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Flüsse, Hierarchien und metastabile Vakua in supersymmetrischen Feld-

theorien — Zusammenfassung: Diese Arbeit behandelt Themen sowohl im
Bereich der effektiven Niederenergietheorien aus Typ IIB-Superstring-Flusskom-
paktifizierungen als auch der vierdimensionalen, global supersymmetrischen Eich-
theorien. Wir diskutieren Flusskompaktifizierungen mit sogenannten “warped
throat”-Regionen, die zu großen Skalenhierarchien in der vierdimensionalen effek-
tiven Feldtheorie führen, und stellen den Zusammenhang zwischen einem speziellen
solchen “warped throat” und einem fünfdimensionalen Randall-Sundrum-Modell
vor. Wir zeigen, wie sich gewisse stringtheoretische Eigenschaften der Kompak-
tifizierung ins fünfdimensionale Bild übersetzen, etwa die Stabilisierung von Mo-
duli durch Flüsse oder die Existenz eines unstabilisierten Kähler-Modulus. Wir
erläutern die KKLT-Konstruktion für metastabile de Sitter-Vakua sowie einige
mögliche Modifikationen durch spontane Supersymmetriebrechung mit F -Termen.
In KKLT-artigen Modellen mit dem supersymmetriebrechenden Sektor innerhalb
eines “warped throat” untersuchen wir die Vermittlung der Supersymmetriebre-
chung an den sichtbaren Sektor. Wir erklären den Mechanismus der kombinierten
Vermittlung durch Moduli und Weyl-Anomalie und zeigen, dass Beiträge von der-
selben Größenordnung durch höherdimensionale Operatoren entstehen können.
Wir behandeln schließlich das ISS-Modell der metastabilen dynamischen Super-
symmetriebrechung in vier Dimensionen und präsentieren eine renormierbare Er-
weiterung, die eine große Skalenhierarchie in natürlicher Weise erzeugt. Wir zeigen
auch, wie das ISS-Modell aus einem Typ IIB-Superstringmodell gewonnen werden
kann.

Fluxes, Hierarchies, and Metastable Vacua in Supersymmetric Field

Theories — Abstract: This thesis concerns topics both in low-energy effec-
tive field theories from type IIB superstring flux compactifications and in four-
dimensional, rigidly supersymmetric gauge theories. We introduce flux compact-
ifications with so-called “warped throat” regions, which lead to large hierarchies
of scales in the effective four-dimensional theory. The correspondence between
a particular such throat and a five-dimensional Randall-Sundrum-like model is
established. We shown how certain string-theoretic features of the compactifi-
cation, such as moduli stabilization by fluxes or the presence of an unstabilized
Kähler modulus, are incorporated in the five-dimensional picture. The KKLT
construction for metastable de Sitter vacua is reviewed, as well as some possi-
ble modifications involving spontaneous F -term supersymmetry breaking. For
KKLT-like models with their hidden sector localized inside a throat, the media-
tion of supersymmetry breaking to the visible sector is investigated. We review
the mechanism of mixed modulus-anomaly mediation, and show that there can be
additional equally important gravity-mediated contributions. We finally turn to
the ISS model of metastable dynamical supersymmetry breaking in four dimen-
sions, and present a renormalizable extension which generates a large hierarchy
naturally. We also recapitulate how the ISS model may be obtained from a type
IIB superstring model.
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Chapter 1

Motivation and overview

Quantum field theory is a universal framework in which the fundamental
constituents of Nature and their interactions can be described. It comprises
beautiful concepts and elegant mechanisms; and there is a particular quan-
tum field theoretic model, the Standard Model of Particle Physics, whose
predictions agree with almost all observational data to greatest accuracy.

But despite its successes, the Standard Model still suffers from serious
shortcomings. On the observational side, for instance, it fails to incorporate
dark matter, neutrino masses (at least in its minimal, renormalizable ver-
sion), and suitable mechanisms for cosmic inflation or baryogenesis. On the
theoretical side, it is plagued by the abundance of parameters, and by the
need to fine-tune some of them to unnaturally small values in order to fit
the data.

In the light of these problems, the view has emerged that the Standard
Model is an effective theory, approximately valid at relatively low energies
but to be superseded by a currently unknown, more complete theory above
a certain energy scale. Whatever comes beyond the Standard Model might
well be an effective intermediate-scale description itself, in the form of a
different weakly coupled quantum field theory. However, in order to describe
processes at energies near the Planck scale, the problem of quantum gravity
must be addressed. For this purpose not only the Standard Model, but in
fact the entire concept of perturbative QFT is inadequate.

The Standard Model does not incorporate gravity. Quantum gravity ef-
fects are negligibly weak in particle physics processes at energies at which
the Standard Model has been probed, and indeed most likely at all ener-
gies that will ever be within the reach of particle physics experiments. Yet
they do become important for processes at energy scales comparable to the
Planck scale. Any theory that aims to be a complete description of Nature,
valid up to arbitrarily high energies, must of course include gravity; but
gravity as a perturbatively non-renormalizable theory cannot be treated in
the conventional framework of perturbative QFT. It is a notoriously difficult
problem to construct a realistic quantum theory of gravity, and currently
none of the candidate theories is universally accepted.
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The probably most promising candidate for such a theory of quantum
gravity is superstring theory. One of the main advantages of superstring
theory is that a single superstring model can in principle comprise both
gravity and the Standard Model fields, thereby providing a truly unified
description of all interactions (although no fully realistic model has been
constructed as of now). Many classes of superstring models also naturally
contain other features that have been proposed independently, in a purely
field-theoretical context, in order to cure the above-mentioned shortcomings
of the Standard Model. For example, concepts such as supersymmetry,
extra spacetime dimensions, and grand-unified gauge groups are commonly
encountered.

This thesis is concerned with the low-energy effective field theories that
arise from certain superstring models, as well as with certain QFT mod-
els that are at least motivated by, and to a certain extent even derivable
from, superstring theory. More precisely, we will discuss recent results in
warped type IIB superstring flux compactifications1 and in four-dimensional
supersymmetric gauge theory2.

One of the most appealing insights gained from string theory is that
there is a deep relation between these two: The dynamics of certain type
IIB compactifications can be equivalently described by four-dimensional su-
persymmetric gauge theories [6–8]. This “AdS/CFT correspondence” has
been rigidly established only in special limiting cases, but is widely expected
to hold in far more general circumstances. While the AdS/CFT duality is
not the main topic of this work, it has been crucial to derive many of the
results we will be making use of. It is also often illuminating to re-examine
results found on one side of the duality from the other perspective, as we
will see.

A central issue in all the models we will encounter is the appearance of
large hierarchies of scales. This fits well with one of the key motivations for
extending the Standard Model, namely the electroweak hierarchy problem.
The problem is very simple to state: Assume that the Standard Model indeed
arises as the low-energy effective theory of a fundamental theory which takes
effect around the Planck scale, such as superstring theory. The most natural
value for the only dimensionful parameter of the Standard Model, which is
the Higgs mass, would then be the of the order of the Planck mass. However,
its Standard Model value is about 16 orders of magnitude lower than this
naive estimate. Numerically even more severe is another problem of the
same kind: If we combine the Standard Model with classical gravity as
a low-energy description of our universe, there is a second dimensionful
parameter, the cosmological constant. The analogous naive estimate then

1Recent reviews of this topic include [1,2].
2For reviews see e.g. [3–5].
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turns out to be wrong by as much as 120 orders of magnitude. Whatever the
fundamental theory is, it should ideally be able to provide an explanation
for the smallness of these parameters; or, being less ambitious, it should
least allow for tuning them to small values.

Even this latter requirement turns out to be quite nontrivial in super-
string theory. Superstring theory has no continuous parameters to tune
at all, and therefore obtaining a hierarchy of many orders of magnitude
from a string model seems hardly possible at first sight. But a closer look
reveals that the situation is actually very different. It is well-known that su-
perstrings can be consistently quantized in ten spacetime dimensions only.
To obtain a four-dimensional low-energy effective field theory, six dimen-
sions should be compactified. The properties of the compactification geom-
etry, along with possible nonvanishing vacuum expectation values for the
fields and non-perturbative objects placed in the classical superstring back-
ground, are characterized by a set of discrete numbers. These eventually
determine the four-dimensional phenomenology. Recent estimates (see, for
instance, [9–11]) have shown that the number of such discrete parameters
and their range of values are so vast that the resulting low-energy parameters
can probably be tuned to arbitrary precision, for all practical purposes.

In fact, in type IIB superstring models the appearance of large hierarchies
is even very common and natural.3 A common feature of many type IIB
compactifications are “warped throat” regions, which are regions that are
strongly warped along a particular direction in the internal manifold. This
means that there is a scale factor or “warp factor” multiplying the four-
dimensional non-compact metric, with the value of the warp factor strongly
depending on the position in the six-dimensional compact space. Different
sectors of the low-energy effective field theory in four dimensions will have
their dimensionful parameters exponentially redshifted, according to where
the objects they arise from are localized in the internal space. This naturally
provides a large hierarchy of scales.

In type IIB superstring theory, warped solutions can be realized as fol-
lows [12]. The low-energy limit of type IIB superstring theory is type IIB
supergravity. Superstring backgrounds are usually constructed as classi-
cal supergravity solutions, possibly containing additional nonperturbative
localized objects. In type IIB supergravity there are a number of differen-
tial form gauge fields, whose field strengths may be non-vanishing in such a
background. Their vacuum expectation values or “fluxes” can be regarded as
originating from string theory, since string theory includes non-perturbative
localized objects, such as D-branes, which couple to and source the super-
gravity gauge fields. Including such objects in the compactification back-

3It has been conjectured that all superstring theories should be related to each other
by string dualities. It is therefore not surprising that large hierarchies can be generated
in the other string theories too (e.g. from gaugino condensates in the heterotic theory).
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ground thus leads to solutions with flux. On the other hand, from the point
of view of pure supergravity, one can just as well construct solutions to the
field equations including fluxes without relying on any source objects. In
that picture, what prevents the fluxes from decaying are topological obstruc-
tions. This is analogous to the Dirac monopole solution in electrodynamics,
whose field strength can either be regarded as being sourced by a solitonic
object, or as a topologically stable feature of the solution if the monopole
is replaced by a puncture in spacetime. In the more general case of string-
theoretic fluxes, if the submanifold of spacetime that is threaded by the flux
represents a topologically nontrivial cycle, then the flux solution is topolog-
ically stable. Adding flux to some given spacetime background will deform
the geometry due to backreaction, which will in general result in a warped
spacetime.

Purely field-theoretic models with warped extra dimensions have been
investigated in much detail without reference to any specific string models.
Many essential features are, in fact, already captured by the simplest possi-
ble setup, the Randall-Sundrum-I model [13]. This model comprises a single
extra dimension compactified on an interval (more precisely an S1/Z2 orb-
ifold) such that the metric is that of five-dimensional Anti-de Sitter space
AdS5. The interval boundaries are four-dimensional hypersurfaces of space-
time on which additional fields can be localized. There exists by now a
plethora of models, ranging from simple toy models to sophisticated and
potentially realistic extensions of the Standard Model, which are based on
this compactification geometry.

A large part of this thesis is devoted to the low-energy effective field
theories that are obtained from warped throats in type IIB superstring the-
ory. The connection with the purely field-theoretic approach of Randall-
Sundrum and others is an especially interesting aspect (see e.g. [14–16]): Is
it possible to embed five-dimensional field-theoretic warped models in type
IIB compactifications? Or, asking from the string-theoretic perspective, are
there full string constructions that in the low-energy limit reduce to effective
five-dimensional models, such that the appearance of a large hierarchy can
already be described on the five-dimensional level?

We will in fact find that this intermediate step in dimensional reduction,
compactifying from ten to five dimensions before ultimately arriving at four,
is sometimes not only possible but even extremely useful. This is because the
five-dimensional model may already capture effects that arise from spatial
separation of different field-theoretic sectors in the warped internal space.
On the other hand, a five-dimensional model tends to be technically much
easier to deal with than a full ten-dimensional compactification.

A possible application of warped throat superstring backgrounds is anal-
ogous to the idea of the original Randall-Sundrum proposal: If the standard
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model fields, or even only the Higgs field, were localized in a region of sizeable
redshift, then the Higgs mass would be naturally small and the electroweak
hierarchy would emerge quite naturally. A rather different application con-
cerns the tuning of the four-dimensional cosmological constant, within a
setting which has become known as the KKLT construction [17].

In this scenario, the goal is to construct a background with all moduli
fixed and a realistic value of the cosmological constant. Moduli are massless
scalars which typically abound in the effective four-dimensional field theory
of any superstring compactification. Their expectation values dictate the
low-energy coupling parameters. In a realistic model, they should acquire
a mass and effectively be frozen as far as the low-energy dynamics is con-
cerned. In the KKLT construction, this is achieved by a combination of
fluxes and non-perturbative effects. The resulting four-dimensional vacuum
is Anti-de Sitter and supersymmetric. It has been argued that the cosmolog-
ical constant can be tuned to a very small (negative) value, given the large
choice of discrete parameters as explained above. Such tuning is required
to retain computational control. However, in a fully realistic model, super-
symmetry should be broken, and the cosmological constant should be close
to zero but positive. Adding certain non-perturbative objects can achieve
both of these goals, but their contribution to the vacuum energy density is
generically string-scale, such that it seems impossible to cancel the hierar-
chically small negative cosmological constant and end up with a Minkowski
vacuum (or, even more realistically, a de Sitter vacuum with a tiny cos-
mological constant). If, however, these objects are localized in a warped
throat, their contribution to the four-dimensional vacuum energy density
will be redshifted, and a realistic vacuum can be constructed. A vacuum
obained in this manner will be only metastable but can be parametrically
long-lived, with a lifetime far exceeding the age of the universe.

Imagining a particle physics model based on the KKLT construction,
with the supersymmetry breaking sector inside a warped throat, it is now
interesting to enquire how supersymmetry breaking is communicated to the
Standard Model fields [18–21]. The latter would in this scenario be localized
outside of the throat. We will in particular be interested in mediation effects
from the warped throat background, since it turns out that the dominant
mechanism of supersymmetry breaking mediation generally depends on the
properties of the underlying compactification manifold, contrary to what
one might expect in the first place.

Warped extra dimensions are not the only way to naturally obtain a large
hierarchy of scales. Another class of models in particle physics, fundamen-
tally or effectively four-dimensional, relies on dimensional transmutation.
These models contain asymptotically free gauge groups. An asymptotically
free gauge theory with moderately small gauge coupling at some fundamen-
tal energy scale will become strongly coupled at an exponentially smaller
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scale and may undergo a phase transition. This phenomenon is well-known
from QCD, which becomes nonperturbative at a scale ΛQCD ≈ 200 MeV,
leading to chiral symmetry breaking and confinement.

In the light of the AdS/CFT correspondence mentioned earlier, it has
become clear that these two mechanisms of generating large hierarchies can
in fact be dual to each other. A weak form of the Maldacena conjecture [6],
which underlies the AdS/CFT correspondence, is that there is an exact
match between the generating functionals of two very different-looking the-
ories: Classical type IIB supergravity compactified on AdS5 × S5 on one
side, and strongly coupled 4d N = 4 superconformal Yang-Mills theory
with gauge group SU(N) at large N on the other. There is ample evidence
that this duality continues to hold if “classical type IIB supergravity” is
replaced by “quantum type IIB superstring theory” on the AdS side, and
the requirements of large N and strong coupling are dropped on the CFT
side. A particular radial direction in AdS space is distinguished in the string
constructions by which the correspondence is usually motivated. A change
along this direction corresponds to a change of the renormalization scale of
the CFT (which, of course, does not affect either side of the duality by ho-
mogeneity of AdS and by conformality of the gauge theory). But it is widely
believed that, if the compactification background is not exactly AdS5 ×X5

but a deformation thereof (with X5 some compact internal manifold, not
necessarily S5), there should exist a dual gauge theory in four dimensions
which is only approximately conformal. If, in particular, the almost-AdS
space terminates at some value of the radial direction, the dual gauge theory
is expected to confine. This view is supported by some explicit examples for
which both the supergravity solution and its gauge theory dual are known,
notably the Klebanov-Strassler solution [22] whose supergravity formulation
we will review in detail.

It has even been suggested that all Randall-Sundrum-I based models
of particle physics, with the electroweak hierarchy obtained from warping,
could be dual to strongly coupled technicolor-like models with the elec-
troweak hierarchy generated by dimensional transmutation. However, it
seems fair to say that such statements are quantitatively poorly founded,
a situation which is unlikely to improve because strong coupling usually
renders any putative dual gauge theory uncalculable.

Supersymmetric gauge theories in four dimensions which generate large
hierarchies are not only interesting because of their potential relation to
warped type IIB compactifications. In fact, they can be very useful as part
of purely field-theoretical extensions of the standard model: Low-energy
supersymmetry which is broken at a naturally small scale provides a solution
to the electroweak hierarchy problem without any reference to string theory.
Supersymmetric gauge theories may provide just this small scale, if they
undergo non-perturbative supersymmetry breaking at strong coupling [23].
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The last part of this thesis is devoted to the study of a model of this kind,
the so-called ISS model of metastable dynamical supersymmetry breaking
[24], and an extension of it by which the hierarchy of scales in the ISS
model becomes fully natural [25]. As it happens, the ISS model and related
models are again elegantly realized as four-dimensional effective field theories
obtained from D-brane models in type IIB superstring theory [26–37], and
as such can be useful ingredients in type IIB model-building when large
hierarchies are essential.

Let us now give an overview of the present work. Parts of this thesis are
based on research papers by the present author, namely [16] (with Arthur
Hebecker and Enrico Trincherini), [21] (with Arthur Hebecker and Michele
Trapletti), and [25].

In Chapter 2 we review some general aspects of type IIB flux compactifi-
cations which are important for our purposes. We will then recapitulate the
construction and geometric properties of several examples of warped throat
backgrounds, and the application of flux compactifications to moduli stabi-
lization [12]. We will also revisit the KKLT construction [17], showing how
four-dimensional metastable de Sitter vacua can be obtained. This chapter
is mainly intended as a review to make the present work more self-contained.

In Chapter 3, following our paper [16], we will study the analogy between
ten-dimensional and five-dimensional warped models in detail, focussing on
a particular warped throat background, the Klebanov-Strassler throat [22].
We will explain how certain characteristic features of the underlying string
construction may be understood in terms of a five-dimensional model. These
include in particular the stabilization of the complex structure moduli and
the dynamics of a universal light Kähler modulus.

In Chapter 4 we will review possible mechanisms of F -term supersym-
metry breaking which, when incorporated in flux-stabilized type IIB back-
grounds, lead to four-dimensional de Sitter backgrounds, thus generalizing
the KKLT construction (see e.g. [21,38–44]). We will explain why it is nat-
ural in this context to localize the supersymmetry breaking sector of the
theory in a warped throat. Subsequently we will investigate supersymme-
try breaking mediation within the effective four-dimensional field theory of
warped throat compactifications, a subject pioneered in [18]. Many of the
results of this chapter have been published in our paper [21].

Chapter 5 concerns a model with a large hierarchy of scales which can be
understood outside of the context of type IIB superstring theory — in fact,
it does not rely on string theory at all, although it can be constructed in
D-brane model building. In that chapter, we will show how large hierarchies
can be generated naturally within supersymmetric gauge theory, using as
a simple renormalizable example an extension of the ISS model [24] which
was introduced by the present author in [25]. This model has interesting
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applications both in string model building and in possible modifications of
the Standard Model to include rigid supersymmetry, to name but a few. To
make contact with type IIB superstring theory, we finally review a way to
obtain a version of the ISS model from a D-brane construction in type IIB
theory, following [26,27].

We conclude in Chapter 6 with a summary of our results.

This thesis also includes four appendices: Appendix A contains remarks
on notation and conventions, Appendix B gives more details on the geome-
try of the conifold which we will make extensive use of throughout the main
text, and Appendix C recapitulates some properties and some useful nota-
tion related to five-dimensional Anti-de Sitter space. In Appendix D, some
important results concerning the phases of N = 1 supersymmetric QCD are
summarized.
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Chapter 2

Type IIB flux compactifications

In this chapter we discuss some aspects of warped flux compactifications of
the type IIB superstring which will be relevant for the later discussion. Most
of the material presented has been well-known for several years. It will be
reviewed here to establish our notation and terminology, and to remind the
reader of some important facts and concepts. For more exhaustive reviews
see e.g. [1, 2].

There are several motivations to include fluxes in a compactification
background (apart from the fact that there is no reason not to include them
when writing down a generic model). Fluxes can serve to stabilize the
complex structure moduli and the dilaton (see e.g. [12,45–48]), which would
otherwise appear as massless scalar fields in the effective 4d field theory.
They can also generate large hierarchies of scales [12], which may be used
to eventually solve the electroweak hierarchy problem (as e.g. in the string
models of [49]), or to fine-tune the 4d cosmological constant to a small
positive value [17]. In this chapter, we will briefly review how all of this can
be achieved.

2.1 General properties

In this section we closely follow [12]. The low-energy limit of type IIB
superstring theory is type IIB supergravity, whose action is

S =
M8

10

2

∫

d10x
√−g

(

R− |∂τ |2
2(Im τ)2

− |G3|2
12 Im τ

− F̃ 2
5

4 · 5!

)

+
M8

10

8i

∫

C4 ∧G3 ∧G3

Im τ
+ fermion terms.

(2.1)

Here M10 is the 10d reduced Planck mass, and g is the 10d Einstein frame
metric with Ricci scalar R. τ is the axio-dilaton, formed from the Ramond-
Ramond (RR) axion C0 and the dilaton φ as τ = C0 + ie−φ. C4 is the
RR 4-form potential, whose field strength we will denote by F5. The fields
G3 and F̃5 are further constructed from the RR and Neveu-Schwarz (NS)
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2-form potentials C2 and B2 and their respective field strengths F3 and H3

as follows:

G3 = F3 − τH3,

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3.

(2.2)

F̃5 is required to be self-dual, a condition which cannot be incorporated in
the action and so must be imposed on the equations of motion.

It is possible to include additional localized sources of flux and energy
density, such as D-branes or orientifold planes, in the background. Then
the action (2.1) will be supplemented by a piece Sloc from these sources,
containing the appropriate tensions and couplings to the p-form fields.

For a general compactification background which preserves 4d Poincaré
invariance, the metric can be parametrized as

ds2 = e2A(y)ηµν dx
µ dxν + e−2A(y)g̃mn dy

m dyn. (2.3)

Here ηµν is the 4d Minkowski metric, and the ym are coordinates on a com-
pact 6d internal space M. The function A(y) is called the warp factor. 4d
Poincaré invariance also places some constraints on the background values
of the other fields: The axio-dilaton can only depend on the internal coor-
dinates, τ = τ(y). G3 can only have legs in the compact directions, and the
self-dual F̃5 must take the form

F̃5 = (1 + ∗)(dα(y) ∧ dx0 ∧ dx2 ∧ dx2 ∧ dx3) (2.4)

for scalar function α(y) of the internal coordinates.

In a pure supergravity compactification, taking the trace over the Ein-
stein equations then gives that all the fluxes must vanish and the warp factor
must be constant [50, 51]. However, for backgrounds that contain localized
sources with negative energy density such as orientifold planes or antibranes,
it is possible to have both fluxes and non-trivial warping [12]. In the follow-
ing we will assume that there are indeed such ojects, chosen such that the
stringy consistency conditions are satisfied (e.g. tadpoles are cancelled), but
we will not investigate their effects in detail. Note however that antibranes
break supersymmetry completely, and that orientifold planes break the 4d
N = 2 SUSY, which is preserved by a pure Calabi-Yau compactification,
to N = 1. Throughout this work we will therefore tacitly assume that we
are working with a Calabi-Yau orientifold (or a more general F-theory back-
ground) which is N = 1 supersymmetric in 4d language. In the presence
of additional antibranes, or for particular flux choices, SUSY may even be
completely broken.

Poincaré invariant backgrounds may also contain other localized objects
such as D3- and D7-branes which fill the noncompact dimensions, or Eu-
clidean D3-brane instantons wrapping 4-cycles in the internal manifold. If
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all the localized objects in the background satisfy a certain BPS-like con-
dition on their tensions [12] (which is actually the case for all classes of
localized objects that we have mentioned and will be considering), then G3

is imaginary self-dual with respect to the 6d internal metric,

∗6G3 = iG3, (2.5)

and the F̃5 flux is related to the warp factor as α(y) = e4A(y). Furthermore,
to preserve 4d N = 1 supersymmetry, G3 must be a (2, 1)-form on the
internal manifold [52,53].

In the 4d effective theory, G3 flux on a Calabi-Yau compactification
manifold M gives rise to a superpotential of Gukov-Vafa-Witten type [47],

W =

∫

M

G3 ∧ Ω, (2.6)

where Ω is the holomorphic (3, 0)-form on M. Since Ω depends on the com-
plex structure moduli zα, and G3 depends on the dilaton, these fields may be
stabilized by the fluxes. Note that there is no Kähler moduli dependence in
(2.6), and therefore, to stabilize also the Kähler moduli, other mechanisms
are needed.

Note that, starting from a Calabi-Yau (orientifold) as the internal mani-
fold and then placing fluxes on its cycles, the resulting internal geometry will
be affected by the flux backreaction and the resulting space will be merely
conformally Calabi-Yau (as is evident from the ansatz (2.3)). However, one
still retains much computational control, as opposed to e.g. the type IIA
case where fluxes backreact such that the internal space, in general, ends up
being not even a Kähler manifold any more.

2.2 The AdS5 × S5 throat

In type IIB string compactifications to four dimensions, a ‘warped throat’
refers to a region of the internal space where the warp factor is varying
strongly along a particular direction. The simplest example is the geometry
near a stack of D3-branes. Placing N coincident D3-branes in 10d flat
spacetime will deform the metric to give

ds2 = h(r)−1/2ηµν dx
µ dxν + h(r)1/2(dr2 + r2 ds2S5) (2.7)

where

h(r) = 1 +
R4

r4
, R4 = 4πgsNα

′2 π3

Vol (S5)
= 4πgsNα

′2. (2.8)
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Figure 2.1: The AdS5 × S5 throat

This space is asymptotically flat as r → ∞, since then h(r) → 1. For
small r, the second term in h(r) dominates, and the metric becomes that of
AdS5 × S5,

ds2 =
r2

R2
ηµν dx

µ dxν +
R2

r2
dr2 +R2 ds2S5, (2.9)

with the branes sourcing N units of F̃5 flux through the internal S5. The
AdS/CFT correspondence states that, for large N , classical supergravity
on this background is dual to strongly coupled 4d N = 4 SU(N) super-
Yang-Mills theory [6–8]. The conformality of the 4d theory is reflected by
translational invariance along the r direction of the 5d AdS space.

It has been pointed out [14] that this setup provides a stringy realization
of the Randall-Sundrum-II model [54]: Placing N D3-branes at a generic
point on a compact Calabi-Yau 3-fold will deform the geometry in its vicin-
ity to an AdS5 throat (at least if the internal manifold is stabilized at large
volume, such that the curvature is small and the space is initially approxi-
mately flat in a suitable neighbourhood). The throat is terminated at large
r by the remainder of the compact manifold, but extends all the way to
infinity as r → 0, as sketched in Figure 2.1. In terms of the AdS/CFT
correspondence, the radial coordinate r of AdS5 corresponds to a renormal-
ization scale in 4d. The dual 4d field theory is exactly conformal in the
infrared, for small r, but coupled to gravity in the UV where the throat
ends in the compact manifold.

Disregarding the internal S5, we can describe type IIB supergravity on
this background as a 5d field theory on AdS5 half-space, with the compact
space serving as the Randall-Sundrum “UV brane”. There could be addi-
tional light fields localized on the compact space, coming from additional
D-branes wrapping its cycles; in fact one could imagine an entire “Standard
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model” visible sector localized on the UV brane.

2.3 The Klebanov-Strassler throat

The AdS5 × S5 construction can be generalized as follows. Consider a IIB
compactification on a Calabi-Yau 3-fold M which has a conical singularity,
i.e. which near some point is given by a real cone CX5

over a compact Einstein
space X5 (in the above example X5 was S5 and the ‘cone’ had deficit angle
zero, so was just 6d flat space). Placing N D3-branes at the singular point
will result in a similar deformation of the metric as above,

ds2 = h(r)−1/2ηµν dx
µ dxν + h(r)1/2(dr2 + r2 ds2X5

), (2.10)

where

h(r) = 1 +
R4

r4
, R4 = 4πgsNα

′2 π3

Vol (X5)
. (2.11)

Spacetime at small r becomes an AdS5 × X5 throat, whereas at large r it
is given by R

3,1 × CX5
(eventually embedded in R

3,1 ×M). In the throat,
supergravity should be dual to some conformal field theory in 4d.

The warped throat we will mostly be concerned with is the Klebanov-
Strassler (KS) solution or warped deformed conifold [22]. Its construction is
motivated by considering the case of X5 = T 1,1 = (SU(2) × SU(2)) /U(1).
The cone CT 1,1 over T 1,1 is a non-compact singular Ricci-flat manifold which
is called the conifold.1 The metric near N D3-branes at a conifold singularity
reads

ds2 = h(r)−1/2ηµν dx
µ dxν + h(r)1/2(dr2 + r2 ds2T 1,1), (2.12)

with

h(r) = 1 +
R4

r4
, R4 =

27π

4
gsNα

′2, (2.13)

and the solution has N units of F̃5 flux through the internal T 1,1. It is
sketched in Figure 2.2. The conformal field theory dual to this warped
conifold background, or Klebanov-Witten solution, was found in [55].

T 1,1 is topologically S3 × S2, and at the conifold singularity both the
3-cycle and the 2-cycle shrink to zero size. The singularity may be smoothed
by either resolution or deformation, which leaves a finite-size S2 or S3 re-
spectively.

We are interested in the deformed conifold, in which a 3-cycle at the tip
is retained. The deformed conifold is a nonsingular, noncompact manifold

1We present some technical details concerning the conifold and its non-singular versions
in Appendix B. In the main text we will merely state the relevant facts.
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Figure 2.2: The warped conifold throat (note that the D3-branes are really
placed at the singularity).

and also admits a Calabi-Yau metric. When placing M units of F3 flux
on the 3-cycle, the flux backreaction on the geometry gives the warped
deformed conifold. It is possible to regard also this F3 flux as sourced by
D-branes, albeit in a more subtle way: If M D5-branes are wrapped around
the collapsing 2-cycle of the singular conifold, they will be constrained to
reside at the singularity and act effectively as “fractional” D3-branes. Their
back-reaction on the geometry will deform the singularity and give rise to a
warped metric, and they will source M units of F3 flux threaded through the
transversal S3. This picture is especially useful to construct the AdS/CFT-
dual gauge theory, which was achieved in [22,56,57].

For our purposes it is convenient to merely regard the warped deformed
conifold with F3 flux as a supergravity solution, dispensing momentarily
with the D-brane picture. The singularity at the conifold tip is deformed,
so that the throat now ends at finite r. The metric for the throat excluding
the tip was found by Klebanov and Tseytlin (KT) [57]:

ds2 = h̃(r)−1/2ηµν dx
µ dxν + h̃(r)1/2(dr2 + r2ds2T 1,1), (2.14)

where

h̃(r) = 1+
R4

eff(r)

r4
, R4

eff(r) =
27

4
πgsNeff(r)α′2, Neff(r) =

3

2π
gsM

2 log
r

rs
.

(2.15)
Here rs is a parameter associated with the deformation size of the singularity.

The KT metric becomes singular for r → rs; in fact, it is no longer valid
in the domain r . rs, and the complete throat is perfectly smooth also at its
tip. This can be inferred from studying its AdS/CFT dual [22]. However,
the precise shape of the throat in the region near the tip, which we will call
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Figure 2.3: The Klebanov-Strassler throat or warped deformed conifold

the KS region, is not relevant for the following discussion. It will instead be
sufficient to use the simpler KT metric.

As one goes along the throat, one finds Neff(r) units of F̃5 flux through
the internal T 1,1 at the radial coordinate r:

(4π2α′)2Neff(r) =

∫

T 1,1 at r

F̃5 =





∫

S3 at r

F3









∫

S2 at r

B2



 . (2.16)

The F3 flux on the 3-cycle is quantized, but the B2 potential integrated
over the 2-cycle will vary continuously with r. The resulting space is only
approximately AdS5 × T 1,1, since the radius of the internal space as well as
the ‘AdS curvature radius’ depend weakly (logarithmically to be precise) on
the radial coordinate.

With the general ansatz (2.14), this logarithmic dependence (2.15) of
Neff (and hence Reff) on r can be derived as follows: For a finite segment of
the throat, between r1 and r2 say, we have

(4π2α′)2 (Neff(r2) −Neff(r1)) =

∫

T 1,1 at r2

F̃5 −
∫

T 1,1 at r1

F̃5

=

∫

T 1,1×[r1;r2]

dF̃5 =

∫

T 1,1×[r1;r2]

H3 ∧ F3

(2.17)

Since G3 is imaginary self-dual, see (2.5), we have H3 = gs ∗6 F3. Here ∗6

denotes the Hodge star with respect to the 6d metric

g6mndy
mdyn = h̃(r)1/2(dr2 + r2 ds2T 1,1). (2.18)
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Note that h̃(r) drops out of the expression for H3. Since F3 has no compo-
nents in the r direction, we can thus write

H3 ∧ F3 = gs
√
g6 FmnpF

mnp d6y =
gs

r

√
ḡ Fm̄n̄p̄F

m̄n̄p̄ dr d5ȳ (2.19)

where barred coordinates and indices refer to the T 1,1 metric

ḡm̄n̄dȳ
m̄dȳn̄ = ds2T 1,1 . (2.20)

By inserting into (2.17) and differentiating we obtain

dNeff (r)

dr
=

gs

(4π2α′)2
1

r

∫

T 1,1

d5ȳ
√
ḡ Fm̄n̄p̄F

m̄n̄p̄. (2.21)

The quantization condition

1

4π2α′

∫

S3

F3 = M (2.22)

further implies the scaling F3 ∼ Mα′ for the non-vanishing components of
F3. We finally arrive at

Neff(r) = agsM
2 log(r/rs) (2.23)

with an integration constant rs and an O(1) numerical prefactor a. A de-
tailed analysis, using the explicit conifold metric and flux forms, shows that
in fact a = 3/(2π).

The AdS/CFT dual of supergravity on the warped conifold background
is a 4d N = 1 superconformal gauge theory. The dual gauge theory of su-
pergravity on the warped deformed conifold is no longer conformal, since
the throat metric is not exactly AdS and in particular not homogenous with
respect to the r direction (translations along which become scale transfor-
mations in the gauge theory). It is instead given by a cascading gauge the-
ory [22, 58]: a gauge theory which repeatedly undergoes a series of Seiberg
dualities [59] when changing the renormalization scale. Conformality is es-
pecially badly broken in the IR, where the throat terminates smoothly as
described by the full KS solution, and where the dual field theory exhibits
confinement and chiral symmetry breaking.

In the UV, the throat will end when h̃(r) approaches unity, i.e. when
α′2

gsNeff(r) ≃ r4. Just from the knowledge of M and Neff at a certain r, it
is impossible to tell where the throat will end in the UV. From the dual 4d
gauge theory perspective, this knowledge corresponds to information about
higher-dimension operators, which is usually hard to access for the low-
energy observer. In the conical region that follows at larger r, the integrated
F̃5 flux Neff continues to grow with r as before, but the back-reaction is
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not strong enough to affect the geometry. At some still larger r = Rc, the
approximate conifold geometry goes over smoothly to a compact Calabi-Yau
orientifold geometry. The compactification radius can thus be approximately
identified with Rc. Clearly, the total D3 charge of fluxes and localized
sources in the bulk of the compact space has to compensate the F̃5 flux
present at the end of the conifold region at r = Rc.

The overall picture is sketched in Figure 2.3: The compact space has a
conical region with non-vanishing F̃5 flux. Going to smaller r, one reaches
the throat region, where the back-reaction of the flux deforms the geometry
significantly and which is finally smoothly terminated with a KS region.

It is possible to generalize this construction by allowing for both F3 and
F5 flux, or equivalently, by considering the back-reaction of both fractional
and integer D3-branes on the conifold background. If the throat contains,
say, ND3 additional D3-branes, the F̃5 flux changes from Neff to Neff +ND3.
In this case the throat ends in the infrared at some rIR > rs with a KS region
containing the additional branes. In fact, they will generate a “throat within
the throat”, since of course the near-horizon geometry of ND3 explicit D3-
branes will again be AdS5 × S5.

For the discussion of SUSY breaking mediation in the throat later on in
Chapter 4, it is important to note that the KS solution has an SO(4) sym-
metry (see for instance [60]). The action of SO(4) is given in Appendix B.

Warped throats, and in particular the KS throat, have been argued to
be a common phenomenon in the so-called type IIB “landscape” of possible
compactification solutions [61–63]. In other words, if the compactification
data such as the internal topology and flux quanta are randomly chosen, it
appears that backgrounds containing warped throats are the generic out-
come. This serves as another good reason to study warped throat solutions,
besides the fact that, as discussed at length, they are useful ingredients in
model-building.

2.4 Moduli stabilization in the Klebanov-Strassler

throat

Following [12] we will now show how a complex structure modulus may be
stabilized by fluxes and a large hierarchy of scales may be generated. We will
consider the case of the Klebanov-Strassler background. Let us start with
a Calabi-Yau orientifold whose complex structure at some point is nearly
degenerate, in such a way that we are close to the conifold point in moduli
space, so that locally the geometry is that of the deformed conifold. In the
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notation of Appendix B, the defining equation of the deformed conifold is

4
∑

i=1

w2
i = z. (2.24)

z is the modulus which controls the size of the 3-cycle A at the tip of the
throat, and thus eventually the throat length, or the hierarchy between the
embedding manifold and the KS region. Taking z to be real and positive,
A is given by the S3 on which all wi are real. In a compact space A has a
dual cycle B, here given e.g. by imaginary w1,2,3 and real positive w4 (this
is a noncompact submanifold in the conifold case, but it will become part
of a compact one once the conifold is embedded in a full compactification).
The holomorphic 3-form is

Ω =
1

2π2

dw2 ∧ dw3 ∧ dw4

w1
. (2.25)

Placing M units of flux on A and K units of flux on B, the superpotential
(2.6) becomes

W =

∫

M

G3 ∧ Ω = (2π)2α′

(

M

∫

B

Ω −Kτ

∫

A

Ω

)

. (2.26)

With the above parametrizations for A and B, it is easily checked that
∫

A

Ω = z, (2.27)

and
∫

B

Ω ≡ G(z) =
1

2πi
z log z + holomorphic, (2.28)

where the holomorphic contributions are not calculable (because we have
not specified the embedding geometry) but also not required for a leading-
order analysis, as will become clear below. The expression for the B period
integral also follows more generally from the Special Geometry of Calabi-Yau
moduli spaces [64]. For the superpotential we obtain

W = (2π)2α′ (MG(z) −Kτz) . (2.29)

Denote the Kähler potential for the moduli by K. With the Kähler covariant
derivative Dz = ∂z + (∂zK), the condition for a supersymmetric vacuum
reads

0 = DzW = (2π)2α′ ((M∂zG(z) −Kτ + ∂zK(MG(z) −Kτz)) . (2.30)

The first two terms in this equation dominate for large K/Mgs and at small
z. It is then solved approximately by

z ≈ exp(−2πK/Mgs). (2.31)
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So z is indeed stabilized at an exponentially small value, for moderate values
of the flux quanta K and M . To also stabilize the dilaton, additional fluxes
on other cycles are needed, but this is straightforward to realize. In an
analogous manner, the case of several complex structure moduli can be
treated.

2.5 The KKLT construction

In [17] a scenario was proposed in which also the Kähler moduli of a IIB
flux compactification are stabilized, using nonperturbative means. In the
effective 4d theory, this yields an AdS supersymmetric vacuum. The nega-
tive cosmological constant is then cancelled by adding a stack of D3-branes
to the compactification background. The result is a metastable but para-
metrically long-lived SUSY-breaking vacuum in 4d, which could be either
Minkowski or dS with a small positive cosmological constant. We will now
review this model, the Kachru-Kallosh-Linde-Trivedi (KKLT) construction.

Let us start with a flux background as in the previous sections, with
all complex structure moduli and the dilaton stabilized. Assuming that the
compactification manifold has just one Kähler modulus T for simplicity (al-
though this can be easily generalized). The low-energy effective 4d field the-
ory is 4d supergravity, with all fields except T having acquired string-scale
masses from fluxes and integrated out. They induce a constant superpoten-
tial W0, which we take to be real without loss of generality. The modulus T
has a no-scale Kähler potential:

K = −3 log(T + T ). (2.32)

Assume now that T controls the size of a 4-cycle in the compactification
geometry. If this 4-cycle is wrapped by a stack of ND7 D7-branes (whose
remaining 3 + 1 dimensions fill out the 4d non-compact spacetime), the
effective theory on their world volume is known to be SU(ND7) super-Yang-
Mills theory, which at a scale Λ undergoes gaugino condensation. Λ is
generally given in terms of the one-loop beta function coefficient b0 as

Λ

µ
= e

−
2π
b0

α(µ)
, (2.33)

where α(µ) = g2(µ)/(4π), and g(µ) is the gauge coupling at scale µ. For
the present case, b0 = 3ND7, and at the string scale the coupling is dictated
by the brane dynamics. The gaugino condensate is then

Λ3 = Ae
−

2π
ND7

T
, (2.34)
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with some string-scale prefactor A. In the low-energy theory, there is thus
a T -dependent piece Λ3 in the superpotential, which serves to stabilize T :
Define a = 2π

ND7
, then the superpotential reads

W = W0 +Ae−aT . (2.35)

With the Kähler potential (2.32), the condition for a supersymmetric vac-
uum DT W = 0 gives

W0 = −
(

a(T + T )

3
+ 1

)

Ae−aT (2.36)

and accordingly for T . It is expected that, given the large choice of topologies
and fluxes available in the type-IIB landscape of vacua, W0 can be tuned such
that there is a solution at positive, moderately large T , which is required for
the consistency of the ansatz. (T of order unity or smaller would correspond
to string-scale compactification radii, where α′-corrections are uncontrolled
and the supergravity approximation would break down.) Despite the fact
that it is the sum of several string-scale contributions, W0 is then negative
and exponentially small.

The resulting 4d vacuum is an AdS minimum with unbroken supersym-
metry. It is found from (2.36), with T minimizing the scalar potential

VAdS =
a2A2 e−a(T+T )

3(T + T )
+

2aA2 e−a(T+T )

(T + T )2
+
aAW0 e

−aT + h.c.

(T + T )2
, (2.37)

which results in a vacuum energy density

〈VAdS〉 = −3
|W0 +Ae−aT |2

(T + T )3
= −a

2A2 e−a(T+T )

3(T + T )
. (2.38)

In the final step of the KKLT construction, a stack of D3-branes is added,
whose presence explicitly breaks supersymmetry, and whose positive en-
ergy density cancels the cosmological constant. The antibranes fill out the
noncompact spacetime dimensions, whereas in the internal manifold they
reside at a point. It turns out that, if the internal manifold contains a
warped throat such as the KS solution, a stack of D3-branes at the tip of
the throat represents also a metastable solution of the string theory [65].
The antibranes contribute a piece δV to the potential (2.37), which is given
by [66]

δV =
D

(T + T )2
. (2.39)

Here D is a constant which depends on the number of antibranes and on the
redshift factor at the tip of the throat. If the warping is sufficiently strong,
it is possible to choose the number of antibranes such that their energy
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Figure 2.4: Sketch of the scalar potential with the AdS vacuum (left) and
after the uplifting (right).

density cancels 〈VAdS〉 in (2.38) with arbitrary precision. Without warping,
it would have been impossible to achieve such a cancellation, because of the
tinyness of 〈VAdS〉 and the fact that a single brane would give a string-scale
contribution to the potential.

The full scalar potential for T is now

V = VAdS + δV. (2.40)

We have sketched its shape in Figure 2.4, along with the pre-uplift potential
(2.37). If D is fine-tuned as described above, the position of the uplifted
minimum is nearly unchanged (hence a solution at moderately large volume
will retain this property) , but it is no longer the global minimum. As is
apparent from the potential, there is instead a runaway towards zero vacuum
energy at T → ∞, and the de Sitter minimum is metastable. Eventually the
metastable state will decay by quantum tunneling into the true vacuum.

The lifetime of the metastable minimum may be estimated by comput-
ing the Coleman-de Luccia instanton action [67] for solutions interpolating
between the false and the true vacuum. The decay width is then propor-
tional to e−Sbounce , where Sbounce = Sinst − S0 is the difference between the
instanton action and the action of the false vacuum solution. KKLT gave
an estimate of the lifetime of their model based on the thin-wall approxima-
tion for the potential barrier, demonstrating that the false vacuum lifetime
will exceed the lifetime of the universe by many orders of magnitude for a
realistic choice of parameters.

We will revisit the KKLT construction and introduce alternative uplift-
ing mechanisms in Chapter 4, when we will discuss how SUSY breaking
might be communicated to a visible sector outside the throat.
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Chapter 3

The Klebanov-Strassler throat

as a Randall-Sundrum model

As discussed in Section 2.2, the infinite-length AdS5×S5 throat produced by
a stack of D3-branes, embedded in a full compactification, can be regarded
as a realization of the Randall-Sundrum-II model in type IIB string theory.
It is now an obvious question whether a compactification that contains a
finite-length throat, such as the Klebanov-Strassler solution, in the same
manner constitutes a stringy analogue of the Randall-Sundrum-I model [13].
In this chapter we will investigate in how far this is the case, recapitulating
and slightly extending the analysis of [16]. We will identify the scales on
which a warped throat compactification can be described by a 5d model.
Furthermore, the 5d mechanism which is responsible for stabilizing the RS
radius, corresponding to the length of the throat, will be discussed in detail.
We will also explain how to incorporate the universal Kähler modulus, which
is part of any string compactification of this type, in our 5d picture.

The picture of the KS throat as a RS-I-like model will be made use of in
Chapter 4, where it will help us to find the correct ansatz for the 4d effective
supergravity Lagrangian which is responsible for SUSY breaking mediation
in the KKLT model. It has also recently been used in the literature [68] to
demonstrate that in 5d models based on the KS throat, a successful ther-
mal electroweak phase transition between the high-temperature (black hole)
phase and the low-temperature (RS-I) phase can be achieved, as opposed
to the case of a pure Randall-Sundrum background. Various other applica-
tions are conceivable: For instance, it would be interesting to find a string
construction that comes as close as possible to the RS model with bulk-
localized fermions [69–71] which has been proposed as a natural explanation
of fermion mass hierarchies in the Standard Model. A common approach is
to consider matter fields from D7-branes embedded in a warped throat (see
e.g. [72, 73]). For the case of the KS throat, our considerations should be
very useful to find the appropriate effective 5d description.
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3.1 Preliminaries

In the warped conifold throat with geometry AdS5 × T 1,1, the curvature
radius R of AdS5, which also measures the size of T 1,1, is constant along
the radial direction. The geometry of the warped deformed conifold or KS
throat is also approximately AdS5 ×T 1,1, but as we have shown, there is an
effective curvature radius Reff(r) which varies slowly with r.

In a neighbourhood of some radial position r, we can give an effective five-
dimensional description on length scales L ≫ Reff(r) since at these scales
excitations in the internal T 1,1 may be neglected. This implies that the
curvature of our 5d background will always be relevant: There is no length
scale at which flat 5d space would provide a good approximation. But as
long as L is not too large, the variation of Reff(r) will be insignificant on
length scales L, so that the curvature is approximately constant and the 5d
geometry is approximately AdS5.

Just as in the AdS5×S5 case, the compact manifold in which the throat is
embedded serves as a RS ultraviolet brane.1 For the effective 5d description
to be valid, we also have to require that the size Rc of the compact space, the
‘brane thickness’, is smaller than L. The overall size of the internal manifold
is governed by the universal Kähler modulus which we will turn to in Section
3.3; for now, we will assume that it has been fixed at an appropriate value
by some dynamics that is not relevant in the throat region.

The analogue of the RS infrared brane is the Klebanov-Strassler region
of small r . rs, where the deviation from the Klebanov-Tseytlin metric
(2.14) becomes significant and the throat is smoothly terminated. It is
possible to place additional localized objects in this region, whose open-
string fluctuations then correspond to fields localized on the IR brane in
the 5d picture. This will become especially important in the next chapter,
where we study supersymmetry breaking. In the KKLT construction, for
instance, the D3-brane which breaks supersymmetry and uplifts the vacuum
energy density to a positive value is localized in the infrared region of the
throat. Alternatively, other, more complicated D-brane configurations in
the KS region may give different uplifting mechanisms, a subject to which
we will turn in Section 4.

The correspondence between the KS throat and the RS-I model is sketched
in Figure 3.1.

1We adhere to the common terminology in RS model building, which is potentially
confusing since we are also using similar terms from string theory: A “brane” in the
context of the RS model is the four-dimensional boundary of the compactification interval.
It is unrelated to string-theoretic D-branes (apart from the fact that these also constitute
submanifolds of spacetime, of a completely different origin).
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Figure 3.1: The KS throat as a RS-I model

3.2 Radius stabilization

We have seen in Section 2.4 how the complex structure modulus z of the KS
throat can be stabilized by fluxes. The z modulus determines the hierarchy
between the two ends of the throat, or, in the 5d picture, the distance be-
tween the two branes. This distance is commonly referred to as the “radius”
of the RS geometry (since the original RS-I model was based on an S1/Z2

orbifold with the S1 radius becoming the interval length). The radius is
a modulus itself in a pure RS-I model, but can be stabilized by additional
dynamics. Let us investigate what these dynamics are if the 5d model is to
be an effective description of the stabilized 10d throat.

While the 5d metric may locally be well approximated by AdS5, the
radial variation of Reff has to be taken into account in order to characterize
the throat as a whole. In other words, the negative 5d cosmological constant
of AdS5 has to be replaced by a vacuum energy density V (H), which must
be a function of at least one 5d scalar field H to allow for spatial variation.
This field H must have a non-trivial profile H(r) in the fifth dimension,
which encodes the radial variation of the quantity Neff (or equivalently Reff)
of the full 10d picture.

Working in a 5d Einstein frame with canonically normalized H,

L5 =
1

2
M3

5R5 −
1

2
(∂H)2 − V (H) + . . . , (3.1)

we can now enquire about the appropriate function V (H). The profile H(r)
induced by this potential will give rise to a certain scalar-field energy density.

27



Its back-reaction has to modify the AdS5 geometry in a way such as to
reproduce the metric of (2.14).

To find the potential V (H), it is convenient to first identify an alter-
native radial coordinate y which directly measures physical distances along
the throat. An infinitesimal distance, measured in units of the 5d reduced
Planck mass, should then be given by M5 dy. By contrast, a straightforward
dimensional reduction of a model with the metric (2.14) to 5d would give rise
to an r-dependent coefficient of the 5d Ricci scalar, which we call M3

5, eff(r).
A model with the Lagrangian (3.1) could only result after a Weyl rescal-
ing by an appropriate function of a radially varying scalar field. However,
we can avoid this procedure by working with the r-dependent infinitesimal
distance in units of M5, eff(r) and demanding

M5 dy = M5, eff(r)
√
grr dr = [M8

10R
5
eff(r)Vol T 1,1 ]1/3[Reff(r)/r] dr . (3.2)

Using M8
10 = 2/[(2π)7α′4] and VolT 1,1 = 16π3/27, this is further evaluated

to give

M5 dy =
1

3

(

3g2
sM

2/π2
)2/3

(log(r/rs))
2/3 d(log(r/rs)), (3.3)

which can be easily integrated. The constant of integration is conveniently
fixed by choosing y as

y =

(

3g2
sM

2/π2
)2/3

5M5
(log(r/rs))

5/3 ≡ Rs (log(r/rs))
5/3, (3.4)

or, in terms of the flux quanta,

y = Rs

(

2πNeff(r)

3gsM2

)5/3

. (3.5)

Rs corresponds, up to O(1) factors, to the size of the T 1,1 in the infrared at
r = rs. In the following, we will treat y/Rs as parametrically large.

The 5d metric can now be written as

ds25 = e2A(y)ηµνdx
µdxν + dy2 , (3.6)

where the warp factor, following from (2.14), (2.15) and (3.4) together with
the Weyl rescaling used to go to the 5d Einstein frame, reads

A(y) = (y/Rs)
3/5 + O(log(y/Rs)) + const. (3.7)

Here the constant term is irrelevant since it can be absorbed in a rescaling
of Minkowski space. We may also neglect the subleading logarithmic term,
writing the warp factor as

A(y) = k(y)y, k(y) = R−1
s (y/Rs)

−2/5 . (3.8)
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Up to the slow variation of k, this choice of coordinates and parameters is
as in (C.4) for AdS5.

We are now looking for a potential V (H) such that the back-reaction
of the varying scalar H induces a varying curvature as in (3.8). In general,
such an analysis requires the solution of the coupled equations of motion for
the metric and H. However, in the present case, a simplified computation
will be sufficient, assuming that both the warp factor and the profile of H
will be slowly varying (the validity of this assumption will of course need to
be checked on the solution afterwards). We use the equation of motion of a
scalar field with potential V (H) in a warped background (3.6),

(

∂2
y + 4A′(y)∂y

)

H − ∂V

∂H
= 0. (3.9)

If the typical length scale for the variation of H is larger than the curvature
radius 1/k, we can neglect the second-derivative term. This gives

12

5

1

Rs

(

y

Rs

)−2/5

∂yH =
∂V

∂H
. (3.10)

The profile of the warp factor is determined by an effective 5D cosmological
constant coming mainly from the potential term withH set to its local VEV.
From the trace of the Einstein equations for a slowly varying scalar field,
we obtain a relation between the scalar curvature and the potential energy
density similar to (C.3),

− 3

10
R =

V (H)

M3
5

, (3.11)

which with the metric (3.6) and (3.7) becomes

V =
54

25

(

y

Rs

)−4/5 M3
5

R2
s

. (3.12)

Using the chain rule ∂V/∂y = (∂V/∂H) ∂yH, equations (3.10) and (3.12)
give the profile of H as

H(y) = (2M5)
3/2

(

y

Rs

)3/10

. (3.13)

It can now be easily verified that the conditions

|∂2
yH| ≪ |A′(y)∂yH| and (∂yH)2 ≪ |V | , (3.14)

which justify our simplified treatment, are satisfied.

The desired functional dependence of V on H is finally obtained from
(3.13) and (3.10):

V (H) = −864

25

M7
5

R2
s

H−8/3. (3.15)
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Thus, we conclude that 5d gravity coupled to a scalar field H with the
potential (3.15) reproduces the effective 5d geometry of the throat.

To describe the entire compactification, we need to add an IR and UV
brane with specific tensions and boundary conditions for H to our 5d model.
We assume the tensions to be positive and negative for the UV and IR
brane respectively and the values to be such that both branes are static in
an AdS space with curvature determined by the boundary values of H and
V (H). To discuss the boundary conditions on H explicitly, recall that H
substitutes the parameter Reff , or equivalently Neff , of the 10d construction.
The explicit relations are, cf. (3.5),

H = (2M5)
3/2(Reff/Rs)

2 = (2M5)
3/2(Neff/Ns)

1/2 with Ns =
3

2π
gsM

2 .

(3.16)

Thus, the boundary condition H(yIR) = (2M5)
3/2 will reproduce the

IR end corresponding to a KS region with M units of F3 flux. Field-
theoretically, such a boundary condition can be realized by an appropriate
brane potential for H with an extremely steep minimum.

In the ultraviolet, we can define N as the number of F̃5 flux units on the
T 1,1 cycle at the UV end of the conical region. This number is determined
by localized sources, e.g. O3-planes and D3-branes, and regions with 3-form
flux within the remainder of the compact space.2 In the conical region, this
flux number changes according to (2.23). Assuming that the conical region
is not too large, the change there is very small compared to the change that
occurs within the throat, so that we can identify the F̃5 flux NUV at the UV
end of the throat (the IR end of the conical region) with the flux number
N defined above. Thus, the UV boundary condition of the 5d model reads
H(yUV) = (2M5)

3/2(NUV/Ns)
1/2 ≃ (2M5)

3/2(N/Ns)
1/2.

In summary, we have presented a 5d model, containing gravity plus a
minimally coupled scalar field, which upon compactification on an interval
with boundary conditions H(yIR/UV) = (2M5)

3/2(NIR/UV/Ns)
1/2 provides

the 5d description of the KS throat. The 5d bulk profile of H fixes, together
with the boundary conditions, the throat length yUV − yIR. This is rem-
iniscent of the Goldberger-Wise mechanism [74] in 5d Randall-Sundrum-I
models: A scalar field with a nontrivial bulk profile and fixed boundary
values, e.g. from steep brane-localized potentials, can stabilize the radius of
the extra dimension. There is however an important difference: As opposed
to the model of [74], in the conifold throat the back-reaction of the scalar
field on the geometry is crucial. It describes the effect of the M units of F3

flux – the duality cascade in the dual gauge theory.

2Note that in the literature N = MK is frequently used to designate the effective D3
charge from M units F3 flux on the S

3 cycle and K units of H3 flux on its dual. This
definition coincides with ours if the 3-form flux in question is mainly concentrated outside
the ‘compact manifold’ of Figure 3.1.
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Figure 3.2: The throat with the values of Neff(r) and Reff(r) at several
positions r. The dotted line indicates that, in the presence of D3-branes in
the KS region, the throat may end at rIR > rs.

For reference, we have depicted the throat along with the values ofNeff(r)
and Reff(r) at several radial positions, as defined in the text, in Figure 3.2.

A related ansatz to characterize warped type IIB supergravity solu-
tions with fluxes in terms of 5d scalars coupled to gravity was presented
in [75], generalizing the methods employed by Klebanov-Tseytlin [57] (see
also e.g. [76]). The fluctuations of the internal metric and of the gauge fields
are parametrized by several scalar fields, such that part or all of the sym-
metries of the system are preserved. The bosonic action of type IIB then
leads to a nonlinear sigma model for the scalar fields in five dimensions.
For some systems such as the KS throat (or its simplified version, the KT
solution), this model takes the form of a “fake supergravity”, meaning that
the potential can be derived from a simpler function which resembles a su-
perpotential. This may considerably simplify the task of finding a solution
in the first place.

The general nonlinear sigma model of [75] can be consistently truncated
to a version which involves only four scalars and characterizes the KT solu-
tion. The fields are called q, f,Φ, T in [57]. q measures the T 1,1 volume and
f the ratio of scales between the 2-cycle and the 3-cycle. Φ is the dilaton,
and T measures the B2 potential. With these fields, the 5d action is

S5 = M3
5

∫

d5x

(

1

2
R5 −Gab(ϕ)∂ϕa∂ϕb − V (ϕ)

)

. (3.17)
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with ϕ collectively denoting the dimensionless scalars (q, f, T,Φ), and

Gab(ϕ)∂ϕa∂ϕb = 15(∂q)2 + 10(∂f)2 +
1

4
(∂Φ)2 +

1

4
e−Φ−4f−6q(∂T )2,

V (ϕ) = e−8q
(

e−12f − 6e−2f
)

+
1

8
P 2eΦ+4f−14q +

1

8
(Q+ PT )2e−20q.

(3.18)

P and Q are constants, with P proportional to the number of 3-form flux
quanta M . With a “warped” ansatz as in (3.6) for the 5d metric, a solution
to the equations of motion is given by the KT background, with f = Φ = 0
and the radial variation of the T 1,1 radius and B2 field encoded in the
nontrivial y-dependence of q and T . Explicitly, at large y,

e2q ∼ y1/5, Q+ PT ∼ y3/5. (3.19)

In terms of the physical quantities we have been using, PT +Q ∼ Neff and
e3q/2 ∼ Reff . The leading contribution to the vacuum energy density, whose
back-reaction determines the warp factor, is given by the first and last terms
of the potential in (3.18), evaluated on the solution.

3.3 The universal Kähler modulus

In the last section we have presented a simple effective 5d model for the
throat, consisting of a single scalar field coupled to gravity. The most im-
portant shortcoming of this model is the absence of the universal Kähler
modulus common to such type IIB supergravity compactifications [12]. We
have avoided this issue by simply assuming that the typical radius of the
compact space at the UV end is somehow stabilized. In this section, we will
relax this assumption and discuss the interplay of this degree of freedom
with our 5d model of the throat.

There is always at least one Kähler modulus in a realistic compactifi-
cation, which in the limit of zero warping is simply an overall scaling of
the internal metric and hence corresponds to a change of the volume of the
compact manifold. In the presence of warping the scaling behavior is more
subtle [77]. In terms of the metric (2.14), the flat direction corresponds to
a shift

h̃(r) → h̃(r) + c− 1 (3.20)

for an arbitrary value of the constant c. As in the unwarped case, this
affects the volume of the manifold, but now obviously is no longer a simple
rescaling.

This realization of the volume modulus can, in fact, be understood very
easily: The metric (2.14) contains only two dimensionful parameters, α′ and
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rs. A volume modulus, if present, can only change the ratio of these two
scales. Indeed, a rescaling

rs → rsc
1/4 (3.21)

corresponds, together with an appropriate rescaling of r and xµ, to the shift
(3.20) in h̃.

If c becomes extremely large, larger than h̃(rIR), the throat disappears
and the variation of c corresponds to an overall scaling of the entire compact
space. In this regime, the radiusRc is bigger than the length scale L at which
our 5d effective description is defined. In other words, the “brane thickness”
of the UV brane is so large that the 5d picture is lost.

Let us instead consider values of c such that Rc < L. In the compact
space at the UV end of the throat, h̃ is approximately constant and the
variation of c again corresponds to a simple scaling. In the throat, on the
other hand, note that the F̃5 flux N at the UV end of the conical region is
fixed; it does not depend on the volume of the compact space. This is also
approximately true for the F̃5 flux NUV at the UV end of the throat (i.e. at
the IR end of the conical region). Furthermore, the F3 flux is not affected
by the volume scaling (and neither is the number of explicit D3-branes at
the IR end of the throat, if we choose to include any). Thus, neither of the
boundary conditions determined by NUV and NIR changes when c varies and
therefore, as we discussed in Section 3.2, the length of the throat remains
fixed. This means that, in the 5d description, the Kähler modulus plays the
role of a massless UV-brane field while the 5d radion is already stabilized.

However, this picture is correct only at first approximation. The key
to the c-independence of N was its definition as the flux at the transition
point between the conical and the more general compact geometries. This
definition does not depend on the overall scaling. By contrast, NUV is
defined at the transition point between conical and throat geometries. As
we will now demonstrate, the location of this transition point has a non-
trivial c-dependence, which is reflected in a weak c-dependence of NUV.
The resulting effect on the length of the throat is small compared to the
effect on the compact region, as we will show explicitly. Nevertheless, for
extremely large c this effect will cut into the length of the throat such that,
eventually, the throat disappears. This is consistent with the limit of weak
warping discussed above.

From the 10d point of view, the RS UV brane (comprising the compact
space and the conical region) is the area where the warp factor is, to a good
approximation, constant. The universal Kähler modulus simply corresponds
to an overall rescaling of this region. In particular, the flux number

N = Neff(Rc) =
1

(4π2α′)2

∫

T 1,1 at r=Rc

F̃5 (3.22)
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is invariant under this rescaling. From the point of view of the throat, it
is determined completely by the localized sources and flux in the compact
space.

We now focus on the conical region and the throat. If we choose our
coordinates such that the warp factor in the conical region is unity, as in
(2.14) and (2.15), then Rc can be identified with the universal Kähler mod-
ulus. Given the general r-dependence of Neff in throat and conical region,
(2.23), one finds the constraint

N =
3

2π
gsM

2 log(Rc/rs) , (3.23)

which fixes rs in terms of Rc. This gives the warp factor (cf. (2.15)) to be

h̃(r) = 1 +
27π

4
α′2

gs
N − 3

2π gsM
2 log(Rc/r)

r4
. (3.24)

The boundary between the conical region and the throat, r = rUV, is then
determined by the solution of the equation h̃(rUV) = 1. Assuming that,
at this boundary, the logarithmic term in (3.24) is small relative to N and
working to leading order in this small term, we find

r4UV =
27π

4
α′2

gs

[

N − 3

8π
gsM

2 log

(

4R4
c

27π α′2gsN

)]

+ (subleading terms).

(3.25)
Thus, the conical region shrinks to zero size if R4

c takes the value

R4
c, min =

27π

4
α′2

gsN , (3.26)

and our approximation remains valid as long as

(Rc/Rc, min) ≪ exp(2πN/3gsM
2). (3.27)

The RHS of this inequality is of the order of the inverse hierarchy, and is
thus very large in the cases of interest to us. In other words, there is a large
range in which the variation of the universal Kähler modulus Rc has very
little effect on the throat length, as expressed by (3.25). In this domain,
it is mainly just a scaling of the compact manifold at the UV end of the
throat. Thus, we are led to the conclusion that, from the 5d point of view,
the universal Kähler modulus is a field localized at the UV brane.

Let us now translate the above discussion to the 5d picture in a more
quantitative way. From the 5d perspective, the fundamental scale is the
reduced 5d Planck mass M5. Near the UV brane, M5 is related to M10 by
M3

5 ≃ M8
10R

5
UV. For not too large values of Rc, we can identify RUV with

Rc, min, with the result that

RcM5 ∼ (gsN)2/3(Rc/Rc, min) . (3.28)
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We can think of this as of the UV brane thickness in units of M5. In the
same units, the physical length Lth of the throat is given by

LthM5 ∼ (yUV − yIR)M5 ∼ (gsM)4/3

[

(

2π

3

NUV

gsM2

)5/3

−
(

2π

3

NIR

gsM2

)5/3
]

,

(3.29)
where NUV is the flux at the IR end of the conical region or, equivalently,
at the UV end of the throat. Our interest is in the dependence of Lthroat on
Rc. Hence we cannot simply identify NUV with N , but rather we have to
take care of this subtle distinction which is due to the running in the conical
region:

N = NUV +
3

2π
gsM

2 log(Rc/Rc, min) . (3.30)

We now assume that Rc grows by a factor 1 + ǫ (where ǫ ≪ 1). Then, on
the one hand, the thickness of the UV brane in units of M5 increases by
∼ ǫ(gsN)2/3Rc/Rc,min. On the other hand, the length of the throat, also
measured in units of M5, shrinks by ∼ ǫ(gsM)4/3(3NUV/2πgsM

2)2/3. The
ratio of these two quantities is ∼ Rc/Rc,min > 1, i.e. the throat shrinks less
than the brane thickness grows.

This can be turned into an even more explicit argument for the Kähler
modulus being a brane field: From the 5d perspective, it is perfectly ac-
ceptable to define the throat length either by (3.29) or, including the UV
brane thickness into the size of the 5d interval, by the sum of (3.28) and
(3.29). When Rc grows, the throat length shrinks according to the first and
grows according to the second definition. Thus Rc cannot be consistently
identified with the length of the 5d interval. Instead, it has to be modelled
by a field localized at the UV brane. Of course, because our 5d effective
theory is valid only at length scales above L, we should be careful not to
increase Rc above L. Otherwise, the 5d description of the UV end becomes
meaningless.

3.4 The 5d effective action

We are now finally in a position to construct the 5d effective action including
bulk and brane fields. This will be done mainly by consistency arguments,
based on our results from the previous sections and on what is known about
the effective action upon further compactification to four dimensions. An
explicit dimensional reduction of the 10d action to 5d is not feasible because
the internal space is too complicated and because we have not specified a
UV embedding; see Section 3.5 for some more remarks on this.

For Rc ≫ Rc,min ≃ RUV, the integral over the compact space at the UV
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end of the throat contributes

LUV =
1

2
M8

10R
6
c

(

R4 + 30(∂ logRc)
2 + . . .

)

(3.31)

to the 4d effective action before Weyl rescaling to the 4d Einstein frame.3

We can view this as a precise definition of Rc, which is chosen such that R6
c

is the volume of the compact space.

The bulk part was already given in (3.1). Writing the 5d metric as

ds25 = e2A(y)−2A(yUV)gµνdx
µ dxν + dy2 , (3.32)

and integrating from yIR to yUV, this contributes the following piece to the
Einstein-Hilbert term of the 4d action:

1

2

(

M3
5

∫ yUV

yIR

dy exp

[

2

(

y

Rs

)3/5

− 2

(

yUV

Rs

)3/5
])

R4

≈ 5

12
M3

5Rs

(

yUV

Rs

)2/5

R4 .

(3.33)

Here R4 is to be evaluated with the 4d metric gµν . The warp factor in (3.32)
has been normalized to ensure consistency with the 4d metric in (3.31).

The relative normalization of the coefficients of the R4 and the (∂ logRc)
2

terms in (3.31) is due to the fact that R4
c is the real part of a superfield T [12],

which is part of a no-scale supergravity model. It changes upon the addition
of the 4d Einstein-Hilbert contribution of (3.33). However, this contribution
is subdominant in the large-Rc limit in which (3.31) was derived. Correc-
tions to (3.31) are indeed expected since, near the IR end of the conical
region, Rc loses its interpretation as an overall scaling modulus of the com-
pact space. To retain the 4d no-scale structure after including (3.33), the
coefficient of the R4 term in (3.31) should to be modified according to

M8
10R

6
c →M8

10R
6
c −

5

6
M3

5Rs

(

yUV

Rs

)2/5

. (3.34)

After these remarks we now give the full 5d action to the extent that it
can be inferred from the present analysis. In doing so, it is convenient to
absorb a factor gsM into the definition of the scalar field. Thus, we define

H̃ ≡
√

3

16π
gsMH =

√

gsNs/8 H, (3.35)

3The prefactor 30 arises as k(k − 1), with k = 6 the number of compact dimensions.
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where the prefactor has been chosen such that H̃(y) = M
3/2
5 (gsNeff(y))1/2.

The action now reads

S5d =

∫

d5x
√−g5

(

1

2
M3

5R5 −
8π

3

1

(gsM)2
(∂H̃)2 + cM9

5 H̃
−8/3 + . . .

)

+

∫

UV brane

d4x
√

−g4, UV (KUV + LUV) +

∫

IR brane

d4x
√

−g4, IR (KIR + LIR) ,

where KUV/IR is the trace of the extrinsic curvature (the Gibbons-Hawking
surface term [78]) and (g4, UV/IR)µν is the induced metric at each of the

4d boundaries. The constant c is given by c = 27 · 211/3π4/3. The brane
Lagrangians are

LUV =
c1
2
M2

5 (gsNUV)−10/3
[(

(RcM5)
6 − c2(gsNUV)4

)

R4

+30(RcM5)
6(∂ logRc)

2
]

− VUV(H̃) − Λ4, UV + . . .

(3.36)

and
LIR = −VIR(H̃) − Λ4, IR + . . . , (3.37)

with numerical coefficients c1 = 32π1/3/9 and c2 = 3 · 22/3/(32π). Here VUV

and VIR are steep potentials setting H̃ to its values at the UV and IR brane
respectively, for example,

VUV/IR = µ2
[

H̃ −M
3/2
5 (gsNUV/IR)1/2

]2
, (3.38)

with a very large coefficient µ. The brane tensions or 4d brane cosmological
constants ΛUV and ΛIR have values

ΛUV = +M4
5

√

6/c(gsNUV)−2/3 and ΛIR = −M4
5

√

6/c(gsNIR)−2/3 .
(3.39)

The fundamental dynamics of the throat can now be easily understood
from the 5d action (3.36): The scalar field H̃ governs, via the potential term,
the (approximately AdS) curvature and hence the warping. The rapidity
with which the curvature changes as one moves along the 5th dimension is
determined by the coefficient of the kinetic term for H̃. In the limit of van-
ishing M , no change is possible – this is the pure AdS5 case. The boundary
or brane values of H̃ are determined by steep brane potentials. The IR-
brane potential models the way in which the Klebanov-Strassler region (or
a more complicated corresponding geometry) determines the value of Neff in
the IR regime. The UV-brane potential models the way in which the various
stringy and field-theoretic sources of D3-brane flux in the compact space de-
termine Neff in the conical region. The combined dynamics of UV/IR-brane

37



and 5d bulk actions then stabilizes the length of the interval and fixes the
hierarchy.

In the above 5d effective action, Rc appears as a brane field localized at
the UV-boundary. However, it is a brane field of very peculiar type. In the
5d Einstein frame, Rc is part of the coefficient of the brane-localized Ricci-
scalar and has a wrong-sign kinetic term. Of course, this can be remedied
by performing an appropriate Rc-dependent Weyl rescaling of the 5d metric.
However, in such a Weyl frame Rc would cease to be a UV-brane field. Note
furthermore that Rc can easily be parametrically larger than its lower bound
(in the present analysis) Rc, min ≃ RUV. In this case, our 5d model develops
a parametrically large gravitational brane-kinetic term, a scenario which can
be very interesting for field-theoretic model building [79,80].

Finally we would like to explicitly relate the most important parameters
of our 5d description, the boundary scalar Rc and the 5d radion ∆y =
yUV − yIR, to the corresponding standard string moduli. Focussing on the
universal Kähler modulus T (which is T = −iρ in the notation of [12])
and a single complex structure modulus z, and neglecting the warping for
the moment, the 4d N = 1 superfield action is determined by the Kähler
potential

K(T, z) = −3 log(T + T ) − log

(

−i
∫

Ω ∧ Ω̄

)

, (3.40)

and the superpotential

W (z) =

∫

G3 ∧ Ω . (3.41)

The holomorphic (3,0) form Ω is normalized using some 3-cycle of the com-
pact space at the UV end of the throat, and z is defined via the 3-cycle A
in the throat as in Section 2.4,

z =

∫

A

Ω . (3.42)

In the case of negligible warping, the universal Kähler modulus governs
the compactification volume. More precisely, the 4d no-scale field T is re-
lated to Rc by

ReT ∼ R4
c . (3.43)

We can leave the constant of proportionality arbitrary since we do not intend
to fix a possible additive constant in K.

In [12] the relation of the complex structure modulus z to the relative
warping between the UV and IR region is found to be

eA(rIR)−A(rUV) ≃ |z|1/3 . (3.44)
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Here exp[2A(r)] = h̃(r)−1/2 (cf. (2.14)) is the 10d warp factor, which differs
from the 5d warp factor exp[2A(y)] of Eq. (3.6) by an insignificant (non-
exponential) correction related to the 5d Weyl rescaling. The relative 5d
warping is

eA(yIR)−A(yUV) ≃ exp
[

−(∆y/Rs)
3/5
]

, (3.45)

which allows us to express z through the 5d radion:

|z|1/3 ≃ exp

[

−
(

(5M5 ∆y)3

(3g2
sM

2/π2)2

)1/5
]

. (3.46)

This concludes our comparative discussion of Rc and ∆y and the string
moduli T and z. It would of course be most interesting to further identify
the superfield description of the stabilized Randall-Sundrum model [81] with
the moduli of the 10d flux compactification. In the next section we will offer
some comments which may lead in this direction.

3.5 Towards a superfield action

Type IIB theory is maximally supersymmetric, i.e. there are 32 real super-
charges. Compactification on AdS5×S5 preserves all of the supersymmetry,
so the theory of all the S5-Kaluza-Klein fields on AdS5 is 5d N = 4 super-
symmetric. This can also be understood from the dual gauge theory, which
is N = 4 supersymmetric in 4d and has four additional fermionic generators
for the superconformal symmetry.4

Compactification on AdS5×T 1,1 breaks the supersymmetry to a quarter
of the original SUSY. That is, the warped conifold throat has 5d N = 1
SUSY, and the dual gauge theory is N = 1 superconformal (this 4d N = 1
superconformal symmetry is sometimes referred to as 4d N = 2 SUSY in
the literature concerned with the supersymmetric Randall-Sundrum model).
More precisely, the corresponding 5d theory on AdS5 should be an N = 1
gauged supergravity, coupled to additional fields.

Adding 3-form flux gives the warped deformed conifold whose dual gauge
theory has (non-conformal) 4d N = 1 SUSY. We thus expect the 5d effective
action for the KS throat not to be 5d supersymmetric. In fact, it was directly
proven in [53] that the KS background admits only four supercharges. Still
it should be possible to write the 5d action in a manifestly 4d N = 1

4In the literature the supersymmetry of the AdS5 × S
5 solution is sometimes called

N = 8 in reference to the eight 4d fermionic symmetry generators. We will always denote
by N the number of supersymmetry generators proper in the respective dimensions, such
that the number of supercharges is given by the number of real components of the minimal
spinor times N .
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supersymmetric form, using superfields with an extra dependence on the
fifth coordinate [82–86].

It would be desirable to derive the 5d effective action by explicit dimen-
sional reduction of the 10d theory, rather than by consistency arguments as
we have done. From dimensional reduction one could obtain the full set of
light 5d fields and then properly identify the 4d multiplets. Unfortunately,
dimensional reduction on a complicated space with varying warp factor does
not seem to be technically feasible. The best one might hope for is to ob-
tain the theory as some suitable flux-induced deformation of the effective
5d gauged supergravity of the AdS5 × T 1,1 compactification. But in fact,
not even this theory has been explicitly constructed. Let us nevertheless
briefly summarize the state of the art there, in order to outline where the
main difficulties are and where future investigations of this subject should
be directed.

The Kaluza-Klein mode expansion of type IIB supergravity on AdS5 ×
T 1,1 was performed in [87, 88]. Since T 1,1 is a homogenous space, it is
possible to obtain the 5d spectrum using group-theoretic techniques (see
e.g. [89]): The eigenfunctions of the Laplacian on a coset G/H, in this
case T 1,1 = (SU(2)× SU(2))/U(1), are determined in terms of the matrix
elements of unitary irreducible group representations. The fluctuations of
the type IIB fields around the background, defined by the geometry and the
F̃5 flux, are expanded in these harmonics. Finally the resulting fields on
AdS5 are sorted into multiplets of the SU(2, 2|1) superalgebra.

This procedure gives the full set of KK towers for all 5d fields, as well as
their arrangement into AdS SUSY multiplets, but does not yet specify their
interactions. However, these are of course important if one would like to
write down an effective 5d action for the light modes. It should be pointed
out here that we are not searching for a truncation of type IIB theory on
AdS5×T 1,1 to the 5d massless sector, which would amount to simply discard-
ing the heavy states. It has in fact been shown that a consistent truncation
does not exist [90]. What we would like to construct is a low-energy effective
action in terms of the light fields, with the heavy ones not simply set to zero
but integrated out. This will give rise to additional interactions between
the light modes, suppressed by a mass scale of the order of the inverse T 1,1

radius.

In [91] the structure of the most general N = 1 (N = 2 in the language
of that paper) gauged 5d supergravity coupled to vector and hypermulti-
plets was derived. The authors pointed out that, in particular, the scalar
manifold must be the product of a “very special” [92] by a quaternionic
Kähler manifold. They further identified the relevant degrees of freedom
in the effective theory of type IIB on AdS5 × T 1,1 as coming from a mass-
less graviton multiplet, the seven massless vector multiplets corresponding
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to the SU(2)× SU(2)×U(1) isometry generators, and six hypermultiplets
which were argued to appear by comparison with the operators of the dual
CFT. Unfortunately this does not yet determine the scalar manifold, even
when including all the additional information that can be extracted from the
AdS/CFT correspondence. The interactions of the light fields thus remain
unknown.

To summarize, even the effective theory on the warped singular conifold
is not fully understood, not to mention its deformation upon the addition of
3-form flux which should give the effective warped deformed conifold theory.

One could try to pursue a different, more modest approach and start from
the bottom up. To find a 5d superfield description which at least includes
the degrees of freedom we have identified already would be analogous to
what we did in the previous section without reference to supersymmetry.
The simplest ansatz for this is based on the stabilized supersymmetric RS
model. The essential quantity is the radion superfield t with Re t ∼ ∆y.
The Kähler potential in terms of t is expected to be [93] (see also [81,83])

K5d ≃ −3 log

[∫ yUV

yUV−Re t
dy e2A(y)−2A(yUV)

]

, (3.47)

i.e. it is proportional to the logarithm of the coefficient of the Ricci scalar
in the 4d effective action before Weyl rescaling. We now consider yUV to
be constant and focus exclusively on the t dependence entering through the
lower integration limit yIR = yUV − Re t. This t dependence corresponds to
the z dependence in the language of 10d moduli (cf. (3.44) and (3.45)) so
that we can write

yUV
∫

yUV−Re t

dy e2A(y)−2A(yUV) = const.− |z|2/3

yIR
∫

−∞

dy e2A(y)−2A(yIR)

≃ const.− |z|2/3

2A′(yIR)
.

(3.48)

Since A′(yIR) ∼ (− log |z|)−2/3, this implies for the z-dependent part of the
Kähler potential

K5d ≃ −3 log
[

const. − |z|2/3(− log |z|)2/3
]

∼ |z|2/3(− log |z|)2/3 , (3.49)

where the prefactor and subdominant terms have been suppressed.

This is to be compared with the z-dependent part of the string moduli
Kähler potential (3.40), which we already calculated in Section 2.4 for negli-
gible warping. Following [94], we now account for the warping by replacing
Ω ∧ Ω̄ with e−4AΩ ∧ Ω̄ [95]. As in Section 2.4, the dominant z-dependent
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contribution comes from the tip of the throat and depends only on two pe-
riod integrals. The relevant cycles of the compactification manifold are the
conifold 3-cycle A with period z, cf. (3.42), and its dual B with period

∫

B

Ω =
z

2πi
log z + holomorphic (3.50)

B will extend outside the throat into the compact manifold, whose precise
form determines the holomorphic part. There will in general be other pairs
of 3-cycles with period integrals that depend purely holomorphically on z.
With the warp factor contribution at the tip given by e−4A ∼ |z|−4/3, we
obtain for the z-dependent part

− log

(

−i
∫

e−4A Ω ∧ Ω̄

)

= − log
[

const.− |z|2/3 log(zz̄) + . . .
]

∼ |z|2/3(− log |z|) .
(3.51)

Here the ellipses stand for higher-order terms of the form f(z)ḡ(z̄) with f, g
holomorphic. As before, the prefactor and subdominant terms have been
suppressed.

While the structure of (3.49) and (3.51) is very similar in the limit of
small z, they do not agree completely. The failure to fully match the 10d
string-theoretic with the 5d field-theoretic result is not unexpected in many
ways. On the one hand, it may be necessary to account for subleading
warping corrections on the 10d side. On the other hand, calculating the
Kähler potential on the basis of (3.47) and using the naive identification
of ∆y in terms of |z| may be too simplistic. Again, the supersymmetric
RS model is a fairly crude approximation to the much more complicated
situation at hand, where the varying warp factor plays a key role. It may
thus be necessary to start with a 5d superfield Lagrangian which reproduces
the correct 5d scalar potential governing the profile of the Goldberger-Wise
scalar H and hence the warp factor. This could be an interesting direction
for future work.
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Chapter 4

Supersymmetry breaking

and its mediation

There is a host of semi-realistic particle physics models based on the idea
of the Randall-Sundrum-I model: a UV brane and an IR brane, connected
by a slice of AdS5, with several distinct sectors of the model localized on
the branes or in the bulk. Having established the relationship between the
KS throat and the RS-I model, it is now natural to investigate how the
properties of such models are modified when the underlying theory is type
IIB superstring theory. After all the RS-I model, with a bulk spacetime
which is exactly AdS, terminated by two infinitely thin branes, and without
an internal 5d compact manifold such as T 1,1, is a fairly crude approximation
to a realistic compactification geometry as we have seen.

The main motivation to construct models with a warped extra dimension
is of course the hierarchy of scales between the UV and the IR brane. As
suggested in [13], this might be useful for solving the electroweak hierarchy
problem: With the Standard Model (or even just the Higgs field) localized
on the IR brane, it is easy to obtain an exponentially small electroweak
symmetry breaking scale, since all dimensionful quantities in the IR are
exponentially redshifted. In this chapter, however, we will consider models
which use the warped hierarchy for a different purpose. As explained in
Section 2.5, in the KKLT construction a large hierarchy of scales is required
to be able to tune the vacuum energy density to a small positive value. It
is thus the SUSY-breaking hidden sector, rather than the Standard Model
fields, which must be located in a strongly warped region. The Standard
Model fields should instead be localized on the UV brane, or equivalently,
from the 10d point of view, should reside on D-branes somewhere in the
compact space in which the throat is embedded.

The hidden and visible sectors are then “sequestered” in the sense of [96]:
Direct cross-couplings in 4d are highly suppressed, as they can only be gen-
erated by the exchange of massive modes of the warped bulk. Separation in
the internal space alone is in general not sufficient to guarantee sequester-
ing in string models [97] (see also [98]). However, it has been shown that
in minimal warped 5d field-theoretic models sequestering is achieved [81].
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A more thorough analysis of string models has shown that, while in un-
warped full string backgrounds sequestering is generally spoiled by the con-
tributions from the compactification moduli, this is not the case for warped
backgrounds such as the ones we are considering [99].

Sequestering is desirable from the phenomenological point of view, be-
cause it may allow for flavour-blind mediation mechanisms such as anomaly-
mediated supersymmetry breaking [96,100] to become important. Anomaly-
mediated SUSY breaking is an effect which is always present, but is subdom-
inant in generic (non-sequestered) models with respect to gravity mediation.
It gives rise to a calculable, flavour-independent, very distinctive pattern of
soft terms. However, since minimal anomaly mediation leads to tachyonic
sleptons, it is expected that some other mechanism must contribute to me-
diating SUSY breaking in any fully realistic model.

We will now proceed to investigate SUSY breaking and SUSY breaking
mediation in the throat. We will revisit some proposals that have been made
to model a SUSY breaking sector different from the original KKLT model;
we will then show that in a minimal KKLT-like model SUSY breaking is
communicated by both the light moduli and by anomaly mediation [18,101],
and subsequently investigate in detail the case of the KS throat as a possibly
realistic geometry [21]. It turns out that on a full string background the
dominant mechanism may differ significantly from the minimal toy model.

4.1 Non-sequestered uplifts

Recall from Section 2.5 that after flux stabilization of the complex structure
moduli and the dilaton, a possible way of stabilizing the Kähler moduli in a
type IIB compactification is provided by gaugino condensation in strongly
interacting gauge sectors. This mechanism, as we have reviewed, leads to
a stable supersymmetric minimum in 4d with a large negative cosmological
constant. To obtain a realistic phenomenology, SUSY must be broken and
the vacuum energy density must be uplifted to give a metastable de Sitter
minimum with a small positive cosmological constant.

The original KKLT proposal of uplifting by adding D3-branes, which
contribute a piece (2.39) to the scalar potential, explicitly breaks SUSY
from the point of view of 4d supergravity. For a proper description of the
mediation mechanism and an analysis of the soft terms it is then necessary
to resort to nonlinearly realized SUSY [18].

It would be preferrable, however, to use an uplifting sector which breaks
SUSY spontaneously, because this allows for greater computational control.
The D3-brane sector may also be modelled in this way, in the limit of a very
steep breaking potential, analogous to the nonlinear sigma model limit for an
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ordinary spontaneously broken global symmetry. On the other hand, we can
take an uplifting sector with spontaneous SUSY breaking seriously in its own
right, since it could well appear within the low-energy effective field theory
of a string compactification. For instance, in type IIB compactifications it
could be realized by branes at singularities in the internal manifold.

We can break SUSY spontaneously by either F -terms or D-terms. An
uplift by D-terms was first proposed in [102]: The superpotential piece re-
sponsible for stabilizing the Kähler moduli results from gaugino condensa-
tion on D7-branes. These branes wrap 4-cycles in the internal manifold,
which themselves could contain nontrivial 2-cycles. If the volume of a
wrapped 4-cycle is governed by Kähler modulus T , one may now gauge
the symmetry ImT → ImT + α, which allows for 2-form gauge flux on the
2-cycle and eventually a nontrivial contribution to the D-term potential.
The effect can be derived within the effective supergravity in a manifestly
supersymmetric manner, and hence computational control is retained.

However, there are two main problems associated with this proposal, as
has been pointed out e.g. in [18, 103, 104]. Firstly, the resulting D-terms
cannot be used to uplift a supersymmetric AdS vacuum, because the D-
terms generated this way will in the vacuum always be proportional to the
F -terms. Secondly, the gauged symmetry which gives rise to the D-terms
ceases to be a good symmetry once the T -stabilizing nonperturbative piece
in the superpotential is included: Obviously Ae−aT is not invariant under
a shift in ImT . One then must arrange for some fields that were originally
integrated out and hidden in the coefficient A to remain light and to trans-
form under the gauged symmetry, in order to cancel the transformation of
T . Thus in the minimal scenario with just a single light field T , a D-term
uplift is not possible.

Additional dynamics are therefore needed in any case, and in particular
F -terms need to be present for a D-term uplift. This motivates looking
for models where the uplift mainly or exclusively comes from the F -term
contributions. In a type IIB model, the corresponding chiral superfields
in 4d should be thought of as emerging from some D-brane configuration.
Without specifying which particular string construction will give rise to such
degrees of freedom, we can still write down some more or less generic models
in effective field theory.

In [38] (see also [39–44]) the possibility of a non-seqestered hidden sector
providing the F -terms was explored. Let us assume the simplest case of
a single Kähler modulus T henceforth. The F -term uplift is realized by
adding some SUSY breaking fields Xi, for which the effective supergravity
is described by a Kähler potential and superpotential of the form

K = −3 log(T+T )+∆K(Xi,X i), W = W0+A(Xi) e
−aT +∆W (Xi). (4.1)
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The T -dependent part is as in the KKLT model, but there will now be
couplings to the hidden sector fields Xi. Gravitational couplings will result
from the exponentiated Kähler potential, even if A in the superpotential
does not depend on the Xi — recall that the F -term potential is given by

V = eK
(

DIW DJW KIJ̄ − 3|W |2
)

. (4.2)

The Kähler potential and superpotential for the Xi fields are then chosen
such that they constitute one of the usual spontaneous F -term breaking
models. A simple possibility with a single field X is the Polonyi model,

∆K(X,X) = |X|2, ∆W (X) = −µ2X, A = const. (4.3)

This model is however not stable at tree-level or in the global limit, and
therefore the O’Raifeartaigh model is more appealing: With the SUSY-
breaking fields (Xi) = (X,X1,X2), take

∆K(Xi,Xi) =
∑

i

|Xi|2, ∆W (Xi) = MX1X2+(λX2
1−µ2)X, A = const.

(4.4)
If we assume M ≫ µ, then X1 and X2 will be stabilized at zero with a large
mass. Upon integrating them out the model becomes similar to the Polonyi
model above. However, loop corrections to the Kähler potential lead to an
effective quartic stabilizing term, for suitably chosen parameters. Then, for
small X, the effective Kähler potential and superpotential are

∆K(X,X) = |X|2 − |X|4/Λ2, ∆W (X) = −µ2X, (4.5)

with Λ2 = 16π2M2/λ4, up to factors of order one. The Polonyi-KKLT model
and the O’KKLT model were analysed in detail in [43] and [44], respectively.
It was found that the uplifting dynamics again does not significantly affect
the position of the minimum, and that metastable dS vacua can be obtained
just as in the case of a D3 uplift. The gravitino masses can easily be tuned
to be in the TeV range.

We should emphasize again at this point that one of the key requirements
for the KKLT construction is a hierarchically small uplift energy density.
This may be achieved by fine-tuning parameters in the models above, but
then it is not clear why a generic string model should lead to such peculiar
parameter values in the effective theory. A naturally small uplift may be
achieved by having the SUSY breaking dynamics localized at the bottom of
a warped throat as advertised earlier in this chapter, and as in the original
KKLT scenario. In that case, however, the Kähler potential and superpo-
tential will in general not take the form (4.1), because of the UV-localization
of the Kähler modulus T in the underlying 5d or 10d picture. We will re-
turn to this issue in the next section, after a brief digression to a different
interesting proposal that has been made to realize the hierarchy.
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This proposal [42, 43] concerns models in which the uplift is achieved
through dynamical supersymmetry breaking. In such models a small SUSY
breaking scale is quite natural, so that the hidden sector need not be lo-
calized in an internal region with large redshift. Instead the hierarchy is
generated dynamically by the renormalization group running of 4d gauge
couplings. Traditional models of dynamical SUSY breaking tend to be hard
to analyse, somewhat complicated and easily destabilized when coupled to
other sectors. These drawbacks are overcome by the recently proposed model
of Intriligator, Seiberg and Shih (ISS) [24], which can be neatly embedded
in the KKLT model. It needs to be modified to naturally provide a small
SUSY breaking scale, but that can be achieved without too much compli-
cation. This, however, is a subject which merits a separate discussion of its
own. We will return to it, and to the technical details of the ISS model, in
Chapter 5, since here we are only concerned with the KKLT embedding.

All that is needed for the subsequent discussion is the effective Kähler
potential and superpotential of the ISS-KKLT model at low energies. They
are given by

W = W0 +Ae−aT +WISS, K = −3 log(T + T ) + KISS, (4.6)

with

WISS = h tr ϕ̃Φϕ+ Λm tr Φ +Wnp(Φ),

KISS = |ϕ|2 + |ϕ̃|2 + |Φ|2.
(4.7)

Here ϕi
c and ϕ̃c

i (i = 1 . . . Nf ; c = 1 . . . N) are chiral superfields transform-
ing in the N and N of an SU(N) gauge symmetry (N = Nf − Nc in the
notation of Chapter 5), and in the Nf and Nf of an SU(Nf ) flavour sym-
metry, respectively. The model requires N < Nf . Φi

j is an uncharged chiral

superfield transforming as Nf × Nf under the flavour group. Λ is a dy-
namically generated scale which can be naturally small compared to the
fundamental (e.g. string) scale. m ≪ Λ may be dynamically generated as
well, see Chapter 5, and h is a dimensionless O(1) coupling. Wnp(Φ) is
a non-perturbatively generated piece which is subdominant for small field
values, i.e. for Φ ≪ Λ.

The model is such that, in the limit of global SUSY, WISS and KISS alone
would lead to a SUSY breaking, loop-stabilized minimum of the potential at
Φ = 0. More precisely, neglecting Wnp, it is easy to see that not all F -terms
of Φ can vanish since the set of equations

0 = FΦi
j

= h ϕ̃c
iϕ

j
c + Λmδj

i (4.8)

is overconstrained if N < Nf . A more detailed analysis shows that there is
a minimum of the potential at Φ = 0, with the non-Goldstone flat directions
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lifted by the Coleman-Weinberg potential. The vacuum energy is given by

〈V 〉 =
∑

ij

∣

∣

∣FΦi
j

∣

∣

∣

2
= (Nf −N)m2Λ2, (4.9)

This minimum would in fact be the global minimum if Wnp(Φ) were zero;
taking into account Wnp(Φ) it turns out to be only metastable, and there
are also supersymmetric minima at large values of Φ.

Embedding this model in supergravity and adding the T modulus, as in
(4.6), the leading terms in an expansion of the F -term potential in mΛ/M2

4

are

V = VAdS(T, T ) +
1

(T + T )3
VISS(ϕ, ϕ̃,Φ) + . . . (4.10)

Here VAdS is the KKLT pre-uplift potential (2.37), and VISS is derived from
WISS and KISS. To leading order, one may solve for the KKLT dynamics
first, and then consider the added ISS sector as an uplifting sector. The
uplifting energy density is approximately, from (4.9),

〈δV 〉 =
(Nf −N)m2Λ2

(T + T )3
. (4.11)

As advertised, it is hierarchically small if m and Λ are hierarchically small.
That the latter is natural in certain versions of the ISS model will be shown in
detail in Chapter 5. The detailed analysis of [42] shows that in this model
neither the metastable vacuum of the uplifting sector nor the metastable
vacuum that results from the KKLT embedding are destabilized.

Note that in principle we could have resorted to any other model of dy-
namical SUSY breaking for the uplifting sector, as elaborated on in [42].
Also, dynamical SUSY breaking models sometimes have an effective low-
energy description in terms of simple O’Raifeartaigh-like models, which also
justifies the discussion of e.g. the O’KKLT model in this context. Contrari-
wise, it may be possible to retrofit a given O’Raifeartaigh model by adding
an additional sector which provides naturally small mass scales [105].1

4.2 Sequestered uplifts and modulus-anomaly me-

diation

We will now return to the idea of having the hidden sector localized in a
warped throat in order to obtain the hierarchy. This is also the situation

1It has recently been proposed [106] that in the context of type IIB compactifications,
another particularly natural way of obtaining a hierarchically small SUSY breaking scale
is by means of D-brane instantons. We will not explain this mechanism in any detail, but
it will be used in Section 5.3.
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which is perhaps more attractive from the point of view of phenomenology
for the reasons we have already mentioned: A sequestered hidden sector
allows for a significant anomaly-mediated contribution to the visible sector
soft parameters, which may solve the supersymmetric flavour problem in a
natural way.

Let us start by rephrasing the KKLT model in the chiral compensator
formalism. We will use string-scale units in this and the following sections
and suppress factors of order one. It will be convenient to write the super-
gravity Lagrangian as

L =

∫

d4θ ϕϕΩ +

(
∫

d2θ ϕ3W + h.c.

)

, (4.12)

with the kinetic function Ω (which is related to the Kähler potential as
K = −3 log(−Ω)) and the chiral compensator ϕ = 1 + θ2Fϕ. For the KKLT
model before uplifting, we have

Ω = −(T + T ), W = W0 + e−T , (4.13)

and thus the scalar potential part of (4.12) is

L ⊃− (T + T ) |Fϕ|2 − (FTFϕ + h.c.)

+
[

(

3(W0 + e−T )Fϕ − e−TFT

)

+ h.c.
]

.
(4.14)

The resulting equations of motion are (disregarding kinetic terms, since we
are interested in constant solutions minimizing the potential from (4.14))

Fϕ : − (T + T )Fϕ − FT + 3(W0 + e−T ) = 0, (4.15)

FT : − Fϕ − e−T = 0, (4.16)

T : − |Fϕ|2 − 3e−TFϕ + e−TFT = 0. (4.17)

Taking W0 to be parametrically small (which may be justified by the ex-
ponentially large number of flux choices), it is easy to see that the above
equations are solved for

FT ∼ Fϕ ∼ e−T ∼W0 . (4.18)

Note that here and below we focus on parametrically small factors ∼ e−T but
ignore factors ∼ 1/T (which are strictly speaking also parametrically small
since T is moderately large, but to a much lesser degree). The vacuum
energy density is negative and ∼W 2

0 .

A solution of these equations of motion does not represent a true vacuum
of the model unless the curvature scalar (which is multiplied by Ω) vanishes.
This shortcoming will now be corrected.
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Let us add a SUSY breaking hidden sector in the throat. The size of the
hierarchy is characterized by an exponentially small redshift factor ω ≪ 1
for the hidden sector region. Generic hidden sector mass scales will be of
the order ω in string units. In the KS background, for instance, we would
have ω ≈ z2/3 with z given by (2.31).

At this point the 5d picture developed in the previous chapter, which
captures the essential properties of the throat, turns out to be very useful:
We have seen in Section 3.3 that in this picture the universal Kähler modulus
T is localized on the UV brane. The same will be true for the visible sector,
which we take to reside at some other unspecified place in the UV manifold.
On the other hand, the hidden sector at the bottom of the throat is an IR
brane field. This means that the visible and hidden sector dynamics are
effectively sequestered [96], unless other fields with unsuppressed couplings
to both the UV and the IR brane are present. In the current minimal context
this is not the case. Sequestering implies that the Kähler potential and
superpotential (4.1) are inappropriate, because they include direct couplings
between the UV brane field T and the IR brane fields Xi.

Instead, neglecting the visible sector for the moment, the requirement
of sequestering leads to a kinetic function and superpotential of the form
[81,96,107]

Ω = −(T + T ) + ω2∆Ω(X,X),

W = W0 + e−T + ω3∆W (X).
(4.19)

We have assumed for simplicity that there is just a single SUSY breaking
fieldX. Furthermore, we have explicitly written the warp factor dependence,
so that now the coefficients implicit in ∆W and ∆Ω are of order unity.
Sequestering forces the terms in X and T to be additive in the kinetic
function rather than in the Kähler potential; this is one of the reasons why
it is convenient to employ the chiral compensator formalism.

The T dependence is again such that without the non-perturbative ex-
ponential term in W , T would be a no-scale field. This is not sufficient to
guarantee the form (4.19), since a Kähler-Weyl rescaling before adding ∆Ω
and ∆W could as well lead to

Ω = −(T + T )(TT )α + ω2∆Ω(X,X),

W =
(

W0 + e−T
)

T 3α + ω3∆W (X).
(4.20)

However, α is fixed to be zero if we require the uplift energy density to scale
as (T + T )−2 as in (2.39), reproducing (4.19).

Neglecting for the moment the influence of Fϕ on the X sector (this will
be easy to justify a posteriori), the equation of motion for FX reads

ω2∆ΩXXFX + ω3∆WX = 0 , (4.21)
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where the indices of ∆W and ∆Ω denote partial derivatives.

If ∆W and ∆Ω are such that, in the absence of warping, FX would break
SUSY at the string scale, then what we obtain upon taking warping into
account is

FX ∼ ω. (4.22)

The vacuum energy density induced by the X sector is ∼ ω4, with compa-
rable contributions coming from ∆W and ∆Ω.

Therefore, to uplift the previously found negative vacuum energy density
∼ W 2

0 to a realistic positive value (i.e. to zero, for all practical purposes),
we need W0 ∼ ω2. Thus there is in fact only one small parameter in the
model, which we can choose to be ω. It is also clear that, in this situation,
the influence of the X sector on the previously found solution for Fϕ (and
hence on T and FT ) is of higher order in ω. Thus, (4.15) - (4.17) continue
to be the right equations to solve. The X sector simply adds the necessary
positive vacuum energy to promote the solutions of these equations to a
physical vacuum with

FT ∼ Fϕ ∼W0 ∼ ω2 and FX ∼ ω . (4.23)

We see that the vacuum F terms of the physical modulus T and the
chiral compensator ϕ are of the same order of magnitude. Roughly speaking,
the former will generically give the leading contribution to gravity-mediated
SUSY breaking once a UV-localized visible sector is introduced, and the
latter will be responsible for anomaly mediation [18]. Recall that, due to
sequestering, FX has no direct effect on soft terms in the visible sector.

A simple example for the X sector is realized by the model

Ω = −(T + T ) + ω2(|X|2 − |X|4),
W = W0 + e−T + ω3X.

(4.24)

The part of the Lagrangian (4.12) relevant for the potential is now

L ⊃ − |Fϕ|2 (T + T ) − (FTFϕ + h.c.) + ω2 |Fϕ|2 (|X|2 − |X|4)
+ ω2 |FX |2 + ω2

(

FϕFXX (1 − 2|X|2) + h.c.
)

− 4ω2 |FX |2 |X|2

+
[

(

3Fϕ(W0 + e−T + ω3X) − FT e
−T + ω3 FX

)

+ h.c.
]

.

(4.25)

The equations of motion read (note that those for FT and T are unchanged
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from (4.16) and (4.17))

Fϕ : Fϕ (T + T ) + FT − ω2 Fϕ

(

|X|2 − |X|4
)

− ω2FXX(1 − 2|X|2) − 3W0 − 3e−T − 3ω3X = 0, (4.26)

FT : Fϕ + e−T = 0, (4.27)

FX : ω2 FX + ω2 FϕX(1 − 2|X|2) − 4ω2 FX |X|2 + ω3 = 0, (4.28)

T : |Fϕ|2 + 3Fϕ e
−T − FT e

−T = 0, (4.29)

X : ω2 |Fϕ|2X(1 − 2|X|2) + ω2 FϕFX(1 − 4|X|2)
− 2ω2 FϕFXX

2 − 4ω2 |FX |2X + 3ω3 Fϕ = 0. (4.30)

As before, from (4.27) and the condition that the pre-uplift superpoten-
tial in the vacuum should be ∼ ω2, one can immediately see that Fϕ ∼ ω2.
From (4.29) it follows that FT ∼ ω2, and from (4.28) we can deduce that
FX ∼ ω. From (4.30) we obtain X ∼ ω.

4.3 Vector mediation

In the preceding section we have presented a minimal scenario for SUSY
breaking mediation. In particular we have assumed that the only potentially
relevant field for gravity mediation is the Kähler modulus T . However, this
assumption is not correct in general. Despite the fact that all other fields
will have acquired string-scale masses, there may be a sizeable effect from
gravity mediation due to 4d vector multiplets. Its contribution to the visible
sector soft paramters will be no more suppressed in powers of ω than the
mixed modulus-anomaly mediated contributions. By contrast, contributions
from string-scale massive chiral multiplets are truly suppressed to a higher
degree.

Let us now study how sequestering is affected by a massive vector su-
perfield in the throat. Whether or not there is such a field available in a
given model depends on the compactification background. In the case that
the throat admits a continuous isometry, this symmetry will become a gauge
symmetry in the effective 4d field theory. If the isometry is not a symmetry
of the entire internal manifold (in particular, of the UV end), this gauge
symmetry is broken. Since we are imagining the UV end of the throat to be
embedded in a Calabi-Yau manifold, which does not admit any isometries,
this will generically be the case in realistic constructions. More precisely,
we take the gauge symmetry to be nonlinearly realized at the UV end. The
effect on the 4d vector multiplets is that they acquire a string-scale mass,
which from the point of view of the 5d Randall-Sundrum-like model can be
ascribed to a UV-brane mass operator.
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The Klebanov-Strassler throat, for instance, has isometry group SO(4).
Hence the 5d solution should contain six massless vector fields as discussed
in Section 3.5. They will give rise to 4d string-scale massive vector multiplets
due to the embedding of the throat in a full Calabi-Yau compactification.

Independently of the UV-scale breaking of the SO(4) gauge symmetry,
we assume that the SUSY breaking sector at the bottom of the throat by
itself also breaks this symmetry. In particular, a D3 brane at the bottom of
the throat already breaks part of the isometry. Clearly, as far as the mass
of the 4d vector states is concerned, this IR-scale breaking cannot compete
with the UV-scale breaking. We assume that the hidden sector breaks the
isometry explicitly, since otherwise there will be no additional contribution
to gravity mediation. (In the case of spontaneous breaking, the estimates of
the current section will remain technically correct, but the soft parameters
will be unaffected, as we will explain in Section 4.4.)

5d massive vector fields in the KKLT scenario have also been discussed
in [20], where the effects of anomalous U(1) gauge groups on SUSY breaking
mediation was investigated.

To estimate the dominant SUSY breaking effects, we introduce a single
4d vector superfield V (although the actual symmetry is non-abelian and
several such fields are expected). Assume there is a term ω2V |X|2 in the
kinetic function. This corresponds to the leading higher-dimensional oper-
ator that couples V to X as the dominant generic correction to a canonical
kinetic function for X. Such a term is obviously not gauge invariant if X
does not transform under the gauge symmetry, and hence leads to explicit
gauge symmetry breaking.

V has the following component expansion:

V = C + θσµθAµ +
1

2
(FV θθ + h.c.) +

1

2
θθθθ

(

D +
1

2
∂2C

)

+ fermions.

(4.31)
Here FV is complex, while Aµ, C,D are real. The UV-brane symmetry
breaking (or non-linear realization of the gauge symmetry) is modelled by
simply giving this vector superfield a string-scale mass term. A massive
vector superfield can give rise to soft terms in two ways: it may develop F
or D terms in the vacuum.2

The dominant effect on soft terms is easy to guess: Focus on the term
CD (coming from the superfield mass term ∼ V 2) and the term ω2C|FX |2
(coming from the coupling ω2V |X|2). Varying these terms with respect to
C one immediately finds

D ∼ ω2|FX |2 ∼ ω4 , (4.32)

2Note that for a massless vector superfield V , F terms are unphysical because the
θ
2-components of V can be gauged away using Wess-Zumino gauge. This is no longer the

case when V is massive.
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which induces scalar masses ∼ ω4 for standard model fields Q in the visible
sector if there exists a coupling V |Q|2 in the Kähler potential. Such a
coupling is analogous as the one we have proposed for the hidden sector,
representing the leading correction due to V to a canonical Kähler potential
for Q. We note that the D term contribution to the vacuum energy density
is negligible compared with |FX |2, which is responsible for the uplift.

To derive the above in more detail, we start with the Lagrangian

L =

∫

d4θ ϕϕ
[

Ω(T, T ) + ω2∆Ω(X,X, V ) + V 2
]

+

(∫

d2θ

[

ϕ3
{

W (T ) + ω3∆W (X)
}

+
1

4
WαWα

]

+ h.c.

)

,

(4.33)

where Wα is the field strength chiral superfield corresponding to V . The X
dynamics will not be significantly disturbed since all expectation values of
the components of V will be of higher order in ω, as is easily checked on the
solution a posteriori. The most relevant term in the Lagrangian are now the
mass term for V and the gauge-kinetic term, as well as the terms

Ω = −(T + T ) + ω2 (1 + V )|X|2 + . . . W = W0 + e−T + . . . (4.34)

(as before we suppress any coefficients that are generically of order one). In
components, the mass term contributes

ϕϕV 2|θ4 = CD + |FV |2 +AµA
µ + C (FϕFV + h.c.) +C2|Fϕ|2, (4.35)

and the gauge kinetic term gives

WαWα|θ2 = −1

2
FµνF

µν +D2 . (4.36)

From the coupling of the gauge field to the SUSY breaking field X we get

ϕϕV |X|2|θ4 =|Fϕ|2C |X|2 + FϕCFXX + h.c.+
1

2
FϕFV |X|2 + h.c.

+ C |FX |2 +
1

2
FV FXX + h.c.+

1

2
D |X|2.

(4.37)

The equations of motion for the bosonic components of V are

C : D + (FϕFV + h.c.) + 2C |Fϕ|2

+ ω2
(

|Fϕ|2|X|2 + FϕFXX + h.c.+ |FX |2
)

= 0, (4.38)

FV : FV + CFϕ +
1

2
ω2
(

Fϕ|X|2 + FXX
)

= 0, (4.39)

D : C +D +
1

2
ω2|X|2 = 0, (4.40)
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giving
D ∼ ω4, FV ∼ ω4, C . ω4. (4.41)

FV is irrelevant for SUSY breaking mediation, because it is subdominant
with respect to the other F -terms. D, however, will contribute significantly,
because a possible coupling ∼ V |Q|2 to the visible sector will clearly induce
soft scalar masses m2 ∼ D ∼ ω4. This is just the same order of magnitude
as we get from mixed modulus-anomaly mediation, so ‘vector mediation’
will compete with these effects. Of course, this can also be easily seen by
focusing on the couplings ∼ ω2V |X|2 and ∼ V |Q|2 and integrating out
the heavy vector. The induced operator ω2 |X|2 |Q|2 provides soft masses
m2 ∼ ω2|FX |2 ∼ ω4.

4.4 Vector mediation and spontaneous gauge sym-

metry breaking

In this section we explain why vector mediation requires the hidden sector
to break the gauge symmetry explicitly rather than spontaneously. We will
demonstrate that, when a vector superfield acquires a mass (as e.g. the gauge
field of a nonlinearly realized or spontaneously broken gauge symmetry),
the D-term in the vacuum will inevitably vanish if all of its other couplings
respect the linearly realized gauge symmetry. This can already be seen on
the level of rigid SUSY.

The simplest way of coupling our bulk vector field to the SUSY breaking
sector would of course be to have the SUSY-breaking fields charged under
the gauge symmetry. This is obviously not possible with the hidden sector
which we presented in Section 4.2, since we need several chiral superfields
to write down a gauge-invariant superpotential. In the minimal case, there
would be just two such fields X1 and X2 with equal and opposite charge.

As a side remark, it is not entirely straightforward to build a model
in which a charged chiral superfield acquires an F -term in the vacuum.
Let us assume that the superpotential is analytic around zero. By gauge
invariance it cannot contain linear terms in the charged fields, and therefore
there is always a supersymmetric vacuum at the origin. Thus, to have
the supersymmetry-breaking fields charged under a gauge symmetry, one
should look at models with local (metastable) minima. Since these may well
describe a realistic physical system, this is however no serious obstruction
to building a model.

Now consider a gauge superfield V (with gauge group U(1) for simplicity)
coupled to charged chiral superfields. Turning on a mass term for V , the
longditudinal polarization of the gauge field will become a dynamical degree
of freedom. It can described by a chiral superfield U , the “eaten Goldstone
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superfield”. It now turns out that the vacuum expectation value of U will
eventually adjust such that D = 0 in the vacuum. This is most easily seen
as follows: In our present rigid SUSY framework, the Lagrangian is

L =

∫

d4θK
(

Xi, e
qiVX i

)

+

∫

d4θ V 2

+

∫

d2θW (Xi) + h.c.+
1

4

∫

d2θWαW
α + h.c.

(4.42)

We can now make a superfield redefinition, writing V = Ṽ + U + U , where
Ṽ is in Wess-Zumino gauge and U is chiral. Further defining

Yi = Xie
qiU , (4.43)

the Lagrangian becomes (note that by gauge invariance neither the super-
potential nor the gauge kinetic term depend on U)

L =Lm(U, Ṽ ) +

∫

d4θK
(

Yi, e
qiṼ Y i

)

+

∫

d2θW (Yi) + h.c.+
1

4

∫

d2θWαW
α + h.c.

(4.44)

Here Lm denotes the gauge field mass term Lagrangian,

Lm(U, Ṽ ) =

∫

d4θ (Ṽ + U + U)2, (4.45)

containing the D-term of V (which is obviously also the D-term of Ṽ ) as

Lm(U, Ṽ ) ⊃ 2D(U + U). (4.46)

The equation of motion for D is thus

D = −2 (U + U) +
∂

∂D

∫

d4θK, (4.47)

and since U does not appear anywhere except in the gauge field mass term
Lm (and in particular does not have an F -term potential of its own), it
can adjust its expectation value to guarantee D = 0. This is of course the
vacuum configuration, by positivity of the D-term potential.

Let us now re-examine the situation we have envisaged for vector medi-
ation: our throat vector fields are coupled, at the UV end of the throat, to
fields which break the U(1) via string-scale dynamics, thus providing a mass
term for V . Vector mediation now relies on the presence of a D-term for
V induced by couplings to the hidden sector. We must conclude that these
couplings cannot be gauge couplings. Thus there will be no vector mediation
unless the hidden sector fields break the gauge symmetry explicitly rather
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than spontaneously (since there are no possible couplings except standard
gauge couplings that are compatible with the symmetry).

Nevertheless we emphasize that, in the case of explicit breaking, vector
mediation will in general take effect: It is easily checked that, for instance,
with the toy model for the hidden sector which we gave in the previous
section, the D-term in the vacuum is nonzero.

4.5 Other gravity-mediated contributions

For completeness, we will now derive that possible contributions to gravity
mediation from string-scale massive chiral superfields are suppressed to a
higher degree, and thus harmless to sequestering. We will work in super-
gravity in the chiral compensator formalism as in Section 4.3, and again use
string-scale units.

Consider a chiral superfield Y with a string-scale mass term, such as
might be produced by flux stabilization. We allow for direct couplings of Y
to both the hidden and the visible sector. Let us estimate the F term of
Y in the vacuum, since it may give SUSY breaking soft masses to visible
sector fields via terms like |Y |2|Q|2.

Suppressing O(1) coefficients, the dominant terms in the kinetic function
and superpotential are

Ω = −(T + T ) + |Y |2 + ω2 (XY + h.c.) + . . .

W = W0 + Y 2 + (1 + Y )e−T + ω3XY + . . .
. (4.48)

Since we imagine that Y contains fields propagating in the throat, we have
allowed for the strongest possible couplings to the X sector. Furthermore,
since Y does not represent a modulus of the fluxed Calabi-Yau, we have
allowed for an unsuppressed mass term ∼ Y 2 but excluded any leading-order
linear term in Y or a mixing of Y and T . However, once non-perturbative
effects (e.g. gaugino condensation) are incorporated, the clear separation
between Y and T may be blurred, which motivates us to include the term
∼ Y e−T , as an example for such effects.3 Note that we could have replaced
|Y |2 by (T + T )|Y |2 without affecting the results of the following analysis.

Since Fϕ would by itself not generate a non-zero FY , we will neglect its
influence for the moment. Afterwards we will show that the backreaction of
Y on Fϕ is indeed negligible, hence this ansatz is fully self-consistent.

3This is a slight generalization of the otherwise similar analysis of [20]
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We obtain the following Y - and FY -dependent terms in the bosonic La-
grangian:

L ⊃ |FY |2 + ω2 (FXFY + h.c.) +
[

2Y FY + FY e
−T − Y e−TFT + h.c.

]

+ ω3(FXY +XFY + h.c.) .

(4.49)

Recall that e−T ∼ ω2 by assumption. This leads to the equation of motion
for Y

2FY − ω2FT + ω3FX = 0 , (4.50)

hence
FY ∼ ω2FT ∼ ω3FX ∼ ω4. (4.51)

The equation of motion for FY reduces to

FY + ω2FX + 2Y + ω2 + ω3X = 0 , (4.52)

thus
Y ∼ ω2. (4.53)

To ensure that this estimate is correct, we now need to prove that there
are no contributions to Fϕ and FT of order ω2. This is fairly obvious,
however, since what we are adding to the Lagrangian by including Y is, in
the vacuum, suppressed by sufficiently high powers of ω. For example, we
can check that Eq. (4.16), the equation of motion for FT , now becomes

Fϕ + (1 + Y )e−T = 0 , (4.54)

inducing a negligible correction to Fϕ ∼ ω2. (This remains correct if |Y |2
is replaced by (T + T )|Y |2. Similarly, it is easy to check that the vacuum
values of T are not affected at leading order in ω.

In summary, we have seen that throat fields which are described by
heavy chiral superfields in the 4d effective theory cannot contribute sizeably
to SUSY breaking mediation because their F terms are always subdominant
compared to Fϕ and FT .
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Chapter 5

Hierarchies from metastable

dynamical SUSY breaking

To naturally generate a large hierarchy of scales in a model of particle
physics, there seem to be rather few conceptually distinct mechanisms avail-
able. One possibility is to use warped extra dimensions, which we have dis-
cussed at length in the context of type IIB superstring compactifications.
A second, somewhat more long-standing, approach is based on dimensional
transmutation: An asymptotically free gauge theory with a moderately small
gauge coupling at some fundamental energy scale will become strongly cou-
pled at an exponentially smaller scale and may undergo a phase transition.

By the AdS/CFT correspondence, these two mechanisms can in fact be
dual to each other. This has been investigated in great detail for the KS
solution: The gauge theory dual of the warped deformed conifold exhibits
confinement and chiral symmetry breaking, at a scale which in the gravity
picture corresponds to the tip of the throat. A large hierarchy of scales in
the gravity theory, generated from warped extra dimensions, translates into
a large hierarchy of scales in the gauge theory, dynamically generated by
renormalization group running.

In this chapter we will investigate certain models implementing the sec-
ond mechanism of generating large hierarchies, namely strong gauge dynam-
ics. We will mainly focus on the field-theoretic aspects first, but in order
to establish the connection to type IIB superstring theory, we will finally
also review a related D-brane construction. The model we will mainly be
concerned with is the Intriligator-Seiberg-Shih (ISS) model of metastable
dynamical supersymmetry breaking [24]. We have already seen one of its
applications in Chapter 4, as a possible uplifting sector for KKLT-type mod-
els. However, the ISS model per se is unrelated to string compactifications,
and can be used for many other purposes just as well. An obvious application
would be to explain the electroweak hierarchy of particle physics by taking
the ISS model as a hidden supersymmetry breaking sector. It could then be
coupled via messenger fields to a SUSY version of the Standard Model, or a
subgroup of its global symmetry group could be gauged and identified with
part or all of the Standard Model gauge group. Models along these lines
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have been constructed e.g. in [32,108–112].

The condition that SUSY should be dynamically broken in the vacuum
of a supersymmetric gauge theory is very restrictive, and thus traditional
models of dynamical SUSY breaking tend to be quite contrived. Relax-
ing this condition by allowing for SUSY to be broken only in a metastable
(sufficiently long-lived) state, there are many more and much simpler possi-
bilities. The ISS model, in particular, is very simple, and easily coupled to
messenger fields. It is also straightforward to deform it by operators which
explicitly break the approximate R-symmetry in the metastable minimum,
as required for phenomenology.

The ISS model in its simplest form does not generate all of its small mass
scales dynamically. We will, however, show in detail how exponentially small
scales can arise naturally when embedding the ISS model in a renormalizable
field theory [25]. We will also point out their possible origin in superstring
constructions.

We will make extensive use of the phase structure of N = 1 supersym-
metric QCD, and in particular of Seiberg duality. Some useful facts about
N = 1 SQCD are summarized in Appendix D.

5.1 The ISS model

Let us briefly review the analysis of ISS [24]. Consider N = 1 rigidly super-
symmetric QCD with Nc colours andNf flavours of massive quarks and anti-
quarks qi, q̃i (i = 1 . . . Nf ). Choose Nf and Nc such that 3Nc/2 > Nf > Nc,
which is the so-called “free magnetic range”. Let us take the quark masses to
be equal for simplicity and denote them by m (non-degenerate quark masses
are possible in this model and will in fact be encountered in Section 5.3).
The SU(Nf )L × SU(Nf )R flavour symmetry of the massless theory is then
broken to a diagonal SU(Nf ), so that we have the following quantum num-
bers:

SU(Nc) SU(Nf ) (global)

q Nc Nf

q̃ Nc Nf

Assume also that m ≪ Λ, where Λ is the strong-coupling scale of the
gauge theory. The theory is asymptotically free. It has a dual descrip-
tion [59], not in the sense of gauge-gravity duality but rather in the sense
of electric-magnetic duality, on scales much lower than Λ in terms of an IR
free SU(Nf −Nc) “magnetic” gauge theory.
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The degrees of freedom of the dual theory are Nf dual quarks and anti-
quarks ϕi, ϕ̃i and N2

f uncharged mesons Φi
j, transforming as

SU(Nf −Nc) SU(Nf ) (global)

ϕ Nf − Nc Nf

ϕ̃ Nf − Nc Nf

Φ 1 Nf × Nf

Near the origin of field space the dual Kähler potential is smooth and
hence can be taken to be canonical to leading order (up to normalization
factors of order one, which we drop). The infrared superpotential is, up to
O(1) coefficients,

W = ϕ̃c
iΦ

i
jϕ

j
c −mΛΦi

i +

(

det Φ

Λ3Nc−2Nf

)
1

Nf−Nc

(5.1)

with c = 1 . . . Nf −Nc, i, j = 1 . . . Nf . At small field values, we can neglect
the last term in W because of the Λ-suppression; then the F -terms of Φ are

FΦi
j

= ϕ̃c
iϕ

j
c −mΛδj

i . (5.2)

They cannot all vanish because ϕ̃c
iϕ

j
c has rank Nf −Nc, whereas δj

i has rank
Nf . It turns out that there is a SUSY breaking local minimum, the ISS
vacuum, at

Φ = 0, (ϕ̃c
i ) = (ϕj

c)
T =

(

m1Nf−Nc

0

)

. (5.3)

Here 1Nf−Nc denotes the (Nf −Nc) × (Nf −Nc) unit matrix. At tree-level,
the potential still has several flat directions. Those that correspond to Gold-
stone directions from spontaneously broken global symmetries are unaffected
by quantum corrections. The others are lifted by the one-loop Coleman-
Weinberg potential, such that the ISS vacuum is indeed locally stable. In
addition to the ISS vacuum there are supersymmetric vacua, which are found
by taking into account also the determinant term in (5.1). However, they
are well separated in field space from the ISS vacuum if m/Λ is sufficiently
small, hence the ISS vacuum can be very long-lived. More precisely, in [24]
the bounce action for overcoming the tunneling barrier and decaying into
the proper vacuum was estimated to be

Sbounce ≈
(

Λ

m

)

6Nc−4Nf
Nc

, (5.4)

which shows that for m≪ Λ the lifetime of the ISS vacuum is parametrically
large.
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5.2 Retrofitting the ISS model

As it stands, the ISS model does not yet provide a fully natural explanation
for the small SUSY breaking scale. The reason is that, while the exponen-
tially small scale Λ is indeed generated dynamically, the small dimensionful
parameter m has been put in by hand. The SUSY breaking scale is then
given by 〈F 〉 ∼ mΛ. To obtain a fully natural model, we should also find
a mechanism that explains the smallness of m. Extending SUSY breaking
models by additional sectors in order to dynamically generate small dimen-
sionful parameters has been dubbed “retrofitting” in [105].

A possible retrofitting mechanism for the modified ISS model of [109]
has been put forward in [113]. The idea is to add an auxiliary sector
which exhibits strong dynamics itself, and couple it to the ISS model via
higher-dimensional operators. Specifically, if one takes as the auxiliary sec-
tor SU(N ′

c) pure super-Yang-Mills theory, this theory will undergo gaugino
condensation at a dynamically generated scale Λ′. The dimension 6 coupling
between the auxiliary field strength W ′

α and the ISS quarks q, q̃,

L ⊃
∫

d2θ
tr qq̃

M∗2 trW ′
αW

′α + h.c. (5.5)

leads to an effective ISS quark mass term m ∼ Λ′3/M∗2 at energies below
Λ′. Here M∗ is a fundamental scale at which the theory must be UV-
completed, such as the GUT or Planck scale. In this model, m≪ Λ can be
easily accomplished, and thus the ISS analysis applies.

The drawback of this procedure is that one needs to rely on higher-
dimensional operators, and hence indirectly on the physics of an unspecified
UV completion. (Of course, when obtaining the model from string theory
as we will in Section 5.3, the coefficients of these operators are calculable
in principle, but one still does depend on the particular UV completion
chosen.) When extending the model, it would certainly be desirable not to
spoil one of its main advantages, the existence of a well-defined UV limit in
terms of an asymptotically free electric gauge theory.

Let us therefore present another possibility to retrofit the ISS model in a
fully renormalizable way. Again, we will introduce an auxiliary sector which
generates a small mass scale dynamically, but now also an additional gauge
singlet field which couples to both sectors and whose expectation value will
ultimately become the ISS quark mass. This model was constructed in [25];
similar models were later considered in [114].

The auxiliary sector is now SU(N ′
c) SQCD with N ′

f flavours of massless

quarks and antiquarks Q, Q̃, where N ′
c > N ′

f . Couple this theory to an
additional singlet S with tree-level superpotential

Wtree = λ′StrQQ̃− κS3. (5.6)
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In the quantum theory, an additional contribution to the superpotential is
generated nonperturbatively [115], which becomes relevant in the infrared:

Wnp = a

(

Λ′3N ′

c−2N ′

f

detQQ̃

) 1

N′
c−N′

f

. (5.7)

Here Λ′ is the strong-coupling scale of the gauge theory, and a is a number
of order one whose precise value is renormalization-scheme dependent. In
[116] it was shown that by holomorphy and symmetry the exact low-energy
effective superpotential is W = Wtree +Wnp, in a range of parameters where
S is the only light degree of freedom and the quarks are integrated out. It
can be shown that W = Wtree +Wnp is indeed exact even in the general case
(see [25]).

To analyse the IR behaviour of the theory, we introduce the meson fields

M i
j =

1

Λ′
QiQ̃j (5.8)

(with a trace over colour indices implied), normalized by the 1/Λ′ factor to
have canonical dimension. In terms of the mesons and the singlet, the exact
low-energy effective superpotential is then

Weff = λ′Λ′StrM − κS3 + a

(

Λ′3N ′

c−2N ′

f

detM

) 1

N′
c−N′

f

. (5.9)

The equations for supersymmetric vacua,

0 = λ′Λ′trM − 3κS2,

0 = λ′Λ′S δi
j −

a

N ′
c −N ′

f

(

Λ′3N ′

c−2N ′

f

detM

) 1

N′
c−N′

f (

M−1
)i

j
,

(5.10)

are solved by

S = bΛ′ e
2πin

3N′
c−N′

f ,

M = cΛ′ e
4πin

3N′
c−N′

f 1Nf
,

(0 ≤ n < 3N ′
c −N ′

f ), (5.11)

where b and c are numerical constants given by

b =





(

N ′
f

3κ

)N ′

c

(λ′)N
′

f

(

a

N ′
c −N ′

f

)N ′

c−N ′

f





1

3N′
c−N′

f

,

c =





3κ

(λ′)3N ′
f

(

a

N ′
c −N ′

f

)2




N′

c−N′

f

3N′
c−N′

f

.

(5.12)
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For simplicity, in the following we choose the couplings λ′ and κ such that
b = c = 1.

We now couple this model to an ISS sector, with the ISS quark mass
coming from the expectation value of S. The fields and their quantum
numbers are summarized in the following table.

SU(Nc) SU(N ′
c) SU(Nf ) (global) SU(N ′

f ) (global)

q Nc 1 Nf 1

q̃ Nc 1 Nf 1

Q 1 Nc
′ 1 N′

f

Q̃ 1 N
′

c 1 N
′

f

S 1 1 1 1

The combined superpotential in the UV is

W = −λStr qq̃ + λ′ StrQQ̃− κS3. (5.13)

We have deliberately omitted all possible operators with dimensionful cou-
plings here: No scales are introduced by hand. The absence of linear and
quadratic terms inW can be further justified by imposing an obvious discrete
Z3 symmetry acting on the chiral superfields, which will be spontaneously
broken by nonperturbative effects.

Assume now that λ ≪ 1, such that also λΛ ≪ Λ′ and λΛ′ ≪ Λ (this
can of course be achieved by, for instance, choosing the numbers of colours
and flavours and the gauge couplings at the renormalization scale such that
Λ ≈ Λ′, and then setting λ ≪ 1). Let us emphasize that this does not
constitute an inacceptable fine-tuning: Firstly, it concerns a dimensionless
parameter only, and secondly, we will see that λ of the order of a percent is
sufficiently small for our purposes. The hierarchy between the fundamental
and the SUSY breakings scale, comprising many orders of magnitude, is still
generated dynamically.

The resulting model has various effective descriptions at different energy
scales. In the far UV the appropriate superpotential is (5.13). The ISS
and auxiliary sector then have effective descriptions at scales below their
respective strong coupling scales Λ and Λ′ (either of which can be the higher
one): At scales around Λ we should pass to the Seiberg dual of the q sector,
replacing

−λStr qq̃ → −λΛStr Φ + tr ϕ̃Φϕ+

(

detΦ

Λ3Nc−2Nf

) 1

Nf−Nc

. (5.14)

Here we anticipate that S, which is a dynamical field up to now, will even-
tually acquire an expectation value, such that the λStr qq̃ term will become
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an ISS quark mass term. At scales below Λ′ the Q sector together with S
can be described by the exact superpotential (5.9), with the coupling to the
q sector viewed as a small perturbation. We should therefore replace

λ′ StrQQ̃− κS3 → λ′Λ′StrM − κS3 + a

(

Λ′3N ′

c−2N ′

f

detM

)
1

N′
c−N′

f

. (5.15)

At scales much below Λ′, M and S are massive and should be integrated
out. Taking for definiteness the phases in (5.11) to vanish, we obtain

〈S〉 = Λ′

[

1 + O
(

λ2Λ2

(Λ′)2

)]

. (5.16)

The correction terms of higher order in λΛ/Λ′ are small by assumption.

In the IR, the only light degrees of freedom remaining are now the ISS
mesons and dual quarks, whose interactions at low energies are governed
by the superpotential (dropping again, as in Section 5.1, the irrelevant last
term in (5.14))

W = −λ〈S〉Λtr Φ + tr ϕ̃Φϕ. (5.17)

This is just the infrared superpotential of the ISS model from Section 5.1
with quark mass m = λΛ′ + O

(

λ3Λ2/Λ′
)

, which is much smaller than Λ as
required.

In summary, we have presented a simple renormalizable extension of the
ISS model in which all small scales are dynamically generated. It does not
rely on the presence of higher-dimensional operators and in this sense is
independent of any specific UV-completion. In addition one of the main
advantages of the ISS model, namely its simplicity, is more or less retained:
all we have added is another SQCD sector and a singlet field.

It is easily checked that our constraints on the scales can be satisfied
for reasonable values of the parameters: Take for instance Nc = 5, Nf = 6,
N ′

c = 4, N ′
f = 3. Choose the gauge couplings at the Planck scale as g2/4π =

1/42 and g′2/4π = 1/45, to obtain Λ ≈ 1.8 ·106 GeV and Λ′ ≈ 2.3 ·105 GeV.
With λ = 10−2, we then have λΛ/Λ′ ≈ 8 · 10−2 and λΛ/Λ′ ≈ 10−3, hence
both ratios are indeed small. A very crude estimate of the lifetime of the
vacuum can be done with the bounce action

Sbounce ≈
(

Λ

m

)6/5

≈ 3 · 103. (5.18)

With the decay width per unit voulume suppressed as

Γ

V

1

m4
∼ e−Sbounce , (5.19)
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the minimal bounce action for our universe to survive for ≈ 1010 year in
a metastable state is only Smin ≈ 400, so our vacuum is sufficiently long-
lived. The SUSY-breaking scale is at about 6 · 104 GeV, of the right order
of magnitude to be compatible with gauge mediation. Indeed it should
be possible to couple our model to a messenger sector to obtain a simple
gauge-mediated model similar to e.g. those of [109,112].

5.3 The ISS model in type IIB

In this section we will review a way to obtain an ISS-like model from a
D-brane construction in type IIB superstring theory, following Argurio,
Bertolini, Franco and Kachru (ABFK) [26, 27].1 The model is similar to
the extension of the ISS model considered in [32], including a term which
explicitly breaks the approximate R-symmetry of the ISS vacuum. (This is
desirable if the model is to provide a hidden sector for the supersymmetric
Standard Model, since without such a term it is difficult to obtain realistic
gaugino masses.) It has Nf = Nc + 1, for which case the magnetic gauge
group becomes a trivial SU(1), and the dual quarks can be regarded as the
baryons of the electric theory. Small quark masses are dynamically gener-
ated, partly from higher-dimensional operators and partly by a mechanism
different from those we have discussed so far. The crucial ingredient here are
D-brane instanton effects, which have recently been proposed as a particu-
larly natural way of obtaining small scales in general type II string models
with SUSY breaking [106].

The construction of [27] starts from a non-chiral Z3-orbifold of the coni-
fold (see Appendix B for some details of the geometry). Orbifolding by a ZN

group leads to 2N −1 types of independent fractional branes (i.e. D5-branes
wrapped on the collapsing 2-cycle); in addition, there remains of course the
possibility to place regular D3-branes at the conifold tip. A large number of
these will place the model in a warped throat, thus providing an embedding
in a weakly curved gravitational background. The gauge theory on the sin-
gularity should then emerge at the infrared end of a duality cascade, very
similar to the KS case of the preceding chapters.

The gauge theory for fractional branes on the orbifolded conifold [117]
is given by an appropriate orbifold of the Klebanov-Witten gauge theory
[55]. For the Z3 orbifold it is conveniently described by a quiver diagram
of the type depicted in Figure 5.1. This four-dimensional N = 1 theory
has six SU(NI) gauge groups (I ∈ Z mod 6), corresponding to the nodes,
and six pairs of chiral superfields XI,I+1 and XI+1,I , corresponding to the
arrows between them. The chiral superfields transform as bifundamentals

1For other work on string embeddings of the ISS model, see e.g. [28–37].
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Figure 5.1: The quiver at a Z3 orbifold of the conifold

under the gauge groups of their respective nodes, so that XI,I+1 transforms
as (NI ,NI+1) and XI+1,I as (NI ,NI+1) under SU(NI)× SU(NI+1). The
superpotential is

W =
1

M∗

6
∑

I=1

(−1)Itr (XI,I+1XI+1,I+2XI+2,I+1XI+1,I) . (5.20)

Here M∗ is the relevant UV-completion scale, which is the warped string
scale if the model is realized in a warped throat. Since the combinations of
fractional branes in this non-chiral quiver are not constrained by anomaly
cancellation, the ranks of the gauge groups at the various nodes can be freely
chosen. We choose the rank assignments N1 = N2 = N3 ≡ Nc, N4 = 1, and
N5 = N6 = 0. The trivial SU(1) at node 4 means that there are fields
X34 and X43 transforming in the fundamental and antifundamental of the
SU(Nc) at node 3. The quiver is drawn in Figure 5.2.

The superpotential is

W =
1

M∗
tr (−X12X23X32X21 +X23X34X43X32) − µX34X43. (5.21)

The quadratic term is due to a D1-instanton wrapping node 5, which pro-
vides a naturally small µ. There can be a similar term ∼ X12X21 from
a D1-instanton at node 6, but this will not play a role for our choice of
parameters.

Now assume that the strong-coupling scales on the various nodes satisfy

Λ2 ≪ Λ2
1

M∗
< µ≪ Λ3. (5.22)

We will consider a very weakly gauged SU(Nc)2, such that its gauge dy-
namics does not interfere with the other fields. We have effectively Nf =
Nc + 1 flavours for SU(Nc)3, which will become our ISS gauge group. With
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Figure 5.2: The ABFK quiver

Nc < Nf < 3Nc/2, it is in the free magnetic range (in fact, as mentioned
above, the magnetic gauge group is trivial). From now on, we will explicitly
retain only the node 2 “flavour” indices in our formulas, implying that the
“colour” indices of nodes 1 and 3 are suitably contracted.

Let us examine the dynamics on node 1. SU(Nc)1 has Nc flavours, and
its low-energy dynamics is therefore described by the quantum-deformed
moduli space constraint [118]

detM −BB̃ = Λ2Nc

1 . (5.23)

HereM is the (unrescaled) meson field and B, B̃ are the baryons of SU(Nc)1,
formed from the elementary fields X12 and X21 as

M i
j = (X12)

i(X21)j ,

Bi1...iNc = (X12)
i1 . . . (X12)

iNc ,

B̃i1...iNc
= (X21)i1 . . . (X21)iNc

.

(5.24)

The constraint (5.23) is solved by

M i
j = Λ2

1δ
i
j . (5.25)

It can be checked on the solution afterwards that the metastable vacuum is
not destabilized by turning on expectation values for the baryons.

Assuming that this is indeed the case, one can integrate out X12 and
X21, which gives the superpotential

W = − Λ2
1

M∗
trX23X32 − µX34X43 +

1

M∗
trX23X34X43X32. (5.26)

Up to the quartic term, we thus obtain SU(Nc)3 SQCD with Nf = Nc + 1
massive flavours and masses smaller than the strong-coupling scale Λ3, by
(5.22).

At energies below Λ3, we use magnetic variables and the Seiberg dual
theory. Denoting the dual quarks and antiquarks at node 3 by ϕ and ϕ̃, and
defining the meson Φ by

Φ =
1

Λ3









φ44 φ24

φ42 φ22









, where φIJ = 〈XI3X3J〉, (5.27)
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the magnetic superpotential (disregarding irrelevant nonperturbative terms)
is very similar to (5.1):

W = tr ϕ̃Φϕ− Λ3trMΦ +
Λ2

3

M∗
trφ24φ42. (5.28)

Here the effective quark mass matrix is given by

M =











µ 0

0
Λ2

1

M∗ δ
i
j











. (5.29)

The two main differences with the model of Section 5.1 are that that the
eigenvalues of M are now non-degenerate and that there is an R-symmetry
breaking quadratic coupling in the meson fields. Nevertheless the ensuing
analysis is quite similar [32]. Since µ > Λ2

1/M
∗, it will be the F -terms of the

φ22-mesons that are non-vanishing at the metastable minimum. The scalar
components of these mesons are not fixed at tree-level, and while they are
stabilized at zero by the Coleman-Weinberg potential in the ISS model, here
they acquire a vacuum expectation value at one-loop. This is caused by the
quadratic term in the mesons ∼ φ24φ42, which otherwise does not disturb
the metastable vacuum, provided that the scales satisty [32]

Λ3
3 < µM∗2. (5.30)

The non-vanishing vev for φ22 is crucial for ensuring the stability of the
minimum against deformations towards the baryonic branch of node 1, which
now can be checked a posteriori. It turns out that the tree-level coupling
to the mesons of node 3 is the dominant contribution to the potential for
the fields of node 1, and that (5.25) is a stable solution to the moduli space
constraint (5.23) if the scales satisfy the additional condition

Λ1 ≪ Λ3 < M∗, µ < Λ3. (5.31)

This concludes our review of the ABFK model. To summarize, we have
seen that the ISS model can be realized in type IIB superstring theory. It
is thus justified to use it as an ingredient in building type IIB-based models
on the field theory level, an example of which we have seen in Chapter 4.1.
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Chapter 6

Summary

Let us recapitulate the main points of this thesis.

After summarizing some well-known facts about flux compactifications
in type IIB superstring theory and supergravity, we have introduced a spe-
cial class of solution, the warped throat solutions. We recapitulated the
construction of the AdS5 × S5 throat and the AdS5 × T 1,1 warped conifold
throat, and discussed in detail the construction of the warped deformed coni-
fold or Klebanov-Strassler solution. The KS solution is obtained by adding
3-form flux to the deformed conifold. This is the prime example of a warped
throat of finite length, whose dual field theory is then non-conformal. We
pointed out that on certain length scales, the KS solution is approximately
AdS5 × T 1,1, but with radially varying curvature radius for both the AdS
and the T 1,1 part, giving a simple derivation for its logarithmic variation.

We then demonstrated how the complex structure moduli of a type IIB
superstring compactification can be stabilized by fluxes, using the example
of the KS throat, where the modulus in question is the deformation size of
the conifold singularity. Afterwards we reviewed the stabilization of Kähler
moduli by non-perturbative means and the KKLT mechanism. This mech-
anism makes use of an additional uplifting sector in order to promote the
fully stabilized vacuum, for which the four-dimensional background is AdS4,
to a metastable non-supersymmetric vacuum which is 4d Minkowski or dS4.
We pointed out that, in order to be in the domain of weak-curvature where
one has computational control, the uplifting energy density should be hi-
erarchically small. This is natural if the uplifting sector is localized in a
strongly warped region such as the KS throat.

Following this review, we turned to the description of a IIB compactifica-
tion containing a KS throat in terms of an effective 5d theory simliar to the
Randall-Sundrum-I model. We presented the general idea of identifying the
10d bulk and an approximately conical region of the internal space with the
RS ultraviolet brane, the actual throat with the RS bulk, and the tip of the
throat where the deformation of the conifold singularity becomes relevant
with the RS infrared brane. We further identified the scales on which a 5d
description of the background by an almost AdS5 geometry is viable, and
showed that, for strongly warped throats, their range can be fairly wide.
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Subsequently we turned to the description of radion stabilization in this
5d picture. We showed that the variation of the curvature scale in the KS
throat can be modelled by a scalar field with a non-trivial profile in the
background. The backreaction of the potential energy density on the ge-
ometry then deforms the internal space appropriately. Since the boundary
conditions for this scalar degree of freedom are fixed at both ends of the
throat, the length of the throat is also fixed and the 5d radion is stabilized.
This can be viewed as a variation of the Goldberger-Wise mechanism for
radion stabilization in the RS model, with back-reaction included. We cal-
culated the potential for the Goldberger-Wise scalar to leading order from
the known properties of the geometry. We also gave some remarks on the
relation to the 5d model used by Klebanov and Tseytlin to construct the
metric for the KS throat solution.

Additionally, we incorporated the unstabilized universal Kähler modu-
lus, which is common to such type IIB compactifications, into our 5d picture.
This modulus governs the size of the embedding manifold at the UV end
of the throat, at least in the range of its values where the 5d description
is applicable. We found the adequate description for this modulus in the
effective RS model as UV brane field, whose contribution to the action we
modelled such that upon further dimensional reduction to 4d, it becomes a
no-scale field.

Including these degrees of freedom, we presented a 5d action of the re-
sulting RS-I-like model. We concluded our discussion of the KS throat as a
RS model by discussing the prospects for formulating this action in a mani-
festly supersymmetric way. Unfortunately the effective 5d supergravity even
of type IIB supergravity on AdS5 × T 1,1 is poorly understood, not to men-
tion its deformation upon including 3-form flux. We pointed out, however,
that it might be possible to construct a supersymmetric 5d action from the
bottom up, by taking as the starting point the supersymmetrized RS model
rather than attempting to dimensionally reduce from 10d.

We proceeded by turning to a different topic in type IIB compactifica-
tions, namely supersymmetry breaking mediation in the KKLT model. We
focussed on F -term uplifting and summarized the main aspects of generic
models, before turning to models which naturally realize the hierarchy re-
quired for the KKLT construction. One example of these is the ISS-KKLT
model, in which the ISS model of dynamical metastable supersymmetry
breaking is used to provide the uplifting piece of the scalar potential. How-
ever, it is by placing the uplifting sector in a warped throat that one obtains
not only a natural hierarchy of scales, but also the desirable property of
having the SUSY-breaking sector sequestered from the visible sector. Our
focus was consequently mainly on sequestered models.

In a minimal sequestered setting, comprising only 4d supergravity, a non-
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perturbatively stabilized Kähler modulus, and a SUSY-breaking superfield,
we showed that the leading contribution to communicating SUSY breaking
are due to mixed modulus-anomaly mediation. We gave an explicit example
of a sequestered hidden sector with F -term breaking. Finally, we investi-
gated possible additional gravity-mediated contributions in a non-minimal
setup, motivated by realistic throat backgrounds that might underly the
KKLT model. It turned out that there can be a relevant contribution from
string-scale massive vector multiplets which are present in the 4d effective
theory if the throat admits an isometry, as is the case for the KS throat.
Such an isometry is reflected in a gauge symmetry in 4d, which will generally
be broken at the string scale because a Calabi-Yau manifold containing the
throat will not admit any isometries. We showed that, if these vector fields
have gauge-symmetry breaking couplings with both the SUSY-breaking and
the visible sector, their contribution to the visible sector soft parameters can
be equally important as that of mixed modulus-anomaly mediation. This
is the case in spite of their string-scale masses. String-scale massive chiral
multiplets, by contrast, contribute only subdominantly.

In the last part of the thesis, we reviewed the ISS model in more de-
tail. We showed that it can be extended such that all its small parameters
are generated dynamically. The retrofitted ISS model we presented is still
very simple, consisting of two sectors of SQCD coupled by a singlet field.
It is renormalizable and does not contain any dimensionful parameters: all
scales are generated by dimensional transmutation. The ISS model and es-
pecially its retrofitted version has a wide range of applications in purely
field-theoretical model building. However, it is also a useful ingredient for
building models in string phenomenology, one of which we had already dis-
cussed in the context of the KKLT construction. We finally reviewed how
the ISS model can be obtained as the low-energy field theory of a specific
D-brane model in type IIB superstring theory, thus justifying its inclusion
in models derived from type IIB compactifications.
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Appendix A

Notation and conventions

Our conventions for type IIB superstring theory and supergravity in ten
dimensions largely follow [119]. In particular, gs denotes the string coupling
and α′ is the Regge slope or inverse string tension.

M4,M5,M10 are the reduced Planck masses in four, five and ten space-
time dimensions respectively. They are related to the corresponding physical
Planck masses by factors of

√
8π, so that M4 = 1/

√
8πM4,phys etc.

We use Greek letters for 4d spacetime indices, small Roman letters for
extra dimensional indices, and capital Roman letters for both of them col-
lectively, in either five or ten dimensions. Our metric has “mostly plus”
signature.

We use script letters R,RMN to refer to the scalar curvature and the
Ricci tensor. Roman R is reserved to generically denote a radius. Likewise,
L is a Lagrangian and L a length scale.

In 4d N = 1 supersymmetry, we stick to the common practice of denoting
a superfield by the same symbol as its lowest component. Which of them is
meant should always be clear from the context.
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Appendix B

The conifold

Here we collect some useful material about the geometry of the conifold.
Many of the derviations (which we have omitted) can be found in [120].

The conifold may be defined as the hypersurface in C
4 given by

w2
1 + w2

2 + w2
3 + w2

4 = 0. (B.1)

It is smooth except for the singularity at the coordinate origin. The coni-
fold is a real cone over the Einstein manifold T 1,1. T 1,1 itself is (SU(2) ×
SU(2)′)/U(1) with the U(1) generated by σ3 + σ′3; it can also be thought
of as a S1 fibration over S2 × S2 with topology S2 × S3. At the apex of the
conifold, both the S2 and the S3 shrink to zero size. The fibred structure
can be seen from the Einstein metric of T 1,1, which is

ds2 =
1

9

(

dψ +
2
∑

i=1

cos θidφi

)2

+
1

6

2
∑

i=1

(

dθ2
i + sin2 θi dφ

2
i

)

. (B.2)

Here ψ ∈ [0; 4π) parametrizes the S1 fibre, and (θi, φi) parametrize two S2s
in the standard way.

The singularity can be deformed by replacing the RHS of (B.1) by some
nonzero z:

w2
1 + w2

2 +w2
3 + w2

4 = z. (B.3)

Alternatively, one may introduce the matrix W ,

W =

(

a b
c d

)

, (B.4)

where

a = w3 + iw4, b = −w1 + iw2, c = w1 + iw2, d = w3 − iw4. (B.5)

In terms of these variables, the defining equation (B.1) becomes

detW = 0, (B.6)
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and the singularity may be resolved by replacing (B.6) by the pair of equa-
tions

Wλ = 0 (λ ∈ CP
1). (B.7)

In the resolved conifold, the singularity at the tip of the cone over
T 1,1 ≃ S2 × S3 is replaced by a 2-cycle, with the S3 shrunk to zero. In
the deformed conifold, the roles of the two spheres are exchanged, such that
the S2 collapses and the S3 is retained.

The defining equation (B.1) of the singular conifold is left invariant by
an SU(2)× SU(2)×U(1) transformation, where the wi transform as a vector
under SU(2)× SU(2) ≃ SO(4), and U(1) acts as wi → eiαwi.

1 In the de-
formed conifold U(1) is broken and SO(4) remains as the unbroken isometry
group of the deformed conifold, as is evident from (B.3). Note that this
isometry acts on the transverse space only, as the radial coordinate

r =

√

3

2

(

4
∑

i=1

|wi|2
)1/3

(B.8)

is manifestly invariant. It will therefore remain an isometry if we allow for
a more general dependence of the transverse space on the radial position, in
particular for warping.

The defining equation (B.6) may be used to construct the ZN orbifold
of the conifold considered in Section 5.3. The orbifold action acts on the
variables of (B.5) as

a → e2πi/Na, d → e−2πi/Nd. (B.9)

In terms of the invariant variables a′ = aN and d′ = dN , the equation
describing the orbifolded conifold then becomes

a′d′ − bN cN = 0. (B.10)

Note that the orbifold group is a subgroup of the SU(2)× SU(2), and the
U(1) factor of the isometry group is unaffected.

1Since the conifold is a real cone, it is also invariant under a real rescaling wi → λwi,
but this symmetry is of course broken when the conifold is cut off and embedded into
a compact space at some radial position. It is also broken by either deformation or
resolution.
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Appendix C

5d Anti-de Sitter space

Here give some coordinatizations and reference formulae for AdS5 which are
used on several occasions in the main text. For our purposes AdS5 is the
unique 5d spacetime with topology R

5 and constant negative curvature R
(this is actually the covering space CAdS5 of AdS5 in the strict sense, but
we will not make this distinction since we will never deal with AdS5 proper).
It is an exact solution to the Einstein equations

RMN − 1

2
R gMN = − Λ

M3
5

gMN (Λ < 0), (C.1)

which arise from the variation of the Einstein-Hilbert action supplemented
with a negative cosmological constant:

S =

∫

d5x
√−g

(

M3
5

2
R− Λ

)

. (C.2)

The scalar curvature is related to Λ by

R = 10Λ/3M3
5 (C.3)

AdS5 is maximally symmetric, and in particular homogenous and isotropic,
a fact which is not manifest in the common coordinatizations.

A convenient set of coordinates for Randall-Sundrum type models is
(xµ, y), with µ = 0 . . . 3, in terms of which the metric is

ds2 = e2kyηµνdx
µdxν + dy2. (C.4)

Here ηµν is the 4d Minkowski metric, and k =
√

−R/20 =
√

−Λ/6. Beware
that in these coordinates the sign of y is opposite to the widely used con-
vention of [54]: the “warp factor” e2ky increases with increasing y, so small
y means large redshift. We adopt this somewhat nonstandard convention to
avoid a large number of minus signs in the main text.

Another parametrization is frequently encountered when considering the
near-horizon limit of a stack of D3 branes. Define the curvature radius R
by R = 1/k, then the metric in terms of coordinates (xµ, r) is

ds2 =
R2

r2
dr2 +

r2

R2
ηµνdx

µdxν (r ∈ R+). (C.5)
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The transformation between the radial coordinates r and y is y = R log r
R .

Finally, by setting z = R2/r, one obtains the commonly used “Poincaré
coordinates” (xµ, z) with the metric

ds2 =
R2

z2
(dz2 + ηµνdx

µdxν) (z ∈ R+). (C.6)
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Appendix D

The phases of N = 1 SQCD

In this appendix we summarize some well-known facts about 4d N = 1
globally supersymmetric SU(Nc) gauge theory with Nf massless flavours of
quark and antiquark chiral superfields, q and q̃. We will omit O(1) prefac-
tors throughout, and just state the results without proof (or without even
giving supporting evidence — actually much of this material has not been
rigorously proven so far). More comprehensive treatments can be found
e.g. in [3, 4, 121].

The behaviour of SQCD under renormalization group evolution is de-
pendent on the values of Nf and Nc. The one-loop beta function coefficient
is

b0 = 3Nc −Nf . (D.1)

From the sign of b0, we can read off the ultraviolet behaviour of the theory.

The theory is not asymptotically free if Nf ≥ 3Nc. It has a trivial RG
fixed point in the infrared and a Landau pole in the UV. In the marginal
case Nf = 3Nc, the lack of asymptotic freedom is visible only at two-loop
order.

For Nf < 3Nc, the theory is asymptotically free. Concerning the IR
behaviour, five distinct cases have to be considered, all but the first of which
are used at some point in the main text of this thesis:

1. 3Nc/2 < Nf < 3Nc : The “electric” theory, whose degrees of freedom
are the SQCD quarks and gauge fields, flows to a nontrivial (interacting)
fixed point in the IR. It is dual [59] to an SU(N ′

c) “magnetic” gauge theory
(N ′

c = Nf −Nc) with Nf flavours of dual quarks and antiquarks, which also
includes N2

f gauge singlets. Since 3N ′
c/2 < Nf < 3N ′

c, the dual theory is in
the same range of flavours and colours. Both the electric and the magnetic
theory thus flow towards an interacting CFT at low energies.

2. Nc + 1 ≤ Nf ≤ 3Nc/2 : This is the free magnetic range relevant for
the ISS model. The gauge coupling for the electric theory diverges at low
energies at a scale Λ. Its IR behaviour can nevertheless be described by a
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weakly coupled gauge theory: The dual magnetic theory [59] is given by an
SU(N ′

c) gauge theory (N ′
c = Nf −Nc) with Nf flavours ϕ and ϕ̃, including a

colourless field Φ in the Nf + Nf of the flavour group SU(Nf )L×SU (Nf )R.
The superpotential is

W = ϕ̃Φϕ. (D.2)

Since Nf ≥ 3N ′
c, this dual theory is infrared-free (hence the term “free

magnetic range”) and has a Landau pole at high energies, at a scale Λ′ .

Λ. Thus, in the IR, the magnetic theory is weakly coupled, and in the
UV, the electric theory is weakly coupled. The dynamics can be described
perturbatively in both ranges, in terms of the appropriate weakly coupled
degrees of freedom. In the limiting case Nf = Nc + 1, the dual theory is
not a gauge theory, but can still be constructed. The degrees of freedom are
then similar to the meson, baryon and antibaryon fields defined below.

3. Nf = Nc : This theory has a moduli space of vacua parametrized by
meson, baryon and antibaryon fieldsM , B and B̃, which classically are given
by the gauge-invariant composites

M i
j = qi

cq̃
c
j ,

Bi1...iNc = ǫc1...cNcqi1
c1 . . . q

iNc
cNc

,

B̃i1...iNc
= ǫc1...cNc

q̃c1
i1
. . . q̃

cNc

iNc
.

(D.3)

The classical constraint
detM −BB̃ = 0 (D.4)

is changed in the quantum theory [118] to

detM −BB̃ = Λ2Nc , (D.5)

where Λ is the strong-coupling scale. The vacuum structure is then dictated
by this quantum-deformed moduli space constraint.

4. 0 < Nf < Nc : The appropriate low-energy description for this theory
is again in terms of the gauge-invariant meson fields M , constructed analo-
gously to (D.3). (The baryons of (D.3) identically vanish for this range of
N − f and Nc.) The mesons are subject to the non-perturbative superpo-
tential [115]

W =

(

Λ3Nc−Nf

detM

)

1

Nc−Nf

. (D.6)

It follows that the theory does not have a stable vacuum but a runaway
towards M → ∞, unless it is coupled to additional degrees of freedom.
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5. Nf = 0 : Pure N = 1 super-Yang-Mills theory exhibits gaugino conden-
sation in the IR, below the strong-coupling scale Λ [122]. The gauge-kinetic
term should be replaced by a constant below this scale when the theory is
embedded in a larger model:

∫

d2θ trWαWα → 〈trλαλ
α〉 = Λ3. (D.7)

A standard analysis shows that there are Nc supersymmetric vacua, related
by discrete phase rotations in the condensate.
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