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0 Introduction

Frobenius structures are omnipresent in arithmetic geometry. In this note we show
that over suitable rings, Frobenius endomorphisms define differential structures and
vice versa. This includes, for example, differential rings in positive characteristic
and complete non-archimedean differential rings in characteristic zero. Further,
in the global case, the existence of sufficiently many Frobenius rings is related to
algebraicity properties. These results apply, for example, to t-motives as well as to
p-adic and arithmetic differential equations.

In Chapter 1 Frobenius rings are defined as rings which modulo some prime ideal
are equipped with an ordinary Frobenius endomorphism. (Rings with geometric
Frobenius endomorphisms can be obtained from these “arithmetic” Frobenius rings
by tensoring with rings with trivial Frobenius action). It is shown how Frobenius
modules over such rings can be trivialised by some completion of the base ring
(Thm. 1.7); in the case of an ordinary Frobenius module an algebraic extension is
sufficient(Thm. 1.2).

Chapter 2 contains results in positive characteristic p. Here Frobenius modules and
(iterative) differential modules are equivalent to certain projective systems. These
can be used for transport of structures (Thm. 2.1 and Corollaries) and comparison of
solution rings (Thm. 2.3). Chapter 3 is concerned with the p-adic case. Here again
Frobenius structures define uniquely related differential structures (Thm. 3.1). The
corresponding system of differential equations is obtained by a non-archimedean
limit process (Cor. 3.2) and can be solved by solutions of the underlying Frobenius
module (Thm. 3.3).

In Chapter 4 following [2] and [13] for differential and Frobenius modules, Galois
group schemes are introduced. The related arithmetic Galois correspondence even
takes care of inseparable extensions (corresponding to non-reduced group schemes).
In the case of compatible differential and Frobenius structures the Galois group
schemes are related by base change.

Finally in Chapter 5 differential rings and modules over Dedekind rings of alge-
braic numbers are studied. Here it is shown that differential modules provided with
higher derivations lead to Picard-Vessiot extensions generated by Taylor series with
coefficients in base ring (Cor. 5.2). This creates the possibility to compare these
global PV-rings with the PV-rings of the reduced (iterative) differential modules in
positive characteristic (Thm. 5.3). In particular, the existence of sufficiently many
(congruence) Frobenius endomorphisms is equivalent to the algebraicity of the global
PV-ring (Thm. 5.5).
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1 Frobenius Modules and Frobenius Structures

1.1 A pair (S, φ) consisting of an integral domain S of characteristic p > 0 and
an endomorphism φ ∈ End(S) is called an ordinary Frobenius ring if there exists a
prime power q = pd such that φ is the q-power endomorphism

φq : S → S, a 7→ aq.

More generally a pair (S, φ) consisting of an integral domain of arbitrary character-
istic and an endomorphism φ ∈ End(S) is called a (lifted) Frobenius ring (F-ring) if
S contains a φ-invariant prime ideal Q such that the residue ring S := S/Q equipped
with the induced Frobenius endomorphism φ is an ordinary Frobenius ring. Then
Q is called a characteristic prime ideal of (S, φ) and φ the Frobenius endomorphism
of S. For a Frobenius ring (S, φ) we obtain a family of higher images Sl := φl(S).
These are Frobenius rings with the restricted Frobenius endomorphism φl := φ|Sl

.
Further (S, φ) defines the ring of Frobenius invariants Sφ := {a ∈ S | φ(a) = a}.

In case the Frobenius endomorphism φ is an automorphism, (S, φ) becomes a dif-
ference ring with respect to φ. Such rings have been studied, for example, in [11].
Before introducing Frobenius modules let us discuss three examples:

1.1.1 Any integral domain S of characteristic p > 0 together with the p-power
endomorphism φp is an ordinary Frobenius ring with characteristic prime ideal (0).

1.1.2 Let K be a perfect field containing Fpwith p-power endomorphism φ = φp.
Then S := K[s, t] with the Frobenius action φ|K = φp, φ(s) = s, φ(t) = tp is a
Frobenius ring with characteristic prime ideal (s). The higher images are Sl =
K[s, tp

l
] and the ring of invariants is given by Sφ = Fp[s]. Such rings occur as base

rings of Anderson’s t-modules and t-motives (see [15], Ch. 7.1).

1.1.3 Let W be the Witt ring over the algebraic closure Falg
p of Fp with the

uniquely lifted Frobenius automorphism φW = φp. (This ring coincides with the
completion of the ring of integers Zur

p of the maximal unramified extension Qur
p of

the field of p-adic numbers Qp). Then S := W [t] and φ : S → S with φ|W = φW and
φ(t) = tp form a Frobenius ring with characteristic ideal (p). Its residue ring is the
ordinary Frobenius ring Falg

p [t]. The higher images are Sl = W [tp
l
] and the invariant

ring is Sφ = Zp. The ring S and its completion with respect to the Gauß extension of
the p-adic value play a fundamental role in the theory of p-adic differential equations
(see [1] and [14]).

1.2 Let (S, φ) be a Frobenius ring as defined above. Then a pair (M, Φ) con-
sisting of a free S-module M of finite rank m and an endomorphism Φ : M → M is
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called a Frobenius module over S if Φ is φ-semilinear, i.e.,

Φ(x + y) = Φ(x) + Φ(y) and Φ(ax) = φ(a)Φ(x) for all x, y ∈ M and a ∈ S

and Φ maps a basis of M onto a basis of M . Similar to the case of rings we obtain
a family of higher images Ml := Φl(M), where Ml is a Frobenius module over Sl.

For any extension ring S̃/S with extended Frobenius endomorphism φ̃ the module

MeS := S̃ ⊗S M becomes a Frobenius module over S̃ with an extended Frobenius

action Φ̃ in an obvious way. The solution space of M over such an extension ring S̃
is defined by

SolΦeS (M) := (S̃ ⊗S M)
eΦ = {x ∈ S̃ ⊗S M | Φ̃(x) = x}.

Obviously SolΦeS (M) is an S̃
eφ-module. In case S̃

eφ is a field, SolΦeS (M) is free of rank

at most m. The module M is called trivial over S̃ if SolΦeS (M) contains a basis of

S̃ ⊗S M . Then (S̃, φ̃) is called a solution ring (or trivialization) of the Frobenius
module M .

From the definitions we immediately obtain

Proposition 1.1. Let (S, φ) be a Frobenius ring and (M, Φ) a Frobenius module
over S. Then M∗ :=

⋂
l∈N

Ml with Φ|M∗ is a Frobenius module over S∗ :=
⋂
l∈N

Sl with

SolΦS∗(M∗) = SolΦS (M).

1.3 We now turn to Frobenius modules over ordinary Frobenius rings. In the
case that the base ring is a field, we obtain

Theorem 1.2. Let (S, φ) be an ordinary Frobenius field and (M, Φ) a Frobenius
module over S. Then there exists a unique minimal solution ring R of M over S.
The ring R is an ordinary Frobenius field with respect to the unique extension of φ
onto R. Moreover the field extension R/S is a finite Galois extension.

For the proof see [8], Prop. 5.4, or [6], Thm. 1.1. It follows that in the case of base
rings a solution ring R of M can be found inside a finite Galois extension of Quot(S).
In addition, Theorem 1.2 implies

Corollary 1.3. Every Frobenius module over a separably algebraically closed ordi-
nary Frobenius field is trivial.

In order to make Theorem 1.2 more explicit, let B := {b1, . . . , bm} be a basis of M

over S with Φ(bj) =
m∑

i=1

bidij. Then DB(Φ) := (dij)
m
i,j=1 ∈ GLm(S) is a representing

matrix of Φ. Further,
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Φ(x) = Φ(By) = Φ(B)φ(y) = BDB(Φ)φ(y)

holds for x =
m∑

j=1

bjyj = By ∈ M . Thus x = By is a solution of M if and only if

Φ(By) = By , or DB(Φ)φ(y) = y , respectively. This is equivalent to the equation

φ(y) = Ay with A = DB(Φ)−1 ∈ GLm(S).

Corollary 1.4. Under the assumption of Theorem 1.2 there exists a matrix Y =
(yij)

m
i,j=1 ∈ GLm(R) with φR(Y ) = AY , and R is generated over S by the entries of

Y , i.e., R = S(yij | i, j = 1, . . . ,m).

Such a matrix Y is called a fundamental solution matrix of (M, Φ). It is uniquely
determined by M up to left multiplication with a base change matrix C1 ∈ GLm(S)
and right multiplication by a matrix C2 ∈ GLm(Rφ).

1.4 Another trivialization of Frobenius modules is useful in the p-adic and the
t-motivic case. For this we first assume for simplicity that (S, φ) is a Frobenius ring
whose characteristic ideal Q is a valuation ideal in Quot(S). Then we denote by
(SQ, φ) the completion of S with respect to Q and continuously extended Frobenius
endomorphism. Let (Sur

Q , φur) be its integral closure inside the maximal unramified
algebraic extension of Quot(SQ) with the unique extension φur of φ compatible with

the ordinary Frobenius endomorphism of the residue ring Sur
Q /(Q). Then (Ŝur

Q , φ̂) is
the completion of Sur

Q with respect to (Q) and with continuously extended Frobenius
action. Thus Q generates a characteristic ideal (Q) not only in S but also in SQ, Sur

Q ,

and Ŝur
Q , and in addition this ideal remains a valuation ideal.

Proposition 1.5. Let (S, φ) be a Frobenius ring whose characteristic ideal Q is a
valuation ideal and let (M, Φ) be a Frobenius module over (S, φ). Then M becomes

trivial over (Ŝur
Q , φ̂).

Proof. (compare [6], proof of Thm. 6.2). We first assume that Q = (r) induces a
discrete valuation. With respect to some basis B of M the Frobenius endomorphism
Φ is represented by a matrix D = DB(Φ) ∈ GLm(S) with inverse A = D−1. The
residue matrix A (mod r) belongs to GLm(F ), where F denotes the residue field
F := S/Q. The surjectivity of the Lang isogeny π : GLm(F

sep
) → GLm(F

sep
) gives

a matrix D0 ∈ GLm(F
sep

) with A = φ(D0)D
−1

0 . In fact, the entries of D0 belong
to some finite extension F 0/F . Thus there exists an unramified ring extension with

lifted Frobenius endomorphism (S̃0, φeS0
) of finite degree over (S, φ) and a matrix

D0 ∈ GLm(S̃0) such that

A = φeS0
(D0)(I + rG0)D

−1
0 with G0 ∈ S̃m×m

0 .

4



Now we want to refine the resulting congruence A ≡ φeS0
(D0)D

−1
0 (mod r) modulo

higher powers of r. The next such approximation step with D1 = I + rH1 and
φ(r) = er would lead to the congruence

I + rG0 ≡ φeS1
(D1)(I + r2G1)D

−1
1

≡ (I + φeS1
(rH1))(I − rH1)

≡ I + erφeS1
(H1)− rH1 (mod r2).

Since the reduced equation G0 = eφF 1
(H1) − H1 has a solution matrix H1 over

a finite extension F 1/F 0 there exists an F-ring (S̃1, φeS1
) unramified and of finite

degree over (S̃0, φeS0
) and a matrix D1 = I + rH1 ∈ GLm(S̃1) such that

A = φeS0
(D0)φeS1

(D1)(I + r2G1)D
−1
1 D−1

0 with G1 ∈ S̃m×m
1 .

Thus by induction we obtain a tower of unramified ring extensions S ≤ S̃0 ≤ S̃1 ≤
· · · ≤ S̃l inside Ŝur

Q and matrices Dl ∈ GLm(S̃l) such that

A ≡ φeS0
(D0) · · ·φ eSl

(Dl)D
−1
l · · ·D−1

0 (mod rl+1).

Since Dl = I + rlHl ∈ GLm(Ŝur
Q ), the product D0 · · ·Dl converges in GLm(Ŝur

Q ).

Hence there exists a matrix Y ∈ GLm(Ŝur
Q ) with A = φ(Y )Y −1, which by definition

is a fundamental solution matrix of (M, Φ).

In the non-discrete case the proof can be completed by refining the approximation
steps modulo r ∈ Q above as in the proof of Hensel’s Lemma for non-discrete
valuations.

Obviously Proposition 1.5 implies

Corollary 1.6. Let (S, φ) be a separably algebraically closed complete non-archime-
dean field with continuous Frobenius automorphism. Then every Frobenius module
over S is trivial.

Now let (S, φ) be an F-ring whose characteristic ideal Q contains a chain of prime
ideals Q ' Q1 ' · · · ' Qh with φ(Qi) ⊆ Qi and h = height(Q). Then Proposi-
tion 1.5 and induction on h can be used to prove the existence of a minimal solution
ring inside the completion Ŝur

Q with respect to the prime ideal Q (see [3], Ch. 7). This
is fulfilled, for example, in case Q has an ideal basis which is elementwise invariant
under φ. Such a Frobenius ring will be called a pure Frobenius ring in the sequel.

Theorem 1.7. Let (S, φ) be a pure Frobenius ring with characteristic ideal Q . Then

every Frobenius module (M, Φ) over S has a minimal solution ring inside Ŝur
Q .
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1.5 The notion of a Frobenius module M over a Frobenius ring S can be weak-
ened. For this we substitute the series of Sl-submodules Ml of M by a projective
system(Ml, ϕl)l∈N consisting of free Sl-modules of the same rank and Sl+1-linear
embeddings ϕl : Ml+1 → Ml, such that ϕl(Ml) contains an Sl-basis of Ml. Then
a family (Φl)l∈N of φl-semilinear surjection maps Φl : Ml → Ml+1 or (Ml, Φl)l∈N
respectively, is called a Frobenius structure on M = M0. By using ϕl we can iden-
tify (Ml, Φl) with an Sl-submodule M̃l of M with a Frobenius operator Φ̃l which in
general is different from Φ|fMl

.

In case there exist k, l ∈ N such that Mk+l ≤ Mk with Φk+l = Φk|Mk+l
, the family Φl

becomes periodic. Then the Sk-module Mk together with Φk,l := Φk+l−1 ◦ . . . ◦ Φk

is a Frobenius module in the above sense. In this case the Frobenius structure is
called a strong Frobenius structure, otherwise a weak Frobenius structure (compare
[1], Ch. 4.8 or [14], Ch. 18.4). Thus any Frobenius module (M, Φ) defines a strong
Frobenius structure and vice versa.
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2 Differential Structures in Positive Characteris-

tic

2.1 Let (S, φ) be an integral domain in characteristic p > 0 with an ordinary
Frobenius endomorphism φ = φq, q = pd, and higher Frobenius images Sl = φl(S)
for l ∈ N. A set of commuting iterative derivations (also called Hasse derivations)

∆ = {∂∗1 , . . . , ∂∗n} on S which consists of families of maps ∂∗i = (∂
(k)
i )k∈N from S to

S with ∂(0) = id and

∂
(k)
i (a + b) = ∂

(k)
i (a) + ∂

(k)
i (b), ∂

(k)
i (ab) =

∑
j+l=k

∂
(j)
i (a)∂

(l)
i (b),

∂
(k)
i ∂

(l)
i =

(
k + l

k

)
∂

(k+l)
i

for all a, b ∈ S, j, k, l ∈ N and

∂
(k)
j ∂

(l)
i = ∂

(l)
i ∂

(k)
j for i, j ∈ {1, . . . , n} and all l, k ∈ N

is called an iterative differential structure on S (ID-structure). Then (S, ∆) is called
an ID-ring and the intersection

CS :=
⋂

0<k1+...+kn∈N

ker(∂
(k1)
1 ◦ · · · ◦ ∂(kn)

n ) =
⋂
k∈N

n⋂
i=1

ker(∂
(pk)
i )

is the ring of differential constants of (S, ∆). The subsets

∆l := {∂(pk)
i | k < l; i = 1, . . . , n}

of ∆ define a chain of subrings

Tl := ker(∆l) :=
⋂
k<l

n⋂
i=1

ker(∂
(pk)
i )

of S with
⋂
l∈N

Tl = CS. The property that S is an ordinary F-ring with φ = φq,

q = pd, implies ∆dl ◦ φl = 0 or Tdl ≥ Sl, respectively.

Now let S be a (lifted) F-ring with characteristic prime ideal Q and induced Frobe-
nius endomorphism φ = φq on S/Q with q = pd. Then an ID-structure ∆ on S with
∆(Q) ⊆ Q and the above property ∆dl ◦ φl = 0 is called F-compatible and (S, φ, ∆)
is an IDF-ring. If, moreover,

Tdl = ker(∆dl) = φl(S) = Sl,

then ∆ is called totally F-compatible and S a total IDF-ring.
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2.1.1 A basic example is the polynomial ring S = Falg
p [t1, . . . , tn] in n variables

over the algebraic closure Falg
p of Fp with the ordinary Frobenius action φ = φp. On

S we have the set ∆ of partial iterative derivatives ∂∗i = ∂∗ti given by

∂
(k)
ti (tlj) = δij

(
l

k

)
tl−k
j .

Obviously ∆ defines an ID-structure on S with ker(∆l) = Falg
p [tp

l

1 , ..., tp
l

n ] = φl(S).
Thus ∆ is a totally F-compatible ID-structure and (S, φ, ∆) a total IDF-ring.

2.1.2 The second example is the Frobenius ring S = K[s, t] introduced in Ex-

ample 1.1.2. Here the partial iterative derivation ∂∗ = ∂∗t = (∂
(k)
t )k∈N defines an

ID-structure ∆ = {∂∗} on S with ker(∆l) = K[s, tp
l
] = φl(S). Thus here again

(S, φ, ∆) is a total IDF-ring.

2.2 Now we start with an ID-ring (S, ∆) with char(S) = p > 0 and ID-structure
∆ = {∂∗1 , . . . , ∂∗n}. As before, let M denote a free S-module of rank m < ∞. Then a

set ∆M = {∂∗M,1, . . . , ∂
∗
M,n} of families of maps ∂∗M,i = (∂

(k)
M,i)k∈N is called an iterative

differential structure on M over ∆ (ID-structure over ∆), if ∂
(k)
M,i : M → M are

commuting additive maps related to ∆ by the mixed Leibniz rule

∂
(k)
M,i(ax) =

∑
j+l=k

∂
(j)
i (a)∂

(l)
M,i(x) for a ∈ S, x ∈ M, i = 1, . . . , n.

Then (M, ∆M) is called an iterative differential module over S or an ID-module for
short.

As in the case of rings the subsets

∆M,l := {∂(pk)
M,i | k < l; i = 1, . . . , n}

of ∆M lead to a chain of Tl-submodules

ker(∆M,l) =
⋂
k<l

n⋂
i=1

ker(∂
(pk)
M,i )

of M . These are ID-modules over Tl with respect to the shifted ID-structure

∆
(l)
M := {∂(kpl)

M,i | k ∈ N; i = 1, . . . , n}.

Theorem 2.1. Let (S, φ, ∆) be an IDF-ring of positive characteristic with ∆dl◦φl =
0. Assume that M is a free S-module of rank m with (weak) Frobenius structure
(Ml, Φl)l∈N.
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(a) There exists a unique ID-structure ∆M over ∆ on M such that

ker(∆M,dl) ≥ M̃l := ϕ0 ◦ . . . ◦ ϕl−1(Ml).

(b) If (S, φ, ∆) is a total IDF-ring it holds the equality

ker(∆M,dl) = M̃l.

Proof. Let ϕ̃l : S ⊗Sl+1
M̃l+1 → S ⊗Sl

M̃l be the linear extension of the embedding

M̃l+1 → M̃l. Since ∆M,dl must annihilate any basis of M̃l, the image of x ∈ M under

∂
(pk)
M,i for k < l has to be defined by

∂
(pk)
M,i (x) = ϕ̃0 ◦ . . . ◦ ϕ̃l−1 ◦ ∂

(pk)
i ◦ ϕ̃−1

l−1 ◦ . . . ◦ ϕ̃−1
0 (x),

where ∂
(pk)
i only acts on the coefficients in S of the image of x in S ⊗Sl

M̃l. This

leads to a unique ID-structure ∆M on M with ker(∆M,dl) ≥ M̃l. Here equality holds
if and only if Sl = Tdl, i.e., if (S, φ, ∆) is a total IDF-ring.

If in Theorem 2.1 (Ml, Φl)l∈N defines a strong Frobenius structure, by Section 1.5

we are dealing with a Frobenius module (M, Φ) over S with Φl(M) = Ml = M̃l. In
case M has an ID-structure ∆M compatible with Φ, i.e.,

ker(∆M,dl) ≥ Φl(M),

the triple (M, Φ, ∆M) is called an IDF-module or an ID-module with strong Frobenius
structure. If moreover ker(∆M,dl) = Φl(M), the IDF-module (M, Φ, ∆M) is called a
total IDF-module. This leads to

Corollary 2.2. Let (M, Φ) be a Frobenius module over an IDF-ring (S, φ, ∆).

(a) There exists a unique ID-structure ∆M on M so that (M, Φ, ∆M) is an IDF-
module over S.

(b) In case (S, φ, ∆) is a total IDF-ring, (M, Φ, ∆M) is a total IDF-module.

If in Theorem 2.1 we start with an ID-module (M, ∆M) such that any Tl-module
Nl := ker(∆M,l) contains an S-basis Bl of M , we can easily detect a weak Frobenius
structure (Ml, Φl)l∈N on M inducing ∆M : we just have to define Ml as the free
Sl-submodule over Bdl and Φl : Ml → Ml+1 as the φl-linear map sending Bdl onto
Bd(l+1). In case S is a total IDF-ring, i.e., Tdl = Sl, we obtain Ndl = Ml and (Φl)l∈N
is uniquely determined by the property Φl(Ndl) = Nd(l+1).

9



2.3 Now let (S, ∆) be an ID-ring with ∆ = {∂∗1 , . . . , ∂∗n} and let (M, ∆M) be
an ID-module over S with related ID-structure ∆M = {∂∗M,1, . . . , ∂

∗
M,n}. Then any

extension of ID-rings (S̃, ∆̃) with ∆̃ = {∂̃∗1 , . . . , ∂̃∗n} and ∂̃∗i |Si
= ∂∗i leads to an

extended ID-module (MeS, ∆̃M) with MeS := S̃ ⊗S M and an extended ID-structure

∆̃M = {∂̃∗M,1, . . . , ∂̃
∗
M,n} over ∆̃. Then we define the solution space of M over S̃ to

be

Sol∆eS (M) :=
⋂
l∈N

n⋂
i=1

ker(∂̃
(pl)
M,i).

Obviously Sol∆eS (M) is a CeS-module of rank at most m. In case the rank equals m,

M is called trivial over S̃ and S̃ is called a solution ring of the ID-module M .

Next we want to compare the solution spaces of an IDF-module (M, Φ, ∆M) with
respect to the Frobenius structure and the ID-structure. The result is

Theorem 2.3. Let (S, φ, ∆) be a pure IDF-ring of positive characteristic and let
(M, Φ, ∆M) be an IDF-module over S of finite rank.

(a) Let (R, φR) be a minimal solution ring of (M, Φ), then there exists a differential
structure ∆R on R so that (R, ∆R) is a solution ring of (M, ∆M) and the solution
spaces are related by

Sol∆R(M) = CR ⊗Rφ SolΦR(M) and SolΦR(M) = Sol∆R(M)
eΦ

where Φ̃ is the canonical extension of Φ onto R⊗S M .

(b) Set S̃ := CR ⊗CS
S with trivially extended ID-structure ∆̃. Then (R, ∆R) is a

minimal solution ring of the ID-module (MeS, ∆̃M) over (S̃, ∆̃).

(c) The ring of constants CR is a minimal solution ring of a Frobenius module of
finite rank over CS. In particular CR over CS is finite separable if CS is an ordinary
Frobenius ring.

Proof. Let U := S[GLm] be the coordinate ring of GLm over S, i.e.,
U := S[xij, det(xij)

−1]mi,j=1. We define an action of Φ and ∆M on the matrix of
indeterminates X := (xij)

m
i,j=1 by

φU(X) := AX and ∂
(pl)
U,i (X) = A

(pl)
i X.

Here A equals DB(Φ)−1 for some basis B of M over S and A
(pl)
i can be computed

by recursion from the formulas

∂
(k)fM,i

(BX) =
k∑

j=0

∂
(k−j)
M,i (B)∂

(j)
U,i(X) = 0.
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Then (U, φU , ∆U) becomes an IDF-ring over S. By Theorem 1.7 there exists an

S-linear map θ : U → Ŝur
Q onto a minimal solution ring of (M, Φ) inside Ŝur

Q . Hence
ker(θ) is a maximal φU -invariant prime ideal P � U with P ∩ S = (0). From
∆U,1(P ) ⊆ ∆U,1(SφU(P )) ⊆ SφU(P ) ⊆ P follows by induction ∆U(P ) ⊆ P . Thus
R := U/P is a minimal solution ring of M with respect to the induced Frobenius
structure φR and a solution ring with respect to the induced ID-structure ∆R with
the common fundamental matrix Y := X (mod P ). Obviously any minimal solution
ring R of (M, Φ) with some fundamental solution matrix Y can be obtained in this
way by defining P as the kernel of the S-homomorphism U → R,X 7→ Y . This
proves (a) with the obvious extension Φ̃ of Φ onto R⊗S M .

The ring (R, ∆R) is an ID-ring over (S̃, ∆̃) without new constants generated by the

fundamental matrix Y ∈ GLm(R) of (MeS, ∆̃M). Thus by the characterization of
iterative Picard-Vessiot rings in [5], Prop. 4.8 (see also [9], Thm. 6.10), R is a simple

ID-ring over S̃ and hence a minimal solution ring for (MeS, ∆̃M) over S̃ by definition.

For the proof of (c) we observe that R is generated over S by finitely many solutions
of Frobenius polynomials, called Frobenius-finite elements over S. It follows that all
elements of R are Frobenius-finite over S and the elements of CR are Frobenius-finite
over CS. Since CR is finitely generated over CS, CR is a solution ring of a Frobenius
module over CS of finite rank. Thus in case CS is an ordinary F-ring, CR over CS

is finite by Theorem 1.2.

A minimal solution ring of an ID-module (M, ∆) over S without new constants is
called an iterative Picard-Vessiot ring or an IPV-ring for short. With this notion
we obtain

Corollary 2.4. Let (M, Φ) be a Frobenius module over a pure IDF-ring (S, φ, ∆)
with separably algebraically closed ring of constants CS. Let ∆M be the ID-structure
of M related to Φ according to Theorem 2.1. Then a minimal solution ring of (M, Φ)
is an IPV-extension of M over S with respect to ∆M .

This corollary covers Theorem 3.2 of [6]. Another special case follows from Theo-
rem 1.7:

Corollary 2.5. Let (M, Φ) be a Frobenius module over a pure IDF-ring (S, φ, ∆)
of positive characteristic with characteristic ideal Q. Assume that the ring of dif-
ferential constants CS of S is complete with respect to Q ∩ CS and that its residue
field is separably algebraically closed. Then a minimal solution ring of (M, Φ) is an
IPV-extension of M over S with respect to the unique ID-structure of M related
to Φ.

This corollary applies, for example, to Frobenius rings (S, φ) of type S = K[[s]][t]
over an algebraically closed field K with ordinary Frobenius action φ = φp and with
φ(s) = s, φ(t) = tp. Then the characteristic ideal Q of S equals (s) and CS = K[[s]]
is complete with respect to (s).
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3 Differential Equations in Characteristic Zero

3.1 In this chapter we study Frobenius modules in characteristic zero. It is well
known that the p-power Frobenius endomorphism φp of Falg

p /Fp has a unique lift
φp to Qur

p /Qp where Qur
p denotes the maximal unramified algebraic extension of Qp.

Therefore its ring of integers (Zur
p , φp) and the completion W := Ẑur

p = W(Falg
p ) with

the continuous extension φ̂p of φp are Frobenius rings with characteristic ideal (p),
compare Example 1.1.3. Moreover, by Proposition 1.5 every Frobenius module over
W is trivial.

Now let (S, φ) be an arbitrary Frobenius ring in characteristic zero with character-
istic ideal Q. A set of commuting derivations ∆ = {∂1, . . . , ∂n} in S with ∂i(Q) ⊆ Q
for i = 1, . . . , n is called a differential structure on S and (S, ∆) a D-ring (compat-
ible with Q). Every finitely generated ideal Q0 ⊆ Q defines a series of congruence
constant rings

Tl := {a ∈ S | ∂(a) ∈ Ql
0 for ∂ ∈ ∆}.

If (S, ∆) is a D-ring with the property that all higher derivations ∂
(k)
i := 1

k!
∂k

i for

k ∈ N and i = 1, . . . , n are maps from S to itself with ∂
(k)
i (Q) ⊆ Q, (S, ∆) is called

an iterative differential ring or ID-ring for short (compatible with Q).

In case the D-structure ∆ on S and the Frobenius endomorphism are related by
formulas of type

∂i ◦ φ = ziφ ◦ ∂i with zi ∈ Q for i = 1, . . . , n,

the triple (S, φ, ∆) is called an (iterative) differential ring with Frobenius structure or
a DF-ring (IDF-ring) and {zi | i = 1, . . . , n} is called the set of transition elements
for (φ, ∆). If zi ∈ Qd

0 for some d and all i, the formula ∂i ◦ φ = ziφ ◦ ∂i imply
Sl ≤ Tdl in analogy to Section 2.1. Moreover the residue ring S := S/Q with the
induced Frobenius action φ and the induced iterative differential structure becomes
an IDF-ring in positive characteristic with ordinary Frobenius action as discussed
in the last chapter.

As an example we consider the Frobenius ring (S, φ) = (W [t1, . . . , tn], φ) from

Example 1.1.3 with W = Ẑur
p and φ(ti) = tpi . With the differential structure

∆ = {∂1, . . . , ∂n} consisting of the partial derivations ∂i : tj 7→ δij, S becomes
an IDF-ring with zi = ptp−1

i . The residue ring S = S/(p) equals the IDF-ring
Falg

p [t1, . . . , tn] with the partial iterative derivations ∂∗i = ∂∗ti already discussed in
Example 2.1.1.

3.2 Now let (S, ∆) be an integral domain in characteristic zero with differential
structure ∆ = {∂1, . . . , ∂n}. Assume M is a free S-module of finite rank m. Then a
set ∆M = {∂M,1, . . . , ∂M,n} of additive maps ∂M,i : M → M related to ∆ by

12



∂M,i(ax) = ∂i(a)x + a∂M,i(x) for a ∈ S, x ∈ M

defines a D-structure on M over S. In case (S, ∆) is an ID-ring and ∂
(k)
M,i := 1

k!
∂k

M,i

are maps from M to itself, ∆M is called an ID-structure and (M, ∆M) is called an
ID-module over S.
For Frobenius rings (S, φ), we define a Frobenius module (M, Φ) over S and a Frobe-
nius structure (Ml, Φl)l∈N in the same way as in Section 1.2 or Section 1.5, respec-
tively. Next we want to show that as in the case of positive characteristic, for a
module over an IDF-ring any weak Frobenius structure (Ml, Φl)l∈N on M defines a
unique ID-structure ∆M on M compatible with (Φl)l∈N. But here for simplicity we

assume Ml ≤ M , i. e., we identify M̃l = ϕ0 ◦ · · · ◦ ϕl−1(Ml) with Ml.

Theorem 3.1. Let (S, φ, ∆) be an IDF-ring with char(S) = 0 which is complete
with respect to Q. Let Q∆ � S be the ideal generated by the transition elements
zi ∈ Q of ∂i ∈ ∆ . Then for a free S-module M of finite rank the following holds:

(a) Assume M has a weak Frobenius structure (Ml, Φl)l∈N with Ml ≤ M . Then there
exists a unique differential structure ∆M = {∂M,1 . . . , ∂M,n} on M with

∂M,i(Ml) ≡ 0 (mod Ql
∆M) for i = 1, . . . , n.

(b) In case M has a strong Frobenius structure Φ, i.e., (M, Φ) is a Frobenius module
over S, ∆M and Φ are related by

∂M,i ◦ Φ = ziΦ ◦ ∂M,i for i = 1, . . . , n.

Proof of Thm. 3.1 (a). (compare [6], Thm. 7.2, for the univariate case): According
to our assumption the weak Frobenius structure (Ml, Φl)l∈N defines a projective
system (Ml, ϕl)l∈N of Sl-submodules of M with Sl+1-linear embeddings ϕl : Ml+1 →
Ml. Chosen bases Bl = {bl,1, . . . , bl,m} of Ml are related by BlDl = Bl+1 with
base change matrices Dl ∈ GLm(Sl) called representing matrices of Φl. Moreover,
the embeddings ϕl can be uniquely extended to S-linear isomorphisms ϕ̃l : S ⊗Sl+1

Ml+1 → S ⊗Sl
Ml. Then the congruences in (a) are equivalent to

∂M,i(x) ≡ ϕ̃0 ◦ · · · ◦ ϕ̃l−1 ◦ ∂i ◦ ϕ̃−1
l−1 ◦ · · · ◦ ϕ̃−1

0 (x) (mod Ql
∆M)

with the derivation ∂i acting on the coefficients of x only (with respect to the basis

Bl). In view of the congruences above for x = By =
m∑

i=1

biyi we define

δi,l(x) := BD0 · · ·Dl−1∂i(D
−1
l−1 · · ·D

−1
0 y) ∈ M.

From D−1
l ∈ GLm(Sl) we obtain ∂i(D

−1
l ) ≡ 0 (mod Ql

∆). Hence the coefficients of
δi,l(x) converge in S and

∂M,i(x) := lim
l→∞

(δi,l(x)) ∈ M

13



is well defined. It is easy to verify that the ∂M,i : M → M are additive with
∂M,i(ax) = ∂i(a)x + a∂M,i(x) for a ∈ S, x ∈ M . Therefore the ∂M,i are derivations
on M related to ∂i with ∂M,i(Ml) ≡ 0 (mod Ql

∆M) and are uniquely determined by
this property.

Before proving (b) we derive explicit formulas for the matrices defining ∂M,i with
respect to some basis B of M . As above, let Bl = BD0 · · ·Dl−1 be an Sl-basis of
Ml. Then any x = By ∈ M with y ∈ Sm can be written as x = Bly l where
y l = (D0 · · ·Dl−1)

−1y . Now x = By belongs to Sol∆eS (M) for some extension D-ring

(S̃, ∆̃) if and only if ∂̃i(y l) ≡ 0 (mod Ql
∆) for i = 1, . . . , n and all l ∈ N. The last

congruences are equivalent to

∂̃i(y) = ∂̃i(D0 · · ·Dl−1y l) ≡ ∂i(D0 · · ·Dl−1)y l = Ai,ly (mod Ql
∆)

with Ai,l := ∂i(D0 · · ·Dl−1)(D0 · · ·Dl−1)
−1. Since Ai,l ≡ Ai,l−1 (mod Ql

∆), the limits

Ai := lim
l→∞

(Ai,l) ∈ Sm×m

exist, and the congruences in Theorem 3.1(a) are equivalent to the system of linear
differential equations

∂i(y) = Aiy for i = 1, . . . , n.

Corollary 3.2. Let M be an S-module with weak Frobenius structure (Ml, Φl)l∈N
with Ml ≤ M as in Theorem 3.1(a). Let Dl be the representing matrices of Φl with
respect to bases Bl of Ml. Then the differential structure ∆M on M related to (Φl)l∈N
is given by

∂M,i(B) = −B · Ai with Ai = lim
l→∞

(∂i(D0 · · ·Dl)(D0 · · ·Dl)
−1) and B = B0.

Proof of Thm. 3.1 (b). (compare [6], Cor. 7.5): For this part of Theorem 3.1 we
have Dl = φl(D0). Then the definition of Ai,l leads to the identities

Ai,lD0 = ∂i(D0 · · ·Dl)(D0 · · ·Dl)
−1D0

= ∂i(D0) + D0∂i(φ(D0 · · ·Dl−1))φ(D0 · · ·Dl−1)
−1

= ∂i(D0) + ziD0φ(Ai,l−1)

and thus to

AiD0 = ∂i(D0) + ziD0φ(Ai).

But then for the basis B of M we obtain

∂M,i(Φ(B)) = ∂M,i(BD0) = −BAiD0 + B∂i(D0)
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= −ziBD0φ(Ai) = ziΦ(−BAi) = ziΦ(∂M,i(B)).

Theorem 3.1 applies for example to the rings in rigid analytic geometry. The most
basic example is the ring S = W 〈t1, . . . , tn〉 of restricted power series (the Tate

ring) over the ring W = Ẑur
p which is complete with respect to the Gauß extension

of the p-adic value (or the corresponding valuation ring in Quot(S), respectively).
Here the Frobenius endomorphism φ is given by φ|W = φp and φ(ti) = tpi , and the
differential structure ∆ = {∂1, . . . , ∂n} by the partial derivations ∂i = d

dti
.

3.3 In view of Theorem 3.1(b) even over a general IDF-ring (S, φ, ∆) a Frobenius
module (M, Φ) with differential structure ∆M is called an IDF-module if ∆M and Φ
are related by the formulas

∂M,i ◦ Φ = ziΦ ◦ ∂M,i

with the transition elements zi coming from S. In the next theorem we want to
clarify how in this case the solution rings with respect to Φ and ∆M are related.

Theorem 3.3. Let (S, φ, ∆) be a pure IDF-ring with char(S) = 0 and (M, Φ, ∆M)
an IDF-module over S.

(a) Let (R, φR) be a minimal solution ring of (M, Φ). Then there exist a differential
structure ∆R on R so that (R, ∆R) is a solution ring of (M, ∆M), and the solution
spaces are related by

Sol∆R(M) = CR ⊗Rφ SolΦR(M) and SolΦR(M) = Sol∆R(M)
eΦ

where Φ̃ denotes the canonical extension of Φ onto R⊗S M .

(b) Set S̃ := CR ⊗CS
S with trivially extended D-structure ∆̃. Then R is a Picard-

Vessiot ring of the D-module (MeS, ∆̃M) over (S̃, ∆̃).

(c) The ring of constants CR is a minimal solution ring of a Frobenius module of
finite rank over CS. In particular, the ring CR is contained in the completion of the
maximal unramified extension (ĈS)ur

Q of CS with respect to Q ∩ CS.

Proof. The proof is almost identical to the proof of Theorem 2.3. For (a) we only
have to recognize that by Corollary 3.2 any fundamental solution matrix Y of (M, Φ)
additionally is a fundamental solution matrix of (M, ∆M). Then part (b) and the
first part of (c) follow with the same arguments. Finally, the second part of (c) is
an application of Theorem 1.7.

Corollary 3.4. Let (S, φ, ∆) be a pure IDF-ring with char(S) = 0 and characteristic
ideal Q. Assume the ring of differential constants CS of S is complete with respect
to Q ∩CS and the residue field CS/(Q ∩CS) is separably algebraically closed. Then
for any IDF-module (M, Φ, ∆M) over S the following holds: R is a minimal solution
ring of (M, Φ) over S if and only if R is a PV-extension for (M, ∆M) over S, and
the solution spaces are related by the formulas given in Theorem 3.3(a).
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The proof follows immediately from Theorem 3.3, since our assumptions imply CS =
(ĈS)ur

Q . Among the rings S with this property are, for example, the polynomial ring
W [t1, . . . , tn] and the ring of restricted power series W 〈t1, . . . , tn〉 over the Witt ring

W = W(Falg
p ) = Ẑur

p or over the ring of integers in the p-adic universe Cp with the
obvious IDF-structures.
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4 Galois Groups and Picard-Vessiot Theory

4.1 We start again with a Frobenius module (M, Φ) of rank m over a pure
Frobenius ring (S, φ) of arbitrary characteristic. For simplicity in this chapter we
substitute S by its field of fractions F := Quot(S). By Theorem 1.7 there exists a
minimal solution ring (R, φR) of M over F without zero divisors and with ring of
invariants Rφ = F φ. The Frobenius automorphism group of R/F is defined by

AutΦ(R/F ) = {γ ∈ Aut(R/F ) | φR ◦ γ = γ ◦ φR}.

Obviously any element γ ∈ AutΦ(R/F ) acts on the F φ-vector space SolΦR(M) by an
F φ-linear transformation. Thus we obtain a faithful representation of AutΦ(R/F )
into GLm(F φ). This explains the first part of the next proposition, the second part
follows from Theorem 1.2 and ordinary Galois theory.

Proposition 4.1. Let (M, Φ) be a Frobenius module over a pure Frobenius field
(F, φ) with minimal solution ring (R, φR). Then the following holds:

(a) The group G := AutΦ(R/F ) is a subgroup of GLm(F φ).

(b) If F is an ordinary Frobenius field, the ring of G-invariants RG equals F .

Now let (M, ∆M) be a D-module (or an ID-module, respectively,) over a differential
field (F, ∆) of arbitrary characteristic with field of constants CF . Then by differential
Galois theory we obtain a minimal solution ring (R, ∆R), which may not be unique
in case CF is not algebraically closed. But in any case, the ring of constants CR of R
is at most a finite extension of CF . In many cases there even exists a solution ring
R with CR = CF , for example if F has a CF -valued place regular for M (compare
Section 5.2). Then we define the differential automorphism group by

Aut∆(R/F ) = {γ ∈ Aut(R/F ) | ∂ ◦ γ = γ ◦ ∂ for all ∂ ∈ ∆R}.

Again Aut∆(R/F ) acts on the solution space Sol∆R(M) which now is a vector space
over CR. This shows the first part of

Proposition 4.2. Let (M, ∆M) be a D-module (ID-module in the case of positive
characteristic) over a differential field (F, ∆) with minimal solution ring (R, ∆R).

(a) The group G := Aut∆(R/F ) is a subgroup of GLm(CR).

(b) If CF is an algebraically closed field and R is separabel over F , then RG equals
F .

Here part (b) follows from Picard-Vessiot theory in characteristic zero (see for ex-
ample [12], Thm. 1.27) or characteristic p > 0, respectively (see [8], Thm. 3.5 or [5],
Thm. 3.10). It remains to study what happens in case CF is not algebraically closed
and how for IDF-modules the groups Aut∆ and AutΦ are related.
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4.2 The first step to establish a reasonable Galois correspondence between R/F
and G = Aut∆(R,F ) must be to prove RG = F. For this we assume that the field
of constants CR of R coincides with CF which can be achieved by a finite extension.
Then R/F becomes a Picard-Vessiot ring with field of differential constants K :=
CR = CF . In this situation T. Dyckerhoff [2] proposed to introduce a functor from
the category of K-algebras to the category of groups

Aut∆(R/F ) : K-Alg → Groups, B 7→ Aut∆(R⊗K B/F ⊗K B)

which sends a K-algebra B to the group of differential automorphisms
Aut∆(R⊗K B/F ⊗K B) where the differential structure on R (or F , respectively,) is
trivially extended to the tensor product. The following proposition has been proved
by T. Dyckerhoff in characteristic zero ([2], Thm. 1.26) and A. Röscheisen in positive
characteristic ([13], Prop. 10.9).

Proposition 4.3. For a Picard-Vessiot ring R/F , the group functor Aut∆(R/F ) is
represented by the K-algebra of differential constants in R⊗F R.

Thus Aut∆(R/F ) is an affine group scheme over K which will be called the differ-
ential Galois group scheme Gal∆(R/F ) of R/F . Obviously the group Aut∆(R/F )
introduced in the last subsection coincides with the group of K-rational points of
GK = Gal∆(R/F ). As in the classical case, Proposition 4.3 leads to a torsor theorem
with GF := Spec(F )×K GK :

Corollary 4.4. Let R/F be a Picard-Vessiot ring. Then Spec(R) is a GF -torsor
over Spec(F ).

For the differential Galois group scheme G = Gal∆(R/F ) the ring of (functorial)
invariants AG of a K-algebra A is defined by the set of all a ∈ A such that for
all K-algebras B the element a ⊗ 1 ∈ A ⊗K B is invariant under G(B). It is then
immediate that RG = F . Now let L := Quot (A) be the localization of A by all non
zero divisors. Then an element a

b
∈ L is called invariant under G if for all K-algebras

B and all β ∈ G(B)

β(a⊗ 1) · (b⊗ 1) = (a⊗ 1) · β(b⊗ 1) ∈ L⊗K B.

The ring of invariants of L is denoted by LG. With these notations we obtain

Theorem 4.5. Let (F, ∆) be a differential field in arbitrary characteristic with field
of constants K, and let R/F be a Picard-Vessot ring with differential Galois group
scheme G = Gal∆(R/F ) and field of fractions E. Then:

(a) There exists a Galois correspondence between the lattice of closed K-subgroup
schemes H of G and the lattice of intermediate differential fields L of E/F given by

H 7→ EH and L 7→ Gal∆(RL/L).
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(b) If H � G is a normal K-subgroup scheme, then EH = Quot(RH) and RH is a
Picard-Vessiot ring over F with differential Galois group scheme G/H.

(c) The K-subgroup scheme H is reduced if and only if E is separable over EH.

The proof for Theorem 4.5 in characteristic zero is given by Dyckerhoff ([2], Thm. 1.37)
and in positive characteristic by Röscheisen ([13],Thm. 11.4). The Galois correspon-
dence above translates into a Galois correspondence with the groups of K-rational
points H(K) instead of H as in the classical case, if and only if for all closed K-
subgroup schemes H of G,H is reduced and the group H(K) is dense in H(Kalg),
where Kalg denotes an algebraic closure of K.

4.3 It is obviously possible to develop a completely similar theory for the Frobe-
nius automorphism groups. Then one obtains a Frobenius Galois group scheme
GΦ := GalΦ(R/F ) over the field F φ represented by (R⊗F R)φR⊗φR , and R becomes
a GΦ

F -torsor of GΦ over Spec(F ), at least if F is the field of fractions of a pure Frobe-
nius ring. These facts have been worked out by Papanikolas ([10], Thm. 4.2.11) in
the case where φ is an automorphism of F , but the results remain true for Frobenius
endomorphisms, too. Here we do not want to follow this direction further. Instead
we want to compare the Galois group schemes Gal∆(R/F ) and GalΦ(R/F ) in the
case of a common minimal solution ring.

In characteristic zero any D-field F is an ID-field and any D-module over F is an
ID-module. Hence we may assume without loss of generality that (M, Φ, ∆M) is
an IDF-module over a field of fractions of an IDF-ring in arbitrary characteristic.
Then by Theorem 2.3 and Theorem 3.3 a necessary and sufficient condition for the
existence of a common minimal solution ring R for the ID- and the F-structure is
CF = CR. This implies that the minimal solution ring of M with respect to Φ is a
Picard-Vessiot extension over F with respect to ∆M . This is true for example under
the assumption of Corollary 2.4, Corollary 2.5 or Corollary 3.4, respectively. Then
Spec(R) at the same time is a G∆

F -torsor for G∆ = Gal∆(R/F ) and a GΦ
F -torsor for

GΦ = GalΦ(R/F ). This implies

Theorem 4.6. Let (M, Φ, ∆M) be an IDF-module over a pure IDF-field (F, φ, ∆)
in arbitrary characteristic. Assume that the ring of differential constants CR of a
minimal Frobenius solution ring R of M equals CF . Then for the Galois group
schemes GΦ

F φ = GalΦ(R/F ) and G∆
K = Gal∆(R/F ),

G∆
K = Spec(K)×F φ GΦ

F φ .

Thus in the case of Theorem 4.6 the Galois group schemes are the same up to a base
change with K (compare [6], Prop. 9.2, for a p-adic version involving the respective
groups of rational points.)
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4.4 We close this chapter with two examples. In both cases we take the field
F = Falg

p ((s))(t) as base ring S. F has a Frobenius endomorphism φ defined by
φ|Falg

p
= φp, φ(s) = s and φ(t) = tp and a compatible differential structure given

by ∆ = {∂∗} with the iterative derivation ∂∗ = ∂∗t on t (compare Examples 1.1.2
and 2.1.2). Thus (F, φ, ∆) is the field of fractions of a pure IDF-ring with field of
differential constants CF = Falg

p ((s)) and field of Frobenius invariants F φ = Fp((s)).
We will now show that over F in contrast to ordinary Frobenius rings infinite groups
like Gm or Ga occur as Galois groups of IDF-modules.

4.4.1 Let M be the 1-dimensional F -module M = bF with basis B = {b}.
It becomes a Frobenius module over F by setting Φ(b) = b(1 + at) with a ∈ F φ.
Then the solution ring R of (M, Φ) is generated over F by an element y ∈ R with
φR(y) = (1 + at)−1y. This leads to the solution space

SolΦR(M) = yF φ with y =
∏
l∈N

(1 + atp
l

).

In case a ∈ Fp the power series y is solution of a Frobenius module over the ordinary
Frobenius ring Fp(t). Thus y is algebraic over Fp(t) by Theorem 1.2 and the identity
φ(y) = yp = (1+at)−1y leads to y = (1+at)−1/(p−1). If a 6∈ Fp, y has infinitely many
zeros in Fp((s))

alg and is thus transcendental over F .

By Theorem 2.1 the Frobenius structure Φ of M is related to a differential structure

∆M = {∂∗M}. A solution By of (M, ∆M) fulfills ∂
(pl)
M (By) = 0 for all l ∈ N. Defin-

ing Dl := φl(DB(Φ)), Bl+1 := BD0 · · ·Dl,y l+1 := (D0 · · ·Dl)
−1y , this statement

becomes equivalent to 0 = ∂
(pl)
M (By) = ∂

(pl)
M (Bl+1y l+1) = Bl+1∂

(pl)
R (y l+1) and hence

to

∂
(pl)
R (y) = ∂

(pl)
R (D0 · · ·Dly l+1) = ∂

(pl)
F (D0 · · ·Dl)y l+1 = A(pl)y

for all l ∈ N where

A(pl) = ∂
(pl)
F (D0 · · ·Dl)(D0 · · ·Dl)

−1.

In our example we compute A(pl) = (1 + atp
l
)−1. This allows to verify directly that

y as above additionally solves the differential equations of the ID-module (M, ∆M).

The Galois group scheme of (M, Φ) or (M, ∆M), respectively, is a subgroup scheme
of Gm over Fp((s)) (or Falg

p ((s)), respectively). By the considerations above we obtain
the full group Gm as Galois group for exactly those a ∈ F φ not belonging to Fp.

4.4.2 Now we start with a 2-dimensional Frobenius module M over F with
basis B = {b1, b2} and Frobenius action given by Φ(b1) = b1, Φ(b2) = atb1 + b2 with
a ∈ CF . Then a solution ring R of (M, Φ) is generated by yi ∈ R with
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φR

(
y1

y2

)
=

(
1 −at
0 1

) (
y1

y2

)
.

Thus y2 belongs to Rφ = F φ and can be chosen to be y2 = 1. The other solution
y := y1 fulfills φ(y) = y − at. This gives

SolΦR(M) = yF φ + F φ with y =
∑
l∈N

φl(a)tp
l

.

In case a ∈ Fq((s)) for some power q of p, the sequence φl(a) becomes periodic and
y is algebraic over F . Conversely, assume that y is algebraic over F . Then there
exists a nontrivial equation of the form

n∑
i=0

giy
pi

= 0 with gi ∈ F

of minimal degree. Using ∂(pl) for l large enough, we find

n∑
i=0

giφ
l−i(a) = 0.

Taking a shortest such linear recursion for the φl(a) we can conclude gi ∈ F φ. This
implies that the F φ-vector space generated by the φl(a) is finite dimensional and
thus the sequence (φl(a))l∈N is periodic. In all other cases, for example for

a =
∑
i∈N

cis
i ∈ Falg

p ((s)) with ci ∈ Fpi+1 \ Fpi ,

y is transcendental over F .

The ID-structure ∆M related to Φ can be computed with the formulas derived in
the previous example. Thus the differential equations for y1, y2 are given by

∂
(pl)
R

(
y1

y2

)
= A(pl)

(
y1

y2

)
with A(pl) =

(
0 φl(a)
0 0

)
.

The Galois group schemes GalΦ(R/F ) and Gal∆(R/F ) are subgroup schemes of the
additive group Ga over F φ or CF , respectively, and we obtain the full group Ga if
and only if (φl(a))l∈N is not periodic.

21



5 Global Frobenius Modules and the Grothendieck

Conjecture

5.1 In this last chapter we study differential modules over differential rings
which have infinitely many Frobenius endomorphisms. In order to construct such
rings we start with a number field K (of finite degree over Q) with set of non-
archimedean valuations (places) PK . Let P′K be a cofinite subset of PK and Op the
valuation ring of p ∈ P′K . Then a Dedekind ring of type

O′
K :=

⋂
p∈P′

K

Op ⊆ K

is called a global ring or an order in K. The valuations p ∈ P′K can be extended
uniquely onto the rational function field K(t) := K(t1, . . . , tn) by setting |ti|p =
1 (Gauß extension) and further to every finite extension F/K(t). The set of all
valuations obtained in this way is denoted by P′F := {P ∈ PF | P|O′

K
∈ P′K} and is

called the set of t-extensions of P′K . Then obviously

O′
F :=

⋂
P∈P′

F

OP ⊆ F

is again a Dedekind ring.
The field K(t) has a natural differential structure ∆ = {∂1, . . . , ∂n} given by the
partial derivations ∂i = d

dti
. These extend uniquely to F and define a differential

structure ∆F on F . In the following a ring O′
F as above is called a global differential

ring (global D-ring) if

∂(O′
F ) ⊆ O′

F and ∂(P) ⊆ P for all ∂ ∈ ∆F , P ∈ P′F .

Further, (O′
F , ∆F ) is called a global iterative differential ring (global ID-ring) if the

inclusions above additionally hold for the higher derivations ∂
(k)
i := 1

k!
∂k

i (compare
Section 3.1). Obviously in any algebraic function field of several variables F over a
number field K there exist many global ID-rings which can be obtained from any
given O′

F by localizing at most at the places P ∈ P′F ramified in F/K(t) (see [7],
Prop. 1.1).
For the present, let K/Q and F/K(t) be Galois extensions. Then the global ID-
rings (O′

F , ∆F ) have Frobenius structures for all P ∈ P′F . These can be obtained
by first lifting the Frobenius endomorphisms φp of the residue field extension O′

K/p
over Fp = Z/(p) to an automorphism φp of O′

K over Z(p). Then φp can be extended
to an endomorphism of K(t) by setting, for example, φp(ti) = tpi . Since F/K(t)
is assumed to be a Galois extension, φp extends further to an endomorphism φP of
O′

F (unique up to automorphisms of F/K(t)). Then (O′
F , (φP)P∈P′

F
, ∆F ) is called

a global ID-ring with Frobenius structure or a global IDF-ring. This notion fits with
the definitions used in earlier chapters, since the residue ring of O′

F modulo the
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characteristic ideal Q = P is an ordinary Frobenius ring for every P ∈ P′F . In
case K/Q or F/K(t) is not a Galois extension, φP(O′

F ) may be a subring of an

isomorphic global ID-ring Õ′eF . But then a power of φP maps O′
F to O′

F and thus
defines a Frobenius endomorphism on O′

F .

5.2 A global differential module (global D-module) (M, ∆M) over a global D-
or ID-ring (O′

F , ∆F ) with ∆F = {∂1, . . . , ∂n} is a free O′
F -module with differential

structure ∆M = {∂M,1, . . . , ∂M,n} related to ∆F by

∂M,i(ax) = ∂i(a)x + a∂M,i(x) for a ∈ O′
F , x ∈ M.

The pair (M, ∆M) is called a global iterative differential module (global ID-module)

if in addition ∂
(k)
M,i(M) ⊆ M holds for all higher derivations ∂

(k)
M,i := 1

k!
∂k

M,i. Next we
want to construct and study Picard-Vessiot rings for global ID-modules.

In order to avoid new constants from now on we assume that K is algebraically
closed in F and O′

F /O′
K has a regular rational place ℘, i.e., the corresponding

local ring (O′
F )℘ is regular. Then the completion F̂℘ of F with respect to ℘ is the

field of fractions K((u)) := K((u1, . . . , un)) of the ring of power series K[[u ]] :=
K[[u1, . . . , un]], where the ui are local parameters at ℘ of the form ui = ti − ci with
ci ∈ O′

K or ui = t−1
i . This defines an embedding

τ℘ : O′
℘ → K[[u ]], a 7→

∑
(k1,...,kn)∈Nn

(∂
(k1)
1 ◦ · · · ◦ ∂(kn)

n (a))(℘)uk1
1 · · ·ukn

n

which extends uniquely to a differential monomorphism τ℘ : O′
F → K((u)) over

O′
K called Taylor homomorphism. Now we assume that ℘ in addition is a regular

point for M . This means that Kalg⊗O′
K

M contains a ∆M -invariant Kalg[[u ]]-lattice.
Then M becomes trivial over K((u)). Obviously any global D-module over a global
D-ring O′

F inside a rational function field F = K(t) has infinitely many such regular
points ℘ which are regular for M .

Theorem 5.1. Let (M, ∆M) be a global (iterative) D-module of rank m over a global
(iterative) D-ring (O′

F , ∆F ) with ring of differential constants O′
K. Assume O′

F has
a regular rational place ℘ over O′

K regular for M .

(a) There exists a Picard-Vessiot ring (R, ∆R) inside F̂℘ for M over O′
F with fun-

damental solution matrix Y ∈ GLm(R) which satisfies Y (℘) ∈ GLm(O′
K). In the

iterative case ∆R is an iterative differential structure.

(b) The property Y (℘) ∈ GLm(O′
K) determines (R, ∆R) uniquely up to (iterative)

differential isomorphism.

Proof. In the univariate case Theorem 5.1 is proved in [7], Thm. 2.1. The main point
is the extension of the Taylor homomorphism τ℘ to U := O′

F [GLm] = O′
F [xij, det(xij)

−1]mi,j=1.
Let Ai ∈ (O′

F )m×m be the matrix representing the derivation ∂M,i with respect to
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some fixed basis B of M , i.e., ∂M,i(B) = −BAi. Then U becomes a D-ring by
setting ∂U,i(X) := AiX for X = (xij)

m
i,j=1. We now choose a matrix X(℘) =

(xij(℘))m
i,j=1 ∈ GLm(O′

K) of initial values at ℘, for example xij(℘) = δij. Then

from Ai(℘) ∈ (O′
K)m×m and A

(k)
i (℘) ∈ Km×m for the matrices A

(k)
i representing ∂

(k)
M,i

we obtain (∂
(k1)
U,1 ◦ · · · ◦ ∂

(kn)
U,n (X))(℘) ∈ Km×m for all i, kj by recursion. This leads to

an extension

τ℘ : U → K((u)), xij 7→
∑

(k1,...,kn)∈Nn

(∂
(k1)
U,1 ◦ · · · ◦ ∂

(kn)
U,n (xij))(℘)uk1

1 · · ·ukn
n

of the Taylor homomorphism on U depending on X(℘). By construction, τ℘ is a
differential homomorphism whose image in K((u)) is a simple D-ring over τ℘(O′

F )
generated by τ℘(xij) and τ℘(det(X)−1). Thus the kernel of τ℘ is a maximal differ-
ential ideal P � U with P ∩ O′

F = (0). Hence R := U/P is a Picard-Vessiot ring
of M over O′

F with fundamental solution matrix Y := X (mod P ). The Taylor
homomorphism τ℘ factors through R, thus we obtain a further injective Taylor map

τ℘ : R → K((u)), yij 7→
∑

(k1,...,kn)∈Nn

(∂
(k1)
R,1 ) ◦ · · · ◦ ∂

(kn)
R,n (yij))(℘)uk1

1 . . . ukn
n .

Now τ℘(CR) ⊆ K implies CR
∼= τ℘(CR) = O′

K , proving (a).

The uniqueness in (b) follows as in the classical case: Let R and R̃ be two PV-

extensions for M overO′
F with fundamental solution matrices Y, Ỹ and Y (℘), Ỹ (℘) ∈

GLm(O′
K). Then by general PV-theory there exists a matrix C ∈ GLm(Kalg) such

that Ỹ = Y C. Specialization modulo ℘ leads to Ỹ (℘) = Y (℘)C showing C ∈
GLm(O′

K).

Corollary 5.2. If in Theorem 5.1 (M, ∆M) is a global ID-module over a global
ID-ring, the solution space Sol∆R(M) has the property

τ℘(Sol∆R(M)) ⊆ O′
K [[u]],

i.e., Sol∆R(M) has a basis consisting of Taylor series whose coefficients are integral
for almost all primes p ∈ PK.

This follows immediately from Theorem 5.1 since in this case aside from Ai(℘) all

matrices A
(k)
i (℘) belong to (O′

K)m×m.

5.3 By Corollary 5.2 Picard-Vessiot rings (R, ∆R) of global ID-modules (M, ∆M)
can be reduced modulo P for almost all P ∈ P′F . On the other hand, the ID-module
M itself can also be reduced to an ID-module (MP, ∆MP

) over FP := O′
F /P by

reducing the ID-structure ∆M modulo P. Then general iterative differential Galois
theory proves the existence of a Picard-Vessiot ring for MP after a finite extension
of constants ([8], Lemma 3.2). If, moreover, there exists a regular rational place in
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FP regular for MP, a Picard-Vessiot ring RP for MP over FP can be constructed
without new constants (compare the characteristic zero case). The next theorem
shows that for almost all P ∈ P′F , the reduced PV-ring R (mod P) and the iterative
PV-ring RP for MP coincide.

Theorem 5.3. Let (M, ∆M) be a global ID-module over a global ID-ring (O′
F , ∆F )

with a regular rational place ℘ in O′
F /O′

K regular for M . For P ∈ P′F , let (MP, ∆MP
)

be the reduced ID-module over FP. Assume the reduced place ℘ is regular for MP.
Then the rings R (mod P) and RP are isomorphic as ID-rings.

Proof. For the proof we observe that the reduced PV-ring R := R(mod P) (of
Taylor series) with fundamental solution matrix Y := Y (mod P) is a solution ring
for MP without new constants . But then by [5], Prop. 4.8, R is an iterative PV-ring
for MP over FP which is unique up to ID-isomorphism over FP.

Grothendieck’s Generic Flatness Lemma (see [3], Cor. 14.5) shows that the dimen-
sions of R (mod P) and RP are related by the formula

dim(RP) = dim(R)− 1 for almost all P ∈ P′F
(compare [7], Cor. 3.2). This leads to

Corollary 5.4. Under the assumptions of Theorem 5.3 the Picard-Vessiot ring R
of M is algebraic over O′

F if and only if for almost all P ∈ P′F the Picard-Vessiot
ring RP of the reduced ID-module MP is algebraic over FP.

The property that RP/FP is algebraic is guaranteed by the existence of a global
strong Frobenius structure (ΦP)P∈P′

F
for M . Such a Frobenius structure exists for

example for all ID-modules which generate Galois ring extensions Õ′eF /O′
F inside

ordinary finite Galois extensions F̃ /F . This finally leads to

Theorem 5.5. Let (M, ∆M) be a global ID-module over a global IDF-ring
(O′

F , (φP)P∈P′
F
, ∆F ) with strong Frobenius structure ΦP for almost all P ∈ P′F . As-

sume there exists a regular rational place in O′
F regular for M . Then the Picard-

Vessiot ring R of M is algebraic over O′
F .

Of course, for the conclusion in Theorem 5.5 that R/O′
F is algebraic, the existence of

a p-adic Frobenius structure or a congruence Frobenius structure would be enough.
On the other hand, the existence of an ID-structure ∆M = {∂1, . . . , ∂n} implies
the triviality of the p-curvature ∆p

M = {∂p
1 , . . . , ∂

p
n} for almost all primes p modulo

P ∈ P′F with (p) ⊆ P. Thus Grothendieck’s p-Curvature Conjecture predicts that
all ID-modules M over global ID-rings O′

F are algebraic. By the considerations
above this statement is equivalent to the existence of a global strong Frobenius
structure for M .
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Queen’s Papers in Pure and Applied Mathematics 66 (1983).

[2] T. Dyckerhoff: Picard-Vessiot extensions over number fields. Diplomarbeit,
Univ. Heidelberg 2005.

[3] D. Eisenbud: Commutative Algebra with a View Toward Algebraic Geo-
metry. Springer-Verlag, New York 1995.

[4] F. Heiderich: Picard-Vessiot-Theorie für lineare partielle Differentialglei-
chungen. Diplomarbeit, Univ. Heidelberg 2007.

[5] B. H. Matzat: Differential Galois Theory in Positive Characteristic. IWR-
Preprint 2001-35.

[6] B. H. Matzat: Frobenius modules and Galois groups. In: K. Hashimoto
et al. (Eds.): Galois Theory and Modular Forms. Kluwer, Dordrecht 2003,
pp. 233-268.

[7] B. H. Matzat: Differential equations and finite groups. Journal of Algebra
300 (2006), 673-686.

[8] B. H. Matzat, M. van der Put: Iterative differential equations and the
Abhyankar conjecture. J. reine angew. Math. 257 (2003), pp. 1-52.

[9] B. H. Matzat, M. van der Put: Constructive differential Galois theory.
In: L. Schneps (Ed.): Galois Groups and Fundamental Groups. Cambridge
Univ. Press 2003, pp. 425-467.

[10] M. A. Papanikolas: Tannakian duality for Anderson-Drinfeld motives and
algebraic independence of Carlitz logarithms. Invent. math. (2007)

[11] M. van der Put, M. F. Singer: Galois Theory of Difference Equations.
Springer-Verlag, Berlin 1997.

[12] M. van der Put, M. F. Singer: Galois Theory of Linear Differential Equa-
tions. Springer-Verlag, Berlin 2003.
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