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Zusammenfassung

Die exzellente Kopplung zwischen Laserlicht und atomaren Clustern ist bekannt und experi-
mentell belegt. Allerdings wird der physikalische Mechanismus, welcher der Laserabsorption
zugrunde liegt, noch immer kontrovers diskutiert. Lineare Resonanzabsorption (LR) tritt im
Falle ausreichend langer Laserpulse bei optischen oder langeren Wellenldngen auf. Hierbei steigt
die Mie-Plasmafrequenz zunéchst auf Werte oberhalb der Laserfrequenz an, sinkt anschliefend
wahrend der Clusterexpansion und trifft daher die Laserfrequenz zu einem bestimmten Zeit-
punkt. Im Gegensatz dazu tritt LR in kurzen Pulsen nicht auf. Trotzdem besteht effiziente
Energieabsorption fort. Mit Hilfe von particle-in-cell Simulationen und analytischen Model-
lierungen wird gezeigt, daf} jene Clusterelektronen, die zur effizienten Laserabsorption beitragen
eine nichtlineare Resonanz (NLR) durchlaufen, d.h., die instantane Frequenz ihrer Bewegung
im zeitabhéngigen, anharmonischen Potential gleicht voriibergehend der Laserfrequenz. Es
wird weiterhin gezeigt, dafl fiir vorgegebene Laserintensitédt und Cluster eine optimale Laser-
wellenlange fiir die Absorption existiert, welche unter tiblichen Voraussetzungen im Ultravio-
letten liegt. Dies bewirkt eine deutlich hohere Absorptionseffizienz, als das Ausnutzen der LR
wéhrend der Expansion. Das Emissionsspektrum laserbestrahlter Cluster wird ebenfalls unter-
sucht. Lediglich die tief gebundenen, kohérent im Clusterpotential oszillierenden Elektronen
tragen zur Emission von Harmonischen niedriger Ordnung bei. Im Gegensatz dazu emittieren
Elektronen, welche die NLR passieren, Strahlung mit zuféalliger Phase, was die Emission ho-
her Harmonischer verhindert. Ein Pump-Probeexperiment zur Messung der zeitabhiangigen
Nanocluster-Ladungsdichte mittels Harmonischenstrahlung wird vorgeschlagen.

Abstract

The excellent coupling of laser light to atomic clusters is a known, experimentally established
fact. However, the physical mechanism of laser absorption is still controversially discussed.
Linear resonance (LR) absorption occurs for sufficiently long laser pulses of optical or longer
wavelengths. Here the Mie-plasma frequency initially rises above the laser frequency, then drops
due to cluster expansion and therefore meets the laser frequency at some point. Instead, in
few-cycle laser pulses this LR is not met but efficient laser energy absorption is found to persist.
By particle-in-cell simulations and analytical modelling it is shown that the cluster electrons
contributing to efficient absorption pass a nonlinear resonance (NLR), i.e., the instantaneous
frequency of their motion in a time-dependent, anharmonic potential transiently meets the laser
frequency. For a given laser intensity and cluster it is further shown that an optimum laser
wavelength for absorption exists which typically lies in the ultraviolet regime. This yields a
higher laser absorption efficiency than employing LR during the cluster expansion. The emission
spectrum of laser-irradiated clusters is also investigated. Only the deeply bound, coherently
oscillating electrons in the cluster potential contribute to low-order harmonic emission. In
contrast, electrons crossing the NLR and leaving the cluster emit radiation with random phase
which inhibits high-order harmonics. A pump-probe experiment is proposed to measure the
time-dependent nano-cluster charge density by detecting the harmonic radiation.
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Introduction

The development of laser technology [1] during the last two decades significantly advanced
the field of intense light-matter interaction. Laser pulses of intensity up to several times
10 Wem ™2, now available in various laboratories worldwide, can easily ionize matter
into a hot plasma. For example, the ionization of the hydrogen atom within a fraction
of a laser cycle requires an intensity ~ 10"*Wem™2, which is much less than one atomic
unit of laser intensity, i.e., 3.51 x 10*Wem™2. The shortest laser pulses consist of only
two laser cycles within full width half maximum [2-6], corresponding to 5-6 femtoseconds

(1 femtosecond = 10715 seconds).

One of the primary goals of intense laser-matter interaction experiments is to deposit as
much laser energy as possible into the matter because laser plasmas are of interest for
the development of efficient table-top sources of x-rays, energetic keV electrons, and MeV
ions. Fast ions were shown to drive nuclear fusion reactions in deuterium plasmas.

Laser-matter interaction experiments typically involve either low density gases or high
density solids as targets. (Gas phase targets are attractive for the generation of short
wavelength radiation through the process of high harmonic generation (HHG). The har-
monic frequencies may exceed 300 times the incoming fundamental frequency. Gases,
however, usually show poor absorption of laser energy and produce only low x-ray yields.

Solid targets, on the other hand, often show a better absorption of laser light and particle
energies up to the MeV range. Due to collisional heating, resonance absorption, and
various plasma instabilities a significant fraction of the laser energy can be deposited into
the solid density plasma. However, due to the presence of a highly reflective skin layer
at the target front and due to the conduction of heat into the cold bulk, the conversion
efficiency of laser light into electrons, ions, and x-ray photons is not optimal.

Rare-gas clusters (for example argon or xenon) with van der Waals-bonding, metal clusters
with delocalized electrons, and fullerenes (e.g., Cgp molecules) in intense laser fields have
emerged as a new class of targets. Since clusters are smaller in size than a near infrared
laser wavelength (800 nm in most experiments) and the plasma skin depth, no over-critical
skin layer, which could act like a mirror and reflects the laser pulse, is formed at the front
surface of clusters, contrary to solid targets. Therefore they can be fully penetrated by
the intense laser light and can absorb the laser energy very efficiently. Almost 100% laser
energy conversion in clusters was reported in experiments [7]. The high charge states
of the cluster ions, generation of keV electrons, MeV ions, and x-ray photons are the
consequences of this intense and efficient laser-cluster interaction [8-10].
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The laser-cluster interaction scenario on which most of the researchers in the field agree
upon is as follows. After the laser irradiation of a cluster, electrons first absorb energy
and leave their “parent” ions (inner ionization). The total electric field (i.e., laser plus
space charge field) inside the cluster may enhance inner ionization up to high charge
states (ionization ignition [11,12]). The electrons, upon absorbing laser energy and leav-
ing the cluster, leave behind a positively charged ion background (outer ionization). This
positively charged ionic background finally expands due to Coulomb repulsion and hydro-
dynamic pressure, thus converting electron energy into ion energy. One of the main goals
of this thesis is to contribute to the understanding of the laser absorption mechanism.

The only possible routes to the absorption of laser energy are either resonances (linear
or nonlinear) or non-adiabaticities (all possible kinds of collisions). Collisional ionization
(absorption) is of minor importance at wavelengths ~ 500 nm or greater [13-16] whereas
it may be important at short wavelengths [16-18]. In this thesis, we focus on collisionless
absorption processes.

For laser wavelengths A\, > 500 nm, immediately after the removal of the first electrons
from the cluster atoms, the charge density p rises so fast that the Mie-plasma frequency
wmie(t) = /4mp(t)/3 (atomic units are used unless noted otherwise) exceeds the laser
frequency w). Subsequently wy. decreases due to the expansion of the ionic core. Hence
the “conventional” linear resonance (LR)

Wiie(t) = wi (1)

occurs not before the cluster has sufficiently expanded (typically after a few hundred fem-
toseconds). At LR the electric field inside the cluster is enhanced instead of shielded [19]
so that even higher charge states can be created and even more energy can be absorbed
from the laser. The importance of LR has been demonstrated both in pump-probe ex-
periments and simulations [20-27] with longer laser pulses. Instead, in the few-cycle
ultrashort laser pulse-regime or in the early duration of long laser pulses clusters do not
expand sufficiently and the LR condition (1) is never met. We show that even in this
case absorption is efficient and that the dominant absorption mechanism in this regime
is nonlinear resonance absorption.

In general, the eigenfrequency w of a particle in a given potential depends on the excursion
amplitude (or the energy) of the particle, w = w[r]. Figure 1 shows schematically that with
increasing excursion and energy the eigenperiod of the oscillatory motion also increases
and w[r| decreases. In a (laser-) driven system (e.g., a cluster) the excursion amplitude
is also time-dependent so that w[r] may transiently meet the NLR condition

wlr(t)] = w. (2)

The origin of NLR lies in the anharmonicity of the cluster potential and its importance
[28-33] has been pointed out previously. Until now NLR was observed only in simple
model systems [30, 31,34, 35] where electrons and ions are modelled by homogeneously
charged rigid spheres. However, the many-body nature inhibited the clear identification
of the absorption mechanisms in molecular dynamics or particle-in-cell (PIC) simulations.
In this thesis we identify the NLR within the so-called rigid sphere model (RSM) and then

2
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_ - -/high
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Figure 1: Dependence of the eigenfrequency w on energy and excursion of an oscillator
in an anharmonic potential. At the lower energy E; the oscillatory motion has a smaller
period (high frequency) compared to the time period at the higher energy Es. As the
oscillator is driven up in the potential during its motion w decreases. If w meets the driver
frequency nonlinear resonance occurs.

analyze our PIC results in the same spirit, namely in terms of nonlinear oscillators. We
prove that essentially all electrons contributing to outer ionization pass through the NLR,
so that NLR is unequivocally identified as the collisionless absorption mechanism when
linear resonance does not occur.

The energy absorption by cluster electrons in circularly polarized laser light has received
less attention so far, at least theoretically. Almost no effect of the laser polarization
on the x-ray emission [36-38] and on the ion energy distribution [39] were reported in
experiments with rare-gas clusters. From a theoretical point-of-view, circular polarization
(CP) is particularly interesting because one may think that “collisions with the cluster
boundary” may be responsible [14] for the energy absorption in linearly polarized (LP)
fields. However, such collisions (i.e., reflections) would be strongly reduced in a CP field
and energy absorption should be less efficient. We show that NLR occurs in CP fields as
well and is equally efficient.

In a laser field the electron dynamics breaks the spherical symmetry, leading to an asym-
metry in the total field which, in turn, induces an asymmetry and inhomogeneity in the
ion charge distribution. Simple models usually do not take this inhomogeneity and asym-
metry into account. By self-consistent PIC simulations of laser-irradiated rare-gas clusters
(argon, xenon) and deuterium clusters we confirm the asymmetry in the ion energy dis-
tribution found in recent experiments [40,41].

Due to dependencies on the various laser and cluster parameters an optimization of laser
energy absorption in clusters is difficult to achieve. It is known [20-27] that the energy
coupling is efficient during the LR mentioned above. However, for long pulses and long
wavelengths to achieve LR the cluster plasma density has to drop significantly and the
energy absorption (also the charge states) in such a low density plasma may not be
optimized. A short-pulse laser of shorter wavelength may allow for an early LR during
the charging of the cluster plasma. For a xenon cluster at a given laser intensity we predict
that an optimized wavelength exists, typically in the ultraviolet (UV) regime.

Although HHG is under extensive study for laser-atom or laser-molecule interactions,
very little is known about harmonic generation in the clustered target. In the laser-
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atom or laser-molecule case HHG is understood by a three-step model where an electron
executes its motion in the laser field after the ionization, is driven back to its parent
ion and, upon recombination emits harmonics. However, for laser-irradiated clusters this
mechanism does not work. We study harmonic emission from cluster nanoplasmas subject
to short, intense infrared laser pulses. A pronounced resonant enhancement of the low-
order harmonic yields is found when the Mie frequency of the ionizing and expanding
cluster resonates with the respective laser harmonic frequency. We show that a strong,
nonlinear resonant coupling of the cluster electrons with the laser field inhibits coherent
electron motion, suppressing the emitted radiation and restricting the spectrum to only
low-order harmonics. We also suggest a pump-probe scheme to monitor the ionization
dynamics and charge density of expanding clusters.

The thesis is organized as follows:
Chapter 1 presents a short overview of the interaction of lasers with atomic clusters.

The main working tool to obtain the results presented in this thesis is a three-dimensional
PIC code. The development of the PIC code was as an integral part of this thesis work.
Necessary details are given in Chapter 2.

Chapter 3 focuses on the identification of the NLR energy absorption mechanism.

In Chapter 4 a more realistic scenario of laser-cluster interaction is presented where self-
consistent inner ionization and ion motion are taken into account.

In Chapter 5 we study the optimization of ionization and laser energy absorption.
Chapter 6 is devoted to harmonic generation from clusters. Finally we conclude the thesis.

Unless noted otherwise we use atomic units (4dreg = h = ag = ¢ = me = 1 and ¢ =~ 137)
in this work where ¢y is the permittivity in free space, h is the Planck constant, aq is
the Bohr radius, ¢ is the light speed in vacuum, —e and m, are the charge and mass of
an electron, respectively. A perturbative solution of RSM is given in appendix A. The
relation between atomic units (a.u.) and SI units is given in appendix B.



Chapter 1

Basics of laser-cluster interaction

This chapter presents an overview of the prevailing theories and concepts which are necessary for
the understanding of laser-cluster interaction. We start with non-relativistic classical electron
dynamics in a monochromatic laser field. Relevant mechanisms of the ionization, electron heating
and the cluster expansion are also discussed.

1.1 Classical electron dynamics in a laser field

Laser radiation is a transverse electromagnetic wave, usually described by the electric field
E, magnetic field B; and the propagation vector k which are mutually orthogonal. In
such a laser field, the motion of an electron of velocity v, is governed by Newton’s second
law of motion (in atomic units)

dv,
dt

= —El — (’Ue X Bl) . (11)

If the laser light is linearly polarized, the electric field can be taken as (the real part of)
E, = Ejexp(iwt — ik - r) and similarly the magnetic field. For the excursion 7(t) of an
electron much smaller than the laser wavelength A; the spatial variation of the light field
can be neglected. This is known as the “dipole approximation” where E, = Ejexp(iwt).
The dipole approximation implies the omission of the magnetic field so that the electron
motion is in the plane of laser polarization due to the absence of the v, x B drift force.
Above the laser intensity 10'¥Wem™=2 for A\; ~ 800 nm, although an exact demarcation is
difficult to draw, the v, x B force is important due to relativistic electron velocities. Below
the intensity 10"¥Wem ™2, the electron motion can be regarded as non-relativistic [42] and
the dipole approximation can be applied. In this case Eq. (1.1) simplifies to the form

dv,
dt

- _E. (1.2)

In this work we assume the validity of the dipole approximation since the cluster size
(of a few nanometer) is much smaller than A\ and the intensities considered are below

bt



CHAPTER 1: Basics of laser-cluster interaction

Al (nm)  w (aw.) U, (au.) U, (keV)
1056 0.0431 3830.4 103.8
800 0.0569 2198.4 29.57
600 0.0759 1236.6 33.51
300 0.152 309.1 8.377

Table 1.1: Ponderomotive energy U, vs wavelengths at a laser intensity 10" Wem 2.

10"Wem™2. For a linearly polarized laser field (along @) E; = Ey& cos(wit) one finds
[from the Eq.(1.2)] the velocity v.(t) and the position z.(t) of the electron as

velt) = —% sinwit), To(t) = —f—l‘; (1 — cos(wit)], (1.3)

assuming v,(0) = 0 and z.(0) = 0 at the initial time ¢t = 0. Equation (1.3) gives the
respective upper limit ze, = Fy/wi of the excursion amplitude and the velocity ve, =
Ey/w; which are called the quiver amplitude and the quiver velocity of an electron during
the laser pulse. Due to the oscillatory motion of the electron, the average values of the
above quantities over a laser cycle are customarily used. The cycle average of the electron
kinetic energy is known as the ponderomotive potential Uy, i.e.,

Up = v2/2 = Ej/(40f) = Lo/ (40). (1.4)

Here we have used Iy = E2. If the ponderomotive energy U, of an electron approaches
its rest-mass energy mec?, relativistic electron dynamics set in. This can happen either
through an increase of the laser intensity or an increase of the laser wavelength, as is
evident from Eq. (1.4). Table 1.1 lists U, at different laser wavelengths for an intensity
Iy = 10¥Wem™2. U, becomes comparable to the rest mass-energy of the electron i.e.,
mec® = 0.51 MeV with increasing laser wavelength. However with the lasers operating in
the optical and near infrared frequency range (< 1100 nm) the electron dynamics can be
considered non-relativistic if the laser intensity is below 10'¥Wem™2.

1.2 Ionization processes of atoms

The interaction of the laser field with an atomic cluster leads to the removal of electrons
from the different atomic shells and the creation of ions of different charge states. This
is known as cluster inner tonization. Depending upon the laser intensity and the laser
wavelength different processes of inner ionization become significant. Although ionization
of isolated atoms is different from the ionization of atoms aggregated to a cluster, a
theoretical description of the inner ionization of rare-gas atomic clusters often uses the
atomic ionization concepts which can be grouped into two broad categories: (i) ionization
by the external laser field and (ii) ionization due to the collisions of electrons with ions.
In the context of ionization of atoms by laser fields, the ponderomotive potential U, [in

6



1.2. Ionization processes of atoms

Eq. (1.4)] enters another important parameter

7= 1, /20, (1.5)

for an atom of ionization potential I,. < is called the Keldysh parameter [43] which
is often used to distinguish the multiphoton ionization regime [44-49] from the tunnel
ionization [48-51] regime of atoms (see below). When v < 1 atomic ionization proceeds
either via tunneling or over-the-barrier [48-50,52] while v > 1 indicates the multiphoton
process of ionization. In the following we briefly discuss different processes of atomic
lonization.

(a (b)

Figure 1.1: (a) Multiphoton ionization (MPI): electron with binding energy —1I,, absorbs
n laser photons (indicated by up-arrows) each having energy 7w and escapes from the
atom with minimal kinetic energy. (b) Above threshold ionization (ATI): in this case
an electron absorbs more photons than required and escapes from the atom with higher
momentum. (c¢) Tunnelling ionization (TI): the laser field is strong enough to disturb the
atomic potential but the barrier remains above the binding energy. In this case there is a
(small) probability that the electron wave-packet tunnels through the barrier. (d) Over-
the-barrier ionization (OBI): the laser field is very strong, depleting the barrier below the
ionization level —I}, so that the electron escapes over-the-barrier (classically).
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1.2.1 Multiphoton ionization

Multiphoton ionization (MPI) is the ionization of an atom by absorbing more than one
photon of the incident electromagnetic wave. MPI can be understood quantum mechan-
ically [45—48] in higher order perturbation theory which we omit here. Schematically it
is illustrated in Fig. 1.1(a). By this process an electron acquires an energy higher than
the ionization potential of the atom and becomes free. If a number s of laser photons in
excess of the minimum number n required for ionization is absorbed, the electron leaves
the atom with an excess energy

By = (n—l—s)fwl—lp (16)

which is a generalization of Einstein’s equation for the photoelectric effect. The case s # 0
[see Fig. 1.1(b)] is called above threshold ionization (ATI) [42,44,48,53].

1.2.2 Tunnelling ionization

For laser intensities above 10*Wem~2 but below 10Wem™2, the driver field is strong
enough to distort the atomic potential [42,48-50]. Moreover, the laser period is long
on an atomic time scale so that a quasi-static viewpoint is applicable. The net effective
potential V(z) “seen” by the electron (in an ion of charge number Z) is given by [52,54]

V(z) = =Z/lx| — 2B (1.7)

in a.u. At the instant when the quasi-static laser field F) points in —z-direction the
electron tunnels out in +z-direction. Then Ej should be taken as Ejy. This is schematically
shown in Fig. 1.1(c) along the polarization axis. The existence of a barrier permits
tunnelling of the electron wave packet into the continuum. This is known as tunnelling
ionization (TT) which can be described by semi-classical approaches [51].

1.2.3 Over-the-barrier-ionization

For even higher laser intensities, the driver field is so strong that the initial electron energy
level is above the barrier, which is schematically shown in Fig. 1.1(d). The ejection of the
electron wave-packet above the barrier is known as over-the-barrier-ionization (OBI) [42,
48,52]. Differentiating V'(z) [in Eq. (1.7)] with respect to the excursion z, and demanding
that the effective force OV /0x = Z/x* — E) vanishes at the barrier location z}, one
finds x, = /Z/E, and the potential V(xy) = —2x,E = —2v/ZE) at x,. Equating
V(z,) with the ionization potential [,(Z) of the atom of charge number Z, we obtain
I,(Z) = —2v/ZEF), which at the field maxima (|E)| = Ej) yields the critical laser field
Ecrit7 i.e.,

Eer = I3(2)/(42) (1.8)
required to ionize the atom with a probability close to unity. The corresponding intensity
Lpp = EZ2,, is called the appearance intensity, which reads (in atomic units)

Ly = I1(2)/(1622). (1.9)

8



1.2. Tonization processes of atoms

Figure 1.2: Scheme of ionization ignition due to the static electric field Ey. of the ionic
background. The higher value of the field at the cluster surface creates higher charge
states there than in the cluster interior where the static field is lower.

In fact, a very good agreement [54-56] between the appearance intensities as predicted
by the OBI model Eq. (1.9) and the respective experimental values for multiply charged
noble gas atoms was obtained in a range of laser intensities ~ 10"*Wem™2 — 10'"Wem ™2,
indicating that the OBI model can be applied to the ionization of atoms at laser intensities
of interest in this work. Hence, although each of the above mentioned optical processes
(i.e., MPI, ATI, TI and OBI) contribute, we only consider the dominant process, OBI.

1.2.4 Ionization by the space charge field

Due to the finite size of the cluster and the collective coherent oscillation of the electron
cloud against the almost static ionic background, an additional electric field appears owing
to space charge imbalances. In the beginning of this process atoms have to be already
in ionized states so that an electronic and an ionic cloud form. Figure 1.2 schematically
illustrates the static electric field in the absence of electrons. This static field, being
maximum at the cluster surface, creates higher charge states of the ions at the surface
than in the cluster interior. The ionic field may exceed the applied laser field. For
example, a xenon cluster of radius R = 7 nm and number of atoms N = 17256 gives a
field (at the boundary, assuming all atoms are singly charged) Ey. ~ 0.9855 a.u. which
would be equivalent to a laser intensity ~ 3.4 x 10'Wem™2 capable of producing even
higher charge states up to Z = 8. The additional electric field adds up to the applied
laser field and the augmented total field can cause enhanced ionization of an ion inside
the cluster. The enhanced ionization further increases the field causing further ionization,
hence the name ionization ignition [11,12]. However ionization ignition does not continue
indefinitely because the removal of electrons from the cluster saturates at some point.
The presence of electrons counteracts ionization ignition. As higher charge states are
created the ionization potentials increase in a discrete manner due to the higher ionization
thresholds of electrons in deeper atomic shells. If the total field cannot meet the required
field for ionization of the next shell inner ionization saturates and ionization ignition stops.
Ionization ignition causes important effects: (i) it creates higher ionic charge states than
possible with the laser field alone, (ii) the space charge field being larger at the cluster
boundary than in the center, the ions at the cluster boundary attain higher charges than

9



CHAPTER 1: Basics of laser-cluster interaction

the ions in the cluster core by the ionization ignition. Finally, the space charge field leads
to a Coulomb explosion [10,37,41,57] of the ionic background more violent than expected
from charge states generated by the laser alone.

1.2.5 Ionization by collisions

Although the optical field ionization (OFI) of atoms is the dominant process of ionization
in the case of clusters as well, the high atomic density inside the cluster permits ionization
due to inelastic collisions of electrons with ions. Collisional ionization (CI) depends on
the electron density n, and the electron temperature 7,. Both the thermal electrons and
the electrons driven back to the cluster by the laser field will contribute to the CI. The
rate RS (due to the thermal electron motion) of CI can be determined by the equation

T = N0 (1.10)
with the empirical Lotz [58,59] ionization cross section

In(K./I,)

1.11
T (1.11)

0 = Qg5
Here a; = 2.17 is an empirical parameter, ¢; is the number of electrons in the valence shell
of the ion encountering the collision, I, is its ionization potential and K, = v2/2 is the
electron kinetic energy. Assuming a Maxwellian distribution of electrons the probability
density f.(K.) of electrons in the energy range between K, and K, + dK, obeys

fe(Ko)dK, =2 exp (—K,/kT,) dK,, (1.12)

m(kT,)3

with s the Boltzmann constant. Equations (1.10), (1.11) and (1.12) yield

2alq,ne/1 \/ /<;T K/I exp (—K./kT.) dK,, (1.13)

which can be evaluated numerically. The lower limit [, indicates that no ionization takes
place if K, < I,. Similarly the rate of CI due to the laser driven electron collisions can be

estimated by R{! = n,0,0;, using the characteristic electron velocity v, = —(Ey/w) sin(wit)
from Eq. (1.3). The average ionization rate over a laser period 7T is
. dn, [T E on. [™?* F
0= / 0, =2 sin(wit) dt = / 0, =2 sin 7 dr, (1.14)
T J, w) T Jr )

where 7 = wit is the normalized time and 73 = wyt; is the initial time when the kinetic
energy of the electron is equal to the ionization potential I, of the atom or ion. With
the instantaneous electron kinetic energy K, = v2/2 = 2U, sin 7 we can write sinTdr =

dK./(4Up+/1 — K./2U,). Substituting o; and sin7dr in Eq. (1.14) one obtains
neaiq; U7 In(K./1,) dK,

a W[p\/Up I Ke[p \/1—Ke/2Up’
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which can also be evaluated numerically. It is clear that, both U, and T increase with
the applied laser intensity. As a result RS and RS decrease and they become relatively
unimportant compared to the ionization by the laser field, as discussed before. In this
thesis we neglect all collisional effects so that ionization is due to the laser field and
ionization ignition.

1.3 Mie-plasma frequency

If one displaces the electrons in a bulk plasma slightly with respect to the ions the restoring
force leads to oscillations of electrons at the so-called plasma frequency [60]. The electron
plasma frequency wy. is given by the expression wpe = y/4mnee?/me. Aslong as the plasma
is neutral we can write n, = Zn;, the charge density of the ion background p = en, and

the electron plasma frequency as w, = wpe = \/4mpe/m..
The space charge field E,. inside the plasma can be obtained by Gauss’ law [61]

]{E dA:47r/de (1.16)
A r

where A is the surface enclosing the volume I' of a homogeneous rectangular plasma slab
of density p. Initially, electron and ion slab overlap. If the electron slab is displaced by «,
the restoring force F' = —eFE. on an electron at a distance  is F = —eE,, = —4ne’n.x
and the equation of motion for the electron thus reads

E(t) = — (4me’ne/me) T = —wl . (1.17)

Hence the electrons oscillate with the plasma frequency w;, [60]. The frequency w, sets
an important criterion for the laser field impinging on a plasma layer. It determines the
penetration depth ~ c/w, of laser light of frequency w into the plasma [62]. If w, > w,
which is often the case for solid density plasmas, the plasma is called over-dense. In
this case the laser light is reflected. In the opposite situation w, < w; the plasma is
under-dense and the laser can propagate inside the plasma. The charge density for which
wp = w; occurs is called critical plasma density p. which relates to the laser frequency as

wi = 4ne?p. /me. (1.18)

Unlike the plasma slab geometry considered above, cluster plasmas can be often considered
spherical. The spherical electron cloud oscillates about the center of the ion cloud. For
an electron at @ = r& from the center of the ion sphere (r < R is the distance from the
center of the cluster of radius R) Gauss’ law yields E..(47r?) = 4mwen.(4nr3/3) & which
leads to the equation of motion of the electron sphere

&(t) = —(w2/3) . (1.19)

The factor 1/3 appears due to the spherical geometry. The spherical electron cloud
oscillates with a frequency wy,/v/3, which is known as the Mie-plasma (or surface plasmon)
frequency

Watie = Wp/ V3. (1.20)
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It plays a significant role for the efficiency of the laser-cluster energy coupling and for the
harmonic radiation from clusters, as will be seen in chapters 5 and 6.

1.4 Cluster heating processes

The electrons and ions, which are produced after the ionization of the cluster atoms, will
execute their motion in the combined field of the laser and the space charge due to the
ions and the electrons. The laser energy is initially coupled to the electrons which are
much lighter than the ions. The massive ions, on the other hand, are less disturbed by
the laser field and their dynamics are relatively well understood as the repulsion among
them due to the Coulomb field which dominates the laser field.

In the context of laser-cluster interaction the mechanism of electron heating was not well
understood. This section describes several mechanisms which were proposed to explain
the efficient energy coupling to the cluster electrons.

It should be emphasized that all phenomena of energy absorption, independent of the
underlying mechanism(s), must obey Poynting’s theorem [62] which requires a phase dif-
ference of the electron current density j. with respect to the laser field E; different from
/2. Poynting’s theorem states that the rate of change of electromagnetic energy density
U in an extended medium (e.g., cluster) is equal to the divergence of Poynting’s vector
S = E) x B,. Mathematically it reads,

ou
S =-V:S=E-VxB-BVxE, (1.21)
Applying Faraday’s law V x E| = —% and Ampere’s law V x B = j. + %, and

averaging over a laser period 7' one obtains

U=-V-8=j. E. (1.22)

Note that the integral fOT (E1 . % + By - %) dt vanishes for sinusoidal fields. Clearly, a

phase 6 = 7/2 between j, and E) yields U= Je - By = 0. In this case energy absorption
does not occur at all. Therefore j.- E; # 0, i.e., § # m/2 is a necessary criterion for
absorption irrespective of the mechanism(s) leading to this required dephasing.

1.4.1 Collisional heating

Collisional heating (CH) or “inverse bremsstrahlung” (IB) heating occurs due to frequent
electron-ion collisions. The electron-ion collision frequency v [60] reads (in atomic units)

W21 Zn,

Vi = = n InA. (1.23)

A is the standard Coulomb logarithm usually in the range 10—20, as is known from plasma
kinetic theory [60]. The validity of Eq. (1.23) relies on the establishment of an electron
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temperature T, and an electron density n,, i.e., rapid thermalization of the electrons
by frequent collisions among themselves is needed during the laser pulse. In a linearly
polarized laser field F} = Ejcos(wit) a free electron has a quiver energy EZ/2w?. When
this electron collides with an ion at a frequency v, the rate of change of energy U can
be estimated by [6]

dU E}

— = Vi, 1.24

a " 2w} (1.24)
which determines the rate of collisional absorption. Assuming 7, = U, one obtains

dU/dt oc A Iy 12 1t implies that at higher laser intensities, and near infrared wave-
lengths CH plays a nominal role since 1,; decreases rapidly as the temperature rises to
higher values, e.g., T, in the keV regime. At low laser intensities as well as shorter laser
wavelength CH has to be taken into account.

1.4.2 Vacuum heating

It was proposed by Brunel [63] that when a linearly polarized intense laser pulse strikes
obliquely a metallic surface or a sharply bounded over-dense plasma layer, the laser field
pulls the electrons out of the surface into the vacuum and then push them back into the
plasma with velocities approximately equal to the quiver velocity Fy/w,. The electrons
then emerge at the rear side or vanish into the bulk. If the phase of the laser field matches
with those of the emerging electrons they may gain more energy from the laser field.
Although this mechanism was initially proposed for the case of laser-solid interaction, the
applicability of the this mechanism in the case of atomic clusters with a size of only a
few nanometer is not well justified. Nevertheless, the terminology “vacuum heating” was
used [28,29,64] for the case of clusters too.

1.4.3 Resonance heating

Resonance between the laser frequency and the Mie-plasma frequency or the time depen-
dent eigen-frequency of an electron in the anharmonic cluster potential leads to significant
heating of electrons. If the resonance is met while the laser is on, resonance heating is
the dominant process of energy absorption in clusters.

Nanoplasma model

One of the first phenomenological models used to describe the energy absorption and heat-
ing of quasi-free cluster electrons was the nanoplasma model [19] which treats the cluster
as a dielectric sphere. This is basically a hydrodynamic (fluid) model which considers
absorption of laser energy by electrons predominantly due to electron-ion collisions occur-
ring at a frequency v;. The temperature is assumed uniform while the time-dependent
charge density p(t) is taken into account in the time dependence of the dielectric constant
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(t,w) given by the Drude model

Arp(t) p/pe P/ e - Vei/wi
t =]1-—— _=1- . 1.25
) =1 i~ v o2fed) D) (1:25)

The field inside the dielectric sphere in terms of the external laser field can be written as

3E)

E= PRt (1.26)

The electrostatic energy density U of a dielectric medium is U = ¢E?/8r. The heating
rate can be obtained by considering the rate of deposition of laser energy in the dielectric
sphere. The energy deposited per unit volume in the cluster is

ou 1 oD

ot Am Ot
where D = ¢FE is the induced dipole moment inside the dielectric sphere. After averaging
over a laser cycle the average rate of deposited energy density can be written as [19]

(1.27)

oU 9w Imle]EF

R — 1.2
o 824t )] (1.28)

Note that when the electron density inside the cluster is high, i.e., when p > 3p. then the
field inside the cluster is smaller than the field outside. This shielding results in a decrease
of the heating rate. When p = 3p., the linear resonance wyie = /4mp/3 = w, occurs
and the denominator |2 + (¢, w;)| passes through the minimum, causing enhancement of
the heating rate inside the cluster. The relative height and width of the resonance are
determined by the collision frequency v,;. In the absence of collisions, i.e., v.; approaching
zero, the width of the resonance vanishes according to the nanoplasma model.

During the first cycles of a laser pulse the cluster charge density rises due to inner ion-
ization, and wyye remains above the laser frequency wy (for the optical and infrared wave-
lengths or longer). As the ionic background expands due to the mutual Coulomb repulsion
and the hydrodynamic pressure (described in Sec. 1.5), the charge density decreases, lead-
ing to the decrease of the Mie-resonance frequency. Linear resonance wye = w is thus
met after a longer time (typically > 50 fs) during the expansion.

Hence for a short, few-cycle laser pulse the ionic sphere does not expand sufficiently to
meet the linear resonance. In this case linear resonance theory is inapplicable. We shall
show that energy absorption is still possible via nonlinear resonance.

Rigid sphere model

Ions being massive, their motion can be neglected in short laser pulses. This applies to
the early part of long laser pulses as well. In a first approximation the electrons can also
be approximated by a sphere of negative charge which remains rigid during the entire
laser pulse. The homogeneously charged electron cloud oscillates back and forth against
the positively charged ion cloud driven by the oscillating laser field. Figure 1.3 shows
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Electron motion

Laser field

Figure 1.3: The rigid sphere model. The positively charged ion sphere is at rest due to
the high inertia. The negatively charged electron sphere oscillates against the ion sphere,
driven by a laser field.

schematically the rigid sphere model (RSM). Although the rigid sphere model is a very
simple approximation of clusters, it provides significant qualitative understanding. In a
first approximation we assume the radius of the electron sphere being equal to the radius
of the ion sphere. At a high intensity, an expanded electron sphere [30,31] may be more
realistic. The center of mass of the electron-ion system is located very close to the center
of the ion sphere. The equation of motion of the electron center of mass in a linearly
polarized laser field, polarized along x, can be written as (in atomic units)

(1.29)

where 7 = /R, r = || is the normalized excursion of the electron sphere and 7 = wit
is the normalized time. The quantity Fj(7)/Rw? is the dimensionless driver amplitude
which is the excursion amplitude of a free electron divided by the cluster radius. The
dimensionless electrostatic restoring force reads

2 9r2 4
_ Whiie T—E‘F@ OST‘SQ 1
g(r) ( » ) X { 2 >, (1.30)

The first term in the upper line of g(r) is the linear force when the displacement of the
electron sphere is small, the next two terms are nonlinear terms which appear due to the
partial overlap of the electron cloud with the ion cloud. The term =2 is the Coulomb
force, valid for the complete separation of the electron sphere from the ion sphere. As
was observed in Ref. [30] the absorption of laser energy in the RSM is characterized by
a threshold driver strength below which absorption is negligible (harmonic regime) and
above which absorption is almost constant. Figure 1.4 shows this threshold behavior for
Witie/w1 = 3.65 and an n = 8-cycle sin*-pulse Fj(7) = Eysin®(7/2n) cos(T).

In the RSM the expansion of the cluster is not essential for efficient energy absorption,
contrary to the nanoplasma model. Therefore the RSM can be applied to short laser
pulses in order to understand the laser energy absorption in this regime. In most part
of this thesis we shall assume short laser pulses and often apply the RSM in different
contexts.
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Figure 1.4: Laser absorption vs driver amplitude in the rigid sphere-model (1.29) for
Witie/w) = 3.65, Ei(1) = Egsin?(7/2n) cos(r), n = 8. The nonlinear resonance is passed
once the threshold driver amplitude = 2.0 is reached.

1.5 Cluster expansion processes

The expansion of an ionized cluster strongly depends upon the number of electrons re-
moved from the cluster during the laser pulse. Early removal of electrons triggers an
early expansion dynamics of the ions. Small clusters retain less electrons than bigger ones
which have higher restoring forces on the electrons. If the laser field is not strong enough
to remove a large number of electrons from the cluster an almost quasi-neutral plasma
sphere is formed which expands hydrodynamically. In general, both hydrodynamic and
Coulomb pressure drive the expansion due to which ions gain energy.

1.5.1 Hydrodynamic expansion

In the hydrodynamic description of plasmas [60], electrons and ions are considered charged
fluids. Due to binary collisions among the ions, an ion temperature 7} builds up. Similarly
the temperature T, of the electron fluid builds up due to electron-electron collisions. Since
electrons are more mobile than ions, the thermalization of electrons takes place much
faster, and T, exceeds T;. If a substantial fraction of the electrons does not leave the
slowly moving ion background the interior of the cluster is quasi-neutral. The expansion
of such a cluster is known as hydrodynamic expansion. The energy relation [6] (in a.u.)

1 drR\?* 3
M (E) = ST, (1.31)

of the ions sitting at the cluster boundary gives the rate at which the cluster radius R
expands. Equation (1.31) equals the ion kinetic energy to the internal energy. To calculate
R, one should determine 7} before. The hydrodynamic pressure P, of the quasi-neutral
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plasma is determined by
P, = n.T.. (1.32)

Due to this pressure the electron fluid expands and the internal energy %VnCTC of the
electron fluid decreases as the cluster volume V = 47 R3/3 grows. The decrease of the
internal electron energy due to the increase of the cluster volume dV is given by

2P, dV = 3Vn, dT,. (1.33)
Equations (1.32) and (1.33) yield —2dR/R = dT,/T., which gives the temperature
T, = T (Ro/R)*. (1.34)

Here Ry and T,y are the initial radius of the cluster and the initial electron temperature.
Clearly, the electron temperature drops due to the expansion of the hot electron cloud.
The energy balance reads [6]

3 d7, 3 dT;

which simplifies to

T T T 2
AL _nedle _gheTw <@) ar (1.36)

dt  mdt “m R\R/) dt’
If Q number of electrons leave the cluster volume V due to outer ionization, the net
electron density becomes n, = ni(Z — Q/n;V) = ni(Z2 — Q/N) with N = n;V as the total
number of ions inside V. Differentiating Eq. (1.31) with respect to ¢ and substituting
d7;/dt in Eq. (1.36) one obtains

d’R  3Tw(Z — Q/N) <R0)2.

M; (1.37)

ez R R
Equations (1.36) and (1.37) are difficult to solve analytically, since Z, @ and N are in
general time-dependent. The analytical solution is possible for constant Z, () and N. This
situation can be realized after a long time when an initial temperature T, is established,
no more electrons are produced due to inner ionization and outer ionization is saturated.

With these approximations one finds the rate of cluster expansion [6] from the equation

1 (dR\’
33 (G ) =35 = 5T (2~ Q/N) [1 - (Ro/ ). (1.39)
Here it is assumed that dR/dt = 0 at the initial time ¢ = 0. Equations (1.34) and (1.38)
give T, and T} as the cluster expands. In the limit of infinite expansion, i.e., R — oo, the
temperature of the ion fluid becomes maximum Ty, = Teo (£ — Q/N) while the electron
fluid looses all of its thermal energy and T, drops to zero. In this limit the ion fluid
continues to expand with a constant ion acoustic speed C5 = \/3Tax/M;. The solution

of Eq. (1.38) is [6]
R(t) = Ro\/1 + C2t?/ R2. (1.39)

We estimate the typical time required for a deuterium cluster to double the radius. As-
suming Z = 1, M; = 2 x 1836 m,, T = 100 eV, Q/N = 0.5, Ry = 5 nm one obtains
Tmax = 50 eV, Cs ~ 84956 m/s and t ~ 1.0 x 10713 s.
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1.5.2 Coulomb expansion

In an ionized cluster, ions experience mutual Coulomb repulsion due to which they are
accelerated. The presence of electrons within the cluster lowers the effective positive
charge of an ion and slows down the ion motion. In an ideal case, we can assume all
electrons being completely removed at the initial time ¢;, and the ionic background being
a homogeneously charged sphere of radius R(t,) = Ry and total charge QQ, = NZ. As
time progresses the ion cloud expands electrostatically, obeying the equation of motion

(in atomic units)

d’rR Q2
NMi— - _p.
d¢? R?

The solution of Eq. (1.40) with the initial conditions R(ty,) = Ry and R(t;,) = 0 reads [6]

(1.40)

=t S (ViE =g (VB V1)) (141)

Here, p = R(t)/Ry is the ratio of the expanding radius to the initial radius and M, = NM;
is the total mass of the ion sphere. If we assume that the cluster is already ionized at time
tin = 0, then the time to double the cluster radius (with p = 2) is t = 1.6232+/M;R3 /N Z2.
Assuming the liquid drop model [6] of a cluster one can express R3 = riyN (ryw is the
Wigner-Seitz radius) and ¢ = 1.6232/M;r3;/Z%. For a deuterium cluster (with Z = 1,
M; = 2 x 1836 m, and rw = 1.7 x 1071° m) one obtains ¢ ~ 13.6 x 107'*> s. Thus Coulomb
expansion of a cluster is much faster than the hydrodynamic expansion which occurs on
the picosecond time scale.

1.6 Summary

In this section we have discussed basic models and ideas which are required for the further
understanding of the laser cluster interaction. We have omitted the derivation of the
theories and kept our discussion short. More details on the subject are discussed in

Refs. [4-6].
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Chapter 2

Particle-in-cell simulation

The interaction of intense laser radiation with matter creates a hot and dense plasma
of solid-like density. Most of the proposed theoretical models of laser-irradiated clusters
assume clusters as homogeneously charged spheres of electrons and ions throughout the
laser interaction, which is poorly justified. Theoretical models need validation from “first-
principles” numerical simulations. We use the particle-in-cell (PIC) simulation technique,
considering the electron and ion dynamics in the self-consistent mean field created by
the charged particles themselves in addition to the laser field. In this chapter we discuss
necessary details of the PIC method. We present a few test results for the validation of
the PIC code which has been developed during the course of this thesis work.

Plasma is a collection of a large number of electrons and ions. In a first approximation
one can neglect collisions among the plasma particles and — in the case of small clusters in
strong laser fields — also magnetic fields. The kinetic simulation of such a non-relativistic,
unmagnetized collisionless plasma is based on the Vlasov equation [62,65]

Afs afs Afs

gs
9 g
ot "V o T e

—0. (2.1)

Here, f,(t,x,v) represents the distribution function of the sth species (either electrons
or ions), t is time, & and v describe position and velocity of a particle in the phase space
(x,v), and FE is the electric field acting on the particle. To resolve the entire phase space
and to propagate f is extremely demanding. Therefore such kind of kinetic modelling is
usually limited to two or three phase space dimensions.

Equation (2.1) leads to a set of equations of continuity (for density, momentum, energy
and heat flux, upon integration over various moments of fs in the velocity space) which
describes plasma as a macroscopic hydrodynamic fluid [60,62]. Fluid modelling is useful
for the understanding of transport properties of plasmas including the transport of mass,
momentum, energy flux and heat flux [60,62]. Fluid modelling sometimes may not reveal
finer details of nonlinear interactions between intense laser light and high density plasmas.

In the absence of any external field, plasma electrons and ions interact among themselves
by the mutual Coulomb field. The problem then boils down to the study of the dynamics
of the plasma particles in the self-consistent Coulomb field. Kinetic modelling of such kind
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is commonly known as “particle simulations” which are popular due to their conceptual
simplicity, although computationally still expensive.

Standard particle simulation methods [65, 66] are: (i) Particle-Particle (PP) models,
(ii) Particle-in-cell (PIC) models and (iii) Particle-Particle-Particle-in-cell (P*IC) mod-
els. The main difference between these models lies in the computation of the interaction
among the particles. The superiority of a particle code depends upon the efficiency and
accuracy of the field solution as the number of particles N grows from say, thousands to
millions. The PP codes treat the forces of interaction (Coulombic in nature) directly and
are commonly known as molecular dynamics (MD) codes. In a system of N particles, one
particle interacts with the other N — 1 particles and there are N(N — 1) ~ N? number
of interactions among all particles in each stage of the force computation. Molecular dy-
namics simulations of clusters consisting of N > 1000 atoms are prohibitive due to the
N?-scaling. The PIC method scales ~ Nlog(N) and thus increases the computational
efficiency. The P3IC model is a hybrid approach using both PP and PIC concepts [65,66].

In this work we use the PIC simulation method. We apply the dipole approximation since
the cluster size (< 50 nm) is typically many times smaller than the skin depth (6 ~ ¢/w))
and the laser wavelength (A} ~ 700-1100 nm). A fully electromagnetic PIC code would
require the solution of the full set of Maxwell’s equation [65] which is essential when one
studies propagation phenomena, e.g., in the case of laser-solid interactions and also for the
laser-cluster interaction in the relativistic regime of laser intensities > 10"¥Wem ™2 where
the magnetic component of the Lorentz force is no longer negligible since the electron speed
approaches the speed of light. In those cases one certainly needs an electromagnetic PIC
code [67].

The computational mesh width Az and the time step At in the PIC simulation must be
fine enough to resolve the Debye length and plasma frequency, respectively, for a converged
solution. There should be a sufficient number of particles in each computational cell
(minimum 8-10 particles per cell) to reduce noise and instabilities.

A PIC simulation consists of the steps shown in the Fig. 2.1: (i) computation of the charge
density from the positions of particles, (ii) solution of Poisson’s equation to obtain the
potential and fields at the positions of particles, (iii) solution of the equation of motion
of the particles in the combined field of space charge and external laser to obtain new
positions and velocities. In a standard PIC simulation [65, 66] the continuous three-
dimensional space is discretized by equally spaced grid points. Therefore an interpolation
of the charge density on the grid from the positions of the particles is required. Poisson’s
equation is solved on the grid from which the electric field on the grid is obtained. Finally,
interpolation of the field from the grid to the positions of particles is needed in step (ii)
above. In the following sections of this chapter we discuss the steps shown in Fig. 2.1.

20



2.1. Governing equations

Compute charge density Solve field equation
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Figure 2.1: Scheme of a particle-in-cell simulation.
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2.1 Governing equations

Particle-in-cell simulations are governed by the following set of equations (using atomic
units and the dipole approximation)

0= 2Zn; — ne (2.2)
V3¢ = —dmo (2.3)
E=-V¢ (2.4)
dve
T - (E+ E) (2.5)
dWi
dr.
g v (2.7)
dR;
el (2.8)

where n, is the electron number density, n; is the number density of ions, Z is the ion
charge, o is the net charge density, ¢ is the electric potential, E is the electric field due
to space charge, E; is the laser electric field, r, and v, are position and velocity of a
PIC electron, M; is the ion mass, R; and Vi are the position and the velocity of a PIC
ion. Note that one PIC electron or ion may represent several (or a fraction of a) physical
electron(s) or ion(s).

2.2 Computation of the charge density

This section describes the computation of the charge density from the coordinates of the
particles. We preferred to develop the PIC code in Cartesian coordinates since a laser-
irradiated cluster in general does not preserve any symmetry. We divide the simulation
volume into a large number of small cubic cells (see Fig. 2.2). Each cell can be identified
by integers (j, k,1). One cell corner A with index (j, k,!) has the coordinates X; = jAx,
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Figure 2.2: The computational grid.

Y. = kAy and Z; = [Az with Az, Ay and Az the constant grid spacing along X, Y and Z
axes such that the volume of each cell is AV = AzAyAz. The remaining seven corners B,
C, D, E, F, G and H have the coordinates (X1, Yk, Z1), (Xj11, Y1, Z1), (Xj, Y1, Z0),
(X5, Y1, Zig1)s (X5, Ya, Zia), (Xjg1, Ya, Ziga) and (Xjq1, Yig1, Ziga), respectively.

Let 7;(z;, s, 2, t) be the position and v; (v, vyi, v24,t) be the velocity of the ith PIC
particle with respect to the origin (O) of the coordinate system at a given time ¢. The
relative position r(z,y, z) of this particle with respect to the grid point (X, Y%, Z;) is
r=x; — X;,y=1y; — Yy and z = z; — Z;. The relative position r(x,y, z) determines the
relative weight of the particle charge density at the grid point (X;,Y}, Z;) and similarly
at the other grid points closest to the particle. The noise-level of the PIC simulation
depends greatly upon the choice of the interpolation scheme [65,66] to map the charge
density from the particle coordinates to the cell corners.

There are different methods [65,66] for the particle-to-grid interpolation: (i) Nearest
grid point (NGP) weighting, (ii) Particle-in-cell (PIC) or Cloud-in-cell (CIC) weighting
and (iii) higher order weighting using quadratic and/or cubic splines. The choice of the
interpolation scheme corresponds to different finite shapes of the particles (instead of
point like physical particles) [65,66].

In the NGP method, any particle with position between X; + Ax/2 is assigned to the
grid point X;. The NGP method is noisy and violates the conservation of energy [65,66].
Therefore, the NGP scheme is seldom used. In the PIC/CIC method fractions of the
particle charge density are assigned to the grid points surrounding the particle. This
scheme smoothes out unphysical oscillations of the charge density.

For X; <o < X, Y, <y <Yy and Z; < z < Zj44, the ith particle lies within the
cell (j,k,1) of volume AV. The fraction of the charge density at the grid point (j, k,1) is
the product (Az — z)(Ay — y)(Az — 2)/AxAyAz multiplied by the single particle charge
density 7; = ¢;/AV (assuming the charge ¢; of the ith particle to uniformly fill the cell
volume). The result n;(Ax — z)(Ay — y)(Az — z) /AxAyAz is then summed up for all
computational particles N, within the cell to obtain the net charge density at the grid
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point (j, k,1). Following the above procedure one finds the charge densities at the eight
corners of the cell (j, k, 1) as

N TR e
Oj+1,ki = Z Xx (AyAy y) (AZA; 2) (2.10)
Oj+1,k+1,1 = Zm Ais Ayy (AZA; ?) (2.11)
Oj ksl = ﬁ_) i (AZ; al Aiy (AZA; 2 (2.12)
Ojk+1,041 = i m%%é (2.13)
i=1
Oj k41 = i ni (AZ; ) (AyA; y) é (2.14)
0j+1,k,14+1 = iﬁi Axx (AyAy v) AZZ (2.15)
Oj+1 k41,141 = ngx Ayy AZZ (2.16)

If we take the sum of the charge densities of all eight corners we retrieve 7;, meaning that
the charge is locally conserved in the CIC/PIC interpolation scheme. If a charge ¢; is
placed at the cell center (i.e., Az —x = Azx/2, Ay —y = Ay/2 and Az — z = Az/2) the
charge is shared equally among the respective grid points surrounding the particle. n; is
constant for particles of equal charge (e.g., electrons), but particles of different charges
(e.g., ions of different charge states) yield different values of 7;. After obtaining the charge
density at all grid points, the electric potential can be calculated.

2.3 Solution of Poisson’s equation

The computation of the electric field from the charge density requires the solution of Pois-
son’s equation (2.3). The boundary conditions need to be specified. Relevant possibilities
are: periodic boundary conditions, Dirichlet boundary conditions or Neumann boundary
conditions. A meaningful combination of the above boundary conditions may also be ap-
plied, depending upon the physical situation. In the context of laser cluster interaction,
periodic boundary conditions are of interest when individual clusters are considered at
regular intervals. For an isolated cluster either Dirichlet or Neumann boundary conditions
may be applicable.
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An efficient solution of the three-dimensional Poisson equation (2.3) is non-trivial. Various
methods for solving Poisson’s equation have been extensively reviewed in Ref. [66]. This
section describes the methods using the fast Fourier transformation (FFT) for solving
Poisson’s equation with all kinds of boundary conditions.

2.3.1 Fourier transform methods

To solve Poisson’s equation (2.3) we consider its finite difference approximation. The
central difference approximation of the Poisson equation (2.3) can be written as [68]

(Az) (Ay)?
(AZ)2 Qjkl-
We have absorbed 47 [of Eq. (2.3)] within g;;;. The discrete Fourier transform (DFT) of
the three-dimensional charge density g, reads [68]

Sk 2mipj 2migk 2mirl
@W:ZZZQWQXP< 7 )exp( e )exp( 7 ), (2.18)

=0 k=0 =0

(2.17)

where J, K and L are the number of grid points along the x,y and z-directions respec-
tively. 0pq is the inverse Fourier transform (IFT) of g;i; which can be retrieved by the
transformation

L

g A —2mipy —2migk —2mirl
Qﬂ"“:m;;r:o@m"e}ip< J )exp< K )exp< L ) (219

with 8/(JK L) as the normalization factor. Analogous expressions similar to Eqns. (2.18)-
(2.19) also hold for the potential ¢, = ¢(j, k, 1) and its inverse transform ¢,,, which can
be expressed as

. S 27ipy 2rigk 2rirl
¢W:ZZZ¢jklexp< 7 )exp( e )exp( 7 ), (2.20)

j=0 k=0 1=0
J—1K—1L-1 o . .
8 - —2mipj —2miqk —2mirl
ikl = TKL Z Z Gpgr €XP ( 7 ) exp ( e exp 7 . (2.21)
p=0 g=0 r=0

Substituting g, and ¢;i; in Eq. (2.17) we obtain [68]

@pqrA2
2 [cos (£2) + cos (22) + cos (£2) — 3]
assuming equal grid spacing Az = Ay = Az = A along the z, y and z directions. Equa-
tion (2.22) relates the potential with the charge density in Fourier space. The full solution
of Poisson’s equation can be obtained after taking the inverse transform of Eq. (2.22).
However, Eq. (2.22) is valid only for periodic boundary conditions. The periodic bound-

ary conditions are naturally included in Eq. (2.22) due to the periodicity of the exponents
in the transforms.

Gpgr = — , (2.22)

24



2.3. Solution of Poisson’s equation

2.3.2 Neumann boundary conditions

For the Neumann boundary condition one specifies the electric field —V ¢ at the boundary.
If the electric field vanishes at the boundary, the boundary conditions are naturally sat-
isfied by the cosine transform (COSFFT) and the inverse cosine transforms (ICOSFFT).
The COSFFT and ICOSFFT of the charge density can be written as

J K L 4
. ™j wqk mrl
Opgr = E E E 0jkl COS <7> cos <?) cos <T> , (2.23)

j=0 k=0 1=0
8 L& mj mqk mrl
= ; p) Tar ). 2.24
0jkl JKL;;; pqrcos< J)COS<K)COS<L) (2.24)

Analogous equations for the potential are given by

J K L : I )
Dpgr = Z Z Z G ki COS (W—f])‘j) cos (%) cos (%) , (2.25)

J=0 k=0 =0
8 LK ™j wqk mrl
Girt = T Z Z Z Gpqr COS (7) cos <?) cos <T> : (2.26)
p=0 ¢q=0 r=0
Substituting g, and ¢k from Eqns. (2.24) and (2.26) in Eq. (2.17) we obtain
2 é T’Az
Cbpqr = - P (227)

2 [cos (22) + cos (32) 4 cos (Z£) — 3]

Equation (2.27) can be inverted to obtain the solution of the Poisson equation.

2.3.3 Dirichlet boundary conditions

Dirichlet boundary conditions require the potential ¢ at the boundary. If the potential
vanishes at the boundary, the boundary conditions are naturally satisfied by the sine
transform (SINFFT) and the inverse sine transforms (ISINFFT) of the potential (charge
density). The SINFFT and ISINFFT of the charge density can be written as

J K L :
k l
o =353 pjasin (”—?7) sin (%) sin (%) , (2.28)
j=0 k=0 1=0
L m™J mqk mrl
Z@ pgr S ( 7 ) sin <7> sin <T> . (2.29)

r=

Mx

J
Okt = JKL ;

[en]

-+

q
Similarly the transformation of the potential obeys

Gpgr = XJ: D ZL: ;x50 ( ) sin (%qk) sin (%ﬂ) , (2.30)

j=0 k=0 1=0
8 L mqk mrl
Gint = KL p;qzrz pgr SN ( ) sin <?) sin <T> : (2.31)
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Substituting g, and ¢;i; from Eqns. (2.29) and (2.31) in Eq. (2.17) we obtain

@pqrA2
2 [cos (22) + cos (32) + cos (Z£) — 3]

quqr = - (232)

The algebraic Eqns. (2.22), (2.27) and (2.32) relate the charge density with the potential
in Fourier space for periodic, Neumann and Dirichlet boundary conditions, respectively.
The three-dimensional numerical routines SINFFT, ISINFFT, COSFFT and ICOSFFT
are based on the one-dimensional FFT routines from the Numerical Recipes [68]. We
integrated those routines in a three-dimensional Poisson solver for the various boundary
conditions mentioned above.

2.3.4 Test of the Poisson solver

We now present a numerical example to verify the accuracy of the Poisson solver. We
consider the Poisson equation V2¢ = —p with o = 3sinxsinysin z on a 32 x 32 x 32 grid
and assume non-zero Dirichlet boundary conditions ¢(z,y, £7/2) = £1, ¢(x, £7/2,2) =
+1 and ¢(+7/2,y,2) = £1. Figure 2.3 shows the excellent agreement of the analytical

@(x,y,w2)
o

-0.5 solid lines —— analytical

dots —— numerical

Figure 2.3: Solution of Poisson’s equation V2¢ = —p with o = 3sinzsinysinz on a
32 x 32 x 32 grid. Dirichlet boundary conditions ¢(z,y,+7/2) = +1, ¢(x,+7/2,2) =
+1 and ¢(£7/2,y,z) = £1 are considered. Excellent agreement between the analytical
solution ¢(z,y, z) = sin z sin y sin z with the numerical solution is obtained. Different lines
correspond to data in different y-planes (y = —7/2 to 0) for —7/2 < x < 7/2.

solution ¢(x,y, z) = sin z sin y sin z with the numerical solution. Different lines correspond
to the data in different y-planes (y = —7/2 to 0) as x varies from —7/2 to 7/2.
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2.3.5 Electric field on the grids

After obtaining the potential ¢ from the solution of Poisson’s equation the corresponding
electric field results from the finite difference representation of the gradient V¢,

BV, = - oA, (2.34)
z ¢]7kvl+1 _¢]7kal_1
B, =% )2 . ( ) (2.35)

The three-point central difference is erroneous at the boundaries since it requires ex-
trapolation beyond the boundaries. Hence, we use the two-point forward difference (and
backward difference) at the boundary points which gives

Efk =~ Az (2.36)

EBY, = A (2.37)
z ¢]>k>l+1 _¢]>k>l

Ejky=— ( A)z UL} (2.38)

The variation of the field along one direction (say along z) at a grid point will also depend
on the variation of the field at the neighboring points in the transverse directions (y and
z). This is not exhibited in the simple difference schemes above. Such a directional
anisotropy in the forces may lead to diffusion of particles [65]. However, we shall find a
way to overcome it.

2.4 Field interpolation from the grid to the particle

The accuracy of a PIC code depends on the correct calculation of the forces at the particle
positions. Even if one has solved Poisson’s equation accurately, the force interpolation may
lead to erroneous values due to the directional anisotropy in the difference operator [65].
In one-dimensional PIC simulations it is not a problem. We use an energy conserving
scheme where the potential at the position of a particle is obtained by interpolating the
potential values from the different grid points surrounding the particle. This can be
done reversely to the interpolation of the density from the particles to the grid points
(see Sec. 2.2). Then we take the derivative of the potential analytically to obtain the
force on the particle. The relative position of the particle at r(x,y, z) within a cell can
be obtained by defining variables y;, y2 and y3 as 1 —y; = (Azx —2)/Azx,1 — yo =
(Ay —y)/Ay,1 —y3 = (Az — z)/Az. Their respective derivatives are ¢y} = dy;/dx =
1/Az,yy = dys/ dy = 1/Ay, ys = dys/ dz = 1/Az. The potential at a particle position is
the sum of the weights of the potential at the grid points surrounding the particle, which
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we write as

Gayz: = (1= y1) (1 = 42)(1 = y3) Gjus + y1(1 —y2)(1 — y3) Ptk
+ y192(1 = y3) Gjarmrrs + (1 —y1)y2(l — ys) @ty
+ (1 =y)(1 = y2)y3 Pjrar1 + vi(l = Y2)ys @ji1 ki1

+Y1Y2Y3 Pjt1kt1,41 + (1 —vy1)y2ys Ojo k41,141 (2.39)

The electric field at the position r of the particle can be obtained by taking the derivative
E = —V ¢ analytically. The x—component E, = —9¢/0x of the electric field reads

~-E, = (_%) (1= 1) (1 = 13) jas + —= (1= o)(1 = ys) D1

SJ1

dx
d d

+ %m(l —Y3) Qjy1 k1l T <—£)y2(1 —Y3) Gjrr1l +

dy dy
<_d—x1) (1 —y2)ys jris1 + d—;(l — Y2)Y3 Pj+1kit1

dy1 dyl

+ Eyzy:a Pjt1k+1i+1 T <_E)y2y3 ®j k1141 (2.40)

Rearranging the terms and substituting Eq. (2.36) we obtain
Ey=1—y)(1—y3) Bl + va(1 —y3) By
+ (L= y2)ysE ki1 + Y2ysEf kg (2.41)
Similarly, the y and z components can be found as
E,=(1-y3)(— yl)E]y,k,l + (1 - ?JS)Ejl'lJrl,k,z
+ (= y)ysEf i + 9193E] ki (2.42)

E.=1-y)(1~- y2)E;,k,l + (1= yQ)E;—i-l,k,l
+ (1= y)y2li iy + YiveEi ki (2.43)

The field components E,, E, and E, are now free from directional anisotropy.

2.5 Solution of the equation of motion

The motion of a charged particle in the combined field of laser and space charge is discussed
now. In principle any method for solving a system of ordinary differential equations [65,66]
is applicable as a particle mover. We use a fourth-order Runge-Kutta method.

2.6 Particle boundary conditions

Boundary conditions of two different types occur in PIC simulations: (i) field boundary
conditions and (ii) particle boundary conditions. Field boundary conditions were dis-
cussed in connection with Poisson’s equation. When a particle reaches the boundary of
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Figure 2.4: Ions and electrons (at time ¢ = 0) for the test of the PIC code. Ions are
assumed infinitely heavy and at rest. There are eight electrons and ions. Each ionic PIC
particle has a charge and mass ¢, m = 0.00258478 a.u. The X-coordinates of the ions are
(—0.25 and 40.25). Each electron is displaced by a = 0.05 a.u. along the +z-direction.

the simulation box different situations may arise. It may be sent back (reflecting bound-
ary conditions), it may re-enter from the opposite side of the simulation box (periodic
boundary conditions) or it may be removed as soon as it crosses the boundary (absorbing
boundaries) leaving the plasma non-neutral. Depending upon the physical situation our
PIC code is capable of handling all the particle boundary conditions mentioned above.

2.7 Test of the PIC code

After rigorous testing and verification of each and every part/subroutines (mentioned in
the previous sections) we have incorporated them into a full three-dimensional PIC code.
In this section, we report the validation of the PIC code with simple examples so that the
results can be compared to analytical solutions.

2.7.1 Reproducing the plasma frequency

We assume immobile ions which are located at regular distances in a three dimensional
grid as shown in Fig. 2.4. All electrons are given a small perturbation in +z-direction at
time ¢ = 0. The electron-ion system is macroscopically charge neutral. The local charge
imbalance will lead to oscillations of the electrons with the plasma frequency determined
by the density of the ionic background. An essential verification of any PIC-code is to
obtain the correct plasma frequency under small perturbations. Under such conditions
the total energy and momentum of the system must be conserved.

29



CHAPTER 2: Particle-in-cell simulation

+ PIC-result 1
— analytical result

o
o
L

|
o
Ul

T

0 10 20 30 40 50
time (a.u.)

Figure 2.5: Oscillation of electrons with the plasma frequency. Initial positions of the
particles are shown in Fig. 2.4. The ionic charge density is p = 0.0025 corresponding to
the plasma frequency wy, = v/4mp = 0.1772. The amplitude of oscillation is a = 0.05. The
charge and mass of each PIC electron is ¢ = m = 0.00258478. The excursions z(t) as
calculated with the PIC-code matches the analytical result z(t) = z(0) £ a cos(wpt).

The ions are placed at successive grid points (0.5 a.u. apart) with the electrons perturbed
by a small amount (¢ = 0.05 a.u.) along the +z-direction. Each ionic PIC particle
has a charge ¢ and mass m equal to 0.00258478 a.u. We choose an ionic charge den-
sity p = 0.0025 a.u., corresponding to the plasma frequency w, = /4mp = 0.1772 a.u.
The analytical solution for the excursions of the electrons are z(t) = x(0) £ acos(wpt).
Figure 2.5 shows that the excursions x(t) as calculated with the PIC-code matches the
analytical result.

2.7.2 Energy conservation

The total analytical kinetic energy K, of the N = 8 electrons in Fig. 2.4 is

1 1
K, = §mN9L"2 = §mNa2w§ sin®(wpt). (2.44)
For small displacements of the electrons the force acting on them can be considered
proportional to their distances from their parent ions. The total analytical potential

energy of all electrons thus is

1 1
V.= imNu}fDﬁ = §mNa2w§ cos?(wpt). (2.45)
and the total energy reads
1
T,=K,+V,= §mNa2w§ = const. (2.46)
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Figure 2.6: Energy test of the PIC code. Kinetic energy K, potential energy
Pl=[ E%dr/8m and P2=[ p¢dr/2 vary so that total energy T1 = P1 + K and T2 =
P2 + K is conserved.

Figure 2.6 shows the PIC results for kinetic, potential and total energy of the system vs
time. In the PIC simulation we compute the potential energy in two different ways. In
the first method (P1) we use the definition PE = [ E?dr/8m, with E being the space
charge field and dr being the cell volume. In this case, we first calculate the electric field
after the solution of Poisson’s equation and then integrate [ E? dr /87 numerically over all
grid points. In another method (P2), we compute the potential energy PE = [ p¢ dr/2
without computing the electric field. According to electrostatics these two definitions
of the electrostatic energy are equivalent. Numerically they can be different due to the
finite difference approximation. Figure 2.6 shows excellent agreement between the two
methods.

2.8 Summary

In summary, we have developed a three-dimensional particle-in-cell simulation code to
study the interaction of laser light with cluster nanoplasmas. The code development was
essential to obtain the results presented in this thesis. The validity of the PIC code was
illustrated with simple examples for which analytical solutions exist. The fast Fourier
transform-based three-dimensional Poisson-solver (with different boundary conditions)
may also be useful in other branches of physics.
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Chapter 3

Collisionless energy absorption by
clusters in short laser pulses

Intense laser-matter interaction provides a route to create energetic particles (e.g., elec-
trons, ions, and photons) using table-top equipment. Clusters, possessing the trans-
parency of gas targets and the high charge density of solid targets, proved to be very
efficient absorbers of laser light. Their small size, compared to laser wavelength and skin
depth, avoids reflection of the laser beam at the cluster surface as well as the loss of
hot electrons into the cold bulk. In fact, almost 100% absorption of the laser light was
reported in experiments with rare-gas clusters [7].

Upon irradiation of the rare-gas clusters with intense laser light, electrons first absorb
energy and leave their “parent” ions. This is known as inner ionization, meaning that the
electrons are still bound to the cluster but not necessarily to their “parent” ions. The total
electric field (i.e., laser plus space charge field) inside the cluster leads to inner ionization
up to high charge states not possible with the laser field alone (ionization ignition [11,12]).
As the laser intensity during the pulse increases, these electrons absorb energy from the
laser field and may leave the cluster, leading to the positive charging of the cluster known
as outer ionization. Thus outer ionization leads to a non-neutral plasma. With the
increasing outer ionization, the restoring force of the ions counteracts ionization ignition
so that the latter stops at some point. The net positive charge left behind finally explodes
due to the Coulomb repulsion and hydrodynamic pressure, leading to the conversion of
electron energy into ion energy. Typically MeV ions and keV electrons [8-10] are measured
in experiments.

It is clear from the described scenario that the understanding of the relevant mechanism(s)
of laser energy absorption leading to the heating of cluster electrons and outer ionization
is of great importance for the development of a complete theoretical description.

Laser energy absorption by electrons proceeds either through resonances (linear or nonlin-
ear) or through non-adiabaticities (all possible types of collisions). All of these processes
lead to dephasing of the current density with respect to the laser field, which, accord-
ing to Poynting’s theorem, is a prerequisite for absorption. Collisional absorption via
collisions of electrons with ions are of minor importance at near infrared wavelengths
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~ 800nm or greater [13—-16] whereas it is the dominant absorption mechanism at short
wavelengths [16-18], not studied in this chapter. The finite size of the clusters suggests
that “collisions with the cluster boundary” may be responsible [14] for the energy absorp-
tion. However, this viewpoint is misleading, as will be shown in Sec. 3.1.3.

During the expansion of the ionic core, the decreasing charge density p(t) leads to the
decrease of the Mie-plasma frequency, wye(t) = v/47mp(t)/3. For very short near infrared
laser pulses wyie(t) cannot meet the linear resonance

Whtie(t) = wi, (3.1)

unless the cluster has sufficiently expanded (typically after a few hundred femtoseconds).
Linear resonance (3.1), well understood in theory, experiments, and simulations [19-27], is
thus ruled out for very short pulses or during the early cycles of a long pulse laser-cluster
interaction where ion motion is negligible. In this case, nonlinear resonance (NLR), whose
origin lies in the anharmonicity of the cluster potential, turns out to be the dominant
collisionless absorption mechanism. In fact, for very short linearly polarized (LP) laser
pulses, it was clearly shown [69,70] that essentially all electrons that contribute to outer
ionization pass through the NLR, which was unequivocally identified as the collisionless
absorption mechanism in the absence of linear resonance. The eigenfrequency w(r(t)] of
a (laser-) driven oscillator in an anharmonic potential, being dependent on its excursion
amplitude 7(¢) (or the energy), may dynamically meet the NLR

W) = wr. (3.2)

Due to the many-body nature of the interaction, the identification, the separation, and
the interpretation of the absorption mechanisms in molecular dynamics or particle-in-cell
(PIC) simulations are often difficult. Recently, a method of identification of the NLR
in many-body simulations of rare-gas clusters has been proposed [69,70]. The possible
importance of NLR was also mentioned or discussed previously [28-33].

The rigid sphere model (RSM) [30, 31, 34, 35] where electrons and ions are modelled by
homogeneously charged rigid spheres oscillating against each other is clearly an oversim-
plification of a real many-particle system such as a cluster. However, it proves useful
for estimating the order of magnitude of the absorbed energy as well as for the calcu-
lation of the laser intensity where energy absorption is most efficient, as will be shown
in the present work. Moreover, it provides physical understanding and clearly displays
NLR [30,31,69,70].

The heating of cluster electrons in circularly polarized laser fields has not yet received
much attention, at least theoretically. Experiments with rare-gas clusters show almost no
effect on the x-ray emission [36-38] and ion energy distribution [39] when laser light of
different ellipticity is used. Theoretically, circular polarization is particularly interesting
because the above mentioned “collisions with the cluster boundary” are strongly sup-
pressed in this case. Hence one may expect energy absorption being less efficient. NLR,
on the other hand, occurs in both cases, and, in fact, the energy absorption turns out
to be equally efficient. To model the electron dynamics in a circularly polarized laser
field we extend the RSM to two dimensions. In the rigid-sphere model, the absorbed
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energy increases by many orders of magnitude at a certain threshold laser intensity. The
particle-in-cell results display maximum fractional absorption around the same intensity.
We calculate the threshold intensity and show that it is underestimated by the common
over-barrier ionization estimate.

The outline of the present chapter is as follows: in Sec. 3.1.1 we briefly review the NLR
and the RSM. In Sec. 3.1.2 the perturbative solution of the RSM is presented. In Sec. 3.1.3
the RSM is extended to circular polarization, where NLR is observed as well. In Sec. 3.1.4
the RSM threshold intensities are calculated. Section 3.2 is devoted to the PIC [65] results
for both linear and circular polarization. Finally, we summarize our results in Sec. 3.3.

Throughout this chapter we use n = 8-cycle laser pulses of near infrared wavelength
A = 1056 nm and a fixed cluster radius R = 3.2nm unless stated otherwise. NLR is a
robust phenomenon that—qualitatively—is insensitive to cluster and laser parameters.

3.1 Nonlinear resonance in the rigid sphere model

The ion motion can be neglected in the study of energy absorption in very short laser
pulses. Thus the ions just form a static, positively charged background of spherical
shape. For not too high laser intensity, the collective motion of the electrons can also be
approximated by a homogeneous, rigid sphere of negative charge. In the simplest case the
radii of ion and electron sphere are assumed to be equal. In a more realistic model the
electron cloud expands [30]. However, the method of identification of the NLR used in
this work is independent of the degree of electronic expansion. The center of mass of the
electron-ion system is, in good approximation, located at the center of the ion sphere. In
an oscillating laser field, the homogeneously charged electron sphere oscillates back and
forth against the positively charged ion sphere.

3.1.1 NLR in a linearly polarized laser field

We recall the equation motion (from chapter 1) of the electron center of mass in a LP
laser field, polarized along z, and rewrite it as

F 7 _ E(7)

a F I = R 3

where 7 = /R is the excursion of the electron sphere, normalized to the cluster radius
R, r =|7|, 7 = wit is the normalized time, and the force g(r) is

2 9r2 4
_ WMie T_1_6+§ 0§7’§2
o = (22) x| s (3.4

r2

The nonlinear terms in the upper line of g(r) arise because of the partial overlap of
electron and ion sphere. The force is purely Coulombic (the 7=2 term in the lower line
of g(r)) if electron and ion sphere are separated. In an earlier work [30] it was shown
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Figure 3.1: Laser energy absorption vs driver amplitude in the rigid sphere-model for
(wrie/w1)? = 10/3, an n = 8 cycle laser field Ey(7) = Epsin?(7/2n)cos(7), and cluster
radius R = 3.2 nm. Within a narrow field strength interval (here ~ 0.5-1) the absorbed
energy per particle (solid line) increases by many orders of magnitude. The dashed line
represents the absorbed energy (3.7) by a purely harmonic oscillator driven by the same
laser field.

that absorption of laser energy in the RSM is characterized by a threshold driver strength
below which absorption is negligible (harmonic regime) and above which absorption is
almost constant. Figure 3.1 shows this threshold behavior for (wyge/w)? = 10/3 and an
n = 8-cycle sin*-pulse E\(7) = Eysin®(7/2n) cos(7) for 0 < 7 < 2n7. The dashed line is
the absorption corresponding to a driven, purely harmonic oscillator

d%+<wmfr:_ﬂﬁ) (3.5)

dr? W) Rw?

in the laser field Fj(7). The laser energy absorbed by a single electron in a n-cycle laser
pulse of period T is

Bow _ /O " ott) - B (3.6)

Solving the harmonic oscillator equation (3.5) analytically for the velocity v(t) and inte-
grating (3.6) one finds for the absorbed energy per electron [30]

4,2 2 2\2

Eiot LW Witie(Whtie 1 3w1)
- i, 2 _ 2\6

N An*(wige — wi)

[1 — cos (waenT)] B3 (3.7)

where w3, —(14+1/n)?wi]?[wi;.— (1—1/n)?w]? ~ (wi;,—w?)? (for sufficiently large n) was
used. The analytical estimate (3.7) is plotted in Fig. 3.1 together with the absorbed energy
obtained from the numerical solution of the anharmonic oscillator equation (3.3). One
sees that the absorbed energy jumps by many orders of magnitude to a higher value after
crossing a threshold driver strength. The higher the cluster charge density is, the higher
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Figure 3.2: Typical behavior of (weg(7)/w)? (red, upper solid line) vs laser cycles above
the threshold driver strength for (wmie/w1)? = 40/3. Here we take Ep/Rw? ~ 7.48
corresponding to a laser intensity ~ 2.5 x 10W/cm?, an n = 8-cycle sin’-pulse
Ey\(1) = Egysin®(7/2n) cos(7) of wavelength A\ = 1056 nm, and a cluster radius R = 3.2 nm.
Excursion z/R (green, middle solid line) and energy of the electron sphere Eio/R*w}
(blue, lower dashed line) are included in the plot. Outer ionization (i.e., Etot/R*w? > 0)
and occurrence of NLR [weg(7)/w)]? = 1 always coincide (dashed vertical line).

is this threshold driver strength. The rigid sphere model shows this behavior of efficient
absorption above the threshold driver strength at all cluster charge densities independent
of the linear resonance condition p = 3p,, contrary to the nanoplasma model [19]. Since
the rigid sphere model does not necessarily require expansion of the cluster for the efficient
absorption of laser energy, it permits us to understand the behavior of energy absorption
and the underlying mechanism for very short laser pulses.

Equation (3.3) can be formally rewritten as

& JwelF(™] . E(r)
@ + [7w1 r=— Rwlz . (38)
Equation (3.8) yields the instantaneous, scaled effective frequency squared
E\(1) o
wer(r)]* _ “wt — ) glr(r) (3.9)
W 7(7) r(7) '

which passes through unity at the NLR (3.2). The right hand side of (3.9) is the restoring
force divided by the excursion of the electronic cloud, which in the case of harmonic
motion would be the square of the characteristic frequency. Figure 3.2 shows a typical
example of the temporal behavior of [weg(7)/w)]® above the threshold driver strength
for (wysie/w1)? = 40/3. Since (wyie/w1)? = 13.32, [weg(7)/w)]” starts at this value and
drops with increasing driver strength. It passes through unity at the time indicated
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CHAPTER 3: Collisionless energy absorption by clusters in short laser pulses

by the vertical line, and it is exactly at that time where the electron sphere becomes
free (outer ionization). This incidence is clearly visible from the energy of the electron
sphere, which passes through zero, and the strongly increasing excursion. Outer ionization
and occurrence of NLR happens for all driver strengths above the threshold whereas the
resonance is never met below the threshold. Since the amplitude of the excursion of the
electronic sphere depends upon the driver strength, the excursion amplitude should also
be large enough so that the NLR is passed. The decrease in the effective frequency with
the increase of the amplitude of excursion of the electronic sphere in the force field (3.3)
can be understood by analyzing its motion in the corresponding anharmonic potential

2

r 3r3 rd

—1 r>2. (3.10)

V(r) = wyie” R? % {

SIS

The period T of oscillation of the electronic sphere in the potential V' (r) can be approxi-
mated by a perturbation series [71] as

s ko ok k
T 1 Z (—1) 8k [0V (r)]* dr . (3.11)
\/§ =0 k! OE: vV Eiot — VO(T)
Vo(r) = wi R*r?/2 is the harmonic oscillator potential and §V (r) = aR3r3/3 + BR?r° /5
is the perturbation to the potential with o = —9wZ;./16R and 8 = wi;,/32R3. The
effective frequency is then weg = 27/T. For the excursion r < 2 and cluster radius
R = 3.2nm (~ 60.4a.u.) we can consider |3/a| < 1 and the approximate potential
oV (r) ~ aR®*?/3. Corrections up to k = 6 yield T = Ty + Ty + -+ + Ts. The un-
perturbed period is Ty = 27 /wyge and the successive corrections are Ty = ¢ /(3wige),
Ty = c2/(3wine), Ts = 3/ (wntie)s To = ca/(T2u433), Ts = 5/ (54wnpie), Ts = o/ (3%wnie)
with ¢; ~ —8a(2E)"?, ¢a ~ 5ma’Eyy, 3 ~ —28.4503(2E10)%2, ¢y ~ 385ma’E2,,
cs =~ —318.60° (24 )*/? and cg ~ 97.89 x 2°aSE3 | respectively.

Neglecting the higher order term of g(r) for r < 2, a simpler approximation to the effective
frequency can be derived from (3.9) by replacing the excursion r with the excursion
amplitude 7:

Wit (F) ~ witie (1 — 97/16)"* ~ wygie (1 — 97/32) . (3.12)

Figure 3.3 shows the effective frequency vs the excursion amplitude 7 of the electronic
sphere in the potential (3.10) for various cluster charge densities p/p. = 10-40 as calcu-
lated from the numerical solution of (3.3) together with the approximations (3.11) and
(3.12). The effective frequency as calculated from (3.11) shows good agreement below the
excursion 7 < 1.5 and low charge densities (e.g., p/p. < 10). For higher charge densities
more corrections [large number of &k values in (3.11)] are needed, which are very much
cumbersome to calculate. Although (3.12) fits well with the numerical solution, weg be-
comes negative when 7 > 32/9. However, the results using (3.12) agree with the exact
ones in Fig. 3.3 up to p/p. = 30 for the excursions of interest, i.e., up to the point where
the electronic sphere undergoes NLR. The variation of frequency with the excursion am-
plitude as shown in Fig. 3.3 explains why a threshold driver strength is required for an
appreciable laser energy absorption as well as for the crossing of the NLR in Fig. 3.2: only
a driver exceeding a certain threshold field strength will lead to excursions compatible
with the NLR condition weg = wy.
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3.1. Nonlinear resonance in the rigid sphere model

Figure 3.3: Effective frequency wegr/w) vs the excursion amplitude 7 of the electronic
sphere for different cluster charge densities p/p. = 10-40. The solid lines are computed
from the numerical solution of (3.3). The dashed lines are the corresponding analytical
approximations from (3.11) for k& up to 6, and the dashed-dotted lines are from (3.12).
For the charge density p/p. = 40 one expects NLR (horizontal dashed line) to occur at
the excursion 7 ~ 2.88.

3.1.2 Perturbative solution of the rigid sphere model

Neglecting higher order terms we write (3.3), in the region r < 2, as
T+ Wit + az® = —E(t). (3.13)

We solve (3.13) by the method of perturbation [72]. For analytical tractability of the
perturbation method we assume a laser field E\(t) = Eysin(wit/2n) cos(wit). The comple-
mentary solution z., and the particular integral z,; of Eq. (3.13) satisfy respectively the
equations

.. 2 2
Tep + WhpieTep + QT = 0,

i + Winelpi + 0y = — B (). (3.14)

The successive corrections [72] have been taken into account both in the displacement z

and in the frequency w i.e., T, = xgg) + x&) + x%) +-and w = wygie + W + W@ 4.

Here, a:E?), a:,%) and xg,) are the 0%, 1, 224 corrections for the displacement and wyge, w™
and w® are the 0%, 1, 24 corrections for the frequencies, respectively. The detailed
solution is given in the appendix A. The successive corrections to the frequency w are
found as w® = 0 and w® = —5a2%a2/(12w}},.) with the amplitude of the oscillations ag
that depends upon the driver strength. The value of w® being negative, the effective
frequency w = wyie — Ha2ad /(12w3,) decreases as the amplitude ag of the oscillations
increases with the increasing driver strength. This is in qualitative agreement with the
results in Fig. 3.3. The complete solution is found by # = xo, + zpi. The velocity of
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Figure 3.4: Variation of absorbed energy scaled with rest electron energy mec? as a

function of laser intensity for cluster of radius R = 3.2nm and charge density p/p. =
10. We take an n = 8-cycle sin-pulse Fj(t) = Eysin(wit/2n) cos(wit) of wavelength A\ =
1056 nm. The intensity (shown as threshold intensity) at which the full numerical solution
(blue) of RSM jumps is closely justified by the results from the perturbation theory (red).
At the threshold intensity the energy absorption is 2-4 order of magnitude higher than
below it. After the threshold intensity energy absorption remains almost constant.

the electronic sphere is obtained analytically using v = dz/ dt while the total energy is
calculated as Fio, = mv?/2 + ¢V (z) with mass m and charge ¢ of the electronic sphere.

Absorption of energy at various laser intensities

We now study the laser energy absorption by pre-ionized clusters using the afore men-
tioned perturbative solution. Figure 3.4 shows the variation of the absorbed energy scaled
with the electron rest energy m.c? as a function of the peak laser intensity for the charge
density p/p. = 10 and an n = 8-cycle pulse Fi(t) = Eysin(wit/2n) cos(wit) of wavelength
A = 1056 nm. Energy absorption curves from the numerical (blue) solution of (3.3) and
the perturbative (red) approximations show qualitative agreement below the intensity
10 W/cm?. The disagreement between the two solutions at higher intensities are due to
the approximate potential in the perturbative solution. However, both numerical and the
perturbative solutions show a sudden 2-4 order of magnitude higher absorption around
an identical value of the laser intensity, shown as threshold intensity in Fig. 3.4. This
abrupt behavior of absorption about the threshold intensity is due to the term contain-
ing Qu, o 1/(wi, — 4wi)? ~ 1/wi(wi/wi — 4)? in the perturbative solution (given
in appendix A). The energy absorption result from the perturbative solution without
the term @y is also shown in Fig. 3.4. For the charge density p/p. = 10 the value of
wip./wi = 10/3. Thus the denominator of Qy; becomes smaller and the electronic sphere
passes through a resonance, explaining the abrupt absorption of energy. The perturbation
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3.1. Nonlinear resonance in the rigid sphere model

theory approximately predicts the intensity at which the electronic sphere absorbs energy
resonantly from the laser field and gives us an understanding towards the collisionless
absorption in clusters. As p/p. increases the resonance absorption occurs at higher val-
ues for the threshold intensity, and further corrections are needed. While it is difficult
to predict the threshold intensity from the perturbative solution at higher cluster charge

densities, it can be well-approximated by a vanishing barrier approximation (shown in
Sec. 3.1.4).

3.1.3 NLR in a circularly polarized laser field

Clusters in a circularly polarized (CP) laser field received less attention in the literature.
It is not known a priori how the outer ionization and energy absorption by clusters depend
on the laser polarization. In laser-atom interaction the laser polarization has dramatic
effects: since in CP the free electrons do not return to their parent atom all the atomic
effects relying on re-scattering such as high-order harmonic generation, high-order above-
threshold ionization, and non-sequential ionization are strongly suppressed. In the context
of clusters, the study of the absorption efficiency as a function of the laser polarization can
help to discriminate among different absorption mechanisms. For instance, if laser energy
absorption was due to “collisions with the cluster boundary” [14] it would be suppressed
in CP because the electrons mainly swirl around parallel to the “cluster boundary” rather
than crossing (and hence colliding) with it. However, as we will show, the absorption of
laser energy is largely independent of the laser polarization, thus ruling out “collisions
with the cluster boundary” as a meaningful absorption mechanism.

Two-dimensional rigid sphere model

Let us first extend the RSM to CP. In a CP laser field with electric field components in
x- and y-direction, the equation of motion for the electronic sphere in the rigid sphere
approximation of a cluster can be written as

(el B0) e

Here’ Ty ::L’/R’ ’["y = y/R, r = m, and

v = @sinz 7/2n) cos(T
Ef(r) = NG (7/2n) cos(7), (3.16)
E{(r) = £o sin?(7/2n) sin(7). (3.17)

V2

One identifies E, = g(r)r,/r and E, = g(r)r,/r as the two components of the restoring
force in (3.15). Note that we have divided the electric field components by a factor v/2 so
that the ponderomotive energy U, = Ej /4w, (i.e., the time-averaged quiver energy of a
free electron in the laser field) is the same as in the LP case with the same Ey (otherwise
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Figure 3.5: Typical behavior of (weg(7)/wi)? (green, top left solid line) vs laser cycles
above the threshold intensity ~ 3 x 10'W /cm? for circular polarization, (wyre/wi)? =
40/3, and cluster radius R = 3.2nm. Here, Eo/Rwl2 ~ 8.2, corresponding to a
laser intensity ~ 5 x 10'W/cm?, n = 8-cycle sin?-pulse with components Er(r) =
Eqsin?(7/2n) cos(1)/V/2, E¥ (1) = Eysin®(r/2n) sin(r)/v/2, and wavelength A = 1056 nm.
Excursion 7 (blue, middle left solid line) and energy Eio/R*wi (red, dashed line) of the
electron sphere are also plotted. The energy Eiq/ R2w12 is scaled down by a factor 10 to dis-
play within the excursion and the frequency range. Outer ionization (i.e., Eiot/R*w? > 0)
and occurrence of NLR [weg(7)/wi]? = 1 always coincide (dashed vertical).

U, would be a factor of two higher in the CP case). The square of the effective, time-
dependent oscillator frequency in the CP laser field can be written as

Wert (T) 2 _ reBy B glr(7)]
D) - o aR 1)

which has the same form as in the LP case (3.9). Earlier, in Fig. 3.2, it was shown
that NLR and outer ionization in the RSM only occur when a threshold laser intensity
is crossed. The same is true for the occurrence of NLR with CP light. Figure 3.5 shows
the temporal behavior of [weg(7)/wi]® above the threshold driver strength for an n = 8-
cycle CP laser pulse of wavelength A\ = 1056 nm. Here the cluster charge density is 40
times over-critical, i.e., (wyie/w)? = 13.32 at which [weg(7)/w)]” starts and drops with
increasing driver field during the pulse. The NLR [weg(7)/wi]” = 1 is passed at the time
indicated by the vertical line. As in the LP case in Fig. 3.2, the electron sphere is set free
at the time the NLR is passed: the energy of the electron sphere passes through zero,
and the excursion sharply increases to a high value. It is also clear from Fig. 3.5 that
once the electronic sphere is set free, the frequency drops to zero, and the total absorbed
energy remains positive. A zero effective frequency implies an infinite period, i.e, the
electron sphere does not return to the ion sphere. The main difference between Fig. 3.5
and Fig. 3.2 is that in the case of the CP laser field the decrease of the effective frequency
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3.1. Nonlinear resonance in the rigid sphere model

is smooth (i.e., no oscillations) since the electric field vector rotates but its absolute value
remains constant. As a consequence, the electron sphere spirals out, staying away from
the potential center where weg = wyie. For LP instead, the electron sphere is driven
through the origin and hence the effective frequency undergoes oscillations before it drops
to the resonance value, as visible in Fig. 3.2. NLR is clearly identified in both cases.

3.1.4 Prediction of the threshold intensity for the NLR

NLR occurs above a threshold driver strength. Beyond this driver strength the rigid
electron sphere gains laser energy which is many order of magnitude higher than below
the threshold (see Fig. 3.1). In an open potential such as (3.10) the electron sphere is
detached from the ion sphere above the threshold driver strength, i.e., appreciable energy
absorption and outer ionization occur simultaneously. However, NLR occurs in closed
potentials as well [32].

The threshold driver strength for the NLR can be estimated. The dimensionless potential
U(r) =V (r)/(wisR?) of the electron sphere in the ionic field can be written as
2 37,3 7“5

—- 4 — r<2 (3.19)

.
U =5 -9+ "<

Application of a static electric field Ey (corresponding to the peak field strength of a
low-frequency laser field), suppresses the potential in one direction by the amount REq .
The effective potential seen by the electron sphere is Ueg(r) = U(r) — Eor with Ey =
Ey/ (w3 R). The potential barrier vanishes if U’(r,) — Ey = 0 and U”(r,) = 0, leading to
ry = 1, and the NLR threshold intensity is estimated to be

5 p 2
IYBA = B2 = (3—2p—w12R) : (3.20)

We call this the vanishing-barrier-approximation (VBA).

In atomic ionization the so-called over-the-barrier approximation (OBA) or Bethe-rule [52]
allows to estimate at which electric field strength a certain atomic charge state dominates.
If one applies the OBA to the RSM one obtains the two equations Ueg(r,) = 0 and
U'ry) — E, = 0 with r,, the barrier location. One finds 7, ~ 1.613. This gives the OBA
threshold intensity of the NLR

OBA 10p , ?
I ~ ngIR , (3.21)

which underestimates the numerically determined threshold intensity, as we will show
now.

Figure 3.6 shows the threshold intensity as a function of the cluster charge density
p/pe = 10-160 (corresponding to average charge states ~ 1 — 16 for xenon). The nu-
merically determined threshold intensities for LP (3.3) and CP (3.15) laser light show
that when the cluster charge density is low, the NLR occurs almost at the same value of
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Figure 3.6: NLR threshold intensities in the RSM vs the cluster charge density p/p. for
linearly (LP) and circularly (CP) polarized laser fields. Results from the full numerical
solution of (3.3) with LP (grey, thick solid), (3.15) CP (thin solid), the vanishing barrier
approximation (VBA-LP, line with bullets) (3.20), and the VBA corrected for CP (upper
thick dashed) are shown (see text for a discussion). The over-the-barrier approximation
(OBA) (3.21) (lower thin dashed) underestimates the exact threshold intensities.

the threshold intensity, irrespective of the polarization. As the charge density increases
the NLR threshold intensity appears to be higher for CP than for LP. The VBA (3.20)
of the threshold intensity is in good agreement with the numerical result for LP whereas
the OBA (3.21) underestimates it. This fact might be related to the recently observed
“enhanced saturation intensities” in the ionization of finite size systems such as Cgg (see,

g., [73,74] and references therein), indicating that the latter might neither be a many-
electron nor a quantum effect but due to the finite size of the target.

The difference of the threshold intensities for LP and CP is due to the definition of the
CP field (3.16), (3.17) where a factor 27!/ has been introduced in order to render the
ponderomotive potential equal for LP and CP. However, for the threshold intensity it is
the electric field (or the intensity) that matters, not U,. For a given Ej the laser intensity
is Iy = E? in the LP case but only /2 for CP. Therefore, the upper black, dashed line in
Fig. 3.6 shows the VBA threshold intensity multiplied by a factor of two, which is in good
agreement with the numerical results for the CP laser field at higher charge densities.

So far we have studied the NLR absorption of laser energy in a simplified model system
assuming an anharmonic potential generated by the ions in which the homogeneous and
rigid electron cloud moves. In reality, the potential builds up during the interaction with
the laser pulse because of ionization. The delicate interplay of inner ionization, energy
absorption by various mechanisms, and outer ionization can be simulated using methods
such as PIC or molecular dynamics. Previous work [69,70], studying LP short laser pulses,
showed that NLR (3.2) can be clearly identified in such simulations as well.
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3.2. Nonlinear resonance: particle-in-cell results

3.2 Nonlinear resonance: particle-in-cell results

In this section we present results obtained from three-dimensional PIC simulations. The
size of the cluster considered here is much smaller than both the wavelength A and the
skin depth Agin = ¢/w,, (¢ is the speed of light in vacuum) so that the propagation of the
laser pulse needs not be taken into account, and the dipole approximation E\(r,t) ~ E)(t)
can be applied. The size L of the cubic grid on which the charge density and the self-
consistent potential ®(r,t) are calculated is typically L ~ 17R with 1283 grid cells. The
number of PIC particles per grid cell in the initial configuration is ~ 10. Because of the
short pulse durations studied in this chapter, the ions are fixed, forming a homogeneous
background. Electron-ion collisions are neglected in our PIC treatment so that absorption
of laser energy can only proceed through collisionless processes.

We present results from parametric studies where pre-ionized clusters of various fixed
charge densities are chosen as the initial configuration (corresponding to different degrees
of inner ionization) so that the potential of the ionic background is exactly compensated
by the electronic charge distribution. The cluster is then exposed to n = 8-cycle sin*-
pulses Ej(t) = Eysin?(wit/2n) cos(wit) of near infrared wavelength A\ = 1056 nm, i.e., the
total pulse duration is 28 fs. A PIC electron has the same charge to mass ratio as a “real”
electron, that is, ¢/m = —1 in atomic units. Each PIC electron moves under the influence
of the external laser field and the space charge field E,, = —V®(7,t) due to the potential
®(r,t) that is created by all charges. The equation of motion of the ith PIC electron
reads

’l"l —+ ESC(T'Z', t) = —El(t). (322)

Each time step the particle charges are mapped to the grid as explained in chapter 2.
The potential ®(r, t) is calculated by solving Poisson’s equation using Dirichlet boundary
conditions (®(t) = 0 at the boundary is a good approximation for sufficiently big grids;
otherwise a multipole expansion of the potential is adopted to specify the boundary values
as in chapter 4).

3.2.1 Results for linear polarization

We consider pre-ionized clusters of fixed radius R = 3.2nm (e.g., Xey, with NV; ~ 1600)
but of various charge densities p/p. which varies from 20 to 100. Figure 3.7 shows the
absorbed energy per electron in units of the ponderomotive potential U, = E3 /4w?, i.e.,
the time-averaged quiver energy of a free electron in the laser field. One sees that the
absorbed energy per electron is on the order of U,. However, the absorbed energy is
nonlinear in U, and displays a maximum before it drops because of the saturation of
outer ionization. The depletion is due to the fact that at a given intensity most (if not
all) electrons are removed from the cluster (complete outer ionization). Further inner
ionization would be required to generate “fresh” electrons that could continue to absorb
energy. The maxima in the PIC absorption curves are located close to the threshold
intensity predicted by the RSM (see RSM-result for p/p. = 40). With increasing charge
density the maxima of the absorbed energy (divided by U,) move towards higher laser
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Figure 3.7: PIC results for a Xejgoo cluster (R = 3.2nm). Total absorbed energy per
electron in units of U}, vs laser intensity for charge densities between 20 and 100 times the
critical density, corresponding to average charge states between 1.6 and 8. The prediction
of the RSM for p/p. = 40 is included in the plot (dashed).

intensities while the absorbed energy per electron decreases. The total absorbed energy
around the maximum of the PIC absorption curves (RSM as well) is on the order of
2U, = 56keV, which has been also reported in experiments of intense laser clusters
interactions [9].

In PIC simulations no sharp intensity threshold exists since each PIC electron sees its
own time-dependent field (space charge field plus the laser field). Therefore sharp jumps
(as seen in the RSM, e.g., Fig. 3.1) are absent.

As mentioned earlier, the absorption of energy by a PIC electron depends upon the self-
consistent potential which develops during the laser pulse due to outer ionization. As a
result different PIC electrons move along different trajectories, “see” a different potential,
and thus are set free at different times. Figure 3.8 shows a snapshot of the collective
potential ®(r,t) at time wyt/2m = 4.81 for a cut at z = 0 (and various y throughout the
cluster). The most lower curve represents the potential for y = z = 0. The red circles
represent the total energy Eio; = 72(t)/2 — ®(7;,t) of individual PIC electrons located
within the simulation box at that time.

One observes that several PIC electrons are accumulated near the left bottom of the
potential well at this time. These PIC electrons with Ei; < 0 remain bound since the
laser field amplitude is already decreasing from the 4th cycle onward.

The total energy of a PIC electron which leaves the potential well when its excursion
becomes z/R ~ 2.88 at the same time is also shown. This excursion approximately
satisfies the NLR condition weg/w; = 1 for the charge density p/p. = 40, as identified in
Fig. 3.3 with the RSM analysis. The total energy curve shows how the particle, starting
with zero energy at t = 0, drops into the potential as the latter builds up owing to outer
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Figure 3.8: Energy and self-consistent potential ® from the PIC simulation vs the excur-
sion x/R in laser polarization direction. Yellow lines represent cuts of the potential ® at
time wyt/2m = 4.81 for different y and z = 0. The circles (red) represent the total energy
FEiot,; of individual PIC electrons located within the simulation box at that time. The
total energy (TE) of a PIC electron (black, bold) that is outer ionized when the excursion
x/R ~ 2.88 meets the condition weg = w) at the same time (see Fig. 3.3 for the charge
density p/p. = 40) is shown, arrows indicating the time evolution (starting from t = 0).
The RSM potential is included (dashed). The peak laser intensity is Iy = 2.5 x 106
W/cm?. Other parameters as in Fig. 3.7.

ionization. At the time of the emission of the PIC particle, the self-consistent potential
is already close to the RSM potential (included dashed), i.e., the potential of the ionic
background. The NLR is most clearly visible in the case of substantial outer ionization
and for those electrons leaving “late”. At lower laser intensities or during the early part
of a high intensity laser pulse when most of the PIC electrons are inside the cluster, the
PIC potential remains much shallower than the RSM potential shown in Fig. 3.8, and the
occurrence of NLR (or even linear resonance) can hardly be resolved.

The NLR behavior exhibited by the PIC electron in Fig. 3.8 is not accidental. For the
sake of an unequivocal and explicit identification of the NLR we now analyze the motion
of all individual PIC electrons in the same way as it has been done with the motion of the
electron sphere in the RSM in Sec. 3.1. Recalling (3.22), the equation for the effective,
time-dependent oscillator frequency analogous to (3.18) for the i-th PIC electron reads

[EA(t) + ()] - rilt) _ Bue(ri,t) - 7i(1)
r2(t) r2(t) '

(2 (2

wi(t) = — (3.23)

E, (r;,t) depends on the position of all other particles # i, and the simulation starts
with the charge-neutral cluster configuration i.e., E.(7;,0) = 0. Hence, a PIC electron
“sees” initially an effective frequency weg;(0) = 0. The laser field disturbs the charge
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Figure 3.9: Effective frequency squared (wef ; Jw1)?, excursion r; /R, and the total energy
Eioti = 12(t)/2 — ®(r;,t) for a PIC electron vs time in laser cycles. The total energy
becomes positive only when the NLR is crossed (indicated by the vertical dashed line).
This result resembles the RSM result in Fig. 3.2 when NLR is met. The charge density
is p/p. = 40, the peak laser intensity is Iy = 2.5 x 10! W/cm?. Other parameters as in
Fig. 3.7.

equilibrium and wZ; ;(t) becomes different from zero. wZ; ;(t) may be even negative in
regions of accumulated electron density (repulsive potential). As the cluster charges up,
(wer /w1)? quickly increases beyond unity (where the RSM starts in the first place). The
start from weg ;(0) = 0, the possibility of negative wfﬁ,i(t), and the three-dimensionality
are the main differences to the RSM analysis above.

Figure 3.9 shows the effective frequency squared, the total energy Ei. (), and the excur-
sion 7;/R vs time for a PIC electron that leaves the cluster at ¢ = 4.55laser cycles. We
define the time when, for a particular electron, Ei.; becomes > 0 as the ionization time
of that electron. It is clearly visible in Fig. 3.9 that the PIC electron escapes only when
the resonance line (weg/w)? = 1 is passed. Figure 3.9 can be well compared with Fig. 3.2
showing ionization of the RSM via NLR.

In the case of PIC simulations the fulfillment of the NLR condition (weg/wi)? = 1 is
necessary but not sufficient for ionization. As the potential builds up, the PIC electrons
transiently meet the NLR condition, and, in fact, some electrons leave the cluster at
that early stage when the potential is still shallow and the laser field is relatively weak.
However, as the potential deepens, PIC electrons “dropping” below the energy necessary
for NLR to occur, behave from then on similar to the RSM and may finally escape only by
climbing up in the potential and hitting the NLR (weg/w1)? = 1. During the 0.4 laser cycles
plotted in Fig. 3.9 the (weg/wi)?-curve displays artificial, short-time scale fluctuations
inherent in PIC simulations [65]. However, we checked that macroscopic observables such
as the absorbed energy or the degree of outer ionization are well converged.
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Figure 3.10: Snapshots of PIC electrons in the frequency vs energy-plane at times (a)
t =15, (b)t =20, (c) t =25, (d) t =3.0, (e) t =3.5, (f) t =4.0, (g) t = 4.5, and (h)
t = 5.0 laser cycles for LP, laser intensity 2.5 x 10'® Wem ™2, and (waie/wi)? = 40/3. Other
parameters as in Fig. 3.9. The radial positions (in units of R) are color-coded. Electrons
become free upon crossing the NLR, i.e., (w’:/wi, Eiot/Up) = (1,0).
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CHAPTER 3: Collisionless energy absorption by clusters in short laser pulses

By following the dynamics of the electrons in the effective frequency vs energy-plane we
identify the main pathway to outer ionization and efficient absorption. Figure 3.10a~h
shows the scaled effective frequencies squared (weg/wi)? of the individual PIC electrons
vs their energies Eiy(t) = 72(t)/2 — ®(r;, t) they would have if the driver is switched
off instantaneously at ¢t = 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 laser cycles, respectively. At
the time when, for a particular electron, F, becomes > 0 the ionization occurs for that
electron. The laser intensity is 2.5 x 106 Wem ™2, and the pre-ionized cluster is 40 times
over-critical so that (wye/w1)? = 40/3. As is clearly visible in Fig. 3.10, each electron
reaches positive energy close to the point (w;/w?, Eiot/U,) = (1,0). The radial position
of each electron is color coded, indicating that outer ionization occurs at radii around
2R. During the early time of the laser pulse (Fig. 3.10a,b) when many electrons are still
inside the cluster, (weg/w))? spreads over a wide range, starting from the maximum value
(wrie/w1)? down to negative values due to the repulsive force exerted by the compressed
electronic cloud. Note that negative values in effective frequency occur mainly at early
times where most of the electrons are still inside the cluster. Electrons with positive
but very small Fi, and w’ ~ 0 represent low energetic electrons removed earlier during
the pulse (see Fig. 3.10a,b). The occurrence of NLR is less clear for these early leaving
electrons. As mentioned above, these electrons move in a shallow effective potential with
(wer /w1)? < 1 when they leave the cluster with ease and with rather low kinetic energy
because the laser intensity is still low at the time of their emission. Figures 3.10c—f
show that most of the electrons escape from the cluster by passing through the channel
(wk/wi, Eiot/U,) = (1,0) at radii around 2R. Tt is also visible that more and more
electrons are driven to positive frequency before they leave the cluster by passing through
(w2 /Wi, Eyor/Up) = (1,0). This is so because as more and more electrons are freed, the
remaining electrons experience predominantly the force by the ionic background, and they
move deep into the potential (see their negative values in energy) where they experience
the full Mie-frequency wygie/w) = 40/3. In Fig. 3.10b—d, the few electrons with positive
energy but small radii are those driven back to the cluster by the laser field. In Figs 3.10e,f
electrons are strongly aligned (no scattered points) since the laser field is approaching its
maximum (at ¢t = 4 cycles). After the peak of the laser pulse (Figs 3.10g,h) the restoring
force of the ions on almost all electrons dominates the laser force.

One may object that, since the denominator in (3.23) necessarily increases while the
numerator decreases for an electron on its way out of the cluster potential, that the
passage through a point (wZ;/w?, Fiot/Up) = (2,0) with @ some value < (wyge/wr)? is
rather the consequence of outer ionization than the mechanism behind it. However, NLR
only occurs at x = 1, and the results in Fig. 3.10 show only little spreading along (weg /wi)?
at Fi,y = 0. Moreover, the fact that both the single electron energies become positive and
the radii exceed ~ 2R when (weg/w;)? = 1 indicates that NLR is indeed the responsible
mechanism behind outer ionization accompanied by efficient absorption of laser energy.

3.2.2 Results for circular polarization

Since many of the features of energy absorption and NLR in a LP laser field are common
to the case of CP, we only point out the main differences. Equation (3.23) holds in the
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Figure 3.11: Effective frequency squared (weg ;/ wy)?, excursion r; /R, and the total energy
Eioti = 172(t)/2 — ®(r;,t) for a PIC electron in a CP field vs time in laser cycles. The
total energy becomes positive only when the NLR is crossed (indicated by vertical, dashed
line). This result resembles the RSM result in Fig. 3.5. The charge density is p/p. = 40,
the peak laser intensity is Iy = 2.5 x 1016 W /cm?.

CP laser field as well. Figure 3.11 shows the effective frequency squared vs time for one
of the PIC electrons, together with the total energy Fio ;(t) and the excursion r;/R. One
can see that the PIC electron is freed (i.e., its total energy becomes positive) only when
the resonance line (weg/wi)? = 1 is passed.

Figure 3.12 is the CP analogue of Fig. 3.10. The results are very much similar to the LP
case shown in Fig. 3.10 and the arguments made there apply here as well. NLR is clearly
observed. The main difference is that the PIC electrons are nicer aligned towards the
resonance point, even at early times during the laser pulse (see Fig. 3.12 b, ¢, d). Almost
no scattered particles are visible because the dynamics mainly consist of swirling around
the cluster center rather than oscillating through it. The number of electrons returning
to the cluster is much less so that the recombination and re-scattering probability is
smaller in the case of CP. The same is observed in laser-atom interaction experiments,
with important consequences for harmonic generation and non-sequential ionization.

Figure 3.13 shows the average value of the total absorbed energy per electron vs the peak
laser intensity for cluster charge densities between p/p. = 3-40 in CP and LP laser fields.
PIC results are compared with the RSM absorption results. The absorbed energy per
electron in Figs. 3.13a~d is plotted in units of R?wi whereas the same results are shown
in Figs. 3.13e-h in units of the ponderomotive energy U,. The PIC results in Figs. 3.13a—
d show that the absorbed energy increases linearly in the log-log representation up to a
certain intensity and then tends to saturate due to the saturation of outer ionization. One
sees that the saturation in the PIC results occur close to the RSM threshold intensity.
Since with increasing charge density the restoring force due to the ions increases, the
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Figure 3.13: Total absorbed energy per electron in units of R*w? vs laser intensity for
charge densities (a) p/p. = 3 (linear resonance), (b) p/p. = 5, (¢) p/p. = 20, and (d)
p/pc = 40. The absorbed energies for LP (red, lighter gray) and CP (blue, darker gray)
using PIC (dashed) and the RSM (solid) are shown.

saturation of energy absorption in the RSM and PIC occur at higher laser intensities
as the density increases from p/p. = 3 to p/p. = 40 in Fig. 3.13a-d. When outer
ionization and the energy absorption saturate with increasing peak laser intensity, the
average absorbed energy per electron divided by U, (which is proportional to the so-
called fractional absorption) starts decreasing in Figs. 3.13e—f. Figures 3.13a,e show that
at linear resonance p/p. = 3, the absorbed energy is already high at low values of the laser
intensity (< 102 Wem™2), and absorption is very efficient as compared to higher charge
densities p/p. = 540, presented in Figs. 3.13b—d and Figs. 3.13f-h. In fact, Fig. 3.13e
illustrates that the absorbed energy is on the order of ~ 100U, (both in the RSM and
in the PIC) before the saturation of outer ionization. However, one should bear in mind
that at too low laser intensities inner ionization would not occur in the first place so that
in reality there would be no absorption at all. Self-consistent inner ionization is taken
into account in chapter 4.

The PIC results in Fig. 3.13 show that the energy absorption in CP and LP laser fields at
all intensities and all charge densities are almost equally efficient. Also the outer ionization
degrees are very similar for LP and CP, as shown in Fig. 3.14. Recalling that with our
definition of the CP laser field the ponderomotive potential is equal for LP and CP while
the electric field amplitude is not, we conclude that for the outer ionization degree and the
absorbed energy mainly U, matters and not the electric field amplitude. For the higher
charge densities in Fig. 3.14c,d the small difference in the outer ionization degree close
to saturation is probably related to the different threshold intensities for LP and CP, as
discussed in Sec. 3.1.4.
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Figure 3.14: PIC results for the outer ionization degree nyyt/N (where ngy is the number
of electrons with » > 2R) after the laser pulse for linear (solid grey) and circular polariza-
tion (dashed black) for different charge densities p/p. = 3 (a), 5 (b), 20 (c), and 40 (d).

3.3 Summary

In summary, two different approaches to study collisionless laser energy absorption by clus-
ters, namely (i) the rigid sphere model and (ii) particle-in-cell simulations, were pursued in
this chapter. The goal was to identify the dominant mechanism of energy absorption and
outer ionization of the cluster electrons in near infrared, short laser pulses where collisional
absorption is known to be inefficient. We showed that the cluster electrons contributing
to efficient absorption and outer ionization undergo nonlinear resonance, meaning that
the instantaneous frequency of their motion in a time-dependent, anharmonic, effective
potential transiently meets the laser frequency. Nonlinear resonance is the only possible
absorption mechanism if the laser pulse is too short for the linear resonance to occur (or
during the early cluster dynamics in longer pulses) and if electron-ion collisions (inverse
bremsstrahlung) are negligible. In order to prove the occurrence of nonlinear resonance
we used a method to analyze the results obtained from particle-in-cell simulations, namely
the mapping of the system of electrons and ions that interact through their mean field
onto a system of nonlinear oscillators.
The occurrence of nonlinear resonance in the particle-in-cell simulations presented in this
work resembles the nonlinear resonance in the rigid sphere model. For a given cluster
charge density, there is a threshold intensity around which the average electron energy
displays a maximum conversion of laser energy. The threshold intensity can be calculated
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3.3. Summary

using the newly introduced vanishing barrier approximation. The common over-barrier
approximation—applicable to atoms—fails in the case of finite-size potentials and under-
estimates the required laser field strength for ionization.

The efficiency of energy absorption from the laser and outer ionization is almost the same
for linear and circular polarization. For circular polarization there are much less “collisions
with the cluster boundary” than for linear polarization. Hence “collisions with the cluster
boundary” do not properly explain energy absorption. Instead, nonlinear resonance is the
main absorption mechanism in both cases. To illustrate this, the rigid sphere model has
been extended for circularly polarized laser pulses in this work.

In the next few chapters of this thesis we take self-consistent charge state distributions
and mobile ions into account. It will be shown that nonlinear resonance clearly persists
under these circumstances as well.
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Chapter 4

Laser-cluster interaction: ionization
ignition, asymmetric Coulomb
explosion, and absorption by
nonlinear resonance

Atomic clusters are known to absorb incident laser radiation much more efficiently than
the atoms in a gas phase. High charge states [7, 8,37, 39, 75-78] of cluster ions with
kinetic energies in the MeV and keV-range [7, 8,10, 37,39, 75-80], electrons with keV
energies [9,10,79,81,82], and harmonic radiation [83-85] at the frequencies equal to odd
multiples of the incident laser frequency are a few remarkable outcomes of such an efficient
laser absorption in experiments with rare-gas clusters.

As explained in chapter 3 for short laser pulses or in the early duration of long pulses linear
resonance absorption does not occur. In this case electrons can absorb energy efficiently
by meeting the nonlinear resonance (NLR). Using a rigid sphere model [30, 31, 69, 70]
absorption was shown to be efficient above a threshold laser intensity. Such an intensity
threshold was also seen in PIC results [28,29,69,70]. In fact, experiments [82] with 28 fs
820 nm laser pulses reported nearly 80% laser energy absorption by rare-gas clusters at an
intensity 10'"Wem ™2 while 25% absorption was measured below the intensity 10'Wem ™2,
confirming the role of NLR.

However, in the earlier PIC simulations of chapter 3, due to the assumption of fixed ionic
charges and stationary ions we could not address how inner ionization and the cluster
expansion dynamics may effect the NLR. Incorporating the self-consistent evolution of
the ionic charges and ion motion in our PIC simulations we show in this chapter that
NLR is a robust phenomenon which is insensitive to the ion dynamics. We present PIC
results for Ary clusters (N up to 92096 atoms) and deuterium (Dy) clusters (N up to
103536 atoms) irradiated by near infrared, short-pulse (< 23 fs) lasers.

It is known that higher charge states of atoms in clusters are due to ionization ignition.
We show that not all laser intensities lead to efficient ionization ignition. There may
be “ionization depletion”, meaning that cluster atoms deep inside the cluster are ionized
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to charge states less than those of atoms in the gas phase because the laser field may be
strongly shielded by the space charge field. The charge distribution is symmetric in a plane
perpendicular to the polarization axis of a linearly polarized laser pulse but asymmetric in
the plane of polarization. Higher charge states occur along the polarization direction than
in the transverse directions. We show that such an asymmetry of the charge distribution
leads to the asymmetry in the ion kinetic energy seen in cluster experiments [10,37,57].

A recent experiment [41] with hydrogen clusters (where the charge state distribution is
necessarily homogeneous) reported spatial asymmetry in the ion energy spectra. By PIC
simulations of deuterium clusters we show that this asymmetry is always present in case of
clusters driven by a linearly polarized laser field. The observed asymmetry is independent
of the cluster types since the spherical symmetry of the system is broken by the electron
motion in a linearly polarized field. In Ref. [41] it was argued that the electron heating
mechanism is “vacuum heating”. However, the NLR is dominant in this case too.

This chapter is organized as follows: Section 4.1 describes necessary details of the PIC
simulation. Section 4.2 illustrates how ionization ignition leads to the creation of higher
charge states, asymmetric charge distributions and an asymmetric cluster expansion. Ion
and electron energy spectra for argon clusters are reported and the laser energy absorption
via NLR is discussed. Section 4.3 shows that asymmetric ion dynamics persist in the case
of deuterium clusters as well. Finally, the chapter is summarized in Sec. 4.4.

4.1 Details of the simulation

This section describes necessary details of PIC simulations [65] not yet addressed in this
work. A cluster of radius R and N atoms, is placed at the center of a computational box
of volume I'. The latter is divided into cubic grid cells. The atoms are initially placed
according to the Wigner-Seitz radius rw [6] such that R = rwN'/3. In the present study
R is much smaller than the infrared laser wavelength and the skin depth Agin = ¢/w, (c
is the speed of light in vacuum and w,, is the plasma frequency). Therefore we neglect the

propagation of the laser pulse and assume the dipole approximation Ej(r,t) ~ Ei(t) for
the laser field.

According to the Bethe rule [52] the laser field Fi(t) plus the space charge field E..(R;,t)
at the position R; of an ion, i.e., E(R;,t) = |E\(t) + Es(R;,t)| ionizes all ions X(Z~D+
to XZT, meeting the condition

B(R;t) = |Bi(t) + Bwo( Ry, t)| > 12(2) /42 (4.1)

where Z is the charge number, and [,(Z) is the ionization potential. Initially, the space
charge field E.(R;,t) = 0 and all ions assume a charge state Z = 1 solely by the laser field.
This is also known as optical field ionization (OFI). After the OFI, the laser field disturbs
the charge equilibrium. The charges are mapped to the numerical grid and Poisson’s
equation is solved for the potential ®¢(x,y, z,t) on the grid points with a time dependent
monopole boundary condition. Interpolating ®g(z, vy, z,t) to the particle positions 7,
the potential ®(r;,t) and the space charge field Eg.(r;,t) = —V®(r;,t) is computed.
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4.2. Results for argon clusters

Depending on the cluster size the space charge field |Eg . (R;,t)| at an ion position R;
may soon exceed FE(t), and the total field E(R;,t) may produce ions of higher charge
states (Z > 1). We neglect collisional effects which were proved unimportant at long
wavelengths in previous works [13]. Mobile ions are considered. New electrons are “born”
with the velocities and positions of their parent ions.

As long as a PIC electron is inside the computational box, the field at its location 7;(t)
is E(r;,t) = E|(t) + Ex(r;,t). Outside the box E(r;,t) = E\(t) is assumed due to an
inappreciable E.(r;,t). The equation of motion for a PIC electron reads

7 + Eg(r;,t) = —E)(t). (4.2)
The equation of motion of each PIC ion of mass M reads
MR; — E.(R;,t) = E\(t). (4.3)

On the boundary Ry of the computational box the potential ®y,(R),,t) is close to the
monopole potential ®y(Ry,t) = [u[p(x,y,2,t) — pe(z,y, z,t)] dI'/ R, which depends on
the ionic charge density p(x,y, z,t) and the electronic charge density p.(z,y, z,t) within
the computational box.

4.2 Results for argon clusters

We present results for argon clusters (rw = 0.24 nm) in a linearly polarized (along the
r-direction), n = 8 cycle sin?laser pulse Ej(t) = Eysin®(wit/2n) cos(wit) of wavelength
A1 = 800 nm. The total pulse duration is ~ 22 fs. Ions of different charge states are
self-consistently produced. Simultaneously, the cluster expansion, outer ionization and
energy absorption are recorded.

4.2.1 Inner ionization

Figures 4.1a,b show charge states vs positions (in units of the initial radius R) of various
ions in the zy and yz-planes through the cluster center for an Ary cluster (N = 17256) of
radius R = 6.2nm after a laser pulse of peak intensity 2.5 x 1014Wem™=2. At this intensity
only Art is expected by OFI. However, one observes ions with charge states Z = 2,3
indicating ionization ignition. Just after the OFI, the singly charged ion background
leads to a static electric field N/R? ~ 1.256 which would be equivalent to a laser intensity
~ 5.54 x 101Wem™2 capable of producing charge states up to Z = 8 (if no electrons
were present). Such a “static ionization ignition” would be depleted in the presence of
electrons inside the cluster. During the pulse, the displacement of the electron cloud
causes local charge imbalances which are maximum at the cluster boundaries along the
x-axis and smaller at the cluster poles in the y and z-directions. As a result, |Eg.(R;,t)]
transiently becomes higher at the cluster poles along x than at the poles normal to the
laser polarization, leading to “dynamical ionization ignition” [12,15]. This explains the
origin of higher ionic charges along the laser polarization (in Fig. 4.1a). The further
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Figure 4.1: Results for an Arj7o56 cluster of radius R = 6.2 nm and an n = 8 cycle laser
pulse Ej(t) = Egsin?(wit/2n) cos(wit) of intensity 2.5 x 1014Wem™2. (a) Ion charge states
at various ion positions in the zy-plane nearest to the z = 0 plane. Ion positions are in
units of the initial radius R. (b) Charge states in the yz-plane nearest to the z = 0 plane.

charge asymmetry of a few ions (sitting opposite to each other at R; and —R;) along
the laser polarization axis (in Fig. 4.1a) is due to the unequal field amplitudes |Ej(t) +
E? (R;,t)| during the pulse. However |E.(R;,t)| is symmetric in the yz-planes, generating
a symmetric ion charge distribution in Fig. 4.1b.

Figure 4.2 shows further evidence of ionization ignition (analogous to Fig. 4.1) at an
intensity 2.5 x 10%Wem™2. Fig. 4.2a shows a maximum charge state Z = 8 at the
cluster poles along the laser polarization in addition to the charge states Z = 7 — 2 in
the cluster interior. Asymmetry of the charge distribution along the laser polarization
direction due to the dynamical ionization ignition is also visible. Figure 4.2b shows a
symmetric charge distribution (in the yz-plane) of ions as explained before. One does
not observe charge states Z > 5 in the yz-plane shown in Fig. 4.2b due to the absence
of the laser field components Ey,, Ey,. In the atomic case, charge states Z < 4 are
conceivable at this intensity because of OFI alone. The required ionization energy to
produce Ar®" is &~ 5.272 a.u. so that an order of magnitude higher laser intensity ~
2.65 x 101Wem =2 would be required. Hence the space charge field together with the laser
field (i.e., ionization ignition) must have produced the ions with charges Z = 4 — 8. Ions
with even higher Z values (Z = 8, in this case) are produced at the cluster poles along the
laser polarization. As a consequence, they experience a higher Coulomb repulsion force.
The highly charged ions along the laser polarization expand faster than the ions having a
lower charge in the transverse directions, as is visible in Fig. 4.2. As a result the spherical
symmetry of the ionic background is broken. This is the reason for the experimentally
observed asymmetric ion expansion [37].

Figure 4.3 shows the maximum charge state Z..,, minimum charge state Z.;,, average
charge state Z,, (defined as the total charge of the cluster divided by the number of
ions V) and the charge states predicted by OFI [Eq. (4.1) with Ei. = 0] vs the laser
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Figure 4.2: Charge distribution of ions at different planes of an Arjy7o56 cluster of radius
R = 6.2 nm for a laser intensity 2.5 x 101 Wem™2. (a) Ion charge states in the zy and (b)
yz-plane as in Fig. 4.1b. Maximum charge state Z = 8 are seen. Other parameters are
the same as in Fig. 4.1.
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Figure 4.3: Maximum ion charge Z.x (thick solid), minimum ion charge Z;, (thin
solid), average ion charge Z,, (bold black) and the ion charge predicted by the Bethe rule
[OFI, dashed, Eq. (4.1)] vs peak laser intensities for an Arj72s¢ cluster of radius R = 6.2 nm
for an n = 8 cycle laser pulse Ej(t) = Egsin?(wit/2n) cos(wit) of wavelength A\ = 800 nm.
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intensity, at the end of the laser pulse. The ratio Z,.x/Zmin is also included in the plot.
Ionization of the next inner atomic shell (e.g., Z > 8) of argon would require a much
higher field strength than those covered in Fig. 4.2. This is possible either by increasing
the space charge field with a bigger cluster or by increasing the laser field strength. For
the cluster considered above, a further increase of the laser intensity does not increase the
highest charge state at the cluster boundary immediately but more and more ions from
the cluster boundary to the cluster center achieve higher charge states Z < 8. This is
clearly visible in Fig. 4.3 between laser intensities 2.5 x 10¥Wem™2 — 101"Wem ™2 where
Znax = 8 remains unchanged but Z,, increases. In the atomic case, one would expect all
ions having Z = 8 at an intensity 10'"Wem™2. Instead Fig. 4.3 shows ions with charge
states Z = 7 — 3 towards the cluster center. This we call “ionization depletion” because
of the space charge field strongly counteracting the laser field. At the higher intensity
2.5 x 101"Wem ™2 the maximum charge state is Z = 10 which would require an order of
magnitude higher intensity ~ 2.1 x 10®*Wecem™2 in the atomic case (OFI) and, indeed,
Zomax, Zmin and Z,, sharply increase after the intensity 2.5 x 10" Wem™2.

From the above described scenario it is clear that ionization ignition is indeed the mecha-
nism by which cluster ions achieve the charge states higher than in the atomic ionization
case at a given laser intensity. Also there are laser intensities at which ionization ignition
saturates due to the high binding potential of inner electrons. Close to those saturation
intensities ionization depletion is effective. The maximum charge state 2., appears at
the cluster boundary while the minimum charge state Z,,;, appears at the cluster center.
The ionization model presented in Ref. [86] shows that the ratio Z,ax/Zmin lies between
1.5 — 2 which agrees well with our results above the intensity 10'Wem™2. However,
Zmax/ Zmin exceeds the limit 1.5 — 2 below the intensity 101Wem™2 (as seen in Fig. 4.3)

where ionization ignition is very efficient.

4.2.2 Charge states and energy distribution of ions

Figures 4.4a,b show the charge states and kinetic energies carried by different ion pop-
ulations Nj,, after laser pulses of different intensities for an Ari7os6 cluster of radius
R = 6.2 nm. Figure 4.4a shows a maximum charge Z,., = 8 and a minimum charge
Zmin = 4 at an intensity 107"Wem™2 (also visible in Fig. 4.3). Ions with Z.. = 8
are driven with appreciable kinetic energies up to 25 keV while the other ions remain
cold. Figure 4.4b shows ions with Z,.. = 12 and Z,;, = 8 at a higher laser inten-
sity 7.5 x 101"Wem™2. The ions possess kinetic energies ranging from 40 keV (ions with
Znin = 8) to 210 keV (ions with Z,.x = 12). Figure 4.4c is the result (analogous to
Fig. 4.4b) for an Argygse cluster (radius R = 10.85 nm) where the maximum ion energy is
more than 400 keV (for Z = 14). The higher charge states and the higher kinetic energies
of ions for the bigger cluster (Fig. 4.4c) are consequences of enhanced ionization ignition.
It should be noted that as the peak laser intensity is increased both OFI and the ion
motion start earlier. If the ion dynamics is followed for a longer time all the potential
energy of the cluster will ultimately be converted into the kinetic energy of ions and the
final kinetic energy of ions will be much higher than those shown in Fig. 4.4a-c. The ion
with maximum charge state Z,,, carries maximum energy at a given laser intensity.
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Figure 4.4: Kinetic energy and charge (Z) distribution of ions for an Arj7os6 cluster
(R = 6.2 nm) irradiated by intensities (a) 10" Wem™2 (b) 7.5 x 101"Wem™2. (c) Result
for an Argoggg cluster (R = 10.85 nm) at an intensity 7.5 x 10""Wem™2. An n = 8 cycle
pulse Ey(t) = Fysin®(wit/2n) cos(wt) of wavelength A} = 800 nm is applied in all cases.

Figure 4.5 shows maximum ion energy K .., minimum ion energy K, and average ion
energy K, (defined as the sum of the kinetic energy of all ions divided by the number of
ions N = 17256) vs peak laser intensities (after the laser pulses) for the Aryzo56 cluster.
K max varies between 0 — 210 keV in the intensity range 2.5 x 10 — 7.5 x 10'"Wem™2.
The energy is carried mainly by the ions at the boundary of the cluster which also have
maximum charge states Z,,.,. Less mobile ions in the central region of the cluster acquire
the minimum energy K ,;, and also minimum charge state Z,;, (visible in Fig. 4.4). The
average energy K,, goes up to 100 keV at the intensity 7.5 x 101"Wem =2 after the pulse.

In Fig. 4.6a-c we plot the distribution of the total kinetic energy, and the x, y and z-
components (i.e., S8 MVZ2/2, SN, MV /2, SN MV;2/2) of the total kinetic energy
corresponding to Fig. 4.4a-c. Our purpose is to show the directional asymmetry in the

ion energy distribution. In all cases ions moving along the laser polarization (the z-
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Figure 4.5: Maximum ion energy Kp.x, minimum ion energy Ky, and the average ion
energy K,, immediately after the laser pulse for the Ary795¢ cluster of Fig. 4.4. Laser pulse
is same as in Fig. 4.4.

component) have higher kinetic energies than in the transverse directions. Moreover, y and
z-components of energy are exactly the same. For longer laser pulses, a similar asymmetry
in the ion energy distribution was reported in the experiments [37,57] with argon clusters,
xenon clusters [80], and also in MD simulations of small rare-gas clusters [13] where the
asymmetry in the ion charge distribution (as in Fig. 4.2) was made responsible for the
asymmetric ion energy distribution. We shall show later that it is not only the charge
asymmetry of the ions that is responsible for the energy asymmetry. The asymmetry in
the ion energy components exists even for deuterium clusters (presented in Sec. 4.3) where
both ion charge asymmetry and ionization ignition are absent. The asymmetric electron
motion in a linearly polarized laser field also causes asymmetric ion energy distributions.

4.2.3 Expansion of clusters

The origin of energetic ions as describe in the previous section is a consequence of the
cluster expansion that depends upon the charge distribution of the ions as well as the
number of electrons that stay inside or in the vicinity of the cluster. The electrons inside
lower the net positive charge and slow down the expansion. The asymmetric oscillation
of the bound electrons result in a net effective positive charge along the laser polarization
different from the transverse directions. The electrons just outside the cluster may also
drag ions with them [6]. However, due to the high ion to electron mass ratio this process
is not significant.

Figure 4.7a shows the normalized expansion radius R,/R along the laser polarization,
expansion radii R,/R, R./R (i.e., along y and z) normal to the laser polarization direction
and the resultant expansion radius Ry./R = \/R2 + R2 + R2/R (for the Ari7ys6 cluster)
after the pulse of different peak intensities. One sees that the cluster expands along x
faster than in the y and z direction. The expansions along y and z are symmetric. These
results have a clear correspondence with the results in Fig. 4.5 and 4.6. The maximum
kinetic energy Kp.x in Fig. 4.5 is those of the ions with the maximum excursion Ry./R
in Fig. 4.7a.
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Figure 4.6: Kinetic energy distributions of ions for an Arj7es¢ cluster irradiated by in-
tensities (a) 101"Wem™2 (b) 7.5 x 101"Wem™2 and (c) an Arggggg cluster at an intensity
7.5 x 101"Wem™2. In all cases the z-component of the energy is higher than y and z-
components (which are identical). Other parameters are as in Fig. 4.4.

The expansion of a cluster also depends upon the number of electrons inside the cluster.
Figure 4.7b shows the normalized electron number N./N within different radii Ry,
2Rax and bRy, after laser pulses of various intensities. N./N within different R«
increases with increasing laser intensity due to the inner ionization up to a maximum
N./N = 4, then decreases because a larger number of electrons leave the spheres of
those radii than produced further by inner ionization. For laser intensities 10'Wem=2 —
7.5 x 10"Wem™ one sees No/N = 4 ie., N, =~ 69000 electrons within the expanded
cluster after the laser pulse. In the above range of intensities ionization ignition is not
so efficient, which is also clear from Fig. 4.3. At the higher intensity 7.5 x 10"Wem ™2,
N./N decreases to the value N,/N =~ 1 i.e., N, ~ 17256 electrons stay inside Ryax.
Almost the same number of electrons stay within Rp.., 2Rmax and 5R.c. This means
that accumulation of electrons in the cluster vicinity does not occur and ions cannot be
dragged by electrons.
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Figure 4.7: (a) Normalized expansion radius R, /R along the laser polarization, expansion
radius R, /R, R./R normal to the laser polarization and the resultant expansion radius

Ruax/R = (/R2 + R2 + R%/R vs the peak laser intensity. (b) Normalized electron number

N, /N within different radii Rimax, 2Rmax and 5Ryax vs the peak laser intensity. Data points
are plotted after the pulse for an Arj7o56 cluster. Laser pulse is same as in Fig. 4.1.

From the above results it is clear that the expansion process of a cluster is mainly due
to Coulomb expansion. This can be justified by comparing our results with a simplified
model [6]. According to this model a homogeneous positively charged sphere with total
charge @)y, initial radius Ry and mass M, expands electrostatically as

- Qp
T

(4.4)

Here, R(t) is the instantaneous radius. The implicit solution of Eq. (4.4) with the initial
conditions R(t,) = Ry and R(t;,) = 0 reads

=t [ (ViF = p+ log(vi+ Vi) (15

with ¢, the initial time and p = R(t)/R,. This model does not consider the presence of
electrons within the expanding cluster. Also it assumes that the total positive charge is
constant (absence of inner ionization). In a realistic simulation (e.g., PIC or MD) part
of the positive ion background may be compensated by the electrons (if not all electrons
leave the cluster). During the pulse inner ionization changes the total charge of the
ionic background. With increasing peak laser intensity inner ionization as well as the
cluster expansion starts at smaller ¢;,. In spite of these differences, Eq. (4.4) is useful to
understand the cluster expansion. Equation (4.5) requires two input parameters: the net
positive charge (), and the initial time ¢;, which are a priori unknown. The net positive
charge of the cluster depends on the number of electrons N, inside the cluster. The total
ion charge N Z,, (see Fig. 4.3) and the number N, (see Fig. 4.7) after the laser pulse are
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Figure 4.8: Normalized radius R(t)/Ro of the cluster vs time in laser cycles at different
peak laser intensities. (a) PIC and (b) model Eq. (4.4) results. Laser pulse and cluster
parameters are as in Fig. 4.1.

known from the PIC simulation. We assume @), = NZ,, — Q. at the initial time t;,.
The initial time ¢;, is adjusted to the time when the first electrons are removed from the
cluster atoms.

Figure 4.8 shows the normalized cluster radius R(t)/ Ry vs time at different laser inten-
sities. Figure 4.8a is the self-consistent PIC result while Fig. 4.8b is calculated with the
model assuming a constant ), (in time) that depends only on the laser intensity. The
model agrees well with the PIC results at intensities < 10'"Wem™2. This shows that
Coulomb expansion is the dominant process. For laser intensities > 10'"Wem ™2 expan-
sion is much faster according to the model (4.5) compared to the PIC results shown. This
is due to the assumption of the constant value of the total charge @), and the absence
of inner ionization in the model. Moreover in the case of PIC simulations the cluster
expands asymmetrically, and this asymmetry increases at higher laser intensities (as is
clear from Fig. 4.7a). From the comparison between the model and the PIC results we
conclude that expansion of clusters is mainly due to the Coulomb repulsion between the
highly charged ions. Hydrodynamic expansion is not important for the laser and cluster
parameters under study.

The expansion of a cluster and the inner ionization at a given laser intensity together
define the Mie-resonance frequency wyie(t) = /4mp(t)/3 of a cluster as long as the charge
density p(t) is homogeneous. If wyie(t) meets the laser frequency during the expansion
the well-known linear resonance occurs at which energy absorption is efficient. At a lower
laser intensity and for a short laser pulse, the cluster radius remains close to its initial
value Ry = R(0). With increasing laser intensity the outer layer of a cluster moves faster
while the inner core maintains an approximate charge homogeneity. At this point one
underestimates the Mie-frequency by the definition wyie(t) = +/Q(t)/R(t)? = /4mp(t)/3
with Q(t) the total charge within the expanding radius R(t) = Rpax(t). From PIC
simulations we find that the charge homogeneity is almost always satisfied within the
initial cluster radius Ry. We therefore define wyie(t) = /Qy(t)/R3 with the total ionic
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Figure 4.9: Scaled Mie-resonance frequency wye/w vs time (in units of laser cycles) at
different laser intensities 2.5 x 101"Wem™2, 7.5 x 101"Wem™2 for the Arq7as6 cluster and
for the Argoggg cluster at an intensity 7.5 x 10" Wem™2. Laser pulse is same as in Fig. 4.1.

charge Qy(t) within Ry where a deeply bound electron cloud collectively oscillates with
wmie(t). This approximation resembles the cold electron core discussed in Ref. [87].

Figure 4.9 shows the calculated and scaled Mie-frequency wygie(t)/wy vs time (in units
of laser cycles) at different laser intensities 2.5 x 10®Wem™2, 7.5 x 10""Wem ™2 for the
Ar7956 cluster and for the Argyggs cluster at an intensity 7.5 x 101"Wem™2. At the intensity
2.5 x 10®Wem=2 OFT starts near two cycles where wygie(t) /w) sharply rises up to the third
harmonic of the laser frequency near 3 cycles and reaches a maximum near 5 cycles.
After the maximum wyye(t)/w; decreases very slowly due to the cluster expansion. At a
higher intensity 7.5 x 10'"Wem™2 OFI starts earlier but at the same time for the Ar;7os6
and Argeges clusters. wyie(t)/wy increases up to the fifth harmonic near 3 cycles for both
clusters. After that wye(t)/w) decreases much faster for the smaller cluster down to a
value above the second harmonic at the end of the 8th cycle. For the bigger cluster
wWiie(t) /w) decreases much slower owing to a slower expansion and reaches just below the
fourth harmonic of the laser frequency after the end of the pulse. The slower decrease
of wamie(t)/w) for the bigger cluster is due to the presence of a large number of electrons
inside the cluster. However, Fig. 4.9 clearly shows that linear resonance wyie(t) = w) does
not occur during the expansion with the short pulses considered in the present study.
Nonetheless, a significant fraction of the electrons leave the cluster completely (Fig. 4.7b)
by absorbing energy from the laser field. We shall show that energy absorption by electrons
is still very efficient even in the absence of linear resonance.

4.2.4 Energy absorption by electrons

We shall now discuss the electron dynamics. The enhancement of ionic charge sates and
ion kinetic energies presented in the earlier sections are the consequences of electron re-
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Figure 4.10: Total energy of individual PIC electrons Eior = 72/2 — ®; (dots) in units
of the ponderomotive energy U, vs their excursions z (in units of R) along the laser
polarization direction after a laser pulse of intensity 5.0 x 10'Wem™2. The dashed line
represents Fiot = 0. Only electrons within the computational box are plotted. The cluster
and laser parameters are as in Fig. 4.1. The continuous lines (solid) represent the net
effective potential after the pulse in a xy-plane (i.e., for a cut z = 0 and various y-values).
The lowest line represents the potential in the plane (y, z) = (0, 0).

moval from the cluster. Therefore it is necessary to understand the laser energy absorption
by the electrons, leading to subsequent heating and outer ionization. For small clusters
we showed in chapter 3 that nonlinear resonance (NLR) is the dominant collisionless ab-
sorption mechanism for near-infrared short laser pulses. The ions were assumed immobile
with fixed charge states. In the present work we consider mobile ions with self-consistent
inner ionization where the linear resonance wye = w) is not met (as seen in Fig. 4.9)
during the pulse. We show that NLR is a robust phenomenon also under these more
realistic conditions.

Electron energy spectra

In Fig. 4.10, the total energy of individual PIC electrons Ei, = 7’“22 /2 — ®; (kinetic plus
potential energy) in units of the ponderomotive energy U, vs their excursion x (in units of
R) along the laser polarization direction after a laser pulse of intensity 5.0 x 10*6Wem ™2
is plotted. The dashed line represents Fi,; = 0. We only plot the electrons within the
computational box. Some of the electrons may have higher energies and larger excursions
than plotted in Fig. 4.10. As ionization proceeds a potential builds up and electrons
move on different potential curves. The solid lines are the effective potential (due to the
expanding ions and electrons) curves after the pulse for a cut z = 0 and various y-values.
The lowest line represents the potential in a plane (y,z) = (0,0). One sees that after
the pulse many electrons are bound deep inside the potential. They form a spherical
electron cloud at the center of the cluster due to which the Coulomb expansion is slowed
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down compared to the case where the electrons are completely stripped off. Those tightly
bound electrons oscillate with wy;e in an (almost) harmonic potential. Other electrons are
less tightly bound and are located along shallower potential curves. At the boundary of
the computational box the potential is negative due to the monopole potential boundary
condition. The electrons having energies close to the value Ei,; = 0 may be regarded as
quasi-free electrons. We define an electron as being outer ionized if its energy Eio > 0.
Within the simulation box the maximum electron energy is approximately FEi, ~ U,
which is 2.98 keV at the above laser intensity. The electrons with excursions larger than
the size of the computational box may have even higher energies.

T Y ] 2
! .

110 wem™2
! ]
'Up=596.1evy] 15

5.0 x 10%® wem™ ]
Up = 2.9805 keV |

Ne/N

Ne/N

-4 -2 0 2 4 -3 -

0 1 2 3

[\ ) Sy Sy gy Sy SR S
[N g g g

Energy/Up Energy/Up
2 T 2 [
! 1 1 1 ] 1 1
[ 1 1 1 1 1
i 1 1 1 ] ! !
T ! v 10x10”wem?] 1sfF ! ! 7.5x 10" Wem ]
[ : : | Up=50961keV | : : Up = 44.707 keV ]
B 1 1 1 1 1 1 b
= 3 1 1 1 b = 1 1
< 1F 1 1 1 45 1F 1 1
N 12 b
3 1 1 1 1 1
3 1 1 1 L 1 1
05F | : : 1 05 :
3 1 1 E 1 1
oy ™ (©); L
O. .:. :..-..I....I....I PEEPEE R Y 0.. :. : PEEPEE BEPE R R R R R | PEEPEE R Y
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Energy/Up Energy/Up

Figure 4.11: Electron energy distribution after the laser pulse of respective laser intensities
(a) 1.0x10%%, (b) 5.0x10%, (c) 1.0x10'" and (d) 7.5x 10" Wem =2 for an Ary (N = 17256)
cluster (with same laser pulse as in Fig. 4.1).

Figure 4.11 shows the electron energy distributions for an Arj7956 cluster at laser intensities
1.0x10*Wem=2, 5.0x 10 Wem 2, 1.0x 101"Wem ™2, and 7.5x 10" Wem ™2 after the pulse.
It is clearly seen that after the laser pulse a large fraction of the electrons has negative
energy. Those electrons remain bound inside the potential and stay rather cold (narrow
energy distribution). The electrons with Fi, > 0 are the outer ionized electrons which
are freed from the cluster potential. Those free electrons carry typically keV energies, as
measured in experiments. With increasing intensity a higher fraction of electrons gain
positive energy (Figs. 4.11c,d) and more electrons are “generated” by increased inner
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Figure 4.12: Electron energy distribution at 7.5 x 101"Wem™2 for an Ary (N = 92096)
cluster (laser pulse same as in Fig. 4.1).

ionization. There is also a group of electrons very close to the continuum (i.e., Fio = 0)
but still negative total energy. Those electrons are sometimes called halo. Figure 4.11
shows maximum electron energies around 3U,, corresponding to 2,10, 20 and 135 keV at
the laser intensities (a) 1.0 x 10'Wem ™2, (b) 5.0 x 10'Wem ™2, (c) 1.0 x 10""Wem™2, and
(d) 7.5 x 10"Wem ™2, respectively.

Figure 4.12 shows electron energy spectra for a bigger Argsgog cluster (N = 92096 atoms)
at an intensity 7.5 x 10'"Wem™2. In this case the maximum electron energy is also
~ 3U,, but the electron yield is higher due to the higher number of electrons in the
Argoggg cluster. Most of the experiments employing longer laser pulses above 100 fs report
electron energies from keV to a few tens of keV. Recent experiments [82] with 28 fs,
820 nm Ti:Shaphire laser pulses reported electrons above 100 keV with argon and xenon
clusters. Our simulations confirm these findings.

Mechanism of the energy absorption

In chapter 3 we clearly showed that electrons absorb energy predominantly by NLR. Elec-
trons oscillating at different potential levels (as in Fig. 4.10) during the pulse experience
different restoring forces. Therefore each electron “sees” a different effective frequency
werr and escapes at different times by meeting the NLR. We identify the NLR for all PIC
electrons as it was done in chapter 3.

For an Aripse cluster (as in Fig. 4.11) irradiated with an intensity 5.0 x 106 Wem ™2,
Fig. 4.13a-h shows (weg/w)? of individual PIC electrons vs their energies Fi.(t) =
72(t)/2 — ®(ry,t) at times t = 1.0, 2.0, 2.5, 3.0, 4.0, 4.5, 5.0 and 6.0 cycles, respec-
tively. At a time when, for a particular electron, FEi, becomes > 0 outer ionization
occurs for that electron. Fig. 4.13a shows electrons after the OFI. At t = 2.0, 2.5-cycles
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Figure 4.13: Snapshots of PIC electrons in the frequency vs energy-plane at times (a)
t=1.0, (b) t=2.0, (c) t =25, (d) t =3.0, (e) t =4.0, (f) t =4.5, (g) t = 5.0, and (h)
t = 6.0 laser cycles for laser intensity 5.0 x 10'® Wem™2. Other parameters as in Fig. 4.1.
The radial positions (in units of R) are color-coded. Electrons become free upon crossing
the NLR.
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(Figs. 4.13b,c) a large number of electrons is already produced due to inner ionization.
NLR is less clear for these early leaving electrons (in Figs. 4.13a,b,c) since they move in
a shallow effective potential and leave the cluster with positive but very small E, and
w2 =~ 0. In chapter 3, for fixed ionic charge density, immobile ions and zero potential
boundary condition it was shown that each electron reaches positive energy close to the
point (wk/w?, Byt /Uy) = (1,0). This incidence is also seen in Figs. 4.13b-e. Addition-
ally, Eit/U, of some electrons shifts to negative values when NLR occurs. In fact, NLR
actually occurs inside the potential when the energy changes sharply from negative to
positive values (as seen in chapter 3) and particles leave the potential within less than
one quarter of a laser cycle. For example, if some electrons with excursions between
2R — 5R in Fig. 4.10 are sharply pulled out by the NLR, an energy spreading up to —U,
is to be expected for those electrons that cross the NLR at different locations between
2R — 5R. Figures 4.13c—f show that most of the electrons escape from the cluster by
passing through the channel (w%;/w?, Eiot/U,) = (1,y) with y € [=U,, 0] at radii around
2R — 5R. It is also visible that more and more electrons are driven to positive frequency
before they leave the cluster by passing through (w?;/w?, Eioi/U,) = (1,y). As more
and more electrons are freed, the remaining electrons experience predominantly the force
by the ionic background, and they move deep into the potential where they experience
a higher Mie-frequency. In Figs. 4.13c-h, the electrons with Fi, > 0 but small radii
are those driven back to the cluster by the laser field. After the peak of the laser pulse
(Figs. 4.13g,h) the restoring force of the ions on the electrons dominates the laser force
and the electrons move back towards the cluster center where they remain bound (see the
highly confined electron cloud in Fig. 4.10). Although there is spreading of single particle
energies Eyo near the point (w2;/wi, Fiot/Up) = (1,0), the passage through the NLR, i.e.,
w?s/w? = 1 is necessary for the outer ionization and the efficient energy absorption by
electrons.

4.3 Results for deuterium clusters

Deuterium clusters have drawn considerable attention as a target to obtain highly ener-
getic ions [88-94] that can drive nuclear fusion. Since a deuterium atom has only one
electron, ionization ignition for deuterium clusters (as well as hydrogen clusters) cannot
happen assuming all atoms being ionized at the same time by the laser field. The smaller
Wigner-Seitz radius of a deuterium cluster compared to an argon cluster provides a higher
charge density and a higher Mie-frequency than for a singly ionized argon cluster. Ta-
ble 4.1 exemplifies the above mentioned scenario for a singly ionized argon cluster and a
deuterium cluster for a laser wavelength A\; = 800 nm. The Mie-frequency of a deuterium
cluster also drops much faster due to the faster expansion compared to an argon cluster
consisting of much heavier nuclei. Therefore the linear resonance during expansion may
be met for a deuterium cluster even during short laser pulses. The Mie-resonance with the
fundamental laser frequency as well as with its harmonics has a significant effect on the
energy absorption as well as harmonic radiation so that deuterium clusters are interesting
targets.
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Cluster | Wigner | Number Cluster Atomic p/pe WMie/ W1
type Seitz of radius density
radius atoms
W N R=rwyN'Y3 | p=2% = /p/3pe
(nm) (nm) (m~?)
Ary 0.24 17256 6.2 1.73x 102 | 9.9 1.82
Dy 0.17 17256 4.39 4.86 x 10%® | 27.86 3.05

Table 4.1: Comparison between an argon cluster and a deuterium cluster containing the
same number of atom N = 17256. The critical density is p. = 1.744 x 10>"m~3 for a laser
pulse of wavelength 800 nm.

A recent experiment [41] with hydrogen clusters reported anisotropy in the ion energy
distribution: ions along the direction of polarization of a linearly polarized field acquire
higher energy than the ions moving in the directions transverse to the laser polarization.
Such an anisotropy was previously reported in experiments [10,37,80] and simulations [13]
with high Z rare-gas clusters where anisotropy of the energy distribution was attributed
to the anisotropy of the ionic charges. We have also shown anisotropic ion dynamics for
argon clusters previously in this chapter. However, the observed anisotropy in hydro-
genic clusters cannot be due to the anisotropy of the ionic charges since there are only
singly charged ions. In this case asymmetry in the energy distribution arises due to the
asymmetric electron dynamics in the linearly polarized laser field.

We study two deuterium clusters (Dy) of different number of atoms (N = 17256 and
103536) in the same laser pulse as considered before. The Wigner-Seitz radius of a deu-
terium cluster is rw = 0.17nm (listed in Table 4.1), yielding respective cluster radii
R =4.39nm and 7.98 nm.

4.3.1 Ion energy spectra

At first we present energy distributions of deuterium ions after laser pulses of different
intensities. Figure 4.14 shows the number of deuterium ions vs their kinetic energies at
laser intensities 2.5 x 10%, 5.0 x 10%, 7.5 x 10%, and 1.0 x 10'"Wem ™2, respectively, for
the Dy (N = 17256) cluster of radius R = 4.39nm. With increasing laser intensity the
maximum kinetic energy is seen to increase up to 2.5 keV at the intensity 10"Wem=2. The
higher the laser intensity is, the earlier sets in inner ionization as well as outer ionization.
The latter thus triggers the Coulomb expansion earlier than at a lower laser intensity. As
a result the potential energy of the cluster is converted faster to kinetic energy of the ions.
Figure 4.14e shows the maximum kinetic energy K.y, the minimum kinetic energy K,
and the average kinetic energy K,, for different peak intensities. Although K .. is up to
2.5keV at the highest intensity plotted in Fig. 4.14d, K,, is < 1.6keV. As pointed out
before K., is carried by the ions closer to the center. It is noticeable that K., starts
increasing at an intensity ~ 5.0 x 10'Wem™2 due to the outward motion of those ions.
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Figure 4.14: Kinetic energy distribution of deuterium ions for a Di7956 cluster of radius

R = 4.39nm and an n = 8 cycle laser pulse Fj(t) =

Eosin®(wit/2n) cos(wit) of different

intensities (a) 2.5 x 10'6, (b) 5.0 x 10', (c) 7.5 x 10'6, and (d) 1.0 x 10'"Wem~2. The

bottom figure (e) shows maximum kinetic energy Kyax
average kinetic energy K, (total kinetic energy of all

, minimum kinetic energy K,;, and
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ions) at different peak laser intensities after the laser pulse.
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Figure 4.15: Same as Fig. 4.14 but for a bigger Dygss36 cluster (R = 7.98 nm).
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Figure 4.15a-e shows kinetic energy distributions of ions for the bigger deuterium cluster
of radius 7.98 nm (number of atoms N = 103536) analogous to Fig.4.14a-e. The ions have
much higher energies due to the higher potential energy in the bigger cluster. Maximum
ion energies up to 34keV (after the pulse) are seen in Fig. 4.14d. At the laser intensity
10'"Wem™2, Fig. 4.15e shows an average kinetic energy about 3keV although the max-
imum ion energy is 34 keV. Since at a given laser intensity (e.g., 10"Wem™2) a bigger
cluster will retain more bound electrons (as shown below) than smaller ones, the inner
core of the bigger cluster expands slower. As a result K,, does not grow at the same
rate with the cluster size (as evident from Figs. 4.14e and 4.15e). Most of the experi-
ments [88] reported maximum ion kinetic energies up to a few hundred keV or even MeV.
However, the average kinetic energy was only a few tens of keV. The average proton en-
ergies obtained in experiments and simulations [41,95-97] with hydrogen clusters of radii
R < 10nm was < 10keV.

The above results can be easily understood considering a simple Coulomb expansion
model [95,96] assuming all electrons being outer ionized by the laser field, leaving a
positively charged homogeneous background behind which Coulomb explodes. An ion
having an initial radial position r will acquire asymptotically the kinetic energy

E. = 4mpr?/3. (4.6)
The Coulomb energy of an ion at the cluster surface is maximum and reads
Frax = QP/R = 47TpR2/3 (47)

(before the expansion). Thus the maximum kinetic energy is proportional to the square of
the initial cluster radius. Therefore, the larger the size of a cluster is, the higher is the ion
kinetic energy that can be obtained due to the Coulomb explosion, as in the results shown
in Figs. 4.14 and 4.15. However, a higher laser intensity must be provided to remove all
electrons for this kind of pure Coulomb expansion. Assuming a homogeneous spherical
cluster the number of ions within r and r+ dr is dN = 47 pr? dr. The average ion kinetic
energy F,, can be written as

1
E, =~ | E.dN, 4
v/ (45)

3 (4mp\® [T, 3
B, = — ( 2F dr = 2 By 4,
N( 3 ) /0 T (4.9)

Thus the average kinetic energy is only 60% of the maximum ion kinetic energy if the
entire potential energy is finally transferred to the ions. This is only the case if no electrons
stay inside the cluster. However, in general not all electrons are removed from the cluster
before the explosion starts. Therefore it is necessary to calculate the fraction of electrons
removed from the cluster at a given laser intensity.

which yields

Figure 4.16 shows the normalized number of electrons N,/N within different radii R
(initial radius), Ruax (expanding radius), 2R.x and 5Ry.x after the pulse of various
laser intensities. Rpax is computed as Ryax = /R2 + R; + R? with the expansion radii
R,, R, and R, along z, y and z, respectively. With increasing laser intensity N./N
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Figure 4.16: Normalized electron number N,/N within different radii Ryax, 2Rmax and
5Rmax vs peak laser intensity for deuterium clusters of radii (a) R = 4.39nm (N = 17256)
and (b) R ="7.98nm (N = 103536) after the laser pulse.

decreases because of outer ionization. At an intensity 10'"Wem™2 one sees (in Fig. 4.16a)
that almost all electrons are removed from the smaller cluster (see N,/N = 0) while
N./N = 0.2 (Fig. 4.16b) in the case of the bigger cluster. Hence pure Coulomb explosion
in the smaller cluster occurs at an intensity 10'"Wem™2 or higher. Instead, the central
ions do not move appreciably in the bigger cluster (Fig. 4.15e) and K, ~ 0 due to the
presence of electrons at the cluster center.

4.3.2 Anisotropy in the expansion

For singly charged hydrogenic clusters one would expect an isotropic expansion. However,
the expansion also depends on the number of electrons that stay inside the cluster (as
seen in Fig. 4.16) and their dynamics. Bound electrons lower the net positive charge and
slow down the expansion. The oscillations of bound electrons in a linearly polarized laser
field breaks the spherical symmetry and results in an effective charge distribution along
the laser polarization different from the transverse directions.

Figure 4.17a shows the distribution of the z, y and z-components of the kinetic energy
shown in Fig. 4.15d for the intensity 10'"Wem™2. Ions have higher kinetic energy along the
laser polarization (the z-component) than in the transverse (y, z)-directions. Figure 4.17a
shows clearly that asymmetry in the ion energy distribution exists even for hydrogenic
clusters where both asymmetric charge states and ionization ignition (as in Fig. 4.2 for
argon cluster) are absent. To support this conclusion Fig. 4.17b shows the normalized
expansion radii R, /R, R,/R, R./R, and Rp../R at different peak laser intensities after
the pulse. One sees that the cluster expansion proceeds fastest along x. The maximum
kinetic energy in Fig. 4.17a is due to the ions located at maximum radius along the laser
polarization in Fig. 4.17b.

The above results show that ions with maximum kinetic energies are emitted along the
laser polarization even if the charge state distribution is necessarily homogeneous, as it
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Figure 4.17: (a) Kinetic energy distribution of ions for a Diggs36 cluster (R = 7.98 nm)
after an n = 8 cycle laser pulse Ej(t) = Egsin?(wit/2n) cos(wit) of intensity 10'"Wem 2.
(b) Normalized expansion radius R, /R along the laser polarization, expansion radii
Ry/R,R./R normal to the laser polarization direction (along y and z) and resultant
expansion radius Rmax/R = /R2% + R2 4 R2/R vs the peak laser intensity. Asymmetry

in the expansion radii (b) and ion energy components (a) are clearly visible.

is the case in deuterium clusters. A similar asymmetry was seen in experiments with
hydrogen clusters [41].

4.4 Summary

The PIC code was improved to take into account the self-consistent inner ionization
and the ion dynamics. Energetic electrons and ions in the 100 keV-range, higher charge
states of argon ions along the laser polarization than in the transverse directions, and
asymmetry in the ion energy distribution (for both deuterium and argon clusters) were
shown. Such an asymmetry is independent of the cluster type and arises due to the
asymmetric electron motion in a linearly polarized laser field. High charge states of argon
clusters were due to ionization ignition. However, ionization ignition saturates when the
laser field is shielded by the space charge field so that ionic charges may be lower than
expected from laser-atom interaction (ionization depletion). Laser energy absorption was
confirmed to originate from NLR also in these more realistic simulations.
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Chapter 5

Optimizing the ionization and energy
absorption of laser-driven clusters

One of the goals in laser-cluster experiments and simulations is to convert as much laser
energy as possible into energetic particles. This can be achieved by optimizing the outer
ionization degree, i.e., by removing as many electrons as possible from the cluster in order
to generate high charge states so that the asymptotic ion energy (and thus the total
absorbed energy) after Coulomb explosion is largest.

One way to increase the charge states and the ion energy is to dope a cluster with
atomic/molecular species of low ionization potential [98]. Such hetero-nuclear clusters
may yield higher charge states of the species having the higher atomic charge number Z
when doped with low Z atoms, boosting the energy of the lighter ions [99]. An almost
two-fold increase of the highest charge states were obtained experimentally with argon
clusters doped with water molecules [100]. Experimental results for xenon and silver
clusters embedded in helium droplets were reported in Ref. [20].

The pulse duration and the sign of the chirp of a laser-pulse also affect ion charge states
and ion energies [101]. Enhanced inner ionization of rare-gas and metal clusters irradiated
by a sequence of dual laser pulses were observed [20,80] experimentally. In these kinds of
experiments one should adjust the delay time between pump and probe pulse such that
the cluster expands sufficiently to meet the linear resonance wyie = w; with the probe
pulse. Vlasov simulations [20] and semi-classical simulations [26] of a small Xeyo cluster
subject to such a pump-probe setup showed an enhancement of the ion charge states. An
optimum control multi-pulse simulation has also been performed [27].

In this work we investigate the effect of the laser wavelength by three-dimensional PIC
simulations. The goal is to find an optimum wavelength for a fixed laser intensity and a
given cluster. At this optimum wavelength (which turns out to be in the ultraviolet (UV)
regime for the Xe clusters under consideration) a single ultrashort laser pulse is shown to
be much more efficient than the “conventional” dual-pulse pump-probe setup.

Experimental signatures of enhanced x-ray yields and high charge states at short wave-
lengths [102-104] also suggest a clear impact of the laser wavelength on the laser-cluster
interaction. Pump-probe experiments [20, 80], free electron laser (FEL) cluster exper-
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iments [105] at the DESY facility, Hamburg, and a recent x-ray laser-cluster experi-
ment [106] down to wavelengths < 100 nm also showed enhanced ionization.

Contrary to our findings recent MD simulations [107] concluded that (i) there is no influ-
ence of the laser wavelength on the charging of clusters in the regime 100 — 800 nm for a
laser intensity ~ 101Wcem~=2 and (ii) that linear resonance plays no role, thus threatening
the basis of the nanoplasma model [19]. Similar conclusions were reported by the same
authors in Refs. [108,109].

We consider short laser pulses in this work. Most of the earlier works were reported for
the long-pulse regime where linear resonance (LR) absorption [19-27] occurs during the
expanding phase of a cluster when the Mie-plasma frequency sufficiently drops so that
the laser frequency can be met. At the time of LR the space charge field inside the cluster
is strongly enhanced, leading to efficient ionization ignition. However, charged clusters in
general expand inhomogeneously [39,41] so that LR is never met everywhere inside the
cluster at the same time. As a consequence, charge states and absorbed energy may not
be optimized in this case.

The chapter is organized as follows. In Sec. 5.1 we briefly describe the simulation method
and discuss the ionization of a cluster by a short laser pulse in Sec. 5.2. In Sec. 5.3 pump-
probe simulation results are presented while Sec. 5.4 is devoted to the laser wavelength
dependence of the cluster dynamics. A possibility to achieve 100% outer ionization is also
discussed in Sec. 5.4 before we summarize the work in Sec. 5.5.

5.1 Details of the simulation

Details of our PIC simulation are already described in chapter 4 (also in Ref. [110]).
Namely, we apply the dipole approximation Ej(r,t) ~ Ej(t) and neglect binary collisions
between electrons and ions, as in chapter 4. For the inner ionization we apply the Bethe-
rule (4.1).

In this work we shall vary the wavelength down to 100 nm at an intensity 5 x 10'Wem =2,
which raises the questions (i) whether such lasers are available and (ii) whether the Bethe-
rule (4.1) is applicable. With the development of new generation FEL lasers [111,112] all
over the world the answer to (i) is clearly affirmative. As regards the ionization model (ii),
the higher charge states are rather produced by multiphoton ionization than via tunneling
or over-the-barrier ionization so that the Bethe-model (where the ionization probability
switches from zero to unity once a certain threshold field is reached) may not yield the
precise charging dynamics of the clusters at short wavelengths. However, the final charge
state distribution should remain unaffected by the details of the ionization model [109] at
least qualitatively.
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Figure 5.1: Maximum ion charge Z.x (thick solid), minimum ion charge Z;, (thin
solid), average ion charge Z,, (bold black) and the ion charge predicted by OFI alone
(dashed) vs peak laser intensity for (a) a Xegj7g cluster of radius Ry ~ 3.54 nm and
(b) a Xejress cluster of radius Ry &~ 7 nm in an n = 8 cycle laser pulse Ej(t) =
Eo sin?(wit/2n) cos(wit) of wavelength A} = 800 nm.

5.2 Ionization of a cluster by a single short pulse

First we study the response of a xenon cluster in a linearly polarized n = 8-cycle laser pulse
of electric field strength Ej(t) = Eysin?(wit/2n) cos(wit) and wavelength )\ = 800 nm.
Different ionic charge states are self-consistently produced during the laser pulses of peak
intensities Iy = E2 according to the Bethe rule (4.1).

Figure 5.1a shows the maximum charge state Z,,,, the minimum charge state Z,;,, and
the average charge state Z,, (defined as the total charge of the cluster divided by the
number of atoms N) and the charge state predicted by the OFI (“Z-Bethe” curve) vs
peak laser intensity for a Xey cluster (N = 2176) of initial radius Ry ~ 3.54 nm after
the pulse (i.e., after &~ 22 fs). The maximum charge state Z,., varies from Z = 5 to
Z = 26 as the laser intensity increases from 2.5 x 10Wem=2 to 7.5 x 101"Wem=2. The
higher value of Z,, above the value predicted by the OFI is clearly due to ionization
ignition. Those maximum charge states Z,,.. are mainly acquired by the ions at the
cluster periphery where the space charge field is highest. Inside the cluster the total field
falls below the ionization thresholds due to the decreasing space charge produced by the
ionic background as well as due to the screening of the laser field by the cluster electrons.
The ions close to the cluster center have minimum charge states Z.,;, = 2 — 20 at laser
intensities between 2.5 x 10M¥Wem ™2 —7.5 x 101"Wem™2. The value of Z,,;, remains much
lower than predicted by the OFI for almost all laser intensities < 5.0 x 10*”Wem™2. The
average charge Z,, remains close to (but slightly higher than) the OFI predicted values
at intensities < 7.5 x 10 Wem™2. Also Zpax = 8 and Z,;, = 3 do not change between
the intensities 10"°Wem™2 — 7.5 x 10"Wem ™2 but Z,, increases slowly as more ions from
the cluster center towards the periphery acquire higher charge states 3 — 8. The value
of Zax Temains constant, Z = 8, due to the removal of all electrons from the 5s%p® shell
of the Xe atoms close to the cluster boundary. As the intensity ~ 7.5 x 10¥Wem™2 is
approached the laser field is strongly shielded from the central part of the cluster, and
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outer ionization as well as ionization ignition tend to saturate. As a consequence Z,,
grows slowly between the intensities ~ 5 x 10"*Wem ™2 — 10Wem ™2, Unless a threshold
intensity ~ 10Wem™2 is crossed further electrons from the cluster cannot be removed,
which was already seen in previous model and numerical calculations [28-31,69,70]. At
higher intensities > 10Wem™2 outer ionization and ionization ignition increases again,
leading to an increase of Z,, beyond the values predicted by the OFI due to the strong
increase of both Z,,.x and Z.,in.

It is commonly believed that ionization ignition becomes increasingly pronounced with
increasing cluster size. Figure 5.1b shows Z.x, Zmin, Zav, and the charge states predicted
by the OFT vs the peak laser intensities for a bigger Xey cluster (N = 17256) of initial
radius Ry ~ 7 nm. For the same laser pulse Z,,., now varies between 8 — 26 and exceeds
the charge states predicted by the OFI. Below the intensity 101"Wem™2 Z,,., is higher by
a factor of ~ 2 compared to the OFI value (“Z-Bethe” curve). Although Z.« remains
much higher, the average ion charge Z,, (in Fig. 5.1b) is below the charge states predicted
by the OFI for most of the laser intensities. Most of the ions closer to the cluster center
acquire charge states Z,;, = 2 — 10 which are even lower than for the smaller cluster
(Fig. 5.1a) at the corresponding intensities. Hence, ionization ignition is indeed respon-
sible for the highest charge states Z,., which increase with the cluster size (as seen in
Fig. 5.1). However, exactly because of the same mechanism a bigger cluster will capture
more electrons (whose outer ionization would require much higher laser intensities than
in the case of a smaller cluster). The presence of more electrons in the central region will
screen the laser field more efficiently. As a result both Z,, as well as Z;, (in Fig. 5.1b)
drop below the corresponding values for the smaller cluster (Fig. 5.1a).

We conclude that an increasing cluster size (and thus increased ionization ignition of, at
least, the ions located close to the cluster boundary) does not always lead to a higher
average charge state. Our aim is to increase not only the highest charge states but also
the average ion charge beyond the OFT predicted value through the charging of more ions
in the central part of the cluster. In the following sections we study several approaches
to achieve this goal.

5.3 Ionization by delayed pulses: a pump-probe
simulation

In this section we illustrate the “pump-probe” method frequently employed in laser-cluster
experiments. In this method an initial pump-pulse ionizes the cluster. The cluster expands
freely before, after a delay time, a probe-pulse hits the expanding cluster. The interaction
of this probe pulse with the cluster will sensitively depend on the cluster size and thus
on the delay time. We revisit such a scenario in our current work since it will allow us to
compare the efficiency of laser energy absorption for such a standard pump-probe method
with the single UV pulse scenario which will be introduced in Sec. 5.4.

The laser field profile is of the form FEj(t) = Eysin®(nt/nT) cos(wit) for both pump and
probe pulse. The time period 7T is chosen with respect to the wavelength 800 nm. For, say,
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Figure 5.2: Average ion charge Z,,, scaled Mie-frequency wyie/wl, laser field Ej, normal-
ized cluster expansion radius R/ Ry and total absorbed energy Eio vs time (in 800 nm laser
cycles) for a Xejrasg cluster of radius Ry ~ 7 nm. The peak intensity 5 x 10'Wem=2 is
the same for (a) pump of wavelength 400 nm (probe, 400 nm) and (b) pump of wavelength
400 nm (probe, 200 nm). The laser field is of the form E\(t) = Egsin?(nt/nT) cos(wit)
with n = 4 and one laser cycle T corresponding to the wavelength 800 nm. A minor
increase in Fi.; after the pulses is an artifact of PIC simulations.

n = 4 the product nT" determines the total pulse duration ~ 11 fs. The pulse envelope
and intensity are kept the same for all cases under study, i.e., the laser energy in all pulses
is the same too.

Figure 5.2a shows the results for the Xe;7o56 cluster of initial radius Ry &~ 7 nm at an inten-
sity 5 x 10'Wem™2 when both the pump and the probe pulse have the same wavelength
400 nm. The average charge Z,,, the scaled Mie-frequency wyjie/wi, the total absorbed
energy Eio (electrostatic field energy plus the kinetic energy of electrons and ions), the
normalized cluster radius R(t)/ Ry, and the laser fields are plotted vs time (in units of the
period T'). During the first four laser cycles of the pump-pulse the average charge state
rises to Z,, ~ 11, the frequency wygie/w =~ 2.5 and Ei =~ 2.0 X 107 while the cluster ex-
pansion is insignificant. The total energy Fio: = 2.0 x 107 corresponds to the average ion
energy Fi. /N =~ 31.4 keV. After the pump-pulse the cluster evolves freely and Z,,, Fi
remain unchanged but wyge/w) drops due to the expansion. Note that the cluster radius
R(t) (defining the cluster boundary) corresponds to the distance of the most energetic
ions from the cluster center. At the boundary, however, the cluster potential is anhar-
monic. Hence using R(t) for the calculation of the Mie-frequency wyie(t) = /N Zay/ R3(%)
the latter is underestimated. Instead we use the definition wyie(t) = /@u(t)/R3 (as in
Sec. 4.2.3) where @Qy,(t) is the total ionic charge within the initial cluster radius Ry where
the cluster potential is close to harmonic at all times.

After 44 laser cycles wyge approaches the linear resonance (dashed line) with respect to the
fundamental 400 nm, i.e., wygie/w) = 1. The probe pulse of wavelength 400 nm is applied
with a delay of ~ 42 laser cycles such that the peak of the pulse approximately coincides
with the resonance time. Due to the linear resonance the average charge and the absorbed
energy rises abruptly up to the value Z,, = 14 and Ei,; ~ 7.5 x 107, respectively. Such
a pump-probe simulation clearly illustrates that the linear resonance indeed plays a role
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in the cluster dynamics. More energy is absorbed, leading to higher charge states. These
results are in agreement with hydrodynamic and Vlasov simulations [20,80]. However,
linear resonance is met only after a relatively long time when the cluster has already
expanded significantly (as seen R(t)/Ry ~ 8 in Fig. 5.2a). lonization ignition and laser
energy absorption in such a low density plasma is expected to be less efficient compared
to the case where linear resonance occurs before the cluster expands significantly.

While keeping the 400 nm pump as above we now assume a probe wavelength of 200 nm
for the purpose of hitting the linear resonance at an earlier time when the cluster is
more compact. The energy in the probe pulse is the same as in Fig. 5.2a. Figure 5.2b
shows the result analogous to Fig. 5.2a. The average charge and the absorbed energy now
increase up to Z,, = 18.5 and Fio; ~ 9 x 107 which are higher than in Fig. 5.2a after
the probe. With the pulse energies being the same in both cases a higher efficiency of
energy absorption in the second scheme (Fig. 5.2b) is obvious. The reason is the smaller
cluster size at the time of linear resonance (R(t)/Ry < 1.5) and the higher space charge
field related to it. Similar findings from experiments have been reported in Ref. [80]. In
passing we note that the average charge Z,, ~ 11 in Fig. 5.2 due to the pump (at 400 nm)
exceeds Z,, ~ 8 in Fig. 5.1b (at 800 nm) for the same cluster and the same laser intensity
5.0 x 10'Wem~=? despite the higher pulse-energy in Fig. 5.1b because of the twice longer
pulse.

In the following section we study the wavelength dependence of the average charge states
and the laser energy absorption.

5.4 lIonization at different wavelengths

Whether the average charge state and the absorbed energy for a given cluster increases
with decreasing laser wavelength was not known. One could expect that for a certain
wavelength the linear resonance during the initial ionization stage when the Mie-frequency
rises from zero to its maximum value becomes important. For long wavelengths this early
resonance is passed so quickly due to the rapid charging of the cluster that any indication
of a resonance is washed out. We will show that this is not the case at shorter wavelengths.

We assume the same laser field profile Ei(t) = Eqsin?(wt/nT) cos(wit) as in Sec. 5.2 with
the same pulse duration, pulse energy, and intensity 5.0 x 10'Wem=2. We only vary the
laser wavelengths in the range 800 — 100 nm.

Figure 5.3a shows the average charge state Z,, and total absorbed energy FEi, vs the
laser wavelength for the Xej795¢ cluster of radius Ry ~ 7 nm after t = 1,2, 3,4-laser
cycles at 800 nm. The value of Z,, increases in time (in Fig. 5.3a) for all wavelengths.
Ionization mostly occurs before t = 2 cycles when the peak of the pulse is reached. After
that the space charge field is high enough to generate further charge states between 2 — 3
cycles. Z,, does not change anymore between 3 — 4 cycles, indicating a saturation of
inner ionization. The average charge state Z,, increases from Z = 8 to a maximum value
Za.w & 25 as the laser wavelength is decreased from the infrared 800 nm down to the UV
wavelength 125 nm. It means that the sub-shells 452p%d'°55%p% of almost all atoms are
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Figure 5.3: Average ion charge Z,, (a) and total absorbed energy Fi (b) vs laser
wavelength after 1,2,3 and 4 laser cycles (at 800 nm) for a Xej7a56 cluster of radius Ry ~
7 nm. Other parameters as in Fig. 5.2.
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Figure 5.4: Normalized cluster expansion radius R/Ry (a) and outer ionization degree
1 (b) vs laser wavelength, corresponding to Fig. 5.3.

empty at 125 nm. A further decrease of the wavelength causes Z,, to decrease gradually
to a smaller value Z,, ~ 9 at 50 nm.

Figure 5.3b shows a similar qualitative behavior of the absorbed energy both in the
time domain and in the wavelength domain. The energy FEi, is maximum at the same
wavelength \; = 125 nm. Although the laser-pulse energy is the same in all cases the
increased absorption at 125 nm, leading to a marked increase of the average charge up to
a value Z,, =~ 25 clearly shows that wavelength effects are undoubtedly important. One
may compare the absorbed energy and the average charge with the dual-pulse simulation
results in Fig. 5.2. The absorbed energy Ei, ~ 34 x 107 and the average charge Z ~ 25
are much higher in the present case around the laser wavelength 125 nm compared to the
respective values Fio ~ 9 x 107 and Z,, ~ 18.5 in Fig. 5.2b. The absorption is ~ 3.78
times higher than in Fig. 5.2b. Moreover, in the dual-pulse case the total laser-pulse
energy was twice higher. Therefore, the absorption efficiency is augmented further by a
factor of two.

In Fig. 5.4 we plot the normalized expansion radius R(t)/Ry (Fig. 5.4a) and the outer
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Laser cycles

Figure 5.5: Scaled Mie-frequency wuie/w) vs time (in 800nm cycles) for wavelengths
A1 =800 — 112.5 nm and the laser and cluster parameters of Fig. 5.3.

ionization degree n (number of total electrons outside R(t) divided by the total number of
electrons produced, NZ,,(t), in Fig. 5.4b) vs the laser wavelength corresponding to the
results in Fig. 5.3. The radius R(t) and the outer ionization degree n(t) go hand in hand
with the absorbed energy Fi.(t) and the charge Z,,(t). After four cycles the cluster has
expanded very little, R(47)/Ry ~ 1.225 at A} =~ 125 nm, although the average charge
Z. &~ 25 is very high compared to Fig. 5.2. With such an insignificant expansion the
space charge field can be considered optimized, leading to maximum ionization ignition.
The ignition field (i.e., the space charge field due to the ionic background) under the
assumption that all electrons are removed reads Ei,(t) &~ N Z,,(t)/R(t)?. Using R(t) from
Fig. 5.4a and Z,,(t) from Fig. 5.3a, one obtains at 125 nm FE;,(27") ~ 20.0, E;(3T) ~ 21.0
and Fi,(4T) ~ 16.2, if all electrons are removed (i.e., n = 1). The expected ignition
field is maximum = 21 near the pulse peak around 2 — 3-cycles, thereafter decreases to
E,(4T) ~ 16.2 due to an expansion R(47")/ Ry ~ 1.225 and no further creation of charge
states. Note that the peak laser field is only Ey ~ 1.19. Therefore the enhanced ionization
is certainly due to the ignition field. However, at A\; = 125 nm n =~ 0.6 in Fig. 5.4b,
meaning that 40% of the electrons are still inside the cluster. The presence of these
electrons lowers Ej, compared to the above ideal case of 7 = 100% outer ionization, and
one may argue that Ej, is not yet optimized. However, even if 7 = 100% outer ionization
is achieved for the above laser field intensity the maximum total field is ~ 22 which is
still insufficient to produce a higher average charge Z,, = 27 (requiring a threshold field
%, 24 according to OFI). Hence the average charge state is optimized. This will be shown
explicitly at the end of this section where we actually achieve n =~ 100% for this cluster.

The above results clearly show that there exists a certain wavelength at which the laser-
cluster coupling is very efficient. Such a nonlinear dependence of the absorbed energy
and average charge state on the laser wavelength indicates a resonance around 125 nm in
Fig. 5.3 and 5.4. To investigate this further, we plot in Fig. 5.5 the scaled Mie-frequency
wiie(t)/w vs time. The dashed line indicates the linear resonance. Charging of the
cluster starts around 0.3 cycles for all wavelengths by OFI, leading to an abrupt increase
of wyie(t)/w) for the longer wavelengths while for the shorter ones the increase proceeds
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Figure 5.6: The xz-component of the space charge field at radial distances
0.24Ry,0.48Ry,0.72Ry, and 0.96R( inside a Xejro56 cluster of radius Ry ~ 7 nm and
the laser field Ej(t) = Egsin®(nt/nT) cos(wit) of peak intensity 5 x 1016Wem™2 vs time
(in periods corresponding to 800 nm) at (a) A} = 800, (b) A} = 200, (c) Ay = 125, and (d)
Al =112.5 nm.

slower. As a result the plasma is overdense during the entire pulse for the long wavelengths
but stays close to the linear resonance for the shorter wavelengths. The more time is spent
near the linear resonance, the higher is the energy absorption and the average charge state,
as seen in Fig. 5.3. At the wavelength 125 nm the resonance is met at the peak of the
pulse so that the energy absorption is particularly efficient.

We now discuss the time evolution of the space charge field EZ (along the laser polariza-
tion) at different positions inside the cluster to further illustrate the resonance at short
wavelengths, leading to efficient ionization ignition and the generation of high charge
states. Figure 5.6 shows the space charge field EZ. and the laser field E; vs time at radial
positions 0.24Ry, 0.48Ry, 0.72Ry and 0.96 R, for four different wavelengths. Figure 5.7
shows the corresponding phases with respect to the driving laser field.

At the long wavelength 800 nm, EZ inside the cluster at radii 0.24R,, 0.48Ry, 0.72R,
mostly oscillates with a phase 0 ~ 7 while 6 &~ 0 at the boundary (i.e., at 0.96Ry). This
is clearly what one expects from an overdense plasma: screening of the laser field in the
cluster interior but an opposite behavior outside the electron cloud. The oscillation of the
space charge field arises due to the oscillations of the bound electrons inside the cluster.
These electrons form approximately a sphere which is smaller than the cluster due to
outer ionization. If the electron cloud was rigid and did not cross the cluster boundary
the phase should be exactly m and 0 inside and outside, respectively, if the plasma is
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Figure 5.7: Phase of the space charge field with respect to the laser field at different
radial distances corresponding to Fig. 5.6 vs time corresponding to Fig. 5.6.

overdense, and opposite in the underdense case. In reality, the bound electron population
changes and the electron sphere is neither rigid nor has it a sharp boundary, resulting in
phase distortions and deviations from the idealized case, as seen in Fig. 5.7a.

Figure 5.6 confirms explicitly that the total field at the boundary is highest and therefore
leads to the highest ionic charge states while EZ (t) almost nullifies the laser field in the
strongly overdense regime. The maximum value of the total field at the peak of the pulse
is &~ 4.0 a.u. (z-component only) which is sufficient to produce charge states up to Z ~ 18
(also seen in Fig. 5.1b). An additional contribution (up to a factor v/3) to the total field
comes from the y and z-components of the space charge field.

At 200 nm the amplitude of EZ around ¢ = 1.5 cycles at 0.24R, increases up to 5 a.u.
which, after addition to the laser field, is sufficient to produce charge states Z = 18 even
inside the cluster. After ~ 1.75 cycles EZ. at 0.72R; behaves similarly to that at 0.96 R,
i.e., the laser and space charge fields at 0.96 Ry and 0.72 Ry are now approximately in phase.
Figure 5.6b shows that the total field ~ 4—8 between 0.96 Ry and 0.72 R, producing charge
states Z ~ 18 — 23. However, due to the screening of the laser field inside the cluster,
many atoms there have only charge states Z < 18 so that the average charge state is
Z, ~ 18 in Fig. 5.3. From Fig. 5.7b it is seen that before ¢ = 1.75 cycles the phase of EZ.
at 0.72R, approximately follows the phase at the smaller radii 0.24R, and 0.48 R, since
the plasma is evolving from under to overdense. Then, with increasing outer ionization
and thus shrinking electron sphere, EY at 0.72R, drops and approaches the behavior for
0.96 Ry.
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Figure 5.8: Variation of (a) normalized cluster radius R/Ry, degree of outer ionization
n(R),n(Rp) within R and Ry, laser field Ey (b) average ion charge Z,, and total absorbed
energy Fiot in time (in units of the laser period T' corresponding to 800 nm) for the Xej7os6
cluster of Fig. 5.3. The two laser pulses of wavelength 125 and 415 nm, respectively, are
included in (a). The peak intensity is the same as in Fig. 5.3 for both pulses.

At the resonant wavelength 125 nm violent oscillations of the electron cloud are driven,
leading to a particularly high total field everywhere inside the cluster and an average
charge state Z,, ~ 25 in Fig. 5.3. Higher charge states Z > 26 are not produced because
of the high threshold field ~ 24 necessary to crack the M-shell. One may argue that
the presence of 40% electrons inside the cluster (in Fig. 5.4b) will deplete the field inside
significantly. However, one should keep in mind that at resonance the electron cloud
oscillates with a large excursion (infinite if any damping mechanism was absent), exposing
a substantial part of the naked ionic background, leading to an enhanced “dynamical
ionization ignition” [12] which can produce higher charge states than expected from the
laser field alone even inside the cluster. Finally, after t = 3 cycles EZ, at the boundary
drops due to the cluster expansion. As expected, the phases plotted in Fig. 5.7c fluctuate
around 7/2 throughout the cluster once the resonance condition is met.

At 112.5 nm the plasma remains underdense. Figure 5.6d shows that the space charge
field amplitudes drop compared to those in Fig. 5.6¢, yielding less ionization ignition and
absorbed energy, similar to the 200 nm-case.

Even in the optimal 125 nm case presented so far only 60% of the generated electrons were
removed from the cluster (visible in Fig. 5.4b). Therefore outer ionization and ionization
ignition was certainly not optimized. We argued that even if the remaining 40% electrons
were removed, the average charge state would not be significantly increased as compared
to that shown in Fig. 5.3a. To prove that, we performed PIC simulations for the same
cluster and the same peak intensity but now employing two consecutive pulses (shown in
Fig. 5.8). The first pulse of resonant wavelength 125 nm with respect to the still compact
cluster is ramped up over four 800 nm-cycles and held constant afterwards up to 8 cycles
(the details of how the pulse is ramped down do not matter; therefore it is simply switched
off abruptly). At ¢ = 8 cycles a second pulse is switched on (over 2 cycles) whose frequency
is resonant with the Mie-frequency around ¢ = 10 cycles.
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After the first pulse the cluster doubled its radius, and the outer ionization degree amounts
to n(R) ~ 0.8 so that 20% electrons are still inside the cluster of radius R(t) while ~ 10%
are inside a sphere of radius Ry. The average charge Z,, in Fig. 5.8b does not change
significantly compared to Fig. 5.3a although the pulse energy per unit area fO8T E2(t) dt
is &~ 3 — 4 times higher.

The purpose of the second pulse shown in Fig. 5.8b is the removal of the residual electrons.
Although almost 95% outer ionization within the expanding radius R and 99% within R
are achieved, no higher charge states are created. The absorbed energy also does not rise
significantly so that the higher input energy invested into the two pulses does not pay off.
Hence a single, short UV-pulse of wavelength 125 nm turns out to be optimal with respect
to fractional energy absorption and generation of a high average charge state under the
conditions considered.

5.5 Summary

In summary, we studied the interaction of xenon clusters with intense short laser pulses
using a three-dimensional PIC code. Our aim was to optimize for a given cluster the
laser energy absorption and the generation of high average charge states. The latter will
then lead to energetic ions upon Coulomb explosion. We showed that for a given laser
intensity an optimal laser wavelength exists that, under the typical conditions studied in
this work, lies in the UV regime. Energy absorption is optimized when resonance is met
during an early stage of the dynamics when the cluster is still compact. The conventional,
long-pulse linear resonance during the expansion of the cluster is less efficient.
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Chapter 6

Harmonic generation from
laser-irradiated clusters

While the energy absorption by cluster nanoplasmas has been widely studied both in
experiments and theory, much less attention has been paid to the laser harmonic emis-
sion from such systems. Meanwhile, it is known from the physics of intense laser-atom
interaction that the effects of multiphoton absorption, leading to so-called above thresh-
old ionization and high order harmonic generation, are intimately related and can be
described as different channels of the highly nonlinear laser-atom coupling. In intense
fields, the laser-cluster coupling is also known to be highly nonlinear. In fact, nonlinear
resonance has been shown in chapter 3 and Refs. [29-31, 69, 70, 113] to be of particular
importance for the energy transfer from the laser pulse to the electrons of the nanoplasma
and the subsequent outer ionization. Most naturally the question arises whether laser-
driven clusters can be an efficient source of high-order harmonics as well. Up to now, very
few experimental results on harmonic generation (HG) from cluster targets have been
published. In Refs. [83-85] HG from rare-gas clusters irradiated by infrared pulses of
moderate intensity (~ 10" — 10""W/cm?) was measured. It was shown that under such
conditions harmonics can be generated up to higher orders and with higher saturation
intensities than in a gas jet. However, the effects observed in Refs. [83-85] should be
attributed to standard atomic HG modified by the fact that in clusters the atoms are
disposed closer to each other while the physical origin of HG remains the same as in a
gas jet. Only very recently, first experimental observations of the third harmonic (TH)
generation from argon clusters subject to a strong laser field were reported in Ref. [114]
where resonant enhancement of the TH yield, occurring when wyie — 3w, has been
demonstrated using a pump-probe setup. The enhancement of the single-cluster response
studied in theory before [35,87,115,116] is, however, modified in the experiment by phase
matching effects. The latter point complicates experimental studies of nanoplasma radi-
ation while in computations one can first examine the single-cluster response and may
include propagation effects in a second step.

In this chapter, we concentrate on the single-cluster radiation in a short, intense laser
pulse. The questions we address here are: (i) can a substantial resonant enhancement of
low-order harmonics be achieved and controlled and (ii) should any significant signal of
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Figure 6.1: Normalized harmonic power P(w) = |A(w)/N|?> vs harmonic order for an

Ari7a56 cluster at laser intensities 2.5 x 101Wem=2 (a), 2.5 x 101®Wem=2 (b), and
7.5 x 101"Wem™2 (c). The spectrum (d) is for an Argsgs cluster at the intensity
7.5 x 10" Wem 2.

high-order harmonics be expected from laser-driven nanoplasmas at such conditions. We
study HG by three-dimensional PIC simulations for large Ary clusters (with the number of
atoms N ~ 10%-10° and radii Ry ~ 6-10nm) irradiated by linearly polarized, n = 8 cycle
sinZ-laser pulses with an electric field Ej(t) = Ejsin®(wit/2n) cos(wit) and wavelength
A = 800 nm. Previous PIC simulations of HG from laser-driven clusters [29, 87| were
performed for two-dimensional (rod-like) clusters. Details of our PIC simulations were
already mentioned in chapter 4.

6.1 Particle-in-cell results

Because of azimuthal symmetry the total dipole acceleration A(t) is along the polarization
direction of the laser pulse (z-axis). Its Fourier transformed amplitude A(w) yields the
dipole radiation power at the frequency w. Figure 6.1 shows the normalized harmonic
power P(w) = |A(w)/N|? vs the harmonic order at various laser intensities. The spectra
(a)-(c) are the results for an Ary7956 cluster (Ry = 6.2 nm) while the spectrum (d) cor-
responds to an Argygs cluster (Ry = 10.9 nm). At the intensity 2.5 x 10*Wem™2 one
observes a pronounced second harmonic. Upon increasing the laser intensity the third
harmonic power also increases and becomes comparable to the fundamental at higher
laser intensities (b). Increasing the intensity further, the fifth harmonic appears in the
spectrum (c). For the same intensity but a bigger cluster, the third harmonic is strongly
suppressed as compared to the fifth harmonic (d).
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Figure 6.2: Time-frequency diagrams corresponding to the spectra of Fig. 6.1 with the
normalized power logq P.

6.1.1 Time-frequency analysis

The enhancements of particular harmonics are due to the resonance between their frequen-
cies and the Mie-frequency of the expanding nanoplasma [35]. To show this we retrieve
the temporal information of the radiation by a time-frequency (TF) analysis of the spec-
tra in Fig. 6.1. Figure 6.2 shows the respective TF diagrams. The scaled Mie-frequency
Wiie(t) /w) vs time is included in the plots. Note that a Mie-frequency can only be defined
unambiguously as long as the ionic background remains homogeneously charged. From
the simulations we find that the charge homogeneity is well satisfied within the initial
cluster radius Ry while in the outer regions of the expanding cluster this is not the case.
We therefore define, as in chapter 4,

witie(t) = 1/ Qn(t)/ R}

with Qp(t) the total ionic charge inside the sphere of radius Ry within which the cloud of
well-bound electrons oscillates.

At the intensity 2.5 x 10MWem=2 (Fig. 6.2a, corresponding to Fig.6.1a) the laser field
yields only Ar" ions. This first ionization by the laser field alone gives rise to an abrupt
jump of wyie(t)/wy up to the value wye/wy =~ 1.8, followed by a slower increase above
this value due to ionization ignition [11,12] and finally ends with a plateau. The cluster
expansion is so slow that wye(t)/w) does not drop within the time interval plotted. The
second harmonic power peaks when wye(t)/w) = 2 is met. This is because the electron
dynamics contain oscillations both at the driving frequency and at the eigenfrequency,
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Figure 6.3: TF spectrograms for two PIC electrons of the Arj7o56 cluster irradiated by

the laser intensity 5 x 10'Wcem™2. The dimensionless electron distance from the cluster
center r(t)/Ry is indicated by the solid line.

depending on the initial conditions and the form of the potential. In long pulses such
oscillations at the eigenfrequency are damped due to various relaxation processes and do
not contribute to the measured harmonic signal. Figure 6.2b shows an enhanced third
harmonic (corresponding to Fig.6.1b) at the time when wygie(t) /w1 &~ 3. The third har-
monic power starts increasing again around the 6th cycle when wye(t) passes through
the same resonance due to the cluster expansion. Figures 6.2¢,d show the TF spectro-
grams corresponding to spectra (c) and (d) in Fig.6.1 at the intensity 7.5 x 10" Wem™2.
Figure 6.2c¢ clearly shows enhanced third and fifth harmonic emission when the scaled Mie-
frequency approaches the respective odd numbers. For the bigger cluster Fig.6.2d shows
enhanced emission, preferentially following the Mie-frequency. As in the case with the sec-
ond harmonic shown in Fig. 6.2a this is a consequence of the undamped oscillations at the
time-dependent eigenfrequency in the expanding cluster potential. However, pronounced
emission starts around the 4th cycle when wyie(t) meets 5w;. Despite the same laser in-
tensity as in Fig. 6.2¢ wyie(t) does not reach 3wy during the slower expansion of the bigger
cluster in Fig.6.2d. Note that the fulfillment of the resonance condition wyye(t) = mw
(with m integer) is not sufficient for the emission of harmonics. A necessary condition
is the presence of some nonlinearity in the electron motion (i.e., anharmonicity in the
effective potential). This nonlinearity may either originate from electrons jutting out of
the core during their motion, sensing the Coulomb tail [35], or from the inhomogeneous
charge distribution within the ion core [87].

6.1.2 Reason for the absence of high harmonics

To clarify where the major contribution to the spectrum comes from we consider the
radiation of individual PIC particles. Figure 6.3 shows the TF analysis of the radiation
from two PIC electrons. It is clearly seen that electrons radiate harmonics as long as they
remain inside the cluster. Leaving the cluster, they emit an intense flash with an almost
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continuous spectrum that extends up to significantly higher frequencies than present in
the net harmonic spectrum shown in Fig. 6.1. After liberation, the electrons emit only the
fundamental frequency (linear Rayleigh scattering). A liberated electron may rescatter,
giving rise to a second flash in the TF spectrograms (Fig.6.3b). However, no indications
of such intense flashes are visible in the net spectra shown in Figs. 6.1 and 6.2. The mech-
anism behind outer ionization (nonlinear resonance) allows to interpret these findings.
Individual electrons move in the selfconsistent field which could be subdivided into its
slowly-varying and its oscillating component. The slowly-varying field is induced by the
quasistatic part of the space charge. Ideally, it is a stationary potential well if one ignores
a slow evolution of the charge distribution due to the inner and outer ionization and
the cluster expansion. The oscillating part of the field is a superposition of the incident
laser field and the field induced by the oscillating electron cloud. In the low-frequency
limit wygie(t) >> w) these two contributions are known to almost compensate each other so
that the amplitude of the net oscillating field inside the cluster is small compared both
to the applied laser field and the quasistatic space charge field. If the electron energy
in the quasistatic well is far from the resonance its trajectory remains weakly disturbed
by the oscillating field. This causes HG with rapidly decreasing yield as a function of
the harmonic order. As soon as the electron energy approaches the resonance, the same
small perturbation results in a strong effect: the electron motion becomes strongly dis-
turbed and stochastic. A stochastic near-resonance behavior is a well-known property of
nonlinear systems driven by time-dependent forces [117]. In the cluster case it leads to
almost prompt and irreversible outer ionization. Hence, passing through the resonance,
an individual electron, upon leaving the cluster potential, emits radiation due to its strong
acceleration, seen as a flash in the TF spectrograms (Fig.6.3). However, exactly because
of the stochastic nature of nonlinear resonance the electrons’ trajectories are very sensi-
tive to the initial conditions with which the nonlinear resonance is entered. As a result,
flashes from different electrons are incoherent (the corresponding amplitudes have nearly
random phases), and, being added up in the total dipole acceleration, they disappear [118].
This shows that exactly the same mechanism behind efficient energy absorption by and
outer ionization from clusters, namely nonlinear resonance [29-31, 69,70, 113], restricts
HG from them by breaking the coherent electron motion once it becomes strongly anhar-
monic. Only well-bound electrons trapped inside the ionic core with energies far from the
resonance contribute to the net, coherent radiation of the cluster.

6.2 Reconstruction of the nanoplasma charge
density: a numerical pump-probe study

The time-dependent enhancements of particular harmonics analyzed above may be used
for the reconstruction of the maximum cluster charge density (i.e, maximum Mie-frequency).
The TF spectrograms discussed above in Fig. 6.2 were obtained from our numerical exper-
iments while it is not possible to record them in a real “single shot” experiment. To that
end a more realistic pump-probe setup (see, e.g., [20,114]) is envisaged with the following
PIC simulations. We combine the 800 nm near-infrared laser pulse (M-pulse, pump) with
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Figure 6.4: Dipole power logy P, .(w) along y, z vs time delay ¢4 and frequency w/w; with
the pump-pulse intensities (a,b) 2.5 x 10""Wem ™2 (cf. Fig. 6.2b), (c,d) 7.5 x 101"Wem—2
(cf. Fig. 6.2c) and the probe-pulse intensity 2.5 x 1012Wem =2 with m = 3 (a,c) and m =5
(b,d).

two UV pulses (X-pulses, probe)

wi(t — ta)*

E,.(t) = Ey,.exp |[—(In2) -

sin[mwl(t — td)]

of wavelength Ax = 800nm/m (with m = 3,5), applied at different time delays t,.
To distinguish the contributions of M and X-pulses to the dipole acceleration we apply
them polarized along y and z axis, respectively. The two X-pulses of different harmonic
frequencies m = 3,5 trigger independent Mie-oscillations of electrons in the respective
directions. The total power P, . (w) = |A,.(w)/N|* is recorded at various time delays.
Whenever Qy(t) is such that wye(t) = mw) for a certain time delay the corresponding
detector is expected to measure the maximum dipole radiation. Applying the two X-pulses
simultaneously has the computational advantage of getting twice as much information in
a single run than with just one probe pulse. Experimentally, a comb of low harmonics
(e.g., from a gas jet) could be applied as a probe pulse.

Figures 6.4a,b show log;, P, .(w) vs t; and w using X-pulses of frequencies 3w; and 5w,
respectively. For wxy = 3w, a resonance enhancement of the third harmonic power when
Waie/w) crosses wy at ty > 3.5 cycles is clearly seen, showing that the information revealed
in the TF spectrogram of Fig. 6.2b is accessible in the more realistic pump-probe set-up.
The enhancement is maximum when wyge/w) (i.e., the charge density p) is maximum
around t4 /=~ 5 laser cycles. The frequency wx = 5w of the X-pulse along z in Fig. 6.4b,
being off-resonant with wyjie, shows (an order of magnitude) less intense radiation. Fig-
ure 6.4a allows the conclusion that the maximum cluster charge density was at least in
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the vicinity corresponding to wyie & 3wy, i.e., max[p(t)] & 27w? /47 at that time. Fig-
ures 6.4c,d are the analogues of Figs. 6.4a,b but at an M-pulse intensity 7.5 x 101"Wem ™2,
corresponding to Fig.6.2c. The enhanced radiation is clearly seen at those times when
wiie/w) meets the X-pulse (along y) frequency wyx/wy = 3. However, the maximum of
wie/w) Tesonates with the other X-pulse (along z, Fig.6.4d) frequency wx = bw at
tq = 3 cycles, and, indeed, the maximum of the radiated power recorded in Fig.6.4d is
about an order of magnitude higher than in Fig. 6.4c.

6.3 Rigid sphere model

In this section we illustrate harmonic radiation from cluster nanoplasmas by the rigid
sphere model described in chapter 3. In particular we show the same physical scenario of
the harmonic emission as exhibited by the PIC results in the previous section, namely the
incoherency between the emitted radiation of different electrons upon leaving the cluster
potential via the nonlinear resonance. Thus we support our PIC results with a model.

We repeat the equation of motion for the electron sphere in a linearly polarized laser field,

3
d27: WMie 2 1 — 9_T + T_ E](T)
o ) 6.1
dr? +< o ) 16, 82 ("7 "Ru? 6.1)

We solve Eq. (6.1) numerically (with initial conditions x(0) = 0,#(0) = 0) and record
the dipole acceleration a(7) = 7(7) and the effective frequency weg(7) [see Eq. (3.9)]
at a given laser intensity. With the RSM it was shown before (see Fig.3.1) that NLR
always occurs only above a threshold intensity I;,. When NLR occurs [weg(7)/ w1]2 =1is
precisely met, the electron sphere becomes free, and energy absorption becomes efficient
(30,69, 70]. A deficiency of this RSM is that it yields a wrong exponent of the radiated
power P(kw) o< |Ej|®**=2) of the kth harmonic due to the even powers of excursion in the
force (6.1) instead of the expected P(kw) o |Ej|?* as in Ref. [35]. However, the RSM (6.1)
still provides qualitative physical understanding.

6.3.1 Dipole radiation

The Fourier transform of the acceleration a(7) yields the radiation power P(w) = |a(w)|?
of a harmonic at the frequency w. Figure 6.5a shows P(w) vs w/w; for a Xejgoo cluster
at intensities I; = 2.5 x 10Wem=2, I, = 1.5 x 10'Wem™2, and I3 = [, ~ 1.698 x
10'Wem~2. Figures 6.5b,c are the TF diagrams corresponding to the spectra at I, and
I3 in Fig. 6.5a. The variation of wes/w and the absolute phase d(7) of the acceleration
a(7) vs time are also included in the TF plots. At the intensity [; = 2.5 x 10" Wem ™
much below the threshold intensity of the NLR, one observes mainly odd harmonics of
the laser frequency. Since wyie = v/47mp/3 = 4w, the fourth harmonic appears in the
spectrum (Fig. 6.5a) due to the finite laser pulse. This illustrates the presence of even
harmonics equal to the Mie-frequency as in the PIC results in Fig. 6.1a and 6.2a. At a
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Figure 6.5: RSM results: (a) Harmonic power P = |a(w)|? vs the harmonic order w/w
for a Xejgpo cluster (charge density p = 48p., radius R = 3.2 nm) at intensities Iy = 2.5 X
10"Wem™2 (thin solid), I = 1.5x 101Wem =2 (dashed dot), and Iy, ~ 1.698x 1016 Wem =2
(thick solid). (b,c) TF spectrograms of the spectra at I and I3. Enhanced emission occurs
only at the time of NLR (dashed vertical in (c)) at about 5-cycles when weg/w) = 1. wesr/wi
drops to zero after the NLR. A phase change 6 = 7 occurs immediately before the NLR.
The n = 8-cycle laser pulse E\(7) = Eysin?(7/2n) cos(7) is of wavelength A} = 1056 nm.

higher intensity I, = 1.5 x 10*Wem™2 (which is little less than threshold intensity Iy, ~
1.698 x 10'Wem™2), although the driver amplitude after the peak decreases the excited
electron sphere continues to oscillate mostly in the anharmonic part of the potential
where its eigenfrequency weg resonates with 3wi, leading to a resonance enhancement of
the third harmonic radiation (also visible in Fig. 6.5a) even beyond the radiated power at
the fundamental laser frequency. A stochastic behavior in the phase d near the resonance
wef = 3w) between 6 — 7 laser cycles is clearly seen. At the threshold intensity I3 =
I, ~ 1.698 x 10'Wem™2 Fig. 6.5¢ shows harmonic radiation of higher orders occurring
at the time before the NLR when weg/w; meets unity and the electron sphere becomes
free (wefr/w) approaches zero). After the NLR, only radiation at the frequency w; appears.
Only the bound part of an electron trajectory is responsible for the harmonic emission
in clusters. Thus the RSM resembles the harmonic emission of a single PIC particle in
Fig. 6.3.

6.3.2 Collective radiation of non-interacting electrons

In the previous subsection harmonic emission was illustrated using a model where all
electrons were frozen into a single sphere and coherently oscillating. In clusters, however,
electrons can have different initial potential energies, i.e., different initial phases with
respect to the laser field and “see” different total fields at a given laser intensity. Just
looking at the harmonics spectrum in Fig. 6.5a for the low intensity /; one may think that
higher order harmonics are possible if all electrons are well-bound. This is an artifact of
the RSM. As an example, two well-bound electrons located just opposite to the cluster
center (e.g., z and —z) when driven by the low intensity oscillating laser field will mostly
radiate with opposite phase and the resultant radiation will certainly not contain higher
frequencies than the spectrum in Fig. 6.5a. To simulate this situation within the RSM,
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Figure 6.6: TF spectrograms of the dipole power log;q P(w) for three non-interacting
electron spheres (a-c) and the normalized total dipole power (d) for an Arjggy cluster of
charge density p = 30pe, i.e., wnic/w) =~ 3.15. The laser intensity is 1.45 x 10 Wcem =2
and the wavelength 800 nm. All three electron spheres remain bound.

we can think of an ensemble of a few non-interacting electron spheres centered at different
initial positions within the radius of the fixed ion sphere.

We consider an Aryggo cluster of fixed radius R = 2.4 nm, average charge density p ~ 30p.
in an n = 8-cycle sin’>-pulse as in Fig. 6.5. The laser wavelength is 800 nm. We take
an ensemble of N = 3 identical, non-interacting electron spheres which are centered at
—R/2, 0 and R/2 at time t = 0. For such a configuration we compute the harmonic
spectra of the individual electrons (i.e., based on the individual accelerations a;(t)) and
the normalized total acceleration A(t) = 32 a;(t)/N.

First we assume a low laser intensity 1.45 x 10"®Wem™2 so that all electron spheres

remain well-bound. In reality some outer ionization is also expected at this intensity.
Figure 6.6 shows TF diagrams for the individual electron spheres (Fig. 6.6a-c) and the
normalized total acceleration A(t) (Fig. 6.6d). Insets show the corresponding harmonic
spectra in the frequency domain. The bound spheres (Fig. 6.7a-c) oscillate near the
Mie-frequency wygie/w) &~ 3.15 and individually emit a strong third harmonic resonantly
with the Mie-frequency. This situation can be compared to Fig. 6.5a (at I5) where the
third harmonic intensity emitted by a single electron sphere was much higher than the
radiation at the fundamental. Figures 6.6a,c show TF plots for the electron spheres which
started off the center at —R/2 and R/2 at time ¢ = 0. Due to the opposite phases of
their radiation the third harmonic emission cancels in the total spectra (Fig. 6.6d). The
dominant contribution to the third harmonic in the total spectrum (Fig. 6.6d) thus comes
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Figure 6.7: TF spectrograms corresponding to Fig. 6.6 at an intensity 1.45 x 10'Wem 2.

from the electron sphere which started at x = 0 at time ¢ = 0 (Fig. 6.6b). It does not
emit the third harmonic at early times since weg/w) = wyiie/w) = 3.15 is off resonant. As
the laser field increases, the electron sphere is drawn up the potential and from the pulse
peak onwards it emits the third harmonic (as seen in Fig. 6.5b) which finally dominates
the total spectrum (Fig. 6.6d).

Figure 6.7 shows the analogous TF diagram of the respective electron spheres in Fig. 6.6
at the higher laser intensity 1.45x 10'Wem™2. One of the spheres becomes free (Fig .6.7a)
while two remain bound (Figs .6.7b,c).

Figure 6.8a-f are the TF plots corresponding to an ensemble of N = 11 electron spheres
(centered at equal distances between —R/2 to R/2) at an intensity 1.65 x 10**Wcem™2.
Only five of them are plotted in Figs. 6.8a-e and the total spectra is shown in Fig. 6.8f.
Some of the particles remain bound (Figs.6.8b,c) while others become free (Figs.6.8a,d,e).
The situation resembles already many body simulations (e.g., MD or PIC). There may
be rescattering as clearly seen in Fig. 6.8d where the first flash appears upon leaving the
cluster via NLR and the second because of rescattering. The situation is comparable to
the PIC results in Fig. 6.3. The flashes occur stochastically and disappear in the net
radiation (Fig. 6.8f).
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Figure 6.8: TF spectrogram corresponding to an ensemble of N = 11 non-interacting
electron spheres. Only five of them are plotted in (a-e), the normalized total dipole power
in (f). The laser intensity is 1.65 x 10'Wem™2. Other parameters are as in Fig.6.6.

6.4 Summary

In summary, we investigated numerically harmonic emission from laser-driven cluster
nanoplasmas. The main contribution to the harmonic signal comes from electrons deeply
bound inside the cluster potential. Such electrons emit only low-order harmonics with
considerable efficiency since they sense a weakly anharmonic potential only. In contrast,
electrons passing through the nonlinear resonance and leaving the cluster move along
strongly disturbed trajectories. Their radiation, although intense and broad in wave-
length, is incoherent due to the stochastic nature of the nonlinear resonance and therefore
does not contribute to the net signal from the whole cluster. The time-frequency analysis
of the dipole acceleration shows enhanced third and fifth harmonic emission when the
Mie-frequency of the expanding cluster meets the respective harmonic frequencies, which
is consistent with both previous theoretical studies [35,87,115,116] and recent experi-
ment [114]. A pump-probe experiment is proposed to measure the cluster charge density
by detecting the dipole radiation at different time delays. This method can be used to
monitor the inner and outer ionization dynamics of clusters.
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Conclusion

In this thesis we studied the interaction of intense laser pulses with atomic clusters us-
ing three-dimensional particle-in-cell simulations and analytical models. The physics ad-
dressed included: (i) collisionless absorption, (ii) optimization of laser energy conversion,
and (iii) harmonic generation in clusters. Because each chapter of this thesis was already
summarized in place, only the main conclusions are highlighted here.

We showed that in the short-pulse regime efficient laser absorption and outer ionization
occurs due to nonlinear resonance (NLR) absorption. At the time of NLR the instanta-
neous frequency of the electron motion in a time-dependent, anharmonic, effective poten-
tial transiently meets the laser frequency. NLR is the only possible absorption mechanism
if the laser pulse is too short for the linear resonance to occur (or during the early cluster
dynamics in longer pulses) and if electron-ion collisions are negligible.

Maximum ion energies are mainly carried by the ions of highest charge state which ap-
pear close to the cluster boundary along the laser polarization. For deuterium clusters,
although ions are only singly charged, high energy ions are also emitted predominantly
along the laser polarization because of the asymmetric electron dynamics in a linearly
polarized laser field.

An optimization of laser energy conversion in a given cluster at a given laser intensity was
envisaged with respect to the laser wavelength. It was shown that there exists an optimum
laser wavelength which typically lies in the ultraviolet regime and may allow for a linear
resonance during the early, rising part of a few-cycle pulse when the cluster expansion
is inappreciable. The linear resonance for this optimal wavelength led to particularly
efficient energy absorption and optimized average ion charge states much higher than
for the conventional LR occurring in the expanding cluster in the long-pulse and long
wavelength regime.

We investigated the harmonic emission from laser-driven cluster nanoplasmas. The main
contribution to the harmonic signal was due to the deeply bound coherently oscillating
electrons inside the cluster potential. The electrons leaving the cluster through the NLR
emit incoherent radiation and therefore higher order harmonics are absent. We proposed
a pump-probe experiment to measure the cluster charge density by detecting the dipole
radiation at different time delays.
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CONCLUSION

The following issues may be addressed in the future:

e The present particle-in-cell code applies to regimes where the dipole approximation
is valid. To enable it for studies in the relativistic regime an inclusion of electromag-
netic effects such as laser pulse propagation or ponderomotive forces is necessary.

e At present the ionization of the cluster atoms are modelled using over-the-barrier
ionization only. Such an ionization model, however, is less applicable for short
wavelengths where multiphoton ionization or even inner shell ionization may be
significant. Hence the ionization model has to be extended in order to study the
laser-cluster interaction in the regime of the new generation FEL light sources, for
instance.
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Appendix A

Perturbative solution of the rigid
sphere model

We solve Eq. (3.13), i.e.,
¥+ wip +ax® = —Ei(t), (A.1)

by the method of perturbation [72] in the region r < 2. The complementary solution .,
and the particular integral x; of (A.1) satisfy, respectively, the equations

j(’:CP + wl%/liexCp + Oél’gp = 07 (A2)
i + Wigelpi = —an — Ei(t). (A.3)
Let, 2, 2D and 282 be the 0™, 15t and 2°¢ corrections for  and wyge, w® and w® be
the 0, 15 and 2" corrections for the frequency w so that z., = 2+ 2 428 4

and w = wygie + WV +w® + ... To find 2., we write
j}CP + wl%/[ie'rcp = —Oél’zp, (A4)

and assume the 0" approximation as

mgg) = ap cos(wt + dp). (A.5)

However, if (A.5) is substituted in (A.4), the left hand side does not lead to zero. It means
that x((;g) = ag cos(wt + Jp) is not an unperturbed solution. We rewrite (A.4) as

2
WMie
w2

2
Wie

) dep. (A6)

. 2 o 2
Tep + WitieTep = —QTg, — (1-— 2
To the first approximation we substitute a:((;g) to the right hand side and z, = :17,(3%) + :17,%)

to the left hand side of (A.6) and obtain

(1
.. 2 2Wep Wie ..
m%) + Wi x%) = —a [xgg)] — 732 xg?)), (A7)

where we have made the approximations w? — w?,, = 2wWMwyke + [WP)? ~ 20wy,
Wipe/w? = (1 +w(1)/wMie)_2 ~ (1 — Qw(l)/wMie) and (1 — 2w(1)/wMie) 9'5&3 ~ :'1583) after
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neglecting second order terms. To avoid the resonant term we let w® = 0. Putting xﬁ?)

in (A.7) we get

#0) + wine 25 = Ao [1 4 cos(2wt + 26p)] (A.8)

where Ay = —aa?/2. Equation (A.8) is in-homogeneous. Its complementary function has
the solution (! ~ cos(wt + dp) with w®) = 0. This does not lead to a solution with
a frequency different from the unperturbed solution. The terms with the unperturbed
frequency can be omitted to avoid the resonance term. The solution of (A.8) is

= By [3 — cos(2wt + 24y)] , (A.9)

were By = Ag/3wi;. = —aad/6wip,.. To the second approximation we substitute z, =
at(p) + x(l) + :Egp and w = wyie + w® + w® in the left hand side and Tep = x((;g) + :E,%) and
w = wyiie + WM in the right hand side of (A.6) and obtain

i%) + wl%/ﬁex(z) = —20@( ) ( ) + 2w<2)lee 0 _ o [:L’g))f. (A.10)

cp CP
Using % and z}) Eq. (A.10) can be written as
( ) + me Cp Z bka, (All)

k=1,3

with b, = 2w wyea0 — 5aagBy, by = 0 and by = aagBy — 3[a3 By /2. For the absence of
the resonant term from the solution, the coefficient of cos(wt + dp) must be zero. Setting
b1 = 0, one obtains

5a’a?
(2 _ _2ap A12
< 1203, (8.12)
The solution of (A.11) is
2@ = _ by cos(3wt + 350) (A.13)
P w? — wi,

We have omitted the term a[xcp |? by considering this term small as compared to the other
terms. But at a high laser intensity this term may contribute. Therefore we improve our

approximation keeping the term oz[x((;p)] and solve

B + wiealy) = —ale)P. (A.14)

cp cp

Substituting x((;llg) we get the solution of (A.14) as

B2 dwniet + 46

ng;) — [19 + 4 cos(2waniet + 200) — cos(dnriel + 0)] . (A.15)
2me 15
The solution for z., up to the second order is given by
b(] b3 COS (Bwt + ]47(50)
Tep = 3By + % + ag cos(wytiet + 0p) — Bo cos(2wygiet + 200) — 9? — i
B2 Jwpgiet + 46

_ B0 104 g cos(unt + 20y) — SRl H ) |y g6

2w e 15

108



To find out the particular integral (xp;) which depends upon the driving field we consider
an n-cycle pulse of electric field Ej(t) = Eqsin(wit/2n) cos(wit) for simplicity and write
Ei(t) = Y0, frsin(wt) with fi = Eo/2, fo = —FEo/2, wi = (1 + 1/2n)w), wy = (1 —
1/2n)wy, wy = wy + wy = 2w), W_ = w; — wy = wy/n. We assume the 0" approximation

= Z ay sin(wgt) (A.17)

to satisfy the 0" order equation
i+ wipery = Ei(t). (A.18)

Substituting (A.17) into (A.18) we get

2
Zak (Wite — wi) sin(wyt) = Z fr sin(wyt). (A.19)
k=1

Equating the terms of identical k we obtain the amplitudes a, = fi/(wiy, — w?) for

k = 1,2. We substitute :E( to the right hand side and zp; = :5( ) 4 x(l) to the left hand
side of (A.3) as a first approx1mat10n and obtain

2
i)+ wie 2l = —a [:cfp?’} . (A.20)
Putting xgi)) into (A.20) yields
(1) + lee 1 =Ao+ 5 Z akCQWk Qayaz (Cw1 —w2 T Cm-l-wz) : (A'21)
We use the notation C,, = cos(wit) and S, = sin(wit) and assume Ay = — § S al.

The complementary function of (A.21) has the solution () ~ sin(wyget + &) with the
unperturbed frequency wy;e. We can omit this resonance term and find

2
o) = As+ D BiCou, + Ap Corsas + A Cooy (A.22)
k=1
with A = —Ao/wf/ho, A = aa1a2/(w§/ho — (Wl + CUQ>2), Am = —aa1a2/(w1%/ﬁo — (wl — w2)2).

In the second approx1mat10n we substitute zp; = x( ) 4 SL’(l) + a:( in the left hand side

and zp; = :)3( ) 4 93 in the right hand side of (A.3). Keeping the terms first order in a:éli)

we obtain

i ® = 2020z} (A.23)

+ leexpl

We substitute $gi]) and atsi) in (A.23) and obtain
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APPENDIX A: Perturbative solution of the rigid sphere model

2,2

1'(2) = i A + Z B. 82wk+wj _ 82wk—wj

" = Wige — (wy)? ) a e — (Qwi +wj)? wige — Cwr — wj)?
w1 twotw, Sw Jwo—wj;

_'_ D 1tw2+ j 1 2 J :|
Z [lee (w1 +ws+wp)?  whye — (W1 +ws — w))?
+ Z E; { St untoy Sor e } (A.24)
W — (W1 —wa +wj)? Wi — (W1 — wy — wj)?

The term oz[xsi)]Q is neglected by considering that this term is small as compared to
the other terms. At a high intensity this term may also contribute. To improve the

approximation we keep the term a[z(!)]? and solve

(3) + wl%/hexr()?) -

—afzV]2, (A.25)

p1

Substituting [z () JJ? in (A.25) leads to

aB?
(3) + lee E’l) PO + Pl Z Bkc2wk + P2 Z kC4wk

k=1
+P3 Cwl—i-wg + P4Cw1—w2 + P5 C2(w1+w2 + Pﬁ C2(w1 —w2)
+P7 Cay 4wy + P Cawy—wo + Po Coy 43w + Pro Cooy 30, - (A.26)
2424+ BI+B3+AZ+ A2

The coefficients are: Py, = —a[ 5 , P = —20A,, P, = -1, P3 =

—a(QAsAp —|— BlAm), P4 = —Oé(QASAm —|— BgAm —|— BlAp —|— BQAP), P5 = —CM(AI%/2 —|— BlBg),
P6 —CM(A2 /2 —|— BlBg), P7 = —OéBlAp, Pg = —aBlAm, Pg = —OéBgAp, PlO = —OéBgAm.

The solution of SL’(3 is

xl()?l’) 0 + Z Qlkc2wk + Z Q2kc4wk + Q3 w1 twsa + Q4Cw1 —w2 + QS C2(w1+w2

k=1 k=1
+Q6 Co(wy —ws) + Q7 Cauytwn + Q8 Cay—wn + Qo Cos 43wy + Q10 Coy =30y, (A27)

with Qo = Po/witer Qe = PiBr/(Wine — 4w3), Qe = P2B/(2(wige — 16w7)), Qs =
P3/(Wige — (W1 +w2)?), Qu = Py/(wige — (w1 — w2)?), Qs = Ps/(wige — (w1 +w2)?), Qs =
Ps/(Wite — 4(w1 —w2)?), Q7 = Pr/(wine — Bwi +w2)?), Qs = Ps/(wige — (Bwi — w2)?),
Qo = Py/(wi, — (w1 + 3ws)?), and Q19 = Pro/(wip, — (w1 — 3w2)?). Up to second order
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corrections we find

2
ALS,,
Tpi = As + Ay Coguy + Ay Coy—y + Z (akka + By Couy, + ﬁ)
k=1 Mie k
2,2 ]
; Sowr tw: Sowr o
+ Bk |i k5 _ k—Wj
]‘7]@2:1 ! u}I%/Iio - (zwk + wj)z wl%/lie — (26% — u)j)2_
2 -
Se 4w St
_'_ZDJ [ 2 s 5~ 3 +%5 -
j=1 Wilie — (W+ + wj) Witie — (w+ — wj) |
2 -
S twj So —w.
+ E; l Bt — i
]Z:; T wdhe — (wo +wj)? Wi — (wo —wj)? )

2 2
_'_QO + Z Qlk C2wk + Z Q2k C4wk + Q3 Cw1+w2 + Q4 Cwl—wg + Q5 C2(w1+w2)
k=1 k=1

+Q6 Co(wi—ws) + Q7 Cauy o + Q8 Cay—wy + Qo Cusy 43wy + Q10 Cuy—30,-  (A.28)

The complete solution for the excursion = (up to the second order corrections) is obtained
as T = Tep + Tpi-
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APPENDIX A: Perturbative solution of the rigid sphere model
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Appendix B

Conversion between SI units and
atomic units

In this thesis we have mostly used atomic units. The conversion relations between SI and
atomic units for the fundamental physical quantities are:

one atomic mass unit = m, = 9.1094 x 1073! kg,
one atomic charge unit = e = 1.6022 x 10719 C,
one atomic action unit = A = 1.0546 x 1073 Js,
one atomic length unit = ag = 5.292 x 10~'* m.

Note that in atomic units 4meg = 1. Here ¢¢ is the permittivity of vacuum, —e and m,
are the charge and the mass of the electron, h is the Planck constant and ag is the Bohr
radius. Based on the above relations the following conversion of various physical quanti-
ties are useful:

one atomic electric field strength unit Ey = e/4megal = 5.142 x 10" V/m,
one atomic energy unit = & = eFyag = 27.212 eV,

one atomic frequency unit = wy = & /h = 4.134 x 10" 571,

one atomic time unit = ¢ty = /& = 0.024 fs,

one atomic velocity unit = vy = ag/ty = ¢/137.04,

one atomic intensity unit = Iy = cggE2/2 = 3.51 x 10"Wem=2.
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