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Über den starken Linseneffekt von Galaxienhaufen

Zusammenfassung
Wir stellen eine neue, semi-analytische Methode vor, um die Effizienz des starken Linseneffekts in Galaxien-

haufen zu berechnen. Sie reproduziert die Ergebnisse vollständig numerischer Simulationen, ist aber wesentlich
schneller. Wir wenden sie auf eine Galaxienhaufenpopulation an und zeigen, dass Verschmelzungsprozesse die
Wahrscheinlichkeit f̈ur starke Linseneffekte erheblich erhöhen. Eine Analyse des starken Linseneffekts in kosmol-
ogischen Modellen mit verschiedenen Arten dynamischer dunkler Energie zeigt, dass die Anzahl stark verzerrter
Bilder betr̈achtlich zunimmt, wenn fr̈uhe dunkle Energie zugelassen wird. Wir untersuchen die starken Gravi-
tationslinseneigenschaften und die Röntgenemission von Galaxienhaufen, um Auswahleffekte zu quantifizieren.
Wir berechnen optische Tiefen von Galaxienhaufen als Funktion der Beobachtungszeit und untersuchen, wie
sich die Konzentrationsverteilung der Dichteprofile darauf auswirkt. Wir stellen fest, dass die Profilkonzentra-
tion einen Auswahleffekt auf die Linseneffizienz und die Röntgenleuchtkraft erzeugt. Schließlich zeigen wir, dass
das Arc-Statistik-Problem in einem Universum mit realistisch normierten Schwankungen der Materiedichte auch
dann fortbesteht, wenn die Rotverschiebungsverteilung der Quellen und Wechselwirkungen zwischen Galaxien-
haufen angemessen berücksichtigt werden. Eine abschließende Untersuchung des starken Linseneffekts in der
TeVeS-Theorie bestätigt, dass zus̈atzliche unsichtbare Masse notwendig ist, um die beobachteten Linseneffekte im
verschmelzenden Galaxienhaufen1E0657− 558 zu sehen.

On Strong Lensing by Galaxy Clusters

Abstract
We present a novel, semi-analytic method for computing the strong-lensing efficiency of galaxy clusters. It

nicely reproduces the results of fully numerical simulations while being substantially faster. Applying the method
to a cluster population, we find that mergers considerably increase the probability for strong lensing. Analysing
strong lensing in cosmological models with various forms of dynamical dark energy, we show that the number
of highly distorted images is substantially larger when early-dark energy is allowed for. We jointly study strong-
lensing and X-ray characteristics of clusters in order to quantify selection effects. We compute cluster optical
depths as a function of exposure time and study how the concentration distribution of density profiles affects their
strong-lensing and X-ray properties. We reveal a bias between lensing efficiency and X-ray luminosity and the
profile concentration. Finally, we show that the arc-statistics problem persists in a universe with realistically nor-
malised matter-density fluctuations even if the source redshift distribution and cluster interactions are appropriately
taken into account. A concluding study of strong lensing in the TeVeS theory confirms that additional unseen mass
is needed to explain observed lensing effects in the merging cluster1E0657− 558.
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That is the exploration that awaits you,
not mapping stars and studying nebulas,
but charting the unknown possibilities of existence.
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Introduction

Over the past two decades the commonly accepted picture of the Universe underwent dramatic changes, due mainly
to unprecedent observational efforts. Such efforts were made possible by the great advances in instrumentation and
observational and data compression tecniques that characterised recent years.

Just at the beginning of the 90s the COBE satellite (Smoot et al., 1992) succesfully measured to a high precision
the mean temperature of the Cosmic microwave background, and detected for the first time deviations therefrom.
Among other things, the tiny amplitude of such deviations confirmed the case for the dominance of collisionless
dark matter on cosmological scales. About ten years later, the WMAP satellite (Spergel et al., 2003, 2007) much
refined the COBE measurements and for the first time an experiment detected the E-mode polarization of the
relic radiation (Kovac et al., 2002). The polarization signal is mainly induced by the Thomson scattering between
photons and free electrons at the emission surface, and has been used as an additional source of cosmological
information. Also, gravitational light deflection acting on the background radiation was only very recently detected
using, among others, WMAP data (Smith et al., 2007).

In the near future, the ESA satellite Planck promises to refine the measurements related to the cosmic radiation
even more, thanks to a wider frequency coverage, a much improved sensitivity and resolution and a better under-
standing of the foreground systematics. Likely, it will allow the detection of the polarization B-modes, possible
indication for the presence of primordial gravity waves, and will thighten by more the constraints on the values
of cosmological parameters. In addition to this, Planck data will provide the most sensitive all-sky survey in the
sub-millimeter band, permitting the detection of up to thousands galaxy clusters due to their thermal Sunyaev-
Zel’dovich effect (Scḧafer & Bartelmann, 2007). This will provide invaluable information on the number counts
of distant clusters and the properties and evolution of the intra-cluster plasma.

Much attention was also recently devoted to the identification of distant supernovae of type Ia, that can be used
as standard candles for probing the geometry of the Universe. Such data provided one of the first independent
proofs of the accelerated expansion of the Universe, and the subsequent need for a dark energy component in the
cosmic fluid (Astier et al., 2006). Until today very few supernovae have been observed at redshift above unity
(Riess et al., 2004), but many other projects are ongoing in order to enlarge this number by much. The SNAP
project for instance (Aldering et al., 2002), forecast the observation of up to2, 000 new supernovae at redshift
smaller than∼ 2.

The knowledge of the large scale distribution of matter in the Universe greatly improved as well thanks to the
wide optical surveys (Tegmark et al., 2004; Cole et al., 2005), that allowed to determine the redshift and position
of hundreds of thousands of galaxies. This permitted to constrain the dark and luminous matter structure on the
largest scales, thanks also to the application of techniques involving gravitational lensing. As will be explained in
more detail in the course of this thesis, cosmic shear and cosmic tomography indeed permit to put constraints on
the projected and 3-dimensional distribution of matter in the Universe.

Finally, recent years saw the advent of a new generation of X-ray satellites, like ROSAT (Voges, 1993) first
and Chandra (Weisskopf et al., 2002) and XMM-Newton (Jansen et al., 2001) then. These allowed both to have
all-sky surveys of X-ray emitting galaxy clusters and to resolve the finer details of the X-ray structure of individual
objects, revealing a variety of phenomena like shock fronts and cooling flows. The data gathered permit to track
the dynamical and thermodynamical history of galaxy clusters, both as individuals and as a population, giving
priceless information about the formation process of cosmic structures. Moreover, the Sunyaev-Zel’dovich effect
from the hot plasma in galaxy clusters will be an object of much attention in the near future, not only because of
the Planck satellite, but also because of forthcoming dedicated observatories like ALMA (Brown et al., 2004).

In addition to the observational tecniques, the ability of formulating theoretical predictions also improved
dramatically thanks to the use of numerical simulations. The advances in the computer technology and in the
numerical algorithms allow simulations of the large scale structure of the Universe with a space and time resolution
unconceivable just two decades ago. Also individual objects like galaxies and galaxy clusters can be simulated to
a very high accuracy, providing a large number of key details to be compared with observations. One of the main
successes in numerical cosmology consists of the understanding of the distribution and clustering properties of dark
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matter. Baryonic matter, due to the related complex physical processes, is much more difficult to simulate, and
there are several points where numerical works fail to reproduce the observational data in this respect. Advances
in computational tecniques, as well as in the theoretical understanding of the main processes affecting gas physics
will be key issues in future research.

From the combination of the above observational and theoretical efforts, a quite clear general cosmological
picture has emerged. According to that, the Universe is well described by general relativity and spatially flat.
Moreover it is filled in for three quarters of some unknown kind of uniform dark energy and the remaining content
is basically made up of matter, of which about 80% is not visible. This standard cosmological model has proven
to be unprecedentedly succesful in describing the observable Universe, and up to date managed to broadly pass
almost all the observational tests it went through.

While from the observational point of view the standard model works very well, from a theoretical perspective
it is highly unsatisfactory. Firstly, for several reasons the dark matter component cannot be constituted by known
particles, implying that the current standard model for particle physics is either wrong or inaccurate for high
energies. Direct search for new dark matter particle candidates is currently ongoing. Secondly, and maybe more
fundamentally, the dark energy component lacks any theoretical explanation. One possibility is that it is the vacuum
energy of known fields that permeate the Universe. However, naive computation of the vacuum energy density for
the electromagnetic field for instance, leads to a value that is more than one hundred orders of magnitude larger
than the observed value. Alternatively, vacuum energy could be replaced by some kind of scalar field that mimicks
it, but this still poses problems on why such a field should be dominant just recently, as shown by observations.
Understanding the properties of dark energy (Albrecht et al., 2006) will be of fundamental importance in the future
to put limits on the many theoretical possibilities.

An alternative route to avoid such theoretical inconvenience is, rather than postulate some exotic content of
the Universe, to change the way in which the dynamics of the Universe itself and of matter inside it reacts to
such a content. In other words, the alternative is to modify the gravity law, either extending general relativity,
where possible, or replacing it with some more fundamental theory, possibly with quantum-mechanical motivation.
Several attempts have been made in this direction, using as starting point both the dynamics of galaxies and galaxy
clusters and the dynamics of the Universe. However, many of these attempts did not pass more elaborated tests,
like solar system phenomenology, and for others the development of the necessary formalism is lengthy and still
partially lacking. In summary, for the time being there is no alternative theory that shares the great success of
general relativity within the standard cosmological model, though several good candidates exist.

The standard cosmological model gives a global picture of the Universe that is relatively clear. Nevertheless,
there remain several details of the structure formation process that are still not thoroughly understood. Key in-
gredients to clarify them, expecially concerning galaxy clusters, are the gravitational deflection of light and X-ray
emission.

Despite the fact that X-ray emission is related to the intra-cluster hot plasma, hence to the baryonic matter only,
its bulk properties like temperature and luminosity are sensitive to the overall potential well of the structure. Also,
the finer details in the distribution of dark matter possibly influence the details of the observed X-ray emission
pattern. As a consequence, this kind of observations give a wealth of information also about the dark mass of
galaxy clusters. Unlike gravitational lensing however, the attempt to determine global properties of clusters using
X-ray emission only often assumes the gas to be in hydrostatic equilibrium in the overall dark matter potential well,
which needs not always be the case. Combining X-ray with lensing studies, for instance, can allow to understand
to which extent the hydrostatic equilibrium hypothesis is satisfied, which in turn is valuable in order to constrain
the dynamical activity of galaxy clusters (Puchwein & Bartelmann, 2007). Also, measuring the fraction of the
clusters’ mass that resides in gas and comparing that to the cosmic baryon fraction permits to test the correctness
of the structure formation and baryonic infall paradigm.

It was already explained that the new X-ray satellites revealed a variety of phenomena concerning the intr-
acluster medium, some of which are not yet succesfully reproduced in numerical hydrodynamical simulations,
and therefore much work remains to be done in this direction as well. These kind of details are of fundamental
importance in understanding the baryonic physics and its interplay with the dark matter component.

As mentioned above, the gravitational deflection of light is a tool of fundamental importance in probing the
dark side of the Universe. First of all, photons’ path are bent by matter clumps independently of matter’s intrinsic
nature and physical state. As a consequence, gravitational lensing is the ideal technique to understand the properties
and distribution of invisible matter. In addition, light deflection can be used in combination with other kinds of
observations that are sensitive only to luminous matter, in order to disentangle the contribution and separate the
effects of the two components. This is of extreme importance for understanding the baryons’ effect on the dark
matter density profiles.

The internal structure of galaxies and galaxy clusters probed through gravitational lensing yelds already a big
deal of information on their formation process, that ultimately depends on the underlying cosmology and on the
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initial conditions. However, light deflection by galaxy clusters gives also seldomly rise to strongly distorted images
like gravitational arcs that can be used statistically to gather cosmological information, or at least as a cross-check
for the standard model. In spite of their rarity, the abundance of these strong lensing events is highly sensitive to the
source and galaxy-clusters distributions, in addition to the deflectors’ internal structure and the distances involved.
All of these factors are somehow influenced by the underlying cosmology, and in particular by the properties of
dark energy.

The number of gravitational arcs predicted from numerical simulations for a standard cosmological model is
highly in contrast with the actually observed number (Bartelmann et al., 1998). This make up one of the few
instances in which the standard picture of the Universe is not succesful, and hints at some important piece of
cluster physics that has been ignored or not properly treated. Alternatively, this could hint at an extension of the
cosmological constant paradigm, with the introduction of some form of dynamical quintessence.

Despite the big theoretical effort in the past decade, many questions about arc statistics still remain without
a precise answer. Namely, what are the most relevant contributions to the global strong lensing efficiency of the
galaxy cluster population? What is the role played by the internal structure of dark matter halos in this context?
What is the effect of a dynamical form of dark energy? What is the amplitude of the strong lensing statistics
problem when the source distribution and the dynamical evolution of clusters are properly taken into account?
How is the strong lensing framwork modified when using theories of gravity alternative to general relativity?

The aim of this thesis is to shed some new light on some of these questions. Part of this goal is accomplished
by developing a novel, semi-analytic approach to strong lensing statistics. The method is illustrated and tested in
Chapter 4, together with a discussion of its validity and limitations. In the same Chapter, this method is applied
to the computation of the global strong lensing efficiency of a model population of galaxy clusters, extracted from
a cosmological simulation. The mergers and interactions between structures, that play a fundamental role in the
strong lensing efficiency and in the formation of galaxy clusters, are properly taken into account with a simplified
model.

In Chapter 5 the same investigation is extended to models beyond the standard one. To that end, the semi-
analytic calculation of lensing effciency is combined with Monte-Carlo generated merger trees for cluster-sized
dark matter halos, according to the guidelines of Somerville & Kolatt (1999). The total and differential lensing effi-
ciencies are computed and compared between four different dark energy models, including the usual cosmological-
constant one and two models with early-dark energy, whose relevance has recently been pointed out. As an im-
provement with respect to previous analyses, we use a realistic redshift distribution for the background galaxy
population.

Since up to date the search for strong lensing events in general and for gravitational arcs in particular is per-
formed in galaxy clusters that are selected through their X-ray luminosity, it is natural to ask how the previous
results hold if a flux threshold is applied to the synthetic cluster population. An answer to this question is given in
Chapter 6, where the lensing efficiency of X-ray luminous clusters is studied. The boost in temperature and lumi-
nosity that cluster mergers cause is also taken into account with a simple analytic prescription that Randall et al.
(2002) calibrated against numerical hydrodynamical simulations. Predictions are made about the strong lensing
efficency observed in flux-limited cluster samples.

In Chapter 7 we turn more attention to the inner structure of cluster-sized dark matter halos, and in particular to
the effect that a broad concentration distribution can have on the overall statistics of gravitational arcs and on the
observed X-ray properties, namely gas temperature and luminosity. The concentration distribution that emerges
from cosmological simulations of structure formation is used, togheter with the previously produced synthetic
cluster population for the first goal. For the second one, extended scaling relations between general properties of
clusters that take into account the inner structure of host dark matter halos are employed.

In Chapter 8 care is taken for evaluating the effect on strong lensing statistics of the normalization of the
power spectrum for primordial density fluctuations. The results are analysed in light of the new data release for
the WMAP satellite. Moreover, a realistic luminosity function for background sources is used in order to predict
the number of gravitational arcs seen in a low-normalization standard cosmological model. The relation to the
observational status and to previous work is discussed.

As a final goal, we also study in detail how theories of gravity alternative to general relativity cope with
gravitational lensing. In Chapter 9, a numerical algorithm is presented and tested that allows gravitational lensing
studies in the context of the recently proposed tensor-vector-scalar theory of gravity, that incorporates in a fully
covariant way the modified newtonian dynamics first developed by Milgrom (1983a). The algorithm is also applied
to a toy model of the cluster1E0657 − 558, that was recently pointed out as the direct evidence for the existence
of dark matter (Clowe et al., 2006)

The first three Chapters of this thesis are meant for introductory pourposes, in order to give all the important
concepts relevant for the subsequent discussion. In particular, in Chapter 1 we review the standard cosmological
model derived from general relativity with the postulated presence of dark matter and dark energy. We also ex-
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plore some important properties of cosmological models with early-dark energy. In Chapter 2 we continue the
discussion by describing the structure formation paradigm implanted within the standard cosmological model. In
particular we stress how the presence of primordial quintessence and the normalization of the power spectrum for
density fluctuations alter this scenario. Finally, in Chapter 3 we describe the formalism and phenomenology of the
gravitational deflection of light, with particular emphasis on the strong lensing features that are the center of this
work.

In this thesis we shall use notation according to which the speed of light in vacuumc is explicitly written,
unless otherwise stated. For tensors and vectors, greek letters will run over the full set of the four spacetime
coordinates, while latin letters will be restricted to spatial or angular coordinates only. The adopted signature
of the spacetime metric is(−,+,+,+). Boldface will be exclusively used to denote two and three-dimensional
vectors, and summation over repeated indices for vectors and tensors will be always considered implicit, according
to Einstein’s summation convention.
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Chapter 1

Cosmological Background

1.1 Introduction

The very foundation of modern cosmology is Einstein’s gravitation theory, General Relativity (GR henceforth,
Einstein 1915a,b, 1916), that allows a global description of the dynamics and evolution of the Universe on large
scales. One of the basic assumptions of the theory is that gravity is not an actual force, but the action of matter and
energy distributions on test particles is mediated by the metric tensorg of the 4-dimensional spacetime manifold.
While the striking predictive power of GR is shared by other metric theories of gravity (Brans & Dicke, 1961;
Starobinskij, 1980; Dvali et al., 2000; Bekenstein, 2004; Moffat, 2006; Zlosnik et al., 2007), up to now Einstein’s
gravity proved unprecedentedly successful in describing and forecasting a variety of phenomena, especially on
cosmological scales. One of these phenomena, the gravitational deflection of light, is the focus of this thesis and
will be described in detail in Chapter 3

The basic equations of GR areEinstein’s equationswhich link the metric tensor to the matter-energy content
of the spacetime. This set of equations is usually written in compact, tensor form as

G =
8πG

c4
T . (1.1)

Here,G is Einstein’s tensor, containing derivatives up to the second order of the metricg, while T is theenergy-
momentum tensor, specifing the matter-energy content of the system at hand. BothG andT are rank-2 symmetric
tensors, hence Eq. (1.1) is in general made of 10 independent equations.

In the rest of this Chapter we shall review the standard cosmological model derived from GR, with particular
focus on those aspects that will be most relevant for the development of this thesis. Cosmology and light deflection
in an alternative gravitation theory will be dealt with in Chapter 9.

1.2 Robertson-Walker Spacetimes

The number of independent Einstein’s equations can usually be reduced employing the symmetry of the system
at hand, and this is particularly true in cosmology. The symmetry assumption usually undertaken in this case is
historically calledcosmological principle, and it states that there is no preferred position nor direction in space, or
in other words that the Universe is homogeneous and isotropic on large scales.

The requirement, implied by the cosmological principle, according to which the Universe looks spatially
isotropic to a comoving observer, has the consequence that the spacetime manifold can be written as the warped
product ofR, representing the time direction, with a 3-dimensional submanifold of constant curvaturek, repre-
senting the space. Moreover, the metric of such a spacetime must have a unique form, that takes the name of
Robertson-Walkermetric (Robertson, 1933; Walker, 1933; Robertson, 1935), and reads

g = −c2dt2 + a(t)2γ. (1.2)

The time variablet is calledcosmic time, γ is the metric on the space submanifold and thescale factora describes
the global dynamics of space itself. Note that, ifω is a 1-form on the spacetime manifold, here and in the following
we use the notationω2 = ω ⊗ ω.

For some applications, it proves convenient to define aconformal timeasdη ≡ dt/a(t), by means of which
the Robertson-Walker metric Eq. (1.2) takes the form

g = a(η)2
(
−c2dη2 + γ

)
. (1.3)
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CHAPTER 1. COSMOLOGICAL BACKGROUND

In this way, it becomes apparent that the metric Eq. (1.3) is conformally static, in the sense that the related geodesic
structure is independent of time.

Since no preferred position is possible on the space submanifold, freedom is given to choose an arbitrary
point as the origin of the coordinate system and use spherical polar coordinates around that point. Conventionally,
the origin of any reference frame is assumed to coincide with the observer’s position, though this is not strictly
necessary. The metric of a space with constant curvaturek expressed using a spherical polar coordinate system
takes the form

γ =
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)
. (1.4)

It is discernible from the last equation that three possible spatial geometries are allowed, depending on the sign of
the constantk. In particular, ifk = 0, then the space is Euclidean, orflat. If k > 0 then it is positively curved,
i.e. it is a hypersphere and it must ber <

√
1/k. Finally, if k < 0, the space is negatively curved. In some

circumstances, a replacement of the radial coordinater is recommended, using instead the coordinateχ such that

dχ ≡ dr√
1− kr2

. (1.5)

With this substitution the spatial metric Eq. (1.4) assumes the new form

γ = dχ2 + f2
k (χ)

(
dθ2 + sin2 θdϕ2

)
, (1.6)

where the functionfk is such that

fk(χ) =

 k−1/2 sin(k1/2χ) if k > 0
χ if k = 0
(−k)−1/2 sinh[(−k)1/2χ] if k < 0

. (1.7)

It is important to note that neither the two radial coordinatesr andχ, nor the angular coordinates (θ, ϕ) depend
on time, and for this reason they are said to becomoving coordinates. The time evolution of the Robertson-Walker
metric’s space part is completely encapsulated in the scale factora(t), hence, ifx is the set of three comoving
coordinates, the relatedphysical coordinatesare defined asr(t) ≡ a(t)x.

1.3 Friedmann’s Equations

As explained above, GR describes the interplay of matter-energy and the metric of the spacetime manifold through
Einstein’s equations. In order to be able to solve the set of Eqs. (1.1), it is necessary to specify the matter-energy
content of the Universe, that is the energy-momentum tensorT . The uniformly distributed cosmic fluid is made
of various components, of which ordinary non-relativistic matter and radiation are two obvious ones. However,
independently of what these components exactly are, the energy-momentum tensor of the cosmic fluid is often
assumed to take the perfect fluid form

T αβ = (ρc2 + p)uαuβ + pgαβ , (1.8)

whereρ is the matter density,p is the pressure andu is the four-velocity field of the fluid itself, normalised such
thatgαβuαuβ = −1. Obviously, to preserve the isotropy of space,u must have no spatial components, and must
therefore be parallel to the time direction.

Introducing the Robertson-Walker metric given by Eq. (1.2) and Eq. (1.4), and the energy-momentum tensor
of Eq. (1.8) into the field Eqs. (1.1) results in only two independent relations fora(t) and its derivatives up to
second order. Indicating with a dot the derivative with respect to cosmic time, they read

ȧ2

a2
+

kc2

a2
=

8πG

3
ρ, (1.9)

and

ä

a
= −4πG

3

(
ρ + 3

p

c2

)
. (1.10)

The basic structure of the original Einstein equations can still be recognised, since on the left-hand side we have
derivatives up to the second order of the metric components, while on the right-hand side the matter-energy content
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of the Universe is visible, in the form of the densityρ and pressurep of the cosmic fluid. Eqs. (1.9) and (1.10) are
calledFriedmann’s equations(Friedmann, 1922), and describe the evolution of the scale factora as a function of
the cosmic time, given the matter-energy content of the Universe.

The local energy-momentum conservation is expressed byT αβ
;β = 0, where a semicolon denotes covariant

derivation with respect to the metricg. These conservation laws do not introduce independent equations, simply
giving

ρ̇ + 3
ȧ

a

(
ρ +

p

c2

)
= 0, (1.11)

that can also be derived as a combination of Eq. (1.9) and Eq. (1.10). Replacing the independent variablet with
the scale factora returns for the last equation

d

da
(ρa3) = −3

p

c2
a2. (1.12)

This is nothing but the first law of thermodynamics applied to the entire Universe as an adiabatic system, namely
the change in internal energy equals minus the pressure times the change in volume.

1.4 Content of the Universe

1.4.1 Radiation and Matter

For the system formed by the two Friedmann equations (or one of the Friedmann equations and the energy-
momentum conservation equation) to be closed, additional constraints are needed in the form of the equation of
state for the cosmic fluid, that is a relation between pressure and density. The usual assumption is thatp = wρc2,
where theequation of state parameterw is in general a function of cosmic time, and depends on which kind of
component is considered. Using the scale factor as the independent variable and inserting this equation of state in
the conservation Eq. (1.12) we obtain

ρ = ρ0 exp
[
−3

∫ a

1

(1 + w)
da

a

]
, (1.13)

where henceforth the suffix0 indicates quantities evaluated at present cosmic timet0, and the scale factor is always
normalised such thata(t0) = 1.

What remains to be estabilished are the constituents of the fluid filling the Universe, and more important which
one is the dominant one at a given epoch, hence determining the global World dynamics. One obvious component
of the cosmic fluid is radiation, for which the pressure is comparable to the energy density, and in particular it can
be shown thatwr = 1/3. Inserting this in the previous Eq. (1.13) we getρr = ρr,0a

−4. The same result holds true
also for any other kind of relativistic particle like neutrinos. Assuming that the energy spectrum of the radiation
fluid is well described by a thermal black body spectrum, its temperature can be related to the matter density using
the Stefan-Boltzmann relation

ρr =
π2k4

B

15~3c5
T 4

r , (1.14)

wherekB is the Boltzmann constant. The accuracy of this assumption will be demonstrated in Section 1.9. It
follows that the time evolution of the radiation temperature can be expressed asTr = Tr,0a

−1.
It has now long been known that, assuming correctness of GR, the vast majority of matter in the Universe

must be dark, in the sense that it does not couple with photons but is sensitive only to gravitational and (maybe)
weak interactions. This fact was first mentioned in Zwicky (1933) (see also Zwicky 1937), but became part of the
standard model of the Universe only long after, when evidences for the missing mass problem became stricking
(Rubin et al., 1978, 1980, 1982). Also, it is well accepted (see Chapter 2 for details) that this Dark Matter (DM
henceforth) component is cold, in the sense that its mean thermal energy became negligible when compared to
the rest mass energy of the constituent particles before decoupling from the radiation fluid. As a consequence, the
pressure in DM is negligible with respect to the energy density, and hencewm = 0 can be set in this case. This
property is obviously also shared by ordinary, luminous matter. For a perfect gas of particles of massm at ordinary
temperatureT for instance, one hasw = kBT/mc2 ' 0.

It is important to stress that the amount of observed ordinary matter agrees well with the estimate for the
abundance of baryons produced during primordial nucleosynthesis (Kneller & Steigman, 2004), meaning that
virtually all the DM in the Universe must be non-baryonic in nature.
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Insertingw = 0 in Eq. (1.13) we obtainρm = ρm,0a
−3. In other words, the matter density is inversely

proportional to the volume of the Universe, which is a trivial result if the total mass in the Universe is assumed to
be fixed. The fact that the energy density of radiation evolves more quickly than that of non-relativistic matter leads
to the conclusion that there must be an equivalence scale factoraeq at which the two are equal. It is immediate to
see also thataeq = ρr,0/ρm,0.

1.4.2 Dark Energy

Mounting evidence has accumulated in the past decade, according to which the Universe is not only expanding
(meaningȧ(t0) > 0, as it has long been known, Hubble 1929), but that this expansion is accelerated today, i.e.
ä(t0) > 0. Such evidence will be described in detail in Section 1.9. As it is clear from the second Friedmann Eq.
(1.10), present day acceleration is possible only ifp < −ρ/3, meaningw < −1/3 for the dominating component
of the cosmic fluid. A negative equation of state parameter cannot be achieved by non-relativistic matter nor
radiation, hence the dynamics of the Universe must be at present time dominated by some form of energy with
negative pressure. This energy component cannot participate in the formation of cosmic structure, otherwise it
would be detected as DM, thus it must be uniformly distrubuted. Such Dark Energy (DE henceforth) component
is often modelled as the energy density of a scalar fieldϕ, called quintessence, that is possibly coupled only to
gravity. The Lagrangian describing the evolution of a generic scalar field in the GR framework reads

L =
1
2
gαβϕ,αϕ,β + V (ϕ), (1.15)

where a comma denotes standard coordinate derivation, and the functionV (ϕ) is the self-interaction potential of
the quintessence scalar field.

By definition, the stress-energy tensor related to such a Lagrangian reads

Tαβ = ϕ,αϕ,β − gαβ

[
1
2
gµνϕ,µϕ,ν + V (ϕ)

]
. (1.16)

If the cosmological principle is to be satisfied, then the spatial derivatives of the scalar field must vanish, otherwise
preferred positions in space would be singled out, and hence only the time derivative is allowed to be non-zero.
Bearing this in mind, and moreover recalling that, if the Robertson-Walker metric Eq. (1.2) is used theng00 =
1/g00 = −1, for the time-time component of the stress energy tensor is found

T00 =
ϕ̇2

2c2
+ V (ϕ). (1.17)

Similarly, the space-space components read

Tij = gij

[
ϕ̇2

2c2
− V (ϕ)

]
. (1.18)

Comparing the last two relations to the stress-energy tensor of a perfect fluid given in Eq. (1.8), the density and
pressure formally associated with the scalar field can be determined as

ρx =
ϕ̇2

2c4
+

V (ϕ)
c2

, (1.19)

px =
ϕ̇2

2c2
− V (ϕ). (1.20)

The related equation of state parameter is therefore

wx =
ϕ̇2 − 2c2V (ϕ)
ϕ̇2 + 2c2V (ϕ)

. (1.21)

From the last equation it is apparent how the DE equation of state parameter depends on the interplay between the
kinetic and the potential energy of the related scalar field. The detailed behaviour of this component thus depends
on the exact shape of the self-interaction potentialV (ϕ).

Inserting now Eq. (1.19) and Eq. (1.20) into the Friedmann equations (1.9) and (1.10) it is possible to obtain
after straightforward calculation theKlein-Gordon equation, that describes the time evolution of the quintessence
field in an expanding universe.

ϕ̈ + 3
ȧ

a
ϕ̇ + c2V ′(ϕ) = 0, (1.22)
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1.5. COSMOLOGICAL PARAMETERS

where a prime denotes the derivative with respect toϕ. A negative equation of state parameter for the DE can
evidently be achieved with a suitably small kinetic term today, namelyϕ̇2 < c2V (ϕ) .

One limiting case of DE is reached when the kinetic term is negligible with respect to the self-interaction
potential, so thatwx approaches -1. Eq. (1.13) then shows that the DE density has no evolution in time, therefore
it can be replaced by

Λ =
8πG

c2
ρx. (1.23)

The constant in Eq. (1.23) is referred to ascosmological constantfor historical reasons.

1.5 Cosmological Parameters

From a closer inspection of the first Friedmann Eq. (1.9), it appears that the spatial curvature of the Universe is to
vanish if and only if the matter density of the cosmic fluid takes the critical value

ρc =
3H2

8πG
, (1.24)

whereH = ȧ/a is theHubble parameter, quantifing the expansion rate of the Universe. When evaluated at present
time, it takes the name ofHubble constantH0, and it is often rescaled ash = H0/(100 km s−1 Mpc−1). In this
way, the critical density today can be written asρc,0 = 1.87× 10−29h2 g cm−3.

Since the critical density sets a preferred value for the matter-energy content of the Universe, it is natural to
refer any other density to it. Therefore, it is possible to define thedensity parameterof thei-th component of the
cosmic fluid as

Ωi ≡
ρi

ρc
=

8πGρi

3H2
. (1.25)

With the use of the Hubble parameter and the density parameters, the first Friedmann equation takes a more
convenient form, namely

H2 = H2
0

[
Ωr,0a

−4 + Ωm,0a
−3 + Ωx,0 exp

(
−3

∫ a

1

(1 + wx)
da

a

)
− Ωk,0a

−2

]
, (1.26)

whereΩk is the density parameter of the spatial curvature, that can be as well formally included in the source terms
for the gravitational field. It equals to

Ωk,0 ≡
kc2

H2
0

. (1.27)

When evaluated at present, Eq. (1.26) implies that

Ωk,0 = (Ωr,0 + Ωm,0 + Ωx,0)− 1 ≡ Ω0 − 1, (1.28)

thus revealing a deep connection between the spatial geometry and the matter-energy content of the Universe. In
particular, when the total density parameter todayΩ0 is larger than unity, the curvature of the space is positive,
while it is negative ifΩ0 < 1. If Ω0 = 1 then the Universe is flat, meaningΩk = 0, and Eq. (1.26) assumes the
form

H2 = H2
0

[
Ωr,0a

−4 + Ωm,0a
−3 + (1− Ωr,0 − Ωm,0) exp

(
−3

∫ a

1

(1 + w)
da

a

)]
. (1.29)

Finally, we also introduce thedeceleration parameter, given by

q =
äa

ȧ2
, (1.30)

whose meaning is clear. If the Universe is accelerating (as is the actual case) it takes negative values, while if it is
decelerating it takes positive values.

With the cosmological parameters introduced so far, it is possible to write in a more convenient form the scale
factor at the equality between matter and radiation, namelyaeq = (4.47× 10−7K−4)T 4

r,0Ω
−1
m,0h

−2.
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1.6 Big Bang and Horizon

From the Friedmann Eq. (1.9) it follows thatä < 0 as long asρ + 3p/c2 > 0, meaningw > −1/3 for the
dominant component. As stressed, this is not the case in the present day Universe, and in general in any universe
dominated by some form of DE. However it is interesting to note that, if this was indeed the case, then the fact that
ȧ(t0) > 0 would imply the existence of a time in the past whena = 0, and therefore where the density, pressure
and temperature of the cosmic fluid were infinite. This singular instant in time is historically referred to asBig
Bang, and it is taken to be the origin of the time axis,a(t = 0) = 0.

In a universe dominated by DE at present time, the existence of the Big Bang is not necessary, and in general
combinations of the cosmological parameters can be found that avoid the existence of such a singularity.

Nevertheless, the very existence of the Cosmic Microwave Background (CMB henceforth, see Section 1.9)
is a direct evidence of the fact that the Universe went through a very hot and very dense phase in the past, or
equivalently, through a phase of very small physical volume. Therefore, it is commonly assumed that a singularity
at whicha = 0 existed in the past, although this is not necessarily implied by a given choice of cosmological
parameters.

If a singularity in the Robertson-Walker metric existed in the past, then there must be a maximum distance that
a light signal can have travelled since the singularity itself to the present day, or more generally to some instant
t > 0. This distance defines the radius of a spherical surface that is calledcosmological horizon. Written in
formulas it reads

R(t) = ca(t)
∫ t

0

dτ

a(τ)
= ca(t)

∫ a

0

da

a2H(a)
. (1.31)

Assuming that the Universe is flat and using Eq. (1.29) into Eq. (1.31) under the hypothesis that the Universe
contains only matter, i.e.Ωm = 1 (dubbedEinstein-de Sitteruniverse, Einstein & de Sitter 1932), gives

R(t) =
2c

H0Ω
1/2
m,0

a(t)3/2. (1.32)

When evaluated at present this becomes

R(t0) =
2c

H0Ω
1/2
m,0

≡ 2RH

Ω1/2
m,0

, (1.33)

where we have defined theHubble radiusRH as the distance travelled by a light signal in theHubble timetH ≡
1/H0. It is important to remark that, even though the Hubble radius is often used as an order of magnitude estimate
for the cosmological horizon, it has not the same physical meaning. For more generic model universes, including
a DE component and/or a curvature term, the relation between the cosmological horizon radius and the Hubble
radius is modified with factors depending on the matter-energy content. For instance, for a universe without DE
but withΩm < 1, the horizon radius at present time reads

R(t0) =
RH

(1− Ωm,0)1/2
cosh−1

[
1− 2(Ωm,0 − 1)

Ωm,0

]
. (1.34)

The concept of cosmological horizon will be important regarding the evolution of density perturbations in the
DM component of the cosmic fluid, as will be presented in Chapter 2.

1.7 Early-Dark Energy and Cosmological Models

1.7.1 Primordial Quintessence

Among all the infinite DE models that can be identified by choosing different forms of the self-interaction potential
for the quintessence fieldϕ, a class of them is particularly interesting for the present discussion and will be
thoroughly investigated in this thesis. It is the class ofEarly-DE models (Wetterich, 1988a,b, 1995), named after
the requirement for the density parameter of DE at early times, meaninga � 1, to be still significant, of the order
of few %, as compared to totally negligible for other models. As is possible to observe, a simple way to obtain a
significant DE contribution at early times is to require the DE density to be always a constant fraction of the density
of the dominant fluid at that time. If the equation of state parameter of this dominant fluid iswd, and assuming that
wd is constant, as it is for matter or radiation for instance, then this is equivalent to require

ρ̇x + 3(1 + wb)
ȧ

a
ρx = 0. (1.35)
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Figure 1.1: The equation of state parameter for DE (solid line), the density parameter for radiation (long dashed
line) and that for matter (short dashed line) as a function of the scale factor. A DE model is considerd where the
leaping kinetic term of the form Eq. (1.38) has parametersk0 = 1.1 andϕ0 = 276.6 (Hebecker & Wetterich,
2001).

This can obviouly be satisfied only if the equation of state parameter for DE is itself constant and equal towd. In
this way, by setting the initial conditionρx,0 to an appropriate value, it is possible to obtain the desired value for
the DE density parameter at any early time.

It is also interesting to note in passing that a constant equation of state parameter for the DE fluid implies,
if spatial curvaturek vanishes and DE is the dominating fluid (as it must be in the present day Universe), an
exponential potential for the quintessence field, namely

V (ϕ) = A exp

[
−

√
24πG(1 + wx)

c2
ϕ

]
. (1.36)

The tendency of the DE equation of state parameter to approach a constant value (not necessarily the equation of
state parameter of the dominant component) for a wide range of initial conditions is namedtracking behaviour,
and an exponential potential is just a particular way to ensure it (Ratra & Peebles, 1988; Ferreira & Joyce, 1998;
Baccigalupi et al., 2000, 2002). More general conditions for the presence of a tracking solution can be found
depending on the exact shape of the potentialV (ϕ), see for instance Steinhardt et al. (1999).

As announced previously however, DE is required to dominate the expansion of the Universe at late time,
z ' 0, to comply with the present observational status. This cannot obviously be obtained with a tracking solution
for the quintessence scalar field, hence somead hocmechanism is needed in order to break down the tracking at
low redshift. An often used solution to this problem (Hebecker & Wetterich, 2001; Doran et al., 2001; Doran &
Robbers, 2006) is a modification of the kinetic term to the Lagrangian of the scalar field, that reads

L =
1
2
k(ϕ)gαβϕ,αϕ,β − V (ϕ). (1.37)

A particularly simple case in which the DE can be brought to mimick a cosmological constant at low redshift
is given by aleaping kinetic term, wherek(ϕ) changes abruptly from a small value(k(ϕ) < 0.22, consistent with
primordial nucleosynthesis) to a relatively large one(k(ϕ) > 1/

√
3(1 + wb)). A way to obtain this is to use a

function

k(ϕ) = k0 + tanh

[√
8πG

c2
(ϕ− ϕ0)

]
. (1.38)

The equation of state parameter that is obtained with the choicek0 = 1.1 andϕ0 = 276.6 is shown in Figure 1.1.
As can be seen,wx = 1/3 in the radiation dominated era, andwx = 0 in the matter dominated era, indicating a
tracking behaviour. At low redshift however,wx approaches the−1 limit of a cosmological constant.

1.7.2 Cosmological Models

Four different cosmological model will be mainly (but not only, see Chapetr 8) investigated in this thesis. Two
of them are early-DE models, that will be labelled as EDE1 and EDE2 henceforth. They have slightly different
Hubble constants and density parameters today. The equation of state parameter is close to−1 at low redshift
and increases with increasing redshift, in order to approach the outlined matter tracking. The third model has a
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CHAPTER 1. COSMOLOGICAL BACKGROUND

Table 1.1: Cosmological parameters for four cosmological models described in Section 1.7.

EDE1 EDE2 wx = −0.8 ΛCDM

h 0.67 0.62 0.65 0.65
Ωm,0 0.33 0.36 0.30 0.30
Ωx,0 0.67 0.64 0.70 0.70

constant DE equation of state parameterwx = −0.8, and the last one is a model where DE is a cosmological
constant, labeled asΛCDM model.

The detailed parameters relevant for cosmology are summarised in Table 1.1. Further parameters related to the
structure formation process will be given in Chapter 2. It is just to be noted in passing that all these cosmological
model are constructed to comply with presently available cosmological data sets, as will be more extensively
discussed in Section 1.9. In particular, the radiation contribution is set to zero, and the sum of matter and DE
density parameters equals1, corresponding to a flat universe.

To have a better idea of the main difference between early-DE models and models with constant equation of
state parameter, the redshift evolution of the DE density parameter is plotted in Figure 1.2 for the four cases. It is
clear that while the DE density parameter decreases indefinitely at high redshift for models with constant equation
of state, it tends to asymptote to a constant, small but not negligible, value in early-DE models.

For practical pourposes, it is useful to parametrize the DE fluid properties, that is to identify few parameters
that globally describe the main properties of the quintessence field and that can be constrained observationally. An
often used parametrization for instance makes use of the DE abundance today and the equation of state parameter
and its derivative at present. This however contains no information about the early behaviour of the quintessence
field. For this reason, in the case of early-DE, the most convenient parametrization choice is the one proposed by
Wetterich (2004), that makes use of three quantities. The first two are the DE density parameter at present,Ωx,0

and the equation of state parameter at present,wx,0. The last one is an average value for the DE density parameter
ata � 1, where the linear stage of structure formation takes place. This is defined as

Ω̄x,sf ≡ −(ln aeq)−1

∫ 0

ln aeq

Ωx(a)d ln a, (1.39)

whereaeq is the scale factor at matter-radiation equivalence as computed previously. In the models EDE1 and
EDE2 above this last parameter is chosen such thatΩ̄x,sf = 0.04.

1.8 Cosmological Redshift and Distance Measures

The very fact that the Universe is expanding implies a stretch in the wavelengthλ of electromagnetic radiation
emitted at some timet in the past during its journey to the observer att0. Due to this effect, the frequencyν we
observe today, is smaller than the emitted frequency, i.e. the radiation is redshifted and energy lost on the way to
us. The amount of redshift is defined as

z ≡ ν(t)
ν(t0)

− 1 =
λ(t0)
λ(t)

− 1, (1.40)

and since it is easily understood that the radiation wavelength increases proportionally to the scale factora, the
consequence is that

z =
1
a
− 1. (1.41)

The radiation redshift vanishes at present time and grows positive by decreasing the cosmic time or the scale factor.
The redshift of electromagnetic waves provides us also with a physical explanation for the behaviour of the

radiation density during cosmic evolution, namelyρr = ρr,0a
−4. In fact, the energy of a photon at frequencyν is

E = hν ∝ a−1, hence for the energy (or matter) density it must beρr ∝ Ea−3 ∝ a−4. In other words, a factor
a−3 in the evolution ofρr is given by the diluition of photon inside the expanding space, while the additional factor
a−1 comes from the cosmological redshift.

The expansion of the Universe and the fact that the spatial geometry might not necessarily be Euclidean make
the concept of distance in cosmology a delicate issue. To face this, several different operational distance measures
are usually defined. Here we describe only the two of them relevant to the present discussion. The first one is
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Figure 1.2: The density parameter for DE in the four cosmological models introduced in the text and detailed
in Table 1.1. EDE1 (black solid line), EDE2 (red short-dashed line), a model with constantwx = −0.8 (blue
long-dashed line) and aΛCDM model (green dot-dashed line).

theangular diameter distanceda, that is the ratio of the physical, intrinsic size to the angular, apparent size of a
light source. The second one is theluminosity distancedl, defined as the ratio of the intrinsic luminosity of a light
source to4πF , whereF is the observed flux. Clearly, both these definitions match the usual Euclidean distance
definition in a static, flat space.

If r is the radial comoving coordinate used in Eq. (1.4), then it can be shown that, for a light source placed at
scale factora, da = ra, anddl = r/a (Coles & Lucchin, 2002). Using the cosmological redshift as time variable
this means

dl(z) = (1 + z)2da(z). (1.42)

The relation (1.42) is calledEtherington relation(Etherington, 1933). It is easy to realize that close to the present
time, whenz approaches zero,da ' dl ' r.

More generally, the angular diameter and luminosity distance of a source placed ata2 as measured from an
observer placed ata1 (with a2 < a1) can be written asda(a1, a2) = r1,2a2, anddl(a1, a2) = r1,2/a2, where
r1,2 ≡ fk(χ2−χ1). In the rest of this work however we will refer to observers placed ata1 = 1, unless explicitely
stated.

Next, consider a first order Taylor expansion of the scale factor close tot0,

a(t) ' 1 + H0(t− t0), (1.43)

from which follows, again to first order, that

t0 − t ' z

H0
. (1.44)

Now, in GR light rays propagate along null geodesics of the spacetime metricg. Recalling Eq. (1.2) and Eq. (1.4)
this means that, for the trajectory of a photon,

c

∫ t

t0

dt

a(t)
=

∫ r

0

dr√
1− kr2

' r, (1.45)

with the last approximation coming from a first order expansion aroundr = 0. Making use of the approximate
relations between scale factor, redshift and cosmic time derived above we obtain

r ' cz

H0
. (1.46)
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Figure 1.3: The angular diameter distance (lower pair of curves) and luminosity distance (upper pair) as a function
of redshift for two of the cosmological models introduced. These are the EDE1 (black solid line) and theΛCDM
model (green dot-dashed line).

This means that locally, i.e. in a sufficiently small neighborhood of the observer, the expansion of the Universe
implies a linear relation between the redshift and the radial comoving coordinate. This also means that, locally,

da(z) ' dl(z) ' cz

H0
. (1.47)

It is not important which distance measure is used, as long as the object we are referring to is close enough to
the observer. The linear relation between distance and redshift implied by Eq. (1.47) is referred to asHubble law
(Hubble, 1929).

In Figure 1.3 the angular diameter and luminosity distances are shown for two of the four cosmological models
introduced in the previous section. It is obvious that all the distances share the same behaviour in a neighborhood
of z = 0, irrespective of the cosmology. Also, while the luminosity distance increases steadily with redshift, the
angular diameter distance has a maximum atz ' 1.5, and then decreases very slowly. This means that any object
with the same physical size will have roughly the same angular size if placed at any redshift& 1.

1.9 Current Observational Status

Up to date, there are numerous sources of cosmological information that are accessible to astronomical observa-
tions and can be used to test the value of the various model parameters introduced in Section 1.5. The cosmological
tests can be divided into two broad categories: thegeometrical tests, and the tests based on the structure formation
process (see Chapter 2). The main idea behind any kind of geometrical cosmological probe is basically one: to find
a physical length scale, or a reference luminosity, that can be known somehow, and compare it with the observed
related angular scale or flux, in order to find the behaviour of the corresponding (angular diameter or luminosity)
distance with redshift.

The main geometrical source of cosmological information certainly is the CMB, i.e. the light emitted when
the Universe became transparent, after the recombination of hydrogen and helium, atz ' 103. Before the recom-
bination, ordinary matter and radiation were tightly coupled due to Thomson scattering off free electrons. The
tendency of matter to fall inside the potential well of the already forming DM density fluctuations and the opposite
tendency of radiation to free stream cause the matter radiation fluid to oscillate in and out of such potential wells,
imprinting a characteristic pattern in the CMB angular power spectrum that serves as a standard ruler.

The most recent analysis of the CMB temperature fluctuations is built upon the 3-years data release of the
WMAP satellite (Spergel et al. 2007; Page et al. 2007; Hinshaw et al. 2007; Jarosik et al. 2007, WMAP-3
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Figure 1.4: Constraints on the constant equation of state parameter for DE and the curvature density parameter
form the 3-years WMAP data release jointly with2dFGRS, SDSS and both main supernovae data sets (see text for
details). Shown are68% and95% confidence levels (Spergel et al., 2007).
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Figure 1.5: Constraints for the matter and cosmological constant density parameters from WMAP-3 data.The68%
and95% confidence levels are shown as gray solid lines for the WMAP only constraints, and red-shaded areas for
the WMAP data jointly with other cosmological probes, as labeled in the panels. The black solid line identify flat
space sections (Spergel et al., 2007).

henceforth). Previously, data from the COBE satellite confirmed that the background radiation has an almost
perfect blackbody energy spectrum corresponding to a temperatureTr,0 ' 2.728 K. This allows one to com-
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Figure 1.6: Constraints on the equation of state parameter for DE and the matter density parameter from the
WMAP-3 data.68% and95% confidence leveles are shown as black solid lines for the WMAP only constraints,
and red-shaded areas for the WMAP data jointly with other probes, as labeled in the four panels. Space flatness
and a constant DE equation of state parameter are assumed (Spergel et al., 2007).

pute the radiation density today, according to Eq. (1.14), and to compare it to the matter density, obtaining
ρr,0/ρm,0 ' 2.47 × 10−5Ω−1

m,0h
−2. This both tells that the radiation contribution is negligible when com-

pared to matter contribution today, and gives an estimate for the redshift at matter-radiation equality, namely
zeq ' 4.04 × 104Ωm,0h

2. Therefore, it turns out that for all the redshifts of interest in this work, the radiation
contribution can be safely neglected, as done for the cosmological models introduced in Section 1.7.

The latest WMAP data release allowed for a significant shrink of the allowed region in the cosmological pa-
rameter space. However, degeneracies between different cosmological parameters exist, in the sense that different
sets of parameters can give rise to the same (or approximately the same) angular power spectrum for the CMB. This
forces one to combine CMB data with different kind of astronomical observations that produce complementary or
orthogonal information in order to have tighter constraints. Here we mention the main three of them, keeping in
mind that also with the introduction of this additional information, priors on the parameters are usually enforced.

The first one is the measurement of the Hubble constant using secondary distance indicators based on primary
ones, mainly cepheids. This was performed in the Hubble Space Telescope (HST) key project (Freedman et al.,
2001), finding a best-fit value for the Hubble constanth ' 0.72. The second one is the measurement of the
luminosity distance-redshift relation of supernovae of type Ia. It is known that the peak luminosity of this kind
of events is in tight correlation with the width of the light curve, so that all supernovae Ia can be calibrated to
have the same peak luminosity, working as a standard candle. The two main data sets available up to date are the
Supernova Legacy Survey (SNLS, Astier et al. 2006) and the Supernova Gold Sample (Riess et al., 2004). Both
the key project and supernovae experiments are obviously geometrical probes.

The third test is instead based on structure formation, and in particular on the large scale distribution of matter
in the Universe. This cannot be observed directly because the vast majority of it is dark. Nevertheless, the gravi-
tational deflection of light can be used to infer the DM distribution (Section 3.6, Semboloni et al. 2006; Hoekstra
et al. 2006) and the galaxies can be used as a tracer of the underlying distribution itself. The standard ruler in
this case is represented by features in the power spectrum of matter distribution (see Section 2.2.3 for details) and
the leading projects are the Sloan Digital Sky Survey (SDSS, Tegmark et al. 2004) and the 2-degree Field Galaxy
Redshift Survey (2dFGRS, Cole et al. 2005). A subsample of the galaxies observed in the former, the Luminous
Red Galaxies (LRG), have been used for an additional geometrical test, namely the measurement of the Baryon
Acoustic Oscillations (BAO) in the two point correlation function (Eisenstein et al., 2005). This is nothing but a
signature of the acoustic oscillations in the CMB angular power spectrum that survives in the baryon distribution.

Strikingly enough, the combination of all these various cosmological observations converge to what in the last
decade has been called thestandard cosmological model. In this model, the expansion of the Universe is dominated
today by DE in the form of a cosmological constant. In fact, actual data are insufficient to detect a significant
redshift evolution ofwx, and the case forwx = −1 at present is rather strong. In Figure 1.4 the constraints on
a constantwx and the curvature of spacek are depicted. Here and in the remainder of this section it is always
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Figure 1.7:Left panel. Constraints on the matter and cosmological constant density parameters from the 1-year
SNLS data release.68.3%, 95.5% and99.7% confidence levels are shown with solid contours for the SNLS data,
dotted contours for the BAO data and dashed contours for the joint constraints.Right panel. Constraints on the
DE equation of state parameter today and the matter density parameter. Linestyle is the same as for the left panel
(Astier et al., 2006).

assumed that the DE fluid is perfectly uniform, without any possibility for clustering not even on the largest scales.
Besides the support to the cosmological constant scenario, also apparent is the fact thatΩk is consistent with 0,
supporting the case for an Euclidean universe. If this is the case then it must beΩ0 = Ωm,0 + ΩΛ,0 = 1, since the
radiation contribution today has to be negligible. In fact, Figures 1.5 and 1.6 bring further support this view, with
a matter density parameterΩm,0 ' 0.3 and a cosmological constant density parameterΩΛ,0 ' 0.7. In the bottom
left panel of Figure 1.6, the supernovae data from the GOODS survey (Vanzella et al., 2005, 2006) are used.

It is interesting to note the fact that, whileρΛ = ρΛ,0, the matter energy density evolves quite steeply with
redshift,ρm = ρm,0(1 + z)3, implying that the equivalence between matter and DE is reached at rather small
redshift,z ' 0.5. For higher redshift the expansion of the Universe is matter dominated, until the matter-radiation
equality. As a matter of fact, the detection of the transition redshift between DE and matter domination is one of
the key challenges for future observational cosmology.

In Figure 1.7, the standard picture gains further strength without the inclusion of CMB measurements, but only
supernova data and BAO measurements. Both the matter-energy content of the Universe and the nature of DE are
in agreement with the standard model as detailed above.

As a conclusive remark, it must be stressed that the value of the individual parameters for the cosmologies
detailed in Table 1.1 is not exactly equal to the best fit values collected in the Figures above. Nevertheless the
combination of the various parameters is such that each model is in agreement with CMB observations, large scale
structure data and type Ia supernova luminosity distance.
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Chapter 2

Structures in the Universe

2.1 Introduction

The standard cosmological model outlined in Chapter 1 faces some obvious problems that require an extension of
the picture. The most promising extension up to date is theinflationary scenario, that predicts an early evolution
of the Universe dominated by a scalar field analogous to quintessence, driving an exponential expansion. The first
model of inflation was formulated by Guth (1981), although many ideas were already presented in Starobinsky
(1979). Following these preliminar works, many other inflationary models were developed in the subsequent years
(Linde, 1982a,b; Albrecht & Steinhardt, 1982; Linde, 1983).

One of the major advantages of this scenario is that it not only solves the classical problems of the standard
cosmological model, but also provides a mechanism for the formation of tiny density fluctuations in the cosmic
fluid of the primordial Universe. According to such mechanism, shortly after the Big Bang quantum fluctuations
in the matter and gravitational fields are amplified due to the exponential inflationary expansion.

After the end of inflation, density fluctuations in DM are predicted to grow due to self-gravity, and eventually
to detach from the overall expansion of the Universe and collapse to form bound structures, dubbed DMhalos. As
explained in Section 1.9, baryonic matter is strongly coupled to radiation before recombination of hydrogen and
helium, that avoid it from following the gravitational pull of DM overdensities. Only after recombination is the gas
free to fall into the potential wells of DM structures, forming galaxies and galaxy clusters that are observed today.

In this Chapter we proceed into developing the post-inflationary picture in more detail, describing the formation
and evolution of the more massive structures in the Universe and their properties relevant for the present work. In
the following discussion we shall assume that the DM component is a collisionless fluid, due to its particles’ very
low interaction cross section.

2.2 Linear Evolution

2.2.1 Jeans Scale

An important issue related to the evolution of density fluctuations in a matter fluid is the interplay of the opposite
effects given by gravity, that tends to pull particles together, and random motion of particles themselves, that tends
instead to dissipate any kind of perturbation. When the first effect is more important than the second, then an
overdensity is allowed to grow and eventually collapse into a bound object.

The order of magnitude of the scale length separating the two regimes, called theJeans length, can be derived
by comparing the kinetic energy to the potential energy of a density perturbation. For the former we haveK '
Mv2, and for the latter

U ' −GM2

R
, (2.1)

whereM andR are the mass and spatial extent of the perturbation whilev is a measure of the typical velocity
of particles in the fluid. It corresponds to the speed of sound in a collisional gas, and to therms of the velocity
distribution in a collisonless fluid like DM. By settingK + U ' 0 and using the approximate relationM ' ρR3,
we obtain an approximate expression for the Jeans length, namely

RJ '
v√
Gρ

. (2.2)
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The precise definition, complete with all the constant factors, will be given shortly. However, Eq. (2.2) is rather
useful as an order of magnitude estimate, telling that only perturbations on scales significantly larger thanRJ are
allowed to grow and collapse without being dissipated by random motion of particles.

It is also important to note that the mean velocityv and the densityρ appearing in Eq. (2.2) may not refer to
the same component of the cosmic fluid. In particular,v is the typical velocity of the component that is perturbed,
since the perturbation itself produces pressure support against collapse. On the other hand,ρ has to be the density
responsible for the gravitational pull, hence the density of the dominant component of the cosmic fluid.

In the case of cold DM, the typical velocity of particles is negligibly small after decoupling fom radiation,
thus leading to an arbitrarily small Jeans length. This means that perturbations in cold DM can grow on any
cosmologically relevant scale, and the dissipating effect due to random motions can be safely neglected.

2.2.2 Perturbation Theory

As long as relative perturbations in matter and gravitational fields are small compared to unity, their time evolution
can be followed analitically by means of standard perturbation theory. The main idea behind this approach is to
consider a background universe with a Robertson-Walker metric and a uniform density, and then slightly perturb
the relevant fields to the linear order. The complete, generally relativistic treatment of this kind of problem is
outlined in excellent textbooks, like Weinberg (1972), Padmanabhan (1993) and Straumann (2004). However, for
perturbations on scales much smaller than the cosmological horizon (see Eq. (1.31)), like those involved in the
present thesis, it is sufficient to restrict attention to the semi-Newtonian treatment that is henceforth described.

In the Newtonian approximation, the relevant fields for the evolution of a self-gravitating fluid are the density
ρ, the velocity fieldu, the potentialΦ and the pressurep, that is usually linked to the density by means of an
unspecified equation of state. The two main equations involving these fields, written in physical coordinates, are
the continuity equation, ensuring the mass conservation,

∂ρ

∂t
+

∂ρui

∂ri
= 0, (2.3)

and Euler’s equation, ensuring the conservation of the three components of the momentum,

∂ui

∂t
+ uj

∂ui

∂rj
= −∂Φ

∂ri
− 1

ρ

∂p

∂ri
. (2.4)

It should be noted that the pressurep appearing on the right hand side of Euler’s equation is meaningful
only for collisional fluids, like gas. Due to the small interaction cross section on the other hand, DM behaves
as a collisionless fluid, and the same is true for stars in galaxies and galaxies in galaxy clusters (see Section 2.4
for details). Hence their mean-field evolution is described by the collisionless Boltzmann’s equation (Binney &
Tremaine, 1987; Ciotti, 2000). However, the first two velocity moments of this equation are identical to Eqs. (2.3)
and (2.4), except for the term involving the pressure, which is replaced by

−1
ρ

∂(ρσ2
ij)

∂rj
. (2.5)

The quantitiesσ2
ij are the components of the velocity dispersion tensor, and the expression in Eq. (2.5) reduces to

the last term on the right hand side of Eq. (2.4) with the replacementρσ2
ij = pδij .

In addition to the Euler and continuity equations, the Poisson equation relates the gravitational potential to the
density distribution,

∆Φ = 4πGρ. (2.6)

The perturbation analysis consists in making theansatzaccording to which the generic fieldq equals the sum of
a background field and a perturbation, namelyq = qb + δq, such thatδq � qb. The background quantities are
assumed to be referred to an unperturbed Robertson-Walker universe, henceub ≡ ṙ = Hr. This ansatz can
then be inserted into the continuity, Euler and Poisson equations, removing the unperturbed solutions and limiting
the analysis to the lowest non-trivial order. This returns equations for the perturbations that are then solved using
the Fourier transformation method. Fourier transformation is denoted by a hat, and we furthermore introduce the
definitionsδ ≡ δρ/ρb andc2

s ≡ δp/δρ for the density contrastandsound speedof a collisonal fluid. Like the
pressure, the sound speed must be replaced with a quantity related to the velocity dispersion when dealing with
collisionless fluids.
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Figure 2.1: The growth factor times (1 + z) as a function of redshift for the four cosmological models detailed in
Table 1.1. These are EDE1 (black solid line), EDE2 (red short-dashed curve), a model with constant DE equation
of state parameterwx = −0.8 (blue long-dashed curve) and theΛCDM model (green dot-dashed curve).

Combining now the three equations, a single second order ordinary differential equation for the time evolution
of δ̂ is obtained,

∂2δ̂

∂t2
+ 2H

∂δ̂

∂t
+

(
k2c2

s − 4πGρb

)
δ̂ = 0. (2.7)

This same equation is also obtained in the non-relativistic limit of the more general treatment. It is basically an
oscillator equation, where the damping term is due to the expansion of the Universe as would be naively expected.
It is also evident that the last two terms on the left hand side describe the interplay between the pull of gravity and
the free streaming due to random motion of particles. Hence, they provide a more accurate definition of the Jeans
length according to

k2c2
s − 4πGρb ≡ 4πGρb

(
k2R2

J − 1
)
≡ 4πGρb

(
k2

k2
J

− 1
)

, (2.8)

where the physicalJeans wavenumberkJ has been introduced as well. As announced, in the case of DM density
fluctuations the Jeans length is always negligible, or the Jeans wavenumber is arbitrarily large. Therefore, the third
term on the left hand side of Eq. (2.7) can be safely neglected.

The general solution of Eq. (2.7) is the linear combination of two particular solutions, that can be found
analytically only for particularly simple cosmological models, while in general one has to resort to numerical
integration. For instance, assuming the Universe to be DM dominated (but not necessarily flat), we find a solution
of the typeδ̂−(t) = A−H(t), and one of the type

δ̂+(t) = A+H(t)
∫ t

0

dτ

a2(τ)H2(τ)
, (2.9)

whereA− andA+ are normalization constants. The minus and plus subscripts indicate that the first solution is
decreasing with time, while the second one is increasing. This has the consequence that after a suitably long period
of time, the general solution of Eq. (2.7) can be identified solely with its growing part. If, additionally, it is required
for the Universe to be spatially flat and without DE, then the growing solution reduces to

δ̂+(t) =
181/3

5
A+

H
4/3
0

t2/3 =
2
5

A+

H2
0

1
(1 + z)

. (2.10)
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Also, it is convenient to normalize the Fourier transform of the density fluctuation to the present time, defining
thegrowth factorasD+ ≡ δ̂+/δ̂+,0, so that for a simple Einstein-deSitter universe we getD+(z) = (1 + z)−1.
The growth factor for the four cosmological models detailed in Table 1.1 is presented in Figure 2.1. Models with
early-DE have a larger value for the growth factor than models with constant DE equation of state parameter do.
This means that the amplitude of linear density fluctuations is always larger in the former for a fixed redshift.

2.2.3 Statistics of Gaussian Random Fields

In the attempt to explain the observed statistical properties of the large scale matter distribution, the density fluc-
tuation fieldδ(x) that emerges from the inflationary epoch is assumed to be a random field, of which the observed
Universe is just one particular realization. This means that the value of the density fluctuationδ at any particular
comoving positionx is a stochastic variable following some characteristic probability distribution.

In principle, the statistical properties of any random field should be determined using averages over many
different realizations of the field itself. This is obviously not possible for the observable Universe, therefore
an implicit assumption, namedergodic hypothesis, is often used. According to this assumption, regions of the
Universe far away enough between each other can be considered as statistically independent, and hence,de facto,
as independent realizations of the density fluctuation field. The ergodic hypothesis has been rigorously proven
for a particular class of random fields by Adler (1981). An immediate consequence of it is that averaging over
different realizations of the same random field is equivalent to spatial averaging over a sufficiently large region of
the Universe. It must also be noted in passing that when dealing with very large scales, there are just very few
far enough regions of the Universe, therefore the averaging process looses its statistical significance. This fact is
namedcosmic variance.

One of the most robust predictions of inflation is that the probability distribution of density fluctuations emerg-
ing from the phase of exponential expansion should be close to Gaussian, since for quantum-mechanical reasons
each Fourier mode of the field should be independent of the others. This has been verified to some extent by CMB
experiments, even though properties of non-Gaussian cosmological models have been explored (Moscardini et al.,
1991; Grossi et al., 2007). Since the average value of the density fluctuation field vanishes by definition, the only
relevant quantity charcterising the field itself is thermsσ. This is often replaced by thevarianceS ≡ σ2, defined
such that

S ≡ 1
V

∫
R3

δ2(x)d3x =
1
V

∫
R3

∣∣∣δ̂(k)
∣∣∣2 d3k

(2π)3
=

1
V

∫ +∞

0

∣∣∣δ̂(k)
∣∣∣2 k2 dk

2π2
, (2.11)

where the last step follows from the fact that no preferred directions can be singled out in space, according to the
cosmological principle. Moreover,V is the volume of a region of space where the integrals are computed, and is
required to be large enough to comply with the ergodic assumption, but at the same time small enough to safely
neglect possible space curvature. Thepower spectrumof the density fluctuations field is defined as

P (k) ≡

∣∣∣δ̂(k)
∣∣∣2

V
, (2.12)

hence giving

S =
∫ +∞

0

P (k)k2 dk

2π2
. (2.13)

Inflation is predicted to produce a scale free power spectrum, namelyP (k) = Akn, with some normalization
constantA and spectral indexn. A particular case of this is the scale invariantHarrison-Zel’dovichspectrum
(Harrison, 1970), for whichn = 1.

For future convenience it is insightful to smooth the density fluctuations field on a comoving scaleL, thus
defining the relatedsmoothedor filtered fieldas

δf(x, L) =
∫

R3
δ(y)W (y − x, L)d3y. (2.14)

This is just the convolution of the original field with a suitably chosen functionW whose characteristic width isL,
like a top-hat function or a Gaussian. It turns out that the variance of the new smoothed field reads

S(L) =
∫ +∞

0

P (k)Ŵ 2(k, L)k2 dk

2π2
. (2.15)
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Table 2.1: Parameters for the cosmolology and the cold DM power spectrum for the four cosmological models
detailed in Section 1.7.

EDE1 EDE2 wx = −0.8 ΛCDM

h 0.67 0.62 0.65 0.65
Ωm,0 0.33 0.36 0.30 0.30
Ωx,0 0.67 0.64 0.70 0.70
σ8 0.82 0.78 0.80 0.84
n 1.05 0.99 1 1

It is easily seen that when the smoothing radius approaches 0, the kernelW approaches a Dirac delta distribution,
so that the variance of the smoothed field approaches that of the original field. Vice versa, when the smoothing
radius diverges the variance tends to vanish, and in general the variance is a decreasing function of the smoothing
scale. Since the mass “contained” within the functionW scales asM ∝ L3, it follows that the variance is also a
decreasing function of mass.

For future reference, we adopt here a sharp top-hat filter in Fourier space, meaning that the functionŴ (k, L)
equals unity ifk < 2π/L and vanishes otherwise. It follows that, with a scale free power spectrum for the original
density fluctuation field, the variance of the smoothed field equals

S(L) =
2A

(n + 3)
(2π)n+1

Ln+3
. (2.16)

This means that, if the slope of the power spectrum is fixed, the normalization can be expressed in terms of therms
computed for a specific scaleL∗ as

A = σ2(L∗)
Ln+3
∗

(2π)n+1

n + 3
2

. (2.17)

Due to historical reasons, the choiceL∗ = 8 Mpc h−1 is made, thus expressing the normalization in terms of
σ8 ≡ σ(L∗). In order to comply with existing observations, the four cosmological models introduced in Chapter 1
have different spectral index and normalization of the power spectrum. The full details for the models at hand are
given in Table 2.1, where the value of the other cosmological parameters is rewritten for completeness.

2.2.4 Evolution of the Power Spectrum

The discussion so far involves the power spectrum of the primordial density fluctuation field, that emerges from
the inflationary era. However, several physical processes affect both the amplitude and the slope of the power
spetrcum itself in the subsequent cosmological evolution. Regarding the amplitude, by definition it evolves as
the square of the growth factor (see Section 2.2.2), therefore the variance scales asσ2(L, t) ∝ D2

+(t)L−(n+3).
Recalling thatM ∝ R3 we also have thatσ2(M, t) ∝ D2

+(t)M−(n+3)/3. As suggested by the spherical collapse
model, (see Section 2.3.2 for further details) when the amplitude of a density fluctuation approaches unity it enters
the nonlinear regime and eventually collapses to form a bound structure. Accordingly, the typical non-linear mass
scale at a given cosmic time can be estimated asM∗(t) ∝ D+(t)6/(3+n). This is the typical mass of objects
collapsing at cosmic timet, and the fact that it grows with time forn > −3 reflects the fact that small DM halos
tend to form first than large ones (hierarchical paradigm). The evolution of the characteristic mass with redshift,
decorated with the appropriate normalization, is shown in Figure 2.2.

As can be seen, the typical non-linear mass is up to one order of magnitude larger in early-DE models than in
models with a constant DE equation of state parameter for suitably high redshift. Another way to put it is that,
given a value of the typical mass, the redshift at which this is reached is significantly higher in early-DE models,
and hence structure formation is shifted to higher redshifts.

The slope of the power spectrum is mainly modified by theMeszaros effect(Meszaros, 1974). Before the
matter-radiation equality the expansion of the Universe is driven by radiation. As a consequence, the expansion
time-scale (that is the Hubble time) is larger than the free fall time-scale for DM density perturbations, and thus
DM overdensities cannot grow on scales smaller than the cosmological horizon. This brings a change in the slope
of the power spectrum on scales smaller than the horizon radius Eq. (1.31) at matter-radiation equality. The action
of this physical process is conventionally encapsulated in thetransfer functionT (k), defined such that the power
spectrum at present is obtained from the primordial power spectrum at an early timete as
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Figure 2.2: The typical mass collapsing at redshiftz as a function of redshift itself. The black solid line is for
EDE1 model, the red short-dashed line for EDE2 model, the blue, long-dashed line is for the model with constant
DE equation of state parameterwx = −0.8 and finally the green dot-dashed line is for theΛCDM model.

P (k, t0) = P (k)
T 2(k)
D2

+(te)
. (2.18)

The commonly used transfer function is a fit to numerical simulations (Section 2.3.5) first given in Bardeen et al.
(1986), that reads

T (k) =
ln(1 + 2.34q)

2.34q

[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]−1/4
, (2.19)

(see also Eisenstein & Hu 1998) whereq ≡ kθ1/2/(Ωm,0h
2 Mpc), andθ is a measure of the ratio between the

energy density in relativistic particles (photons plus neutrinos) to that in photons only. Note that when the scale is
very small,k � Ωm,0h

2θ−1/2, the transfer function behaves asT (k) ∝ k−2, and thereforeP (k, t0) ∝ k−4P (k).
Finally, the power spectrum of linear density fluctuations is further modified when nonlinear effects due to

collapse of structures are inserted in, which cause perturbations of different size to interact. Such effects can be
followed only by means of fully numerical simulations (Peacock & Dodds, 1996; Smith et al., 2003). In Figure
2.3 the linear and nonlinear power spectra for several models are shown. The different normalizations between
the EDE1 and theΛCDM models are evident, reflected in the different value ofσ8, see Table 2.1. Also, the
change in slope induced by the Meszaros effect and encapsulated into the transfer function is visible, as the peak
atk ∼ 10−2h Mpc−1. As expected, non-linear effects become important on small scales,k > 0.1h Mpc−1.

2.3 Nonlinear Evolution

2.3.1 Zel’dovich Approximation

When the amplitude of the density fluctuation field approaches unity, the picture outlined in the previous section
no longer holds, and in particular the linear evolution Eq. (2.7) cannot be used any more. The description of the
non-linear evolution of density perturbations is a complicated subject, and in general it must be treated numerically.
There are however several analytic approximations that, even though they are unable to describe the most realistic
astrophysical situations, can give valuable insight into the physics of the problem.

One of these tools is due to Zel’dovich (1970), and is therefore calledZel’dovich approximation. Recalling the
relation between physical and comoving coordinatesr(t) = a(t)x, this approximation consists in anansatzfor
the peculiar motion of particles, that is the velocity with respect to the background expansion. This ansatz reads
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Figure 2.3:Left panel. Linear power spectrum for the EDE1 model (black solid line) and theΛCDM models (green
dot-dashed curve).Right panel. Linear (red dot-dashed line) and nonlinear (black solid line) power spectrum for
the EDE1 model.

x = x0 + b(t)p(x0). It corresponds to introducing a time dependent displacement into the comoving position
of particles due to the presence of density fluctuations, the quantityx0 representing some starting position. The
physical coordinates then take the form

r(t) = a(t) [x0 + b(t)p(x0)] , (2.20)

and the related peculiar velocity can easily be computed as

dr

dt
−Hr = aḃp(x0). (2.21)

Eq. (2.20) is a time dependent mapping from the original, comoving coordinatesx0 to the final, physical
positionr(t). Locally, all the relevant properties of such a mapping are encapsulated in the Jacobian matrixJ
defined asJij = ∂ri/∂x0,j . As long as the Jacobian matrix is non-singular, particle trajectories do not cross,
hence mass conservation holds and implies

ρ(x0, t) =
a(t)3ρb

detJ (x0, t)
=

ρb

[1 + b(t)λ1][1 + b(t)λ2][1 + b(t)λ3]
. (2.22)

In the previous equation the three functionsλi = λi(x0) are the eigenvalues of the matrx∂pi/∂x0,j . For times
close enough to the initial time the peculiar displacement is small, henceb(t)λi(x0) � 1. It follows that the
density fluctuation can be written to the first order asδ(x0, t) ' −b(t)(λ1 + λ2 + λ3). Vice versa, when the
crossing of trajectories is approached attc, the Jacobian matrix must become singular, hence one (or more) of
the three eigenvalues tend to vanish, namelyb(tc) = −1/λi(x0), impling a collapse of the density fluctuation
along the respective principal axis. If only one eigenvalue vanishes attc, then a planar structure orpancakeis
formed. If two eigenvalues vanish simultaneously, then a 1-dimensional structure orfilament is formed. In the
zero-probability case in which all the three eigenvalues vanish simultaneously, then a spherical structure is formed.

The Zel’dovich approximation is a purely kinematical description of the effect that density fluctuations have
on the trajectories of particles. As such, after the crossing of trajectories it loses its validity, and cannot be used to
follow the subsequent relaxation process.

2.3.2 Spherical Collapse

One obvious circumstance in which an analytic solution for the non-linear evolution of density fluctuations can
be found is the spherically symmetric case. In this case we limit the study to DM fluctuations for which the
pressure contribution is negligible, and we assume in addition that DM is the only constituent of the cosmic fluid,
thus driving the gravitational pull. The dynamics of the spherically symmetric overdense region is in this case
completely determined by the potentialΦ = Φb + δΦ, whereδΦ is the potential perturbation related to the density

39



CHAPTER 2. STRUCTURES IN THE UNIVERSE

fluctuationδρ, while the potential due to the uniform background can be written, to the lowest non-trivial order, as
Φb = −är2/2a (Padmanabhan, 1993). From the second Friedmann Eq. (1.10) then follows

Φ =
2πG

3
ρbr2 + δΦ. (2.23)

The equation of motion for a thin shell of particles located at a physical distancer from the centre of the perturba-
tion then reads̈r = −GM/r2, where

M ≡ 4
3
πr3ρb(1 + δ) ≡ 4

3
πr3ρb

[
1 +

3
r3

∫ r

0

δ(τ)τ2dτ

]
, (2.24)

andδ(r) is the average value of the overdensity inside radiusr.
The total energy of the shell

E =
1
2
ṙ2 − GM

r
(2.25)

is a first integral of the equation of motion for the shell itself, as can be easily verified. IfE > 0, thenṙ cannot
vanish, hence the shell will expand forever together with the background universe. IfE = 0, then the expansion
will eventually stop, but only atr → +∞. Finally, if E < 0, ṙ will vanish at a given finite timetm, indicating a
turn-around of the overdensity and subsequent collapse. Now, it is easily shown that the kinetic part of the shell
energy readṡr2/2 = H2r2/2, while the potential part becomes

−GM

r
= −1

2
H2r2(1 + δ)Ωm, (2.26)

whereΩm is the background DM density parameter. The collapse conditionE < 0 can be rewritten asδ > Ω−1
m −1.

In a flat or overcritical universe this condition is obviously always satisfied for a positive density fluctuation, while
in an underdense universe the perturbation will be wiped out by the overall expansion if the overdensity is not large
enough.

Assuming that the conditionE < 0 is satisfied and settinġr = 0 it is possible to find the turn-around radius,
that is also the maximum radius occupied by the considered shell, as

r(tm) ≡ rm = ri
1 + δi

1 + δi − Ω−1
m,i

. (2.27)

Initial quantities enter because of the conservation of energy and mass within each single shell.
After collapse, and after a few relaxation times have passed, the system will reach virial equilibrium, meaning

that U = −2K, or E = −K = U/2, implying a final radius for the virialised DM halo ofrv = rm/2. The
relation between the radius of a shell and time can be parametrically found by solving Eq (2.25), thus finding the
time tv corresponding to complete virialization. Thevirial overdensity∆v is then defined as the ratio between the
average density of the perturbation at virialization to the critical density of the Universe. It can be shown that, for
an Einstein-de Sitter model universe,∆v ' 178. For comparison, the linear overdensity given by the solution to
Eq. (2.7), extrapolated to the same instanttv equals onlyδc ' 1.686.

We stress again that these results hold only if the perturbed DM component of the cosmic fluid is the only
present. In particular, the presence of DE introduces an additional energy contribution to the virial relations, thus
changing the conclusions outlined above (see for instance Wang & Steinhardt 1998; Mota & van de Bruck 2004;
Zeng & Gao 2005a,b; Maor & Lahav 2005; Wang 2006; Bartelmann et al. 2006). Approximate solutions for the
virial overdensity and for the linear overdensity extrapolated at virialization time for a model with a cosmological
constant andΩm + ΩΛ = 1 are as follows.

∆v = 9π2
[
1 + 0.7076(Ωm − 1) + Ω0.4403

m

]
, (2.28)

δc =
3
5

(
3π

2

)2/3

[1 + 0.0123 log(Ωm)] . (2.29)

Note that, while in the Einstein-de Sitter case both∆v andδc do not depend on time, such a dependence is present
in more generic models, and is encapsulated in the density parameterΩm(z) in Eqs. (2.28) and (2.29). More details
about fitting formulae and approximate solutions for general cosmologies are given in Lacey & Cole (1993); Eke
et al. (1996) and Bryan & Norman (1998).

The virial overdensity defined above allow one to additionally define thevirial radius rv and thevirial mass
Mv of a spherical collapsed DM halo. The first one is the radius of the sphere inside which the average density is
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∆v times the critical density of the Universe at the relevant redshift. The second one is just the mass inside this
sphere. Hence, virial mass and radius belong to the relation

Mv =
4
3
πr3

v∆vρc. (2.30)

Even though, in principle, the virial overdensity should be computed in each case according to the background
cosmology, often the position∆v = 200 is used. This has a practical advantage since it does not depend on the
cosmological model, and is justified by the fact that in numerical simulations of structure formation (Section 2.3.5)
r200 does indeed approximately separate the inner, equilibrium part of a galaxy cluster from the outer, infall part
(Eke et al., 1998). The virial mass and radius when∆v = 200 are conventionally denoted byM200 andr200

respectively.

2.3.3 Mass Function

The statistics of Gaussian random fields together with nonlinear evolution models like the spherical collapse de-
scribed in Section 2.3.2 can be used to derive analytically the abundance of DM halos as a function of mass and
redshift, dubbedmass function. More in detail, the mass functionn(M, z) returns the comoving number density
of objects in the unit mass aroundM and in the unit redshift aroundz. In the following we outline the derivation,
following the steps of Press & Schechter (1974); Bond et al. (1991); Lacey & Cole (1993).

LetQ(M, z) be the fraction of volume of the Universe that in the unit redshift aroundz is occupied by structures
of mass larger thanM . Then it is easily seen that the mass function can be written as

n = −ρb

M

∂Q

∂M
=

ρb

M

∣∣∣∣ dS

dM

∣∣∣∣ ∂Q

∂S
, (2.31)

where the minus sign on the right hand side has been deleted using the fact that the variance is a decreasing function
of the mass scale (Section 2.2.3), andρb represents the mean DM density of the Universe. What remains to be
done is now to quantify the partial derivative on the rightmost side, and this can be done elegantly in the following
way.

Fix a comoving positionx in space, and consider the evolution of the filtered fieldδf(x, S) as a function of the
varianceS = S(M). As explained in Section 2.2.3, when the filtering scale is arbitrarily large, the fluctuation field
is completely smoothed out, so thatδf(x, 0) = 0. Moreover, if the chosen filter function is a top-hat in Fourier
space, then it is easy to understand that variations in the smoothing length, hence in the variance, will provide
random variations into the smoothed field, uncorrelated with the previous values. This means thatδf(x, S) is a
random walk as a function ofS, starting at the point(δf , S) = (0, 0).

The key assumption in the derivation is now that a collapsed structure forms at positionx when the filtered
density fluctuations field at that position equals some critical value that has to be of order unity. A simple choice
is to use the linear overdensity extrapolated at virialization for a spherical collapse model (see Section 2.3.2),
suitably normalised to the growth factor, in order to account for the time evolution of the amplitude of linear
density fluctuations. In summary, we shall assume that a virialised object of massM formes at comoving position
x and at redshiftz if δf(x, S) = ω(z) ≡ δc(z)/D+(z). Recall thatδc does not depend on redshift only for the
simple case of an Einstein-de Sitter model universe.

The problem is hence reduced to finding the probability distribution for a random trajectory in the(δf , S) plane
to be absorbed by a constant barrier. This problem has been solved by Chandrasekhar (1943), where it is shown
that if W (δf , S, ω) is the fraction of trajectories that, for varianceS, have smoothed density fluctuation in the unit
interval aroundδf , then

W (δf , S, ω) =
1√
2πS

[
exp

(
− δ2

f

2S

)
− exp

(
− (2ω − δf)2

2S

)]
. (2.32)

This distribution follows the diffusion equation

∂W

∂S
=

1
2

∂2W

∂δ2
f

, (2.33)

with the obvious boundary conditionW (ω, S, ω) = 0. It follows straightforwardly that the fraction of trajectories
that at varianceS have already been absorbed by the barrierω reads

Q(S, ω) = 1−
∫ ω

−∞
W (δf , S, ω)dδf , (2.34)
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which is equivalent to the fraction of volume in the Universe that in the unit redshift aroundz is occupied by
structures of mass larger thanM . Therefore,

∂Q

∂S
= −

∫ ω

−∞

∂W

∂S
dδf = −1

2

[
∂W

∂δf

]ω

−∞
=

ω√
2πS3/2

exp
(
−ω2

2S

)
. (2.35)

Using Eq. (2.35) into Eq. (2.31) we gain immediately the final expression for the mass function, first derived with
a different approach by Press & Schechter (1974)

n(M, z) =
ρb(z)
M

ω(z)√
2πS3/2

exp
[
−ω2(z)

2S

] ∣∣∣∣ dS

dM

∣∣∣∣ . (2.36)

This expression for the mass function becomes very simple when a scale free spectrum is considered. As it has
been shown in Section 2.2.4, in this case

S(M) =
(

M

M0

)−α

, (2.37)

with some suitable normalizationM0 andα ≡ (n + 3)/3. The mass function then reads

n = αρb
ω√
2π

Mα/2−2

M
α/2
0

exp
[
−ω2

2

(
M

M0

)α]
. (2.38)

Here, it is possible to recognise two different regimes: a power-law trend,n ∝ Mα/2−2, dominating when
(M/M0) � ω−2/α (low masses) and an exponential cut-off in the opposite tail (high masses).

As will be discussed in Section 2.3.5, the mass function in Eq. (2.36) is in remarkable agreement with more
sophisticated numerical results, indicating that despite the roughness of the model and of the assumptions, the
basic physical process is fairly captured. The agreement can however be further improved with the introduction of
the set of parameters(A,B, p) and the relatedgeneralised mass function

n(g)(M, z) = A
√

B
ρb(z)
M

ω(z)√
2πS3/2

[
1 +

(
S

Bω(z)

)2p
]

exp
[
−B

ω2(z)
2S

] ∣∣∣∣ dS

dM

∣∣∣∣ . (2.39)

Obviously, if A = 1/2, B = 1 andp = 0 the original mass function by Press & Schechter (1974) is recovered.
Sheth & Tormen (2002) improved this model by using the linear overdensity extrapolated at the virialization time
for a more realistic ellipsoidal perturbation (see also Sheth et al. 2001) as barrier. Difficulties in this case arise
because the barrier is not constant anymore but depends on the variance,ω = ω(z, S). However, approximate
expressions for the probability distribution of random trajectories can be found, leading to a generalised mass
function with coefficientsA = 0.3222, B = 0.707 andp = 0.3. Finally, Jenkins et al. (2001) found yet different
values for the same set of coefficients through a fit to cosmological numerical simulations (see also Warren et al.
2006). Their result can be summarised asA = 0.353, B = 0.73 andp = 0.175.

A comparison between the three different prescriptions for the mass function is reported in Figure 2.4. As is
shown, the Press & Schechter (1974) mass function slightly overpredicts the number of structures in the low mass
regime when compared to the Sheth & Tormen (2002) and Jenkins et al. (2001), while it generally underpredicts
it in the high mass tail. Also, the power-law regime and exponential cut-off described above are clearly visible in
all three mass functions. A comparison of the structure abundance in different cosmological frameworks will be
presented in Chapters 5 and 8.

2.3.4 Merger Rate

The random walk approach outlined above can be used also to infer the rate at which low mass cosmic structures
aggregate with one another to form higher mass objects, according to the hierarchical paradigm for structure
formation. This rate is dubbedmerger rate, and is naturally related to the appropriate limit of the conditional
probability distribution of random trajectories. With that we mean the probability for a trajectory to cross a barrier
ω2 at a varianceS2 given that the same trajectory already crossed a lower barrierω1 < ω2 (later time) for a lower
value of the varianceS1 < S2 (higher mass). This can be easily obtained if the spherical collapse model is used,
because in this case the barrier is independent on the variance, and hence the same argument as before can be
applied if the origin of the random walks is shifted from(0, 0) to (ω1, S1). The conditional probability distribution
per unit change in variance reads

K(∆S, ∆ω) =
1√
2π

∆ω

∆S3/2
exp

(
−∆ω2

2∆S

)
, (2.40)
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Figure 2.4: Mass function in aΛCDM universe as a function of mass at present day computed using the three
different prescriptions detailed in the text. The black solid line refers to the original Press & Schechter (1974)
formulation. The red dashed curve represents the Sheth & Tormen (2002) generalization and the green dot-dashed
curve the Jenkins et al. (2001) fit to numerical simulations.

where∆ω = ω2 − ω1 and∆S = S2 − S1. Eq. (2.40) gives the probability of a DM halo undergoing a change
in variance∆S due to hierarchical accretion in the redshift interval∆z, per unit change in variance. With the
positionsS1 = S(M0), S2 = S(Mp), ω2 = δc(z + ∆z)/D+(z + ∆z) andω1 = δc(z)/D+(z) Eq. (2.40) returns
the probability of a DM halo with a given massM0 at a given redshiftz to have a progenitor of a lower mass
Mp < M0 at a higher redshiftz + ∆z, per unit change in variance.

Finally, in the limit ∆z → 0, or ω2 → ω1, and with the suitable translation between mass and variance (see
Lacey & Cole 1993 for details) Eq. (2.40) can be arranged so as to return the probability that in the unit redshift
interval aroundz a structure of massMp undergoes a merger with a structure in the unit mass interval around
∆M = M0 −Mp, namely

W (Mp,∆M, z) =
1√
2π

∣∣∣∣ dS1

dM0

∣∣∣∣ ∣∣∣∣dω

dz

∣∣∣∣ [
S2

S1(S2 − S1)

]3/2

exp
[
−ω2 (S2 − S1)

2S1S2

]
. (2.41)

The kind of approach outlined above cannot be applied if, for instance, the ellipsoidal collapse model is used,
because in that case the barrier is not constant, and therefore a simple shift of the origin in the(δf , S) plane is not
sufficient. Merger rates for different cosmological models will be showed again in Chapters 5 and 8.

2.3.5 Numerical Simulations

Even though analytic or semi-analytic prescriptions like those outlined above can give much physical insight on
the nature of structure formation, the fully non-linear evolution of cosmic structure can be followed only with the
use of numerical simulations. In the present discussion we are mainly interested inn-body simulations, that follow
the evolution of a discrete set of particles self-interacting through gravity only. Numerical methods to describe
also different pieces of physics, like hydrodynamics of gas, star formation, chemical evolution, feedback from
supernovae and so forth exist. However, these kinds of processes are relatively difficult to parametrize, and have
little effect on the dynamics of the large scale structure or of galaxy clusters we will be interested in. This is
so because structure formation is mainly driven by DM, which is collisonless and hence interacting only through
gravity. Therefore, the focus here will be on puren-body simulations and their results on DM halos.

It is a well known fact that the equations of motion ofn-body systems cannot be integrated exactly ifn > 2.
Several approximated and asymptotic results hold ifn = 3, however forn � 1, as typical for astrophysical
situations, the problem is not directly tractable. The mean-field approach detailed in Section 2.2.2 must instead be
used, but even in this case the amount of information that can be extracted about non-linear evolution is limited.
The alternative approach followed byn-body codes is in essence to compute for each particle at each discrete time
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Figure 2.5: The red empty points with errorbars represent the mass function (times the square of the mass and
divided by the background matter density) extracted from the Millennium Simulation (Springel et al., 2005) at
various redshifts, as labelled in the plot. The blue dotted lines represent the relative prediction of the Press &
Schechter (1974) mass function, while the black solid lines refer to the Jenkins et al. (2001) mass function.

step the force felt due to the presence of all other particles, and then integrate numerically the equations of motion.
As is easy to realise, the computational time of such an algorithm scales as∝ n2, hence cannot be realistically
used for high numbers of particles.

More refined versions of the basic algorithm exist, likemeshcodes ortree codes, that compute the force on
each particle in a more clever way, and allow the reduction of the computational time scaling to∝ n log(n) (see
references in Springel et al. 2001; Springel 2005). This, together with the continuos improvement in the perfor-
mances of machines allows nowaday to follow the evolution on cosmological scales of self-gravitating systems of
up ton ∼ 1010 particles, with good mass, time and force resolution.

Once a numericaln-body simulation is realised, DM halos can be identified by grouping neighbouring particles
together, and the relative statistical and structural properties can be studied. Regarding the statistical properties, in
Figure 2.5 we show a comparison between the mass function of DM halos identified in theMillennium Simulation
(Springel et al., 2005) and the Press & Schechter (1974) semi-analytic predicition, Eq. (2.36). The agreement is
remarkably good, but as announced above, the latter tends to overpredict the number of objects at low mass and
to underpredict the number of high mass halos. Vice versa, the Sheth & Tormen (2002) (not shown) and Jenkins
et al. (2001) mass functions perform pretty well in this respect.

Turning to the internal structure of simulated DM halos, perhaps the most characteristic feature that virtually
all of them share, at least up to the present available resolution, is the presence of a central cusp in the density
profile. This makes sense in light of the fact that DM is collisionless, hence, without the stabilising action of
hydrodynamical pressure, the particles are free to sink down to the very center of the structure. The presence of
a cusp in numerical simulation of cosmic structures was recognised first in Dubinski & Carlberg (1991), but has
been commonly accepted after the series of works of Navarro et al. (1995, 1996, 1997) (NFW henceforth, see also
Power et al. 2003). There, it was highlighted how the spherically-averaged density profile of DM halos follows
a particular double power-law shape for a wide range of masses, from dwarf galaxies to massive galaxy clusters.
The NFW density profile reads

ρ(r) =
ρs

r/rs(1 + r/rs)2
. (2.42)

Its two free parameters are the scale radiusrs, where the logarithmic profile slope reaches−2, changing from−3
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Figure 2.6: The relation between the concentration of a virialised DM halo at redshiftz = 0.3 and the virial mass
as prescribed by the original NFW algorithm (black solid line), the Bullock et al. (2001) algorithm (red dashed
line) and the Eke et al. (2001) algorithm (green dot-dashed line).

outside towards−1 inside, and the scale densityρs = 4ρ(rs).
Theconcentrationof the halo is defined asc ≡ r200/rs. In terms ofc, the scale radius and the scale density

can be expressed as

rs =
(

3M200

800πc3ρc

)1/3

and ρs =
200
3

ρc
c3

F (c)
(2.43)

respectively, where

F (c) ≡ ln(1 + c)− c

1 + c
. (2.44)

Halo mass and concentration can thus replace the scale radius and the scale density as the two parameters fully
describing the halo density profile.

It has been firmly established in numerical simulations and observations (Navarro et al., 1997; Bullock et al.,
2001; Eke et al., 2001; Wu & Xue, 2000; Buote et al., 2007; Comerford & Natarajan, 2007) that the halo concen-
tration decreases with the halo mass. This is usually explained by the fact that low-mass halos form earlier than
massive halos in the hierarchical structure formation scenario in a cold DM universe, and the assumption that the
central halo density reflects the mean cosmic density at the formation redshift. This explains why massive haloes
are typically found to be less concentrated than low-mass halos. The average relation between mass and concen-
tration allows us to characterise halos by a single parameter, usually taken to be the virial massM200. There exist
basically three prescription for relating the concentration of a DM halo to the virial mass, all based on different
assumptions. The first one dates back to the original NFW works, while the other two are given in Bullock et al.
(2001) and Eke et al. (2001) respectively. In Chapter 7 they will be described in more detail (see also Fedeli et al.
2007) while here we just plot them in Figure 2.6.

The three prescriptions agree to a good extent on galactic scales but they strongly differ on galaxy cluster
scales. In particular it has been shown that the original NFW algorithm fails to drop significantly with redshift, and
therefore always overestimate the concentration of DM halos atz > 0.

It must be recalled that the value of the inner slope of the density profile Eq. (2.42) is not universally accepted:
some authors seem to find a steeper trend (Fukushige & Makino, 1997; Moore et al., 1998, 1999), while in other
works, cored profiles seem to provide as good fit as the NFW profile to the structure of DM halos (Navarro et al.,
2004). Despite this however, the universal profile Eq. (2.42) in general, and the presence of the inner cusp in
particular, are key theoretical predictions to be compared with observations. We also stress that despite several
attempts (Syer & White, 1998; Henriksen, 2006, 2007; Salvador-Solé et al., 2007a,b), a formal derivation of a
density profile equal or similar to Eq. (2.42) for the equilibrium state of DM halos from first principles is still
missing.
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To conclude, we note that while baryonic luminous matter like gas and stars might have an effect on the density
profile of galaxy-sized DM halos, such an effect is certainly less important, at least to a first approximation, on
cluster scale and large scale structure of the Universe.

2.4 Galaxy Clusters

2.4.1 Structure

Galaxy Clusters (GCs henceforth) are the most massive bound objects in the Universe, and they constitute the
extreme tail of the mass function. They are mainly constituited by DM, about80% in mass, with a smaller amount
of baryonic matter subdivided between gas and galaxies. Because of this their formation and evolution is rela-
tively well understood through numerical simulations. Assuming dynamical equilibrium, the velocity dispersion
of galaxies inside a cluster can be estimated asσ2 ∼ GM/R, and selectingM ∼ 1015M�h−1 andR ∼ 1 Mpc
for the more massive GCs, we obtainσ ∼ 103 km s−1. In a similar way, assuming the Intra-Cluster Medium (ICM
henceforth) gas to be in hydrostatic equilibrium in the overall GC potential well, the temperature can be estimated
askBT ∼ σ2, thus ieldingT ∼ 108 K. Such extremely high temperatures imply that the hydrogen and helium
in the ICM are completely ionised, and this has important consequences for the emission processes of GCs (see
Section 2.4.2).

As shown in Eq. (2.36), the mass function of cosmic structures at the high mass tail depends exponentially on
the variance of the density fluctuation field, and hence on the normalizationσ8 of the power spectrum. Therefore,
even small variations ofσ8 can cause large effects on the abundance of clusters, and this makes GCs one of the
ideal tools to probe the underlying cosmology. This will be better explored in Chapter 8.

As described in Section 2.3.5, the density profile of DM halos on virtually all mass scales is well described by
the NFW fit of Eq. (2.42), and this is in particular observed to hold in GCs. In fact, several observational probes
of the matter distribution in clusters agree on the presence of a central cusp (among these the presence of strong
lensing features, see Section 3.6), and in many cases the NFW profile is a good fit to the shape of relaxed GCs
(Schmidt & Allen, 2007).

A little more detail deserves the distribution of the gas in a GC. Pressure due to the collisional nature of
gas makes sure that a cuspy density profile is not an accurate description for the ICM mass distribution. Useful
insight on the equilibrium distribution of the intergalactic hot plasma can be gained by studying the behaviour of
a self-gravitating gas sphere. In this case the formal equilibrium configuration can be obtained by maximising the
Shannon-Boltzmann entropy (Shannon, 1948; Jaynes, 1957a,b)

H(f) = −kB

∫
R6

f ln(f), (2.45)

with the additional constraints of the conservation of mass and total energy. In Eq. (2.45),f(x) represents the
distribution function of the gas, and the integral is extended to the entire phase space of the system. Associating
the Lagrange multiplier related to the energy conservation with the 1-dimensional (constant) velocity dispersionσ
of gas particles implies the following relation between density and potential,

ρ(r) = ρ0 exp
[
Φ(r)
σ2

]
, (2.46)

where the normalizationρ0 is fixed by the boundary conditions. It is interesting to recall that Eq. (2.46) is also
obtained as the equilibrium structure of a self-gravitating, collisionless system that underwent violent relaxation
(Lynden-Bell, 1967; Binney & Tremaine, 1987; Padmanabhan, 1990). Therefore it reveals a profound origin in the
statistical mechanics treatment of systems dominated by long-range forces.

The picture above can be refined further, introducing for instance the additional constraints of the conservation
of angular momentum and the three components thereof. This brings to modifications of Eq. (2.46), most likely a
flattening of the density profile in the inner part due to rotational support.

Inserting Eq. (2.46) into the Poisson equation gives theLane-Emden equationfor the density,

d2ρ

dr2
+

2
r

dρ

dr
− 1

ρ

(
dρ

dr

)2

+
4πG

σ2
ρ2 = 0. (2.47)

The same equation can be also derived by assuming a constant temperature for the gas cloud, working on the
hydrostatic equilibrium equation (Euler’s equation with vanishing streaming velocity) and settingσ2 = kBT/µmp.
It is intended thatµ is the mean molecular weight of the ICM (assumed to beµ = 0.59 throughout this work) and
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mp is the proton mass. The (unique) power-law solution to the Lane-Emden equation is theSingular Isothermal
Sphere(SIS henceforth), and is expressed as

ρ(r) =
σ2

2πG

1
r2

. (2.48)

This model Eq. (2.48) is widely used due to its simplicity and to the good fit that it provides to the surface brightness
profile and velocity dispersion measurements of elliptical galaxies (Treu & Koopmans, 2002). Nevertheless, it is
a poor fit for the ICM distribution observed in GCs, besides, the central cusp is not physically acceptable for a
collisional fluid. Generalizations of the Lane-Emden equation can be found using different forms for the entropy,
for instance accounting for the non-extensive nature of self-gravitating systems (Tsallis, 1999; Zavala et al., 2006).

Looking for a description of more realistic situations, the solution to the Lane-Emden equation must be found
numerically, imposing the desired boundary conditions, i.e. a finite central densityρ0 < +∞. An analytic
approximation to this numerical solution is given by themodified Hubble profile(Reynolds, 1913; Hubble, 1930;
Rood et al., 1972)

ρ(r) =
ρ0

[1 + (r/r0)2]
3/2

. (2.49)

Here we have setr2
0 ≡ 9σ2/4πGρ0, and the error given by the use of Eq. (2.49) instead of the exact numerical

solution to Eq. (2.47) is less than5% in the range0 < r < 2r0. The modified Hubble profile can be generalised to
theβ-profile (Cavaliere & Fusco-Femiano, 1976, 1978)

ρ(r) =
ρ0

[1 + (r/r0)2]
3β/2

. (2.50)

Even though the previous discussion concerns isothermal, self-gravitating gas spheres, Eq. (2.50) is often used to
fit the ICM distribution inside clusters, and for relaxed systems the valueβ = 2/3 is found to give good agreement
with observations (see Section 6.3.2).

To conclude this section, we note in passing that the modified Hubble profile of Eq. (2.49) is often referred to
asKing profile. The reason for this is that the surface density profile related to Eq. (2.49) is a good approximation
to the surface density profile derived from the King distribution function (Michie, 1963; Michie & Bodenheimer,
1963; King, 1966, 1972, 1981).

2.4.2 Emission and Mass Determination

Except for the light emitted by the member galaxies, the main source of radiation from GCs is the ICM. Since the
gas is almost completely ionised, the relevant emission process is the bremsstrahlung due to the scattering of free
electrons off atomic nuclei. At the typical temperature of the ICM the emitted radiation lies in the X-ray band. As
is well known, the bremsstrahlung emission is proportional to the square root of the gas temperature and to the
square of the free electron density. Therefore, an ICM distributed according to theβ-model of Eq. (2.50) produces
a surface brightness profile of the type

B(θ) =
B0

[1 + (θ/θ0)2]
3β−1/2

, (2.51)

where, ifz is the redshift of the cluster andF the total flux received by the observer (that is the integral of the
surface brightness profile over the solid angle),θ0 ≡ r0/da(z) andB0 ≡ F/2πθ2

0.
It must be noted that the implicit assumption made so far is that the ICM gas is isothermal, i.e. it can be

described by a single value of the temperature. This is not strictly true, and as a matter of fact the latest generation
of X-ray satellites revealed a variety of phenomena affecting the thermodynamical state of the ICM, like shocks,
cold fronts and cooling flows. However, for the study of global properties of GCs, when the details of the gas
distribution are not relevant, the isothermality assumption is often used as a good approximation.

In addition to the bremsstrahlung emission, free electrons of the ICM interact via inverse Compton scattering
with the low-energy CMB photons. In this kind of process, the photons gain energy from the collision with very
hot electrons, and this leads to a distortion in the energy spectrum of the microwave background. In particular,
photons are moved from low to high frequency. This effect is calledthermal Sunyaev-Zel’dovicheffect (Sunyaev
& Zeldovich, 1972), and it is now becoming measurable, promising to be one of the most important probes of
the ICM in the next years. A similar effect, thekinetic Sunyaev-Zel’dovicheffect (Sunyaev & Zeldovich, 1980) is
also based on the interaction between free electrons of the ICM medium with CMB photons, but in this case the
distortion of the spectrum is caused by the peculiar motion of the cluster as a whole and the related Doppler effect.
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The light emitted by the member galaxies and the X-ray radiation related to the hot intergalactic plasma allow
independent determinations of the mass of a GC. Let us start with the first: using the Doppler effect, the velocity
dispersion of galaxies can be determined, at least along the line of sight. The second velocity moment of the
collisionless Boltzmann’s equation under the assumption of no streaming motions reads

∂Φ
∂ri

= −1
ρ

∂ρσ2
ij

∂rj
, (2.52)

whereΦ is the overall potential of the cluster, whileρ is the density of galaxies only, that can be observed in
projection. Assuming now spherical symmetry and an isotropic velocity dispersion tensor, meaningσ2

ij = σ2δij ,
it is easily obtained that the total mass inside a radiusr is

M(r) = −rσ2

G

(
d log ρ

d log r
+

d log σ2

d log r

)
. (2.53)

A similar approach can be followed for the ICM. Making the usual assumptionρσ2
ij = pδij and replacing the

galaxy density with the gas density in Eq. (2.52) returns the hydrostatic equilibrium equation. From there, using
again the assumption of spherical symmetry, we get

M(r) = − rkBT

Gµmp

(
d log ρ

d log r
+

d log T

d log r

)
. (2.54)

Both these methods rely on assumptions about the dynamical and thermodynamical state of the cluster that can
be sometimes too strong. For instance is not guaranteed at all that the ICM is in hydrostatic equilibrium during
a cluster merger (Puchwein & Bartelmann, 2007), and the same holds true for the isotropy of the galaxy velocity
dispersion. This is particularly worrysome since GCs are at the high mass tail of the mass function, and hence are
the youngest objects in the Universe, mostly still in the formation process. There exists however a third method for
the determination of the mass of a GC, namely the gravitational deflection of light, that will be explored in detail
in Chapter 3. For the time being however it is important to know that this tecnique does not rest on any assumption
about the state or the nature of the matter in clusters. A possible consequence of this fact is that the lensing mass
estimates agree quite well with optical and X-ray estimates for relaxed clusters (Hoekstra, 2007) but can be factors
between 2 and 3 larger for substructured ones.

2.4.3 Non-Linear Scaling Relations

Starting from the linear evolution of the power spectrum of density fluctuations and using simple dimensional
arguments it is possible to derive relations between the global quantities that non-linear structures in general and
GCs in particular should satsfy. The assumption behind this derivation is that only gravity and other scale free
processes dominate in the formation of GCs. While this is true to a good extent as long as only adiabatic gas
physics is considered, particular processes like radiative cooling of gas can invalidate this assumption and the
resulting scaling relations.

Let us start with the radius. It is known from Eq. (2.30) that

r200 ∝
M

1/3
200

h(z)2/3
. (2.55)

Then, the gas temperature of the ICM and the velocity disperion of galaxies are measures of the depth of the
potential well of the GC. Therefore it can be written that

T ∝ M200

r200
∝ M

2/3
200 h(z)2/3. (2.56)

Finally, if the emission mechanism for the ICM is thermal bremsstrahlung, then the bolometric luminosity is
proportional to the integral over the cluster volume of the square root of the temperature times the square of the
density, giving

L ∝
√

T
M2

R3
∝ M

4/3
200 h(z)7/3. (2.57)

Note that the mass and redshift dependence of the luminosity is significantly stronger than for the temperature.
Generalizations of these scaling relations taking into account also the internal structure of the host DM halo will
be described in Chapter 7.
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Figure 2.7: Marginalised likelihood contours (68% and 95% confidence levels) for the index and normalization
of the power spectrum of density fluctualtions, assuming a power-law form. The black, solid contours are for the
WMAP data only, while the red dashed regions combine WMAP data with supernovae and large scale structure
measurements (Spergel et al., 2007).

2.5 Current Observational Status

As explained in Section 2.2.3, the complete statistical description of the primordial density fluctuation field is
provided by the power spectrum. Under the assumption of a power-law form, the primordial power spectrum is
in turn determined by the amplitude, orσ8, and the spectral indexn. Once again, the main source of information
in this respect is provided by the angular power spectrum of the CMB. In Figure 2.7 the likelihood regions in the
n − σ8 plane are shown, for WMAP-3 data alone and for a combination of CMB experiments with large scale
structure and supernova datasets.

It is evident that, the best fit value for the normalization is aroundσ8 ∼ 0.75, altough degeneracies with
other parameters exist. This value is significantly smaller than the one derived from the first-year WMAP data
release (Spergel et al., 2003) and of the value derived from independent cosmological tests, like GC abundance
and evolution and weak lensing surveys (see Section 3.6), that tend to preferσ8 ∼ 0.9. We stress again that the
normalizationσ8 enters in the exponential of the mass function Eq. (2.36), therefore small variations produce large
effects in the abundance of cosmic structures.

Regarding the spectral indexn, a value slightly smaller than unity is preferred. This is in agreement with the
inflationary scenario, that predictsn = 1 in the case of eternal inflation, but favors a value different from unity if
the inflationary epoch has a finite duration, as it must be the case.

The preference of GC-based cosmological tests for a higher normalization of the power spectrum (Yepes et al.,
2007) can be also understood from an analysis of Figure 2.8 (Evrard et al., 2007). There, it is shown the DM cu-
mulative velocity dispersion function, that is basically related to the mass function. Evidently, current observations
of the cluster space density agree well withS8 ∼ 0.9, where

S8 = σ8

(
Ωm,0

0.3

)0.35

, (2.58)

while using the best fit values from the three-years WMAP data release, a value ofS8 ∼ 0.7 is preferred. Little
changes to this conclusion are obtained by varyingΩm,0.

A similar consequence can be drawn from the analysis of Figure 2.9. There the constraints on theΩm,0 − σ8

plane obtained from the cluster mass function are shown, where cluster masses are computed using different
criteria. The cluster sample is the Cluster Infall Regions (CIRS) from Rines & Diaferio (2006), and the masses are
computed using the virial theorem and the caustic tecnique (Diaferio, 1999; Geller et al., 1999) respectively. The
comparison with the WMAP likelihood contours confirms that a certain tension exist between the two sources of
cosmological information.

The internal structure of GCs deserves separate analysis. There are basically two points where the theoretical
predictions, mainly based on numerical work, are at odds with the observational evidence. The first one is the
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Figure 2.8: Cumulative space density of GCs as a function of the DM velocity dispersion withinr200 computed
for two different values ofS8, as labelled. The curves are the predictions based on the Jenkins et al. (2001) mass
function using three different values for the present matter density. The magenta shaded region shows the observed
local space density of clusters with temperature greater than 6 keV (σDM ∼ 1000 km s−1, Ikebe et al. 2002; Henry
2004), while black solid squares with errorbars show the space density of CIRS clusters (Rines et al., 2007; Evrard
et al., 2007).

Figure 2.9: Thick solid contours show the1σ and3σ confidence levels in theΩm,0 − σ8 plane from CIRS GCs
virial mass function. Dashed contours show the constraints from the caustic mass function (see text for details)
and dot-dashed contours constraints from the virial mass function with masses computed using only red galaxies.
The thin solid contours are the 68% and 95% confidence levels from the three-years data release of WMAP (Rines
et al., 2007).
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number of subhalos associated with galaxy or cluster-scale DM halos. According ton-body simulations, the
number of such substructures should be much larger than the currently observed abundance of e.g. satellites of the
Milky Way. This kind of tension could be explained with the fact that the smallest subhalos are not able to retain
gas due to the shallow potential well, or with the introduction of a minor contribution from warm DM.

Also a matter of dispute at the moment is the second point, namely the presence of the inner cusp at the centre
of DM density profile (Section 2.3.5). While strong lensing seems to require steep density profiles in the very
inner regions of GCs (see Section 3.6 for details), rotation curves of low surface brightness spiral galaxies seems
to be better fit by an internally flat density profile. The explanation that is usually put forward for this is that unlike
in GCs, in the inner regions of galaxies the luminous matter contributes significantly to the density profile of the
structure, and the presence of a core could be a consequence of the collisional nature of the gas. However, this line
of argument seems difficult to apply to low surface brightness objects, and general agreement in both cases has not
been reached yet.
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Chapter 3

Gravitational Lensing

3.1 Introduction

Gravitational deflection of light is one of the most astonishing predictions of GR. Even though the modification
of photon’ paths due to distributions of matter was predicted in Newtonian dynamics as well, as a consequence of
the equivalence principle (Soldner, 1804), the magnitude of the effect (Eddington 1919, see also Einstein 1919) is
correctly forecasted only in the GR setting (or, more generally, in the context of metric theories of gravitation, see
Chapter 9 and Feix et al. 2007). Deflection of light implies distortion and amplification of the images of distant
sources, a phenomenon that is currently referred to asgravitational lensing. In addition to the fact that lensing can
magnify faint sources bringing them above the threshold for detection, distortion of images can be also used to
probe the distribution of matter in the Universe, without any assumption on its nature or dynamical state.

Moreover, the analysis of distorted images can return information on the internal structure of deflectors, their
statistical abundance and the geometry of the Universe. Hence, gravitational lensing is a fundamental tool to gain
insights on the structure formation scenario, background cosmology and the contribution of DE to the cosmic fluid.

Gravitational lensing manifests itself mainly in two forms. When the strength of the deflector (to be appro-
priately quantified later) is low, then only minor shearing of the images is possible, hence a significant distortion
signal can be gained only with the statistical analysis of a high number of images. This regime is namedweak lens-
ing, and allows for instance the non-parametric reconstruction of the mass distribution of GCs and the tomography
of the large scale structure in the Universe. More details on this and the related insights about the background
cosmology are deferred to Section 3.6.

More seldomly the deflector is strong enough to cause spatial light trajectories to cross each other, giving rise
to multiple and highly distort images (rings and arcs) of the same background source. This regime is calledstrong
lensing. As for the weak regime, strong lensing can be used both to gain information about single deflectors (for
instance a GC) or in a statistical manner. The latter will be the focus of this and the following Chapters of this
thesis.

In this Chapter the main theoretical aspects of gravitational lensing are worked out, with particular emphasis
on the strong lensing properties of GCs relevant to this work.

3.2 Fermat’s Principle

3.2.1 Arrival Time

As in standard optics, the starting point for the developement of gravitational lensing theory is the Fermat’s prin-
ciple for the propagation of light. As is well known, this principle states that light rays, or photons, always follow
actual paths that minimize the travel time from a given source to the observer. This is a standard result of Hamil-
tonian theory of light propagation, following just from the least action principle in the reduced Maupertuis form
(Landau & Lifshitz, 1975; Arnold, 1978). However, it isa priori not guaranteed to hold in the GR framework,
where the concept of travel time depends on the reference frame, and in particular no eigentime can be defined for
a particle moving at the speed of light. It has been shown however, that a suitably modified version of Fermat’s
principle holds in GR as well, for arbitrary spacetimes (Perlick, 1990a,b). Further details and applications of this
proof can be found in Perlick (2000a,b, 2004), and are here summarised as follows. For a given lightlike curve
λ connecting an emission event to the worldline of an observer, it is possible to define a functionalτ(λ), called
arrival time functional, that is extremal on the actual (geodesic) path followed by photons. It can be shown that, in
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the particular case of a conformally stationary spacetime, the arrival time functional takes the form

τ(λ) =
∫ ν2

ν1

√
ĝij

dxi

dν

dxj

dν
dν, (3.1)

whereĝ is the metric in the three-dimensional spatial submanifold orthogonal to the time direction, andν is the
parameter of the curveλ, such thatλ(ν1) is the emission event, whileλ(ν2) is some point on the observer’s
worldline.

Assume now a Robertson-Walker spacetime that is locally weakly perturbed by some potentialΦ related to a
positive density fluctuation, that in our view represents the deflector. The related metric takes the form

g = a2

(
1 +

2Φ
c2

) [
−c2dη2 +

(
1− 2Φ

c2

)2

γ

]
, (3.2)

where we made use of the fact thatΦ � c2. This weak field assumption is satisfied in the vast majority of
astrophysical situations not involving exotic objects like black holes or collapsed stars. For instance, for a typical
GC, the potential is of the orderΦ ∼ GM/R ∼ 10−4c2.

Using the metric Eq. (3.2) in the definition of the arrival time functional Eq. (3.1), together with the assumption
that the deflection experienced by light paths is small (at the same order ofΦ/c2, dubbed Born’s approximation)
the arrival time functional takes the form

τ(λ) = −1
c

∫ χs

0

(
1− 2Φ

c2
+

1
2
f2

k

∥∥∥∥dθ

dχ

∥∥∥∥)
dχ. (3.3)

Hereχs is the comoving coordinate of the source andθ is the light ray’s position on the observer’s sky. The integral
is performed along the unperturbed ligth path, in accord with the Born approximation.

The actual light path is then found by extremising the right hand side of Eq. (3.3) between fixed endpoints.
Therefore, Eq. (3.3) actually plays the role of the action when finding trajectories of free point particles in standard
mechanics.

3.2.2 Lens Equation

Given the variational nature of the problem outlined in the previous section, a relevant Lagrangian function for
light trajectories can be identified, namely

L =
1
2
f2

k

∥∥∥∥dθ

dχ

∥∥∥∥− 2Φ
c2

. (3.4)

Using the momenta associated with the generalised angular coordinatesp = f2
kdθ/dχ, and performing a Legendre

transformation of the Lagrangian, the Hamiltonian function of the problem is readily obtained,

H =
1
2
f2

k ‖p‖ −
2Φ
c2

. (3.5)

From here, combining the solutions of the two canonical Hamilton equations, we finally obtain the solution of the
problem, that is the angular motion of photons on the sky sphere of the observer,

β = θ − 2
c2

∫ χs

0

fk(χs − χ)
fk(χs)fk(χ)

∇Φdχ, (3.6)

where the assumptionsβ = θ(χs) andθ = θ(0) have been used, and the gradient is taken here with respect to the
two-dimensional coordinate setθ.

A further assumption that is often justified for astrophysical gravitational lensing is the thin lens approximation.
This means that the spatial extent of the lens is very small when compared to the distances between the lens itself
and the sources and the observer. Hence, we can always think of the matter of the lens as projected on a plane
orthogonal to the line of sight, and placed at a comoving radial coordinateχl from the observer. This plane is
dubbedlens plane, and likewise we shall name the plane where the relevant sources lie thesource plane. A
consequence of this approximation is that astrophysical gravitational lensing theory deals almost exclusively with
projected quantities, hence giving almost no information on the matter distribution of the lens along the line of
sight.
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The deflection of light is assumed to happen impulsively at the location of the lens plane, while the photon’s
path is unperturbed in the remaining journey. This approximation allows us to rewrite the lens equation in the
simplified form

β = θ − 2
c2

Dls

DsDl

∫ rs

0

∇Φdζ, (3.7)

where, in the integral on the right hand side, the comoving radial distance of the sourceχs has been replaced by
the physical distancers. In Eq. (3.7), the quantitiesDl ≡ da(zl), Ds ≡ da(zs) andDls ≡ da(zl, zs) represent
shortly the angular diameter distances from the observer to the lens, to the source, and from the lens to the source,
respectively.

We define thescaled lensing potentialas

Ψ(θ) ≡ 2
c2

Dls

DsDl

∫ rs

0

Φ(θ, ζ)dζ, (3.8)

so that we can recast the lens equation in its final, compact form,

β = θ −∇Ψ(θ) ≡ θ −α(θ), (3.9)

with α being thescaled deflection angle.
Given the source positionβ, the solution to the lens equation returns the position of the related images on the

lens plane. It is obvious that in general this solution is not unique, meaning that multiple images are possible under
specified circumstances that will be described shortly. Also, the details of the solution, hence the exact number and
position of images and their distortion pattern depends on the exact shape of the (projected) potential of the lens
object.

3.3 Lens Mapping

It is often convenient to rewrite the lens equation using physical coordinates on the lens and source planes instead
of angular ones. By definingη ≡ βDs andξ ≡ θDl, we obtain

η =
Ds

Dl
ξ −DlDsα(ξ). (3.10)

Also, it is possible to recast the lens equation using dimensionless coordinates, replacingξ ≡ ξ0x, andη ≡ η0y,
whereξ0 andη0 = ξ0Ds/Dl are arbitrary scale lengths on the lens and source plane respectively. The final result
is

y = x− D2
l

ξ2
0

α(x) ≡ x−α(x). (3.11)

Thedeflection angleα is proportional to the scaled deflection angle, and is related to thelensing potentialΨ, in
turn proportional to the scaled lensing potential, viaα(x) ≡ ∇Ψ(x). The gradient is now taken with respect to
the dimensionless coordinatesx, and

Ψ(x) ≡ 2
c2

DlDls

Dsξ2
0

∫ rs

0

Φ(x, ζ)dζ. (3.12)

The lens equation (3.11) can be seen as a coordinate mapping from the sorce to the lens plane. Under the
condition that the source dimension is small compared to the typical scale on which the lensing properties of the
deflector change significantly, such a mapping can be locally linearised. In particular, in a neighborhood of the
(arbitrary) origin of the coordinate system on the lens plane it can be written thaty = Ax, whereA is the Jacobian
matrix of the lens mapping. It is defined as

Aij =
∂yi

∂xj
= δij −

∂αi

∂xj
= δij −

∂2Ψ
∂xi∂xj

. (3.13)

Locally, the properties of the images of a small source are determined by the Jacobian matrix of the lens mapping,
and in particular by its eigenvalues. A more convenient form of the matrixA can be found as

A = (1− κ)I − Γ, (3.14)
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whereI is the unit matrix,κ is theconvergence, defined asκ ≡ ∆Ψ/2 (the Laplacian operator is again taken with
respect to the 2-dimensional coordinate setx), andΓ is the trace freesheartensor, defined as

Γ =
(

γ1 γ2

γ2 −γ1

)
, with γ1 ≡

1
2

(
∂2Ψ
∂x2

1

− ∂2Ψ
∂x2

2

)
and γ2 ≡

∂2Ψ
∂x1∂x2

. (3.15)

Hence, the local distorsion pattern due to gravitational lensing is given by a diagonal part and a trace-free part. The
first one is boosted by the convergence, and affects only the size of the image, enlarging or reducing it with respect
to the source size. The second one is instead given by the shear, and changes the shape of the image.

As a simple consequence of the Poisson equation, indicating withρ the density distribution source of the
potentialΦ, it can be written that

κ =
1
c2

DlDls

Dsξ2
0

∫ rs

0

∆Φdζ =
1
c2

DlDls

Ds

∫ rs

0

(
4πGρ− ∂2Φ

∂ζ2

)
dζ. (3.16)

The last term on the right-hand side disappears under appropriate boundary conditions, namely that the derivatives
of the potential of the lens approach zero very far away fom the lens plane. This is justified in the thin lens
approximation. Therefore a 2-dimensional version of the Poisson equation is recovered,

∆Ψ = 2κ =
8πG

c2

DlDls

Ds

∫ rs

0

ρdζ ≡ 8πG

c2

DlDls

Ds
Σ ≡ 2Σ

Σc
. (3.17)

The surface densityΣ is just the projection of the 3-dimensional matter distribution of the deflector onto the lens
plane, while thecritical surface densityΣc is an order of magnitude estimate for the strength of the gravitational
lens, as will become clear in a moment. It can also be written asΣc ' 0.35 g cm−2Ds/DlDls if the distances are
expressed in Gpc. Note that when the deflector is very close to the sources or to the observer, the critical surface
density diverges.

By definition now, the Jacobian matrix of the lens mapping is always symmetric, hence a reference frame with
respect to which it is diagonal can always be found. The eigenvalues of the Jacobian matrix can be written as
λ1 = 1 − κ − γ andλ2 = 1 − κ + γ, with γ2 = γ2

1 + γ2
2 . They express the magnitude of the lensing distortion

along the respective principal axes, and they are calledtangentialandradial eigenvalue because, for a spherically
symmetric lens, the principal axes are in the tangential and radial direction with respect to the center of the lens
itself.

It must be noted that, if no photons are emitted or absorbed along the path from the source (transparent de-
flector), then the surface brightness profile is always conserved, and the flux transmitted by each image changes
proportionally to the change in the solid angle covered in the sky by the image itself. Hence, it makes sense to
introduce themagnificationas

µ ≡ 1
detA

=
1

λ1λ2
. (3.18)

If the sum or the difference between convergence and shear equals unity, then one of the two eigenvalues of
the lens mapping vanishes, therefore the lens mapping becomes singular, meaning that the trajectories of photons
emitted by the same source cross each other. In this case the distortion of images along the principal axis of the
vanishing eigenvalue becomes formally infinite, as does the magnificationµ. Obviously, an infinite magnification
cannot be realised in practice, because sources are not exactly point-like, and they do not emit an infinite amount
of photons. However, the distortion can be severe, producing highly elongated images like rings and arcs. It is
to be noted that the magnification Eq. (3.18) can possibly be negative. An image with negative magnification is
interpreted to have inverted parity.

A point of the lens plane where the lens mapping become singular is calledcritical point. Such points form
closed curves on the lens plane, calledcritical curves. The images of the critical curves onto the source plane
are namedcaustics. As can be seen from the definition of the tangential eigenvalue, a sufficient condition for the
production of a critical curve is that at least one point of the lens planeκ > 1, i.e. Σ > Σc. Therefore, a lens
has critical curves, that is it is capable of producing highly distorted images, if its surface density is higher than
the critical density in at least one point. If the lens is very close to the sources or to the observer, then the critical
surface density becomes arbitrarily large, and consequently it is not possible for realistic deflectors to produce
critical curves. Such geometrical suppression of the lensing efficiency will be better illustrated in Chapter 4.
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3.4 Lens Models

3.4.1 Axially Symmetric Models

Models of deflectors with axial symmetry are widely used for lensing analysis due to their simplicity and because
they can provide physical understanding of problems and set the stage for more realistic and complicated analysis.
In this section two of the most popular models together with the exemplary point lens will be presented.

In the axially symmetric case, Gauss’ theorem applied to the 2-dimensional Poisson Eq. (3.17) implies that the
magnitude of the deflection angle at a dimensionless distancex = ‖x‖ from the center of the lens reads

α(x) =
2
x

∫ x

0

κ(x′)x′dx′ ≡ m(x)
x

, (3.19)

where thedimensionless massinside the circle of radiusx, m(x), was defined. This result holds true also for
particular classes of lenses with elliptical surface contours, like homeoids (Schramm, 1990).

Also, in the case of axial symmetry, the eigenvalues of the lens mapping can be written in a simplified manner
as

λ1(x) = 1− m(x)
x2

, and λ2(x) = 1− d

dx

[
m(x)

x

]
. (3.20)

This means that the position of tangential critical curves is sensistive to the total mass of the lens, while that of
radial critical curves is sensitive to the slope thereof.

Point Lens

For a point lens with massM , the surface density and the convergence are almost everywhere zero. It follows that
the deflection angle takes the simple formα(x) = x−1, when the (arbitrary) scale length on the lens plane is set to

ξ0 =
√

M

πΣc
. (3.21)

Therefore, the strength of the deflection decreases linearly with distance from the central point lens. As announced,
the convergence vanishes, while the shear readsγ(x) = x−2

The absence of convergence implies that the radial eigenvalue is always positive, therefore there is no radial
critical line. Conversely, the tangential critical line always exists and is parametrised by the circlex2 = 1. Note
that the existence of a critical line is consistent with the sufficient condition given in the previous section. As a
matter of fact, a point mass has infinite density at the origin, hence it has one point on the lens plane at which the
convergence is larger than unity.

The magnification for the Schwarzschild lens finally reads

µ(x) =
x4

x4 − 1
. (3.22)

Singular Isothermal Sphere

For the SIS density profile of Eq. (2.48), the convergence reads, in terms of physical coordinates, as

κ(ξ) =
σ2

2GΣcξ
. (3.23)

By choosing the length scale on the lens plane as

ξ0 =
σ2

2GΣc
, (3.24)

we reduce to the simple functionκ(x) = x−1. It follows that the deflection angle is constant,α(x) = 2 and the
shear can be calculated asγ(x) = x−1 = κ(x). As a consequence, the radial eigenvalue is always unity, therefore
no radial critical line exists. On the other hand, the tangential critical line always exists, and it is parametrised by
the circlex2 = 4.

The magnification can be written in this case as

µ(x) =
x

x− 2
. (3.25)
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Figure 3.1: The radius of the tangential critical curve (black solid line), of the radial critical curve (red dashed
line) and of the radial caustic (green dot-dashed line) for an NFW lens placed at redshift 0.3 with sources placed
at redshift 1. The background cosmology is theΛCDM model detailed before.

Universal Dark-matter Halo Profile

Things get more complicated for a NFW density profile lens Eq. (2.42), whose lensing properties have been
illustrated for the first time in Bartelmann (1996) (see also Keeton 2001a). It turns out that, using dimensionless
coordinates on the lens and source planes withξ0 = rs, the convergence can be written as

κ(x) =
2ρsrs

Σc

f(x)
x2 − 1

, (3.26)

where the functionf is defined by

f(x) =


1− 2√

x2−1
arctan

√
x−1
x+1 if x > 1

0 if x = 1

1− 2√
1−x2 arctanh

√
1−x
1+x if x < 1

. (3.27)

Likewise, the magnitude of the deflection angle can be computed as

α(x) =
4ρsrs

Σc

g(x)
x

, (3.28)

with

g(x) = ln
x

2
+


2√

x2−1
arctan

√
x−1
x+1 if x > 1

1 if x = 1
2√

1−x2 arctanh
√

1−x
1+x if x < 1

. (3.29)

In this case both radial and tangential critical lines exist, and both are stable under small external shear perturbation
from e.g. surrounding structure (Bartelmann, 1996). The radii of the NFW critical curves as a function of the halo
mass are presented in Figure 3.1. The radius of the tangential caustic is not shown because it degenerates to a
single point.

In Figure 3.2 a comparison between the convergence and the shear of a SIS and an NFW lens is shown. While
the convergence of the SIS lens diverges as∝ x−1 for small radii, the divergence of the NFW lens convergence is
milder,∝ − lnx as a consequence of the flatter core in the 3-dimensional density profile. A similar trend is also
recognised in the shear profile.

58



3.4. LENS MODELS

Figure 3.2: Convergence (left panel) and shear (rigt panel) for a gravitational lens with SIS (black solid line) and
NFW (red dot-dashed line) density profile. The background cosmology is theΛCDM model detailed before, while
lens and source redshift are set to 0.3 and 1 respectively. The mass of the halos is set to be1015M�h−1

3.4.2 Elliptical Models and Substructures

Axially symmetric models are useful for their simplicity, but they do not represent realistic astrophysical objects,
that are usually rather irregular. Much better in this sense perform models with elliptical symmetry. Particular lens
models with elliptical isodensity contours can be constructed (Schramm, 1990; Schneider et al., 1992; Schramm,
1994), however their implementation, and in particular the computation of the related deflection angle and lensing
properties is somewhat cumbersome.

In this work an alternative approach has therefore been used, namely to introduce the ellipticity directly in the
lensing potential (Blandford & Kochanek, 1987; Kochanek & Blandford, 1987). This has the drawback that the
density distribution related to elliptical potential is not elliptical itself (tipically dumbbell shaped) for eccentricities
significantly larger than zero (Kassiola & Kovner, 1993; Golse & Kneib, 2002; Meneghetti et al., 2003b). While
this feature might be unwanted for galaxies, where the isophotes are rather regular ellipses, it is not a big matter of
concern for GCs we are interested here. As a matter of fact, clusters are in general relatively young objects, mainly
still in the process of formation. Therefore it is expected that their density distribution to be somewhat irregular.

The introduction of ellipticity into the lensing potential consists of the modification of the deflection angle
components according to

α
(e)
1 (x) =

x1

(1− e)X
α(X),

α
(e)
2 (x) =

x2(1− e)
X

α(X), (3.30)

wheree is the eccentricity of the isopotential contours, and the new variableX is defined as

X ≡ x

√
1− e

1 + e
. (3.31)

It is quite obvious that for an axially symmetric modele → 0, and the previous relations reduce to the circularly
symmetric ones between the magnitude and the components of the deflection angle.

With the deflection angles at hand, the other lensing properties are readily computed. The critical curves and
caustics for an NFW lens profile with elliptical lensing potential are shown for a few values of the ellipticity in
Figure 3.3.

As can be seen, the radial critical curve tends to shrink when the eccentricity is increased, while the tangential
critical curve is widely extended, making the production of higly distorted images more likely, as explained in Sec-
tion 3.5. Also, the shape of the critical curves is highly non-elliptical, as a consequence of the fact that isodensity
contours are dumbbell shaped. As for the tangential caustic, it goes from a point in the axially symmetric case
to the typical diamond shape in the elliptical case, expanding more and more as the ellipticity of the isopotential
contours is increased.
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Figure 3.3:Left panel. The tangential (outer curves) and radial (inner curves) critical lines for an NFW gravitational
lens with elliptical isopotential contours. The values of the eccentricity are 0.1 (black curve) 0.2 (red curve) and 0.3
(green curve). As costumary, the origin of the coordinate frame is coincident with the center of the lens. The mass
of the lens is1015M�h−1, and lens and source redshifts are 0.3 and 1 respectively.Right panel. The corresponding
caustics. For clarity only tangential caustics are shown. The underlying cosmology is theΛCDM model detailed
in Table 2.1.

The reason for the increase in the length and extension of critical curves after increasing the eccentricity of
the isopotential contours lies in the augmented shear field of the lens. Actually, it can be shown that the effect
of ellipticity can be mimicked by an external shear (Narayan & Bartelmann 1996, see also Keeton et al. 1997).
A similar effect happens when the lens is perturbed e.g. by a merging substructure (Torri et al., 2004). In this
case however the increase in the shear field is accompanied by an increase in the surface density, and hence of
the convergence, of the lens. The consequence is an even more acute distortion of the critical curves, as shown in
Figure 3.4.

In more detail, when a substructure is approaching head-on a DM halo during a merger event, three charac-
teristic regimes can be identified in the caustic structure of the lens. At first the caustics (and as a consequence
the critical curves) are stretched towards each other, increasing in length. When the shear and convergence fields
between the two objects are large enough the tangential caustics merge together to form a single very extended
curve. Finally, the single caustic shrinks along the approaching direction and then expands isotropically due to the
enhanced projected density.

A trace of these three characteristic moments will be found in the lensing efficiency of merging clusters in
Section 4.2.2.

3.5 Arc Statistics

Gravitational arcs are among the most spectacular realizations of gravitational lensing. They are images highly
distorted along one particular direction, and therefore they form in proximity of critical curves of the lens mapping.
Even though arcs can be produced by lens galaxies, we will be exclusively interested here in arcs produced by GCs,
and in particular on the total amount of arcs produced by the whole cluster population (arc statistics).

The sources that are lensed into arcs usually belong to a population of high-redshift galaxies that are bluer than
the local ones, dubbedfaint blue galaxies(Tyson, 1988; Ellis, 1997) Their surface density detectable with present
ground-based telescopes is approximately of30 − 50 per square arcminute and the relevant redshift distribution
for such a population of background galaxies will be presented in Section 5.3. Likewise critical lines and caustics,
gravitational arcs are also divided in tangential and radial. Tangential critical curves are usually more extended
than radial ones (see Figures 3.3 and 3.4 for instance), and therefore radial arcs appear much more rarely than
tangential ones. Moreover, radial critical curves appear only in the very center of GCs, hence it is often likely that
radial arcs are embedded in the light received from the Brightest Cluster Galaxy.

Gravitational arcs are usually classified using some kind of morphological property, like the curvature radius,
the length or the width. In this thesis we shall conform to the common use and classify arcs according to their
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3.5. ARC STATISTICS

Figure 3.4:Upper panels. The radial and tangential critical curves for two axially symmetric NFW density profiles
of mass1015M�h−1 each in theΛCDM cosmological model. The lens redshift is0.3 and the source redshift is at
1. In the left panel the distance between the centers of the profiles is300 kpch−1, while in the right panel it is200
kpch−1. Lower panels. As in the upper panels but shown are the caustics on the source plane. Radial caustics are
omitted for clarity.

length-to-width ratio. The measurements of this quantity on astronomical images is usually not an easy task, since
it depends on the depth of the image and often tangential arcs are not even resolved in the radial direction (Section
3.6).

Given the discussion above, it is quite intuitive that the size of the critical curves is directly related to the
probability of a GC for the production of long and thin arcs. In turn, the size of the critical curves depends mainly
on two factors that shall be mentioned in the following.

First of all, the extension of critical lines depends on the internal structure of the lens. If the density profile
of the deflector is more concentrated then the critical curves will be pushed outwards, and hence their length
will increase. Also, the asymmetry in the density distribution and the presence of clumpiness and substructure
tend to increase both the shear and the convergence fields of the lens (Section 3.4.2), and hence to render easier
the production of long caustics. Needless to say, the internal structure of GCs depends ultimately on underlying
cosmology and on the content of the Universe. Dynamical DE (Chapter 5) and increased normalizationσ8 (Chapter
8) shift the structure formation at higher redshift (see Figure 2.2 and related discussion), causing GCs to have more
time to relax and reach higher concentrations. Also, the amount and rate of interactions with substructures can be
significantly changed.

Secondly, the length of lensing caustics depends on the relative position of sources, lens and observer. As
explained in Section 3.3, when the deflector is placed too close to the sources or to the observer, the critical surface
density tends to increase indefinitely. Therefore the light cannot be deflected efficiently, and the critical curves
shrink or disappear. Given the source position with respect to the observer, only in a reduced redshift range,
approximately half the way from the observer to the source, will the deflector be highly efficient and have the
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CHAPTER 3. GRAVITATIONAL LENSING

possibility to produce strong lensing events.
Besides the properties of individual deflectors, the total number of arcs produced in the sky depends also on

the statistical properties of the source and cluster population. The first is characterised by the redshift distribution
of the faint blue galaxy population. The latter is instead defined by the mass function and the merger rate, that
depend deeply on the underlying cosmology as the length of the critical curves does. By putting the various pieces
together, it turns out that arc statistics is correlated in a highly non-linear way to the structure formation paradigm
and to the value of the cosmological parameters.

Given this, a number of definitions are given in order to better quantify arc statistics and to understand the
various different contributions to it. The first one is thecross sectionof a GC for images with a propertyq, for
instance to have a length-to-width ratio larger than some thresholdd. It is defined as the areaσq of the region in
the source plane (at a given fixed redshiftzs) where a source has to be in order to produce at least one image with
propertyq. For gravitational arcs, this region will be realistically some sort of stripe surrounding the caustic curves.
The ratio between the cross section and the total area of the source sphere4πD2

s obviously gives the probability
that the GC at hand host at least one image with the propertyq. The cross section encapsulates the effect on arc
statistics of the internal properties of the deflector like density profile, asymmetry, substructures and so forth, and
of the sources, like their intrinsic shape.

The probability of producing images with the propertyq in the whole cluster population is given by the sum
of the cross section of the individual GCs normalised to the area of the entire source sphere and weighted by their
relative abundance. This is summarised by theoptical depth

τq(zs) ≡
1

4πD2
s

∫ zs

0

∫ +∞

0

N(M, z)σq(M, z)dMdz. (3.32)

The redshift integral obviously extends only up to the source redshift, and the functionN(M, z) represents the
total number of structures present in the unit redshift aroundz and in the unit mass aroundM . It can be written in
terms of the mass function Eq. (2.36) as

N(M, z) =
∣∣∣∣dV (z)

dz

∣∣∣∣ n(M, z), (3.33)

whereV (z) is the cosmic volume included in the sphere that extends up to redshiftz around the observer. The
functionN(M, z) expresses the contribution to arc statistics given by cluster abundance and formation history.

Next let us assume a redshift distribution for the background source population, indicated byp(zs). Then, the
total number of images with propertyq that are produced by the cluster population reads

Nq = nsτ̄ ≡ ns

∫ +∞

0

p(zs)τq(zs)dzs, (3.34)

wherens is the total number of sources present in the entire sky at all redshifts, andτ̄ is theaverage optical depth.
In the particular case where all the sources are at one and the same redshiftzs,∗, then the previous equation reduces
to

Nq = nsτq(zs,∗). (3.35)

The source redshift distributionp(zs) contains statistical information about the sources, which is the last piece of
information needed.

Given the large number of different effects that play a role on the statistics of strong lensing events, it is difficult
to disentangle the various contributions and to understand which one is dominant. Part of the work present in the
literature and directed toward this goal is described in the next Section. Additional resuts in this direction are part
of this thesis, and will be detailed in the susequent Chapters.

3.6 Current Observational Status

3.6.1 Strong Lensing

The discovery of the first strong lensing event dates back to Walsh et al. (1979), a quasar multiply imaged by a lens
galaxy. As for gravitational arcs in GCs, the main subject of this work, the first ones were discovered in Cl2244-02
by Lynds & Petrosian (1986) and A 370 by Soucail et al. (1987). As expalined in Section 3.5, single gravitational
arcs are tracers for the position of the critical curves in GCs, therefore they bring a wealth of information about
their internal structure. One of the most significant, especially in relation with the discussion in Section 2.5 is that
the density profile of GCs displaying tangential and radial arcs must be steep (Hammer & Rigaut, 1989). This is
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3.6. CURRENT OBSERVATIONAL STATUS

an immediate consequence of the fact that usually tangential arcs are very thin, and often not even resolved, in
the radial direction. Therefore, the radial magnification at the position of the tangential critical line, that can be
written as1/2(1 − κ) must be very small. As a consequence we must haveκ � 1 at the approximate position of
the tangential critical curve. But if also radial arcs are present, at their positionκ = 1+γ ≥ 1 must hold, implying
that the surface density profile must be steep enough.

Coming now to the statistics of long and thin arcs, at the moment only few, rather old searches for such events in
statistically complete GC samples exist in the literature (Le Fevre et al., 1994; Gioia & Luppino, 1994; Gioia et al.,
1996; Luppino et al., 1999). This is mainly due to the lack of automatic detection algorithms for gravitational arcs.
Such algorithms are becoming available in recent years, (see Section 6.6 for some references) and their application
to large area optical and infrared surveys will be of fundamental importance.

According to the results of Gioia & Luppino (1994), who used GCs selected in the X-ray band, the number of
arcs with ratio between length and width larger thand = 10 and B-band magnitude less than22.5 (corresponding
to R-band magnitude less than21.5, so calledgiant arcs, Wu & Hammer 1993) is about0.2 − 0.3 per cluster.
Extrapolating this number to the entire cluster population would mean a total number of giant arcs∼ 103. On the
other hand, theoretical investigations performed using numerically simulated DM halos as lenses in a flat universe
dominated by the cosmological constant predict a number of arcs that is about one order of magnitude smaller
(Bartelmann et al., 1998; Li et al., 2005). In addition to that, recent analysis of high-redshift clusters (Gladders
et al., 2003; Zaritsky & Gonzalez, 2003) revealed an unexpectedly high incidence of long and thin arcs, though the
samples used are not complete and made of a relatively low number of clusters. This fact remains however difficult
to explain in the framework of the standard cosmological model.

The discrepancy between the observed and the predicted abundance of long and thin arcs, dubbed arc statistics
problem, hints to some important piece of cluster physics that has not been taken into account. The results from
Bartelmann et al. (1998) therefore boosted a variety of works to explain the lack of arcs in theoretical models
and to understand which of the various contribution to arc statistics explored in Section 3.5 is the most relevant
and not properly modeled. Among the various effects studied, it was found that the finer details of GCs, like
individual galaxies and in particular the presence of a Brightest Cluster Galaxy have little influence on the strong
lensing efficiency (Flores et al., 2000; Meneghetti et al., 2000, 2003a). Vice versa, the impact of mergers with
substructures is potentially highly important for the global arc counts, as was shown in Torri et al. (2004) on single
GCs and as naively expected from the discussion in Section 3.4.2. A major part of this thesis consists in quantifying
this effect on the entire cluster population, and therefore we refer to the following Chapters for further detail. Also,
the ICM can have some effect on the cross section of single deflectors, even though probably this is limited to a
factor of a few (Puchwein et al., 2005). As a matter of fact, despite the evidence that the formation and evolution
of GCs is mainly driven by DM, the presence of gas can subsequently modify the structural properties of clusters
in the very inner regions, the most relevant for strong lensing.

In summary it is not yet certain if the arc statistics problem is solved by the introduction of all the aforemen-
tioned effects. One certain thing is that the low value of the normalization for the linear power spectrum measured
by WMAP-3 data (Section 2.5) tends to make the situation worse, since it reduces the abundance of GCs and
hence of potential strong lenses. Chapter 8 is dedicated to quantify the arc statistics problem in dependence of the
value ofσ8. To conclude we also note that the inclusion of dynamical forms of DE in the cosmic fluid can have a
potentially significant effect on cluster abundance and merger rate, i.e. on the strong lensing statistics (Meneghetti
et al., 2005b). This issue will be further explored in Chapter 5.

3.6.2 Weak Lensing

The weak gravitational lensing regime is characterised byκ � 1 andγ � 1. In this regime it is not possible to
use the information on the distortion of one single image, rather the average distortion of many different images
must be computed, giving a proxy for the shear field and hence for the convergence of the deflector. The number
density of images with measured ellipticity required to have a decent distortion signal is rather high, of the order
on few tenths per arcminute squared. Consequently, only in very recent years weak lensing tecniques could be
fully developed.

Weak lensing can be used for the non-parametric reconstruction of the mass distribution of e.g. GCs and early
algorithms suited to this purpose date back to Kaiser et al. (1995). Algorithms of this kind suffer from an intrinsic
degeneracy, called themass-sheet degeneracy, due to the fact that a given distortion pattern determines the lens’
convergence map only up to a linear transformation. As a consequence, while the general shape of the projected
density profile can be reconstructed, the normalization cannot. Fortunately, solutions to this problem exist, both
combining the distortion with the magnification information, or complementing the weak lensing analysis with
strong lensing data (Bradač et al., 2005, 2006; Cacciato et al., 2006).

The combination of weak and strong lensing measurements is particularly useful for the reconstruction of the
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Figure 3.5: Marginalised 68% and 95% confidence levels in theΩm,0 − σ8 plane. Blue dashed regions indicate
the constraints from the WMAP-3 data release, the pink ones those from the Canada-France-Hawaii Telescope
Lensing Survey and the green ones are the combination of the two, as labelled in the plot (Spergel et al., 2007).

mass distribution in GCs. As a matter of fact, all weak lensing inversion algorithms mainly work in the outskirts
of GCs, while they break down in the very center of clusters that display strong lensing features like long and thin
arcs. Therefore, the combination of results from both techniques allows to probe efficiently both small and large
radii, hence being an ideal tool for recovering the overall mass distribution of GCs.

Finally, weak lensing from the large scale structure can be used to put constraints on the matter distribution,
complementary to big optical surveys that use galaxies as tracers. By studying the 2-point correletion function of
the ellipticity of faint blue galaxies it is possible to gain information about the 2-dimensional distribution of matter
in the large scale structure (cosmic shear, Mellier 1999). Also, information on the 3-dimensional distribution of
DM can be obtained by using images of sources at different redshifts. Since the lensing signal is strong enough only
in a relatively narrow range about half the way between the observer and the sources themselves, this allow one to
probe the large scale structure at different redshifts (weak lensing tomography, Hu 1999). It is also important to
stress that the weak lensing reconstruction of the large scale structure does not require to make assumptions about
e.g. the bias between galaxies and DM distribution.

In Figure 3.5 the cosmic shear constraints on the matter density parameter todayΩm,0 and the normalization
of the primordial power spectrum of density fluctuationsσ8 are shown, together with the constraints coming from
the third year data release of WMAP. It is evident that the results from weak lensing surveys are in slight tension
with CMB data, in the sense that the first tend to prefer a higher value of normalization than the second. In this
sense, weak lensing data are in better agreement with the cluster abundance estimates (Section 2.5).
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Chapter 4

A Fast Method for Computing Strong
Lensing Cross Sections: Application to
Merging Clusters

4.1 Introduction

Strong gravitational lensing by GCs is a highly non-linear effect that is very sensitive to the details of lensing mass
distribution. As explained in Section 3.5, the cluster core densities, the asymmetries of their mass distribution, their
substructures, and their close neighbourhoods all contribute to their lensing properties. The ongoing debate about
whether the observed statistics of arcs is or is not compatible with the expectations in the standard cosmological
model shows that we do not sufficiently understand yet what aspects of the source and cluster populations as a
whole determine the statistics of its strong-lensing effects (see Section 3.6 and Wambsganss et al. 2004; Dalal
et al. 2004; Hennawi et al. 2007)

It is an obstacle for theoretical, as well as observational, studies that the cross sections of GCs for strong lensing
are costly to compute. So far, they require highly-resolved simulations tracing large numbers of light rays through
realistically simulated cluster mass distributions, used for finding the images of sources that need to be classified
automatically (Miralda-Escude, 1993; Bartelmann & Weiss, 1994). This needs to be done often, i.e. for different
cosmological models and for many clusters in large cosmological volumes seen with many different angles, for
the results to reach a reliable level. The fact that the enhanced tidal and density fields around merging clusters
substantially enhance strong-lensing cross sections (Torri et al. 2004 and Section 3.4.2) adds the necessity to study
clusters with a time resolution that is sufficiently fine to resolve cluster merger events.

The increasing demands to be met by reliable strong-lensing calculations and the desire to carry them out
for varying cosmological models call for a substantially faster and equally reliable method than ray-tracing. We
develop such a method in this Chapter. It is based on the fact that highly elongated arcs occur near the critical
curves in the lens plane and that imaging properties near critical curves can be summarised by the eigenvalues
of the Jacobian matrix of the lens mapping (see Schneider et al. 1992 and Chapter 3 for detail). This allows the
cross section calculation to be reduced to an area integral to be carried out on the lens plane itself. In that sense,
the method is analytic, but the irregular shapes of the integration domains require it be carried out numerically.
Since the eigenvalues of the Jacobian matrix ideally describe imaging properties for infinitesimally small, circular
sources, the method needs to be supplemented by techniques for taking extended, elliptical sources into account
without losing computational speed.

4.2 Lensing Cross Sections

So far, the most reliable method for calculating cross sections for long and thin arcs has been using fully numerical
ray-tracing simulations. If performed adequately, such simulations return realistic cross sections, but with the
disadvantage of being very expensive in computational time. In view of cosmological applications, the mass and
redshift ranges to be covered are large, in particular because the temporal sampling needs to be dense to properly
resolve cluster merger events. The number of cross sections to be calculated can thus be very large. A reliable
alternative to the costly ray-tracing simulations is therefore needed. We develop here a semi-analytic method that
reproduces well fully numerical lensing cross sections, while lowering the computational cost by factors of∼ 30.
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CHAPTER 4. A FAST METHOD FOR COMPUTING STRONG LENSING CROSS SECTIONS:
APPLICATION TO MERGING CLUSTERS

We believe this method provides an elegant alternative to ray-tracing simulations for many applications of lensing
statistics.

In the following subsections, we shall first describe the fully numerical method for reference, and then the
semi-analytic method.

4.2.1 Ray-tracing Simulations

Given the lensing mass distribution, which can be given as either an analytic density profile or a simulated density
map, and the statistical properties of the source sample, strong lensing cross sections are commonly estimated by
using fully numerical ray-tracing simulations. The method we use here was first described by Miralda-Escude
(1993) and further developed and adapted to asymmetric, numerical lens models by Bartelmann & Weiss (1994).
It has been widely used by Meneghetti et al. (2000, 2003b) and, with several modifications, by Puchwein et al.
(2005). We only address its main features here, referring the interested reader to their papers and the references.

Briefly, a bundle ofn×n light rays (n = 2048 here) with an opening angleβ is sent from the observer through
the lens. The opening angle depends on the lens’ properties and the distances involved, and it must be large enough
to encompass the entire region on the lens plane where strong lensing events may occur. The deflection angle is
calculated from the surface-mass distribution at all points where light rays intersect the lens plane, thus allowing
each ray to be propagated back to the source plane by means of the lens Eq. (3.11).

A set of sources is then placed on a regular and adaptive grid on the source plane. The sources are modelled as
ellipses whose orientation angles and axis ratios (minor to major) are randomly drawn from the intervals[0, π] and
[0.5, 1], respectively, with the prescription that each source has the area of a circle with a1 arcsecond diameter.
The source-grid resolution is iteratively increased near the caustics, i.e. where the magnification of the related
images is highest and undergoes rapid variations. This artificial increase in the probability of strong lensing events
must be corrected when calculating cross sections. We do so by assigning a statistical weight to each source that
is proportional to the area of the grid cell it represents.

The images of each source are found by identifying all rays of the bundle falling into the source. Simple
geometrical shapes (ellipses, rectangles, and rings) are then fit to all images, and their characteristics (length,
width, curvature radius, etc.) are determined. When an image has the property we are interested in (i.e. a length-
to-width ratio equal to or greater than some valued), we increment the cross section by the pixel area of the source
grid, times its statistical weight.

4.2.2 Semi-analytic Method

Point Sources

We aim at determining cross sections for the formation of gravitational arcs with a length-to-width ratio that
exceeds some fixed thresholdd. Initially assuming infinitesimal (or point-like) sources, the discussion in Section
3.3 implies that such arcs will form where the ratio

Π(x) ≡ max
[∣∣∣∣λ2(x)

λ1(x)

∣∣∣∣ ,

∣∣∣∣λ1(x)
λ2(x)

∣∣∣∣] (4.1)

between the eigenvalues of the lens mapping satisfies

Π(x) ≥ d . (4.2)

We denote this region byBl = Bl(d). By means of the lens equation,Bl can be mapped onto an equivalent region
Bs = Bs(d) on the source plane, whose area is by definition (see Section 3.5) the cross sectionσd we are searching
for. Thus,

σd =
∫

Bs

d2η = η2
0

∫
Bs

d2y . (4.3)

The lens equation then maps the infinitesimal area element on the lens plane to the one on the source plane by
means of the Jacobian determinantdetA(x), thus

σd = η2
0

∫
Bl

|detA(x)|d2x = η2
0

∫
Bl

d2x

|µ(x)|
, (4.4)

where Eq. (3.18) was used.
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Extended Circular Sources

Although this line of reasoning is exact, it fails to reproduce simulated cross sections, for it does not account for
real sources (and also the sources used in ray-tracing simulations) not being point-like. Extended sources are much
more likely to produce strongly distorted images than point-like sources, and their imaging properties will only be
approximated by the eigenvalue ratioΠ(x). This implies that the integral in Eq. (4.4) has to be extended beyond
the regionBl, because an extended source can produce a long and thin arc even if it is centred where the eigenvalue
ratio is less thand.

By introducing extended sources into the framework just outlined, we wish to convolve the eigenvalue ratio
Π(x) on the lens plane with a suitable function to be determined that significantly differs from zero only on the
image of an extended source. For consistency with ray-tracing simulations, we assume circular sources with radius
βs = 0.5′′ for now. Effects of source ellipticities will be included later.

The obvious problem with this approach is that the properties of the image vary wildly across the lens plane,
thus the convolution should use a function which rapidly changes shape and extent across the lens plane. We can
avoid this problem by transferring the calculations to the source plane. We first introduce the eigenvalue ratio on
the source plane. Since multiple pointsxi on the lens plane may be mapped onto a single pointy on the source
plane, we define it as̄Π(y) ≡ max{Π[y(xi)]}. This ratioΠ̄(y) is then convolved with a functiong(y) that differs
significantly from zero only on the circular area covered by a source, that is the same everywhere on the source
plane. Let the convolution in the source plane beh̄(y) ≡ Π̄(y) ∗ g(y); then we puth(x) = h̄[y(x)] to obtain
the convolved function on the lens plane, as desired. Again, we need to take into account that single points on
the source plane may be mapped on multiple points in the lens plane. AssigningΠ(x) to Π̄[y(x)] now sets the
convolved length-to-width ratio equal on all image points, which may not be exact, but is a tolerable error. The
problem is now reduced to carrying out the convolutionh̄(y), as discussed in Section 4.6. As described there,
we speed up the convolution by approximating it with a simple multiplication after essentially assuming that the
eigenvalues of the lens mapping and their ratio do not change significantly across a single source.

Finally, what form should be chosen for the functiong(y)? A two-dimensional Gaussian of widthβs may
appear intuitive, but the ray-tracing simulations we use for reference do not adopt a surface-brightness profile for
sources because they simply bundle all rays falling into the ellipse representing a source. Thus, a choice forg
consistent with the ray-tracing simulations is a step function with widthβs,

g(y) =
{

(πβ2
s )−1 where yTBy ≤ 1

0 else
, (4.5)

whereB is a matrix describing the shape of the source. Since we are only considering circular sources of radius
βs, B has the formB = I/β2

s , whereI is the unit matrix. The factor(πβ2
s )−1 in (4.5) normalisesg(y) to unity.

Substitutingh(x) for Π(x), we can again apply the condition in Eq. (4.2) to obtain a new regionBl that will now
of course be larger than before.

Extended Elliptical Sources

We finally have to account for elliptical rather than circular sources. It is quite obvious, and was shown by many
authors (e.g. Bartelmann et al. 1995; Keeton 2001b), that elliptical sources are more likely to produce strongly
distorted images.

Here we adopt the simple and elegant formalism by Keeton (2001b). He shows that an elliptical source at
positiony(x) with axis ratioqs = a/b = qs[y(x)] and orientation angleθ = θ[y(x)] is imaged as an allipse with
an axis ratio of

qobs =

√
T +

√
T 2 − 4D

T −
√

T 2 − 4D
(4.6)

whereT andD are the trace and the determinant of the matrix that describes the image ellipse. They can be
expressed as functions of the intrinsic source properties and of the (convolved) lensing distortion:

T = h2 + q2
s + (h2 − 1)(q2

s − 1) cos2 θ , D = h2q2
s . (4.7)

Again, h(x) can be replaced byqobs(x) to obtain a modification of the regionBl, once again larger than before,
whose area is now a close approximation of the cross section we seek to determine, accounting for extended and
elliptical sources.
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Figure 4.1: Lensing cross sections for long and thin arcs with a length-to-width ratio exceedingd as a function
of the distance between the centres of two DM halos, for two (lens and source) redshifts. The halos are mod-
elled as NFW density profiles with elliptically distorted lensing potential with eccentricitye = 0.3 (see Section
3.4.2). Green lines show the results of ray-tracing simulations for five different realisations of the random source
distribution. Black lines are the results obtained with our semi-analytic method.

Comparison to Ray-tracing

As a final step, we test the accuracy of our calculations and approximations, especially those concerning the
replacement of the convolution by a multiplication (cf. Section 4.6), by comparing lensing cross sections obtained
with the semi-analytic method to their fully numerical counterparts obtained by ray-tracing. Since the main purpose
of this Chapter is to estimate the effects of cluster mergers, we compare the cross sections as they evolve while
two DM halos merge. The halos are modelled as NFW profiles, Eq. (2.42), whose lensing potential is elliptically
distorted to have eccentricitye = 0.3 (see Section 3.4.2 for detail). The results of the comparison are shown in
Figure 4.1 for various masses, redshifts, and thresholdsd.

The ray-tracing simulation was repeated five times for each modelled merger event, each time changing the seed
for the random generation of source ellipticities and orientations. As the Figure shows, this has quite a significant
effect on the numerical cross sections, by causing a substantial scatter. The reason is fairly easy to understand.
When a given source produces an arc, variations in the source’s intrinsic ellipticity and in the orientation with
respect to the caustic structure can easily push the length-to-width ratio of the image arc below or above the chosen
thresholdd. This causes the irregular trend seen in Figure 4.1. It is worth noting that the same problem showed
also affect the semi-analytic results. In this case, however, ellipticity and orientation are assigned to each ray traced
back through the lens plane simply to identify the extended region over which we integrate. Since the number of
rays is much larger than the number of individual sources used in the fully numerical algorithm, the random scatter
in the semi-analytic results is very small. In fact, the fluctuations are close enough to the width of the black curve
to be omitted.

Moreover, it must be noted that the results given by the ray-tracing code we use might differ slightly from other
codes using different resolution, different image finding algorithms, and different ways to fit the image shapes.

We can draw two interesting conclusions from Figure 4.1. The first is that, reassuringly, the numerical and
the semi-analytic cross section agree excellently. This means that the approximations we made are substantially
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Table 4.1: Present-day masses and virial radii for the three most massive and the three least massive halos in our
sample.

Halo Id. Virial Mass Virial Radius
[h−1 M�] [h−1 Mpc]

g8-a 2.289× 1015 2.146
g1-a 1.530× 1015 1.876
g72-a 1.374× 1015 1.810
g696-y 5.219× 1013 0.608
g696-z 5.171× 1013 0.607
g696-# 5.060× 1013 0.602

correct. There is, however, a small discrepancy for higher-redshift sources, as shown in the lower panels. We
believe that this discrepancy is due to the fact that the scale over which the lensing properties on the source plane
change significantly is in this case comparable to the source dimension; hence one of the approximations we
made in Section 4.6 fails, namely that the functionΠ[y(x)] does not vary much across a source. Nonetheless, the
discrepancy is no where larger than 20%, which is more than acceptable for our purposes, especially in view of the
considerable scatter in the ray-tracing results.

The second observation is that the behaviour of the cross sections (both numerical and semi-analytic) as a
function of the distance between the halos closely reflects that found by Torri et al. (2004) and described in Section
3.4.2. Namely, while the substructure is swallowed by the main halo, (i) there is a first peak in the lensing cross
section when the increasing shear field between the lumps causes the critical lines to merge (see Figure 3.4), (ii)
a local minimum while cusps disappear in the caustic branches, and (iii) another peak caused by the increased
convergence when the two density profiles overlap. All these features are recovered in the panels of Figure 4.1.

This level of agreement between ray-tracing and semi-analytic cross sections shows that the semi-analytic
method developed above for cross section calculations is essentially correct and constitutes a valid and useful,
∼ 30 times faster, alternative to the costly ray-tracing simulations.

4.3 Lensing Optical Depth

Given reliable lensing cross sections, lensing optical depths need to be determined. In the present Chapter it shall
be assumed that all sources are at one and the same redshift, therefore the use of Eq. (3.32) is sufficient. For
that purpose, we use the merger trees for a set of 46 numerically simulated DM halos, whose main properties are
described in the next subsection. The merger tree of a DM halo provides two types of information. First, we know
how the mass of each halo evolves with time or redshift. Second, we know at which redshift merger events happen
with substructures of known mass. Regarding this, it is worth recalling that the evolution of a dark-matter halo is
characterised by the continuous accretion of infalling external material. We account for all mergers in which the
main halo accretes sub-halos with at least 5% of the main halo’s mass. Nonetheless, it should be kept in mind that
halos continuously accrete matter apart from merger events.

4.3.1 Halo Model

We base our study of the merger trees on a sample of 46 numerically simulated DM halos. These halos were
re-simulations at higher resolution of a large-scale cosmological simulation. The cosmological model used was a
standard model with a cosmological constant density parameter ofΩΛ,0 = 0.7, a (dark) matter density parameter
of Ωm,0 = 0.3, and a Hubble constant ofh = 0.7. The power spectrum of the primordial density fluctuations
field is scale invariant (i.e. with a spectral index ofn = 1), and therms linear density fluctuations on a comoving
scale of8 Mpc h−1 is σ8 = 0.9, which is the typical value required to match the local abundance of massive
GCs (White et al. 1993; Eke et al. 1996 and Section 2.5). As explained, while this value agrees with the first-
year WMAP data release it is in tension with WMAP-3 results. The mass of DM particles in the simulations is
m = 1.3× 109M�h−1. In Table 4.1 we list the present masses and virial radii for the three most massive and the
three least massive halos in the sample.

The present masses of the halo models vary between about5 × 1013M�h−1 (barely exceeding the mass of a
massive Brightest Cluster Galaxy) and more than2× 1015M�h−1, which is characteristic of a rich GC.

We note in passing that, owing to the dependence of the cluster evolution history on cosmology, the typical
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redshift of the structure formation in the cosmological model used here is higher than in an Einstein-de Sitter
universe, and lower than in an open low-density universe. Models of the DE component alternative to the cos-
mological constant typically shift this redshift towards higher redshifts, thus changing the contribution of cluster
mergers to arc statistics. We refer to Chapter 5 for a study on this issue.

For specifically describing each individual merger process and its effects on gravitational arc statistics, we
proceed in a similar way as in Figure 4.1, modeling each DM halo as NFW spheres, Eq. (2.42). We follow the
prescription of Eke et al. (2001) for linking the virial mass of the halo to its concentration and in addition we adopt
elliptically distorted lensing potentials as described in Section 3.4.2. In their work, Meneghetti et al. (2003b) also
estimate the value of the eccentricitye for the lensing potential that produces the best fit to the deflection angle
maps of simulated halos. Following their result, we adopte = 0.3 throughout.

4.3.2 Modelling Halo Mergers

Once the redshift is fixed, the halo we consider may be isolated or may interact with a substructure. In the first
case the deflection angle can be obtained directly by means of Eq. (3.28). In the second, we can sum the deflection
angles of the two structures at each point on the lens plane, owing to the linearity of the problem (Schneider et al.,
1992; Torri et al., 2004). In both cases, the eigenvalues of the local mapping follow from the deflection angle maps
by differentiation, and can be applied in the semi-analytic method for calculating cross sections as described in
Section 4.2.2.

Individual merger events are modelled as follows. The main halo and the substructure start at a mutual distance
equal to the sum of their virial radii. Then the centres approach at a constant speed calculated by the ratio of the
initial distance to the typical time scale of a merger event, i.e.0.9 Gyr (Torri et al., 2004; Tormen et al., 2004). The
process is assumed to be concluded when the two density profiles overlap perfectly. The direction of approach,
always assumed to be perpendicular to the observer’s line of sight, is parallel to the directions of the major axes of
the lensing potential, which are also assumed to be parallel. This last assumption is justified by recent work (Lee
et al., 2005; Hopkins et al., 2005) that points out, with both analytic models and numerical analyses, that there is an
intrinsic alignment between a DM halo and the surrounding halos and sub-lumps due to the tidal field of the major
halo itself. We note that assuming all mergers to proceed along directions perpendicular to the line-of-sight slightly
underestimatesthe cumulative contribution of cluster mergers to the lensing optical depth, because if the merger
direction is partially aligned with the line-of-sight, the time spent by the system in configurations leading to high
cross sections is longer (see again Figure 4.1). Several tests we made show, however, that this underestimation is
typically about 20%, thus we neglect it here and in the subsequent Chapters.

Once we know the cross section with and without the effect of mergers for each halo at every redshift, we can
compute the optical depths for lensing. Since we sample the mass range discretely, we cannot apply Eq. (3.32)
directly, but need to approximate it as

τd(zs) =
1

4πD2
s

∫ zs

0

[
n−1∑
i=1

σ̄d,i(z)
∫ Mi+1

Mi

N(M, z)dM

]
dz , (4.8)

where the massesMi (1 ≤ i 6= n) have to be sorted from the smallest to the largest at each redshift step, and the
quantityσ̄d,i(z) is defined as

σ̄d,i(z) =
1
2

[σd(Mi, z) + σd(Mi+1, z)] . (4.9)

This is essentially equivalent to assigning the average cross section of the halos with massesMi andMi+1 to
all structures with mass within[Mi,Mi+1], weighted with the number density of massive structures within that
interval.

4.3.3 Mass Cut-off

Since a sufficient condition for strong lensing is satisfied once the surface density of a lens exceeds the critical
density somewhere, any lens model with a cuspy density profile, such as the NFW profile, will formally be a
strong lens and thus produce critical curves and caustics. However, the caustics of low-mass halos will be smaller
than the typical source galaxies. Averaging the local distortion due to a low-mass lens across an extended source
will then lead to a small or negligible total distortion. This implies that the mass necessary for halos to cause large
arcs is bounded from below by the requirement that the halo’s caustic must be sufficiently larger than the available
sources.

This mass limit obviously depends on the lens and source redshifts due to the geometrical sensitivity of lensing.
Higher masses are required at low and high redshifts for lensing effects comparable to lenses at intermediate
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Figure 4.2: Mass of the lowest-mass halo producing large arcs in the sample of 46 halos used here to compute the
lensing optical depth. The source redshift iszs = 2. The overall trend in the curve reflects the geometrical lensing
sensitivity, while the fluctuations and the depth of the minimum reflect how mergers can lift low-mass halos above
the strong-lensing threshold that would otherwise not be capable of strong lensing.

redshifts. In addition, the caustic structures can change substantially during major halo mergers. As a sub-halo
approaches the main halo, the initially separated caustics of the two merging components will increase and merge
to form a larger caustic. Thus, even though the total mass is unchanged, the mass limit for strong lensing may
decrease while a merger proceeds. Even halos that are individually not massive enough for arc formation may be
pushed above the mass limit while they merge. In view of the exponentially dropping cluster mass function, this is
potentially a huge effect.

Thus, we have to monitor the extent of the caustics as we compute the lensing optical depth of a halo sample,
taking into account that the mass limit may change rapidly as halos merge with sub-halos. The lowest mass of a
halo (from our sample of 46) that still contributes to strong lensing is shown in Figure 4.2 as a function of lens
redshift with fixed source redshiftzs = 2.

Following these prescriptions, we are able to calculate the strong-lensing cross section of each model halo at
every redshift step of the simulation, by first ignoring the effects of merger processes and then accounting for them.
Thus, we sort the masses from the smallest to the largest at every redshift step and calculate the quantitiesσd,i(z).
Finally, we calculate the lensing optical depth with and without the effect of merger processes.

4.4 Results

4.4.1 Cross Sections

We calculated the optical depth for the formation of gravitational arcs with a length-to-width ratio greater than an
arbitrary thresholdd. We used two popular choices,d = 7.5 andd = 10.

Before discussing the calculation of the optical depth, it is interesting and useful to study the behaviour of
lensing cross sections for individual halos with redshift. In Figure 4.3 we show the cross sections for four of the
most massive halos, both withd = 7.5 (top panels) andd = 10 (bottom panels). The sources are put at a fixed
redshiftzs = 2. Apart from the obvious fact that cross sections for arcs with higher length-to-width ratio are
smaller than those including shorter arcs, we see that all cross sections tend to zero when the redshift approaches
either zero or the source redshift. This suppression due to the lensing efficiency is caused by the geometry of
the problem, and in particular by the fact that lenses very close to the sources or the observer have arbitrarily
large critical density (Section 3.3). Moreover we note that the increase in the cross section due to merger events
can exceed half an order of magnitude in some cases. Torri et al. (2004) find an increase in the lensing cross
section up to an order of magnitude, but here, even if mergers happen at redshifts with higher lensing efficiency
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Figure 4.3: Evolution of the lensing cross section for gravitational arcs with a length-to-width ratio equal to or
greater thand = 7.5 (top panels) andd = 10 (bottom panels) for four of the most massive halos in the sample.
Sources are at redshiftzs = 2. Red-dashed lines show cross sections calculated without taking account of merger
processes. Black lines show cross sections enhanced by cluster interactions. Filled blue dots are the counterparts
of the black lines obtained from fully numerical ray-tracing simulations.

(zl ' 0.2 − 0.5), the masses involved are lower, so we cannot reach these higher increases. In particular, high-
redshift (zl & 1) mergers are quite inefficient in boosting total lensing cross sections, both because of low involved
masses and the proximity to the source plane. To further test the reliability of our semi-analytic calculations, we
show the cross sections obtained from ray-tracing simulations in Figure 4.3. The agreement is again reassuringly
good.

4.4.2 Optical Depths

In Figure 4.4 we show the optical depth per unit redshift, i.e. the contribution to the lensing optical depth by
structures in different redshift bins per unit lens redshift. In other words, the integrand of the redshift integral
in Eq. (4.8) is shown. The integration over mass is carried out above the mass limit illustrated in Figure 4.2,
i.e. included are all the halos that have caustic structures sufficiently larger than individual source galaxies. The
two panels showd = 7.5 andd = 10. Four curves are shown in each panel, one obtained by ignoring mergers and
the other taking mergers into account. In both panels, the upper and lower curves refer to source redshiftszs = 2
andzs = 1, respectively.

The overall trend of the differential optical depths in Figure 4.4 resembles individual cross sections, i.e. it drops
to zero as the lenses approach the observer or the sources. The dashed (upper) curve forzs = 2 broadly peaks
at redshiftzp ' 0.4, slightly larger than the typical redshift for the peak of the individual cross sections shown
in Figure 4.3. This is due simply to the fact that in the differential optical depth the lensing cross sections are
weighted with the number density of structures within mass bins. It is interesting to note that the same peak occurs
even in the corresponding solid curve; thus it is not due to dynamical processes in the cluster lenses, but rather to
the combination of the mass evolution of the lenses with the particularly high lensing efficiency for clusters at that
redshift.

Apart from that, the most remarkable result shown by the solid curves is that the impact of cluster mergers is
important particularly at moderate and high redshifts,0.5 . z . 0.8. The pronounced peaks in the differential
optical depth seen there, even after averaging over the halo sample, indicate that cluster mergers can substantially
increase the lensing optical depth of high-redshift clusters. Above redshift∼ 0.5, mergers almost double the
optical depth.

Shifting the source plane fromzs = 2 to zs = 1 significantly lowers the total optical depth, as well as the
impact of cluster mergers on the optical depth per unit redshift. The first effect obviously occurs because for lower
source redshift, the redshift interval of high lensing efficiency narrows. The second effect reflects that sources at
lower redshift miss a significant part of the lensing halos’ formation history and the merger processes related to it.
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Figure 4.4: The evolution with redshift of the optical depth per unit redshift for gravitational arcs with a length-to-
width ratio equal to or larger thand. Solid lines include the effect of cluster mergers, while dashed lines do not.
Upper curves refer to sources withzs = 2 and lower curves to sources withzs = 1.

4.4.3 Sources Properties

A full analysis of the effect of various source properties on the cross sections of individual halos is well beyond the
scope of this work. Moreover, the method we have outlined in the previous Sections is probably not the ideal tool
for that purpose. For example, it would be interesting to check the variation of cross sections with the source size.
Figure 4.5 shows that numerical and semi-analytic cross sections agree (as already shown) and initially increase
with increasing source size. However, when the sources become too large compared to the size of the caustic
structure, the assumption that the lensing properties are approximatively constant across the area of a source fails
(see the Section 4.6 for details). Thus, while numerical cross sections start to decrease because the sources are too
large to be efficiently distorted, the semi-analytic cross section increases dramatically. We note that, as in the rest
of this work, DM halos are modelled with NFW density profiles and elliptically distorted lensing potential.

Nonetheless, some testable effects can be briefly addressed here. The first is the influence of the shape (circular
or elliptical) of the sources on the lensing efficiency. On these grounds we can compare our results with Keeton &
Madau (2001).

Figure 4.6 shows the cross section of several DM halos of increasing mass as a function of the source axis
ratio, as explained in the caption. We see in the Figure that the cross sections for small elliptical sources exceed
those of small circular sources by a factor of∼ 2, which agrees with the findings of Keeton & Madau (2001). It is
quite interesting to note that the corresponding increase is somewhat lower for larger sources, due to the fact that
the cross section is higher on average. Thus the contribution from the source ellipticity is relatively less important.

Another quite important effect is the change of the cross section with the source redshift. To investigate this,
we keep the source size fixed at a radius of0.5′′, since the angular diameter distance changes only a little over
redshift unity. In Figure 4.7 we plot the cross section for a single DM halo of mass1015M�h−1 as a function of
the source redshift. We adopt three different lens redshifts,0.3, 0.5, and0.7. The low-redshift end of that plot
shows that the closer the lens is to the source, the lower the cross section, due to the geometrical suppression of the
halo’s lensing efficiency (see discussion in Section 3.3). The general trend is a rapid increase of the lensing cross
section with increasing lens redshift, followed by an almost constant phase and a slightly decreasing phase. This
trend agrees with the general evolution of the lensing efficiency with the source redshift.

These few examples show the significant influence of the source redshift and intrinsic properties on a cluster’s
lensing efficiency, in agreement with earlier work; a deeper analysis of the consequences is certainly needed.

4.5 Summary and Discussion

We have described a novel method for semi-analytically calculating the strong-lensing cross sections of GCs. The
method first approximates the length-to-width ratio of images by the ratio of the eigenvalues to the Jacobian matrix
of the lens mapping. The requirement that this ratio exceed a fixed threshold defines a stripe on both sides of the
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Figure 4.5: Cross section for gravitational arcs with a length-to-width ratio exceedingd = 10 for a dark-matter
halo of mass1015M�h−1 as a function of the source size in arcseconds. Black and green lines show the results of
the semi-analytic and of ray-tracing simulations, respectively, which are repeated with different random-number
seeds for the ellipticities and the position angles of the sources, as in Figure 4.1. The source redshift iszs = 1, and
the lens redshift iszl = 0.3.

caustic curves whose area approximates the cluster’s strong-lensing cross section.
This approach would be valid for infinitesimally small, circular sources. Extending it to elliptical sources is

straightforward using the elegant technique developed by Keeton (2001b). Extended sources can be taken into
account after convolving the eigenvalue ratio with a suitable window function quantifying the source size. In order
to speed up this convolution, we approximate it by a simple multiplication.

We tested this method by a detailed comparison with cross sections obtained from full ray-tracing simulations.
We found excellent agreement within the (considerable) error bars of the ray-tracing results for a variety of lens
masses and of lens and source redshifts. Deviations occurred for very weak lenses whose caustics are so small
that the crucial assumption that the eigenvalue ratio does not change much across sources is no longer satisfied. In
particular, our tests revealed that cross sections rapidly changing during merger events are reproduced well by our
new method.

We then proceeded to apply the technique to a sample of halos whose history is described by simulated merger
trees. The halos themselves are modelled as pseudo-elliptical NFW density profile whose mass is given as a
function of redshift by the merger tree. The merger trees are obtained from a sample of 46 cluster-sized halos
numerically simulated in a cosmological volume. We followed the evolution of the halos by simulating merger
events at times when the merger trees signal the accretion of a sub-halo with comparable mass to that of the main
halo.

This technique allowed us to study the total optical depth for arc formation by the simulated cluster sample at
a time resolution that is high enough to properly follow merger events. Comparing the results to those obtained
ignoring mergers, we found that the arc optical depth produced by clusters with moderated and high redshifts,
z & 0.5, is almost doubled by mergers.

The resuts just outlined may be potentially relevant in view of the high frequency of arcs recently detected
in clusters at moderate and high redshifts (see Section 3.6). For example, Gladders et al. (2003) argue that some
physical process must boost the lensing efficiency of high-redshift clusters, which is probably connected with the
dynamics and formation histories of the lensing clusters, as merger processes tend to be. This conclusion was
supported by Horesh et al. (2005), which compare the lensing efficiency of matched observed and simulated (low-
redshift) GCs with a realistic source population taken from the Hubble Deep Field. They find that real clusters are
a little bit more efficient lenses than simulated ones, and though the difference is marginally significant, they argue
it could be due to a selection effect connected with cluster mergers. In fact, cluster mergers increase not only the
lensing efficiency, but also the X-ray luminosity (Randall et al., 2002), and the real clusters used by Horesh et al.
(2005) are X-ray selected. In other words, the observed lensing clusters could be a biased sub-set of the entire
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Figure 4.6: Cross section for gravitational arcs with a length-to-width ratio exceedingd = 10 for several halos
of increasing mass. Black and red lines refer to point-like or extended sources with area equal to that of a circle
of radius0.5′′, respectively. Short dashed lines indicate circular sources, long dashed lines refer to sources with
random eccentricity drawn from the interval[0, 0.5] (qs ∈ [0.5, 1]), and solid lines refer to sources with eccentricity
0.5. Sources are at redshiftzs = 1 and the lens redshift iszl = 0.3.

Figure 4.7: Cross section for arcs with a length-to-width ratio exceedingd = 10 for a DM halo of mass
1015 M�h−1 as a function of the source redshift. Three different lens redshifts are considered, as labeled in
the plot.

cluster population. We elaborate more on this issue in Chapter 6.

The method described and developed here reduces computation times for strong-lensing cross sections by
factors of∼ 30 compared to ray-tracing simulations. It thus becomes feasible to reliably compute strong-lensing
probabilities describing an evolving cluster population by halos accreting mass as encoded by simulated merger
trees, whose merging events can be studied at high time resolution.
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4.6 Approximate Convolution of a Function with a Step Function on the
Source Plane

Consider an arbitrary function̄Π(y) defined on the source plane. Suppose we wish to convolveΠ̄(y) with another
functiong(y), defined as in Eq. (4.5). The convolution is

h(y) = (Π̄ ∗ g)(y) =
∫

R2
Π̄(z) g(y − z)d2z . (4.10)

Without loss of generality, any given pointy on the source plane can be chosen as the coordinate origin. This
means thaty ≡ 0, hence

h(0) = (Π̄ ∗ g)(0) =
∫

R2
Π̄(z) g(z)d2z . (4.11)

Now, we choose a positionu on thelens planesuch thatz = z(u). Applying the lens mapping to the convolution
above, we obtain

h(0) =
∫

R2
Π(u) g(u)

d2u

|µ(u)|
. (4.12)

We assume that̄Π(y) does not vary much across a source. This assumption is satisfied in almost all interesting
cases, except when the sources are at high redshift and the lens is close to them. In that case, the critical curves are
very small, so the typical scale on which the lensing properties vary may be comparable to the angular extent of a
source. However, even in that case the results of our method remain good, in particular in view of the substantial
scatter in the ray-tracing results.

Within this assumption, we can expand the functionΠ(x) into a Taylor series around zero, obtaining (we recall
that summation over repeated indices is implicit)

h(0) ' Π(0)
∫

R2
g(u)

d2u

|µ(u)|
+

∂Π(0)
∂ui

∫
R2

uig(u)
d2u

|µ(u)|
+

1
2

∂2Π(0)
∂ui∂uj

∫
R2

uiujg(u)
d2u

|µ(u)|
. (4.13)

The first integral is unity by normalisation, and the second vanishes because of the symmetry ofg(x). Thus,
Eq. (4.13) reduces to

h(y) ' Π(0) +
1
2

∂2Π(0)
∂ui∂uj

∫
R2

uiujg(u)
d2u

|µ(u)|
≡ Π(0) +

1
2

∂2Π(0)
∂ui∂uj

Ωij . (4.14)

Then, we have to carry out the three integralsΩ11, Ω22 andΩ12 = Ω21. We show the explicit calculation only for
the first, as the others are quite similar:

Ω11 ≡
∫

R2
u2

1g(u)
d2u

|µ(u)|
=

1
πβ2

s

∫
D

u2
1

d2u

|µ(u)|
, (4.15)

whereD is the set of all positionsx on the lens plane wherexT Γx ≤ 1. The matrixΓ defines the shape of the
image formed from the source and can be written asΓ = ATBA = ATA/β2

s . Obviously, the eigenvalues ofΓ
areλ2

1/β2
s andλ2

2/β2
s . We can now rotate into a reference frame in whichA and, thus, alsoΓ are diagonal. This is

achieved by a rotating about an angle

ϕ =
1
2

arctan
(

γ2

γ1

)
, (4.16)

whereγ1 andγ2 are the two shear components at the origin. This rotation is described by the orthogonal matrix

R =
(

cos ϕ − sinϕ
sinϕ cos ϕ

)
. (4.17)

With v = Ru, this rotation transforms Eq. (4.15) into

Ω11 =
1

πβ2
s

∫
D

(v2
1 cos2 ϕ + v2

2 sin2 ϕ)
d2v

|µ(v)|
+

1
πβ2

s

∫
D

(2v1v2 cos ϕ sinϕ)
d2v

|µ(v)|

=
cos2 ϕ

πβ2
s

∫
D

v2
1

d2v

|µ(v)|
+

sin2 ϕ

πβ2
s

∫
D

v2
2

d2v

|µ(v)|
. (4.18)
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In the new coordinate system,D is the set of all positionsv of the lens plane where

λ2
1

β2
s

v2
1 +

λ2
2

β2
s

v2
2 ≤ 1 . (4.19)

Now we can introduce polar elliptical coordinates(ρ, θ) by

v1 =
βs

|λ1|
ρ cos θ , v2 =

βs

|λ2|
ρ sin θ , (4.20)

in terms of which Eq. (4.18) becomes

Ω11 =
β2

s cos2 ϕ

π

∫ 2π

0

∫ 1

0

ρ3 cos2 θ
dρdθ

λ2
1(ρ, θ)

+
β2

s sin2 ϕ

π

∫ 2π

0

∫ 1

0

ρ3 sin2 θ
dρdθ

λ2
2(ρ, θ)

. (4.21)

As a second approximation, we shall assume that the tangential and radial eigenvalues do not vary much across
a single image, so we can replace the eigenvalues by their mean values across the image. Then,

Ω11 =
β2

s cos2 ϕ

π〈λ2
1〉

∫ 2π

0

∫ 1

0

ρ3 cos2 θdρdθ +
β2

s sin2 ϕ

π〈λ2
2〉

∫ 2π

0

∫ 1

0

ρ3 sin2 θdρdθ

=
β2

s

4

(
cos2 ϕ

〈λ2
1〉

+
sin2 ϕ

〈λ2
2〉

)
. (4.22)

Similarly, we find that

Ω22 =
β2

s

4

(
cos2 ϕ

〈λ2
2〉

+
sin2 ϕ

〈λ2
1〉

)
(4.23)

and

Ω12 =
β2

s sinϕ cos ϕ

4

(
1
〈λ2

2〉
− 1
〈λ2

1〉

)
. (4.24)

Substituting into Eq. (4.14), we obtain

h(0) ' Π(0) +
1
2

∂2Π(0)
∂x2

1

(
β2

s cos2 ϕ

4〈λ2
1〉

+
β2

s sin2 ϕ
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2〉

)
+

1
2

∂2Π(0)
∂x2

2

(
β2

s cos2 ϕ

4〈λ2
2〉

+
β2

s sin2 ϕ

4〈λ2
1〉

)
+

∂2Π(0)
∂x1∂x2

(
β2

s cos ϕ sinϕ

4〈λ2
2〉

− β2
s cos ϕ sinϕ

4〈λ2
1〉

)
. (4.25)

Within the framework of our approximations, we can thus replace the value of the functionΠ at a point of the lens
plane with its convolution on the source plane at the corresponding point, represented by Eq. (4.25). In this way,
we account for finite source sizes.

77



CHAPTER 4. A FAST METHOD FOR COMPUTING STRONG LENSING CROSS SECTIONS:
APPLICATION TO MERGING CLUSTERS
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Chapter 5

Effects of Early-Dark Energy on Strong
Cluster Lensing

5.1 Introduction

While the present dominance of DE is well-established (Goldstein et al. 2003; Hawkins et al. 2003; Spergel et al.
2003, 2007; Rebolo et al. 2004; Readhead et al. 2004; Riess et al. 2004; Tegmark et al. 2004 and the discussion
in Chapter 1), its evolution is largely unconstrained, in particular in the early Universe. An interesting class of
models for dynamical quintessence are the early-DE models introduced in Section 1.7. As was shown in Chapter
2, non-linear structures are expected to form substantially earlier in such early-DE models, if they are normalised
so as to be compatible with the large-scale temperature-fluctuation amplitude of the CMB. For the two specific
models with early-DE used in this work, Bartelmann et al. (2006) showed thet the population of galaxy clusters is
expected to evolve by approximately one order of magnitude less strongly than in the standardΛCDM scenario.

Should this come close to reality, a rich population of massive GCs would be present at high redshift, which is
completely unexpected inΛCDM. Similarly, the dynamical activity within the cluster population due to substantial
mergers with sub-halos would be shifted or extended towards higher redshift.

The problem of the non-linear evolution of cosmic structures in the presence of DE has recently been addressed
by several authors and also from a more general point of view. For example, Mota & van de Bruck (2004),
Zeng & Gao (2005a,b), Maor & Lahav (2005), and Wang (2006) analyse different aspects of this issue for both
constant and time-dependent equation of state parameters for the DE, allowing for DE clustering and coupling
to DM. They outline very different properties of the final virialised objects, depending on the behaviour of the
DE fluid. Additionally, Zeng & Gao (2005a) and Manera & Mota (2006) explore the effect of the different non-
linear evolution on the predicted number counts for GC-sized DM halos, finding several significant effects. They
discover, in particular, that the number counts of massive structures increase if small-scale clustering of DE is
allowed, while they decrease if the amount of DM coupled to DE grows.

One highly sensitive way, which is interesting due to its non-linearity, to probe the massive end of the cluster
population is the strong lensing effect. Although the issue is still controversial it seems to be at least difficult
within theΛCDM model to reproduce the observed abundance of strong-lensing events in cluster cores (Section
3.6). Arcs in clusters at high redshift are similarly puzzling because they indicate that even clusters atz & 1 can
already be concentrated and massive enough to be strong gravitational lenses for a source population that is not
too distant from them.

It was also explained in Section 3.4.2 that dynamical activity in GCs is highly important for their strong-lensing
abilities (Bartelmann et al., 1995; Meneghetti et al., 2003b; Torri et al., 2004; Fedeli et al., 2006). Major cluster
mergers thus open the huge, exponentially rising reservoir of moderately massive clusters for strong lensing.

Cosmological models reconciling an appreciable cluster abundance at high redshift, and thus also a high level
of dynamical cluster activity, with independent cosmological constraints - e.g. from the CMB - are thus particularly
interesting in view of strong cluster lensing. Sufficiently detailed numerical simulations are costly and beyond the
scope of a parameter study, but the semi-analytic method for computing strong-lensing cross sections developed in
Chapter 4 opens the way to systematically test a variety of cosmological models for their consequences for strong
cluster lensing

We use it in this Chapter to study the statistics of strong cluster lensing in the four DE cosmologies summarised
in Table 2.1. We do not consider any other aspects related to the DE fluid behaviour, such as small-scale clustering
or coupling to dark matter.
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5.2 Merger Trees

In Eq. (2.40) we gave the probability of a halo of a given massM0 at a given redshiftz having a progenitor of
a lower massMp at a higher redshiftz + ∆z, computed with the extended Press & Schechter (1974) formalism.
Since the variance of the density field filtered on a scale corresponding to a given massM decreases monotonically
with M , this is equivalent to the probability that a halo of varianceS(M0) at a given redshift had a higher variance
S(Mp) at a higher redshift.

If we now want the probability that the halo of massM0 has a progenitor corresponding to a change in variance
lower than∆S ≡ S(Mp)− S(M0) within the same redshift interval, we simply have to integrate Eq. (2.40) over
the change in variance, obtaining the cumulative probability distribution

J(∆S, ∆ω) ≡
∫ ∆S

0

K(∆S′,∆ω)d∆S′ = erfc

(
∆ω√
2∆S

)
, (5.1)

where

erfc(x) ≡ 2√
π

∫ ∞

x

e−t2dt (5.2)

is the complementary error function. Equation (5.1) is just the probability of the mass of the progenitorMp being
larger than the mass corresponding to the variance∆S − S(M0).

We now proceed to use the extended Press & Schechter (1974) formalism summarised in Section 2.3.4 for
a Monte-Carlo realisation of merger trees. The procedure is quite straightforward, and we refer to Somerville
& Kolatt (1999) for a detailed discussion and to Randall et al. (2002) and Cassano & Brunetti (2005) for some
applications.

5.2.1 Monte-Carlo Simulations

Consider a halo of massM0 at the present time (z = 0). If we draw a random numberr in the interval[0, 1] and
solve the equationJ(∆S, ∆ω)− r = 0, we draw a value for the change in the variance corresponding to the halo
compliant with the merger rate (5.1).

Given the varianceS(M0) of the halo’s original mass, we obtain a new value of the variance and convert it to
a new mass that is the mass of the progenitorMp. If we choose a sufficiently small time interval, we can assume
that the entire change in the halo’s mass is due to a unique, binary merging process with another halo of mass
∆M = M0 − Mp. If we repeat this process for earlier progenitors at subsequent redshift steps, we obtain the
merger history of the original halo up to a given redshift. At the end of this procedure, we have obtained the value
of the halo’s mass and that of its progenitors for each redshift step, i.e. a merger tree.

The choice of the time interval needs some care. It has to be small to justify the assumption of binary mergers,
but not too small to avoid the results being dominated by numerical noise. Following the rule-of-thumb given by
Lacey & Cole (1993), we use a time step such that

∆ω =

√
dS(M0)

dM
∆Mc , (5.3)

(see also Somerville & Kolatt 1999) where∆Mc is the mass of the smallest sub-halo required to be resolved
individually. If Mp or ∆M fall below ∆Mc, the process does not represent an individual merger, but smooth
accretion. It follows from the above expression that the lower initial massesM0 require larger time steps.

A set of Monte-Carlo realisations of merger trees is successful if the population of structures that it produces
agrees with the theoretical mass function at any given redshift. As Somerville & Kolatt (1999) pointed out, this
is not strictly so if we consider only binary mergers and smooth accretion as we are doing here. Several authors
(Benson et al., 2005) argued that this may be due to an intrinsic inconsistency in the extended Press & Schechter
(1974) formalism, and Somerville & Kolatt (1999) suggest that the problem can be mitigated considering multiple
mergers and smooth accretion. Nonetheless, the difference between the halo-mass distributions following from the
merger-tree simulations and expected from the mass function is significant only at redshifts beyond our interest,
and several tests confirmed the good agreement between the two halo-mass distributions.

5.2.2 Our Sample

We consider a sample ofN = 500 DM halos whose present-day masses areuniformlydistributed withinMinf =
1014M�h−1 andMsup = 2.5 × 1015M�h−1. It is plausible that structures with mass belowMinf at z = 0 do
not contribute appreciably to the total lensing efficiency (see the discussion in Section 4.3.3). For each halo, we
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5.3. STRONG-LENSING STATISTICS

Figure 5.1: Exemplary merger histories for five DM halos randomly selected from our sample in theΛCDM model.
The merger histories are extended up to the source redshift for each individual halo.

compute the appropriate time step from Eq. (5.3) and split it into two progenitor halos. Then, we proceed with the
more massive progenitor as the starting point for the next step. We repeat this procedure until the redshift exceeds
the source redshiftzs (which is chosen individually for each halo in the sample, see Section 5.3 for details) or the
mass of the halo falls below∆Mc.

We show in Figure 5.1 the merger histories (that is, the evolution of mass with redshift) of five halos selected
from our sample of500 halos for theΛCDM model. Sudden discontinuities in the mass are evident, each of which
corresponds to a merger between the main halo and a massive sub-halo.

5.3 Strong-lensing Statistics

As we did in Chapter 4, in order to compute the efficiency of DM halos as strong cluster lenses, specifically for
producing long and thin arcs, we model each halo as an NFW density profile with an elliptically distorted lensing
potential. Again, we adopt an eccentricity for the iso-potential contours equal toe = 0.3 for all halos. After
deflection angle map calculation, we use the fast semi-analytic method developed in the previous Chapter. As the
length-to-width threshold for cross sections we choosed = 7.5 here and show one plot withd = 10 for comparison
later

These semi-analytic cross sections are in excellent agreement with the results from fully numerical ray-tracing
simulations (see Figure 4.1). Moreover, their computation is substantially faster since the method does not require
costly operations such as finding all images for every source and refining the source distribution near caustics on
an adaptive grid.

We calculate cross sections both ignoring and accounting for merger processes that transiently increase the
lensing efficiency. When a merger with a sub-halo of mass larger than 5% of the main halo’s mass occurs, we
model the interaction in exactly the same way as we did in Chapter 4, with the only difference that now the
duration of the process is not fixed for every event but set to the dynamical timescale

tdyn ≡

√
(r200,1 + r200,2)3

G(M1 + M2)
. (5.4)

In order to account for the source redshift distribution, we randomly assigned to each DM halo an individual
source redshiftzs,i, i = 1, . . . ,N , drawn from the redshift distribution of the faint blue galaxies population
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Figure 5.2: The differential (black solid line) and cumulative (red dash-dotted line) source-redshift distributions
given by Eq. (5.5).

(Section 3.5) given in Smail et al. (1995) (see also Bartelmann & Schneider 2001)

p(zs) =
β

z3
0Γ(3/β)

z2
s exp

[
−

(
zs

z0

)β
]

. (5.5)

The parametersz0 andβ define the average redshift and the steepness of the high-redshift tail of the distribution,
respectively. In this work, we used the conventional valuesz0 = 1 andβ = 3/2. Given this choice, the distribution
peaks atzm ' 1.21. Figure 5.2 shows this distribution together with its cumulative function defined by

P (zs) ≡
∫ zs

0

p(z)dz . (5.6)

Using the distribution Eq. (5.5), we can compute the average optical depth as defined in Eq. (3.34). However, since
each halo in our study is characterised by its own source redshift randomly drawn from the distribution Eq. (5.5),
we can omit the weighting withp(zs) when we discretise the integral over source redshift in Eq. (3.34). This is not
possible for the mass integration, since the masses of the halos are randomly drawn from a uniform distribution,
which requires the weighting with the halo mass function.

The source-redshift distributionp(zs) formally extends to an infinite source redshift, but obviously this is not
true in reality. We set the maximum source redshift tozmax = 7.5. As Figure 5.2 shows, the probability of finding
a source at this redshift can safely be neglected. Since we operate on a discrete sample ofN halos, each of which
is characterised by a massMi and a source redshiftzs,i, we can rewrite the average optical depth as

τ̄d =
∫ zmax

0

[N−1∑
i=1

σd(Mi, z, zs,i)
4πD2

s,i

∫ Mi+1

Mi

N(M, z)dM

]
dz . (5.7)

The integrand of this equation is the optical depth per unit redshift, i.e. the contribution to the optical depth from
halos at different redshifts, as defined in Section 4.4.2 but this time accounting for the source-redshift distribution,

td(z) ≡ dτ̄d(z)
dz

=
N−1∑
i=1

σd(Mi, z, zs,i)
4πD2

s,i

∫ Mi+1

Mi

N(M, z)dM . (5.8)

This will be the central quantity in our strong-lensing analysis.
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Figure 5.3: The Press & Schechter (1974) mass function for DM halos in the mass range[1013, 2.5×1015]M�h−1

at redshiftz = 0.5 for the four cosmological models studied in this Chapter, as labelled in the plot.

5.4 Expectations

Before turning to the results, it is useful to evaluate the expectations in order to gain a better understanding of the
problem. As shown by Bartelmann et al. (2006) and outlined earlier, the formation of nonlinear cosmic structures
occupies a larger redshift range in early-DE cosmological models. Structures form earlier and the formation
process lasts longer. This increases the merger probability for a given halo at high redshift, as well as the total
number of structures of a given mass that are found at a given redshift. Figure 5.3 shows the Press & Schechter
(1974) mass function of Eq. (2.36) at a fixed redshiftz = 0.5 for the four cosmological models described in Table
2.1.

Evidently, the mass function is lowest for theΛCDM model and only slightly higher for the model with constant
equation-of-state parameterwx = −0.8. It is highest (by up to an order of magnitude at the high-mass tail) for the
two early-DE models, reflecting the different halo-formation histories in different cosmologies. In the EDE1 and
EDE2 models, structure formation begins earlier, hence at a given (suitably low) redshift, the abundance of halos
is higher. This is in qualitative agreement with the discussion performed in Chapter 2.

In Figure 5.4, we show the merger probability between a halo of mass halo of massMp = 1014M�h−1 and
a sub-halo of massMp/2 as a function of redshift. Instead of using the functionW (Mp,∆M, z) defined in Eq.
(2.41), that represents the merger rate per unit mass of the substructure and per unit redshift, we prefer to use here
the functionR(Mp,∆M, z) defined as

R(Mp,∆M, z) ≡ W (Mp,∆M, z)
∣∣∣∣ dz

d ln t

∣∣∣∣ ∆M. (5.9)

Eq. (5.9) represents the merger rate per unit logarithmic merging mass and per unit logarithmic cosmic time and it
corresponds to the original definition of Lacey & Cole (1993). We also note the difference between the behaviour
of early-DE models and of models with a constant equation-of-state parameter. At high redshift, the early-DE
merger rate is significantly higher than for the other two models, but becomes essentially the same below redshift
∼ 1.2.

This can again be understood in terms of the different dynamics of structure formation. Keeping the mass of
the sub-halo fixed, we expect more halos of such mass to be available at high redshift with which the main halo can
merge, because structure formation begins earlier in early-DE models. On the other hand, structure growth begins
later in models with a constant equation-of-state parameter and proceeds more rapidly. Thus, at a sufficiently low
redshift, the abundance of such halos equals that in early-DE models, giving rise to an almost identical merger rate.
It is worth emphasising here that the differences shown between the different cosmological models are also due, in
part or mainly, to the different normalisationσ8 of the power spectrum.

Recalling that the source-redshift distribution peaks at redshift∼ 1.2, we expect the different merger rates to
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Figure 5.4: The probability that a DM halo of massMp = 1014M�h−1 merges with a sub-halo of massMp/2
as a function of redshift per unit logarithmic mass of the merging sub-halo and per unit logarithmic cosmic time.
Results are shown for all four cosmological models considered here, as labelled in the plot.

Figure 5.5: The logarithm of the optical depth per unit redshift for arcs with length-to-width ratio exceeding
d = 7.5 for each of the cosmological models studied here (top and bottom-left panels), and ford = 10 in the
model EDE1 (bottom-right panel). Black curves show the optical depths obtained including halo mergers with
sub-halos, while red curves are obtained after ignoring the effect of halo interactions.

have little influence on the optical depth. On the other hand, since the optical depth is essentially an average of
the cross section of different halos weighted by their relative abundances, we expect the difference in the mass
function to severely affect the strong-lensing statistics. In early-DE models, the optical depth per unit redshift
should exceed that in theΛCDM model and the model with a constant equation-of-state parameter ofwx = −0.8.
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Figure 5.6: The logarithm of the optical depth per unit redshift for arcs with length-to-width ratio exceeding
d = 7.5 obtained for the four DE cosmological models considered here. The lensing efficiency shown in the left
panel takes transient boosts by cluster mergers into account, while that shown in the right panel ignores it.

We show in the next section how well this expectation is satisfied.

5.5 Results

We discuss now the expected behaviour of the optical depth per unit redshift in the different DE cosmologies
considered in this work. The occurrence of gravitational arcs is highly sensitive to the abundance and internal
structure of GCs, which in turn depends on the linear and non-linear evolution of density fluctuations. We thus
expect that the presence and behaviour of DE can affect it.

We show the optical depth per unit redshift in Figure 5.5 for arcs with a length-to-width ratio exceedingd = 7.5,
obtained for each of our four cosmological models. For model EDE1, we also show the result ford = 10. The
optical depths accounting for and ignoring halo mergers are compared. As expected, the lensing efficiency vanishes
near the observer and approaching the source redshift because of the geometrical drop in lensing efficiency.

Cluster mergers increase the optical depth per unit redshift, and thus also the total, average optical depth,
factors up to 2 or 3 in all DE models. The enhancement due to mergers appears more uniform than obtained in
Chapter 4. This is due to the sample used here that is more than one order of magnitude larger and to the much
higher time resolution adopted (up to10−2 in redshift). Quite obviously, increasing the length-to-width threshold
decreases the lensing efficiency, but the features caused by merger processes remain qualitatively the same.

The main result is that mergers enhance the lensing efficiency by about the same amount for each model
because the merger rate is almost the same in the redshift range relevant to strong cluster lensing. However, note
that the absolute value of the optical depth per unit redshift is higher in early-DE models, which is seen better in
Figure 5.6. There, we compare the optical depth per unit redshift for arcs with length-to-width ratios exceeding
d = 7.5 in the four cosmologies, accounting for (left panel) and ignoring cluster mergers (right panel).

This effect was also expected because of the difference in the abundance of halos of a given mass in various
cosmological models. These Figures show that, both with and without the effect of halo mergers, the lensing
optical depth per unit redshift is higher by factors up to∼ 3 in early-DE models compared to the other models.
At redshifts above∼ 0.5, the lensing efficiency for the model with a constantwx = −0.8 is slightly smaller than
in theΛCDM model because the abundance of halos is also slightly lower (see Figure 5.3). A similar difference
appears between the EDE1 and EDE2 models. This is due to the fact that the normalisation of the power spectrum
is higher in the first than in the second, causing a higher abundance of clusters.

An effect that we also recognise in these plots is that, in cosmologies with early-DE, the optical depth per unit
redshift rises and already reaches a significant level at relatively high redshift, while it is still negligible in aΛCDM
model. As discussed before, the models alternative toΛCDM that we have studied here have a larger fraction of
structures at high redshift, causing this earlier and larger contribution to the strong-lensing efficiency.
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Figure 5.7:Top panels. Logarithm of the cumulative optical depth per unit redshift, normalised to its value in the
ΛCDM universe. Curves representing the four cosmologies studied in this work are shown, as labelled in the plot.
Bottom panels. Logarithm of the cumulative optical depth per unit redshift, normalised to its value at present in a
ΛCDM universe. Left and right panels show results that include and ignore cluster mergers, respectively.

Further detail on this aspect is provided by Figure 5.7. In its top panels, it shows the cumulative optical depth
per unit redshift, which we can write as

Cd(z) ≡
∫ zmax

z

td(z′)dz′ , (5.10)

normalised to theΛCDM case. Its increase towards high redshift emphasises directly how the lensing efficiency
already drops at lower redshift in aΛCDM universe with respect to the (early) DE cosmologies. The bottom
panels show the cumulative optical depth per unit redshift normalised to thepresentvalue in theΛCDM model,
Cd,ΛCDM(0) = τ̄d,ΛCDM. This illustrates the same effect in a different way. For instance, we see that the cumu-
lative optical depth per unit redshift in the EDE1 model already reaches the same valueCd,ΛCDM(0) at z ∼ 0.8,
which ΛCDM reaches today. Conversely, the cumulative optical depth per unit redshift in theΛCDM case has
already dropped by an order of magnitude byz ∼ 0.8. Similarly, the EDE2 model reaches the total optical depth
of theΛCDM model atz ∼ 0.7. In agreement with our earlier discussion, we note that this specific evolution does
not depend on whether we take dynamical processes into account or not. The enhanced lensing efficiency in the
high redshift tail may have stimulating consequences, as we shall discuss later.

The large spikes shown in the left panel of Figure 5.6 are obviously due to the variation in the lensing efficiency
of GCs during mergers. Very small spikes also appear in the right panel of the same Figure, where dynamical
processes are not taken into account. There, they stem from numerical effects, in particular, now our time resolution
is very high and the number of halos is limited. Indeed, the spikes become larger well above redshift unity, where
the number of contributing halos is reduced (remember that each halo is characterised by a different source redshift,
drawn from a distribution that peaks aroundz ' 1.2).

5.6 Summary and Discussion

We have analysed the incidence of pronounced (long and thin) arcs in GCs in the four DE models introduced in
Chapters 1 and 2. In particular, we considered two early-DE cosmologies in which the density parameter in DE at
high redshift remains small and positive. We compared them to a model with constant equation-of-state parameter
wx = −0.8 and aΛCDM model for whichwx = −1.
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For each cosmological model, we used Monte-Carlo techniques to build up merger trees for a set ofN = 500
cluster-sized DM halos. By modelling each halo by an NFW density profile with elliptically distorted lensing
potential and suitably accounting for cluster interactions during mergers, we calculated the optical depth per unit
redshift both accounting for and ignoring cluster mergers. To this end, we also considered a realistic distribution
for the source redshift.

We find that, in agreement with the results of Fedeli et al. (2006) (see Chapter 4), cluster mergers enhance
the occurrence of arcs by a factor between 2 and 3. This occurs in all the cosmological models we analysed, and
the relative increase is approximately the same, because the cluster merger rates in the redshift ranges relevant for
strong lensing (belowz ∼ 1) are almost identical (see the discussion in Section 5.4).

However, a potentially more important result is that the optical depth per unit redshift is larger by a factor
of ∼ 3 in early-DE models compared to the models with a cosmological constant or with a constant equation
of state parameterwx = −0.8, while the differences between the last two are close to negligible. There is also a
significant difference between the two early-DE models due to the fact that model EDE1 has a higher normalisation
parameterσ8 than EDE2 in order to agree with the CMB observations (cf Table 2.1). Thus, halos form earlier in
model EDE1. This is also demonstrated by Figures 5.3 and 5.4. Moreover, the lensing efficiency already drops at
a lower redshift in aΛCDM universe than in the different DE models. The optical depth per unit redshift has a
significant high-redshift tail in early DE cosmologies, while it is negligible otherwise.

A main consequence of these results is that they indicate an appreciable difference in the incidence of long and
thin gravitational arcs between theΛCDM model and models with early DE. Therefore, arc statistics may provide
an interesting way to investigate the reliability of these models, although the precise contribution ofΩ̄x,sf will
probably be better constrained using cluster counts in the X-ray or Sunyaev-Zel’dovich regimes, which suffer from
lower systematics.

The presence of early-DE, combined with the transient boosts due to cluster mergers, could help resolve the
discrepancy between the predicted and observed abundances of gravitational arcs that has been outlined in Section
3.6 and that up to date is not clearly solved neither considering the internal structure of the lensing halos nor
the redshift distribution of the sources. It has been shown here that the effects of early DE on structure growth
interestingly point in the right direction. Similar conclusions were also drawn by Meneghetti et al. (2005a), where
the lensing efficiency of numerically simulated DM halos in different DE cosmologies were analysed. Here the
haloes are modelled in an analytical way, allowing a much higher mass and time resolution. Moreover, the DE
models studied there were derived from SUGRA (Brax & Martin, 2000) and Ratra-Peebles potentials (Peebles &
Ratra, 2003), without an early component. In many aspects, our work is thus complementary to that of Meneghetti
et al. (2005a).

Finally, that the lensing efficiency in early-DE models is much higher at high redshift than in theΛCDM case
can be related to the recent unexpected discovery of the high incidence of giant arcs in high-redshift clusters. Future
searches for strong lensing in distant GCs may be promising for distinguishing between cosmological models other
than the standardΛCDM, or at least for gaining a deeper understanding of the role of early-DE.
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Chapter 6

Selection Effects on X-ray and
Strong-lensing Clusters in Various
Cosmologies

6.1 Introduction

Cluster selection by X-ray emission is generally believed to produce well-defined samples of massive clusters. This
is certainly true for relaxed objects near virial equilibrium, but clusters undergo substantial evolution during the
cosmic epoch which we can overlook. Numerical simulations demonstrate that temperatures and X-ray luminosi-
ties of the intracluster gas increase by factors of a few for periods which are comparable to the sound-crossing time
while clusters undergo major mergers. This may lead to a substantial contamination of X-ray flux-selected cluster
samples by less massive, but dynamically active clusters. This bias needs to be quantified before cosmological
conclusions based on the cluster population can be considered reliable.

Massive and compact GCs are also efficient strong lenses. This gives rise to the expectation that strong lensing
should be particularly frequent in X-ray selected cluster samples, and in fact many X-ray luminous clusters have
been found to be strong gravitational lenses.

However, strong cluster lensing can also be transiently increased by factors. 10 during major cluster mergers
(see Chapter 4), on time-scales comparable to the dynamical cluster time-scale. This may lift relatively low-mass
clusters above the critical limit for strong lensing which would otherwise be undercritical. Based on a relatively
small sample of numerically simulated galaxy clusters, Bartelmann & Steinmetz (1996) pointed out that X-ray
selection is not guaranteed to select for the most efficient, strongly-lensing GCs. Early work on the interplay
between strong lensing statistics and observational selection effects can also be found in Wu & Mao (1996) and
Cooray (1999).

Both effects of major mergers, the enhancement of their X-ray visibility and their strong-lensing efficiency,
potentially open a huge reservoir of clusters which would remain unobservable in quiescence. The amplitude of
this effect must depend on the frequency of major mergers, and thus on the cosmological model and its parameters.
Specifically, merger rates at fixed redshift depend on the amount of DM and DE and its cosmic evolution.

In this Chapter, we address the question how X-ray cluster selection may affect the strong-lensing efficiency
of the selected clusters, and what fraction of the optical depth for strong lensing we can expect to be produced by
GCs visible above a certain X-ray flux limit. We analyse the four cosmological models introduced in section 1.7
and detailed in Table 2.1.

We combine two semi-analytic methods, one derived by Randall et al. (2002) describing the enhancement of
X-ray temperatures and luminosities during mergers, and the other developed in Chapter 4 for calculating strong-
lensing cluster cross sections. Cluster merger histories are modelled by merger trees planted in the extended
Press-Schechter formalism (cf. Chapter 5 for details).

6.2 Luminosity and Temperature Boost

When GCs undergo violent dynamical events, such as interactions with substantial substructures or mergers with
galaxy groups and clusters of comparable mass, the ICM is compressed and heated by ram pressure and shock
waves. This results in an overall enhancement of the mean gas temperature and the X-ray emissivity due to
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COSMOLOGIES

Table 6.1: Best-fit amplitudes and exponents for the temperature (top row) and luminosity (bottom row) boosts
during cluster mergers.

quantity A B C D E F

temperature 3.98 0.448 0.96 0.539 3.71 2.81
luminosity 8.28 0.659 0.91 0.316 −0.74 3.29

bremsstrahlung (Section 2.4.2). The dynamics of gas and DM in clusters during major mergers is typically very
complicated and usually studied based on numerical simulations (see e.g. Faltenbacher et al. 2006; Poole et al.
2006, 2007; Valluri et al. 2007 for a recent review and applications).

It will be sufficient for our purposes to model the short-term increases in temperature and X-ray luminosity in
a simplified manner which captures their important characteristics in a statistically correct way. Such a simplified
model is given by Randall et al. (2002). There, the authors derive fitting formulae for the time-dependent increase
in average temperature relative to its unperturbed value of the combined system of main cluster and merging body
during its interaction.

They employn-body cluster simulations combined with adiabatic hydrodynamics developed and described in
earlier work (Ricker & Sarazin, 2001; Ricker et al., 2000). Shocks in the ICM are extremely well resolved in these
simulations, allowing temperature and luminosity increases to be studied in detail.

Randall et al. (2002) find that the total time interval∆t during which the average temperature or bolometric
luminosity of the ICM of the system are raised above fixed levelsT or L is given by

ξ =
√

[(Γ− Γc)2 − 1](ε2 − 1) + ξc, (6.1)

whereΓ is the ratio between the quantity in question,T or L, and its unperturbed valueT0 or L0. The parameter
Γc is related to the maximum value of the boost, as will be explained below. The time interval is measured in
units of the sound-crossing timetsc of the main cluster body byξ ≡ log(∆t/tsc). Assuming isothermal gas, the
sound-crossing time is

tsc ≡
r200

cs
= r200

√
µmp

kBT
, (6.2)

where the virial radius of the DM halo of the main cluster,r200, is taken as a characteristic dimension.
The merger is characterised by the mass fraction of the secondary cluster,

f =
M2

M1 + M2
, (6.3)

which obviously reaches a maximum value of1/2 for equal-mass mergers. The fit parametersΓc andε are then
expressed as power laws off ,

Γc = 1 + A fB , ε = C f−D , (6.4)

and
ξc = E

[
ln (M1 + M2)− F ln

(
M

1/3
1 + M

1/3
2

)]
. (6.5)

The amplitudes and exponents appearing in the last three equations were calibrated by Randall et al. (2002) against
their simulations. They are summarised in Table 6.1 for the boosts in both the temperature and the bolometric
X-ray luminosity.

Solving Eq. (6.1) forΓ,

Γ = Γc −
√

1 +
(ξ − ξc)2

ε2 − 1
, (6.6)

we see that it allows a maximum value for the boost ofΓm = Γc − 1.
We plot the functionΓ(ξ) for the temperature and the luminosity in Figure 6.1. It shows the temperature and

bolometric luminosity of the merging system in units of the pre-merger values as a function of time in the interval
between the beginning of the boost (Γ = 1) to the moment of perfect overlap of the two clusters (and thus of the
maximum boost,Γ = Γm). The mass of the main cluster is set toM1 = 7.5× 1014M�, and results are shown for
four different values for the massM2 of the merging substructure.

As intuitively expected, these plots show that the maximum temperature and luminosity reached by the system
is larger when the masses involved in the merger process are similar. In that case, duration of the boost is also
minimal. Moreover, the curves illustrate that the relative increase in bolometric luminosity exceeds the one in
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Figure 6.1: The enhancement of temperature (left panel) and luminosity (right panel) of an interacting system
according to Randall et al. (2002), where the main cluster has massM1 = 7.5 × 1014M�, and the substructure’s
massM2 takes four different values, as labelled in the plot. Time is measured in units of the sound-crossing time
of the main structure (Eq. 6.2) and starting from the instantt0 of maximum boost.

average temperature, reflecting the higher sensitivity of bremsstrahlung emission to the density compared to the
temperature.

Finally we emphasise that the fitting formulae for the average temperature and bolometric X-ray luminosity
enhancements given above are valid only for head-on mergers. Generalisations to non-zero impact parameters are
given in Randall et al. (2002), but we assume head-on mergers throughout for simplicity. Note that, for a non-
head on merger, the duration of the boosts in temperature and luminosity is larger, but their maximum values are
smaller. These are two somewhat counter-acting effects, and we expect the total influence to be not significant for
our pourposes.

6.3 Fluxes Obtained From Individual Clusters

We shall refer mainly to one particular set of observed GCs when comparing to observations, i.e. the ROSAT-ESO
Flux Limited X-ray cluster sample (Reflex, Collins et al. 2000; Schuecker et al. 2001; Böhringer et al. 2001), which
was drawn from the ROSAT All-Sky Survey (RASS, Snowden & Schmitt 1990). In this section, we describe the
construction of a synthetic cluster sample imitating the procedure used for the construction of theReflexsample.

6.3.1 Ideal Flux

We describe the merger history of individual clusters by means of the merger trees constructed based on the
extended Press & Schechter (1974) theory in Section 5.2. Thus, the only information we have on each individual
GC is its mass and its redshift. We first related these properties to theidealisedX-ray flux, that is the flux that
would be measured in the absence of any instrumental issue. Next, we shall add background noise, convolution
with the point-spread function (PSF), and the detector response.

We start from the virial relation between mass, redshift and temperature of the ICM (see also Eq. 2.56),

kBT = 4.88 keV
[

M

1015M�
h(z)

]2/3

, (6.7)

whereh(z) is the (reduced) Hubble parameter at the redshiftz of the cluster (see Section 1.5), and the normalisation
constant is calibrated with the cluster simulations of Mathiesen & Evrard (2001).

Introducing the temperature-mass relation Eq. (6.7) into a merger tree, we assign temperatures to individual
clusters. When a cluster is merging with a substructure according to its merger tree, we can either ignore the
temperature and luminosity boost caused by the merger. In this case, only the increasing cluster mass will cause
the temperature to rise. Or, we can boost the temperature according to the description outlined in the previous
section, depending on the state of the merger process. In both cases, we obtain a unique temperature for each
cluster at each redshift step in its merger tree.
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Figure 6.2: The mass-temperature relation of our synthetic cluster sample. Black, empty circles represent our
sample clusters at low redshift. The green dashed line is the originalM − T relation given by Eq. (6.7). The
red filled squares with errorbars are the observed clusters of the HIFLUGCS sample, and the blue solid line is a
relation with the same slope as Eq. (6.7) but with a normalization higher of a factor∼ 2.

We note here that no statistical fluctuations are taken into account in our assignment of X-ray temperatures and
luminosities to clusters of a given mass. Thus, once the mass of the main cluster body and a merging subclump are
fixed, the same merger phase will always lead to the same temperature increase. However, mergers do introduce
statistical fluctuations into the temperature-luminosity relations of our simulated clusters. We shall return to this
point further below.

We also clarify that we consider only binary mergers here. Whenever a cluster undergoes a multiple merger,
we model only the one with the most massive substructure, neglecting the others in comparison. Since the simul-
taneous interaction of a GC with more than one massive substructure is an extremely rare event, we believe that
this approximation is sufficiently accurate for our pourposes.

Figure 6.2 shows the relation between the mass and the temperature for low-redshift model clusters in our
synthetic sample, after the temperature boost due to mergers has been applied. The normalization is obviously
higher (a factor∼ 2) than that of the original relation Eq. (6.7) because cluster mergers always increase the cluster
temperatures. However, the slope of the relation is well preserved, and the resulting sample fairly reproduces the
observed HIFLUGCS cluster sample (Reiprich & Böhringer, 2002), which mostly contains low-redshift clusters.
This supports the validity of our model.

Next, we need to derive the ideal flux from the mass, the redshift and the temperature. We do so using the pub-
lically available software packagexspec (Arnaud, 1996), assuming that the ICM can be described by a Raymond-
Smith (Raymond & Smith, 1977) plasma model. We set the metal abundance toZ = 0.3Z� (Fukazawa et al. 1998;
Schindler 1999, see also Bartelmann & White 2003). We normalise the spectrum by means of the observationally
calibrated relation

L = 2.5× 1043erg s−1h−2

(
kBT

1.66 keV

)2.331

, (6.8)

derived by Allen & Fabian (1998), whereL is the bolometric X-ray luminosity (see also Mushotzky & Scharf
(1997); Reichart et al. (1999); Hashimoto et al. (2002) for some discussion on the redshift evolution of thisLbol−T
relation).

Several authors (Stanek et al., 2006; O’Hara et al., 2006; Pratt et al., 2006) have discussed that the observed
scatter in the temperature-mass and luminosity-temperature relations might not be entirely caused by recent merg-
ers, but rather be sensitive to the complete merger history of the cluster. However, we verified that the scatter in
the natural logarithm of mass around the best fit mass-luminosity relation that we obtain for nearby clusters in our
synthetic sample isσlnM ' 0.4 and thus agrees well with the observed value for the HIFLUGCS data (Reiprich
& Böhringer, 2002; Stanek et al., 2006). Hence, we conclude that our modeling of mergers introduces scatter into
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the luminosity-mass relation compatible with the observed scatter, and thus fairly captures the observed statistical
fluctuations.

Finally, we take account of the interstellar absorption by neutral hydrogen in the Milky Way. We do so by
combining our Raymond-Smith plasma model with thephabs multiplicative model component of thexspec
software, adopting a constant hydrogen column density ofnH = 4 × 1020 cm−2, appropriate for relatively high
Galactic latitudes (Dickey & Lockman, 1990).

6.3.2 Instrumental Effects

In constructing theReflexcluster sample, B̈ohringer et al. (2001) used the count rate received for each individual
cluster by the ROSAT PSPC detector in the energy channels covering the[0.5, 2.0] keV energy band. To compute
synthetic count rates for each object in our simulated cluster population, we first need to introduce a model for
the distribution of the ICM within the clusters. We adopt the isothermalβ-model, Eq. (2.50) assumingβ = 2/3
throughout, following Mohr et al. (1999).

The resulting gas-density profile is

ρ(r) =
ρ0

1 + r2/r2
0

. (6.9)

Its core radiusr0 is related to the X-ray luminosityLband in the [0.5,2.4] keV energy band through

r0 = 0.125 Mpc h−1

(
Lband

5× 1044erg s−1

)0.2

(6.10)

(Jones et al. 1998; see Vikhlinin et al. 2002 for a discussion on the redshift evolution of this relation).
We next convolve the corresponding surface-brightness profile of Eq. (2.51) with the instrumental PSF. The

shape of the ROSAT-PSPC PSF is summarised in Bartelmann & White (2003) based on Hasinger et al. (1995).
Its shape depends slightly both on the energy channel considered and on the off-axis angle of the source. For
simplicity, we shall assume on-axis sources and an energy channel at1 keV, approximately at the centre of the
energy bands considered in the present work.

Background count rates are provided in form of a map on the RASS web page1. We use a constant median
value ofb = 2.6×10−4 s−1 arcmin−2, but note that our results are quite independent of the background correction.

Finally, we obtain the count rate produced by the PSF-convolved, background-corrected surface-brightness
profile. We integrate over the complete profile using thefakeit command of thexspec software, adopting the
PSPC response matrix in the[0.5, 2.0] keV energy band.

6.3.3 Nominal Flux

The nominal fluxFn for the Reflexcluster sample is defined as the flux produced in the[0.1, 2.4] keV energy
band by a Raymond-Smith model plasma set to redshift zero, with a temperature of5 keV, metal abundance of
Z = 0.3Z�, absorption as given by Dickey & Lockman (1990) and a spectrum normalised so as to reproduce
the observed number counts in the energy channels corresponding to the[0.5, 2.0] keV band (Collins et al., 2000;
Böhringer et al., 2001).

To each cluster and at each redshift step of its merger tree, we assign a nominal flux exactly in the same way.
The only difference between the definitions of our synthetic sample and of theReflexsample is that we normalise
the spectrum of the plasma model so as to reproduce the count rates computed at the end of Section 6.3.2.

TheReflexcluster sample is flux-limited, in the sense that it contains only GCs with nominal flux≤ Fn,lim =
3 × 10−12 erg s−1 cm−2. We here adopt the same nominal flux as a threshold for synthetic cluster samples. We
shall use the nominalReflexflux limit and four additional lower flux limits in order to create synthetic samples
containing a larger number of objects.

The relation between this nominal flux and the ideal flux introduced in Section 6.3.1 (without hydrogen ab-
sorption) is shown in Figure 6.3, where the mean difference between the two fluxes, normalised to the ideal flux,
and its standard deviation are plotted as functions of the ideal flux itself.

According to the definition given at the beginning of this section, the ideal flux of a cluster is computed in the
energy band[0.5, 2.0] keV, while the nominal flux is the flux in the[0.1, 2.4] keV band of a fiducial cluster with
fixed physical properties (Z = 0.3Z�, T = 5 keV, z = 0) that produces the same count rates as the cluster at
hand in the[0.5, 2.0] keV band. Since the nominal flux is computed in a wider and softer band than the ideal flux,
there is a bias because the nominal flux exceeds the ideal flux typically by∼ 20%. The scatter about the mean is
relatively large for small fluxes, but drops to zero as the flux increases because then the effects of PSF convolution

1http://www.xray.mpe.mpg.de/cgi-bin/rosat/ rosat-survey
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Figure 6.3: The normalized difference between the nominal and the ideal flux as a function of the ideal flux itself
is shown for the synthetic cluster population used in this work. The upper solid and lower dash-dotted curves show
the mean and the scatter, respectively. The nominal flux is always∼ 20% larger than the ideal flux, while the
scatter in the relation can be neglected only for high fluxes.

and background subtraction are smaller. We conclude from this plot that the ideal may be used instead of the
nominal flux, thus saving the time for the computation of hydrogen absorption and instrumental effect, but only
when the flux is sufficiently large (& 10−12 erg s−1 cm−2) and accounting for the20% bias.

6.4 Cluster Number Counts

As already stated, we use here the merger trees produced in Chapter 5 for a set ofN = 500 DM haloes with masses
uniformly distributed between1014M�h−1 and2.5 × 1015M�h−1. Therefore also in this Chapter attention is
focused on the two early-DE cosmological models and the two cosmologies with constantwx detailed in Table
2.1. To the calculation of the strong lensing efficiency we add here calculation of the nominal X-ray flux for
each sample cluster at each redshift step. We do that both ignoring and accounting for the effect of mergers which
transiently enhance the intrinsic luminosity and temperature (and thus also the nominal flux) of the clusters. Finally,
we can combine both pieces of information evaluating the effect of flux selection on the statistics of gravitational
arcs in GCs.

It is interesting note in passing how the previous calculations predict the total number of clusters in a flux-
limited sample to change as a function of the limiting flux in the different cosmological models, and what the
quantitative effect of mergers is in this respect.

We emphasise here that our algorithm for producing synthetic cluster samples is not ideally adapted to cluster-
abundance studies because our cluster sample includes only relatively high-mass haloes, and thus the low-mass
end of the distribution is not well sampled. Moreover, we did not take into account the likely steepening of the
temperature-luminosity relation for low-mass clusters or galaxy groups. While this has no effect on samples of X-
ray luminous, hot or strongly lensing clusters, it is likely that the overall number of structures in the different flux-
limited samples is overestimated. This is because we tend to assign to objects with very low mass a temperature
higher than expected in presence of steepening.

In Figures 6.4 and 6.5, we show the total number of GCs predicted to be observed in the four cosmological
models used here as a function of the limiting nominal flux. We plot results obtained by accounting for and
ignoring the effects of cluster mergers, and indicate the total number of GCs observed in theReflexcluster sample,
extrapolated to the whole sky.

Several interesting pieces of information can be read off these figures. First of all, cluster mergers increase the
total number of visible objects by factors between 2 and 3. This factor tends to decrease towards lower flux limits
because of two effects. First, at low flux limits, the total number of clusters observable without mergers is larger,
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Figure 6.4: The total number of GCs observable on the whole sky, given as a function of the limiting nominal
flux for the four different cosmological models considered here. Black solid lines are obtained by ignoring the
transient boost due to cluster mergers, red lines are obtained taking it into account. The cyan horizontal line gives
the number of GCs obtained from theReflexcluster sample extrapolated to the whole sky (Fn,lim = 3× 10−12 erg
s−1 cm−2).

Figure 6.5: As Figure 6.4, but combining all curves in the same plot. Black and red curves are for the EDE1 and
EDE2 models, respectively. The blue curve is for the model with constant equation-of-state parameterwx = −0.8,
and the green line is for theΛCDM model. For each model, the solid and dashed curves are obtained ignoring
mergers and taking them into account, respectively. The horizontal line shows the number of clusters observed in
theReflexcluster sample.

thus the fractional increase due to cluster interactions tends to be smaller. Second, at low flux limits, we include
low-mass objects into the sample whose merger frequency is lower. We also see that, according to this analysis,
only the models with constant equation-of-state parameter are in agreement with theReflexobservations, while
early-DE models overpredict the cluster abundance by a factor of∼ 2.
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Figure 6.6: Histograms for the cluster redshift distributions expected in the cosmological models studied here, as
labelled in the boxes. The limiting flux is the same as for theReflexcluster sample,Fn,lim = 3 × 10−12 erg s−1

cm−2. As before, the black lower curve does not account for cluster mergers, while the red upper curves do.

In Figure 6.6, we fix the nominal flux limit to that of theReflexsample,Fn,lim = 3 × 10−12 erg s−1 cm−2

and show a histogram of the redshift distribution of observed clusters. Again, we show results with and without
the enhancements by cluster mergers. For all models, the number of clusters drops to zero abovez ' 0.3 with
mergers, and already abovez ' 0.15 without mergers. The absence of substantial differences between different
cosmologies is due to the fact that at low redshift the difference between the structure formation in presence or
absence of early-DE tends to disappear (see also the discussion in Chapter 5). It is interesting to note that the
observational results from theReflexsample (Collins et al., 2000) are qualitatively very well reproduced only
accounting for cluster mergers. Ignoring the effect of interactions in our models leads to an underestimate of
objects in the high-redshift tail.

In the context of Figure 6.6, we also note that while the qualitative trend and the peak position of the observed
Reflexdistribution are reproduced, the normalisation is generally too high, for the reasons discussed.

6.5 Results

We finally return to the main purpose of this Chapter, that is probe how cluster selection by their X-ray flux may
influence the optical depth of the sample for the production of pronounced gravitational arcs when the effect of
cluster mergers are taken into account. In other words, we analyse how the total number of arcs that we can expect
to observe in an X-ray selected GC sample depends on the X-ray flux limit of the sample itself. While we have
considered only arcs withd ≥ 7.5 in Chapter 5, we extend the analysis here to arcs withd ≥ 10.

Figure 6.7 shows contour lines in the mass-redshift plane for the nominal X-ray flux of clusters from our
synthetic sample, and for the cross section for arcs with length-to-width ratio larger thand = 7.5 for theΛCDM
cosmological model. Contours in the left and right panels were obtained ignoring mergers and taking them into
account, respectively. We overplot the flux limit for theReflexcluster sample. The edge in both the X-ray flux and
lensing-efficiency contour lines going from the upper left to the lower right corner illustrates the lack of high-mass
clusters at high redshift. These figures clearly show the effect of mergers on the lensing efficiency and the average
X-ray flux from clusters. Including mergers, the contour lines are much more irregular and extend towards lower
masses and higher redshifts, both for the nominal X-ray flux and for the cross section. The geometric suppression
of the lensing efficiency at very low redshift is also evident since the black contours in the lower panels never reach
z = 0, and turn further away fromz = 0 for lower cluster masses. The lensing efficiency expected to be observed
in a ΛCDM model in aReflex-like cluster sample is thus contributed only by those clusters falling between the
cyan curve and the lower contour lines in the lower panels.

We emphasise that Figure 6.7 only shows the properties of individual objects in our synthetic sample. In
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Figure 6.7: Contour lines for the nominal flux (upper panels) and for the lensing cross section for gravitational
arcs withd ≥ 7.5 (lower panels) in theΛCDM model. The thick cyan contours correspond to the limiting nominal
flux of the Reflexcluster sample. The upper heavy black contour line in the upper panels corresponds to a flux
of 10−14 erg s−1 cm−2, the others are spaced by one order of magnitude. Analogously, the lowest black contour
in the lower panels corresponds to a cross section of10−4 Mpc2h−2, and the others are spaced of one order of
magnitude. Merger processes are taken into account in the right panels, while they are ignored in the left ones.

order to find sample properties, this information must be convolved with the cluster mass function. This means
that even the small wiggles appearing in the heavy contour in Figure 6.7 when mergers are included will have
a substantial effect on lensing statistics and number counts. We prefer not to weight with the mass function in
Figure 6.7 to illustrate exclusively the effect of the flux cut. To have an idea of the consequence that small shifts
in the M − z plane can have on the quantitative results, the number of structures in the narrow mass interval
14.5 ≤ log M ≤ 14.6 doubles when computed forz ≤ 0.10 compared toz ≤ 0.13.

Figure 6.8 shows the average optical depth for gravitational arcs with length to width ratiod ≥ 7.5 andd ≥ 10
predicted to be observed in a flux-limited X-ray cluster sample as a function of the limiting flux. Results obtained
both ignoring and taking account of cluster mergers are shown. As noted in Fedeli & Bartelmann (2007a) (see
Chapter 5) before, mergers increase the optical depth by a factor between 2 and 3. The present figure shows
that this remains true for all flux limits considered here even when X-ray selection effects are taken into account.
Moreover, we note that the slope of theτ̄ − Fn,lim relation tends to increase (decrease in absolute value) towards
low limiting fluxes. This is due to the fact that the lensing efficiency drops abovez ' 0.3, and approaches zero
towards sufficiently high redshifts. Thus, if the flux limit is low enough, the sample contains all the arcs that are
produced and that would be observed without selection effects.
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Figure 6.8: The observed average optical depth for arcs with length to width ratio larger thand = 7.5 (left panel)
andd = 10 (right panel) as a function of the nominal X-ray flux limit. Results are shown for the four different
cosmologies considered here. Black solid lines represents results obtained by ignoring mergers processes, while
broken red lines are obtained taking them into account.

Increasing the length-to-width threshold fromd = 7.5 to d = 10 changes the absolute value of the average
optical depth, but not its qualitative behaviour as a function of the limiting flux.

A central result of our study is the ratio between the optical depth for large gravitational arcs in an X-ray
selected, flux-limited cluster sample compared to the total, idealised optical depth. Since the average optical depth
is related to the number of arcs by a constant factor (determined by the total number density of background sources,
see Eq. 3.34), this corresponds to the ratio between the number of arcs expected to be seen in a flux-limited sample
of X-ray clusters, and the total number of arcs that would be observable in absence of any X-ray selection effect.
This ratio is shown in the right and left panels of Figure 6.9, accounting for and ignoring the transient merger
boosts in temperature, X-ray flux and lensing cross section, respectively.

We note that, when we include mergers, the fraction of the average optical depth in an X-ray selected cluster
sample increases with respect to the case where mergers are ignored. We attribute this to the facts that (i) cluster
mergers tend to enhance the lensing efficiency, which affects both the X-ray selected and the total average optical
depth, and (ii) cluster mergers also enhance the clusters’ temperature and the X-ray flux, which only affect the
X-ray selected optical depth. We also note that there is a slight tendency for models with lower power-spectrum
normalisationσ8 to have a larger fractional importance for the observed average optical depth. For instance, the
ratio between the optical depth of X-ray selected clusters to the total optical depth is systematically slightly larger
for the model EDE2 (σ8 = 0.78) than for the model EDE1 (σ8 = 0.82). However, this effect is very small.

6.6 Summary and Conclusions

We have studied here the influence of selection effects on the total observed number of gravitational arcs in X-ray
selected GC samples, taking cluster mergers into account.

To perform our study, we considered the assembly history of a synthetic sample of GC. We linked the virial
mass of the DM cluster halo to the temperature of the ICM using the virial relation Eq. (6.7). We then used the
analytic fitting formulae provided by Randall et al. (2002) for the boost in temperature caused by merger processes
between clusters and substructures during the formation. Afterwards, we used the publicly available software
packagexspec (Arnaud, 1996) to convert the (boosted and unboosted) temperature of the ICM into the ideal
flux (in front of the instrument) produced by each individual object accounting for redshift, metal emission lines
and interstellar absorption. Then, using the response matrix of the PSPC detector on-board the Rosat satellite, we
transformed the ideal flux in a photon count rate, also including observational effects such as realistic background
count rates and PSF convolution. We finally turned the count rates for each object into a nominal flux, as defined
in the construction of the ROSAT-ESO Flux Limited X-ray cluster sampleReflex.

We repeated this procedure to the four different cosmological models summarised in Table 2.1 and previously
used in Chapter 5 for studying the lensing properties. As an intermediate, qualitative result, we analysed the total
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Figure 6.9: The fraction of the optical depth for the formation of large gravitational arcs, contributed by X-ray
selected clusters in a flux-limited sample, compared to the total optical depth. Different line styles represent
different cosmological models, as labelled in the plot. The effects of cluster mergers are taken into account in the
right panels and ignored in the left panels. The upper and lower panels show results for arcs with length-to-width
ratios exceedingd = 7.5 andd = 10, respectively.

number of clusters expected to be visible in X-ray selected cluster samples as a function of the nominal flux limit.
We obtain a significant difference between cosmologies with early-DE and the models with constant DE equation-
of-state parameter, and also a significant difference due to the introduction of the effect of cluster mergers. In
particular, we find that the qualitative redshift distribution of clusters observed in theReflexsample can only be
reproduced accounting for merger boosts in temperature and luminosity. Moreover, early-DE models seem to
overpredict the total number of observed objects, although our results are not precise at the low-mass end of the
distribution, which is irrelevant for strong lensing. Thus, our absolute numbers are likely to be an overestimate.
This may hint at a potentially very interesting test for early-DE in particular, and for the dynamics of quintessence
models in general, and certainly warrants further investigation in the future.

Finally, our main results are determined by the combination of the nominal X-ray flux selection with the
observed strong-lensing statistics. We find that cluster mergers enhance the average observed optical depth by
factors between2 and3 for all limiting fluxes considered here. We also confirm the result obtained in Chapter 5
ignoring any X-ray selection effects, that the different structure-formation history in early-DE models causes the
lensing efficiency to increase by a factor of∼ 3 compared to models with constant equation-of-state parameter
for the DE component. This remains true for all limiting fluxes, and we see that, for instance, the same lensing
efficiency reached in aΛCDM model with the help of cluster mergers is reached ignoring mergers in models
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with early-DE, because of the higher cluster density at moderate and high redshifts. Moreover, the slope of the
τ̄d − Fn,lim relation tends to flatten towards lower limiting fluxes, indicating that we are approaching the total
average optical depth.

We also find that the ratio of the flux-limited to the total average optical depth is larger when we consider the
effect of cluster mergers than when we ignore it. This is due to the fact that the increment in the lensing efficiency
affects both the flux limited and the ideal optical depth, while the boost in temperature and luminosity affects only
the former.

We carried out these calculations for gravitational arcs with length-to-width ratiosd ≥ 7.5 andd ≥ 10. We
find an (expected) difference in the absolute value of the average optical depth, while the trend with the limiting
X-ray flux is qualitatively unchanged.

Predicting the number of long and thin gravitational arcs to be observed in X-ray selected cluster samples
and in different cosmological models will be very useful in the near future. Forthcoming strong lensing surveys
(Cabanac et al., 2007) and the development of automatic detection algorithms for strong lensing features (Lenzen
et al., 2004; Horesh et al., 2005; Seidel & Bartelmann, 2007) will allow to place further constraints on the dynamics
of structure formation in a universe dominated by DE (see also the discussion in Section 3.6).

100



Chapter 7

Effects of Halo Concentration Distribution
on Strong-lensing Optical Depth and
X-ray Emission

7.1 Introduction

It is widely accepted now that DM halos in both simulations and reality are less concentrated, i.e. have larger
relative core sizes, the more massive they are (see Chapter 2.3.5 and Wu & Xue 2000; Buote et al. 2007; Comerford
& Natarajan 2007). This is interpreted as a consequence of hierarchical, bottom-up structure formation. More
massive halos form later, in a less dense environment, and thus reach lower central densities. The variety of their
individual formation histories gives rise to a concentration distribution that simulations show to be approximately
log-normal with a standard deviation of∼ 0.2.

What effects does this fairly broad concentration distribution have on observable properties of GCs, most
notably their strong gravitational lensing cross sections and their X-ray temperatures and luminosities? The log-
normal distribution is substantially skewed and allows larger positive than negative deviations from the mean. At
fixed halo mass, this should lead to outliers with higher temperature, higher X-ray luminosity, and larger strong-
lensing cross sections than expected for the nominal concentration value.

How are such expectations to be extrapolated to cluster samples? Above a given mass limit, halos with lower
mass and generally higher concentration are much more abundant than more massive and typically less concen-
trated halos. Mass and concentration have counter-acting effects on most observables. For example, at fixed
concentration, more massive halos are more efficient lenses as well as hotter and more luminous X-ray emitters.
However, since the concentration is decreasing with increasing mass, these effects are at least partially reduced.

Here, we study the effect of the concentration distribution on several cluster properties. We use the simulated
merger trees of cluster-sized DM halos constructed for theΛCDM model in Chapter 5. For the synthetic cluster
population, concentrations are randomly drawn from a log-normal distribution. We focus on three observable
quantities, namely the strong-lensing efficiency and the X-ray temperature and luminosity of these clusters, and
model all of them with semi-analytic algorithms taking the importance of major mergers into account.

Earlier studies on the sensitivity of strong lensing to the concentration of DM halos and its scatter exist. In
particular, Wyithe et al. (2001), Keeton & Madau (2001) and Kuhlen et al. (2004) focused on the statistics of
multiple images as a probe of the inner structure of halos, in order to put constraints on the DM self-interaction
cross section, on the inner slope of the density profile and on the equation of state parameter for DE, respectively.
In these studies isolated and spherical cluster models were always considered. In Oguri et al. (2001) the effects of
the concentration and inner slope of DM halos on arc statistics were considered, again assuming axial symmetry for
both sources and lenses. Finally, in Hennawi et al. (2007),n-body simulations were used to analyse the dependence
of strong lensing cross section on several cluster properties.

7.2 Dark-matter Halo Concentration

As announced in Section 2.3.5, three different algorithms were proposed in the past to relate the concentration to
the virial mass of a DM halo. The mass-concentration relation produced by these prescriptions is showed in Figure
2.6, and some details about them are given in the following.
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The first prescription, by Navarro et al. (1997), defines the formation redshiftzc of a DM halo of virial mass
M200 collapsed at redshiftz as the redshift when half of the final mass was first contained in progenitors more
massive than some fractionf of M200.

Based on the extended Press & Schechter (1974) formalism (Section 2.3.3),zc can then be evaluated as a
function off , z and the final massM200. In line with hierarchical structure formation, NFW assumed the scale
density, which depends only on the concentration once the cosmology is fixed, to be directly proportional to the
mean matter density of the Universe atzc, with a proportionality constantC. They showed that thec−M relation
found in a set of numerically simulated, relaxed DM halos atz = 0 is well reproduced iff ' 0.01 andC ' 3×103.
This holds for several different cosmological models and initial density-fluctuation power spectra.

Bullock et al. (2001) confirmed that this algorithm works well forz = 0, but predicts too high halo concentra-
tions at higher redshifts. They require that the typical halo massM∗(zc) (see Section 2.2.4) at the halo-formation
redshiftzc be a fixed fractionf of the final halo massM200. They also relate the scale density of the halo to
the critical density at the formation redshift, but use a different definition for the scale density. The concentration
found in this way scales with redshift asc ∝ (1 + z)−1, in contrast to the much shallower redshift dependence in
the NFW algorithm.

Finally, Eke et al. (2001) proposed an alternative explanation for thec−M relation, using a single parameter
instead of the two parametersC andf and avoiding problems of the algorithm by Bullock et al. (2001) with the
truncated power spectra of warm DM cosmogonies. They define the halo-formation redshiftzc implicitly by

D+(zc)σ(Ms)
[
−d lnσ(Ms)

d lnM

]
=

1
C

, (7.1)

whereMs is the mass contained within2.17rs, the radius of maximum circular velocity for the NFW density
profile, andσ(M) is the standard deviation of density fluctuations on the mass scaleM . They then equate the
scale density as defined by Bullock et al. (2001) to the spherical collapse top-hat density at the formation redshift.

Thec −M relation by Eke et al. (2001) is probably the most general and physically best motivated. It makes
use of a single fit parameter and turned out to reproduce halo concentrations in a variety of cosmologies, including
those with dynamical DE (Dolag et al., 2004). It reproduces the results of the algorithm by Bullock et al. (2001)
for galaxy-sized objects, but reveals significant differences on cluster scales, as shown in Figure 2.6 and will be
discussed later on.

At fixed halo mass and formation redshift, the concentration parameters of numerically simulated DM halos
are log-normally distributed around the median valuec0 reproduced by the algorithms described above,

p(c)dc =
1

σc

√
2π

exp
[
− (ln c− ln c0)2

2σ2
c

]
d ln c , (7.2)

with a standard deviation ofσc ' 0.2 (Jing, 2000; Bullock et al., 2001; Dolag et al., 2004).
The log-normal distribution of Eq. (7.2) is skewed towards high concentrations. Its maximum occurs at

cm = c0 exp
(
−σ2

c

)
< c0, and the probabilities forc < c0 andc ≥ c0 are equal. The mean concentration is (Coles

& Jones, 1991)

µ1 = c0 exp
(
σ2

c/2
)

, (7.3)

its variance is
µ2 = µ1

[
exp

(
σ2

c

)
− 1

]
, (7.4)

and the skewness is

µ3 =
1
µ3

1

exp
(
3σ2

c

)
− 3 exp

(
σ2

c

)
+ 2

[exp (σ2
c )− 1]3

. (7.5)

Settingσc = 0.2, we findµ3 ' 70/c3
0 > 0, showing that the distribution Eq. (7.2) is substantially skewed towards

high c. Thus the probability of finding concentrationsc � c0 is considerably larger than forc � c0. This is also
seen when computing the ratio of the absolute deviations|c− c0| for c > c0 andc < c0, which is

〈|c− c0|〉+
〈|c− c0|〉−

=
erf

(
σc/

√
2
)

+
[
1− exp

(
−σ2

c/2
)]

erf
(
σc/

√
2
)
− [1− exp (−σ2

c/2)]
, (7.6)

with the error functionerf(x). Forσc = 0.2, this ratio becomes∼ 1.28, indicating that the absolute deviation for
c > c0 is on average∼ 30% larger than forc < c0. We shall return later to this issue to explain some of our lensing
statistics results.
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Figure 7.1: The cross section for arcs with length-to-width ratio≥ d is shown as a function ofd. The mass of
the lensing halo is2 × 1015M�h−1, the lens redshift iszl = 0.3 and the source redshift iszs = 1. Results for
three different prescriptions forc −M relation are presented as labeled in the plot. The two panels show results
for axially-symmetric (top) and elliptical (bottom) lenses with an isopotential eccentricity ofe = 0.3.

7.3 Cluster Population

We model the GC population using one of the merger-tree sets used in Chapters 5 and 6, namely the one constructed
for theΛCDM cosmological model.

As in Chapter 5, we twice compute the strong-lensing efficiency of each DM halo at each redshift step, first
assuming that the halo can be characterised by an unperturbed NFW density profile with elliptical isopotential
contours and a second time including the merger process experienced by the halo, modeled as shown in Section
5.3.

Given the mass and the redshift of a halo in the sample, we use the algorithm by Eke et al. (2001) to compute
the nominal concentrationc0(M, z). Again, we distinguish two cases in the strong-lensing analysis, assigning
either the nominal concentrationc0 to the halo or a value drawn randomly from the log-normal distribution Eq.
(7.2) with a standard deviationσc = 0.2 aboutc0.

We thus carry out four strong-lensing analyses for all halos in ourN = 500 merger trees, ignoring or including
the effects of merger events and the scatter of the concentration about its nominal value set by thec−M relation.
Note that this Monte-Carlo generation of merger trees should be considered as a random experiment, representative
of the evolution history of the entire cluster population. In line with this view, we draw a new value of the
concentration at each new redshift step for each DM halo.

The optical depth per unit redshift that is obtained in the end is computed according to Eq. (5.8), therefore
it is simply a sum of the cross sections of each individual halo, weighted by the abundance of such halos at the
corresponding redshift. Weighting by the mass function causes this sum to be dominated by the halos with the
lowest masses that are still capable of producing a non-vanishing arc cross section. Introducing the scatter into
the mass-concentration relation can lift low-mass halos above or push them below the strong-lensing threshold.
However, the skewness of the concentration distribution makes it more likely that low-mass halos are lifted above
the threshold than the reverse. Thus, it is plausible that the log-normal concentration distribution may have a
potentially significant effect on the strong-lensing optical depth.

7.4 Results

7.4.1 Different Concentration Prescriptions

Before we continue, it is interesting to assess how the strong-lensing cross sections differ for the differentc −M
relation algorithms outlined in Section 7.2. At the same mass and redshift, higher concentrations should push the
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Figure 7.2:Left panel. Optical depth per unit redshift for arcs with length-to-width ratiod ≥ 7.5 as a function
of the lens redshift. The thin black and green lines show the results obtained ignoring and accounting for cluster
mergers, respectively, both using the nominalc−M relation. The heavy red and blue curves include the scatter in
thec −M relation.Right panel.Similar to the left panel, but for arcs length-to-width ratiosd ≥ 10, and using a
different random-number seed.

critical curves of a lensing halo outwards, thus increasing its strong-lensing cross section.
Results are shown in Figure 7.1, where we plot the cross section for gravitational arcs with length-to-width

ratios≥ d as a function ofd, using the three algorithms for thec − M relation. We also show the difference
between axially-symmetric and elliptical lenses.

Evidently, the impact of different concentrations is much reduced for elliptical compared to circular lenses. For
example, if we focus ond = 10, we note that the cross sections differ by a factor of∼ 4 for elliptical lenses, while
for axially-symmetric lenses, this factor grows up to∼ 20. This is owed to the fact that halo ellipticity largely
increases the strong-lensing cross section (Meneghetti et al., 2003b; Oguri et al., 2003; Meneghetti et al., 2007),
causing the lensing efficiency to be less sensitive to the internal structure of the lens.

Next, we see that the original NFW prescription for thec−M relation yields the largest cross sections for all
values ofd. As explained in Section 7.2, this is because the NFW prescription performs well at redshift zero,but
overpredicts concentrations at higher redshift. Atz = 0.3, where we placed the lens, the concentration is thus
substantially overestimated, resulting in a very large cross section.

Concentrations computed using Bullock et al. (2001) and Eke et al. (2001) algorithms agree on galactic scales,
but differ on cluster scales. Although results obtained with them both fall below the NFW result, they produce quite
different cross sections for alld. In particular, the Eke et al. (2001) algorithm yields results falling in between those
obtained with the NFW and Bullock et al. (2001) prescriptions, respectively. Such conclusions are in qualitative
agreeement with Figure 2.6.

This illustrates that the choice of thec − M relation is very important in analytic and semi-analytic models
of GC lensing since different concentrations can have a large effect on the strong-lensing properties. The factors
exceeding one order of magnitude between different prescriptions shown in Figure 7.1 for axially symmetric lenses
are particularly striking in this regard.

We compared strong-lensing cross sections for several DM halos extracted from a high-resolution numerical
simulation with those of analytic lens models with NFW density profile with the same mass and redshift, an
isopotential eccentricity of0.3 and with each of the three different algorithms for thec−M relation. We generally
find the best agreement of the strong-lensing efficiencies for concentrations computed with the algorithm by Eke
et al. (2001). This further supports the plausibility of this algorithm for thec − M relation. From now on, we
assign fiducial concentrations by means of the Eke et al. (2001) algorithm for thec−M -relation.

7.4.2 Scatter in the Concentration

We now proceed as anticipated in Section 7.3, performing four different strong-lensing analyses for our DM halo
population.
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Figure 7.3: Unnormalised distribution of the concentrations for all the halos in our sample with redshifts between
z1 = 0.28 andz2 = 0.32. The black solid histogram shows the result obtained adopting the fiducialc−M relation
of Eke et al. (2001). The log-normal concentration scatter is taken into account for the red-dashed histogram. The
vertical dashes indicate the median concentration in both cases.

We show in Figure 7.2 the optical depth per unit redshift as a function of lens redshift as defined in Eq. (5.8), for
arcs with length-to-width ratiosd ≥ 7.5 andd ≥ 10 respectively. Results are shown both including and ignoring
the effect of cluster mergers, and both assuming the idealc −M relation and introducing a concentration scatter
consistent with the log-normal distribution of Eq. (7.2).

For the two casesd ≥ 7.5 andd ≥ 10, we used two different seeds for drawing random concentrations from
the distribution in order to gain insight into the effect of limited statistics.

We first note the general trend that the introduction of the scatter in thec−M relation systematically increases
the optical depth, and this is true irrespective of whether halo mergers are taken into account or ignored. This is a
consequence of the skewness of the concentration distribution, cf. Section 7.2. Since concentrations much larger
than the fiducial value are more probable than much lower concentrations, it is more likely for the concentration
scatter to increase the strong-lensing cross section rather than the reverse. In other words, halo concentrations
become larger on average after introducing the scatter, thus producing a larger optical depth per unit redshift.

In closer detail, we note several local maxima of the differential optical depths obtained after introducing a
scatter in thec − M relation. These are caused by individual DM halos with relatively low mass that, due to
the random assignment of concentrations, reach a particularly high concentration and thus a large cross section.
Because of their low mass, they have a large relative abundance, thus they dominate the sum in the optical depth
per unit redshift, Eq. (5.8), and cause the peaks.

The position, width and amplitude of these peaks change of course if the seed for the random-number genera-
tion is changed. However, even though thelocal increase in the differential optical depth can be quite significant,
the increase in thetotal optical depth, i.e. the integral under the curves in Figure 7.2, is limited to∼ 40 − 50%,
both including or ignoring halo mergers.

To study this in more detail, we concentrate ond ≥ 10 and the more realistic case when mergers are taken into
account. We further select a halo subsample with redshifts betweenz1 = 0.28 andz2 = 0.32, centred onz = 0.3.
Since our original cluster sample was randomly drawn from a uniform mass distribution atz = 0 and then evolved
backwards in time to construct merger trees, each DM halo of massM200 at redshiftz needs to be statistically
weighted by the abundance of such halos according to the mass function for the cosmological model at hand. We
note that appropriate weights are included in the optical-depth calculations, see Eq. (5.8).

Figures 7.3 and 7.4 show the distributions of concentrations and strong-lensing cross sections in the halo
subsample. In both figures, we contrast results obtained ignoring the concentration scatter (solid black curves) and
taking it into account (red dashed curves). Note that all distributions shown are unnormalised.

Without scatter, the concentration distribution is very peaked, but it flattens and widens when the scatter is
taken into account, as one would expect. Note also that both concentration distributions drop very sharply at high
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Figure 7.4: Unnormalised distribution of the cross sections for gravitational arcs with length- to-width ratios
d ≥ 10 for all halos in our subsample with redshifts betweenz1 = 0.28 andz2 = 0.32. As in Figure 7.3, the black
solid and red dashed histograms show results ignoring the concentration scatter and accounting for it, respectively.
Dashed vertical lines mark the median cross sections for both cases.

concentrations. This reflects the mass cutoff in our halo sample, since high concentrations correspond to low
masses.

The cross-section distributions behave similarly. However, in this case the sudden cut-off at low cross sections
is due to the strong-lensing threshold. For producing large arcs, a halo’s caustics need to be sufficiently larger than
the available sources. Below this threshold, the strong-lensing cross sections sharply drop to zero. See also Fedeli
et al. (2006) or Section 4.3.3 for more discussion of this issue and its implementation.

Finally, the systematic increase of the differential optical depth shown if Figure 7.2 can be further understood
as the contribution of two factors. First, we note that the median concentration (and hence also the median strong-
lensing cross section) is larger when the concentrations scatter about the meanc − M relation. Second, the
significant peaks in Figure 7.4 (note the logarithmic scale!) appearing in the cross-section distribution at relatively
low cross sections are produced by rather low-mass halos that dominate the sum in the optical depth per unit
redshift because of their large statistical weight.

7.4.3 Lensing Concentration Bias

Another interesting issue that we are able to explore with our halo sample regards the strong-lensing cross sections
expected for concentrated halos, and conversely the concentrations expected in efficient strong-lensing halos.

This will allow us to better understand the relative effect of mass and concentration on the amplitude of the
strong lensing cross section, and to quantify the bias expected to be found in dark-halo concentration measurements
of strongly-lensing clusters. We can then compare such results to those obtained by Hennawi et al. (2007), who
carried out among other things a similar analysis on a large set of numerically simulated DM halos.

Figure 7.5 shows the medianσ10 and the mean〈σ10〉 cross sections of the halo subsample, restricted to those
halos with a concentration exceeding the threshold on the abscissa. Results are shown both for all halos irrespective
of their mass, and only for halos with masses≥ 7.5× 1014M�h−1.

Without mass selection, the curves are flat within the range of concentrations shown. Remarkably, this indicates
that low-mass halos with their typically high concentrations have similar mean or median cross sections as high-
mass halos and therefore contribute most of the strong-lensing optical depth in the halo subsample because of their
high abundance.

This result may seem at odds with the expectation that the lensing efficiency should increase with increasing
halo concentration, as illustrated in Figure 7.1 when we discussed the effect of different algorithms implementing
thec−M relation. However, note that Figure 7.1 shows results for a single halo mass. If we select only the most
massive halos, we find an increase of the mean and median cross sections with the concentration threshold. Thus,
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Figure 7.5: The black and blue solid curves show the median, and the red and green dashed curves the mean cross
section for arcs with length-to-width ratiod ≥ 10. Only halos with concentrations above the threshold on the
abscissa are included. The bottom pair of lines shows the result without any mass selection, while only halos more
massive than7.5× 1014M�h−1 are included in the top pair.

once the mass dependence is effectively suppressed in this way, the concentration dependence of the strong-lensing
efficiency can emerge. In other words, although the average strong-lensing cross sections do indeed increase with
the halo concentration, this effect is almost precisely cancelled if halos of all masses in a broad mass range are
considered.

According to Figure 7.5, the median and mean cross sections of massive halos can increase by a factor of∼ 2.5
as the concentration increases from2 to 5.

Figure 7.6 shows the mean〈c〉 and medianc concentration of halos with strong-lensing cross sections above
the threshold on the abscissa. Again, we compare the complete halo subsample with massive halos above a mass
limit of 7.5×1014M�h−1. We note that (i) if we impose no mass threshold, the concentration for strongly lensing
halos is always smaller on average compared to the entire population, and (ii) if we allow only massive halos, the
mean and median concentrations increase with the lensing cross section.

Specifically, the mean and median concentrations of massive halos shown in Figure 7.6 increase by∼ 12%
across the range of cross-section thresholds shown. If we further raise the mass threshold, the increase rises to
∼ 25%.

Without any mass selection, the highest cross sections are produced by the most massive objects, that are on
average less concentrated than the low-mass halos. If we restrict the analysis to massive halos, we remove part
of the mass dependence of the strong-lensing efficiency and find that the concentrations found in strongly lensing
clusters are slightly biased high. Narrowing the mass interval, the effect of the concentration is less diluted by
the mass dependence, thus increasing the bias. This result agrees with the corresponding result of Hennawi et al.
(2007) and will be discussed later on.

7.4.4 X-ray Concentration Bias

It is now interesting to ask whether comparable concentration biases are expected in X-ray selected cluster samples.
At fixed mass, a more concentrated halo creates a deeper potential well and thus causes the intracluster gas to
become hotter in thermal and hydrostatic equilibrium. The gas density will also increase, thus raising the X-ray
luminosity.

To address this question, we first require a relation between the X-ray observables and mass, the redshift and
the concentration of the host DM halo. We achieve this following Eke et al. (1998) who derived an extension to
the usual cluster scaling relations described in Section 2.4.3 (see White & Rees 1978; White 1982; Kaiser 1986).
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Figure 7.6: The black and blue solid curves show the median, the red and green dashed curves the mean concen-
tration. Only halos with strong-lensing cross sections above the threshold on the abscissa are taken into account.
The top pair of curves shows the result obtained without mass selection, while only halos more massive than
7.5× 1014M�h−1 contribute to the bottom pair of curves.

First of all, the circular velocity profile for a DM halo with an NFW density profile is (Navarro et al., 1997)[
v(r)
v200

]2

=
r200

r

F (cr/r200)
F (c)

, (7.7)

wherev200 is the circular velocity atr200, that isv2
200 ≡ GM200/r200. This distribution peaks atr ' 2r200/c,

corresponding to

v2
m ' 0.22v2

200

c

F (c)
. (7.8)

This characteristic velocity of the system measures the depth of its potential well. If only gravity or other scale-free
processes like pressure gradients or hydrodynamical shocks dominate within the cluster, any other measure of the
potential depth, such as the temperature of the intra-cluster gas, must be proportional tov2

m, that is

T (M200, z, c) ∝ M200

r200

c

F (c)
. (7.9)

Now, from the first Eq. (2.43) and the definition of concentration it follows that

r200 =
[

3M200

800πρc(z)

]1/3

. (7.10)

Inserting this into Eq. (7.9), we can write

T (M200, z, c) = C1M
2/3
200 h(z)2/3 c

F (c)
, (7.11)

whereC1 collects now all the constant factors. Note that this relation retains the mass and redshift dependence of
the temperature of the common scaling relation Eq. (2.56), but acquires the concentration dependence from the
DM density profile. In particular, the functionc/F (c) is a monotonically increasing function of the concentration
if c & 2, which is almost always the case in our halo sample (cf. the concentration distribution in Figure 7.3). It is
shown that adiabatic simulations of gas in GCs follow relatively well this type of scaling relation (Eke et al., 1998;
Bryan & Norman, 1998). With the introduction of more complex physical processes, like non gravitational heating
and radiative cooling, the scaling relation is instead not closely reproduced (Babul et al., 2002; Kay et al., 2002).
However, in spite of simplicity, we prefer to stick to it, leaving more complicated models for further study.
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Figure 7.7: Black and blue solid curves show the median, red and green dashed curves the mean concentration for
the subsample of DM halos betweenz1 = 0.28 andz2 = 0.32. Only halos with relative temperatures exceeding
the threshold on the abscissa are included. The top pair of curves shows the result without mass selection, while
only halos with mass larger than7.5× 1014M�h−1 contribute to the bottom pair.

Quantifying the bolometric X-ray luminosity of the intra-cluster gas, we start from

LX(M200, z, c) = 4π

∫ +∞

0

r2ρg(r)2
Λ(T )

(µmp)2
dr , (7.12)

whereΛ(T ) is the cooling function, depending on the relevant radiative processes, andρg(r) is the gas-density
profile. We assume that the gas density follows the DM density,ρg = fgρ, with a constant factorfg. This is
of course not strictly true, especially in the inner region where the DM density profile is cuspy while the gas
distribution forms a finite core due to the gas pressure. However, the final result is insensitive to this simplifying
assumption. Further assuming that the intracluster gas is isothermal, the luminosity can be written as

LX(M200, z, c) = 200Λ(T )
(

fg

3µmp

)2

M200ρc(z)
c3

F (c)2
. (7.13)

If the main emission mechanism of the intra-cluster gas is thermal bremsstrahlung, thenΛ(T ) ∝ T 1/2. Hence,
recalling Eq. (7.11) and collecting all constant factors intoC2, we get

LX(M200, z, c) = C2M
4/3
200 h(z)7/3 c7/2

F (c)5/2
. (7.14)

The common dependence of the luminosity on the mass and the redshift of the host DM halo Eq. (2.57) is retained
again, and an additional dependence on the concentration appears. Note also that the concentration dependence
is steeper here than for the temperature. Moreover, the dependence of the bolometric X-ray luminosity on the
concentration shown in Eq. (7.14) differs by a factor of1− (1 + c)−3 from the formula given in Eke et al. (1998).
This is because the integral in Eq. (7.12) extends to infinity, while it was limited to the virial radius in Eke et al.
(1998). This is unimportant because the missing factor is very close to unity for all reasonable values of the
concentration.

In the following, we refer the temperature and the X-ray luminosity of the gas inside each DM halo of our
subsample to the temperatureTr according to Eq. (7.11) and the luminosityLX,r according to Eq. (7.14) of a
reference halo with massM200,r = 1015M�h−1 placed at redshiftzr = 0. It has a nominal concentrationcr =
3.74 according to the Eke et al. (2001) algorithm. Thus, for each halo, we only consider the relative temperature

T (M200, z, c)
Tr

=
(

M200

M200,r

)2/3 [
h(z)
h

]2/3
c

F (c)
F (cr)

cr
, (7.15)
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Figure 7.8: Black and blue solid curves show the median, red and green dashed curves the mean concentration
for the subsample of DM halos betweenz1 = 0.28 andz2 = 0.32. Only halos with relative X-ray luminosities
exceeding the threshold on the abscissa are taken into account. The top pair of curves was obtained without mass
selection, while only massive halos with mass larger than7.5× 1014M�h−1 contribute to the bottom pair.

and the relative luminosity
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Figure 7.7 shows the median and mean concentrations for DM halos with a relative gas temperature exceeding
the threshold on the abscissa. We show the results both without any mass selection and selecting halos more
massive than7.5×1014M�h−1. Evidently, the mean and median halo concentrations decrease in both cases as the
relative temperature threshold increases. This illustrates that particularly hot gas resides in the most massive halos,
quite irrespective of the concentration. Also, if we consider only the most massive objects, a plateau appears at
low temperatures because low-temperature clusters are then removed from the sample. Thus, the gas temperature
depends so weakly on the halo concentration compared to its dependence on mass that even a narrow mass selection
does not reveal the increasing concentration-temperature relation.

Figure 7.8 shows the mean and median concentrations in halos selected for their X-ray luminosity. If all halos
in the subsample are included, the curves are almost flat, showing that the concentrations are typically independent
of the X-ray luminosity. If only massive halos are included, the mean and median concentrations increase such
that the most luminous X-ray clusters can be up to∼ 25% more concentrated than the entire cluster population.

Hence, unlike for the temperature, we here find increasing mean and median concentrations as a function of
the luminosity threshold. In summary, a concentration bias in temperature-selected clusters is not expected, but the
most massive and X-ray luminous clusters are typically more concentrated than the population of X-ray clusters
indicating a concentration bias similar to that found in strongly-lensing clusters.

The different results for clusters selected by temperature or X-ray luminosity can be understood considering
the following numbers. As remarked before, the nominal concentration of the reference cluster iscr = 3.74.
Had we adopted a reference mass of2.5 × 1014M�h−1, the nominal concentration wascr = 4.73. These two
concentrations are 1-σ compatible with the same underlying mass, given the variance ofσc = 0.2 in the log-
normal concentration distribution. The increase in the gas temperature due to the higher concentration is only
∼ 5%, while the X-ray luminosity increases by∼ 45%. On the other hand, the gas temperature drops by a factor
of ∼ 2.5 because of the lower halo mass, while the bolometric X-ray luminosity drops by a factor of∼ 6.3. On
the whole, the ratio between the changes in temperature due to the halo mass and due to the concentration is∼ 12,
while the ratio between the changes in X-ray luminosity due to the mass and due to the concentration is∼ 1.9.
This shows that the effect of the concentration on the X-ray luminosity is almost comparable to the effect of the
mass, but much less important for the temperature.
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Figure 7.9: Therms of the concentration distribution accounting for halos in the subsample with strong-lensing
cross sections (left panel) or relative X-ray luminosities (right panel) exceeding the thresholds on the abscissa.
The solid black lines are obtained without mass selection, while only massive halos with mass larger than7.5 ×
1014M�h−1 contribute to the red dashed curves.

In other words, the mass dependence of the gas temperature is overwhelmingly stronger than its concentration
dependence, cancelling any kind of concentration bias that could appear in temperature-selected halos. Very hot
clusters are actually less concentrated (more massive) than average. On the other hand, the stronger dependence
of the luminosity on the concentration allows to invert this trend if only massive clusters are considered. Thus,
very X-ray luminous clusters have higher mean and median concentrations than clusters with lower luminosity but
comparable mass.

To see which concentrations we can expect in suitably selected cluster samples, we plot in Figure 7.9 therms√
〈c2〉 − 〈c〉2 of the concentration distribution as a function of the cross-section and X-ray luminosity thresholds,

respectively, both with and without further mass selection. According to Figures 7.6 and 7.8, the median and the
mean of the distribution are quite similar, hence the distribution itself is quite symmetric, and therms is a good
estimator of its width.

Without mass selection, thermsalways remains around unity. If we introduce mass selection, it is close to unity
for the entire subsample, but drops towards0.4 when only efficient strong lenses are included, and to0.6 when
only very X-ray luminous clusters are included. This means that the concentration distribution tends to narrow in
the latter cases.

7.4.5 Additional Effects

Finally, we explore the consequence for our results of two additional effects not included so far. The first is the
correlation of the concentration with the triaxiality of DM halos (Jing & Suto, 2002). The second is the ellipticity
distribution of projected halos due to the random orientation of the three-dimensional halos with respect to the
line-of-sight (Oguri et al., 2003, 2005; Corless & King, 2007). The second effect affects only the strong lensing
properties of GCs, for whose lensing potential we assumed an eccentricity ofe = 0.3 throughout this work. The
scaling laws we used for the X-ray characteristics are insensitive to the ellipticity of the DM halo. Besides, the
gas distribution approximately follows equipotential surfaces and thus tends to be more spherical than the DM
distribution (Gavazzi, 2005).

We assess the impact of these two effects in the following experiment. First, we considered a DM halo with
mass2 × 1015M�h−1 and redshiftzl = 0.3. We computed its cross section for arcs with length-to-width ratio
d ≥ 10, assuming sources atzs = 1, a lensing-potential eccentricitye = 0.3 and concentration derived from the
algorithm of Eke et al. (2001). Then, we produced1, 000 triaxial modifications of this original halo by drawing
axis ratios from the distributions given in Jing & Suto (2002). The axis ratios allow changing the concentration
of each modified halo according to the prescription of Jing & Suto (2002), predicting higher concentrations for
more spherical halos. Finally, each modified halo is projected along a randomly selected line-of-sight and the
ellipticity of the projected density is computed following Oguri et al. (2003). To each halo is then assigned a new
lensing-potential eccentricity assuming that it is half of the eccentricity of the projected density.

As outlined in Jing & Suto (2002), the isodensity surfaces tend to be more elongated near the core of the halo
than in its outer regions. Since the innermost part of a GC is most relevant for strong-lensing events, we lowered
the minor-to-major and intermediate-to-major axis ratios by 0.15 prior to the projection. This is consistent with
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Figure 7.10: Cross section distributions. The vertical blue line shows the cross section for arcs with length-to-width
ratiod ≥ 10 computed for a DM halo of mass2× 1015M�h−1 at redshiftzl = 0.3 with sources at redshiftzs = 1
and lensing-potential eccentricitye = 0.3. The red dot-dashed line is the distribution of the cross sections caused
by the variation of halo concentrations with triaxiality. The green dashed line includes the ellipticity distribution
of projected triaxial halos, and the black solid line contains both effects.

Figure 3 of Jing & Suto (2002).
Cross sections were computed for each modified halo, using the new values of the concentration or of the

ellipticty, or both. The three resulting cross-section distributions are shown in Figure 7.10. The variation of the
concentration with triaxiality introduces additional scatter in the cross section (red dot-dashed line), but signifi-
cantly less than the concentration scatter introduced before. The small difference between the black solid and the
green dashed curves in Figure 7.10 corroborates this conclusion.

The distribution of cross sections obtained after random projections of triaxial halos is centered on the cross
section for the original halo with fixed eccentricitye = 0.3, indicating that this lensing-potential ellipticity is
typical. This confirms the result of Meneghetti et al. (2003b), who found this value by fitting the deflection angle
maps of simulated GCs (see also Meneghetti et al. 2005b). The good agreement also shows that the reduced
concentration of highly triaxial halos is compensated by the higher ellipticity.

The scatter caused by the ellipticity distribution exceeds that caused by the variation of the concentration
with triaxiality, but the total scatter in the cross sections due to halo triaxiality shown in Figure 7.10 is at most
comparable to that caused by the intrinsic concentration distribution. Moreover, it does not systematically shift
the cross sections towards higher or lower values, hence leaving unchanged the conclusions of this Chapter. It
should also be noted that these results are expected to hold if more detailed gas physics (such as cooling and
star formation) is included because it tends to affect the inner slope rather than the ellipticity of the cluster mass
distribution (Puchwein et al., 2005).

We have applied the same test to halos of different mass and found very similar results. The effect of the
variation of halo concentrations with triaxiality on the temperature and luminosity of the X-ray gas is negligibly
small.

7.5 Summary and discussion

We have investigated the effect of the scatter in the relation between concentration and mass in DM halos on
gravitational arc statistics and X-ray properties of GCs.

We have addressed the effect on strong-lensing cross sections of different implementations of thec − M
relation proposed in the literature (Navarro et al. 1997; Bullock et al. 2001; Eke et al. 2001). We found substantial
differences, with the algorithms by Navarro et al. (1997) and Bullock et al. (2001) predicting the highest and the
lowest cross sections, respectively. We adopt the algorithm by Eke et al. (2001) because it needs only one instead
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of two free parameters, has been shown to be applicable to cosmological models with dynamical DE (Dolag et al.,
2004), and was found to yield strong-lensing results in good agreement with numerical simulations.

This result shows that caution must be applied when modelling GC lenses with NFW density profiles, since
different implementations of thec − M relation may yield largely different values for the lensing efficiency, in
particular if axial symmetry is assumed.

We then used the Eke et al. (2001) algorithm to compute fiducial concentrations for a sample ofN = 500 DM
halos with masses between1014 and2.5×1015M�h−1 at redshift zero. Each halo is evolved backwards in time in
discrete redshift steps up to a source redshift randomly drawn for each halo from a parameterisation of the observed
redshift distribution of faint blue galaxies, as described in Chapetr 5. When the scatter in the concentration was
taken into account, it was drawn from a log-normal distribution around the fiducial value, with a standard deviation
of σc = 0.2. The effect of cluster mergers on the strong-lensing cross sections was also included (Torri et al., 2004;
Fedeli et al., 2006), although the relative effect of the concentration scatter is insensitive to mergers.

The skewness of the log-normal distribution renders concentrations much above the fiducial value more likely
than much below it, thus increasing on average the strong-lensing cross sections. Thus, the total, average optical
depth, and hence also the total number of arcs expected on the sky, is increased by up to50% by the concentration
scatter. Moreover, the optical depth per unit redshift displays isolated significant peaks which are due to individual
DM halos with relatively low mass that happen to reach a particularly large concentration. Such halos can thus be
turned into efficient lenses and contribute strongly to the optical depth because of their high abundance.

We then used our merger trees to better understand the relationship between dark-halo concentrations and their
lensing efficiency. We found that selecting halos by concentration yields average cross sections similar to those of
the complete sample. This shows that the higher concentrations of lower-mass halos compensates for their lower
masses in terms of their strong-lensing efficiency until their caustic curves become too small compared to the
sources to produce large arcs. Massive halos, however, reveal the concentration-dependence of the strong-lensing
cross sections.

Conversely, the median and mean halo concentrations do not increase if the most efficient lensing halos are se-
lected. However, selecting massive strong lenses reveals the dependence of the cross sections on the concentration,
yielding median and mean concentrations increasing with the lensing efficiency. The most massive, strong lenses
turn out to be10− 20% more concentrated than average lensing clusters.

This confirms a bias found earlier in numerically simulated clusters. Hennawi et al. (2007) found that strong
cluster lenses have three dimensional concentrations∼ 18% higher than typical clusters with similar mass. We
found that the median concentration is∼ 12% higher in halos with very high lensing efficiency compared to
average halos with similar mass, and can grow up to25% if very massive clusters are selected.

Apart from the qualitative agreement, the quantitative agreement is quite reassuring especially in view of our
different approach of modelling the halo population and its lensing efficiency semi-analytically compared to fully
numerically. The12% increase found here is certainly consistent with their18% increase because a broader mass
selection was applied here. Caution must thus be applied when extrapolating results on the inner structure of
strongly lensing clusters to the entire cluster population.

Finally, we performed a similar analysis using the temperature and the bolometric luminosity of the X-ray
emitting ICM instead of the strong-lensing cross section. We assigned a temperature and an X-ray luminosity to
each DM halo in our sample by extending scaling relations first derived by Eke et al. (1998). They maintain the
usual scalingsT ∝ M

2/3
200 h(z)2/3 andLX ∝ M

4/3
200 h(z)7/3, but include a dependence on the concentration of the

host DM halo.
According to this analysis, there is no concentration bias in temperature-selected clusters, while a bias similar

to strong lensing occurs for objects selected by their X-ray luminosity, if clusters of similar mass are selected. In
particular, the mean and median concentrations of dark halos with increasing gas temperature decrease, reflecting
that the temperature is much more sensitive to the halo mass than to its concentration. This result remains true
when the halos are selected by mass. Likewise, dark halos with increasing X-ray luminosity have virtually un-
changed concentrations if no mass selection is applied. If only massive objects are selected, the dependence of the
bolometric luminosity on the concentration appears.

It is then an interesting question whether the two concentration biases due to strong lensing and X-ray lu-
minosity conspire to produce a stronger effect. We computed the mean and median concentrations of clusters
selected for strong lensing among those already selected for their X-ray luminosity and with mass larger than
7.5 × 1014M�h−1. The further increase in concentration is very small compared to very X-ray luminous objects
only. This is because selecting massive clusters for their high bolometric X-ray luminosity, we already select
objects with high concentration that are typically also the most efficient lenses.

We also checked the effect of halo triaxiality on our results, which adds scatter to the halo concentrations and
projected halo ellipticities, and, even though the latter is relatively significant, it leaves the conclusions of our paper
unchanged.
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These results confirm the general expectation that the gas temperature is more sensitive to the depth of the
overall potential well and thus to the halo mass than to the internal halo structure. This does not hold true for
the luminosity, which scales with the squared gas density and is thus substantially more sensitive to structural
properties of the halo other than the mass. Similarly, the lensing efficiency is very sensitive to the details of the
internal structure of the lens, as demonstrated in a variety of studies (Bartelmann et al., 1995; Meneghetti et al.,
2003a,b; Oguri et al., 2003; Meneghetti et al., 2007).
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Chapter 8

Strong Lensing Statistics and the Power
Spectrum Normalization

8.1 Introduction

As outlined in Section 1.9, the WMAP-3 data release shifted the value of the normalization of the power spectrum
for linear density fluctuations fromσ8 ∼ 0.9 to σ8 ∼ 0.75. This is not only in tension with the first-year data
release, but also with many of the cosmological tests based on structure formation, like the GC number counts
evolution and the large scale structure probed via weak gravitational lensing and big optical surveys, that tend to
favor a value ofσ8 ∼ 0.9 as well (See Sections 2.5 and 3.6).

In Section 3.6 it has also been explained how the order-of-magnitude inconsistency between the total number
of gravitational arcs observed in complete, X-ray selected cluster samples and the corresponding theoretical pre-
dictions was first pointed out by Bartelmann et al. (1998). In that work, the authors usedn-body cosmological
simulations with a rather high normalization,σ8 & 0.9.

The introduction of finer details about the internal structure of GCs and their surroundings, as well as the red-
shift distribution of sources can possibly alleviate this inconsistency if the Universe has indeed high normalization.
Should the case for a low normalization power spectrum come close to reality however, the abundance of high mass
structures would be severely decreased, due to the exponential dependence of the mass function Eq. (2.36) onσ8.
As a consequence, a much lower number of arcs would be predicted in a standard flat model universe dominated
by the cosmological constant, thus worsening the disagreement with observations. The question whether an arc
statistics problem still exist and what its magnitude is in a low-normalization universe when accounting properly
for the clusters dynamical activity, source redshift distribution and limited sensitivity of observations is still at
dispute, and is the topic of the present Chapter.

The effect of modifing the normalization of the primordial power spectrum on the statistics of long and thin
arcs was partially explored in Li et al. (2005). Moreover, Li et al. (2007) showed that while the predicted number
of multiply imaged quasars with separation> 10′′ in a standard model withσ8 ∼ 0.9 is in good agreement with
the number observed in the SDSS, the prediction for a model with WMAP-3 normalization falls short of almost
one order of magnitude.

In this Chapter we will investigate how the predicted amount of gravitational arcs in a standard cosmolog-
ical model changes with different normalizations, and how this copes with the observed statistics. We do that
accounting for realistic source redshift distribution, the details of GC interactions and the luminosity function of
background sources.

We shall consider five different cosmological models. The energy density content and the Hubble constant are
kept unchanging and taken from the WMAP-3 data, combined with the SDSS observations (Spergel et al., 2007).
They areΩm,0 = 0.265, ΩΛ,0 = 0.735 andh = 0.71. The values ofσ8 are chosen differently for the five models
and are0.7, 0.75, 0.8, 0.85 and0.9 respectively. This choice allows to cover the complete range of values from the
first-year WMAP data to the GC counts.

8.2 Expectations

As in Chapter 5 about early-DE models, also here we try to gain some insight into the various contributions to
the arc statistics optical depths and their dependence and variation with respect to the normalization of the power
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Figure 8.1:Left panel. Concentration of DM halos according to the prescription of Eke et al. (2001) as a function
of virial mass at fized redshiftz = 0.3. The five different values for the normalization of the power spectrumσ8

analysed in this Chapter are considered, as labelled in the plot.Right panel. Collapse redshift according to Eke
et al. (2001) as a function ofσ8 for DM halos atz = 0 with three different values of the mass:M = 1014M�h−1

(black solid line),M = 5× 1014M�h−1 (blue dashed line) andM = 1015M�h−1 (red dot-dashed line).

spectrum. This will help to gain a better understanding of the subsequent results and to discriminate between
various contributions to them.

We start with the internal structure of DM halos that, as described in a variety of works (Cole & Lacey, 1996;
Navarro et al., 1997; Jing, 2000; Bullock et al., 2001; Eke et al., 2001) and in Section 2.3.5, depends on the
complete formation history of cosmic structures. In particular, assuming that the density profile of cluster-sized
DM halos can be described by an NFW fit (Eq. 2.42), we explore the dependence of the concentration of the profile
onσ8. As explained in Sections 2.3.5 and 7.2, the concentration of a DM halo is the ratio of the virial radius to the
scale radius of the density profile, giving a measure of the compactness of the halo itself. The expectation is that
high values forσ8 shift the structure formation at higher redshift, meaning that clusters tend to form out of a mean
background density that is larger and they have more time to relax, thus producing higher concentrations.

This expectation is verified in the left panel of Figure 8.1, where the value of the concentration of a DM halo is
shown according to the prescription given by Eke et al. (2001), as a function of the mass at a fixed redshiftz = 0.3,
typical for strong lensing clusters. Apart from the very well known behaviour according to which higher mass
structures have a lower concentration (Section 2.3.5), it is evident that, given mass and redshift, the concentration
tends to be higher when the normalization is larger. In particular, for a cluster-sized DM halo of mass1015M�h−1,
the concentration is∼ 40% larger in a universe withσ8 = 0.9 than in one withσ8 = 0.7. This fact alone can
in principle have a significant effect on arc statistics, because when the cluster core is more compact, the critical
curves and caustics are pushed outwards, thus increasing their length and producing highly distorted images.

The fact that in cosmological models with high normalization clusters tend to form before can be also under-
stood by looking at the implicit definition of collapse redshift used in Eke et al. (2001) and summarised in Eq.
(7.1). As can be seen, in order to keep the right hand side of this equation constant, a higherσ8 implies a lower
growth factor at collapse redshift, hence a higher collapse redshift. The collapse redshift for DM halos of different
mass at redshift zero as a function of the normalizationσ8 is reported in the right panel of Figure 8.1.

The next point that we analyse concerns the mass function and the merger rate. In Figures 8.2 and 8.3 we show
the behaviour of the Press & Schechter (1974) mass function and the merger rate of Eq. (5.9) for a fixed redshift as
a function of mass and for a fixed mass as a function of redshift respectively. For the mass function the behaviour is
quite clear. Since in a high-normalization universe the structure formation begins earlier, there are more structures
at a given redshift. This is particularly true for the high-mass tail of the mass function, due to the exponential
dependence of the mass function itself onσ8, see for instance Eq. (2.36). In particular, the difference between the
mass function in universes with different normalizations of the power spectrum can be as large as several orders of
magnitude on the massive GC scale.

The situation is less straightforward concerning the frequency at which structures merge together. The merger
rate is larger for high normalization models compared to low normalization models if the mass of the main halo is
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Figure 8.2:Left panel. Press & Schechter (1974) mass function as a function of mass at fixed redshiftz = 0.3.
Right panel. Merger rate between a cluster of massM = 1015M�h−1 and a substructure of the massm indicated
on the abscissa, atz = 0.3. In both panels the different values ofσ8 used in this work are labelled. Note that here
and in Figure 8.3 the merger rate is the probability for a DM halo to merge with a substructure per unit logarithm
of the merging mass and per unit logarithmic time.

Figure 8.3: Left panel. Press & Schechter (1974) mass function as a function of redshift at fixed massM =
7.5 × 1014M�h−1. Right panel. Merger rate between a cluster of massM = 1015M�h−1 and a substructure of
massm = 5 × 1013M�h−1 as a function of redshift. In both panels the different values ofσ8 used in this work
are labelled

large and the substructure’s mass is a considerable fraction of the main mass. This is quite a rare process because
massive structures (and substructures) are rare. On the other hand, when the substructure’s mass is not comparable
to the main mass, the merger rate is smaller in the high-normalization model. This latter case occurs in the largest
majority of circumstances, therefore we expect mergers to be on average equally likely, or even more likely in
low-σ8 models, at least in the redshift interval relevant for our pourposes. Moreover, as explained a few lines
above, the concentration of cluster-sized DM halos is low in low-normalization cosmological models. Hence the
strong lensing efficiency for single GCs is more sensitive to asymmetries and external perturbations, thus making
the global effect of cluster mergers on the total strong lensing efficiency even more acute.

The general expectations are hence large differences in the optical depths computed in model universes with
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Figure 8.4: The optical depth per unit redshift for arcs with length to width ratio larger thand = 7.5 (top panels)
andd = 10 (bottom panels) for the five different values of the normalizationσ8 used in this Chapter, as labelled in
the plots. The left panels shows the results including the boosting effect of cluster mergers and the right ones, on
the same scale, the results got ignoring it.

different values of the power spectrum normalizationσ8, and the difference between the computation performed
with and that without taking into account the effect of cluster mergers to be larger for small value ofσ8. We now
turn to the description of the actual results, showing how these naive expectations find actual confirmation in our
numerical experiments.

8.3 Results

As in the other parts of this thesis we produce realistic models of the cluster population without time consuming
numerical simulations adopting the extended Press & Schechter (1974) formalism outlined in Sections 2.3.4 and
5.2 and planting merger trees therein. Unlike previous work however, in this case we have no interest in models
with a complicated time evolution of the DE component. Therefore, the computation of the relevant quantities is
much faster, and we have the freedom to increase the number of clusters with simulated formation history up to
N = 1, 000.

The mass coverage and the modeling of individual DM halos and of their interaction with substructures remains
however identical to the the prescriptions outlined in Section 5.3. Also, for the redshift distribution of background
sources we stick to Eq. (5.5).
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Figure 8.5: The total, average optical depth for arcs with length to width ratio larger than or equal tod = 7.5 (left
panel) andd = 10 (right panel) as a function of the normalization of the power spectrumσ8. The red, dot-dashed
line shows the results including mergers, while the black, solid line shows the results ignoring them.

8.3.1 Optical Depth

In Figure 8.4 we show the results of the lensing analysis performed on our synthetic cluster population. Shown
is the optical depth per unit redshift given by Eq. (5.8), computed for the five different cold DM power spectrum
normalizations analysed in this Chapter. Also, the difference between the results obtained with and without taking
into account the boosting effect of cluster mergers is reported. We choose two thresholds for the length-to-width
ratio of gravitational arcs, namely the usual valuesd = 7.5 andd = 10.

As naively expected from the analysis in Section 8.2, the optical depth per unit redshift computed for a given
σ8 is systematically larger than the corresponding quantity computed with a lower power spectrum normalization.
This is a combination of the larger number of potential lenses in a high normalization universe and of the different
internal structures, i.e. larger concentration of individual objects. This difference is particularly striking at high
redshiftz & 1, where the lensing efficiency is still significant forσ8 = 0.9 while being negligible forσ8 = 0.7.
In this sense, the effect of a higher normalization of the linear power spectrum is similar to the introduction of
an early-DE component (see Fedeli & Bartelmann 2007a,b and the discussion in Chapter 5). We return to this
issue in further detail later. As for the difference between the two length-to-width thresholds adopted in this work,
when only arcs withd ≥ 10 are considered then the differential optical depths (and hence also the total, averaged
optical depths) are obviously smaller than whend ≥ 7.5 is adopted, but the qualitative features remain basically
unchanged.

In Figure 8.5 we show the total, average optical depth Eq. (3.34), that is the integral under each of the curves
shown in Figure 8.4, for the five cases considered here, both including and ignoring the effect of cluster mergers.
It is striking to note that there is more than one order of magnitude difference between the case with lowest
normalizationσ8 = 0.7 and that with the highest oneσ8 = 0.9, and this is true both considering or ignoring the
effect of cluster mergers. As a consequence, in a high normalization universe we can expect an order of magnitude
larger number of arcs than in a low normalization one, and this has important consequences for the arc statistics
problem as will be discussed in detail in Section 8.3.2.

One additional piece of information that can be gathered by Figure 8.5 is that whenσ8 is smaller, the boost in
the optical depth given by cluster mergers is more powerful. This fact is better appreciated in Figure 8.6, where
we show the ratio between the total optical depth obtained including the boosting effect of cluster interactions
and ignoring it. It is evident that dynamical activity enhance the optical depth (and hence the total number of
arcs in the sky) by a factor above 5 for low normalization universes, while this factor reduces to 3 or less for
high normalization models, as already verified in Fedeli & Bartelmann (2007a). This is a consequence we naively
predicted in Section 8.2, based on the behaviour of the semi-analytically computed merger rate. It must be noted
that the ratio between the boosted and unboosted optical depths is larger when the thresholdd = 10 is adopted.
This is a consequence of the fact that in this case the single cross sections tend to be smaller, hence they are
relatively more sensitive to perturbations.
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Figure 8.6: The ratio of the total, average optical depth for arcs with length to width ratio larger than or equal to
d = 7.5 (black solid line) andd = 10 (red dot-dashed line) to that obtained ignoring the boosting effect of cluster
mergers, as a function ofσ8.

Figure 8.7: The ratio between the cumulative optical depth for the different values of the normalization used in this
work and that forσ8 = 0.7. The left panel show the result with cluster mergers taken into account, while the right
panel ignores their boosting effect. Only the case with length-to-width thresholdd = 10 is shown, since the case
d = 7.5 is extremely similar.

It is now interesting to see what is the increase in the strong lensing efficiency at high redshift for large values
of σ8. This is particularly interesting in view of the recently observed high incidence of gravitational arcs in
distant GCs (Gladders et al., 2003; Zaritsky & Gonzalez, 2003). We do that by using the cumulative optical depth
defined in Eq. (5.10). In Figure 8.7 the ratio of this quantity for the five different values of the power spectrum
normalization to that obtained for theσ8 = 0.7 case is shown, both including and ignoring the effect of cluster
intaractions. There is virtually no difference from the cases in which the length-to-width threshold isd = 7.5 and
d = 10, therefore only the latter is shown here.

As mentioned above, we see that this ratio tends to increase at high redshift for all models with normalization
larger thanσ8 = 0.7. The increase is larger when no dynamical process is included in the model (up to 3 orders
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Figure 8.8: TheR− I color index as a function of redshift, computed from the spectra of three different morpho-
logical types of spirals and for elliptical galaxies, as labelled in the plot.

of magnitude) compared to when the boost due to cluster mergers is taken into account (∼ 2 orders of magni-
tude) because the effect of structure interactions is counter-acting in this sense, as already extensively explained.
However, the bottom line is that models with largeσ8 can be extremely more efficient in producing high redshift
gravitational arcs than low-σ8 models are.

8.3.2 Number of Arcs

In order to quantify the arc statistics problem when cluster mergers are properly taken into account and a realistic
source redshift distribution is used, it is necessary to transform the optical depths computed in the previous section
into numbers of observed arcs in the whole sky. To do this it is in principle enough to multiply the average optical
depthτ̄ with the total number of sources in the sky (according to Eq. 3.34).

However, in order to account for the fact that arcs with an arbitrary low transmitted flux cannot be actually
observed, it is necessary to include in the calculation a luminosity function for the faint blue galaxy population,
and also account for the magnification effect due to gravitational lensing. The latter has a twofold impact on the
observed source counts. The first is to magnify faint sources, bringing them above the flux threshold for detection,
hence increasing the number of sources that are visible in the unit solid angle. The second one is that local patches
of the sky are stretched, therefore diminishing the surface number density of background galaxies. It can be
shown (Bartelmann & Schneider, 2001) that if the original flux distribution function of sources is a power law with
logarithmic slope−1, then the two counter-acting effects of magnification cancel exactly, leaving the number of
observed sources per unit solid angle unchanged.

The number counts of faint background galaxies as a function of observed magnitude were read off the work of
Casertano et al. (2000) for the Hubble Deep Field. There, only the I-band magnitude is used, therefore we convert
to the number counts in the R-band by using the approximate relationR ' I + 1. This is justified by the analysis
of Figure 8.8, where the color indexR − I as a function of redshift is shown for different morphological types of
galaxy. It is evident that, since galaxies that are imaged as long and thin arcs are usually blue spirals (see Section
3.5), thenR− I ∼ 1 holds over the redshift range relevant for the present discussion.

In Figure 8.9 we show the conditional probability distribution for the magnification of background sources
given the length-to-width threshold for the imaged arcs. Shown are results of ray-tracing simulations (see Section
4.2.1) in comparison with a two-Gaussian fit for both thresholdsd = 7.5 andd = 10. The two-Gaussian fit can be
written as

P (µ+|d) =
A√
2πσ1

exp
[
− (µ+ − µ+,1)2

2σ2
1

]
+

1−A√
2πσ2

exp
[
− (µ+ − µ+,2)2

2σ2
2

]
, (8.1)

whereµ+ ≡ |µ|. The value of the best fit parametersA, σi andµ+,i both ford = 7.5 andd = 10 are summarised
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Figure 8.9: Conditional probability distribution for the magnification of images given a threshold for the length-
to-width ratio ofd = 7.5 (left panel) andd = 10 (right panel). The black solid lines show the result of ray-tracing
simulations, while the red dot-dashed curves are the two-Gaussian best fit whose parameters are summarised in
Table 8.1.

Table 8.1: Parameters for the two-gaussian fit to the conditional probability for magnification given a threshold for
the length-to-width ratio of simulated gravitational arcs.

Parameter d = 7.5 d = 10
A 0.84 0.59
σ1 4.1 4.9
σ2 12.3 5.8
µ+,1 11.8 13.6
µ+,2 41.3 38.6

in Table 8.1. It is important to note that the magnification is not a good proxy for the length-to width ratio of an
image, expecially when high thresholds are considered.

The original number counts read off Casertano et al. (2000) are therefore convolved with the probability for
arcs with thresholdsd = 7.5 andd = 10, in order to get the number counts after the magnification bias. Letn0(F )
be the original flux distribution function for the sources, that is the number of sources per unit solid angle that are
contained in the unit flux aroundF . Then the magnified distribution is simply obtained as

n(F ) =
∫ +∞

0

n0

(
F

µ+

)
P (µ+|d)

µ2
+

dµ+. (8.2)

Such magnified number counts are then simply multiplied with the average optical depth, to get a total number
of arcs. In Figure 8.10 we show the total number of arcs with length to width ratio larger thand = 7.5 andd = 10
that are predicted to be observed on the whole sky as a function of the normalizationσ8. Shown are the results with
three different limiting magnitudes, both in the I band and in the R band. Arc surveys in X-ray selected cluster
samples ususally adopt a limiting magnitudeRlim = 21.5, finding∼ 103 giant arcs extrapolated to the whole sky
(see the discussion in Section 3.6).

The numbers given in Figure 8.10 clearly show how the prediction falls short for all values of the normalization
considered here, includingσ8 = 0.9. However in the latter case the difference is just a factor of∼ 2, and can
be easily ascribed to additional contributions like the effect of halo concentration distribution (Chapter 7) or a
slightly different parametrization for the source redshift distribution. Much progress have been made since the
first prediction given by Bartelmann et al. (1998), also reported in Figure. However, if the normalization of the
power spectrum is to be close to the value measured from the WMAP-3 data, all this progress would be lost: With
σ8 ∼ 0.75 the predicted number of arcs is still about one order of magnitude smaller than the observed one.
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Figure 8.10: The number of arcs with length-to-width ratio thresholdd = 7.5 (left panel) andd = 10 (right panel)
predicted to be observed in aΛ-dominated cosmological model with normalization of the linear power spectrum as
reported on the abscissa. Black solid lines refers to I-band magnitudes, while red dot-dashed lines to R-band ones.
Three different limiting magnitudes are reported: 21.5 (bottom pair of curves), 24 (middle pair) and 26 (top pair).
In the right panel it is also shown the observed number of giant arcs (see Section 3.6 for a definition) according to
Le Fevre et al. (1994); Gioia & Luppino (1994) as a green shaded area, that should be compared with the lower
red curve. Moreover, the filled black and red points represent the original result of Bartelmann et al. (1998) (in the
I and R bands respectively) rescaled by using the source number counts computed in this Chapter.

8.4 Summary and Discussion

In this Chapter we computed the optical depth, differential optical depth and total number of produced gravitational
arcs with length to width ratio larger thand = 7.5 andd = 10 in model universes with five different values for
the normalization of the linear cold DM power spectrumσ8. The values for the matter and DE content as well as
for the expansion rate of the Universe at present are taken for the three-year data release from the WMAP satellite,
while the normalization is assumed to take all the values in the set{0.7, 0.75, 0.8, 0.85, 0.9}.

The cluster population is modeled computing Monte-Carlo merger trees for a set ofN = 1, 000 DM halos that
at present time are extracted in the mass range[1014, 2.5 × 1015]M�h−1. Each halo is represented by an NFW
density profile and elliptically distorted isopotential contours, with eccentricitye = 0.3. The effect on the strong
lensing efficiency of the interaction with substructures is also suitably taken into account according to the model
of Section 5.3. Background sources are properly distributed in redshift according to the observational prescription
of Eq. (5.5).

The computed average optical depth is converted into an observed number of gravitational arcs using an appro-
priate flux distribution function for background sources, and taking the twofold effect of lensing magnification into
account. Three different limiting magnitudes both in the I and R bands are considered, including the one relevant
for comparison with observational studies (Gioia & Luppino, 1994; Luppino et al., 1999)

Confirming the naively expected behaviour, we find that the total strong lensing efficiency grows for growing
normalization, in a way such that the number of arcs observable in a cosmological model withσ8 = 0.7 can be up
to one order of magnitude smaller than the number related to aσ8 = 0.9 universe.

The effect of cluster mergers depends also on the cosmology. Mergers with relatively small substructures are
more likely in a low-normalization universe, and moreover single GCs are less efficient lenses in such a universe
due to lower concentration, thus making the effect of interactions more significant. It turns out that cluster mergers
increase the total optical depth up to a factor of∼ 5 in a model withσ8 = 0.7 and only of a factor of∼ 3 or less
in a model withσ8 = 0.9.

Additionally, the differential optical depth for low normalization model universes can be up to several orders
of magnitude smaller than in high normalization ones atz & 1. This makes it highly difficult to explain the
high observed incidence of long and thin arcs in high redshift clusters if the WMAP-3 value ofσ8 is assumed.
Cosmological models with lowσ8 are also disfavored by the result that the number of arcs predicted to be observed
in a low normalization universe, compatible with the 3-years WMAP data release is significantly lower than the
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number actually observed in complete, X-ray selected GCs samples. Therefore, an arc statistics problem persists
in a model universe with WMAP-3 parameters, also if a suitable source redshift distribution is included and the
interaction with substructures are properly accounted for.

There are two possible ways of looking at the consequence of the aforementioned results. The first one is that
the normalization of the power spectrum is actually high,σ8 ∼ 0.9, and that the low value derived by the WMAP
team comes from some problem encountered in the data reduction process or in Galactic foregrounds not properly
accounted for (de Zotti et al., 2004; Cruz et al., 2006). The second one, and most likely, is that the actualσ8 is in
fact low, but we fail to properly account for some piece of GC physics, that affects both the cluster number counts
and the relative strong lensing properties.

Finally, a possible alternative route is the presence of a dynamical DE component. As shown in Chapter 5,
the presence of early-DE can play the role of an increased normalization, since it tends to shift the entire structure
formation process to earlier times. As a consequence the production of gravitational arcs, and in particular the
lensing efficiency for high-redshift clusters, are significantly increased. Future studies directed to the detection
of a redshift evolution of the DE equation of state parameterwx will be of fundamental importance in this sense.
Also of extreme relevance for the arc statistics problem will be the application of automatic strong lensing detection
algorithms to future optical surveys and combined lensing-X-ray-Sunyaev-Zel’dovich analysis of GC samples in
order to gain better understanding of their physics.
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Chapter 9

Asymmetric Gravitational Lenses in TeVeS
and Application to the Bullet Cluster

9.1 Introduction

As is known and outlined in Chapter 1, GR cannot explain the dynamics of our Universe on large physical scales
as the amount of visible mass clearly lies below what would be expected from the observed gravitational effects.

This brings to the introduction non-baryonic DM, however one can also take a different point of view and
modify the law of gravity itself. In the past, there have been several suggestions for such modifications:f(R)
gravity (Starobinskij, 1980), conformal Weyl gravity and Aether-type theories (Zlosnik et al., 2007), to name
just a few. A special realization of the latter, the so-called Tensor-Vector-Scalar gravity (TeVeS) (Bekenstein,
2004; Zlosnik et al., 2006) has recently gained interest as it provides a fully relativistic framework for the Modified
Newtonian Dynamics (MOND) paradigm (Milgrom, 1983a,b,c; Bekenstein & Milgrom, 1984). Compared to other
modifications, MONDian dynamics is characterized by an acceleration scalea0, and its departure from classical
Newtonian predictions depends on acceleration:

µ̃

(
‖a‖
a0

)
a = −∇ΦN + S. (9.1)

Here and in the remainder of this Chapter,ΦN denotes the common Newtonian potential of the visible (baryonic)
matter andS is a solenoidal vector field determined by the condition thata can be expressed as the gradient of
a scalar potential. The functioñµ, controlling the modification of Newton’s law, has the following asymptotic
behavior:

µ̃(x) ∼ x x � 1,

µ̃(x) ∼ 1 x � 1.
(9.2)

Eq. (9.1) has been constructed to agree with the fact that the rotation curves of spiral galaxies become flat outside
their central parts (Sanders & McGaugh, 2002). Analyzing observational data, Milgrom estimateda0 ' 10−10 m
s−2.

Within this Chapter, we shall study TeVeS and its built-in MONDian dynamics in the context of gravitational
lensing, focusing on non-spherical density distributions. In particular, a numerical tool that allows the treatment of
non-spherical lenses in TeVeS will be presented. In contrast to already existent MOND solvers (Brada & Milgrom,
1995, 1999; Ciotti et al., 2006) our method is based on fast Fourier techniques, achieving high-resolution solutions
for the TeVeS scalar potential on time scales up to a few hours on standard PCs.

9.2 Fundamentals of TeVeS

In the following, we will give a brief review on TeVeS and the approximations used for quasi-static systems like
galaxies, GCs and cosmology. As a convenient choice, in the remainder of this Chapter units withc = 1 shall be
used.
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9.2.1 Fields and Actions

TeVeS gravity is based on three dynamical fields: an Einstein metricg, analogous to the one introduced in Section
1.1, a vector fieldU such that

gµνUµUν = −1 (9.3)

and a scalar fieldφ. An essential feature of TeVeS is the introduction of a physical frame described by the metric
g̃ which is needed for gravity-matter coupling only and obtained from the non-conformal relation

g̃µν = e−2φgµν − 2UµUν sinh(2φ). (9.4)

The geometrical part of the action, that is related to the Einstein metric, is exactly the same as in GR:

Sg =
1

16πG

∫
gµνRµν

√
−det(g)d4x, (9.5)

whereR is the Ricci tensor ofg anddet(g) the determinant ofg. Note that the TeVeS constantG must not be
mistaken for the Newtonian gravitational constant, namedGN in the rest of this Chapter (cf. Section 9.2.3). The
vector field’s actionSv reads as follows:

Sv = − K

32πG

∫
[FµνFµν − λ(gµνUµUν + 1)]

√
−det(g)d4x, (9.6)

with Fµν = Uµ,ν − Uν,µ. Here the constantK describes the vector’s coupling to gravity andλ is a Lagrangian
multiplier enforcing the normalization given by Eq. (9.3). Eq. (9.6) corresponds to the classical Maxwell action,
the fieldU now having an effective mass. The actionSs of the scalar fieldφ involves an additional non-dynamical
scalar fieldσ, and takes the form

Ss = −1
2

∫ [
σ2hµνφ,µφ,ν +

Gσ4

2l2
F (ksGσ2)

]√
−det(g)d4x, (9.7)

wherehµν = gµν − UµUν andF is a dimensionless free function. As the fieldσ is related to the invariant
hµνφ,µφ,ν , however, it could in principle be eliminated from the action. Whileks is the coupling constant ofφ to
gravity, the constantl is related to Milgrom’sa0 and has the dimension of a length (see Section 9.2.2). Finally,
according to the equivalence principle, the matter action is given by

Sm =
∫
Lm

√
−det(g̃)d4x. (9.8)

Matter fields are coupled to gravity by the physical metricg̃, i.e. world lines are geodesics of the metric
g̃ rather thang. As usual, the corresponding equations of motion can be derived by varying the total action
S = Sg + Sv + Ss + Sm with respect to the basic fields.

In order to obtain Newton’s law in the non-relativistic high acceleration regime(a � a0), the coupling con-
stantsks andK have to be small compared to unity, i.e.

ks � 1, K � 1. (9.9)

Therefore, TeVeS is kept close to GR in a sense that it will recover well-known features of GR, albeit modified by
the other fields.

9.2.2 The Free Function

In TeVeS, the transition from Newtonian dynamics to MOND is controlled by the free functionF . Following
Bekenstein (2004), the “equation of motion” for the non-dynamical fieldσ suggests introducing a new function
µ(y) which is implicitly given by

−µF (µ)− 1
2
µ2F

′
(µ) = y, (9.10)

with

ksGσ2 = µ(ksl
2hµνφ,µφ,ν) = µ(y). (9.11)

For further analysis, we shall assume the functionµ(y) to behave well in a physical sense, i.e to be smooth
and monotonic in both cosmological(y < 0) and quasi-static situations(y > 0). In order to reproduce both a
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MONDian and a Newtonian limit, the quasi-static branch of the inverse functiony(µ) has to satisfy the following
limiting conditions:

y(µ) →∞ µ → 1,

y(µ) ' bµ2 µ � 1,
(9.12)

whereb is a positive real constant. If this is the case, the constantl can be related to Milgrom’sa0 by

a0 =
√

bks

4πΞl
'
√

bks

4πl
, (9.13)

whereΞ ≡ 1 − K/2 − 2φc andφc is the cosmological value of the scalar field which is assumed to be small
(φc � 1). In Section 9.4.1, we shall return to the free function and its properties in the context of gravitational
lensing, concentrating on the branch relevant for quasi-static systems.

9.2.3 Quasi-static Systems

According to Bekenstein (2004), the physical metric field near a quasi-static galaxy (cluster) is identical to the
metric obtained in GR if the non-relativistic gravitational potential is replaced by

Φ = ΞΦN + φ, (9.14)

whereΦN is the Newtonian potential generated by the baryonic matter densityρ. In this approximation, it is
consistent to takeUµ = (U0, 0, 0, 0) which can be shown from the corresponding field equations. Then we have

ksl
2hµνφ,µφ,ν = ksl

2‖∇φ‖2 (9.15)

and the equation of the scalar field reduces to

∇
[
µ

(
ksl

2‖∇φ‖2
)
∇φ

]
= ksGρ. (9.16)

Eq. (9.16) corresponds to the non-linear elliptic boundary value problem and can be treated numerically. In Section
9.5.2, we shall give a detailed description of the method we use to determine the solution for the scalar fieldφ,
including a discussion on its problems and limitations.

Since we haveK, φc � 1, the quantityΞ has a value close to unity, and the total potentialΦ can essentially
be written as the sum of the common Newtonian potentialΦN and the additional scalar field, i.e. Eq. (9.14) may
further be reduced to

Φ ' ΦN + φ. (9.17)

As the constantG is related to the Newtonian gravitational constantGN by (Bekenstein, 2004)

GN =
(

Ξ +
k

4π

)
G, (9.18)

we will additionally assumeG ' GN throughout this work.

9.2.4 Cosmology

Similar to the case of GR, it is possible to derive a cosmological model in TeVeS. Assuming the basic fields to
partake of the symmetries of the Robertson-Walker spacetime, the analog of the first Friedmann’s equation reads

ȧ2

a2
+

k

a2
=

8πG

3
(ρe−2φ + ρφ), (9.19)

whereρφ is the energy density of the scalar field given by

ρφ ≡
µφ̇2

ksG
+

µ2

4k2
s l

2G
F (µ) =

−2µy(µ) + µ2F (µ)
4k2

s l
2G

. (9.20)

Since we are interested in the physical metric, we have to make use of transformation Eq. (9.4) and finally obtain

1
ã

dã

dt̃
= e−φ

(
ȧ

a
− φ̇

)
, (9.21)
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with

dt̃ = eφdt, ã = e−φa. (9.22)

In order to simplify matters, however, we shall introduce the “minimal” cosmological model proposed by Zhao
et al. (2006), that is described as follows. According to Bekenstein (2004), it is consistent to assume that the
cosmological scalar field evolves slowly in time throughout cosmological history. Thus, its contribution to the
Hubble expansion is negligibly small, with a ratioO(ks) compared to the matter contribution. Settingρφ = 0 and
recalling thatφ � 1, the physical Hubble parameter can be expressed as in Eq. (1.26), depending only on matter
and radiation density, curvature and a possible DE contribution.

Since there is no DM in TeVeS, we have to consider a minimal-matter cosmology that should be consistent
with observational data in order to obtain a reasonable cosmological model. Zhao et al. (2006) actually find a
good fit of the high-z supernovae distance moduli data set by choosing an open cosmology with cosmological
constant andΩΛ,0 = 0.46, Ωm,0 = 0.04 andH0 = 70 km s−1 Mpc−1. However, they also point out that when
moving to very high redshifts, this open cosmology has problems, i.e. it underestimates the last scattering sound
horizon, which actually seems to be an artifact of the crude approximation as recent work has shown (Zhao, 2006).
Nevertheless, in the context of gravitational lensing, this simple model is sufficient for assigning the distances of
lenses and sources up to a redshift ofz ∼ 3.

9.3 Gravitational Lensing in TeVeS

In general, light rays move along the null geodesics of the underlying metric field, i.e. the null geodesics of the
physical metricg̃ considering the framework of TeVeS gravity. This means that the deflection angle map of a
lens can be computed using Eq. (3.9), with the only difference that the Newtonian potential of dark and luminous
matter must be replaced with the TeVeS potential Eq. (9.17) of the luminous matter only.

Therefore, in addition to the deflection angle caused by the Newtonian potentialΦN, there is a contribution
arising from the scalar fieldφ. Becauseφ is connected to the matter density in a highly non-linear way, it is not
possible to relate the projected matter density to a two-dimensional scalar deflection potential just like in GR (see
Eq. 3.17). Hence, we are obliged to solve Eq. (9.16) for calculating the TeVeS deflection angle, which is a very
delicate issue (cf. Section 9.5.2). Compared to the distances between lens and source and observer and source,
however, we may still assume that most of the bending occurs within a small range around the lens. This enables
us to fully adopt the GR lensing formalism which was outlined in Section 3.3.

Following Zhao et al. (2006), we switch to a notation which turns out to be more suitable for analytic studies.
Instead of the functionµ, we shall consider a new function̄µ which is defined by

µ̄

1− µ̄
=

4π

ks

2
2−K

µ, (9.23)

whereks, K are the coupling constants of the scalar fieldφ and the vector fieldU , respectively. Similarly, we can
relate the functiony to another functionδφ in the following way:

δ2
φ =

[
4π

ks

(
1− K

2

)]2
y

b
' ‖∇φ‖2

a2
0

, (9.24)

whereb is the real-valued parameter of the functiony(µ) in Eq. (9.12). Choosing the free function such that

δ2
φ =

µ̄2

(1− µ̄)2
, µ̄2 =

δ2
φ

(1 + δφ)2
, (9.25)

it is possible to obtain an analytic expression for the deflection angle of a Hernquist lens, i.e. a lens whose matter
distribution follows a Hernquist profile (Hernquist, 1990) given by

ρ(r) =
MrH

2πr(r + rH)3
, (9.26)

the Hernquist radiusrH being the scale length at which the logarithmic slope change from the outer−4 to the inner
−1 andM the total (finite) mass. Eq. (9.26) is a spherical profile which closely approximates the de Vaucouleurs
law (de Vaucouleurs, 1953) for elliptical galaxies. Using elementary calculus, we compute thereduced deflection
angleα̂(ξ) ≡ α(ξ)DlDs/Dls, eventually ending up with

α̂(ξ) =
rHA(ξ)√
|ξ2 − r2

H|

(
4ξ

√
GMa0 +

4GMξ

|ξ2 − r2
H|

)
− 4GMξ

|ξ2 − r2
H|

, (9.27)
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Figure 9.1: The TeVeS Hernquist lens (dashed) withrH = 2 kpc compared to its corresponding point lens (solid)
with respect to the reduced deflection angleα̂ for M = 1011M� anda0 = 10−10 m s−2. Forξ � 1, both angles
approach the constantα̂∞ ≡ 2π

√
GMa0 ' 0.58

′′
. The transition to the MONDian regime can be characterized

by the critical radiusr0 ≡
√

GM/a0 ' 10 kpc.

where

A(ξ) =

 arcsinh
√

(rH/ξ)2 − 1 if ξ < rH

arcsin
√

1− (rH/ξ)2 if ξ > rH

. (9.28)

Note that the reduced deflection angle is independent of the distances involved in the problem. In the limitrH → 0,
the Hernquist lens coincides with a point lens. In this case, we find that the reduced deflection angle is given by

α̂(ξ) =
4GM

ξ
+ 2π

√
GMa0. (9.29)

Obviously, the scalar part of TeVeS gravity of a point mass seems to mimic the presence of a dark isothermal
sphere. Therefore, both GR including DM and TeVeS will essentially make the same lensing predictions forξ
being much larger than the extension of the lens, but the highly non-linear coupling of the scalar field strongly
suggests that there may be significant differences when moving to the strong acceleration regime near the center.
Note that, although Eqs. (9.27) and (9.29) do not explicitly depend onks andK, a0 is still given by Eq. (9.13).

Figure 9.1 shows the lensing properties of both the TeVeS Hernquist lens (rH = 2 kpc) and its corresponding
point lens where we have setM = 1011M� anda0 = 10−10 m s−2. Since its deflection angle can be expressed
analytically, the Hernquist lens is a perfectly suitable candidate for testing an algorithm for non-spherical problems.

9.4 Influence of the Free Function

Considering a spherically symmetric situation and applying Gauss’ theorem for a spherical surface of arbitrary
radius, Eq. (9.16) can be transformed into

∇φ =
ks

4πµ
∇ΦN . (9.30)

Assuming we already knowΦN, for example by solving Poisson’s equation, the relation above can directly be used
to calculate∇φ for any given functionµ(y) (Remember thaty = ksl

2‖∇φ‖2 for quasi-static systems, withl given
by Eq. 9.13). Ifµ or ΦN cannot be obtained analytically, treatment with numerical methods, which can easily be
applied in the spherically symmetric case, becomes necessary. Because of their simplicity, spherically symmetric
systems are particularly suitable for investigating the effects of the free functiony(µ) on the deflection angle.
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Figure 9.2: Absolute (left) and relative (right) difference between the TeVeS reduced deflection angles of the
analytic and the numerical Hernquist lens choosing the parameters from Section 9.3: Clearly, the deviations are
small,∆α̂ . 10−4 arcseconds and∆α̂/α̂analy . 10−4. For the numerical calculation, we have assumedks = 0.01
andy(µ) = µ2/(1− µ).

9.4.1 Parameterization of the Free Function

Having set the cosmological background in Section 9.2.4, we shall focus on the free function’s quasi-static branch
(y > 0): If y(µ) can be analytically continued into the ring domainR = {z ∈ C; 0 < |z − 1| < 1}, it can be
expanded into a Laurent series. Thus,y(µ) takes the following form for0 < µ < 1:

y(µ) =
∞∑

n=1

an

(1− µ)n
+

∞∑
n=0

bnµn, (9.31)

with coefficientsan, bn ∈ R. Expanding the above expression forµ � 1 to second order, we must have the
following relations for the coefficientsan, bn to keep the second condition in Eq. (9.12):

b0 +
∞∑

n=1

an = 0,

b1 +
∞∑

n=1

ann = 0,

b2 +
∞∑

n=1

an
n(n + 1)

2
6= 0.

(9.32)

As a simple example, we take the function

y(µ) =
µ2

1− µ
(9.33)

and find that the non-zero coefficients are given by

a1 = 1, b0 = −1, b1 = −1. (9.34)

Setting the coefficientsan andbn, we are able to directly control the specific transition behavior from MONDian
to Newtonian dynamics. Using the expansion Eq. (9.31), we shall study the effects of varying the free function
y(µ) on the deflection angle within numerical analysis.

9.4.2 Comparison to the Analytic Model

Taking the simple choice Eq. (9.33), we compare the numerical result of the TeVeS Hernquist lens to the analytic
solution derived in Section 9.3. Figure 9.2 shows the absolute and relative difference between the reduced deflec-
tion angles of the analytic and the numerical lens models using the same parameters as in Section 9.3, where we
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have setks = 0.01 for the numerical calculation. Although we have considered two different free functionsy(µ),
the actual differences are fairly small,∆α̂ . 10−4 arcseconds and∆α̂/α̂analy . 10−4, and thus negligible with
respect to today’s observational resolution limit.

Considering the above, it appears that we could be able to determine classes of free functionsy(µ) that nearly
produce the same deflection angle. Although we do expect an infinite number of such classes, a closer look will be
of advantage (cf. Section 9.5.1). For a systematic approach, we shall make use of the parameterization introduced
in Section 9.4.1 to analyze the effects of a varying free function.

9.4.3 Varying Parameters

Still considering deflection by the Hernquist lens, we now focus on a varying form of the free functiony(µ) and
the value of the coupling constantks. For our investigation, all remaining parameters are chosen as in Section 9.3
unless specified in any other way.

Starting from an arbitrary set (an, bn), e.g. the set Eq. (9.34), we begin with a variation of the constants
an where we have to adjustb0, b1 andb2 according to Eq. (9.32), settingks to a fixed value, e.g.ks = 0.01.
Interestingly, numerical analysis has shown that there are no significant changes to the reduced deflection angle
for a wide range of parameters, i.e. the relative changes are comparable to those we found in the last section,
∆α̂rel ≡ ∆α̂/α̂analy . 10−5 − 10−4. For instance, if we choose

a18 = 1, a19 = −2, a20 = 1, (9.35)

which is the expansion of

y(µ) =
µ2

(1− µ)20
, (9.36)

the relative deviation is of order10−5. As we have seen, the singularity atµ = 1 recovers the Newtonian limit in
quasi-static situations, but remarkably, the transition behavior seems almost insensitive to the particular realization
of this singularity.

Similarly, we have also examined the effect of a changing coupling constantks taking the coefficientsan, bn as
constants. Again, the relative differences turned out to be very small,∆α̂rel . 10−5− 10−4, varyingks within the
range of10−4− 10−2 for different sets (an, bn). Obviously, as long as it is small, i.e.ks . 0.01, the calculation of
the deflection angle does not really depend on the exact value ofks.

As for the coefficientsbn with n > 2, however, there is a strong influence on the deflection angle, basically al-
lowing to create arbitrary transitions from MOND to Newtonian dynamics. In accordance with the above analysis,
it seems that thebn alone can be used to characterize the free function. In general, the exact form ofy(µ) has to
by constrained by observational data being independent of the particular law of gravity, which is subject to other
work, e.g. Zhao & Famaey (2006).

9.5 Non-spherical Lens Models

Within this section, we will examine the properties of more general lens systems using numerical methods. In-
troducing our algorithm for the treatment of non-spherical lenses in TeVeS, we will investigate a set of different
matter distributions including a toy model of the cluster merger1E0657− 558.

9.5.1 Choice of the Free Function

Settingks = 0.01, we shall restrict all further analysis to the following form ofy(µ):

y(µ) =
µ2

(1− µ)2
. (9.37)

We will make use of this specificy(µ) for two reasons: First of all, the choice of Eq. (9.37) is easily inverted, i.e.

µ(y) =
√

y

1 +
√

y
, (9.38)

and therefore it is possible to express the derivative with respect toy analytically:

∂µ

∂y
=

1
2
√

y(1 +
√

y)2
. (9.39)
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As will become clear in Section 9.5.2, bothµ(y) and∂µ/∂y are part of Eq. (9.16). Since∂µ/∂y →∞ for y → 0,
a possible solver of Eq. (9.16) might be extremely sensitive to the corresponding run of∂µ/∂y in that regime. By
choosing the analytic expressions of Eqs. (9.38) and (9.39), respectively, we are able to avoid numerical inversion
and differentiation of the free function, which may prevent a destabilizing influence on the algorithm.

Secondly, our choice allows us to use the analytic Hernquist lens for comparison in order to test the accuracy
of a non-spherical solver for this specific density profile. According to Section 9.4, Eq. (9.37) is close to the choice
of Eq. (9.25) and produces nearly the same deflection angle, thus justifying such a comparison.

9.5.2 Calculating the Scalar Potential

Sinceµ = µ(y) andy = ksl
2‖∇φ‖2 for quasi-static systems, an expansion of the left hand side of Eq. (9.16)

yields

2
∂µ

∂y
ksl

2 ((∂iφ)(∂jφ)(∂i∂jφ)) + µ∆φ = ksGρ. (9.40)

Defining an effective matter densitȳρ such that

∆φ = ρ̄, (9.41)

where

ρ̄ =
ksG

µ
ρ− 2

ksl
2

µ

∂µ

∂y
((∂iφ)(∂jφ)(∂i∂jφ)) , (9.42)

we may choose an appropriate first guess ofφ and calculate an initial densitȳρ(0) by using Eq. (9.42). Solving
Poisson’s equation by means of Fourier methods, i.e. Eq. (9.41) with the right hand side being fixed (ρ̄ = ρ̄(0)),
we find a new fieldφ(1), which can be used to obtain̄ρ(1) and so forth.

Without any further modification, this approach fails to converge in most cases, with theφ(n) oscillating rapidly.
Including a relaxation into the iteration, however, it is possible to enforce convergence for a variety of problems,
and thus our final iterative scheme reads as (ρ̄(0) is calculated from an initial guessφ(0))

∆φ̃(n) = ρ̄(n),

φ(n+1) = ωφ̃(n) + (1− ω)φ(n),
(9.43)

where we have introduced the relaxation parameterω ∈ R, an additional iteration field̃φ(n) and

ρ̄(n) =
ksG

µ(n)
ρ− 2

(
∂µ

∂y

)(n)
ksl

2

µ(n)

[
(∂iφ

(n))(∂jφ
(n))(∂i∂jφ

(n))
]
,

µ(n) = µ(y(n)),
(

∂µ

∂y

)(n)

=
∂µ

∂y
(y(n)), y(n) = ksl

2‖∇φ(n)‖.
(9.44)

For suitable values ofω, our method turns out to work very well for a wide range of density profiles (cf. Section
9.5.2). However, our investigation has shown that the relaxation’s success is very sensitive to the particular choice
of ω, i.e. ω has to be chosen from a very narrow range,ω = 0.75 ± 1. Although convergence is achieved within
a wider range ofω, its behaviour quickly deteriorates. Fortunately, this value seems to be almost independent of
the particular density profile, and therefore it will not be necessary to adjustω once it has been determined for a
certain density.

Point Lens Approximation

As the scalar field’s gradient decreases much more slowly compared to the Newtonian one far away from the lens,
one would actually be obliged to move to very large volumes in order to neglect contributions from outside the
box and obtain correct results for the deflection angle. Thus, assuming a fixed grid size, this would excessively
degrade the resolution of the corresponding two-dimensional lensing maps. In the following, we shall discuss an
approximation allowing us to avoid this problem.
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Figure 9.3: Accuracy test of our numerical method: Assuming a Hernquist lens with the parameters from Section
9.3, we compare the numerical result for the reduced deflection angleα̂ to the analytic one. The left panel shows
the relative difference∆α̂rel = (α̂analy−α̂num)/α̂analy. Please note that the quantity∆α̂rel is limited by−0.02 ≤
∆α̂rel ≤ 0.01 for reasons of presentation, values outside this range are truncated. The right panel illustrates the
relative deviation for the central part where∆α̂rel reaches a maximum of approximately20%.

Considering a finite grid withN + 1 points per dimension (N is chosen as an even number), we may rewrite
the scalar part of the reduced deflection angle as the sum of contributions coming from both inside and outside the
grid’s volume:

α̂s = 2
∫ N

2 ∆ξ

−N
2 ∆ξ

∇φ(in)dζ + 4
∫ ∞

N
2 ∆ξ

∇φ(out)dζ, (9.45)

with the quantity∆ξ denoting the distance between neighboring grid points. Assuming that the scalar field at the
boundaries is approximately given by that of a point lens, i.e.

φ(out) '
√

GMa0 log(r), (9.46)

we obtain the following expression (M denotes the total mass inside the volume):

α̂s = 2
∫ N

2 ∆ξ

−N
2 ∆ξ

∇φ(in)dζ + 4A, (9.47)

where

A =
√

GMa0

ξ

[
π

2
− arctan

(
N∆ξ

2ξ

)] (
ξ1

ξ2

)
. (9.48)

If applicable, we need to perform the integration only over our finite grid since all contributions from outside
the box can be expressed analytically. Concerning our iterative solver, we may additionally assume the boundary
conditions of the fieldsφ(n) to be of spherical symmetry, and it turns out to be sufficient to use Eq. (9.46) as an
initial guess forφ. To achieve a reasonable resolution compatible with the limitations of our computer hardware,
we setN = 384 for all numerical calculations. Before turning to non-spherical lens systems, however, we shall
examine our method’s accuracy.

Accuracy

Comparing the numerically obtained reduced deflection angle of a Hernquist lens to the analytic result Eq. (9.27),
we will determine the accuracy of our tool assuming the parameters from Section 9.3, which correspond to a
galaxy-sized mass distribution. As previously mentioned, such a comparison is justified according to our analysis
in Section 9.4.1. Concerning the numerical setup, we choose a grid volume ofV = (50 kpc)3 (the lens is placed
in the grid’s center) and in order to obtain a sufficiently large value ofD ≡ DlsDl/Ds, we set the redshifts of
source and lens tozs = 3 andzl = 0.63, respectively. If not explicitly noted, we shall keep this choice of redshifts
throughout the following sections. Atξ ' 25 kpc, the relative deviation between the analytic Hernquist and its
corresponding point lens is approximately6%. Although this difference is quite large, we assume the validity of
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Figure 9.4: Left panel. Numerically calculated TeVeS convergence map for the King-like profile Eq. (9.49)
expressed in terms of the GR convergenceκgr assumingζ0 = 50 kpc. Right panel. Since Eq. (2.49) corresponds
to an axisymmetric configuration, the effective TeVeS convergenceκ and the ratioκ/κgr depend on the radial
coordinateξ only. As the calculated convergence maps relatively deviate from circular symmetry byO(10−3),
which is due to our Fourier method, the presented results are averaged over all directions. Choosingζ0 = 50 kpc
(solid) andζ0 = 400 kpc (dashed), we see thatκ is significantly amplified in the central region when moving to
higher values ofζ0.

Eq. (9.46) in order to balance accuracy and resolution (N = 384). Thus, we are able to resolve structures up to a
minimum extent of∆ξ ' 130 pc.

The left panel of Figure 9.3 shows the relative difference∆α̂rel = (α̂analy − α̂num)/α̂analy between the
numerical and the analytic reduced deflection angle of the Hernquist lens. For reasons of presentation, we have
limited the range of∆α̂rel to −0.02 ≤ ∆α̂rel ≤ 0.01. Ignoring the very center of the map (right panel), we
find the relative deviations in the interior are of order10−3. Moving outwards, i.e. to largerξ, these deviations
increase and reach values up to5 − 6% at the grid’s boundaries (ξ & 25 kpc). However, as long asξ . 15 kpc,
we still have∆α̂rel . 1%, again neglecting the central part. The large differences close to the boundaries are
likely to be a mixture of artifacts caused by the Fourier transform of actual non-periodic fields and contributions
due to Eq. (9.48) which become more significant with increasingξ. Having a look at the right panel of Figure
9.3, we see that∆α̂rel strongly increases in the central region reaching a maximum value of roughly20%. The
reasons for these large deviations are probably related to both the limited resolution of our grid and the small
values ofα̂ in the center. According to Section 9.3, the TeVeS deflection angle of the analytic Hernquist lens
decreases to zero forξ → 0. Since this transition happens on a rather small scale, our numerical model cannot
fully recover the deflection angle in the central region. Moreover, we have to consider that the matter density in
Eq. (9.26) becomes infinite atξ = 0, which, of course, cannot be accomplished in a numerical calculation. Due
to the grid, this singularity is smoothed out, causing an effective loss of mass in our numerical model. This loss
has an overall influence on the deflection angle and may significantly contribute to the errors we have discussed
above. Investigating non-spherical systems, however, we shall only consider lenses which follow smooth density
distributions.

For numerical simulations that similarly allow using the point lens approximation, we may assume an accuracy
equal to that of the Hernquist lens. As we are mainly interested in the strong lensing regime, we shall restrict
ourselves to the grid’s interior where the relative deviations are of order10−3. Due to finite resolution, however,
we expect the accuracy to degrade to some extent in regions where the deflection angleα̂ approaches values close
to zero when moving to more generic lens systems. Although smooth density profiles will probably not produce
deviations as large as we have found aroundξ = 0 for the Hernquist lens, we cannot make any specific statements
on the quality of our simulations in such areas. Still, this should affect but a fraction of the overall result, thus
being acceptable for the following analysis.

Problems

As for the solver of the scalar field, we have encountered some problems that we briefly want to mention here:
Considering more complicated density distributions, we have found the relaxed iteration to be less efficient, i.e.
the iteration generally takes more time to converge. As it turns out, this cannot be compensated by changing the
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Figure 9.5: Radii of the inner (left) and outer (right) critical curve for different choices ofζ0: Increasing the lens’
extent along the line of sight, the radius of the inner (outer) critical curve is driven outwards showing relative
changes of up to roughly6% (16%). The critical lines are calculated by interpolation between the grid points.

relaxation parameterω, which would actually lead to even worse convergence properties or a complete failure of
the method. Still, the additional amount of time that has to be employed is acceptable in most cases.

Furthermore, independently of the corresponding value ofω, we encounter the relaxation to generally fail for
certain choices ofρ. Since it can mostly be resolved by slightly modifying the original density profile, this second
problem is probably of purely numerical origin. Although it seems very unlikely, however, we point out that it
might also hint on an exceptional behavior of the scalar fieldφ that is not accessible to our solver. Considering
the Hernquist profile, for instance, the difficulties found in the central part may reflect its intrinsic instability with
respect to TeVeS/MOND, rather than a negative feature of our code (Ciotti & Binney, 2004).

9.5.3 Thin Lens Approximation

As our first task, we want to investigate the validity of the thin lens approximation in TeVeS. According to former
work considering lensing in classical MOND (Mortlock & Turner, 2001), we expect a break-down of the approx-
imation due to the non-linear coupling of the scalar field to the 3-dimensional matter density. In the following,
however, we are rather interested in quantifying this break-down by exploring the lensing properties of a mass dis-
tribution being contracted or stretched along the line of sight, i.e. theζ-direction, making use of our new numerical
tool. For this purpose, let us consider a three-dimensional density distributionρ following a King profile (King,
1972) which is given by Eq. (2.49). This is an empirical law that fairly describes the distribution of both galaxies
and gas inside a GC. However, in order to analyze TeVeS effects which are only due to the lens’s extent along
the line of sight, we have to parameterize its thickness and additionally ensure a constant projected mass density.
Thus, we introduce a slightly modified profile:

ρ(ξ, ζ) = ρ0Q(ξ)Z(ζ), (9.49)

where

Q(ξ) =

[
1 +

(
ξ

ξ0

)2
]−1

(9.50)

and

Z(z) =

[
1 +

(
ζ

ζ0

)2
]− 1

2

, (9.51)

with ξ0, ζ0 > 0 being the corresponding core lengths. Since the expressions in Eqs. (9.50) and (9.51) are obtained
by integrating Eq. (2.49) over one and two dimensions, respectively, our new choice Eq. (9.49) is actually kept
close to the original King profile. Varying the parameterζ0, we are now able to directly control the lens’s extent in
theζ-direction.
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Figure 9.6: Numerically calculated TeVeS convergenceκ (left panel) and the corresponding ratioκ/κgr (right) for
an elliptical profile of type Eq. (9.52) withξ1,0 = 350 kpc andξ2,0 = ζ0 = 200 kpc: In the central part, the
TeVeS convergenceκ is unevenly amplified, thus breaking the elliptical symmetry. Compared to the dominant GR
contributions, however, this effect is almost negligible.

Concerning the numerical setup, we take the point of origin, i.e.ξ1 = ξ2 = ζ = 0, to coincide with the
grid’s center and assume the density profile (9.49) to be smoothly cut at a radius of1.5 Mpc, which is necessary
as, otherwise, our King-like profile would contain an infinite amount of mass. In accordance with the point lens
approximation, we set the grid’s volume toV = (5 Mpc)3, thus having a spatial resolution of∆ξ ' 13 kpc
(N = 384). Furthermore, we takeξ0 = 200 kpc and chooseρ0 such that the lens’s total mass is given by
M = 1015M�, which now corresponds to a cluster-sized mass distribution. Regarding the remaining parameters,
we keep the settings introduced in Section 9.3, the redshifts of source and lens being fixed tozs = 3 andzl = 0.63,
respectively. Henceforth, if not explicitly noted, all presented numerical results are based upon these settings,
including the spherical cut-off of the particular density profile at1.5 Mpc. As we have to meet condition in Eq.
(9.46) in order to apply the point lens approximation, we are obliged to satisfyζ0 . 600 kpc in our numerical
simulations.

The right panel of Figure 9.4 shows the effective TeVeS convergence of our King-like profile expressed in terms
of the corresponding GR convergenceκgr for ζ0 = 50 kpc andζ0 = 400 kpc, respectively. Note that the GR maps
are independent of the particular choice ofζ0. Increasing the value ofζ0, we observe a significant amplification
of the TeVeS convergence around the center while there is basically no change in the outer region. As expected,
the variation ofζ0 has no effect on the symmetry properties of the convergence map. Concerning the TeVeS shear
map, we find a similar behavior: While there is a strong increase ofγ in the very center, we find only small changes
in the outer parts. Interestingly, the TeVeS shear is not exactly circularly symmetric in that region any longer, with
the actual form depending on the particular extent of the lens. Rather than being intrinsic to TeVeS, however, this
is probably due to Fourier artifacts caused by the scalar field solver or the point lens approximation, an influence
of the latter being actually expected as the choice ofζ0 has an impact on Eq. (9.46).

Let us continue our analysis considering the effects on the critical lines due to the changes ofκ andγ: Since
Eq. (9.49) is axially symmetric, the corresponding lines turn into circles. In Figure 9.5, the radii of both the inner
and outer critical curve are presented for different values of the parameterζ0. Obviously, these radii are increased
when stretching the lens along the line of sight, showing relative deviations of up to roughly6% and16% for
the radial and tangential critical radius, respectively. Note that the critical lines are calculated by interpolation
between the grid points, thus allowing to determine positions which are below the grid’s resolution. Although our
investigation is limited to a small range ofζ0, we find appreciable differences between the lensing maps which are
assumed to considerably grow when stretching the lens further.

Summarizing the above, we may conclude that the lens’s extent along the line of sight significantly affects the
strong lensing properties. Therefore, the mass distribution along theζ-axis can be regarded as an additional degree
of freedom in TeVeS.

9.5.4 Elliptical Lenses

In this section, we shall consider lens systems whose projected mass density follows an elliptic profile. Therefore,
introducing the scale lengthsξ1,0, ξ2,0, ζ0 > 0, let us consider a matter density distribution of the form

136



9.5. NON-SPHERICAL LENS MODELS

Figure 9.7:Left panel. Numerically calculated TeVeS convergence ratioκ/κgr for the rotated profile Eq. (9.52)
with ξ1,0 = 350 kpc: In the central part, the TeVeS convergenceκ is unevenly amplified, similar to the unrotated
case shown in the bottom panel of Figure 9.6. Thus, it seems unlikely that the observed effect is a numerical artifact
caused by our method.Right panel. Critical curves for both TeVeS (solid) and GR (dashed) assuming an elliptical
profile of type Eq. (9.52) withξ1,0 = 150 kpc andξ2,0 = ζ0 = 200 kpc.

ρ(r) = ρ0

[
1 +

(
ξ1

ξ1,0

)2

+
(

ξ2

ξ2,0

)2

+
(

ζ

ζ0

)2
]− 3

2

. (9.52)

Keepingξ2,0 andζ0 fixed, ξ2,0 = ζ0 = 200 kpc, we investigate the lensing properties for different choices of the
parameterξ1,0, again setting the total mass toM = 1015M�. Figure 9.6 illustrates both the TeVeS convergence
κ and the corresponding ratioκ/κgr, with ξ1,0 set to a value of350 kpc. Although the symmetry properties of
the GR convergence map are virtually sustained in TeVeS, we can observe an interesting feature located in the
central part: Compared to its neighborhood, there is a slightly increased amplification close to the semi-major
axis, breaking the elliptical symmetry. If this effect was larger, it could actually account for loosing track of the
baryonic matter distribution, thus yielding a qualitatively different looking TeVeS convergenceκ. Forξ1,0 = 350
kpc, we additionally present a simulation where the density profile Eq. (9.52) has been rotated around theζ-, ξ2-
andξ1-axis by10◦, 20◦ and30◦, respectively. Clearly, the ratioκ/κgr illustrated in Figure 9.7 (left panel) shows
essentially the same inner structure as in Figure 9.6. Therefore, it seems unlikely that the observed effect is a
numerical artifact caused by our method.

In the right panel of Figure 9.7, we compare the critical lines in TeVeS to those obtained in GR assuming
ξ1,0 = 150 kpc. The found symmetry-breaking effect does not appear to have any significant influence on the
critical curves which therefore do not show any unfamiliar shapes compared to elliptical GR lenses. As the TeVeS
convergenceκ is calculated by a weighted amplification ofκgr, however, the critical curves appear at a larger
distance from the origin and their forms are varied to some extent compared to GR. Varying the value ofξ1,0 from
100 kpc to400 kpc, we substantially obtain the same findings.

9.5.5 Lenses with Multiple Components

Next, we want to explore gravitational lensing by multiple objects. For this purpose, let us consider a rather simple
case and start with two density distributions,ρ1 andρ2, following the King profile. Choosingr0 = 200 kpc and
M1 + M2 = M = 1015M� (Mi denotes the total mass of the object located atri inside our volume), we shall
place our densities at the following positions inside the grid volume (r = ‖r‖ = 0 corresponds to the grid’s origin):

r1 =

ξ
(2)
1

0
ζ2

 , r2 = −

ξ
(2)
1

0
ζ2

 . (9.53)

Thus, varying the parametersξ
(2)
1 andζ2, we are able to control the relative alignment of our objects along the line

of sight, i.e. theζ-direction, as well as perpendicular to it.

137



CHAPTER 9. ASYMMETRIC GRAVITATIONAL LENSES IN TEVES AND APPLICATION TO THE
BULLET CLUSTER

Figure 9.8: Lensing properties of our two-bullet system assumingξ
(2)
1 = 100 kpc andM1 = M2 (top panel),

ξ
(2)
1 = 300 kpc andM1 = M2 (middle panel), andξ(2)

1 = 100 kpc and3M1 = M2 (bottom panel), respectively:
We present the numerical results for both the TeVeS convergenceκ (left) and the corresponding ratioκ/κgr (mid-
dle) settingζ2 = 400 kpc. On the right, the TeVeS critical lines are plotted forζ2 = 0 (dashed) andζ2 = 400 kpc
(solid). Note that the radial critical curve forξ(2)

1 = 300 kpc andζ2 = 0 does not appear due to the grid’s finite
resolution.

Equal Masses

As a first approach, we shall assume the total massM to be evenly distributed on our two bullet-like objects,
i.e. M1 = M2. Varying ξ

(2)
1 from 100 kpc to300 kpc, we calculate the convergence maps and critical lines for

different alignments along the line of sight, with the results forζ2 = 400 kpc (andζ2 = 0 for the critical curves)
presented in Figure 9.8 (top and middle panel). Again, we notice thatκ is amplified such that the symmetry
properties of the surface densityκgr, are virtually conserved, similar to the result found in the last section. Having
a look at the central region, we additionally observe thatκ is increased between the object’s positions, which is
actually expected since the Newtonian gradient∇ΦN becomes small there. Altogether, as the TeVeS convergence
map closely tracks the baryonic matter distribution, and we do not encounter any new surprising TeVeS effects
considering our two-bullet system.

Increasing the quantityζ2, we discover a significant growth ofκ around the central part, which is in accordance
with our previous result from Section 9.5.3. Consequently, the corresponding critical lines, shown on the right
hand side of Figure 9.8 (top and middle panel), are spatially driven outwards. Please also note that, due to the
non-spherical symmetry of our problem, the shape of those curves is slightly changed when varyingζ2.

Different Masses

In analogy to Section 9.5.5, we can perform a similar simulation choosing3M1 = M2.
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Table 9.1: Component masses and positions for our toy model of the cluster merger1E0657 − 558: Concerning
the masses of our toy model components, we use those derived by Clowe et al. (2006). The plasma mass is
reconstructed from a multicomponent 3-dimensional cluster model fit to the Chandra X-ray image. Assuming a
mass-to-light ratio ofM/LI = 2, stellar masses are calculated from the I-band luminosity of all galaxies equal
in brightness or fainter than the component’s brightest cluster galaxies. Please note that all masses are averaged
within an aperture of100 kpc radius around the given position. For each component, the position perpendicular to
the line of sight is approximately determined from the corresponding Magellan and Chandra images.

Component (ξ1, ξ2, ζ) [kpc] MX [1012M�] M∗ [1012M�] Mtotal [1012M�]

Main cluster (−350,−50, ζ1) 5.5 0.5 6.0
Main cluster plasma (−140, 50, ζ2) 6.6 0.2 6.8
Subcluster (350,−50, ζ3) 2.7 0.6 3.3
Subcluster plasma (200,−10, ζ4) 5.8 0.1 5.9

Figure 9.9: TeVeS convergence maps for our toy model of the bullet cluster: Assuming the framework of TeVeS,
we present the numerically obtained convergenceκ for the parameter setsA (upper left),B (upper right),C (lower
left) andD (lower right).

Assumingξ
(2)
1 = 100 kpc, both the calculated convergence map and the critical lines are presented in the

bottom panel of Figure 9.8 forζ2 = 400 kpc (andζ2 = 0 for the critical curves). As can be seen from the ratio
κ/κgr, the convergence is more strongly amplified in theξ1 > 0 regime, i.e. the region of lower mass density.
Accordingly, the corresponding critical lines are drawn further outwards in that region. As the MONDian influence
increases for smaller values of the Newtonian gradient’s norm‖∇ΦN‖, however, this is exactly what one would
expect. Choosing other bullet alignments or mass weightings, we basically obtain the same results.

9.5.6 Modeling the Bullet Cluster

Only recently, the cluster merger1E0657−558, has been announced as a direct empirical proof of the existence of
DM (Clowe et al., 2006; Bradac et al., 2006) as the weak lensing reconstruction ofκ shows peaks that are clearly
detached from the dominant baryonic components, i.e. the plasma clouds.
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Figure 9.10: TeVeS convergence ratioκ/κgr for our toy model of the bullet cluster: Assuming the framework
of TeVeS, we present the numerically obtained convergence ratioκ/κgr for the parameter setsA (upper left),B
(upper right),C (lower left) andD (lower right).

Using an analytic model, Angus et al. (2007) have fit this map and derived the corresponding baryonic matter
density in MOND-like gravity, concluding that it is not possible to model the merger without assuming an addi-
tional invisible mass component located in the central parts of the two clusters. As they have used the weak lensing
reconstruction of Clowe et al. (2006), however, their convergence map does not account for the observed strong
lensing features within this system.

In addition, the same convergence map appears to be incompatible with the values of plasma masses indepen-
dently estimated from Chandra observations, which, as remarked by the authors, may be due to the smoothing
scale of the weak lensing reconstruction. To avoid such discrepancies, we shall create a simple toy model of the
bullet cluster’s baryonic matter density that allows to be treated with our numerical method.

The bullet cluster basically consists of four objects: The main cluster, a slightly smaller subcluster and two
plasma clouds appearing in between. For the 3-dimensional matter density, we shall model these components
using the analytic King profile Eq. (2.49), choosing core radiir0 of 200 kpc and150 kpc for the clusters and the
plasma clouds, respectively. Concerning the particular masses, we use the values of Clowe et al. (2006) which are
derived independently of gravitational lensing. According to the authors, the plasma mass is reconstructed from a
multicomponent 3-dimensional cluster model fit to the Chandra X-ray image while, assuming a mass-to-light ratio
of M/LI = 2, the stellar mass is calculated from the I-band luminosity of all galaxies equal in brightness or fainter
than the component’s brightest cluster galaxies. Together with the approximate positions of the components, the
corresponding mass values are presented in Table 9.1. Please note that all masses are averaged within an aperture
of 100 kpc radius around the given position.

For the calculation of the lensing maps, we set the redshift of the bullet cluster, i.e. the lens, tozl = 0.296
(Clowe et al., 2006) and assume a source redshift ofzs = 1.

Since the position of the particular constituents can only be constrained perpendicular to the line of sight, we
actually have substantial freedom in selecting their alignment along theζ-direction. For our analysis, we choose
four different sets ofζi which are shown in Table 9.2. Let us briefly discuss the meaning of these choices: Clearly,
the parameter setA implies that all components are located in the same plane perpendicular to the line of sight.
The choicesB andC account for the plasma clouds to be displaced in opposite directions along theζ-axis, which
is a reasonable assumption considering today’s view of the bullet cluster to be a post-merger snapshot. Finally, the
parameter setD fairly describes the situation of the axis connecting the cluster centers being inclined with respect
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9.5. NON-SPHERICAL LENS MODELS

Figure 9.11: TeVeS maps of the shear componentγ1 for our toy model of the bullet cluster: Assuming the frame-
work of TeVeS, we present the numerically obtained shear componentγ1 for the parameter setsA (upper left),B
(upper right),C (lower left) andD (lower right).

Table 9.2: Parameter sets used within the toy model of the cluster merger1E0657 − 558: In our simulations, the
above sets are used to specify the component’s alignment along the line of sight, i.e. theζ- direction.

Parameter set ζ1 ζ2 ζ3 ζ4

A 0 0 0 0
B 0 300 0 −300
C 0 500 0 −500
D 300 100 −300 −100

to theζ-direction.

Figures 9.9 and 9.10 illustrate both the resulting TeVeS convergence mapκ and the corresponding ratioκ/κgr

for the parameter sets listed in Table 9.2. From Figure 9.10, we again find that there are TeVeS effects causing
additional structure within the central part, and increasing the constituent’s relative displacement along theζ-
axis, we observe these structures growing stronger to some extent. Similar to our previously considered lens
models, however, the TeVeS effects are not large enough to account for displacements from the dominant baryonic
components. Additionally, we present maps of the TeVeS shear componentsγ1 andγ2 which are shown in Figures
9.11 and 9.12, respectively.

Clearly, our result confirms the findings of Angus et al. (2007). To provide an acceptable explanation of the
observations, TeVeS needs an additional mass component centered at the cluster positions. As has been suggested
by others, e.g. Sanders (2007), primordial neutrinos with mass on the order of2 eV might be able to resolve the
problem. Checking they-values, i.e. the arguments of the free function, near the cluster centers in our simulation,
we found that the nonlinearity of Eq. (9.16) still has a relevant impact on the resulting scalar field. Therefore, it is
not possible to isolate neutrino effects as a pure additive contribution to the overall convergence map and to give
constraints on the amount and distribution of such neutrinos for a given mass. Current work is trying to find an
approximate way of dealing with this issue using our previous numerical results.
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CHAPTER 9. ASYMMETRIC GRAVITATIONAL LENSES IN TEVES AND APPLICATION TO THE
BULLET CLUSTER

Figure 9.12: TeVeS maps of the shear componentγ2 for our toy model of the bullet cluster: Assuming the frame-
work of TeVeS, we present the numerically obtained shear componentγ2 for the parameter setsA (upper left),B
(upper right),C (lower left) andD (lower right).

9.6 Conclusions

In this Chapter, we have analyzed the effects of gravitational lensing within the framework of TeVeS, focusing on
asymmetric systems.

Considering spherically symmetric lenses, we introduced a parameterization of the free functiony(µ) showing
that the particular realization of the singularity atµ = 1 has a trifling influence on the deflection angle. Fur-
thermore, we concluded that variations of the coupling constantks lead to negligibly small effects as long as
ks . 10−2. Thus, we were able to determine classes ofy(µ) that nearly produce the same deflection angle.

Choosing a single form of the free function, we succeeded in building a fast Fourier-based solver for scalar
potentialφ which could be applied to a set of different non-spherical lens types. Concerning variations on rather
small scales, we noticed a strong dependence of the lensing properties on the lens’s extent along the line of sight,
with a significant impact on the critical curves. Additionally, every simulated TeVeS convergence map showed a
strong resemblance with the dominant baryonic mass components, other effects, being capable of counteracting
this trend, turned out to be very small. To study a more complex lens system, we finally created a toy model of the
bullet cluster’s baryonic matter density. The outcome of our simulation clearly confirms the results of Angus et al.
(2007) as it is not possible to explain the observed weak lensing map without assuming an additional dark mass
component in both cluster centers.

Future work will address even more complex lens systems like, for example, the GC Abell2390 with its straight
arc (Kassiola et al., 1992). Increasing the lens’ level of substructure, effects that account for loosing track of the
projected matter density could become more important, thus influencing the ability of TeVeS to model such a lens.
In addition, one can use these models to check if TeVeS is consistent with the assumption of massive neutrinos in
GCs.
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In this thesis we have used a semi-analytic approach to the study of the statistics of long and thin gravitational
arcs. Attention was also directed to the interplay between strong lensing efficiency and X-ray emission in galaxy
clusters, as well as to the effect of the internal structure of dark matter halos on X-ray observables. A minor part of
the investigation was also dedicated to the study of gravitational lensing in theories of gravity alternative to general
relativity.

Particular emphasis was paid to the so-called arc statistics problem, namely the fact that the observed number
of arcs in statistically complete cluster samples is in strong disagreement with the predicitions based on a standard
ΛCDM cosmology. This problem was first point out by Bartelmann et al. (1998), who found a discrepancy of
about one order of magnitude. In this work we aimed at finding possible explanations for this disagreement,
quantify it in light of more accurate theoretical estimates and help evaluating the relative importance of the different
contributions to arc statistics.

The main results of the investigation are briefly summarised below. Additional discussions can be found in the
main body of this thesis and in the reference quoted.

� We presented a novel semi-analytic method for the computation of strong lensing cross sections, along with
its validity and limitations. The algorithm performs more than one order of magnitude faster than standard
fully numerical ray-tracing simulations, producing results that are in eccellent agreement with them. These
characteristics make our method ideally suited for parameter studies involving the statistics of long and thin
arcs. We have applied the method to the evaluation of the global strong lensing efficiency of a synthetic
cluster population, with realistic merger histories extracted from a high-resolution numerical simulation.
The boosting effect of cluster mergers on the efficiency for the production of strong lensing features was
analysed through simple modelling. The result is that the interaction between structures can boost the total
number of arcs produced in the sky by at least a factor of∼ 2, expecially at intermediate and high redshift,
where the merger activity is most significant. We also performed a brief study regarding the effect of source
properties on the arc statistics, and comparing to previous work. All the results are presented in Fedeli et al.
(2006).

� We used the semi-analytic method mentioned above to study the effect of different models of dark energy
on the gravitational arc statistics. The cluster population was modelled using Monte-Carlo simulations
of merger trees, following the lines of the extended Press & Schechter (1974) formalism. Moreover, a
background source redshift distribution fitting observational data was used. The dark energy models studied
include a standardΛCDM cosmology, a universe where the equation of state parameter for dark energy is
constant and equalswx = −0.8, and two models with early-dark energy, characterised by a small but still
significant amount of quintessence at high redshift. The latter two models have slightly different spectral
indices and normalizations of the power spectrum in order to comply with present observational constraints.
The generic consequence of primordial dark energy is that structure formation is shifted to higher redshift,
thus producing more massive structures at low redshift. As a consequence it is found that the efficiency
for the production of long and thin arcs increases by a factor of∼ 3 in early-dark energy models, when
compared to models with constantwx. Also, it was confirmed that cluster mergers enhance the lensing
efficiency by factors between2 and3, with little change due to cosmology. An important point is that the
lensing efficiency in early-dark energy models is still important at high redshift, where it is negligible for
a ΛCDM model. This can have important consequences from an observational point of view. This work is
described in Fedeli & Bartelmann (2007a).

� As a subsequent step, we asked how arc statistics could be modified by selection effects. Given the fact
that strong lensing features are usually searched for in X-ray selected galaxy clusters, we assigned an X-ray
flux to each cluster in the populations previously evolved in different dark energy cosmologies. To that
end we used the virial mass-temperature relation, whose normalization was calibrated against numerical
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simulations, and an observationally fitted mass-luminosity relation. The boosting effect of cluster mergers
on temperature and luminosity of the intracluster medium was suitably taken into account using a simplified
model based on fits to numerical hydrodynamical simulations. It was shown that the scatter in the relation
between bulk properties is consistent with the observed one, hence confirming the goodness of the model.
Instrumental effects like background subtraction and PSF convolution were taken into account with reference
to the ROSAT satellite, and flux-limited X-ray cluster catalogues were constructed using the same procedure
as for the construction of the observedReflexcluster sample. We computed the total optical depth for long
and thin arcs obtained from cluster samples with different limiting fluxes, finding that, quite independent of
cosmology, X-ray bright clusters above a flux limit of∼ 3× 10−14 erg s−1 cm−2 produce about60% of the
total strong lensing optical depth, and only∼ 1% above∼ 3 × 10−12 erg s−1 cm−2. The boosting effect
of cluster mergers on arc statistics is quite insensitive to the limiting flux. Moreover, it was shown that the
observed redshift distribution of clusters in theReflexsample can be reproduced only if cluster interaction is
considered. These results are published in Fedeli & Bartelmann (2007b).

� We investigated the effect on the arc statistics of the distribution in the concentration of dark matter halos
around the nominal value. Only results in aΛCDM cosmological model are studied in this case. As a
preliminary analysis we checked the difference in terms of cross sections arising when the concentration of
a halo of fixed mass is computed according to the three different prescriptions available in the literature. We
find that the best motivated of these prescriptions, namely the one from Eke et al. (2001), gives results that
lie in between the Bullock et al. (2001) and the Navarro et al. (1997) algorithms. Next, we assumed a log-
normal distribution for the concentration around its nominal value and introduced it into the calculation of
the strong lensing properties of our synthetic cluster population. Since a log-normal distribution is skewed
toward high values, the result is a modest increase in the lensing optical depth, of the order of∼ 50%.
Finally, we analysed the relation between halo concentration and cross section for long and thin arcs and
X-ray luminosity and temperature of single clusters. It is found that, when structures of similar mass are
considered, strong lensing and X-ray luminous clusters are also on average more concentrated. On the other
hand, the opposite is true for the gas temperature, because of the very mild dependence on the internal
structure of the host dark matter halo. The results of this work are also found in (Fedeli et al., 2007).

� The effect on the statistics of long and thin arcs of the normalization for the primordial power spectrum was
studied. An increase in the normalizationσ8 has the effect of shifting the structure formation process at
higher redshift, hence producing more massive clusters at low redshift. We showed that the total number
of arcs produced in the sky can increase by up to one order of magnitude when moving from a WMAP-3
normalization to a valueσ8 ∼ 0.9. Qualitatively the effect is somewhat similar to the introduction of a
dynamical quintessence model, since in this case as well the high redshift lensing efficiency displays the
largest difference. As for the effect of cluster mergers, this is partially reduced in high normalization models
because there clusters have a higher concentration, that implies a lower sensitivity of the strong lensing cross
section to external perturbations. Moreover, high values ofσ8 shift the merger activity at high redshifts,
where part of its effect is lost due to the constant source redshift distribution. We also convolved the optical
depth computed in the different models with a realistic source luminosity function, in order to predict the
total number of arcs that could be observed up to a given limiting magnitude. The result is that the contrast
with observational data is much alleviated when compared to the original results of Bartelmann et al. (1998),
but only whenσ8 ∼ 0.9. If a low normalization is used instead, as seems to be indicated by the latest WMAP
results, then there still is an order of magnitude discrepancy.

� For a final investigation, we developed and tested a numerical algorithm for the computation of lensing
properties in the fremwork of the TeVeS gravity theory. This theory received much attention recently since
it represents the fully covariant generalization of the older MOND paradigm. As such, it turns out that, even
in the non-relativistic limit, the gravity field is coupled in a highly non-linear way to the matter fields. As is
showed in this work this implies that, opposite to the general relativity case, the lensing properties depend on
the extension of the deflector along the line of sight. Therefore it is not possible to develop a formalism that
deals only with projected quantities, and in particular it is not possible to relate the projected matter density
with derivatives of the projected Newtonian potential. Moreover, it was proven that the free function of the
theory has often little influence on the deflection angle, so that large classes of free functions can be identified
that virtually produce the same lensing properties for a given lensing configuration. Finally, we applied the
numerical algorithm to the solution of non-spherically symmetric systems, and in particular systems with
multiple components, including a naive model for the cluster merger1E0657 − 558. It was found that the
highly non-linear coupling between the gravity fields and matter can produce the TeVeS convergence to
lose track of the real matter distribution, buth such an effect is very mild, and cannot account alone for the
observed data on the bullet cluster. The work is published in Feix et al. (2007).
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The statistics of gravitational arcs is in principle a powerful tool to probe the underlying cosmology, because
such events are extremely rare and their probability depends in a highly non-linear fashion on the structure forma-
tion process and the geometry of the Universe. However, it was shown in this work that the arc statistics problem
still hold when sources are suitably distributed in redshift and the effect of cluster mergers is properly taken into
account. In particular, the discrepancy becomes worst when the low normalization suggested by the WMAP-3 data
release is used. Here we gave a contribution into understanding which pieces of the cluster physics have relevance
and how to the arc statistics, and also explored some alternative possibilities, like more general models for dark
energy. The issues that we inspected can help to figure out what is missing from the present picture and also to
explain peculiar observations, like the high incidence of gravitational arcs in high redshift clusters, recently pointed
out by Gladders et al. (2003); Zaritsky & Gonzalez (2003).

Much work remains to be done in this direction. For instance, more thorough analyses of the effect of the
source redshift distribution, as well as irregularities in the background galaxies would be welcome. Study of the
strong lensing properties of model galaxy clusters extracted by large cosmological simulations with high space and
time resolution and their relation to the structural and dynamical parameters of the clusters themselves would also
be extremely useful. This would be particularly true if gas physics is included in the simulations, so as to account
for possible selection effects. Additional work in simulating real observational conditions is also required.

In addition to this, the observational situation is going to improve in the near future thanks to dedicated surveys
like the DUNE project (Ŕefrégier et al., 2006) and to the application therein of automatic algorithms for the
detection of long and thin features. Up to hundreds of new systems of gravitational arcs are expected to become
availble in the forthcoming years, greatly ameliorating the test ground for theoretical models.
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Salvador-Soĺe, E., Serra, S., Doḿınguez-Tenreiro, R., & Manrique, A. 2007b, ArXiv Astrophysics e-prints,
0704.2228

Sanders, R. H. 2007, MNRAS, 380, 331

Sanders, R. H. & McGaugh, S. S. 2002, ARA&A, 40, 263
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