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Learning and Generalisation in Neural Networks with Local

Preprocessing

We study learning and generalisation ability of a specific two-layer feed-forward
neural network and compare its properties to that of a simple perceptron. The
input patterns are mapped nonlinearly onto a hidden layer, much larger than the
input layer, and this mapping is either fixed or may result from an unsupervised
learning process. Such preprocessing of initially uncorrelated random patterns re-
sults in the correlated patterns in the hidden layer. The hidden-to-output mapping
of the network is performed by a simple perceptron, trained using a supervised
learning process. We investigate the effects of the correlations on the learning and
generalisation properties as opposed to those of a simple perceptron with uncorre-
lated patterns. As it turns out, this architecture has some advantages over a simple
perceptron.

Lernen und Generalisierung in neuronalen Netzen mit lokaler

Vorverarbeitung

Wir untersuchen Lern- und Generalisierungsverhalten eines zweischichtigen feed-
forward neuronalen Netzes und vergleichen sie mit den Eigenschaften eines ein-
fachen Perzeptrons. Die Eingangsmuster werden nichtlinear in einer Zwischen-
schicht abgebildet, die viel größer als die Eingangsschicht ist. Diese Abbildung
ist entweder vorgegeben oder wird durch einen unüberwachten Lernprozess bes-
timmt. Derartige Vorverarbeitung ursprünglich unkorrelierter zufälliger Muster
erzeugt Korrelationen in der Zwischenschicht. Von der Zwischenschicht werden die
Muster durch ein einfaches Perzeptron klassifizert, das mithilfe eines überwachten
Lernprozesses trainiert wird. Wir untersuchen den Einfluss der Korrelationen auf
das Lern- und Generalisierungsverhalten des Netzes und vergleichen die Ergebnisse
mit dem Fall eines einfachen Perzeptrons mit unkorrelierten Mustern. Diese Ar-
chitektur weist einige Vorteile gegenüber einem einfachen Perzeptron.
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Chapter 1

Introduction

The research in the field of neural networks was originated with the objec-
tive to model the neurons and neural networks in the brain. However, the
possibility of constructing artificial neural architectures capable of perform-
ing complicated computational tasks has been attracting much more interest
towards this area.

From the neurophysiological point of view the models of neural net-
works are rather simplified and abstract. The complexity of the internal
dynamics of single neurons is neglected. The neurons are seen as threshold
elements which fire if their post synaptic potential reaches or exceeds certain
threshold. Still, these models give a good insight into the global collective
behaviour of the network.

The post synaptic potential of a given neuron is formed as a weighted
sum of signals received from all other neurons. The weighting takes place in
synapses and a weight can be either positive or negative corresponding to
an excitatory or inhibitory synapse respectively. For a given configuration
of weights, thresholds and initial states the dynamics of a neural network is
determined.

In Chapter 2 we give a brief introduction to the models of neural net-
works. Two different architectures can be distinguished: feed-forward nets
and networks with feedback loops.

In feed-forward networks the information flow is directed. At their out-
put they perform certain mapping of the patterns fed into their input layer.
The mapping can be trained by learning with examples. The feed-forward
networks can serve as neural classifiers.

Networks with feedback loops, by contrast, consist of neurons with con-
nections in arbitrary directions. These networks are characterised by non-
trivial dynamic attractors and are referred to as associative memory.

The main objective of the present work is to study learning and gen-
eralisation ability of a two-layer feed-forward neural network proposed by
Bethge et al. [19] and compare its properties to that of a simple perceptron.
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2 CHAPTER 1. INTRODUCTION

The input patterns are mapped nonlinearly onto a hidden layer, much larger
than the input layer, and this mapping is either fixed or may result from an
unsupervised learning process. Such preprocessing of initially uncorrelated
random patterns results in the correlated patterns in the hidden layer. The
hidden-to-output mapping of the network is performed by a simple percep-
tron, trained using a supervised learning process. Of main interest is to
investigate the effects of the correlations on the learning and generalisation
properties as opposed to those of a simple perceptron with uncorrelated
patterns.

The next chapters contain discussions of the basic components of the
network.

Chapter 3 is devoted to the properties of the simplest neural network
called the simple perceptron [1]. The learning and generalisation, the abil-
ity to extract rules from examples, of the simple perceptron is well under-
stood [1, 2, 3, 4]. Simple and fast algorithms have been designed and their
convergence can be proved provided the rule is learnable i.e. realizable.

However, the classification ability of the simple perceptron is limited to
the so-called linearly separable problems [6]. A simple example of tasks,
which are unrealisable by a simple perceptron is the Boolean exclusive-OR
or XOR function. This limitation can be overcome by combining several
simple perceptrons to multilayer feed-forward networks serving as universal
classifiers [1, 2, 3, 4]. Such networks are discussed in Chapter 4. Never-
theless, the corresponding fast learning algorithms and convergence proofs
are still missing, and the solutions to the classification problems, if any,
can be ambiguous. The learning in such systems using the so-called error
back-propagation algorithm is usually slow and complex [7, 8].

An interesting detour to the problems associated with multilayer net-
works provide the so-called Support Vector Machines (SVMs) introduced
by Vapnik et al. [10, 11, 12, 13, 14, 15, 16, 17, 18]. The general properties
of the SVMs are presented in Chapter 5. The SVMs have several advan-
tages over the common neural architectures. For these systems, it is possible
to formulate learning algorithms which iteratively solve a convex optimisa-
tion problem having a single solution. On the one hand, the SVMs use the
heuristics known from perceptrons and can handle quite complex problems
despite the simplicity of their learning dynamics.

A specific learning scenario called unsupervised learning is introduced
in Chapter 6. In unsupervised learning there is no teacher producing the
training examples. Rather, a network is supposed to learn on its own from
unsorted examples, provided there is some structure within the distribution
of these examples. It extracts the features, regularities, correlations from
the example set and codes them at the output. Thus, there is a degree of
selforganisation present.

To achieve even better learning properties in multilayer networks the so-
called hybrid learning schemes have been investigated [2]. A hybrid network
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is of SVM kind. The input-to-hidden layer couplings are adjusted using
unsupervised learning and then fixed, while the hidden-to-output layer cou-
plings represent a simple perceptron, which is trained using the common
learning algorithms. Due to the preprocessing performed by unsupervised
learning at the first stage, the input-to-hidden layer becomes adjusted to
the input data structure, which in turn increases the overall learning rate of
the network.

Bethge et al. proposed a two-layer hybrid network of SVM type [19]. The
input-to-hidden layer couplings are fixed after a hypothetical unsupervised
learning so that the input data are recoded by representing them locally in
terms of mutually exclusive features. This requires a large hidden layer and
divergent pathways. One of the advantages of this architecture lies in the
comfortable scaling of the number of parameters with the size of the system.
In Chapter 7 the evaluation of the capacity of this network performed in [19]
is presented. While Chapter 8, the original part of the work, is devoted to
the investigation of the generalisation ability of Bethge et al. architecture.

For the calculations performed in this work, the method of replicas,
originally designed for the spin glass theory, was exploited. This method
was first devised by Kac [20], modified for the analysis of rubber elasticity
by Edwards [21] and used to study spin glasses by Edwards and Anderson
[22] and Sherrington and Kirkpatrick [23]. The method was applied to neural
networks by Amit et al. [24] and reapplied to analyse the space of couplings
J of networks by Gardner [25, 26]. The replica method is beneficial for
problems in which it is easier to calculate an average of the partition function
Z than that of ln Z.

In the final Chapter the results are analysed and an outlook given.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Neural Networks

The human brain is composed of nerve cells called neurons. A typical neuron
(Fig. 2.1) consists of the cell body – soma, where the cell nucleus is located;
a tree-like structure known as dendrites which is connected to the soma;
and the axon – a long nerve fiber branching in strands and substrands
and reaching distant parts of the brain. With the synaptic junctions, or
synapses the axons are connected to the other neurons. A typical neuron
has a few thousand synaptic connections with other neurons. The whole
brain contains 1010 to 1011 neurons which are interconnected with more
than 1014 synaptic junctions, thus forming a neural network (Fig. 2.2).

The transmission of a signal from one neuron to another at a synapse
involves a complex chemical process. Specific substances are transferred
resulting in the rise or fall of the electrical potential inside the body of the
receiving neuron. If this potential reaches or exceeds a threshold, the neuron
fires, i.e. an electrochemical pulse of fixed shape is sent through the axon
to the synapses connected with other neurons.

The first steps to the modelling of a neural network was made by Mc-

Figure 2.1: Schematic drawing of a neuron.

5



6 CHAPTER 2. NEURAL NETWORKS

Figure 2.2: Neurons in the cerebral cortex (from Ramón y Cajal (1880)).
The drawing is made using Golgi’s method of chemical staining.

Culloch and Pitts [32]. They proposed a simple model of a neuron being a
binary threshold unit. This unit evaluates the weighted sum of its inputs.
At the output we have one if the sum is above a threshold and zero if it is
below (Fig. 2.3):

σi(t + 1) = Θ

(
∑

i

Jijσj(t) − θi

)
. (2.1)

Time t is discrete, with one unit per process; Θ(x) is the unit step function,
or Heaviside function:

Θ(x) =

{
1, if x ≥ 0
0, if x < 0.

(2.2)

The weight or coupling Jij indicates the strength of the synapse from
neuron j to neuron i. It is either positive (excitatory) or negative (in-

hibitory); νi is the threshold of unit i.

Despite the simplicity and the lack of many complicated features of a
real neuron, a McCulloch-Pitts unit is a powerful tool for both modelling
and computations. Initially, the models of neural networks were used to get
the insights of the brain activities. However, the possibility of constructing
artificial networks capable of performing complicated computations raised
crucially the interest in this field. Very often the word artificial is omitted
and the terms neuron, neural networks are used to refer to the non-biological
man-made networks.

Another advantage of the networks with McCulloch-Pitts neurons is that
one can focus on the collective properties of a large network. Previous ex-
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Figure 2.3: Schematic diagram of a McCulloch-Pitts neuron.

perience with complex physical systems such as magnets and liquid crystals
has proved that the collective properties are often independent of the micro-
scopic details. Thus, the simplified models for the building blocks are often
advantageous for the macroscopic properties of the whole system.

There are several possibilities of building an artificial neural network
using the McCulloch-Pitts neurons, characterised by the connectivity graph
of the synaptic matrix Jij . Fig. 2.4 shows some examples of networks.

A mathematical analysis is possible only for some architectures, which
have extreme kinds of connectivity. Two main types are of special interest.
In the first one all neurons are interconnected with each other (Fig. 2.4
a), there are feed-back loops. The dynamics is non-trivial and may become
chaotic. The scenario becomes simpler for symmetric couplings Jij = Jji.
In this case an energy

H(S) = −
∑

ij

JijSiSj, (2.3)

where S = (S1, ..., SN ) denote neuron activities, can be introduced. The dy-
namics can be chosen such that H(S) never increases. This leads the system
to an attractor state, which is a local minimum of H(S). By appropriately
choosing the couplings Jij , these attractors can even be certain desired neu-
ron configurations ξµ = (ξµ

1 , ..., ξµ
N ), ξµ

i = ±1. If the initial configuration
S is close to one of the attractors ξν, the dynamics will tend to this at-
tractor and thus restore the pattern ξν. That is why the attractor neural
networks can serve as associative memories which restore a stored pattern
if it is initially given as a noisy or incomplete version of this pattern. The
important questions in the statistical mechanics of attractor neural networks
include the maximal storage capacity and the properties of learning rules
[2, 27, 28, 29].

The other type of the architecture is the feed-forward neural network
(Fig. 2.4 c). The neurons can be arranged in layers, which are named the
input, hidden and output layers. The neurons in each layer are only con-
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Figure 2.4: Different types of neural networks. a) attractor neural network,
b) simple perceptron, c) feed-forward network with one hidden layer.

nected with the two neighbouring ones. In such networks the information
flow is directed, which makes its dynamics very simple. The outputs produce
a certain map or function of the input, i.e. the task is the classification of
the input vectors into classes determined by the different configurations at
the output. The feed-forward networks are very good for learning from ex-
amples. The simplest feed-forward network having no hidden layers called
simple perceptron (Fig. 2.4 b) was introduced by Rosenblatt in 1962 [1].
Due to its simplicity, the perceptron can be analysed completely. In the
statistical mechanics of learning the perceptron plays the role of hydrogen

atom. Although the perceptron is a simple model for some features of the
human brain, and it caused the euphoria about the artificial neural networks
in the 1960s, there are some obvious limitations too, which forced the con-
sideration of more complicated architectures. The techniques developed for
the perceptron were also applied to the more effective multilayer networks

with one or more hidden layers.



Chapter 3

Simple Perceptron

In this chapter we discuss the properties of the simplest neural network, the
simple perceptron. The first section concerns the storage capacity of a simple
perceptron, and the second sections deals with the generalisation. Several
learning rules are discussed in the third section.

A simple perceptron is an element which sums a single N -dimensional
layer of given inputs ξ = (ξ1, ..., ξN ) with synaptic weights J = (J1, ..., JN )
and passes the result through a transfer function (Fig. 3.1):

σµ = sign

(
N∑

i=1

Jiξ
µ
i − θ

)
, (3.1)

where θ is a threshold and µ ∈ {1, 2, ..., p} is the index of the input-output
pattern. Note that the Θ function (as in (2.1)) is replaced by sign. This is
plausible since the mean activity of random patterns is 0.5 which justifies
the ±1 representation [30]. During the learning process the perceptron is
required to adjust its weights J so that the desired input-output pattern
(ξµ, σµ

0 ) can be realized, i.e. σµ = σµ
0 . Assuming σµ

0 , ξµ
i = ±1, the task of

the perceptron is to classify correctly p input patterns into two classes, with
the output σµ

0 = 1 and σµ
0 = −1.

For the illustration we choose the case N = 2 (Fig. 3.2). The vector J

is perpendicular to the line
∑N

i=1 Jiξ
µ
i − θ = 0. In this arrangement σ1 = 1

is the output of the input ξ1 = (1, 1) (full circle) and σµ = −1 for the three
other inputs (open circles). Thus the line separates the full and the open
circles. In case of two full circles at (−1,−1) and (1, 1) (Boolean exclusive-
OR or XOR function) no line could separate the circles. Thus a simple
perceptron can only realize classifications corresponding to a bisection of ξµ-
space by a hypersurface, i.e the task should be linearly separable. Despite the
constraint of the linear separability, a simple perceptron is very important
for the theory of neural networks. It is a kind of hydrogen atom in this area.

9
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Figure 3.1: Simple perceptron.

Figure 3.2: Linearly separable task.



3.1. STORAGE CAPACITY 11

3.1 Storage Capacity

Let us find out how many random input-output pairs p can be realized by
a simple perceptron. The output generated by the perceptron is given by

σµ = sign


 1√

N

N∑

j=1

Jjξ
µ
j


 . (3.2)

Here the threshold θ from (3.2) is set to zero for symmetry, and the factor
1/
√

N ensures correct normalisation for large N . For the couplings J we
consider the spherical constraints

∑

j

J2
j = N. (3.3)

With the presentation of the examples to the simple perceptron, the
region in the coupling space correctly reproducing these examples (σµ = σµ

0 )
shrinks. Beyond a certain number of examples pmax, the volume of this
region vanishes. The critical value pmax is called the storage capacity of the
perceptron and is known to be 2N [33, 34]. This result will be generalised
using the tools of spin glass theory (Gardner [25, 26]).

The condition that the µth example is correctly reproduced is given by

∆µ ≡ σµ
0√
N

∑

j

Jjξ
µ
j ≥ κ > 0, (3.4)

where κ is the stability constant used to reduce the influence of noise. The
volume of the subspace of the J-space satisfying (3.4), the Gardner volume

is the following expression:

V =
1

V0

∫ ∏

j

dJjδ
(∑

j

J2
j − N

)∏

µ

Θ(∆µ − κ), (3.5)

where

V0 =

∫ ∏

j

dJjδ
(∑

j

J2
j − N

)
, (3.6)

and Θ(x) is a step function.
The Gardner volume is a random quantity due to the randomness of the

input-output patterns. Its typical value can be obtained from the specific
quenched entropy as in the spin glass theory:

s =
〈ln V 〉

N
, (3.7)

where 〈·〉 means the average over ξµ
i and σµ

0 . In order to calculate the
averages over the examples we apply the replica method
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〈ln V 〉 = lim
n→0

〈V n〉 − 1

n
, (3.8)

which can be reformulated as

〈ln V 〉 = lim
n→0

ln〈V n〉
n

. (3.9)

We introduce the replicated couplings Jα
j , and a spin glass order param-

eter in the space of couplings

qαβ =
1

N
Jα · Jβ, (3.10)

where α is the replica index. For V n we write

V n = V −n
0

∫ ∏

jα

dJα
j δ
(∑

j

Jα2
j − N

)∏

αµ

Θ
( σµ

0√
N

∑

j

Jα
j ξµ

j − κ
)
. (3.11)

The averaging 〈·〉 involves only the part with Θ functions

〈V n〉 = V −n
0

∫ ∏

jα

dJα
j δ
(∑

j

Jα2
j − N

)

×
〈
∏

αµ

Θ
( σµ

0√
N

∑

j

Jα
j ξµ

j − κ
)〉

. (3.12)

Using the order parameter qαβ the previous expression can be rewritten as

〈V n〉 = V −n
0

∫ ∏

α<β

dqαβδ
(∑

j

Jα
j Jβ

j − Nqαβ

)∫ ∏

jα

dJα
j δ
(∑

j

Jα2
j − N

)

×
〈
∏

αµ

Θ
( σµ

0√
N

∑

j

Jα
j ξµ

j − κ
)〉

. (3.13)

In order to evaluate (3.13) conveniently, we split the right-hand side of
the equation into two parts. The first part, which includes the δ functions,
does not depend on the inputs ξµ and will be denoted as I1. The second
part containing the brackets 〈·〉 depends on the inputs and will be known as
I2. Thus, we get

〈V n〉 = I1 · I2, (3.14)

where
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I1 = V −n
0

∫ ∏

α<β

dqαβδ
(∑

j

Jα
j Jβ

j − Nqαβ

)

×
∫ ∏

jα

dJα
j δ
(∑

j

Jα2
j − N

)
(3.15)

and

I2 =

〈
∏

αµ

Θ
( σµ

0√
N

∑

j

Jα
j ξµ

j − κ
)〉

. (3.16)

The specific entropy, using the replica identity, I1 and I2 can be expressed
as

s = lim
n→0

ln〈V n〉
Nn

= g1 + g2, (3.17)

where

g1 = lim
n→0

ln I1

Nn
and g2 = lim

n→0

ln I2

Nn
. (3.18)

To calculate I1, we use the Fourier representation of the δ function

δ(x − x0) =

∫
dx̂

2π
exp(ix̂(x − x0)) (3.19)

by introducing two conjugate variables q̂αβ, N̂α, and omit the constant fac-
tors:

I1 =

∫ ∏

α<β

dqαβdq̂αβ

∫ ∏

α

dN̂α

∫ ∏

αj

dJα
j

× exp



i



∑

αj

N̂αJα2
j +

∑

α<β,j

q̂αβJα
j Jβ

j








× exp



−iN



∑

α<β

q̂αβqαβ +
∑

α

N̂α






 (3.20)

In order to evaluate I2, we use the integral representation of the Θ func-
tion:

Θ(y − κ) =

∫ ∞

κ

dλ

2π

∫ ∞

−∞
dx exp(ix(λ − y)), (3.21)

perform the average 〈·〉 over ξµ and apply ln cos x ≈ −x2/2 for small x:
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(I2)
1

αN =

∫ ∏

α

dxα

∫ ∞

κ

∏

α

dλα

× exp


i
∑

α

xαλα − 1

2

∑

α

xα2 −
∑

α<β

qαβxαxβ


 , (3.22)

where α = p/N .
We omit the integrals over the parameters qαβ, q̂αβ, N̂α in I1 in the

anticipation of the use of the steepest descent method. Further, we assume
the replica symmetry (RS)

qαβ = q, q̂αβ = q̂, N̂α = N̂ , (3.23)

and transform the Gaussian integrals. This yields for g1

g1 = −1

2
ln

(
N̂ − q̂

2

)
− q̂

4N̂ − 2q̂
− iN̂ +

iq̂q

2
. (3.24)

The evaluation of I2 under the assumption of RS gives the following
expression for g2

g2 = α

∫
Dy ln H(u), (3.25)

where

Dt =
dt√
2π

exp

(
− t2

2

)
(3.26)

is the Gaussian measure;

H(x) =

∫ ∞

x
Dt (3.27)

and

u =
κ + y

√
q√

1 − q
. (3.28)

The method of steepest descent can now be applied. We extremise the
specific entropy s = g1 + g2 with respect to N̂ , q̂, q and get the following
saddle-point equations

i = − 1

2N̂ − q̂
+

q̂

(2N̂ − q̂)2
(3.29)

iq

2
= − 1

4N̂ − 2q̂
+

N̂

(2N̂ − q̂)2
(3.30)

iq̂

2
= −α

2

∫
Dy

exp(−u2/2)√
2πH(u)

(
u

1 − q
+

y√
q(1 − q)

)
(3.31)
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Figure 3.3: Capacity of a simple perceptron.

The two conjugate variables N̂ and q̂ can be eliminated algebraically
after expressing them in terms of q

N̂ =
i(1 − 2q)

2(1 − q)2
, q̂ = − iq

(1 − q)2
. (3.32)

In the remaining equation we put q → 1. This is plausible since the Gardner
volume shrinks with the increasing numbers of patterns. This equation has
the form

1

2(1 − q)2
=

α

2(1 − q)2

∫ ∞

−κ
Dy(κ + y)2. (3.33)

The final result for the capacity of the perceptron αc is

αc(κ) =
1∫∞

−κ Dy(κ + y)2
. (3.34)

In the limit κ → 0, αc(0) = 2, which is the aforementioned capacity 2N .
The function αc(κ) is monotonically decreasing as shown in Fig. 3.3.

3.2 Generalisation

The previous section dealt with the storage capacity of a simple perceptron.
The input-output patterns were randomly chosen. In case of generalisation
the problem is different. Assume the input-output patterns are generated
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Figure 3.4: Teacher and student perceptrons.

according to some rule. A network can be trained using some of those pat-
terns. The question is now, if the network can produce the correct output
for an input pattern which has not been presented before, and how this abil-
ity to generalise depends on the number of examples used for training. In
particular, the rule can be presented by the output of a teacher perceptron
with fixed couplings. The perceptron called student is supposed to imitate
the teacher. This is achieved by learning. The teacher perceptron generates
input-output examples which are presented to the student. The learning
process should achieve that the couplings of the student are adjusted grad-
ually so that it classifies like the teacher. In this way the probability of the
correct answers increases. The crucial task of the theory of learning is to
evaluate the relation between the number of patterns and the expected error
rate for a given learning algorithm.

Fig. 3.4 shows two perceptrons: A teacher perceptron with the fixed
couplings B = (B1, ..., BN ) and a student with J = (J1, ..., JN ). The two
perceptrons have the same input patterns ξµ = (ξµ

1 , ..., ξµ
N ). The outputs σµ

0 ,
σµ are different in general. For each input ξµ the student, not knowing the
couplings of the teacher, compares its output σµ to that of the teacher σµ

0 . If
they are different (σµ 6= σµ

0 ), the couplings of the student are updated using
a certain learning rule. This learning process is called supervised learning.

The input patterns ξµ, where µ ∈ {1, 2, ..., p}, are chosen randomly ac-
cording to some distribution dµ(ξµ) in the input space. We discuss the case
where the components of the input vector are independent stochastic vari-
ables with zero mean and unit variance. The statistical mechanical approach
to the problems in neural networks was originated by Gardner [25].

We introduce the training energy :
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E(J) =

p∑

µ=1

ǫ(J, ξµ), (3.35)

where
ǫ(J, ξµ) = Θ(−σµσµ

0 ) (3.36)

is the error function, the measure of the deviation of the perceptron’s output
σµ(J, ξµ) from the target output σµ

0 (ξµ). Θ(x) is the step function. The
training energy characterises the performance of a perceptron on a set of
training examples.

In order to measure the performance also on the whole input space,
we introduce the generalisation function. It is defined as the average error
function over the whole input space:

ǫ(J) =

∫
dµ(ξ)ǫ(J, ξ) (3.37)

It can be shown that for the present arrangement the generalisation function

ǫ(J) =
1

π
arccos r =

ϕ

π
, (3.38)

where

r =
1

N
J ·B (3.39)

is the overlap between the student and teacher couplings (Fig. 3.5). During
the learning J comes close to B and r tends to unity correspondingly.

The training can be described by a stochastic dynamics which tends to
decrease the training energy, although the energy can also increase when
considering the thermal noise. Such description yields a Gibbs distribution
in the weight space

P (J) =
1

Z
exp(−βE(J)), (3.40)

with the canonical partition function

Z =

∫
dµ(J) exp(−βE(J)), (3.41)

where β = 1/T . T is temperature, a parameter characterising noise. dµ(J) is
the constraint in the couplings space. We consider the normalised spherical
distribution:

dµ(J) =
1

(
√

2πe)N
dJδ

(
N∑

i=1

J2
i − N

)
. (3.42)

Using the formalism of equilibrium statistical mechanics one calculates
the thermal averages with respect to P (J) which we denote by 〈·〉T . In the
thermodynamic limit (N → ∞) such averages provide information about the



18 CHAPTER 3. SIMPLE PERCEPTRON

Figure 3.5: The generalisation error is the ratio of the subspace spanned by
SJ and SB to the whole space i.e. 2ϕ/2π, where ϕ = arccos r is the angle
between J and B.

typical performance of the perceptron independent of the initial conditions
of the learning dynamics.

The examples present the quenched disorder since they are chosen ran-
domly and then fixed during the learning. Thus, we have to perform also
a second quenched average over the distribution of example sets denoted by
〈·〉.

The important parameter, generalisation error, is then defined in the
following way

ǫg = 〈〈ǫ(J)〉T 〉. (3.43)

The generalisation error ǫg(β, p) as a function of number of examples p is
referred to as the learning curve.

The central quantity of this canonical approach is the specific free energy

of the system:

f = −T 〈lnZ〉
N

. (3.44)

It turns out that it is not necessary to perform the averaging over the
quenched variables since each training set would typically yield the same
result. This feature is called self-averaging. However, performing the av-
eraging is easier than considering specific realizations. The same situation
occurs in the analysis of disordered condensed matter systems such as spin
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glasses. Also, a proper thermodynamic limit requires that the size of the
training set scales as p = αN with fixed α.

The average 〈ln Z〉 can be evaluated using the replica method

〈ln Z〉 = lim
n→0

ln〈Zn〉
n

(3.45)

In order to perform the replica calculation we introduce the replicated
couplings Jα

j the order parameters

rα =
1

N
Jα ·B, qαβ =

1

N
Jα · Jβ . (3.46)

rα measures the overlap of the αth replica perceptron with the teacher, while
qαβ is the overlap of the αth and βth replicas. We also need the parameters

Xα
µ =

1√
N

Jα · ξµ, Yµ =
1√
N

B · ξµ. (3.47)

The partition function acquires the form (we omit the constant factors):

Z =

∫ ∏

j

dJjδ
(∑

j

J2
j − N

)∏

µ

exp
(
− βΘ(−XµYµ)

)
. (3.48)

After the replication

Zn =

∫ ∏

jα

dJα
j δ
(∑

j

Jα2
j − N

)∏

αµ

exp
(
− βΘ(−Xα

µ Yµ)
)
. (3.49)

The averaging over the inputs 〈·〉 affects only the part of Zn which con-
tains the exponential functions:

〈Zn〉 =

∫ ∏

jα

dJα
j δ
(∑

j

Jα2
j − N

)〈∏

αµ

exp
(
− βΘ(−Xα

µ Yµ)
)〉

. (3.50)

Using the order parameters rα and qαβ the previous expression can be rewrit-
ten as

〈Zn〉 =

∫ ∏

α

drαδ
(∑

j

BjJ
α
j − Nrα

)∫ ∏

α<β

dqαβδ
(∑

j

Jα
j Jβ

j − Nqαβ

)

×
∫ ∏

jα

dJα
j δ
(∑

j

Jα2
j − N

)

×
〈
∏

αµ

exp
(
− βΘ(−Xα

µ Yµ)
)〉

. (3.51)
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In order to calculate (3.51) comfortably, we split the right-hand side of
the equation into two parts. The first part with the δ functions is inde-
pendent of the inputs ξµ and will be known as I1. The second part in the
brackets 〈·〉 depends on the input and will be denoted I2. Thus, we get

〈Zn〉 = I1 · I2, (3.52)

where

I1 =

∫ ∏

α

drαδ
(∑

j

BjJ
α
j − Nrα

) ∫ ∏

α<β

dqαβδ
(∑

j

Jα
j Jβ

j − Nqαβ

)

×
∫ ∏

jα

dJα
j δ
(∑

j

Jα2
j − N

)
(3.53)

and

I2 =

〈
∏

αµ

exp
(
− βΘ(−Xα

µ Yµ)
)〉

. (3.54)

The specific free energy, using the replica identity, I1 and I2 obtains the
form

−βf = lim
n→0

ln〈Zn〉
Nn

= G1 + G2, (3.55)

where

G1 = lim
n→0

ln I1

nN
and G2 = lim

n→0

ln I2

nN
. (3.56)

First we calculate I1. We use the integral representation of the δ func-
tions by introducing three conjugate variables r̂α, q̂αβ, N̂α, and omit the
constant factors:

I1 =

∫ ∏

α

drαdr̂α

∫ ∏

α<β

dqαβdq̂αβ

∫ ∏

α

dN̂α

∫ ∏

αj

dJα
j

× exp



i



∑

αj

N̂αJα2
j +

∑

α<β,j

q̂αβJα
j Jβ

j +
∑

αj

r̂αBjJ
α
j








× exp



−iN



∑

α

r̂αrα +
∑

α<β

q̂αβqαβ +
∑

α

N̂α






 (3.57)

We omit the integrals over the parameters rα, qαβ, r̂α, q̂αβ , N̂α in I1 in the
anticipation of the use of the steepest descent method; use the RS ansatz:
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rα = r, qαβ = q, (3.58)

r̂α = r̂, q̂αβ = q̂, N̂α = N̂ ; (3.59)

and transform the Gaussian integrals. For the G1 we get

G1 = −1

2
ln

(
N̂ − q̂

2

)
− q̂ + ir̂2

4N̂ − 2q̂
− ir̂r +

iq̂q

2
− iN̂ . (3.60)

The evaluation of I2 yields for G2

G2 = 2α

∫
Dt

∫ ∞

−rt/
√

q−r2

Dz0

× ln

{
exp(−β) + (1 − exp(−β))

∫ ∞

−t
√

q/(1−q)
Dz

}
. (3.61)

From now on we consider the noise-free case (T = 0). The calculations
for finite temperatures has been performed in [31]. The G2 simplifies by
setting β → ∞:

G2 = 2α

∫
DtH

(
− tr√

q − r2

)
ln H

(
−t

√
q

1 − q

)
. (3.62)

The method of steepest descent can now be applied. By extremising the
specific free energy −βf = G1 + G2 with respect to the order parameters
r̂, q̂, N̂ , r, q and after some partial integration we can write the following
saddle-point equations:

r = − 2r̂

4N̂ − 2q̂
(3.63)

iq

2
= − 1

4N̂ − 2q̂
+

4N̂

(4N̂ − 2q̂)2
+

2ir̂2

(4N̂ − 2q̂)2
(3.64)

i = − 1

2N̂ − q̂
+

4q̂

(4N̂ − 2q̂)2
+

4ir̂2

(4N̂ − 2q̂)2
(3.65)

ir̂ =
α
√

q

π
√

(q − r2)(1 − q)

∫
Dt

exp
(
− t2r2

2(q−r2)

)
exp

(
− t2q

2(1−q)

)

H
(
−t
√

q
1−q

) (3.66)

iq̂

2
=

α

2π(1 − q)

∫
Dt

H

(
− tr√

q−r2

)
exp

(
− t2q

1−q

)

H2
(
−t
√

q
1−q

) (3.67)
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Figure 3.6: Learning curve of a simple perceptron.

After eliminating the three conjugate variables r̂, q̂, N̂ algebraically only
two equations remain:

r
√

q − r2

√
q(1 − q)

=
α

π

∫
Dt

exp
(
− t2r2

2(q−r2)

)
exp

(
− t2q

2(1−q)

)

H
(
−t
√

q
1−q

) (3.68)

q − r2

1 − q
=

α

π

∫
Dt

H

(
− tr√

q−r2

)
exp

(
− t2q

1−q

)

H2
(
−t
√

q
1−q

) (3.69)

The solution of these equations satisfies r = q. For q we get:

q =
α

π

∫
Dt

exp
(
− t2q

1−q

)

H
(
−t
√

q
1−q

) . (3.70)

Fig. 3.6 shows the corresponding learning curve ǫg = ǫg(α).

The asymptotic (α → ∞) learning curve is thus given by

ǫg(α) ≈ 0.625

α
. (3.71)
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3.3 Learning Rules

In the previous section we discussed the Gibbs learning rule. This rule is
very well suited for the theoretical analysis of the neural networks, however,
it is not easy to use for practical problems. There is a whole variety of
other direct learning algorithms, the most important of which we are going
to mention now.

The oldest learning rule was introduced by Hebb [35]. It goes back to
Pavlov’s coincidence training. The basic idea is to strengthen the connection
of neurons which fire together. As a result the firing of one of them will
stimulate the other neuron to fire as well. The Hebb rule for the simple
perceptron has the following form. Let again J and B be the couplings of
a student and a teacher respectively, and (ξµ, σµ

0 ) a training pattern. If the
required output

σµ
0 = sign(B · ξµ) (3.72)

has the same sign as ξµ
i , there is a coincidence and the corresponding cou-

pling Ji is strengthened

J ′
i = Ji + 1. (3.73)

If the signs are different in the original Hebb rule there is no change. How-
ever, for symmetry the coupling can be weakened

J ′
i = Ji − 1. (3.74)

In vector notation the Hebb rule takes on the form

J′ = J + ξµσµ
0 . (3.75)

After presenting a set of p examples to the perceptron the normalised student
coupling becomes

JH =
1√
N

∑

µ

ξµσµ
0 . (3.76)

It has been shown (see e.g. [4]) that the generalisation error is given by

ǫg =
1

π
arccos

√
2α

2α + π
. (3.77)

and considering the asymptotic behaviour

ǫg ∼ 1

2
−

√
2α

π3/2
for α → 0, (3.78)

ǫg ∼ 0.40√
α

for α → ∞, (3.79)
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with α = p/N . As we see, the generalisation error decreases slower than
for the Gibbs rule for large α. However, for small values of α the Hebb
algorithm yields even better generalisation than the Gibbs rule.

Another important learning algorithm, the so-called perceptron learning

rule was designed, together with the perceptron itself, by Rosenblatt [1].
This rule is a modification of the Hebb rule. For each training example ξµ

which is correctly classified, the coupling J remains unchanged. Otherwise,
the correction is like the one in the Hebb rule:

J′ =

{
J + 1√

N
ξµσµ

0 , if J · ξµσµ
0 < 0

J otherwise.
(3.80)

By introducing the embedding strengths νµ the perceptron rule for the whole
set of examples can be written as

J =
1√
N

∑

µ

νµξµσµ
0 , (3.81)

where νµ is zero for the correctly classified patterns, and unity otherwise.



Chapter 4

Multilayer Networks

In the previous chapter we investigated the properties of the simplest feed-
forward architecture, a simple perceptron. As we saw, this network has
some limitations, which can be overcome if we add some more hidden lay-
ers. Multilayer networks built up of simple perceptrons, each representing
linearly separable functions, has been studied by Minsky and Papert [6].
For such networks, there is no general learning algorithm known. However,
the situation changes and simplifies if the elementary perceptrons of the
network have a smooth, differentiable input-output relation. The so-called
back-propagation algorithm plays the central role for multilayer networks. It
was designed independently several times since the late 1960s (see [2]). The
algorithm is based on gradient descent in an error-energy landscape.

We consider a two-layer network (Fig. 4.1). The inputs are denoted
by ξk, the hidden-layer units by σj and the outputs by νi. The Jjk are
the input-to-hidden and Wij hidden-to-output layer couplings. Let (ξµ, ζµ

i ),
µ = 1, ..., p be a set of input-output pairs.

While presenting pattern µ, hidden unit j gets as an input

hµ
j =

∑

k

Jjkξ
µ
k (4.1)

and gives output

σµ
j = Φ(hµ

j ) = Φ
(∑

k

Jjkξ
µ
k

)
, (4.2)

i.e. output unit i receives

hµ
i =

∑

j

Wijσ
µ
j =

∑

j

WijΦ
(∑

k

Jjkξ
µ
k

)
. (4.3)

It produces the final output

νµ
i = Φ(hµ

i ) = Φ
(∑

j

Wijσ
µ
j

)
= Φ

(∑

j

WijΦ
(∑

k

Jjkξ
µ
k

))
. (4.4)

25
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Figure 4.1: A two-layer feed-forward network.

The network error measure or cost function over the set of patterns is
defined as

E(J,W ) =
1

2

∑

µi

(ζµ
i − νµ

i )2 (4.5)

it has the form

E(J,W ) =
1

2

∑

µi


ζµ

i − Φ
(∑

j

WijΦ
(∑

k

Jjkξ
µ
k

))



2

(4.6)

This function is continuous differentiable and it depends on the couplings.
So one can use a gradient descent algorithm to learn the right couplings.

We apply the gradient descent rule to the hidden-to-output connections:

∆Wij = −η
∂E

∂Wij
= η

∑

µ

(ζµ
i − νµ

i )Φ′(hµ
i )σµ

j = η
∑

µ

δµ
i σµ

j , (4.7)

where

δµ
i = Φ′(hµ

i )(ζµ
i − νµ

i ), (4.8)

and η is a learning rate.

For the input-to-hidden connections the chain rule can be used:

∆Jjk = −η
∂E

∂Jjk
= −η

∑

µ

∂E

∂σµ
j

∂σµ
j

∂Jjk
(4.9)
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So we get

∆Jjk = −η
∑

µi

(ζµ
i − νµ

i )Φ′(hµ
i )WijΦ

′(hµ
j )ξµ

k

= η
∑

µi

δµ
i WijΦ

′(hµ
j )ξµ

k

= η
∑

µ

δµ
j ξµ

k , (4.10)

where

δµ
j = Φ′(hµ

j )
∑

i

Wijδ
µ
i . (4.11)

Generalising this result for networks with more layers, the update rule
is always of the form

∆Jij = η
∑

µ

δoutputσinput (4.12)

where output is the i end and input the j end of the coupling in question;
the error δ for a given hidden unit σj is determined in terms of the error δs
of the next unit νi. The coefficients are Wij , which are propagating errors
backwards. This feature gives the algorithm its name error back-propagation

or simply back-propagation.
This kind of updating of couplings is biologically implausible. Moreover,

the back-propagation algorithm looks for the nearest local minimum in the
error-energy landscape and remains there. In general, this algorithm is very
slow and requires vast computational resources. Therefore its practical use
is restricted to small networks having only a few layers.

An interesting detour to the problems with multilayer networks will be
discussed in the next chapter.
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Chapter 5

Support Vector Machines

In this chapter we consider the properties of the so-called Support Vector

Machines (SVMs). Introduced by Vapnik et al. [10, 11], they proved to
have advantages over the common multilayer neural networks. For SVMs it
is possible to formulate learning algorithms which iteratively solve a convex
optimisation problem having a single solution. The SVMs use the heuristics
known from perceptrons and can handle quite complex problems despite the
simplicity of their learning dynamics.

To explain the idea behind SVMs we can compare it to the simple percep-
tron. Consider a simple perceptron performing the following classification

y = sign

(
N∑

i=1

Jixi

)
. (5.1)

N dimensional vector x of input features xi is assigned to either −1 or 1 at
the output. The couplings Ji are adjusted so that the perceptron classifies
well the patterns of the training set.

As already mentioned, the abilities of a simple perceptron as a classifier
are limited to the linearly separable tasks. For such tasks the perceptron
learning algorithm discussed in Section 3.3 can always find a coupling vector
J, such that an N − 1 dimensional hyperplane perpendicular to J separates
well the negative and positive examples from each other.

In order to overcome the limitations of perceptrons we could replace the
linear input features xi by some general features Ψµ(x) - fixed nonlinear
functions of x. Such modified neural network would give as an output:

y = sign




M∑

µ=1

JµΨµ(x)


 . (5.2)

A simple example of the non-linear Ψµ is the set of linear xi and quadratic
xixj monomials. Such a network would be able to separate the two classes
of the examples by a quadratic hypersurface, which is more flexible than a

29
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linear separation done by a perceptron. Still the machine could be trained
using the perceptron learning algorithm. However, the dimension of feature
space M would increase (M ∼ N2) and so would the number of couplings Jµ

to be adjusted. It was shown [16, 17], that a good generalisation is achieved,
when the number of training example is of the order M , i.e. N2 which is
high.

This situation changes if we look at the perceptron learning rule. Ev-
ery time an input-output example (xk, yk

0 ) is presented to the network, the
change of coupling Jµ is proportional to yk

0Ψµ(xk), if the student does not
classify correctly. Thus, after presenting a set of m examples the coupling
vector components will have the form (starting value of J is 0)

Jµ =

m∑

k=1

νkyk
0Ψµ(xk). (5.3)

The embedding strength νk is equal to the number of times the network
classified wrongly the kth example (i.e. number of times coupling updating
was performed). νk = 0 for examples which are correctly classified.

The input vectors xk which contribute to the updating of Jµ and thus
correspond to the nonzero νks are called the support-vectors. The parameters
νk are more advantageous to consider for learning than the huge number of
couplings Jµ

A practical question is how to construct the mappings Ψµ(x) suitable
for a particular problem. It turns out that the explicit form of Ψµ(x) is not
needed [10]. It is sufficient to know the scalar product of the feature vectors
Ψµ(x) and Ψµ(x′) which is given by the so-called kernel :

K(x,x′) = Ψµ(x) ·Ψµ(x′) =
M∑

µ=1

Ψµ(x)Ψµ(x′) (5.4)

The reason for this situation is the following. During the learning process
for the determination of the couplings J one needs the correlation matrix

Ckl = Ψ(xk) · Ψ(xl)yk
0yl

0 = K(xk,xl)yk
0yl

0. (5.5)

Also, in order to determine the classification of a new example z after
the training one has to evaluate

y = sign




M∑

µ=1

JµΨµ(z)


 = sign

(
m∑

k=1

νkK(xk, z)yk
0

)
(5.6)

which is determined by the kernel K.
Hence, it is not necessary to deal with the complications associated with

mappings Ψ. Instead we choose an appropriate kernel K representing e.g.
a polynomial decision surface in the input space. It is clear that not every
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function K can be written as a scalar product, but the mathematical condi-
tions ensuring this decomposition are well known (Mercer theorem). In this
manner the feature space can even be infinite dimensional.
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Chapter 6

Unsupervised Competitive
Learning

In the previous chapters, every time we considered any kind of learning we
assumed the existence of a teacher. That is why, we call these learning
scenarios supervised learning. However, one can admit that learning from
examples does not necessarily require the presence of a teacher. Learning
from unsorted examples is possible if there is some structure within the
distribution of the examples. The main problem of unsupervised learning

is to extract the features, regularities, correlations from the example set
and code them at the output. Thus, the network has to show a degree of
selforganisation. This problem is encountered in many pattern recognition
and data compression tasks.

In the case of competitive learning only one output unit is on at a time
The output units compete to fire, and are therefore called winner-take-all

units.

The task of unsupervised competitive learning is to cluster or categorise
the input data. Similar inputs should be categorised similarly and fire the
same output unit. The network is required to find the classes from the
correlations in the input data.

This sort of classification has many practical uses. E.g. it can be used
for data encoding and compression through vector quantisation. In this task
an input data vector is replaced by the index of the output unit, which is
fired by this input.

6.1 Simple Competitive Learning

We consider a simple competitive learning network with a single layer of
output units σi and inputs ξj (Fig. 6.1). The input-output connections are
excitatory Jij ≥ 0. From the output units only one unit, the winner, can
be active at a time. The winner is defined as the unit with the largest net
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Figure 6.1: A simple competitive learning network. The connections with
open arrows are inhibitory.

input

hi =
∑

j

Jij . (6.1)

Thus

σi′ = 1, if Ji′ · ξ ≥ Ji · ξ for all i, (6.2)

the output unit with the label i′ is the winner. If the couplings are nor-
malised

|Ji| = 1 (6.3)

then the previous inequality is equivalent to

|Ji′ − ξ| ≤ |Ji − ξ| for all i. (6.4)

Consequently the winner is the unit, the coupling vector Ji of which is closest
to the input vector ξ.

One of the possibilities of the implementation of the winner-take-all char-
acter is shown in Fig. 6.1. The output units have lateral inhibition, i.e. each
unit inhibits the others. A self-excitatory connection is also required.

The problem is how to find clusters in the input data and choose the
couplings Ji using these networks. One start with small random values for
the couplings. A set of input patterns is presented to the network. For each
input the winner output unit i′ is found and the corresponding couplings
Ji′j are updated to make the Ji′ closer to the input ξµ. This change makes
it more likely to win on that input in future. The standard competitive

learning rule has the form
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Figure 6.2: Voronoi tessellation.

∆Ji′j = η(ξµ
j − Ji′j) (6.5)

for pre-normalised inputs.

6.2 Vector Quantisation

Vector quantisation for data compression is a very important example of
competitive learning. Vector quantisation is used for storage and transmis-
sion of speech and image data [2].

The idea behind vector quantisation is simple. The continuous-valued
input vectors ξµ are to be categorised into M classes defined by a set of
M prototype vectors. Only the index of the corresponding class can be
transmitted or stored, after a set of classes, a codebook is defined. The class
of a given input can be determined by finding the nearest prototype vector
using the Euclidian metric. This arrangement divides the input space into
a Voronoi tessellation (or Dirichlet tessellation) (Fig.6.2).

In terms of competitive learning, when an input ξµ is applied, the win-
ning output determines the corresponding class. The couplings Ji are the
prototype vectors, and the winner is found using

|Ji′ − ξ| ≤ |Ji − ξ| for all i. (6.6)

This is not equivalent to maximising Ji · ξ unless the couplings are nor-
malised.
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An appropriate set of prototype vectors can be found using the standard
competitive learning algorithm (6.5). After presenting sample data the cou-
plings change and divide up the input space into Voronoi polyhedra, which
contain almost equal numbers of sample points. They represent a discretised
map of the input distribution. After training the couplings can be fixed and
thus determine a static codebook.



Chapter 7

Bethge Architecture -
Storage Capacity

An interesting neural network architecture, a kind of SVM, was introduced
by Bethge et al. [19]. In this chapter we discuss the storage capacity of this
network. One of the advantages of this architecture lies in the comfortable
scaling of the number of parameters with the size of the system. It also fits
well the problems where the classification of input patterns is based on local
features of the patterns.

7.1 The coding

The input patterns are random. Each of them consists of N ′ bits {±1}. The
input neurons are divided in m disjoint modules, each containing k input
bits (N ′ = m ·k) to represent d = 2k states which have the same probability
(Fig. 7.1). These states are further mapped onto the N = m · d neurons
in the hidden layer in the following manner. All d states of each module
are represented by a pool of d {0, 1} neurons in the hidden layer of which
only one is active (= 1) at a time, thus unambiguously representing the
k-bit state of the corresponding module in the input layer. The (n + 1)th
neuron in a module of the hidden layer is active, when the original module
in the input layer shows the binary representation of the number n. Fig. 7.1
shows the d = 4 possible states of a module with k = 2. The input states
encoded in this way are further classified by a common perceptron having
the hidden layer of the system as an input. The connections between the
input and hidden layer are thus preset, whereas the connections between
the hidden layer and the output change during the learning process. The
modules arranged in this manner can be regarded as receptive fields or filters

extracting mutually exclusive features. This can be realized using vector
quantisation units working in parallel.

37



38 CHAPTER 7. BETHGE ARCHITECTURE - STORAGE CAPACITY

Figure 7.1: The neural network with fixed preprocessing.

7.2 The correlations

The coding presented above leads to the low activity of patterns. Globally
and locally within each module in the hidden layer

〈ξµ
i 〉 =

1

d
=

1

2k
, (7.1)

where ξµ
i ∈ {0, 1} are the pattern bits represented in the hidden layer, i ∈

{1, 2, ..., N} enumerates the bits in the hidden layer, and µ the patterns of
bits. The angular brackets 〈·〉 denote an average over the distribution of
these patterns. The different patterns are correlated,

〈ξµ
i ξν

j 〉 =
1

d2
for µ 6= ν. (7.2)

There is also a spatial correlation within each pattern:

〈ξµ
i ξµ

j 〉 = Cij. (7.3)

The Cij are the elements of the correlation matrix C, which, given our
mapping, has the following structure:

C =




D A . . . . . . A

A D A . . .
...

... A
. . . A

...
... . . . A

. . . A
A . . . . . . A D




(7.4)

with

D =
1

d
Id A =

1

d2
1d, (7.5)
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where Id is the d-dimensional unit matrix and 1d the d-dimensional matrix
with 1 everywhere. The matrix C has three different eigenvalues. These are
(with degeneracies):

λ1 =
1

d

(
1 + N

1

d
− d

1

d

)
=

N

d2
single

λ2 =
1

d

(
1 − d

1

d

)
= 0

(
N

d
− 1

)
-fold (7.6)

λ3 =
1

d

(
N − N

d

)
-fold

7.3 Storage capacity

The goal is to calculate the maximum number of correlated patterns which
can be stored in the perceptron. Patterns are regarded as stored, if

Xµ ≡ ζµ 1√
N

∑

j

Jjξ
µ
j ≥ κ > 0, (7.7)

where κ is the desired stability of the solution and ζµ ∈ {±1} the output
value. The input-output pairs (ξµ, ζµ) are drawn randomly (there is no
teacher). The number of patterns is p, thus µ ∈ {1, 2, ..., p}. These arrange-
ments yield 〈Xµ〉 = 0. In order to calculate the critical storage capacity
the Gardner approach is used [25, 26]. For the couplings J we consider the
spherical constraints

∑
j J2

j = N . The volume spanned by the couplings
which solve (7.7) for a given number of patterns, the Gardner volume, is
given by

V =
1

V0

∫ ∏

j

dJjδ(
∑

j

J2
j − N)

∏

µ

Θ(Xµ − κ), (7.8)

where

V0 =

∫ ∏

j

dJjδ(
∑

j

J2
j − N). (7.9)

The specific quenched entropy in the sense of the spin glass theory is
given by:

s =
〈ln V 〉

N
, (7.10)

where the brackets 〈·〉 denote the averaging over the patterns.
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Since ln V is extensive and thus self-averaging, it is independent of the
choice of patterns in the limit N → ∞. The average 〈ln V 〉 over the patterns
can be carried out using the replica identity:

〈ln V 〉 = lim
n→0

ln〈V n〉
n

. (7.11)

We introduce the replicated couplings Jσ
i and stabilities Xσ

µ , where σ
is the replica index. The averaging over the correlated patterns ξµ can be
replaced by the averaging over the Xσ

µ , since V depends on the ξµ only
through the Xσ

µ . The moments of their distribution are

〈Xσ
µ 〉 = 〈ζµ〉 1√

N

∑

j

Jσ
j 〈ξµ

j 〉 = 0, since 〈ζµ〉 = 0, (7.12)

〈Xσ
µXσ′

ν 〉 = δµν
1

N

∑

ij

CijJ
σ
i Jσ′

j . (7.13)

After diagonalising C

〈Xσ
µXσ′

ν 〉 = δµν
1

N

∑

γ

λγJσ
γ Jσ′

γ = δµνqσσ′ , (7.14)

where

qσσ′ =
1

N

∑

γ

λγJσ
γ Jσ′

γ (7.15)

is the spin glass order parameter. According to the central limit theorem
the Xσ

µ are independent Gaussian variables:

P ({ξµ}µ) =
∏

µ

P ({Xσ
µ}σ) =

∏

µ

1

(
√

2π)n
√

detq
exp

(
−1

2
Xq−1X

)
. (7.16)

Hence, the averaging means

〈·〉 =

∫
·
∏

µ

P ({Xσ
µ}σ)dXµ. (7.17)

For V n we get

V n = V −n
0

∫ ∏

γσ

dJσ
γ δ
(∑

γ

Jσ2
γ − N

)∏

µσ

Θ(Xσ
µ − κ). (7.18)

The averaging 〈·〉 involves only the part with Θ functions

〈V n〉 = V −n
0

∫ ∏

γσ

dJσ
γ δ
(∑

γ

Jσ2
γ − N

)〈∏

µσ

Θ(Xσ
µ − κ)

〉
. (7.19)
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Using the order parameter qσσ′ we rewrite the previous expression as

〈V n〉 = V −n
0

∫ ∏

σ≤σ′

dqσσ′δ
(∑

γ

λγJσ
γ Jσ′

γ − Nqσσ′

)

×
∫ ∏

γσ

dJσ
γ δ
(∑

γ

Jσ2
γ − N

)〈∏

µσ

Θ(Xσ
µ − κ)

〉
(7.20)

To make the evaluation of (7.20) more convenient, its right-hand side
is split into two parts. The part I1, which includes the δ functions, does
not depend on the inputs. The second part I2 containing the brackets 〈·〉,
depends on the inputs. Thus, we have

〈V n〉 = I1 · I2, (7.21)

where

I1 = V −n
0

∫ ∏

σ≤σ′

dqσσ′δ
(∑

γ

λγJσ
γ Jσ′

γ − Nqσσ′

)

×
∫ ∏

γσ

dJσ
γ δ
(∑

γ

Jσ2
γ − N

)
(7.22)

and

I2 =

〈
∏

µσ

Θ(Xσ
µ − κ)

〉
. (7.23)

The specific entropy, using the replica identity, I1 and I2 is given by

s = lim
n→0

ln〈V n〉
Nn

= g1 + g2, (7.24)

where

g1 = lim
n→0

ln I1

Nn
and g2 = lim

n→0

ln I2

Nn
. (7.25)

In order to evaluate I1, we use the integral representation of the δ func-
tion by introducing two conjugate variables q̂σσ′ , N̂σ, and omit the constant
factors

〈V n〉 =

∫ ∏

σ≤σ′

dqσσ′dq̂σσ′

∫ ∏

σ

dN̂σ

∫ ∏

γσ

dJσ
γ

× exp



−i



∑

σγ

N̂σJσ2
γ +

∑

σ≤σ′,γ

q̂σσ′λγJσ
γ Jσ′

γ








× exp



iN



∑

σ≤σ′

q̂σσ′qσσ′ +
∑

σ

N̂σ






 (7.26)
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To calculate I2, we use the definition of the Θ function

I2 =

(∫ ∞

κ

∏

σ

dXσP (Xσ)

)αN

, (7.27)

where α = p/N .

In the thermodynamic limit (N → ∞) the integral in I1 over the order
parameters is dominated by the saddle point. The method of steeplest de-
scent can be applied. Thus, we omit the integrals over qσσ′ , q̂σσ′ , N̂σ in I1.
Also, we assume the replica symmetry:

qσσ = q0, qσσ′ = q (σ 6= σ′), (7.28)

q̂σσ = q̂0, q̂σσ′ = q̂ (σ 6= σ′), N̂σ = N̂ , (7.29)

and use the following convention for any function of the eigenvalues in the
limit N → ∞:

1

N

∑

γ

f(λγ) → {f(λ)}λ. (7.30)

For g1 we get

g1 = iq0q̂0 −
iqq̂

2
+ iN̂

−
{

ln(i[N̂ + λ(q̂0 − q̂
2)])

2

}

λ

−
{

q̂λ

4[N̂ + λ(q̂0 − q̂
2 )]

}

λ

. (7.31)

The evaluation of I2 under the assumption of RS gives the following
equation for g2

g2 = α

∫
Dz ln H

(
κ +

√
qz√

q0 − q

)
, (7.32)

where H(x) =
∫∞
x Dt with Dt being the Gaussian measure.

The specific entropy s = g1 + g2 obtains the form:

s(q0, q, q̂0, q̂, N̂) = α

∫
Dz ln H

(
κ +

√
qz√

q0 − q

)
+ iq0q̂0 −

iqq̂

2
+ iN̂

−
{

ln(i[N̂ + λ(q̂0 − q̂
2)])

2

}

λ

−
{

q̂λ

4[N̂ + λ(q̂0 − q̂
2)]

}

λ

, (7.33)
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By extremising the specific entropy with respect to q̂0, q̂, N̂ , q0, q, we get
the following saddle-point equations:

2i(q0 − q) =

{
λ

[N̂ + λ(q̂0 − q̂
2)]

}

λ

(7.34)

q =

{
iq̂λ2

4[N̂ + λ(q̂0 − q̂
2)]2

}

λ

(7.35)

i =

{
1

2[N̂ + λ(q̂0 − q̂
2)]

}

λ

−
{

q̂λ

4[N̂ + λ(q̂0 − q̂
2)]2

}

λ

(7.36)

−iq̂0 =
α

2

∫
Dz

exp(−u2/2)√
2πH(u)

u

q0 − q
(7.37)

− iq̂

2
=

α

2

∫
Dz

exp(−u2/2)√
2πH(u)

(
u

q0 − q
+

z√
q(q0 − q)

)
(7.38)

where

u =
κ +

√
qz√

q0 − q
. (7.39)

The three conjugate variables q̂0, q̂, N̂ can be eliminated algebraically.
In the remaining two equations we put q0 = q = qc, where qc is the so-called
Derrida-Gardner limit. The Gardner volume shrinks with the increasing
number of patterns, which leads to q0 = q. The two remaining equations
with the variables qc and the critical capacity αc have the form:

αc(κ, {λ}) = αp

(
κ√
qc

){
λqc

[αp(
κ√
qc

)H(− κ√
qc

)(λ − qc) + qc]2

}

λ

(7.40)

αc(κ, {λ}) = αp

(
κ√
qc

){
λ2

[αp(
κ√
qc

)H(− κ√
qc

)(λ − qc) + qc]2

}

λ

(7.41)

where αp(x) is the storage capacity of a simple perceptron storing uncorre-
lated patterns with stability x discussed in Section 3.1:

αp(x) =
1∫∞

−x Dz(x + z)2
. (7.42)

After the evaluation we obtain the final results for qc and the critical
storage capacity αc:

qc = λ3 =
1

d
, (7.43)
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Figure 7.2: Capacity of Bethge architecture as a function of stability κ for
d = 2, 4, 8, 16, 32. For comparison, the dotted curve shows the capacity of a
simple perceptron.
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comparison, the dotted curve shows the capacity of a simple perceptron.
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αc(κ) ≡ pmax

N
= αp(κ

√
d)

(
1 − 1

d

)
. (7.44)

The interpretation of this result is twofold.
On the one hand, it gives the storage capacity of a simple perceptron

for correlated patterns. One observes a reduction compared to the capacity
αp(κ) of a simple perceptron storing uncorrelated patterns (Fig. 7.2).

On the other hand, (7.44) yields also the number of patterns that can be
stored in the present two-layer network. The number of patterns normalised
with respect to the size of the input layer N ′ is

α′
c(κ) ≡ pmax

N ′ = αp(κ
√

d)
d − 1

log2 d
. (7.45)

This capacity may become much larger than αp(κ) (Fig. 7.3).
However, for any κ > 0 the capacity α′

c(κ) is lower than αp(κ), if d is
sufficiently large, since

αp(κ)

α′
c(κ)

∼ αp(κ)
κ2d

d − 1
log2 d > 1, when d → ∞. (7.46)

Noting that N ′ = m · k, where m is the number of modules and k the
number of units per module in the input layer, one can show that the number
of storable patterns at κ = 0 scales exponentially with N ′

pmax = 2m(2
N

′

m − 1). (7.47)
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Chapter 8

Bethge Architecture -
Generalisation

In the previous chapter we discussed the architecture of a two-layer neural
network (Fig. 8.1) introduced in [19] and showed how its storage capacity
was evaluated. As it turned out, this network has advantages over the simple
perceptron. In the present chapter we study the generalisation properties of
the network. The techniques are again borrowed from the spin glass theory.

8.1 The Problem

The state of the N -dimensional hidden layer is characterised by the vector

ξµ = (ξµ
1 , ..., ξµ

N ), (8.1)

Figure 8.1: The neural network with fixed preprocessing.

47
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where µ ∈ {1, 2, ..., p} enumerates the input-output patterns (training ex-
amples) and the pattern bits ξµ

i ∈ {0, 1}. The output signal is given by

s = sign

(
1√
N

N∑

i=1

Jiξi

)
, (8.2)

thus the student and the teacher yield the following outputs respectively

sµ = sign

(
1√
N

N∑

i=1

Jiξ
µ
i

)
, (8.3)

sµ
0 = sign

(
1√
N

N∑

i=1

Biξ
µ
i

)
, (8.4)

where J = (J1, ..., JN ) denotes the couplings of the student and B =
(B1, ..., BN ) are those of the teacher.

To investigate the learning and generalisation properties of the system an
approach from the statistical physics is applied. We consider an ensemble
of systems to extract a typical behaviour of their learning abilities. Such
ensembles are defined by a Gibbs distribution:

P (J | {σµ}) =
1

Z
P (J) exp (−βE(J)), (8.5)

where P (J) denotes the constraints on the couplings J, Z is the canonical
partition function:

Z =

∫
dµ(J) exp (−βE(J)) with dµ(J) = P (J)dJ, (8.6)

E(J) is the training energy :

E(J) =

p∑

µ=1

ǫ(J, ξµ). (8.7)

The error function is defined as

ǫ(J, ξµ) = Θ(−(J · ξµ)(B · ξµ)), (8.8)

where Θ is the step function. We also define the generalisation function:

ǫ(J) =

∫
dµ(ξ)ǫ(J, ξ). (8.9)

By introducing new variables in analogy to (7.7)

Xµ =
1√
N

ηµJ · ξµ, Yµ =
1√
N

ηµB · ξµ (8.10)
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the error function gets the form

ǫ(J, ξµ) = Θ(−XµYµ). (8.11)

Here, ηµ = ±1. The actual choice of ηµ is not relevant since it does not
affect the error function (8.8) or the generalisation error. Later we are going
to average over ηµ.

We consider the spherical constraints for the couplings J: the a priori
measure dµ(J) is uniform on the sphere

∑N
i=1 J2

i = N of radius
√

N , i.e.

dµ(J) =

N∏

i=1

(
dJi√
2πe

)
δ

(
N∑

i=1

J2
i − N

)
, (8.12)

hence it is normalised ∫
dµ(J) = 1. (8.13)

The partition function Z gets the following form:

Z =

∫ N∏

i=1

(
dJi√
2πe

)
δ

(
N∑

i=1

J2
i − N

)
exp


−β

p∑

µ=1

Θ(−XµYµ)


 . (8.14)

We intend to calculate the following quantities:

f(T, p) = −T 〈ln Z〉
N

the specific free energy; (8.15)

ǫg = 〈〈ǫ(J)〉T 〉 the generalisation error, (8.16)

where

〈·〉T =

∫
· 1
Z

dµ(J) exp (−βE(J)) (8.17)

is the thermal average, and

〈·〉 =

∫
·

p∏

µ=1

dµ(ξµ) =

∫
·

p∏

µ=1

(dξµ)P ({ξµ}µ) (8.18)

is the quenched average over the distribution of the patterns. The generali-
sation error is linked to the so-called teacher-student overlap P :

ǫg =
1

π
arccos

P

1 − ε
, where P =

B · J
|B||J| =

1

N

N∑

γ=1

BγJγ , (8.19)

where ε = 1/d. The factor (1 − ε)−1 results from the fact that only those
components of J are changed during the learning process which correspond
to the nonzero eigenvalues λγ of the correlation matrix.
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8.2 Replica Calculations

We use again the replica method:

〈ln Z〉 = lim
n→0

ln〈Zn〉
n

. (8.20)

In physical sense the expression Zn is a partition function of n identical
systems, replicas, labeled by σ = 1, . . . , n, which do not interact.

Thus, in order to determine the specific free energy (8.15), we have to
calculate 〈Zn〉 first, since

−βf = lim
n→0

ln〈Zn〉
Nn

. (8.21)

The partition function acquires the form (we omit the constant factors):

Z =

∫ ∏

i

dJiδ
(∑

i

J2
i − N

)∏

µ

exp (−βΘ(−XµYµ)) . (8.22)

After the replication

Zn =

∫ ∏

iσ

dJσ
i δ
(∑

i

Jσ2
i − N

)∏

σµ

exp
(
−βΘ(−Xσ

µYµ)
)
. (8.23)

The averaging 〈·〉 affects only the part containing the exponential func-
tions

〈Zn〉 =

∫ ∏

iσ

dJσ
i δ
(∑

i

Jσ2
i − N

)〈∏

σµ

exp
(
−βΘ(−Xσ

µYµ)
)
〉

. (8.24)

Since the training examples ξµ, µ ∈ {1, . . . , p} are correlated, it is compli-
cated to perform the averaging over these variables. We choose the variables
Xµ

σ , Y µ instead and average over the ηµ as well. These variables are uncorre-
lated and Gaussian distributed according to the central limit theorem. The
moments of the distribution are

〈Xσ
µ 〉 = 0, 〈Yµ〉 = 0, (8.25)

〈Xσ
µYν〉 = δµνrσ, (8.26)

〈Xσ
µXρ

ν 〉 = δµνqσρ, (8.27)

where

rσ =
1

N

∑

γ

λγJσ
γ Bγ , (8.28)
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qσρ =
1

N

∑

γ

λγJσ
γ Jρ

γ (8.29)

The parameters rσ and qσρ are the spin glass order parameters.

For the averaging we get the following operation

〈·〉 =

∫
·

p∏

µ=1

[dZµ] P ({Zµ}µ) =

∫
·

p∏

µ=1

[dZµP (Zµ)] . (8.30)

Using the order parameters rσ, qσρ and Pσ the 〈Zn〉 can be rewritten as

〈Zn〉 =

∫ ∏

σ

drσδ
(∑

γ

λγBγJσ
γ − Nrσ

) ∫ ∏

σ≤ρ

dqσρδ
(∑

γ

λγJσ
γ Jρ

γ − Nqσρ

)

×
∫ ∏

σ

dPσδ
(∑

γ

BγJσ
γ − NPσ

)∫ ∏

iσ

dJσ
i δ
(∑

i

Jσ2
i − N

)

×
〈
∏

σµ

exp
(
− βΘ(−Xσ

µYµ)
)〉

. (8.31)

For the sake of convenience we split the right-hand side of (8.31) into
two parts. The first part I1 contains the δ functions. The second part I2

contains the averaging 〈·〉. Thus, we have

〈Zn〉 = I1 · I2, (8.32)

where

I1 =

∫ ∏

σ

drσδ
(∑

γ

λγBγJσ
γ − Nrσ

) ∫ ∏

σ≤ρ

dqσρδ
(∑

γ

λγJσ
γ Jρ

γ − Nqσρ

)

×
∫ ∏

σ

dPσδ
(∑

γ

BγJσ
γ − NPσ

)∫ ∏

iσ

dJσ
i δ
(∑

i

Jσ2
i − N

)
(8.33)

and

I2 =

〈
∏

σµ

exp
(
− βΘ(−Xσ

µYµ)
)〉

. (8.34)

The specific free energy, using the replica identity, I1 and I2 obtains the
form

−βf = lim
n→0

ln〈Zn〉
Nn

= G1 + G2, (8.35)

where
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G1 = lim
n→0

ln I1

nN
and G2 = lim

n→0

ln I2

nN
. (8.36)

In order to calculate I1, we use integral representation of the δ functions
by introducing conjugate variables r̂σ, q̂σρ, N̂σ, P̂σ , and omit the constant
factors:

I1 =

∫ ∏

σ

drσdr̂σ

∫ ∏

σ≤ρ

dqσρdq̂σρ

∫ ∏

σ

dPσdP̂σ

∫ ∏

σ

dN̂σ

∫ ∏

σi

dJσ
i

× exp



i



∑

σi

N̂σJσ2
i +

∑

σγ

r̂σλγBγJσ
γ +

∑

σ≤ρ,γ

q̂σρλγJσ
γ Jρ

γ +
∑

σγ

P̂σBγJσ
γ








× exp



−iN



∑

σ

r̂σrσ +
∑

σ≤ρ

q̂σρqσρ +
∑

σ

P̂σPσ +
∑

σ

N̂σ






 . (8.37)

In the thermodynamic limit the integral in I1 over the order parameters
is dominated by the saddle point in rσ, qσρ and Pσ . The specific free energy
is obtained by analytically continuing the saddle point to n = 0. Thus, we
omit the integrals over the parameters rσ, qσρ, Pσ , r̂σ, q̂σρ, P̂σ , N̂σ in I1 in the
anticipation of the use of the steepest descent method.

8.3 The Replica Symmetric (RS) Solution

We use the following replica symmetric (RS) ansatz

qσρ = δσρq0 + (1 − δσρ)q (8.38)

rσ = r (8.39)

Pσ = P (8.40)

q̂σρ = δσρq̂0 + (1 − δσρ)q̂ (8.41)

r̂σ = r̂ (8.42)

P̂σ = P̂ . (8.43)

For the G1 we get

G1 = −iN̂ − iq̂0q0 +
1

2
iq̂q − ir̂r − iP̂P − 1

N

∑

γ

1

2
ln(N̂ + (q̂0 −

1

2
q̂)λγ)

− 1

N

∑

γ

λγ q̂

4(N̂ + (q̂0 − 1
2 q̂)λγ)

− 1

N

∑

γ

iλ2
γ r̂2

4(N̂ + (q̂0 − 1
2 q̂)λγ)

− 1

N

∑

γ

λγir̂P̂

2(N̂ + (q̂0 − 1
2 q̂)λγ)

− 1

N

∑

γ

iP̂ 2

4(N̂ + (q̂0 − 1
2 q̂)λγ)

(8.44)
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The evaluation of I2 yields the G2

G2 = 2α

∫
DtH

(
− rt√

qs − r2

)

× ln

[
exp(−β) + (1 − exp(−β))H

(
−
√

qt2

q0 − q

)]
, (8.45)

where

s =
1

N

∑

γ

λγBγBγ . (8.46)

In the T = 0 limit G2 gets the form

G2 = 2α

∫
DtH

(
− rt√

qs − r2

)
ln H

(
−
√

qt2

q0 − q

)
. (8.47)

8.4 The Saddle Point Equations

To calculate the parameters r, q0, q, P, r̂, q̂0, q̂, P̂ , N̂ the following system of
saddle point equations should be solved

∂f

∂Li
= 0, Li ∈ {r, q0, q, P, r̂, q̂0, q̂, P̂ , N̂}. (8.48)

After inserting the corresponding values and performing the following
transformations for convenience:

q̂0 = iq̃0, q̂ = i2q̃, r̂ = ir̃, N̂ = iÑ , ṽ = Ñ/(q̃0 − q̃) (8.49)

we get the equations:
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1

N

∑

γ

λ2
γ

(ṽ + λγ)2
= −2q(q̃0 − q̃)2

q̃
+

r̃2

2q̃N

∑

γ

λ3
γ

(ṽ + λγ)2
(8.50)

1

N

∑

γ

λγ

ṽ + λγ
= 2(q0 − q)(q̃0 − q̃) (8.51)

1

N

∑

γ

λ2
γ

ṽ + λγ
= −2r(q̃0 − q̃)

r̃
(8.52)

1

N

∑

γ

λγ

(ṽ + λγ)2
= −2(q̃0 − q̃)2

q̃
+

q̃0 − q̃

q̃N

∑

γ

1

ṽ + λγ

+
r̃2

2q̃N

∑

γ

λ2
γ

(ṽ + λγ)2
(8.53)

rr̃ = 2(qq̃ − q0q̃0) (8.54)

1

N

∑

γ

λγ

ṽ + λγ
= −2P (q̃0 − q̃)

r̃
(8.55)

P̂ = 0 (8.56)

q̃ = − α

2π(q0 − q)

∫
Dt

exp
(
− qt2

q0−q

)
H

(
− rt√

sq−r2

)

H2
(
−
√

qt2

q0−q

) (8.57)

r̃ = − α
√

q

π
√

(sq − r2)(q0 − q)
(8.58)

×
∫

Dt
exp

(
− r2t2

2(sq−r2)

)
exp

(
− qt2

2(q0−q)

)

H
(
−
√

qt2

q0−q

) (8.59)

The eigenvalues (7.6) can now be inserted in the equations. From now
on it will be assumed that N ≫ d ≫ 1. For convenience, the following
scaled variables will be used

Q0 = q0d, Q = qd, R = rd, (8.60)

Q̃0 = q̃0d
−1, Q̃ = q̃d−1, R̃ = r̃d−1, z̃ = ṽd. (8.61)

The system of the saddle point equations gets the form:



8.5. THE LINEAR APPROXIMATION 55

1 − ε

(z̃ + 1)2
= −2Q(Q̃0 − Q̃)2

Q̃
+

R̃2ε

2Q̃
+

R̃2(1 − ε)

2Q̃(z̃ + 1)2
(8.62)

1 − ε

z̃ + 1
= 2(Q0 − Q)(Q̃0 − Q̃) (8.63)

1 − ε

z̃ + 1
= −ε − 2R(Q̃0 − Q̃)

R̃
(8.64)

1 − ε

(z̃ + 1)2
= −2(Q̃0 − Q̃)2

Q̃
+

R̃2(1 − ε)

2Q̃(z̃ + 1)2
+

(Q̃0 − Q̃)(1 − ε)

Q̃(z̃ + 1)

+
(Q̃0 − Q̃)ε

Q̃z̃
(8.65)

RR̃ = 2(QQ̃ − Q0Q̃0) (8.66)

1 − ε

z̃ + 1
= −2P (Q̃0 − Q̃)

R̃
(8.67)

Q̃ = − αu2

2πQ

∫
Dt

exp
(
−u2t2

)
H (−vt)

H2 (−ut)
(8.68)

R̃ = −αuv

πR

∫
Dt

exp
(
−v2t2

2

)
exp

(
−u2t2

2

)

H (−ut)
, (8.69)

where

ε =
1

d
, u =

√
Q

Q0 − Q
, v =

R√
Q − R2

(8.70)

8.5 The Linear Approximation

The solution of the equations can be written using the following linear ansatz

Q0 = Q
(0)
0 + εQ

(1)
0 , Q = Q(0) + εQ(1), R = R(0) + εR(1), (8.71)

Q̃0 = Q̃
(0)
0 + εQ̃

(1)
0 , Q̃ = Q̃(0) + εQ̃(1), R̃ = R̃(0) + εR̃(1), (8.72)

z̃ = z̃(0) + εz̃(1), (8.73)

where the indices (0) and (1) denote the leading term and the first correction
respectively. The leading terms represent the solution of the equations for
the case, when all eigenvalues are equal
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Q(0) = qλ−1 =
α

π

∫
Dt

exp
(
− Q(0)

1−Q(0) t
2
)

H
(
−
√

Q(0)

1−Q(0) t
) , (8.74)

Q
(0)
0 = 1, R(0) = Q(0), (8.75)

Q̃
(0)
0 = 0, Q̃(0) = − Q(0)

2(1 − Q(0))
, R̃(0) = − Q(0)

1 − Q(0)
, (8.76)

z̃(0) =
1 − Q(0)

Q(0)
. (8.77)

After inserting this ansatz and considering the terms up to the linear
order in ε, a system of linear equations is obtained, where the linear cor-
rections are the variables. The first five equations can be expressed in the
following form:

A ∗ x = B, (8.78)

where A is the following matrix (here Q ≡ Q(0)):

0 0 1 2Q(1 − Q) 4(1 − Q) −2(1 − Q2) 2Q2

0 −Q Q 0 −2(1 − Q)2 2(1 − Q)2 −Q2(1 − Q)
0 0 0 −2Q2(1 − Q) −2(1 − Q2) 2(1 + Q2)(1 − Q) −Q2(1 + Q)
−1 0 0 −(1 − Q) −2(1 − Q) 2(1 − Q) −Q2

−Q 0 Q Q(1 − Q) 2(1 − Q) −2Q(1 − Q) 0

x = (R(1), Q
(1)
0 , Q(1), R̃(1), Q̃

(1)
0 , Q̃(1), z̃(1)), (8.79)

B = (1 − Q,Q(1 − Q), 0,−(1 − Q), 0). (8.80)

Using these five equations the variables Q
(1)
0 , Q(1), R(1), Q̃

(1)
0 , z̃(1) can be

expressed in terms of Q̃(1) and R̃(1)

Q
(1)
0 = 0 (8.81)

R(1) =
2Q(0)(1 − Q(0))2

1 + Q(0)
Q̃(1) +

(1 − Q(0))(2Q(0)2 − 1 − Q(0))

1 + Q(0)
R̃(1) (8.82)

Q(1) = −2(1 − Q(0))(Q(0)2 + 1 − 2Q(0))

1 + Q(0)
Q̃(1) − 2Q(0)(1 − Q(0))2

1 + Q(0)
R̃(1) (8.83)
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Q̃
(1)
0 =

2Q(0)

1 + Q(0)
Q̃(1) − Q(0)

1 + Q(0)
R̃(1) (8.84)

z̃(1) =
2(1 − Q(0))3

Q(0)2(1 + Q(0))
Q̃(1) +

2(1 − Q(0))2

Q(0)(1 + Q(0))
R̃(1) (8.85)

For the variables Q̃(1) and R̃(1) we have the following equations:

R̃(1) =
αB√

8π3/2
√

Q(0)(1 − Q(0))5/2
Q(1)

+

(
1

1 − Q(0)
+

αC

π(1 − Q(0))3
− αA

πQ(0)(1 − Q(0))2

)
R(1) (8.86)

Q̃(1) = − αB√
8π3/2

√
Q(0)(1 − Q(0))5/2

R(1)

+
1

2

(
1

1 − Q(0)
+

αC

π(1 − Q(0))3
− αA

πQ(0)(1 − Q(0))2
+

α3B√
8π3/2

√
Q(0)(1 − Q(0))5/2

)
Q(1),

where

A =

∫
Dt

exp
(
− Q(0)

1−Q(0) t
2
)

H
(
−
√

Q(0)

1−Q(0) t
) (8.87)

B =

∫
Dt

t exp
(
−3

2
Q(0)

1−Q(0) t
2
)

H2
(
−
√

Q(0)

1−Q(0) t
) (8.88)

C =

∫
Dt

t2 exp
(
− Q(0)

1−Q(0) t
2
)

H
(
−
√

Q(0)

1−Q(0) t
) (8.89)

8.6 The Solution and the Learning Curves

It can be easily shown that the solution of the saddle point equations satisfies
the following relations:

R = Q, R̃ = 2Q̃, Q0 = 1, Q̃0 = 0, (8.90)

the other variables get the form:

Q̃ = − Q − ε

2(1 − Q)
, z̃ =

1 − Q

Q − ε
, P = Q − ε, (8.91)
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Figure 8.2: The learning curves ǫg = ǫg(α) for d = 2, 4, 8 compared to that
of a simple perceptron.
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Figure 8.3: The learning curves ǫg = ǫg(α
′) for d = 2, 4, 8 compared to that

of a simple perceptron.
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Q = ǫ +
α

π

∫
Dt

exp
(
− Q

1−Qt2
)

H
(
−
√

Q
1−Q t

) . (8.92)

The generalisation error obtains the form

ǫg(Q, ε) =
1

π
arccos

Q − ε

1 − ε
. (8.93)

Using (8.92) we get:

α(Q, ε) = π(Q − ε)



∫

Dt
exp

(
− Q

1−Qt2
)

H
(
−
√

Q
1−Q t

)




−1

. (8.94)

The generalisation error as a function of α is the sought learning curve

ǫg = ǫg(α). (8.95)

Fig. 8.2 shows learning curves corresponding to d = 2, 4, 8 as compared
to the learning curve of a simple perceptron. It can be observed that the
generalisation error decreases faster than that of a simple perceptron, de-
pending on d. With the increasing d the curve of the Bethge network tends
to approach the simple perceptron curve.

If we normalise the number of patterns with respect to the size of the
input layer N ′

α′ ≡ p

N ′ =
d

log2 d
α (8.96)

we obtain the learning curves ǫg = ǫg(α
′) shown in Fig. 8.3. As we see, in

this normalisation of α the generalisation becomes worse compared to the
simple perceptron.

We introduce a new parameter

τ =
α

αc(0)
, (8.97)

where

αc(0) = 2

(
1 − 1

d

)
(8.98)

is the storage capacity for κ = 0, and consider ǫg = ǫg(τ) (Fig. 8.4). The
learning curves lie over that of the simple perceptron.

This result may be interpreted in the following way. The preprocessing
of patterns leads to the correlations in the hidden layer. The structure
of these correlations is given by the eigenvalues of the C matrix. Due to
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Figure 8.4: The learning curves ǫg = ǫg(τ) for d = 2, 4, 8 compared to that
of a simple perceptron.

these correlations the generalisation error as a function of α decreases faster
than in the case of the simple perceptron. However, as a function of α′

the learning curves show slower decay compared to the perceptron. If the
number of patterns is normalised by the maximal number of storable random
patterns τ = p/pmax the above two effects seem to compensate each other,
still making the generalisation fall a bit slower than for the perceptron.



Chapter 9

Conclusions and Outlook

We have considered a way to improve the learning and generalisation prop-
erties of the simple perceptron. For this purpose the Bethge et al. two-layer
neural network has been investigated. It was shown that the specific prepro-
cessing scheme in the input-to-output mapping induces correlations in the
hidden layer. These correlations are given by the eigenvalues λγ . The corre-
lations result in the reduction of the storage capacity and the generalisation
error. Depending on the size of the modules d in the hidden layer, the learn-
ing curves lie under the simple perceptron learning curve, approaching it
rapidly with increasing d. If the size of the input layer N ′ is considered as a
normalising factor for the number of patterns, the storage capacity increases
and the generalisation error decreases slower than for the simple perceptron.
In order to find a measure for the performance, which is in some sense inde-
pendent of details of the architecture, we introduce the ratio τ of the number
of presented patterns p to the maximal number of random patterns pmax,
which can be stored in the same network. τ = p/pmax = α/αc. This mea-
sure can even be used for networks of unknown architecture. Considering
the generalisation error now as a function of τ , the two effects are combined
resulting in the learning curves which decay slightly slower compared to the
simple perceptron case. The reduction in performance is, however, rather
small.

As for outlook, we would like to mention some further points which
could be considered in future. It would be interesting to investigate the
learning and generalisation of the Bethge network in the presence of noise
(nonzero temperature) and using unlearnable rules. A rule is unlearnable if
the structures of a student and teacher are different from each other.

Another step would be the application of the methods used in this work
in the consideration of some other two-layer SVM architectures with different
feature extractions in the input-to-hidden mapping. Performing numerical
simulations would enrich our understanding of the problem.

Further, different unsupervised learning scenarios, e.g. the vector quan-
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tisation algorithm, can be applied to model the formation of preprocessing in
the input-to-hidden layer. In this way, an optimal coding can be determined
and fixed.

Using some realistic data set, the considered networks can be tested in
their performance.
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