Akerlof et al. 2003), located
at SSO near Coonabarabran, New South Wales, Australia (−31◦ 16′ 24.24′′, 149◦ 3′ 39.96′′, 1110 m
AMSL). The ROTSE-III array is a worldwide network of four robotic automated telescopes built
for fast (≈6sec) response to γ-ray burst (GRB) triggers from satellites such as Swift. Each telescope
consists of a mirror of 45-cm f/1.9 and has wide FOV (1.85◦×1.85◦) imaged on a Marconi 2048×2048
pixel back-illuminated thinned CCD. It is operated without filters in order to collect as much as light
as possible from GRBs afterglows. A total of 424 photometric data points were obtained during 13
nights between August 2 and September 21.

Data analysis and calibration of the optical data

The KVA and the SSO data are analyzed with aperture photometry on de-biased and flat-fielded frames.
The former are analyzed adopting an aperture of 7.5 arcsec, whereas the latter are analyzed adopting
an aperture of 5.4 arcsec. Instrumental magnitudes are then extracted, night by night, for the PKS 2155-
304 and for the reference stars nos. 2, 3, 4, and 5, whose finding chart and absolute calibration can be found
in Hamuy & Maza (1989). The calibration of the instrumental magnitudes of the BL Lac object is then
performed by using as calibrators the reference stars nos. 2, 3 and 4. Those stars are suitable for calibration,
because their brightness were comparable with that of PKS 2155-304 in the period considered, and they
are relatively constant with time. For instance, in the R-band: R2 = 11.67 ± 0.01;R3 = 12.47± 0.02;R4 =
13.42 ± 0.02, and RPKS 2155−304 = 12.6 − 13.4. Moreover the average rms scatter of the mag differences
between each of the calibration stars (2, 3 and 4) and all the others is variable in the range (0.011–0.014)
mag for the complete (KVA and SSO) data set. The calibration is performed by simply adding to the BL
Lac’s magnitude a zero-point magnitude m0 is computed, frame by frame, in the following way:

m0(i) =
∑

i

[mstand(i) − minstr(i)]/σ2
∆m(i)

σ2
∆m(i)

(7.4)

with the index i indicating the reference stars chosen for the calibration, and the quantity σ2
∆m(i) being

the variance of the difference ∆m(i) = mstand(i) − minstr(i) between the absolute calibration and the
instrumental magnitude of the i-th star: σ2

∆m(i) = σ2
mstand

+ σ2
minstr

.
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7.3. Multiwavelength Correlation Analysis

The error on the calibrated magnitudes is computed using the stars 3 and 4, having magnitudes closer
to the BL Lac’s magnitude, as follows. The larger between the two following quantities:

1. the rms scatter of the mag difference ∆m3,4 = m3 − m4.

2. the absolute value of the deviation of the mag difference ∆m3,4 from its mean value over the data
set is taken, and then combined, frame by frame, with the instrumental errors on stars nos. 3 and 4,
and with the instrumental error on the PKS 2155-304.

This is a quite conservative estimate of the error, because it takes into account both the instrumental errors
and the stars’ scatter. Finally before combining the calibrated KVA and SSO light curves a thorough
check concerning possible systematic offsets is performed. These offsets may arise from the use of different
photometric routines and different apertures. To this purpose, the two photometric routines are both run
on a selected set of SSO frames, and then calibrated. The two final light curves of PKS 2155-304 are
consistent with each other within the errors. However, a systematic offset ∆RKVA−SSO = 0.026 ± 0.023
mag exists between the two light curves. This offset is therefore applied to the KVA R-band light curve
when assembling the total (KVA+SSO) light curve. Since the ROTSE observations are obtained without
any filter, the data are simply scaled to much the (KVA+SSO) light curve by a multiplicative factor 0.99.

7.3 Multiwavelength Correlation Analysis

Among the various energy bands it is usual to check for correlated variability behavior through correlation
analysis. From the first multifrequency campaign of PKS 2155-304 (Aharonian et al. 2005c) the interesting
result was that no correlations could be established between any of the observed wave bands i.e. optical,
X-rays and γ-rays. Since this campaign provides the lengthiest data set of PKS 2155-304, obtained si-
multaneously in the aforementioned energy bands, these observations can be used in order to check the
correspondence of the flux variations across the electromagnetic spectrum.

For the correlation analysis between the γ-rays and the X-rays the following procedure is followed. All
the H.E.S.S. runs are separated in 1 min slices (on average 30 per run, fig.7.1, left panel) each one defining
a time window. Then the 16 sec X-ray observations falling within these slices are binned together. Finally,
the adjacent bins are merged and for the corresponding γ-ray fluxes and X-ray count rates the mean value
together with the uncertainty is derived yielding 61 strictly simultaneous pairs lasting on average 14 min
(fig.7.8, left panel). The correlation plot between these 61 values is shown in (fig.7.8, right panel) indicating
with the open circles four VHE flux estimates having an error bigger than a factor of 4 from all the other
VHE measurements. The linear correlation coefficient, after ignoring these values1, is r = 0.48 ± 0.07
yielding a probability of obtaining a value like this from an uncorrelated population P (0.48, 55) = 0.00015.
A linear fit of the form y = ax + b, after taking into account the measurement uncertainties in both axes
(Fasano & Vio 1988), yields a = 0.135 ± 0.014 and b = 0.126± 0.027.

Concerning the correlation analysis between the γ-ray fluxes and the optical data, all the optical ob-
servations obtained within a H.E.S.S. run are averaged and their errors are derived. A total of 32 paired
values is formed exhibiting no correlation since r = 0.29±0.09 and P (0.29, 30) = 0.1 (fig.7.9, left panel). In
the same setting, the correlation analysis between the X-rays and the optical band, the latter is averaged
based on the 512 sec binning scheme of the former, yields an ensemble of 21 paired values having a linear
correlation coefficient r = −0.29± 0.07 (fig.7.9, right panel).

1Taking into consideration these four values the linear correlation coefficient r is equal to 0.27 ± 0.11 with P (0.27, 59) =
0.033.
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coefficient for the 32 values is r = 0.29 ± 0.09.
[Right panel] The correlation plot between the X-rays and the optical band. The correlation coefficient for
the 21 values is r = −0.29 ± 0.07.
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Chapter 8

DISCUSSION AND CONCLUSIONS

8.1 Physical Implications

Through the investigation of the timing properties of the BL Lac object Mrk 421 several points
concerning both the source itself and the analysis methods were elucidated. One of the main
outcomes of this work is that the examination of individual light curve features for the derivation

of source parameters seems to be away from the physical reality. The short-term light curves (i.e. lasting
around 10–20 days) are purely stochastic in nature meaning that the parameters, determining the shape
of the various features, is supernumerary and all of them contribute with the same weight to the observed
outcome. Since the emission of the BL Lac objects is seen through their jet, the flaring events comprise
the summation of the radiation originating from different source regions within the jet excluding any kind
of causal behavior.

8.1.1 The linear source size

Almost all the emission models, trying to explain the radiation properties of the BL Lac objects, consider
a quantity which is known as linear source size. This automatically poses a question concerning which is
the source that one is referring to. The usual method followed for the derivation of the linear source size
relies on the object’s light curve by estimating the time needed for the flux to be increased by a factor of
2 (doubling time). Following the definition of Harris et al. (2006) (used for the case of the HST-1 knot in
M 87) and taking into account both the relativistic beaming (sect.1.2.2) and the redshift of the source z,
the doubling time in the observer’s frame is given by

DT =

(
δ

1 + z

)
1

y − 1
∆t (8.1)

where δ is the Doppler factor (eq.1.1), y is the fractional increase of the flux from a value I1 to a value
I2, y = I2/I1 and ∆t is the time duration of the event. This definition comes from Burbidge et al. (1974)
and can be found in several forms in the literature taking into account the measurements uncertainties
based on some point selection criteria (e.g. Zhang et al. 1999; Fossati et al. 2000). The size of the emitting
region can be derived based on the causality argument (see footnote sect.5.1) determining an upper limit
for its linear dimension: R < cDT . That means simply that for a given time ∆t the larger the amplitude
of the transition (i.e. the larger the y) the smaller the DT , yielding a more compact source (i.e. smaller R).
The fundamental assumption behind the causality argument is that the radiation should originate from
the same emitting source something which is not the case for the BL Lac objects whose emission originates
from numerous jet regions exhibiting no dominant leading component for the short-term variations.

Ignoring for the moment the relativistic effects, consider the following simplified scenario. The emission
originating from three spatially different jet regions of a BL Lac object reaches the observer almost at the
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Figure 8.1: [Left panel] Three flaring events of triangular shape reaching the observer approximately at
the same time. The events have approximately the same time duration and for each one of them the
light-crossing time argument applies: Rreal < cDTreal.
[Right panel] The observer sees the three events merged into one flaring event having almost the same
duration and a flux equal to the sum of the three fluxes. In this case the light crossing argument is
meaningless.

same time, appearing as one flaring event to the observer (fig.8.1). These regions are homogeneous (i.e.
they do not have clumps) share the same radiative properties (i.e. they radiate through the same radiation
mechanism) and have the same size. It is natural to consider that the causality argument can be applied
to EACH event individually giving an upper limit for the size of EACH source, which is almost the same
for this case. The doubling times for these flares is of the order of DTreal = 0.3 time units corresponding
to a linear size of Rreal < cDTreal. The observed flaring event, coming from the superposition of the three,
has almost the same ∆t (≈ 6) with the individual flares but now due to the summation of the events,
the amplitude is more than a factor of 3 bigger than the average amplitude of individual flares, yielding a
DTobs = 0.08 time units. Estimating a linear dimension corresponding to the value of DTobs is equivalent
with merging the emitting power of the three regions into one region having a linear dimension Rreal. The
underlying process, appearing as one component to the observer, it actually consists of three components
which are spatially separated and their time evolution is unrelated. Complicating the phenomenology of the
aforementioned scenario favors towards accepting even larger source sizes. More components distributed
around the same time instant will increase dramatically the y parameter. Similarly different source sizes
will add up to the flux keeping ∆t approximately equal to the duration of the biggest event (i.e. bigger R).

8.1.2 The brightness temperature

Obviously, trying to extract information concerning the physical conditions prevailing within the BL Lac
objects, by light curve examination, can act quiet misleadingly. In very compact sources characterized
by very high photon densities, catastrophic cooling via SSC emission (sect.1.2.3) can produce high energy
radiation much higher than the observed (Hoyle et al. 1966). The onset of this catastrophic radiation losses
(inverse Compton catastrophe) limits the maximum observed brightness temperature of the source1 to the
limit of TB . 1012 K (Kellermann & Pauliny-Toth 1969). There are numerous claims in the literature for
violation of this limit from several intraday variable (IDV) sources (Qian et al. 1991; Quirrenbach et al.
1992; Kedziora-Chudczer et al. 1997) with the most famous one that of the BL Lac object S5 0716+714
(Quirrenbach et al. 1991; Wagner et al. 1996; Ostorero et al. 2006; Agudo et al. 2006). To avoid this ex-
ceedance exceptional high Doppler factors (eq.1.1) (δ > 10 or even δ ∼ 100) are usually invoked in order
to lower the intrinsic brightness of the source below the theoretical limit.

1This condition yields from the requirement that the photon energy density in the emission region should be smaller than
the energy density of the magnetic field.
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The brightness temperature, TB, for a compact stationary source of an angular size θ having an observed
flux density Fν at a frequency ν is given by

TB =
Fνc2

2kν2θ2
(8.2)

where k is the Boltzmann’s constant. If the source is at a distance dL (luminosity distance) from the
observer then θ ∼ R/dL with R being its linear size which is connected with the doubling time (eq.8.1) as
R < cDT . Thus the last equation now reads

TB =
Fνd2

L

2kν2DT 2
(8.3)

The most important determinants in this relation are the flux density Fν and the quantity DT . For
the case of S5 0716+714 the doubling time are considered to be of the order of ∼ 1 day at the GHz
radio band, yielding from eq.8.3 brightness temperatures of the order of 1014–1019 K. In order to lower
down these values to the limit of the 1012 K, the relativistic transformation of eq.8.3 is considered yielding
in the observers’ frame a brightness temperature of TB = δ3TB

′ with TB
′ being the intrinsic brightness

temperature of the source having as a maximum value 1012 K. This yields unrealistic Doppler factors2 that
sometimes can reach values up to 100 (Qian et al. 1991; Wagner et al. 1996).

Estimation of the brightness temperature from the flares of the BL Lac objects is expected to have ultra
high values based on the summation effect of the flux originating from the various jet regions. Consider
the scenario of 100 jet regions producing equal number of triangular shots (eq.5.2) reaching the observer
at a given time period. The shots have all their physical parameters random (i.e. occurrence time, rise
time, decay time, intensity) within some fixed limit values. The brightness temperature of each region
individually can be estimated from its shot being: TB ∝ λ where λ = Fν/DT 2 (eq.8.3). For this example
the biggest value of λ is λIndi.Max ≈ 572 (Fν = 57.2, ∆T = 5.5 and DT = 0.1), corresponding to the biggest
value of brightness temperature TB,Indi.Max (< 1012 K) existing within the jet. TB,Indi.Max corresponds to
the most compact and most active jet region where the causality argument is valid. Estimating λ from the
observed light curve gives a value of λobs = 2.03 × 108 (Fν = 1825, ∆T = 5.2 and DT = 0.003) yielding
a brightness temperature of TB,Flare ≈ 36000 · TB,Indi.Max being 4 orders of magnitude bigger than the
maximum existing value in the jet. The value of TB,Flare can well be above the catastrophic limit of < 1012

K since it is not related to any physical temperature within the jet.
Therefore the observed light curve appears to violate the catastrophic limit, something which is not the

case since the observed flare is not the result of a coherent event. It is completely misleading to extract
any information from it concerning the values of TB,Flare and DT since this is not the realization of a single
process happening within one jet region. The underlying emission process consists of several components
whose variability activity is merged through the jet axes appearing as one component. Of course in more
realistic light curves these daily variations (similar to the one shown in the right panel of fig.8.1) are usually
superimposed on much larger flaring events. Even in the case that the former were originating from a single
jet region the estimated brightness temperature would be still wrong since Fν in eq.8.3 does not correspond
to the event’s flux but to the overall flux (event plus large flaring event).

8.2 The Value of the Long-Term BL Lac Light Curves

Statistical analysis of big data sets, covering extended time periods of the order of years, can be really
insightful on revealing interesting source properties. In the case of Mrk 421 (chap.6) it was shown that
around the period of MJD 51991 the source exhibited a completely different variability behavior from the
usual one (fig.6.3). This is denoted by the significant different value of the mean excess variance indicating
that the physical parameters of the underlying variability process during this period were greatly modified.
Going to the ASM light curve (fig.4.4) it can be seen that this time period corresponds to an exceptional high
source activity lasting around a year. Despite the fact that the remaining three ASM bursts (indicated by
the dotted lines in fig.4.4) do not have the same good coverage from the PCA instrument, the intermittent
behavior of the whole PCA light curve (fig.6.4) discloses that this burst-like activity of Mrk 421 is consistent
with that of an intermittent system. Additionally the detection of nonlinearity in the long-look ASM
light curve (fig.6.10) further supports the idea of intermittency, since this kind of behavior is favored by

2Based on Very Long Baseline Interferometry (VLBI) observations the maximum observed values of the Doppler factor
are between 20 and 30 (Bach et al. 2005).
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Figure 8.2: [Left panel] One hundred flaring events of triangular shape reaching the observer approximately
at the same time. The physical parameters of the events (defined by eq.5.2) are uniformly distributed around
some fixed values. Each shot originates from a different jet region and within it the brightness temperature
has a given value smaller than 1012 K. The biggest value from these shots is the one corresponding to
λIndi.Max ≈ 572.
[Right panel] The observed light curve yielding from the superposition of the individual events has a
λobs = 2.03 × 108 being four orders of magnitude bigger than the existing maximum value within the jet.

nonlinear systems. Finally, through an attempt of characterizing the dimensionality of Mrk 421 (through
the estimation of the correlation dimension and through the Prin.Comp.Anal.), the speculation of dominant
source components leading the underlying variability process can be readily rejected strengthening at the
same time the idea that the noise component plays a major role in the time evolution of the system.

Throughout the years the physical sciences have been developing based on well defined evolutionary
scheme concerning the study of the various physical phenomena. Initially a general model is conceived
trying to interpret the physical behavior of a given phenomenon based on some general laws. Then by
successively adding more components to the given model one can create a better and more precise rep-
resentation of the under study phenomenon which probes deeper into its properties. Take for example
the field of thermodynamics, in early 1800s the first thermodynamical laws were created explaining the
relation between the macroscopic properties of a system e.g. how the temperature of a system is affected
by the pressure changes under a certain volume (classical thermodynamics). Following that the connection
between the macroscopic and the microscopic properties came through the statistical thermodynamics.
Through this approach the gas consists of moving particles that interact among them (including quantum
phenomena) and hence one can describe the relation between the macroscopic properties in more detail as
well as what is happening in smaller length scales and smaller time scales.

Nowadays the study of the BL Lac variability phenomenon is done following a completely opposite way.
People try to derive from small data sets (lasting some days) source parameters knowing that these objects
exhibit variations of the order of years. One has firstly to understand and interpret the overall behavior
and then try to explain what is happening in smaller time scales. Trying to understand the physics of the
system based on a single daily light curve is similar to studying the ideal gas law based on the evolution
equation of one particle.

One of the most standard concluding phrases in the field of BL Lac astronomy dealing with variability
is the following: “more observations are needed in order to elucidate the variability properties of the BL Lac
objects”. Maybe it would be more insightful firstly to analyze the already existing data archives, consisting
of thousands of measurements, in a homogeneous way. Sometimes these archives cover periods of more
than 50 years mapping in a very representative way the long-term behavior of the sources. Of course this
does not exclude variations in time scales of centuries but this is the best that one can do up to now. Only
through the study long-term light curves one might find some deterministic signatures connected with some
real physical source parameters.
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H I, see neutral hydrogen
NHI, see equivalent neutral hydrogen column
R/S, see rescaled range analysis
S/N , see signal to noise ratio
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erf, see error function
3C 273, 92
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3C 390.3, 92
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absorption cross section, see effective absorption cross
section

absorption model, see interstellar absorption photo-
electric model

accretion binary, 1
accretion disk, 2, 5
accretion rate, 85
ACF, see autocorrelation function
active galactic nucleus (AGN), 1, 2, 4, 18, 21, 30–32,

34, 52, 85, 92, 110
orientation scenario, 3
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ADC, see analog digital converter
additive

noise, see noise
response of a dynamical system, see dynamical

system
spectral model, 18

additivity test, see Tukey’s test
adjusted rescaled range analysis, see under long-term
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AGN, see active galactic nucleus
aliasing effect, see under periodogram
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74, 100, 110
comparison with the proportional counter array,

62–67

data reduction, 19

data reduction for the proportional counter ar-
ray
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dwell observation, 13, 14, 19, 62, 63
reliability, 63, 65–67

observations of
Mrk 421, see Mrk 421

Mrk 501, see Mrk 501
PKS 2155-304, see PKS 2155-304

one-day average observation, 19, 62
scanning shadow camera (SShC), 13

position sensitive proportional counter (PSPC),
13

analog digital converter (ADC), 12
ancillary response file, see under data reduction for

the proportional counter array
angular size, 119
anode chain, 12, 17, 18
antico propane layer, 12, 17, 58
antipersistence, see long-term memory
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AR, see autoregressive model
ARCH, see autoregressive conditional heteroscedas-

ticity model
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artefact, 19, 69
artificial light curve, see simulation
ASCA, 6, 69, 85

observations of Mrk 501, see Mrk 501
ASM, see all-sky monitor
asymptotic behavior, 35
attractor, 38, 39, 43, 45, 47, 102

chaotic, 38
limit circle, 38
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strange, 38
toroidal, 38

autocorrelation coefficient, 54
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ture function
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diffuse X-ray emission, 16, 17
estimation
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High Energy Stereoscopic System
instrumental, 17, 18
model, see data reduction for the proportional
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particle-induced, 17, 110
unfiltered events, see data reduction for the pro-

portional counter array
backwards difference operator, 95

Beppo satellite per astronomia X (BeppoSAX), 105
BeppoSAX, see Beppo satellite per astronomia X
biased estimator of the variance, see variance
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113, 117–120
black hole, 2, 85, 90
blazar, 3, 4, 59, 69
BLR, see broad-line region
box-counting dimension, 44
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in the power spectral density, see power spectral

density
in the structure function, see structure function

bright background model, see under data reduction
for the proportional counter array

brightness temperature, 118–119

broad-line region (BLR), 3
broken power-law, 46, 112

spectrum, 18, 107

Brownian motion, 24
burst activity, 26, 62, 92, 97, 103, 119
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Cas A, see Cassiopeia A
Cassegrain reflector, 113
Cassiopeia A (Cas A), 58
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causality argument, 70, 117, 119
CCD, see charge-coupled device, see charge-coupled

device
CFITSIO, see data reduction for the proportional

counter array
CGRO, see Compton gamma ray observatory
Chandra, 105
chaotic

dynamical system, see under nonlinear
process, 86, 94

chaotic attractor, see attractor
characteristic time scale, see under structure func-

tion

charge sensitive amplifier (CSA), 12
charge-coupled device (CCD), 1, 25
Čerenkov telescope, 59, 65, 105, 106

CANGAROO, 105
High Energy Stereoscopic System, see High En-

ergy Stereoscopic System
Mark 6, 105
Whipple, 67

observations of Mrk 421, see Mrk 421
chi-square distribution

(
χ2
)
, 29, 35, 94

chi-square test (belongs to the portmanteau test), 92
classical decomposition model, 79

classical rescaled range analysis, see under long-term
memory

close neighbor, see under correlation dimension
clump, 118
coincidence time, see higher order correlation
collimator, 10, 13, 17, 18
color of noise, see noise
compact source, 117–119
complex conjugation, 33, 35, 37, 50
Compton gamma ray observatory (CGRO), 105
convolution theorem, 31
core dominated, 3
correlation analysis, 105

for PKS 2155-304, see PKS 2155-304
correlation dimension, 36, 39, 45, 45–48, 99, 102

analysis for Mrk 421, see under Mrk 421
correlation integral, 45, 94, 99, 102

close neighbor, 47, 100
correlation integral, see correlation dimension
cosmic

photon, 18
ray, 106

covariance matrix, 50

Crab Nebula, 58
CSA, see charge sensitive amplifier
cumulative deviation, 52

data reduction for the all-sky monitor, see all-sky
monitor

data reduction for the proportional counter array,
16–19

background estimation, 17, 110
background model, 17, 18, 58, 59, 110

bright, 17, 59
faint, 17, 59, 110
Q6 rate, 17

scientific product, 17–18

ancillary response file (ARF), 18

light curve, 17–18

redistribution matrix function (RMF), 18

response matrix (RSP), 18

spectrum, 18

selection criteria, 16–17

Earth occultation, 16
electron contamination, 16
good time interval file (GTI), 16, 17
pointing offset, 16
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south Atlantic anomaly (SAA), 16, 17
Standard-2 configuration mode (Std2), 16, 17

software, 16

calibration database (CALDB), 18
CFITSIO, 16

flc2ascii, 18

fmerge, 16

FTOOLS, 16, 17
fv, 16

HEAsoft, 16

lcmath, 18

lcurve, 18

maketime, 16
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pcarsp, 18

saextrct, 17

XANADU, 16
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ximage, 16
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xspec, 16, 18
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xtefilt, 16

unfiltered background events, 18–19, 110
data set, 21, 34, 35, 39, 46, 48, 50, 54, 55, 79, 86, 88,

92, 93, 95, 100, 119
almost periodic, see under deterministic
complex periodic, see under deterministic
deterministic, see deterministic
linear, see under linear
nondeterministic, see nondeterministic
sinusoidal, see under deterministic
small, see small data set
transient nonperiodic, see under deterministic

decay time, see shot model
declination, 18, 106
delay embedding theorem, see method of delays (MOD)
delay variable, see under method of delays
delay vector, see method of delays
detector’s response, 18
deterministic, 2, 34, 51, 92, 102, 103

data set, 21

almost periodic, 22

complex, 21

sinusoidal, 21

transient nonperiodic, 22

physical system, 21, 26, 36
nonperiodic, 21
periodic, 21, 97

DFT, see discrete Fourier transform
diffeomorphism, 39

difference equation, 37, 37, 43
differential equation, 36, 37, 43
diffuse X-ray background emission, see background
dimension, 43–45, 48, 99, 102

analysis for Mrk 421, see Mrk 421

box-counting dimension, see box-counting di-
mension

capacity dimension, see capacity dimension
correlation dimension, see correlation dimension
embedding dimension, see method of delays
Hausdorff dimension, see Hausdorff dimension
high, 22, 36, 46, 86, 99
low, 21, 36, 46, 86, 94, 99

discontinuous sampling, see sampling
discrete Fourier transform, see Fourier transform
discretization, 27, 38, 39
Doppler boosting, 4

Doppler factor, 4, 86, 117, 119
double-well potential, 26

doubling time, 117

dwell, see dwell observation
dwell observation, see all-sky monitor
dynamical noise, see noise
dynamical system, 25, 36, 38, 48, 92

autonomous, 36
continuous, 35

Lorenz, 37, 39, 43, 45
discrete

Hénon, 37, 43, 45, 46, 51, 100, 102
linear, see linear
nonlinear, see nonlinear
response

additive, 25

homogeneous, 25

EA, see event analyzer
EAR, see exponential autoregression
Earth occultation, see under data reduction for the

proportional counter array
EDS, see experimental data system
effective absorption cross section, 18
EGRET, see energetic gamma ray experiment tele-

scope
eigenvalue, 37, 50

of fixed point, 39
eigenvector, 50

matrix, 50
electron contamination, see under data reduction for

the proportional counter array
ELECTRON2, 17, 19
elevation angle, 16
embedding dimension, see method of delays
embedding function, see method of delays (MOD)
embedding theorem, see delay embedding theorem
embedology, 41

energetic gamma ray experiment telescope (EGRET),
105

Epoch, see gain Epoch
epoxy, 12
equilibrium point, 26
equivalent neutral hydrogen column (NHI), 12, 18,

110
equivalent representation, 39, 41

erf, see error function
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ergodic process, see nondeterministic
error function (erf), 95

Euclidean
norm, 45

space, see under phase space
Euler’s formula, 34

European X-ray observatory satellite (EXOSAT), 6,
17, 85

event analyzer (EA), see experimental data system
evolution equation, 26, 35
excess variance, 89, 119

estimates for Mrk 421, see under Mrk 421
normalized excess variance, 89

EXOSAT, see European X-ray observatory satellite
ExpAr, see exponential autoregression
experimental data system (EDS), 10, 14–16, 16

event analyzer (EA), 10, 14

exponential autoregression (EAR or ExpAR), 92

faint background model, see under data reduction
for the proportional counter array

fake time scale, see under structure function
Fanaroff-Riley galaxy

type I (FR I), 3

type II (FR II), 3

FITS, see flexible image transport system
flat spectrum radio quasars (FSRQ), 3

flc2ascii, see under data reduction for the propor-
tional counter array

flexible image transport system (FITS), 16
fluctuation, 18, 30, 77, 86, 88, 90–92
fmerge, see under data reduction for the proportional

counter array
Fourier transform, 27, 31, 34, 36, 94

discrete Fourier transform (DFT), 29
inverse discrete Fourier transform (IDFT), 35

FR I, see Fanaroff-Riley galaxy
FR II, see Fanaroff-Riley galaxy
frequency domain, 27, 35, 36
frequency domain test, see nonlinearity test
FSRQ, see flat spectrum radio quasars
FTOOLS, see under data reduction for the propor-

tional counter array
fundamental frequency, 22

fv, see under data reduction for the proportional
counter array

gain
Epoch, 58
settings, 18, 58

γ-ray burst (GRB), 113
Gamma function (Γ(x)), 34, 55
gamma-ray burst, see γ-ray burst
Gaussian distribution, 2, 25, 26, 29, 30, 35, 48, 53,

70, 76, 80, 91, 94, 95, 97, 102
Gaussian statistics, 88, 90, 91
Gaussianity, see Gaussian distribution
genuine phase space, see phase space
geographic pole, 16

geometric mean frequency, see under periodogram
geometric time series, 81

geometrical invariant, 39
correlation dimension, see correlation dimension
eigenvalue of fixed point, see eigenvalue
Lyapunov exponent, see Lyapunov exponent

Ginga satellite, 17
good time interval file, see under data reduction for

the proportional counter array
GRB, see γ-ray burst
GTI, see good time interval file

H.E.S.S., see High Energy Stereoscopic System
Hénon dynamical system, see under dynamical sys-

tem
H I, see neutral hydrogen
harmonic, 85

component, 79
frequency, 22, 97

Hausdorff dimension, 45
HBL, see high-energy peaked BL Lacertae
HEAO, see high energy astrophysical observatory
HEAsoft, see under data reduction for the propor-

tional counter array
Heaviside step function, 45
heteroscedasticity, 2, 24, 53, 97
HEXTE, see high energy X-ray timing experiment
high energy astrophysical observatory (HEAO), 17,

105
High Energy Stereoscopic System (H.E.S.S.), 7, 67,

105, 106

background estimation
the ring method, 106

observations of
Mrk 421, see Mrk 421
PKS 2155-304, see PKS 2155-304

standard analysis, 106
high energy X-ray timing experiment (HEXTE), 9–

10, 13, 110
high voltage power supply (HVPS), 12
high-dimension, see dimension
high-energy peaked BL Lacertae (HBL), 3, 105
higher order correlation, 41–42, 94, 99

coincidence time, 42, 94, 99
homogeneous response of a dynamical system, see

dynamical system
homomorphism, 41

HST-1, 117
Hurst exponent, see long-term memory, 53

HVPS, see high voltage power supply
hydrogen column, see equivalent neutral hydrogen

column
hyper-, 43

hyperaxis, 50, 102
hyperbox, 44
hypercube, 43
hyperellipsoid, 48, 102
hypersphere, 43, 50, 100

radius, 45, 45, 47, 94, 99, 100
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hypervolume, 43
hypothesis test, 74

IC radiation, see inverse Compton radiation
identity matrix, 50
IDFT, see inverse discrete Fourier transform
IDV source, see intraday variable source
IID variable, see independent and identically dis-

tributed variable
independent and identically distributed variable, see

variable
independent variable, see variable
instrumental

background, see background
error, see under optical observations of PKS 2155-

304
magnitude, see under optical observations of

PKS 2155-304
intermittency, 26, 91, 119
intermittent behavior of Mrk 421, see under Mrk 421
interstellar absorption photoelectric model, 18
intraday variable source (IDV source), 118
inverse Compton catastrophe, 118

inverse Compton radiation (IC radiation), 3, 5, 105
synchrotron self-Compton radiation (SSC radi-

ation), 5, 118
inverse discrete Fourier transform, see Fourier trans-

form
irregular sampling, see sampling

jet, 2–5, 85, 117, 119

Keplerian time scale, see under structure function
Kolmogorov-Smirnov test, 77, 94
Kungliga Vetenskapsakademien telescope (KVA tele-

scope), 113, 113

kurtosis, 42

KVA telescope, see Kungliga Vetenskapsakademien
telescope

Lagrange multiplier test, see under nonlinearity test
laminar phase, 26

LBL, see low-energy peaked BL Lacertae
lcmath, see under data reduction for the proportional

counter array
lcurve, see under data reduction for the proportional

counter array
least squares, 2, 44
likelihood ratio test (belongs to Lagrange multiplier

test), 92
limit circle attractor, see attractor
linear

data set, 2, 36
dynamical system, 25, 76

autonomous, see dynamical system
physical system, 36, 39, 92
process, 93, 95
time series analysis methods, 27–35, 37, 79

linear regression, 2, 29, 44, 46, 52, 53, 80

with errors on both axes, 65, 81
linear source size, 5, 69, 86, 117, 118
lobe dominated, 3
logarithmic periodogram, see periodogram
long-term memory, 51–55

antipersistence, 52, 97
cycle, 52, 95, 97

nonperiodic, 52, 97
periodic, 52

dissipation, 53, 97
for Mrk 421, see under Mrk 421
Hurst exponent, 52, 95
persistence, 52, 97
rescaled range analysis (R/S), 52–54

adjusted, 53, 97
classical, 53, 97
expected value, 55

V statistic, 54, 97
Lorenz dynamical system, see under dynamical sys-

tem
low voltage power supply (LVPS), 12
low-dimension, see dimension
low-energy peaked BL Lacertae (LBL), 3

LVPS, see low voltage power supply
Lyapunov exponent, 36, 39

M 87, 117
macroscopic, 120
magnetic pole, 16
magnetosphere, 17
maketime, see under data reduction for the propor-

tional counter array
manifold, 36, 38, 48

mapping, 39, 50
Mann-Whitney test, 94
mapping between manifolds, see manifold
Mark 6 Čerenkov telescope, see Čerenkov telescope
mask plate, 13
measurement

error, 2, 19, 25, 27, 32, 58, 63, 65, 70, 77, 80,
81, 87, 89, 92, 94, 97, 102

uncertainty, 2, 25, 67, 70, 81, 89, 94, 97, 100,
102, 117

memory, see long-term memory
memory dissipation, see long-term memory
MET, see mission elapsed time
method of delays (MOD), 36, 39, 44, 48, 50, 94

delay embedding theorem, 41

delay vector, 39, 50
delay variable, 39

embedding dimension, 36, 39, 43, 46, 47, 51, 94,
99, 102

selection criteria, 41

embedding function, 41

time delay, 39, 51, 99
higher order correlation, see higher order cor-

relation
selection criteria, 41–43

time window, 39, 48, 94
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selection criteria, 40–43

method of surrogates, 93–95, 97
surrogate data set, 93, 99

microscopic, 120
mission elapsed time (MET), 19
MOD, see method of delays
Monte Carlo, see simulation
Mrk 421, 5, 69, 88, 93, 117, 119

all-sky monitor observations, 63
light curve, 59–62, 91, 97, 99, 100, 102, 119

dimensionality, 99–103, 120
correlation dimension, 99–102

principal component analysis, 102–103

High Energy Stereoscopic System observations,
67

light curve, 67
proportional counter array observations, 57

background file, 58–59

light curve, 59, 89, 91, 93, 97, 119
variability properties, 6, 59, 62

excess variance estimates, 90
intermittency, 91, 119
memory, 95–97

nonlinearity (long-term study), 97–99, 119
nonlinearity (short-term study), 93–95

stationarity, 89–90

Whipple observations, 67
Mrk 501, 5, 19, 69, 76

all-sky monitor observations, 74
light curve, 74

ASCA observations, 69, 70, 79
light curve, 70, 79, 81

multifrequency/multiwavelength, 4, 6, 59, 62, 105,
106

observations of PKS 2155-304, see PKS 2155-
304

multiplicative
noise, see noise
spectral model, 18

multiplicative spectral model, see additive
multiwavelength, see multifrequency
Mylar window, 12

narrow-line region (NLR), 3
Navier-Stokes equations, 26
neutral hydrogen

column, see equivalent neutral hydrogen column
neutral hydrogen (H I), 12, 18
NGC 4051, 92
NGC 6814, 85
NHI, see equivalent neutral hydrogen column
nh, see under data reduction for the proportional

counter array
NLR, see narrow-line region
noise, 2, 25, 26, 48, 50, 51, 77, 99

additive, 25, 26

color, 24
component, 25, 26, 50, 76, 79, 81, 100, 102
dynamical, 25, 48, 100

multiplicative, 25, 26

observational, 25, 25, 38, 70
process, 22, 34, 35, 92

red, 24, 34, 86, 97
white, 24, 26, 48, 50, 51, 80, 81

nondeterministic
data set, 21, 22
physical system, 21, 22
process, 22

ergodic, 23

nonstationary, 22, 79, 86–88, 90–92, 95
stationary, 23, 30, 32, 34, 36, 52, 54, 86, 87,

89, 95
strongly stationary, 23

weakly nonstationary, 23

nonharmonic, 80, 95
nonlinear

data set, 36
dynamical system, 26, 35, 76

chaotic, 26, 36
physical system, 26, 39
time series analysis methods, 35–55

nonlinearity, 92–93

for Mrk 421, see under Mrk 421
test, see nonlinearity test

nonlinearity test, 92–93

frequency domain test, 92
nonparametric test, 92
statistical test, 93

method of surrogates, see method of surro-
gates

time domain test, 92
Lagrange multiplier, 92
portmanteau, 92

nonparametric test, see nonlinearity test
nonperiodic, 52, 95

cycle, see under long-term memory
physical system, see under deterministic

nonstationary process, see under nondeterministic
nonsymmetric shot, see shot model
normalized excess variance, see excess variance, 91
normalized structure function, see structure function
NSF, see normalized structure function
Nyquist critical frequency, 29, 31
Nyquist frequency, see Nyquist critical frequency

observational noise, see noise
OJ 287, 92
one-day average ASM observation, see all-sky mon-

itor
one-to-one correspondence, 41
optical observations of PKS 2155-304, see PKS 2155-

304
data reduction, 113–114

aperture photometry, 113

instrumental error, 114
instrumental magnitude, 113

reference star, 113
systematic offset, 114

140



Index

orientation scenario for the active galactic nuclei ,
see active galactic nucleus

orthogonal matrix, 50

orthogonal polynomial, 103
orthonormal basis, 36

parent distribution, 2, 25, 26, 32, 90, 102
Parserval’s theorem, 30
particle-induced background, see background
PCA, see proportional counter array
pcabackest, see under data reduction for the propor-

tional counter array
pcarsp, see under data reduction for the proportional

counter array
PCU, see proportional counter unit
pendulum, 26
periodic, 21, 76, 85

cycle, see under long-term memory
physical system, see under deterministic

periodogram, 29, 29, 31, 35, 79
aliasing effect, 31, 35
connection with the

variance, see under variance
logarithmic, 29, 70, 74, 88, 94, 99

geometric mean frequency, 29, 70
smoothed, 29
spectral leakage, 31
windowing effect, 31

persistence, see long-term memory
perturbation, 26
phase space, 36, 36–38, 43, 48, 50, 95, 99

Euclidean, 36, 38, 39, 41
genuine, 36, 38, 40, 47, 100
reconstruction, 36, 38–40, 45, 47, 48, 51, 94,

99, 102
method of delays, see method of delays

trajectory, 36, 38, 41, 48, 51
volume, 43

hypervolume, see hypervolume
phoswich scintillator, see scintillator
photoelectric model, see interstellar absorption pho-

toelectric model
photomultiplier, 106
photon density, 118
physical system, 21, 25, 35

deterministic, see deterministic
linear, see linear
nondeterministic, see nondeterministic
nonlinear, see nonlinear
nonperiodic, see under nondeterministic
periodic, see under deterministic

PKS 2155-304, 69, 105–106

all-sky monitor observations, 110

light curve, 110

correlation analysis, 114

High Energy Stereoscopic System observations,
106–107, 110

light curve, 106
optical observations, 113

proportional counter array observations, 110–

112

light curve, 110

variability properties, 106

point attractor, see attractor
pointing

offset, see under data reduction for the propor-
tional counter array

position, 17
Poisson distribution, 75, 92
Poissonial statistics, 25, 77
portmanteau test, see under nonlinearity test
position sensitive proportional counter, see under

all-sky monitor
power spectral density (PSD), 21, 23, 24, 27–29, 29,

30, 33, 34, 36, 51, 70, 74, 76, 79, 85, 86, 88,
89, 92–95, 97

break, 85

connection with the
structure function, see structure function (SF)
variance, see under variance

power-law form, see power law
power-law, 5, 46, 72, 74, 75, 91

broken power-law, see broken power-law
power spectral density, 23, 29, 31, 34, 34, 35,

85
spectrum, 18, 107, 110

with exponential cut-off, 107

Prin.Comp.Anal., see principal component analysis
principal component analysis (Prin.Comp.Anal.), 36,

48–51, 102
for Mrk 421, see under Mrk 421
singular value decomposition (SVD), 48, 50

singular value, 50, 102, 103
singular vector, 51, 102, 103

propane
layer, see antico propane layer
volume, 12

proportional counter array (PCA), 6, 9–12, 14, 16–
18, 57, 62, 63, 67, 89, 110, 119

comparison with the all-sky monitor, see all-sky
monitor

data reduction, see data reduction for the pro-
portional counter array

gain settings, see gain
observations of

Mrk 421, see Mrk 421
PKS 2155-304, see PKS 2155-304

proportional counter unit (PCU), 6, 9, 10, 16,
18, 58, 110

breakdown, 58
proportional counter unit, see proportional counter

array
PSD, see power spectral density
pseudoperiodic behavior, 93
pseudorandom numbers, 35
PSPC, see position sensitive proportional counter
pulsar, 1
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pulse-height histogram, 16

Q6 rate, see under data reduction for the propor-
tional counter array

QSO, see quasi-stellar object
quasar, 3, 92
quasi-stellar object (QSO), 3

radial basis function (RBF), 36
radiation, 3–5, 17, 52, 88, 117, 118

inverse Compton, see inverse Compton radia-
tion

synchrotron, see synchrotron radiation
synchrotron self-Compton, see inverse Compton

radiation
radio-loud galaxy, 3

radio-quiet galaxy, 3, 3

radioactive decay, 17
radius of the hypersphere, see hypersphere
random, 35, 70, 72, 79, 86, 92, 94, 97, 119

process, 2, 22, 54, 74, 92
variable, see variable
walk process, 24, 52, 54, 55, 97

reconstruction of the phase space, see phase space
red noise process, see under noise
redistribution matrix function, see under data re-

duction for the proportional counter array
reference star, see under optical observations of PKS 2155-

304
relativistic beaming, 4, 117
remote interface (RIF), 12
rescaled range analysis, see long-term memory
residual, 80, 92
response

of a dynamical system, see dynamical system
matrix, see under data reduction for the pro-

portional counter array
of the detector, see detector’s response

RIF, see remote interface
right ascension, 18
ring model for background estimation, see under High

Energy Stereoscopic System
rise time, see shot model
RMF, see redistribution matrix function
robotic optical transient search experiment (ROTSE),

113, 114
ROSAT, 105
Rossi X-ray timing explorer (RXTE), 6, 9, 13, 17,

57, 67, 105, 110
ROTSE, see robotic optical transient search experi-

ment
R/S, see rescaled range analysis
RSP, see response matrix
RXTE, see Rossi X-ray timing explorer (RXTE)

S statistic, 88

S5 0716+714, 118
SA, see shaping amplifier (SA)
SAA, see south Atlantic anomaly

saextrct, see under data reduction for the propor-
tional counter array

sampling, 27, 29, 35
discontinuous, 2
irregular, 2, 88

saros, 1

scaling
in linear systems, 25

scaling region, 46
scanning shadow camera, see all-sky monitor
science array format, 16

scientific product, see data reduction for the propor-
tional counter array

scintillator, 9, 25
phoswich, 13

score test (belongs to Lagrange multiplier test), 92
seasonal component, 79

SED, see spectral energy distribution
self-exciting threshold autoregression (SETAR), 92
separation time, see shot model
SETAR, see self-exciting threshold autoregression
Seyfert galaxy, 3, 59, 69, 85

type I, 3, 3

type II, 3, 3

SF, see structure function
shaping amplifier, 12
short-range dependence, 53, 97
shot model, 75, 76, 92, 119

decay time, 75, 119
nonsymmetric shot, 75

rise time, 75, 75, 119
separation time, 75
symmetric shot, 75

time scale, see under structure function
Siding Spring observatory (SSO), 113, 113

signal to noise ratio (S/N), 12, 18
significance level, 25, 74, 77, 80, 103
simulation, 2, 81, 102

artificial light curve, 34–35, 70, 74, 75, 86, 93,
94, 97, 99, 102

Monte Carlo, 25
shot model, see shot model
surrogate data set, see method of surrogates

singular value, see under principal component anal-
ysis

singular value decomposition, see principal compo-
nent analysis

singular vector, see under principal component anal-
ysis

sinusoid, 21, 27, 52, 76
skewness, 42

small data set, 48, 97, 102

smooth transformation, 39, 40, 41

smoothed periodogram, see periodogram
S/N , see signal to noise ratio
solar flare, 17
source size, see linear source size
south Atlantic anomaly, see under data reduction for
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spectral energy distribution (SED), 4

spectral leakage, see periodogram
spectral variability, see variability
SSC radiation, see synchrotron self-Compton radia-

tion
SShC, see scanning shadow camera
SSO, see Siding Spring observatory
SSRQ, see steep spectrum radio quasars
standard analysis, see High Energy Stereoscopic Sys-

tem
standard deviation, 25, 42, 46, 52, 70, 89–91, 97
Standard-2 configuration mode, see under data re-

duction for the proportional counter array
stationarity test for Mrk 421, see under Mrk 421
stationary operator, see backwards difference oper-

ator
stationary process, see under nondeterministic
statistical moment, 6, 35, 76, 79, 86, 93, 102
statistical range, 46, 53, 95, 99, 100
statistical test, see nonlinearity test
Std2, see Standard-2 configuration mode
steep spectrum radio quasars (SSRQ), 3

Stirling’s approximation, 55

stochastic, 26, 48, 51, 92, 99, 102, 117
process, 22, 44, 46, 85, 92, 94
time series, 34

strange attractor, see attractor
strongly stationary process, see under nondetermin-

istic
structure function (SF), 2, 31, 69, 70, 77

break, 32, 75, 77
distribution, 74
specification, 72

connection with the
autocorrelation function, 32–33
power spectral density, 33–34
shot model time scale, 75–76

normalized structure function (NSF), 33, 77
slope, 32, 75
time delay, 31, 33
time scale

characteristic, 2, 32, 69, 70
fake, 2, 69–74
Keplerian, 69
Mrk 501, 70
thermal, 69
viscous, 69

superluminal motion, 4

superposition, 75
in linear systems, 25

surrogate data set, see method of surrogates
SVD, see singular value decomposition
Swift satellite, 113
symmetric shot, see shot model
synchrotron radiation, 3, 5
synchrotron self-Compton radiation, see inverse Comp-

ton radiation

systematic offset, see under optical observations of
PKS 2155-304

Takens’ theorem, see delay embedding theorem
tantalium layer, 12
taxonomy of the active galactic nuclei, see active

galactic nucleus
telemetry, 14
test pulse generator (TPG), 12
thermal shield, 10, 13
thermal time scale, see under structure function
thermodynamics, 120
thin-zone spectrum, 36
time delay

in method of delays, see method of delays
in structure function (SF), see under structure

function
time domain, 27, 35
time domain test, see nonlinearity test
time scale, 1–3, 6, 9, 17, 24, 30, 35, 52, 62

characteristic, see under structure function
connection with the

shot model, see under structure function
structure function, see structure function

doubling, see doubling time
fake, see under structure function
Keplerian, see under structure function
thermal, see under structure function
viscous, see under structure function

time series analysis methods
linear, see linear
nonlinear, see nonlinear

time window, see method of delays
toroidal attractor, see attractor
TPG, see test pulse generator
trajectory

in the phase space, see phase space
matrix, 50

transpose, 50
trend, 79

Tukey’s test, 92
additivity test (belongs to the portmanteau test),

92

unbiased estimator of the variance, see variance
underlying process, 5, 25, 35, 52, 55, 77, 85, 86, 89,

90, 92, 97, 99, 102, 103, 119
unfiltered background events, see data reduction for

the proportional counter array
uniform distribution, 51
unitary matrix, 50

V statistic, see long-term memory
Van der Pol oscillator, 26
variability, 2, 3, 5, 7, 24, 32, 52, 58, 77, 85, 87, 88,

90–93, 102, 103, 114, 119, 120
power, 30, 70, 86
process, 9, 30
spectral, 106
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variable
delay, see under method of delays
independent, 22, 26, 36, 38, 39, 43
independent and identically distributed (IID),

24

random, 24, 35
variable star, 1
variance, 24–26, 29, 30, 32, 35, 42, 52, 86, 88, 89, 92,

95
biased estimator, 30

connection with the
periodogram, 30
power spectral density, 30

excess variance, see excess variance
unbiased estimator, 30, 72

very high-energy (VHE), 3, 6, 7, 69, 105, 110, 114
observations of PKS 2155-304, see PKS 2155-

304
Very Long Baseline Array (VLBA), 86
Very Long Baseline Interferometry (VLBI), 119
veto chamber, 12, 18
VHE, see very high-energy
viscous time scale, see under structure function
VLBA, see Very Long Baseline Array
VLBI, see Very Long Baseline Interferometry
volume in the phase space, see phase space

Wald test (belongs to Lagrange multiplier test), 92
weak nonlinear oscillator, 36
weakly nonstationary process, see under nondeter-

ministic
Whipple Čerenkov telescope, see Čerenkov telescope
white noise process, see under noise
Whitney’s theorem, 41

window function, 31
Barlett, 31
Blackman-Harris, 31
Hamm, 31
Kaiser, 31
Parzen, 31
rectangular, 31
Tukey, 31
Welch, 31

windowing effect, see periodogram
Wobble mode, 106

XANADU, see under data reduction for the propor-
tional counter array

xdf, see under data reduction for the proportional
counter array

xenon
layer, 12, 18, 58
volume, 12

ximage, see under data reduction for the propor-
tional counter array

xronos, see under data reduction for the proportional
counter array

xspec, see under data reduction for the proportional
counter array

XSTAR, see under data reduction for the propor-
tional counter array

xtefilt, see under data reduction for the proportional
counter array
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