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Abstract

Subject of this work is the development of concepts for the efficient numerical solution of optimization
problems governed by parabolic partial differential equations. Optimization problems of this type arise
for instance from the optimal control of physical processes and from the identification of unknown
parameters in mathematical models describing such processes. For their numerical treatment, these
generically infinite-dimensional optimal control and parameter estimation problems have to be discretized
by finite-dimensional approximations. This discretization process causes errors which have to be taken
into account to obtain reliable numerical results.

Focal point of the thesis at hand is the assessment of these discretization errors by a priori and especially
a posteriori error analyses. Thereby, we consider Galerkin finite element discretizations of the state
and the control variable in space and time. For the a priori analysis, we concentrate on the case of
linear-quadratic optimal control problems. In this configuration, we prove error estimates of optimal
order with respect to all involved discretization parameters. The a posteriori error estimation techniques
are developed for a general class of nonlinear optimization problems. They provide separated and
evaluable estimates for the errors caused by the different parts of the discretization and yield refinement
indicators, which can be used for the automatic choice of suitable discrete spaces. The usage of adaptive
refinement techniques within a strategy for balancing the several error contributions leads to efficient
discretizations for the continuous problems.

The presented results and developed concepts are substantiated by various numerical examples including
large scale optimization problems motivated by concrete applications from engineering and chemistry.

Zusammenfassung

Gegenstand dieser Arbeit ist die Entwicklung von Konzepten für das effiziente numerische Lösen
von Optimierungsproblemen mit Beschränkungen durch parabolische partielle Differentialgleichungen.
Probleme dieser Art entstehen beispielsweise bei der optimalen Steuerung physikalischer Prozesse sowie
bei der Identifizierung unbekannter Parameter in mathematischen Modellen zur Beschreibung solcher
Prozesse. Für ihre numerische Behandlung ist es notwendig, diese generisch unendlich-dimensionalen
Probleme der optimalen Steuerung und Parameterschätzung mittels endlich-dimensionaler Approxima-
tionen zu diskretisieren. Dieser Diskretisierungsprozess verursacht Fehler, die berücksichtigt werden
müssen, um verlässliche numerische Ergebnisse zu erhalten.

Schwerpunkt der vorliegenden Dissertation ist die Abschätzung dieser Diskretisierungsfehler mit Hilfe
von a priori und insbesondere a posteriori Fehleranalysen. Dabei betrachten wir Finite-Elemente-
Diskretisierungen der Zustands- und Kontrollvariablen in Ort und Zeit. Bei der a priori Analyse
konzentrieren wir uns auf den Fall linear-quadratischer Optimalsteuerungsprobleme. Hierfür zeigen
wir Fehlerabschätzungen von optimaler Ordnung bezüglich aller beteiligten Diskretisierungsparame-
ter. Die Techniken zur a posteriori Fehlerschätzung werden für eine allgemeine Klasse nichtlinearer
Optimierungsprobleme entwickelt. Sie liefern separierte und auswertbare Schätzungen der durch die
verschiedenen Teile der Diskretisierung verursachten Fehler und stellen Verfeinerungsindikatoren für
die automatische Wahl der geeigneten diskreten Räume bereit. Die Verwendung von adaptiven Ver-
feinerungstechniken innerhalb von Strategien zur Balancierung der einzelnen Fehlerbeiträge führt zu
effizienten Diskretisierungen der kontinuierlichen Probleme.

Die präsentierten Ergebnisse und entwickelten Konzepte werden durch verschiedene numerische Tests
bestätigt. Im Rahmen dieser Tests werden auch Optimierungsprobleme betrachtet, die durch konkrete
Anwendungen aus den Ingenieurwissenschaften und der Chemie motiviert sind.





Contents

1 Introduction 1

2 Theoretical Results 7
2.1 Basic notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Abstract optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Existence and uniqueness of solutions . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Representation formulas for the derivatives . . . . . . . . . . . . . . . . . . . . 19

2.5.1 First derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Second derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Space-Time Finite Element Discretization 25
3.1 Time discretization of the state variable . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Discontinuous Galerkin methods . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Continuous Galerkin methods . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Space discretization of the state variable . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Triangulations and finite element spaces . . . . . . . . . . . . . . . . . . 31
3.2.2 Discretization on dynamic meshes . . . . . . . . . . . . . . . . . . . . . 34

3.3 Discretization of the control variable . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Time stepping schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Implicit Euler scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Crank-Nicolson scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Algorithmic Aspects of Numerical Optimization 47
4.1 Newton-type methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Optimization loop without assembling the Hessian . . . . . . . . . . . . 50
4.1.2 Optimization loop with assembling the Hessian . . . . . . . . . . . . . . 51
4.1.3 Comparison of the presented optimization loops . . . . . . . . . . . . . . 52

4.2 Extensions and concretizations of Newton methods . . . . . . . . . . . . . . . . 53
4.2.1 Linear solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Globalization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Storage reduction techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Abstract algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Optimization loop without assembling the Hessian . . . . . . . . . . . . 61
4.3.3 Optimization loop with assembling the Hessian . . . . . . . . . . . . . . 61
4.3.4 Comparison of the presented optimization loops . . . . . . . . . . . . . . 62

4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

i



Contents

5 A Priori Error Analysis 67
5.1 Continuous optimal control problem . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Stability estimates for the state and adjoint state . . . . . . . . . . . . . . . . . 70
5.3 Error analysis for the state equation . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Analysis of the temporal discretization error . . . . . . . . . . . . . . . . 77
5.3.2 Analysis of the spatial discretization error . . . . . . . . . . . . . . . . . 79

5.4 Error analysis for the optimal control problem . . . . . . . . . . . . . . . . . . . 82
5.4.1 Error in the control variable . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.2 Error in the state and adjoint state variable . . . . . . . . . . . . . . . . 87
5.4.3 Error in terms of the cost functional . . . . . . . . . . . . . . . . . . . . 91

5.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 A Posteriori Error Estimation and Adaptivity 97
6.1 Abstract error estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Error estimator for the cost functional . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Error estimator for an arbitrary functional . . . . . . . . . . . . . . . . . . . . . 102
6.4 Evaluation of the error estimators . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.1 Approximation of the weights . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.2 Localization of the error estimators . . . . . . . . . . . . . . . . . . . . . 111

6.5 Adaptive refinement algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.6 A heuristic error estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.7 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.7.1 Time-dependent Neumann boundary control . . . . . . . . . . . . . . . 118
6.7.2 Space- and time-dependent control by right-hand side . . . . . . . . . . 120
6.7.3 Comparison to a heuristic error estimator . . . . . . . . . . . . . . . . . 125

7 Applications 131
7.1 Surface hardening of steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.1.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.1.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Propagation of laminar flames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8 Conclusions and Perspectives 153

Acknowledgments 155

Utilized Software Platforms 157

List of Figures 161

List of Tables 163

List of Algorithms 165

Bibliography 167

ii



1 Introduction

This work is devoted to the development of efficient discretization techniques for the numerical
solution of optimization problems governed by parabolic partial differential equations (PDEs).
The two main topics covered by this thesis are the a priori and a posteriori error analysis for
Galerkin space-time finite element discretizations of such optimization problems. Thereby, the
a priori analysis investigates the convergence properties of the proposed discretizations and
proves the asymptotic dependence of the discretization error on the discretization parameters.
In contrast, the developed a posteriori error estimation techniques provide access to the
capabilities of adaptive refinement of all involved types of discretizations leading to algorithms
for the efficient numerical solution of the considered problems.

In particular, we investigate the numerical solution of constrained optimization problems where
the constraint is given by means of a parabolic PDE. From an abstract point of view, we
consider the minimization of a cost functional depending on the state u and the control q,
subject to a possibly nonlinear state equation

∂tu+A(q, u) = f,

u(0) = u0(q),

describing a mathematical model for the concrete physical process in mind. Here, both the
differential operator A and the initial condition u0 may depend on the control q. This allows a
simultaneous treatment of optimal control and parameter identification problems.

In the class of optimal control problems, the control q is employed to drive the considered
process into a desired state or to keep the process running within a region with certain desired
properties. Here, the operator A is typically given as

A(q, u) = C(u) +B(q)

with a (nonlinear) differential operator C and a usually linear control operator B. In parameter
identification problems, the variable q denotes unknown parameters. Here, one is interested in
recovering these parameters from observations which can be incorporated in the cost functional
by the least-squares approach.

Both optimal control and parameter identification problems are generally infinite-dimensional
optimization problems. For their numerical treatment, it is unavoidable to consider finite-
dimensional approximations of these problems. In the considered context of time-dependent
optimization problems, the finite-dimensional problems are constructed by discretization of
the state and the control variables in time and space. All steps of discretization involved
in this process induce errors. Hence, we observe a discretization error between the solution
(q, u) of the continuous optimization problem and the solution (qσ, uσ) of its finite-dimensional
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1 Introduction

approximation. The assessment of this error by a priori and a posteriori error analysis is the
main objective in this thesis.

The a priori analysis is derived for linear-quadratic optimal control problems. We prove
asymptotic convergence of the discretization error with respect to the different discretization
parameters for the time and space discretization of the state and the control variables. These
estimates rely on the regularity of the continuous optimal solution (q, u) which is itself
determined by the regularity of the data, by the smoothness of the computational domain, and
possibly by compatibility conditions between the initial condition, the right-hand side, and
the boundary conditions. In contrast, the concept of a posteriori error estimation provides
techniques for the automatic choice of suitable discretizations leading to efficient approximation
algorithms. Thereby, all the necessary information is obtained from the computed discrete
optimal solution (qσ, uσ) and no a priori information on the optimal solution (q, u) of the
continuous problem is needed.

Since, depending on the size of the finite-dimensional approximations, the consumption of
computing time for solving time-dependent optimization problems is comparatively high,
efficient adaptive refinement techniques viewed as model reduction approach are crucial for the
solution of such problems. The computations are quite expensive because of two reasons: The
computational costs for the simulation of nonstationary PDEs are already high, since in every
step of an (implicit) time stepping scheme a stationary PDE has to be solved. Additionally,
the costs for the optimization of a process usually exceed the costs for the simulation. Our
approach to cope with these difficulties is based on a posteriori error estimation which separately
assesses the discretization errors caused by all parts of Galerkin discretizations used to carry
the infinite-dimensional optimization problem to a finite-dimensional level. Thereby, the
discretization error is measured with respect to a given quantity of interest. For optimal
control problems, this quantity often coincides with the cost functional. However, in the
case of parameter identification problems, the cost functional acts only as an instrument for
identifying the unknown parameters and does not have any physical meaning. This motivates
the consideration of error estimation with respect to a quantity of interest given as a further
functional depending on the state and the control.

In what follows, we summarize the contents of the remaining chapters of the thesis at hand:

Theoretical Results

In Chapter 2, we introduce necessary notations and provide the precise formulation of the
considered abstract optimization problem in a suitable functional analytic setting. Furthermore,
standard techniques for proving existence and uniqueness of optimal solutions are sketched
and first and second order optimality conditions are derived. We close this chapter by
discussing different approaches for calculating first and second derivatives of the reduced cost
functional required for applying derivative-based optimization algorithms to PDE-constrained
optimization.

Space-Time Finite Element Discretization

Chapter 3 is devoted to the discretization of the considered nonstationary optimization
problems. To this end, we employ Galerkin finite element methods separately in space and
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time to discretize the state variable. The control variable is discretized by a Galerkin approach,
too. This allows us to give computable representations of the discrete gradient and Hessian
like done in Chapter 2 for the continuous problem. The use of exact discrete derivatives is
important for the convergence of optimization algorithms. Galerkin-type discretizations offer
a natural way of deriving the discrete adjoint formulations, since discretization by means of
the Galerkin approach exhibits the property that discretization and optimization interchange.
That is, the discretize-then-optimize approach equals the optimize-then-discretize approach in
this context. Furthermore, the a priori error analysis presented in Chapter 5 as well as our
systematic approach to a posteriori error estimation presented in Chapter 6 rely on the usage
of the proposed Galerkin discretizations.

We close this chapter by presenting some numerical tests confirming the correctness of the
discrete derivatives computed via the proposed concepts.

Algorithmic Aspects of Numerical Optimization

In Chapter 4, we address algorithmic aspects of numerical methods for solving the prototypical
PDE-constrained optimization problems considered in this thesis. We describe two abstract
variants of Newton-based optimization loops which are concretized afterwards in view of different
linear solvers and globalization techniques. We discuss possible globalization techniques such
as line search and trust-region methods as well as the aspects of efficiently solving the linear
systems arising in Newton methods. Thereby, we focus especially on matrix-free algorithms,
since assembling the entire Hessian is prohibitive in large scale optimization.

Before substantiating our approach by numerical tests, we analyze storage reduction techniques
which provide the possibility of reducing the amount of memory required for executing the
proposed optimizations algorithms. This so-called checkpointing approach reduces the storage
requirements during the computations of adjoint solutions by recomputing necessary solution
samples of the state equation.

A Priori Error Analysis

In Chapter 5, we develop an a priori error analysis for Galerkin finite element discretizations in
the case of a linear-quadratic optimal control problem. We provide error estimates of optimal
order with respect to all involved discretization parameters for the discretization of the state
space by discontinuous Galerkin methods in time and conforming continuous Galerkin methods
in space combined with different types of Galerkin discretizations for the control variable.

Moreover, in the derived estimates, the influences of the different types of discretizations and
also the influences of the temporal and spatial regularity properties of the optimal solution
are separated. For the lowest degrees of space and time discretizations, a result similar to
the one developed here can be found in the literature; see the introduction of Chapter 5 for
detailed references. Besides the fact that our result also holds for higher order discretizations,
we also do not need to impose conditions on the ratio of the temporal and spatial discretization
parameters; they can be chosen independently of each other.

3



1 Introduction

Apart from the a priori estimate for the error in the control variable, we also present convergence
results for the optimal state and the corresponding adjoint state. Additionally, an estimate for
the convergence of the error in terms of the optimal value of the cost functional is given.

To confirm the proved orders of convergence, we present numerical results for a configuration
with known analytical optimal solution.

A Posteriori Error Estimation and Adaptivity

The second focal point of this thesis is the derivation of a posteriori error estimates for space-
time finite element discretizations of parabolic optimization problems. In Chapter 6, we provide
error estimates that assess the discretization error with respect to a given quantity of interest
and separate the influences of different parts of the discretization (time and space discretization
of the state and discretization of the control) on this error. Thereby, the considered quantity
of interest may coincide with the cost functional of the optimization problem or may express
another goal for the computation.

The developed error estimation techniques rely on concepts for a posteriori error estimation for
optimization problems with elliptic constraints from Becker and Kapp [6] and Becker, Kapp,
and Rannacher [7] for the cost functional, and from Becker and Vexler [11, 12] for a different
quantity of interest. These approaches are extended to the case of optimization problems
governed by parabolic equations to establish efficient adaptive algorithms which successively
improve the accuracy of the computed solutions by constructing locally refined meshes for the
time and space discretizations.

Furthermore, an equilibration strategy is used to balance the different discretization errors by
deciding when to refine which of the involved discretizations. This procedure is crucial for the
efficiency of a space-time adaptive algorithm. It strongly depends on the availability of reliable
quantitative estimates for the separated discretization errors. In contrast to the error estimates
derived in this thesis, heuristic error indicators based for instance on smoothness properties of
the optimal solution do usually not meet these requirements. Also error estimators involving
interpolation or stability constants can not be employed for equilibration, since the values of
these constants are unknown for the concrete configuration of the optimization problem.

We conclude with the discussion of two numerical examples showing the capabilities of the
proposed techniques and demonstrating their advantages compared to a more heuristic based
mesh refinement.

Applications

In Chapter 7, we apply the developed a posteriori error analysis and the adaptive refinement
techniques to two optimization problems taken from the literature motivated by concrete
applications from engineering and chemistry.

As a first example, we consider the optimal control of a laser-induced hardening process of a
workpiece made of steel. Thereby, the goal of the optimization is to adjust the intensity of the
laser beam in such a way, that the thickness of the hardened part of the workpiece is close to
a desired hardening profile.
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In the second example, we consider a model for describing freely propagating laminar flames
through a channel and their response to a cooled obstacle. The modeling of this process is
done using a one-species reaction mechanism governed by an Arrhenius law. Our aim here is
to estimate an unknown parameter in this Arrhenius term. This is typical for situations where
the error in terms of the cost functional is of minor interest. Therefore, we assess here the
error directly in terms of the unknown parameter to be identified.

Conclusions and Perspectives

In the concluding last chapter, we summarize the results presented in the thesis at hand and
discuss some ideas on possible extensions and future work.
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2 Theoretical Results

In this chapter, we state the precise formulation of the optimization problems to be considered
and discuss some of their theoretical aspects.

In Section 2.1, we give some basic notations used throughout this thesis. Then, we continue in
Section 2.2 by formulating the optimization problem we deal with in an abstract functional
analytic manner. In Section 2.3, we sketch techniques for proving existence and uniqueness of
optimal solutions. After stating first and second order optimality conditions in Section 2.4,
we close this chapter with Section 2.5 by discussing different approaches to calculate first
and second derivatives of the reduced cost functional, necessary to apply derivative-based
optimization algorithms to PDE-constrained optimization problems.

2.1 Basic notations

Throughout this thesis, Ω denotes a bounded domain in Rn, n ∈ { 2, 3 }, with Lipschitz
boundary ∂Ω; see Grisvard [42] for the precise definition. Furthermore, we denote by I := (0, T )
a bounded time interval with 0 < T <∞.

We adopt the standard notations for Lebesgue spaces Lp(D) and Sobolev spaces Wm,p(D)
with 1 ≤ p ≤ ∞, m ∈ N, and D ⊆ Ω, D ⊆ ∂Ω, or D ⊆ I. Moreover, we use Lebesgue and
Sobolev spaces of mappings with values in a Banach space Z. These spaces are denoted by
Lp(D,Z) and Wm,p(D,Z). The standard spaces fit into this notation via the choice Z = R.
A detailed derivation of these spaces by means of the concepts of the Bochner integral can be
found for instance in Dautray and Lions [25] and Wloka [88]. For p = 2, we denote the spaces
Wm,2(D,Z) as usual by Hm(D,Z).

Table 2.1. Connection between the notation of the variables in numerical analysis
and optimal control theory

Variable Numerical analysis Optimal control theory

Control q u
State u y
Adjoint state z p

In contrast to the notation used in publications from optimization theory (cf. for example
Lions [53] or Tröltzsch [78]), we employ here the notation used in the numerical analysis
community. That is, we denote the control by q, the state by u, and the adjoint state by z.
The correspondence to the other notation is summarized in Table 2.1.
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2 Theoretical Results

2.2 Abstract optimization problem

The optimization problems considered in this thesis are formulated in the following abstract
setting: Let V and H be Hilbert spaces with

V
d
↪→ H,

where the injection of V into H is continuous and dense. H is identified with its dual space
H∗. With V ∗, the dual space of V , we have the Gelfand triple

V
d
↪→ H ∼= H∗

d
↪→ V ∗. (2.1)

In the triple (2.1), V is densely embedded inH andH∗ is densely embedded in V ∗. Additionally,
the corresponding injections are continuous. The duality pairing between the Hilbert space V
and its dual V ∗ is denoted by 〈·, ·〉V ∗×V .
Remark 2.1. Let i : V → H be the injection of V into H. Then, its dual i∗ : H∗ → V ∗ is the
injection of H∗ into V ∗. Because of the definition of i∗, every element h ∈ H ∼= H∗ can be
understood as linear continuous functional on V in virtue of the identity

〈i∗(h), v〉V ∗×V = (h, i(v))H ∀v ∈ V,

where (·, ·)H is the inner product of H. Since H∗ is densely embedded in V ∗, every functional
〈v∗, ·〉V ∗×V can be uniformly approximated by inner products (h, i(·))H . That is, we can
regard the continuous continuation of (·, ·)H onto V ∗ × V as new representation formula for
functionals in V ∗. A more detailed derivation of this concept can be found for example in
Gajewski, Gröger, and Zacharias [38], Lions [53], and Wloka [88].

We now tend to give the precise definition of the abstract optimization problem constrained
by a parabolic PDE. We consider on the time interval I the abstract parabolic equation

∂tu(t) +A(q(t), u(t)) = f(t) for almost all t ∈ I,
u(0) = u0(q(0)).

(2.2)

Here and in the sequel, q(t) from a spatial Hilbert space R denotes the control and u(t) ∈ V
denotes the state. The right-hand side is given by f(t) ∈ V ∗ and the initial condition is
modeled via u0 : R→ H.

In this abstract setting, we assume A : R×V → V ∗ to be a spatial differential operator which is
elliptic with respect to V and is given in weak form by the semilinear form ā : R× V × V → R

as
〈A(q̄, ū), v̄〉V ∗×V = ā(q̄, ū)(v̄) ∀ū, v̄ ∈ V, ∀q̄ ∈ R.

Remark 2.2. Here, both the differential operator A and the initial condition u0 may depend
on the control q. This allows a simultaneous treatment of both optimal control and parameter
identification problems. For optimal control problems, the operator A is typically given on
R× V by

A(q̄, ū) = C(ū)−B(q̄),

8



2.2 Abstract optimization problem

with a possibly nonlinear operator C : V → V ∗ and a usually linear control operator B : R→ V ∗.
In parameter identification problems, the variable q denotes the unknown parameters to be
determined and may enter the operator A in a nonlinear way. The case of initial control is
included via the q-dependent initial condition u0. Even if formulation (2.2) allows the control
q to enter via the differential operator A and the initial condition u0 at the same time, we
assume for simplicity throughout this thesis that either A or u0 depends on q.

To define the weak formulation of problem (2.2), we introduce the Hilbert space for the states
X := W (I) defined as

W (I) =
{
v
∣∣∣ v ∈ L2(I, V ) and ∂tv ∈ L2(I, V ∗)

}
.

It is well known that the space X is continuously embedded in C(Ī , H), see for example
Dautray and Lions [25].

To cover most of the possible concrete applications, the Hilbert space of the controls Q is
chosen as a subspace of L2(I,R), that is

Q ⊆ L2(I,R).

The inner product and the norm on Q are denoted by (·, ·)Q and ‖·‖Q, respectively.
Remark 2.3. This definition of the control space Q is motivated by the case when the control
enters via the semilinear form. But also the case of q-dependent initial condition is covered by
this choice by defining Q as

Q = P0(Ī , R) ⊆ L2(I,R),

where P0(Ī , R) denotes the space of constant polynomials defined on Ī with values in R.

After these preliminaries, we pose the state equation in a weak form: Find for given control
q ∈ Q a state u ∈ X such that∫

I
(∂tu(t), ϕ(t))H dt+

∫
I
ā(q(t), u(t))(ϕ(t)) dt =

∫
I
(f(t), ϕ(t))H dt ∀ϕ ∈ X,

u(0) = u0(q(0)),

where f ∈ L2(I, V ∗) represents the right-hand side of the state equation and u0 : R → H
denotes a mapping describing control-dependent initial conditions. Note, that the inner
products (∂tu(t), ϕ(t))H and (f(t), ϕ(t))H have to be understood accordingly to Remark 2.1.
The solvability of this equation is discussed at the beginning of the following section.

For simplicity of notation, we skip the index H at the inner product (·, ·) := (·, ·)H and rewrite
the state equation by means of the definitions

(v, w)I :=
∫
I
(v(t), w(t)) dt and a(q, u)(ϕ) :=

∫
I
ā(q(t), u(t))(ϕ(t)) dt

in the more compact representation

(∂tu, ϕ)I + a(q, u)(ϕ) + (u(0), ϕ(0)) = (f, ϕ)I + (u0(q), ϕ(0)) ∀ϕ ∈ X, (2.3)

9
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where the initial condition is coupled to the state equation by ϕ(0). This choice is motivated
by the definition of the Lagrangian given in Section 2.5; cf. also Remark 2.9. Additionally, we
skipped for brevity and also due to Remark 2.3 the argument “0” in the formulation of the
initial condition.

The objective or cost functional J : Q×X → R for stating the optimization problem is defined
using two functionals J1 : V → R and J2 : H → R by

J(q, u) :=
∫
I
J1(u(t)) dt+ J2(u(T )) + α

2
‖q − q̂‖2Q, (2.4)

where a regularization (or cost) term of Tikhonov type is added, which involves a regularization
parameter α ≥ 0 and a reference control q̂ ∈ Q.

The corresponding parabolic optimization problem is formulated as follows:

Minimize J(q, u) subject to (2.3), (q, u) ∈ Q×X. (P)

Now, we present four examples of linear-quadratic and also nonlinear parabolic optimization
problems fitting in the derived abstract framework:

Example 2.1 (Distributed control). We consider for a given desired solution profile û ∈
L2(I, L2(Ω)) the control problem

Minimize J(q, u) = 1
2

∫
I
‖u(t)− û(t)‖2L2(Ω) dt+ α

2

∫
I
‖q(t)− q̂(t)‖2L2(Ω) dt (2.5a)

subject to the linear heat equation with ε > 0

∂tu− ε∆u = q in Ω × I,
u = 0 on ∂Ω × I,
u = 0 on Ω × { 0 } .

(2.5b)

To embed this example in the abstract setting, we choose the spaces

H = L2(Ω), V = H1
0 (Ω), R = L2(Ω), and Q = L2(I,R) = L2(I, L2(Ω)),

define the functionals

J1(u(t)) = 1
2
‖u(t)− û(t)‖2L2(Ω) and J2(u(T )) = 0,

the semilinear form

a(q, u)(ϕ) =
∫
I

∫
Ω
ε∇u(x, t)∇ϕ(x, t) dx dt−

∫
I

∫
Ω
q(x, t)ϕ(x, t) dx dt,

and the right-hand side and the initial condition

f = 0 and u0(q) = 0.

10
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Example 2.2 (Neumann/Robin boundary control). We consider for a given desired state
û ∈ L2(Ω) the control problem

Minimize J(q, u) = 1
2
‖u(T )− û‖2L2(Ω) + α

2

∫
I
‖q(t)− q̂(t)‖2L2(∂Ω) dt

subject to the linear heat equation with Stefan Boltzmann boundary condition and β, ε > 0

∂tu− ε∆u = 0 in Ω × I,
ε∂nu = β(q4 − u4) on ∂Ω × I,

u = 0 on Ω × { 0 } .

To embed this example in the abstract setting, we choose the spaces

H = L2(Ω), V = H1(Ω), R = L2(∂Ω), and Q = L2(I,R) = L2(I, L2(∂Ω)),

define the functionals

J1(u(t)) = 0 and J2(u(T )) = 1
2
‖u(T )− û‖2L2(Ω),

the semilinear form

a(q, u)(ϕ) =
∫
I

∫
Ω
ε∇u(x, t)∇ϕ(x, t) dx dt−

∫
I

∫
∂Ω
β(q4(x, t)− u4(x, t))ϕ(x, t) ds dt,

and the right-hand side and the initial condition

f = 0 and u0(q) = 0.

Actually, we have to impose L∞-constraints on the control because otherwise q4 would in
general not be integrable. As we consider in this thesis only unconstrained optimization
problems, we assume here the constraint to be inactive at the optimal solution.

Example 2.3 (Control via initial condition). We consider for a given desired solution profile
û ∈ L2(I, L2(∂Ω)) the control problem

Minimize J(q, u) = 1
2

∫
I
‖u(t)− û(t)‖2L2(∂Ω) dt+ α

2
‖q − q̂‖2L2(Ω)

subject to the Ginzburg Landau equation with ε > 0

∂tu− ε∆u+ u+ u3 = 0 in Ω × I,
ε∂nu = 0 on ∂Ω × I,

u = q on Ω × { 0 } .

To embed this example in the abstract setting, we choose the spaces

H = L2(Ω), V = H1(Ω), R = L2(Ω), and Q = P0(Ī , R) = P0(Ī , L2(Ω)),

define the functionals

J1(u(t)) = 1
2
‖u(t)− û(t)‖2L2(∂Ω) and J2(u(T )) = 0,

11
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the semilinear form

a(q, u)(ϕ) =
∫
I

∫
Ω
ε∇u(x, t)∇ϕ(x, t) dx dt+

∫
I

∫
Ω

(u(x, t) + u3(x, t))ϕ(x, t) dx dt,

and the right-hand side and the initial condition

f = 0 and u0(q) = q.

Due to the choice of the control space Q, we have

α

2
‖q − q̂‖2L2(Ω) = α

2T

∫
I
‖q(t)− q̂‖2L2(Ω) dt = α

2T
‖q − q̂‖2Q,

and also this concrete regularization fits in the abstract framework with the scaled regularization
parameter α/T .

Up to now, all presented examples were control problems with infinite-dimensional control
space Q. The following last example shows that also parameter estimation problems with
finite-dimensional parameter space Q fit in our setting:

Example 2.4 (Parameter estimation). We consider for given reference measurements û ∈
L2(I, L2(Ω)n) the parameter estimation problem

Minimize J(q, u) = 1
2

∫
I
‖∇u(t)− û(t)‖2L2(Ω)n dt+ α

2
|q − q̂|2

subject to the nonlinear reaction-diffusion equation with ε > 0

∂tu− ε∆u+ exp(q2u) = 2 in Ω × I,
u = 0 on ∂Ω × I,
u = 0 on Ω × { 0 } .

To embed this example in the abstract setting, we choose the spaces

H = L2(Ω), V = H1
0 (Ω), R = R, and Q = P0(Ī , R) = P0(Ī ,R),

define the functionals

J1(u(t)) = 1
2
‖∇u(t)− û(t)‖2L2(Ω)n and J2(u(T )) = 0,

the semilinear form

a(q, u)(ϕ) =
∫
I

∫
Ω
∇u(x, t)∇ϕ(x, t) dx dt+

∫
I

∫
Ω

exp(q2u(x, t))ϕ(x, t) dx dt,

and the right-hand side and the initial condition

f = 2 and u0(q) = 0.

As in Example 2.3, the regularization employed here is equivalent to the regularization term
α/2T‖q − q̂‖2Q. However, in contrast to the examples presented before with infinite-dimensional

12
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control space, the solvability of this finite-dimensional parameter estimation problem can be
assured also for the case α = 0 under an additional condition on the cost functional: The
reference measurements û have to be chosen such that in the case α = 0 the minimum value
J∗ of the cost functional fulfills the relation

J∗ <
1
2

∫
I
‖û(t)‖2L2(Ω)n dt.

A proof of existence of optimal controls for the elliptic analog to this example utilizing such a
condition on the cost functional is given in Vexler [82]. This proof can be transfered directly
to the parabolic case considered here.

In these examples, the choice of the spaces is driven by the aim of fulfilling the minimal
requirements for stating the optimization problems. To guarantee solvability of the presented
problems or the uniqueness of solutions, the spaces potentially have to be restricted. For
further details, we refer to the following section and the literature cited therein.

Further examples of nonlinear parabolic control problems motivated from concrete applications
can be found for instance in Neittaanmäki and Tiba [64].

2.3 Existence and uniqueness of solutions

There is a number of publications, where the question of existence of solutions to optimization
problems as stated above is discussed; see for example the textbooks Lions [53], Fursikov [37],
and Tröltzsch [78]. Therein, the authors follow mainly two different approaches:

• The non-reduced approach, where the state and the control variables are treated explicitly.

• The reduced approach, where the state variable is eliminated and treated implicitly.

In what follows, we sketch how to apply the techniques from the reduced approach to the
considered optimization problems.

A key ingredient in proving the solvability of PDE-constrained optimization problems as (P)
via the reduced approach is the existence of a solution operator S which maps a given control
q to the unique solution u = S(q) of the state equation (2.3). That is, S is characterized by
the implicit relation

(∂tS(q), ϕ)I + a(q, S(q))(ϕ) + (S(q)(0), ϕ(0)) = (f, ϕ)I + (u0(q), ϕ(0)) ∀ϕ ∈ X. (2.6)

Obviously, the existence of a solution operator is implied by the property of unique solvability
of the state equation. There are several sets of assumptions on the structure of the bilinear
form a(·, ·)(·) and its dependence on the control variable ensuring existence and uniqueness
of solutions to the considered state equation. We do not rely on a specific set but assume
throughout this thesis the existence of a solution operator S : Q → X. This assumption is
illustrated for the configuration of Example 2.1 at the end of this section.

13
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Provided the assumed existence of the solution operator S, we are able to define the reduced
cost functional j : Q→ R by

j(q) := J(q, S(q)).

This definition allows us to reformulate problem (P) as the unconstrained optimization
problem

Minimize j(q), q ∈ Q. (Pred)

The reduced formulation enables us to apply the classical existence theorem from the calculus
of variations to the abstract optimization problem under consideration. We recall here the
formulation from Dacorogna [24]:

Theorem 2.1. Let the reduced cost functional j : Q→ R be weakly lower semicontinuous, that
is

lim inf
i→∞

j(qi) ≥ j(q) whenever qi ⇀ q in Q,

and let j be coercive over Q, that is

j(q) ≥ α‖q‖Q + β

for every q ∈ Q and for some α > 0, β ∈ R. Then, problem (Pred) has at least one solution
q ∈ Q.

Proof. Let (qi)i∈N be a minimizing sequence for (Pred), that is

j(qi)→ inf
r∈Q

j(r).

From the hypothesis of coercivity we may deduce for i > i0, i0 large enough, that there exists
K > 0 such that

‖qi‖Q < K ∀i > i0.

Since Q is a Hilbert space, we can extract a weakly convergent subsequence (also denoted by
(qi)i∈N) such that

qi ⇀ q in Q.

Then, the weak lower semicontinuity of j implies the result.

To prove uniqueness of solutions to optimization problem (Pred), stronger requirements on the
functional j have to be imposed:

Theorem 2.2. Let the reduced cost functional j fulfill the hypotheses of Theorem 2.1. If j is
additionally strongly convex on Q, that is

j(λq1 + (1− λ)q2) < λj(q1) + (1− λ)j(q2)

for all λ ∈ (0, 1) and all q1, q2 ∈ Q with q1 6= q2, then problem (Pred) has a unique solution.
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Proof. Assume q1 and q2 are two solutions of (Pred). Then, we have for arbitrary λ ∈ (0, 1)

j(λq1 + (1− λ)q2) < λj(q1) + (1− λ)j(q2) = min
q∈Q

j(q),

which is a contradiction.

The main difficulty in applying these theorems to concrete PDE-constrained optimization
problems is to verify the conditions proposed on the reduced cost functional j. We present here
just the construction of proving existence and uniqueness in the abstract setting established in
Section 2.2 for the linear-quadratic optimization problem (2.5) considered in Example 2.1.
Remark 2.4. For several concrete configurations, the requirement on the reduced cost functional
to be lower semicontinuous can not be met. In many of these situations, the solvability of the
optimization problems can still be proven using the non-reduced approach.

The first step is to ensure the unique solvability of the state equation which is here the linear
heat equation:

Theorem 2.3. Let H = L2(Ω) and V = H1
0 (Ω). Then, the linear parabolic equation

∂tu− ε∆u = f in Ω × I,
u = 0 on ∂Ω × I,
u = u0 on Ω × { 0 }

admits for f ∈ L2(I, V ∗), u0 ∈ H, and ε > 0 a unique solution u ∈ X. Furthermore, the
solution depends continuously on the data, that is the mapping

(f, u0) 7→ u

is continuous from L2(I, V ∗)×H to X.

Proof. The proof can be found for instance in Lions [53] and Wloka [88].

Theorem 2.3 implies the linearity and continuity of the solution operator S : Q→ X, q 7→ u of
the state equation (2.5b). Then, the reduced cost functional j : Q→ R,

j(q) = J(q, S(q)) = 1
2

∫
I
‖S(q)(t)− û(t)‖2L2(Ω) dt+ α

2

∫
I
‖q(t)‖2L2(Ω) dt

is continuous and convex. Thus, j is weakly lower semicontinuous; cf. Dacorogna [24]. Since j
is coercive for α > 0, we may apply Theorem 2.1 to obtain, that optimization problem (2.5)
admits at least one solution in this case. Moreover, α > 0 implies strong convexity of j and,
by Theorem 2.2, the solution of (2.5) is unique.

The steps in proving existence and uniqueness of optimal solutions for a wider class of
optimization problems, for example for the case of semilinear state equations, are quite similar
to the presented linear-quadratic case. However, the proofs are more involved since the
nonlinearities have to be treated, too. Furthermore, the solution operator S is nonlinear and
thus, the continuity of J does no longer imply weak lower semicontinuity of j. Examples of
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such proofs for concrete problems can be found for instance in the textbooks cited at the
beginning of this section.

Since this topic is not the major purpose of this thesis, we will not go more into detail and
assume in what follows that problem (P) admits a (locally) unique solution. Moreover, we
assume the existence of a neighborhood W ⊆ Q×X of the optimal solution, such that the
linearized operator A′u(q(t), u(t)) : V → V ∗ is an isomorphism for all (q, u) ∈W and almost all
t ∈ I. This assumption allows all considered linearized and adjoint problems stated in this
thesis to be well posed.

2.4 Optimality conditions

In this section, we formulate standard necessary and sufficient optimality conditions for the
reformulated unconstrained optimization problem (Pred).

The theorems presented in the previous section ensure the existence and uniqueness of global
solutions. The optimality conditions presented here are formulated more generally by means
of local solutions: A control q ∈ Q is called local solution of the optimization problem (Pred) if
there exists a neighborhood Q0 ⊆ Q containing q such that

j(q) ≤ j(r) ∀r ∈ Q0.

Before presenting the optimality conditions, we recall for the convenience of the reader the
standard definitions of differentiability in normed vector spaces, which can be found for example
in Jahn [47]:

Definition 2.1 (Directional derivative). Let Y and Z be normed vector spaces, Y0 be a
nonempty subset of Y and f : Y0 → Z be a given mapping. If for two elements y ∈ Y0 and
δy ∈ Y the limit

f ′(y)(δy) := lim
λ↓0

f(y + λδy)− f(y)
λ

exists, then f ′(y)(δy) is called the directional derivative of f at y in direction δy. If this limit
exists for all δy ∈ Y , then f is called directionally differentiable at y.

Definition 2.2 (Gâteaux derivative). Let Y and Z be normed vector spaces, Y0 be a nonempty
subset of Y . A directionally differentiable mapping f : Y0 → Z is called Gâteaux differentiable
at y ∈ Y0, if the directional derivative f ′(y) is a continuous linear mapping from Y to Z. f ′(y)
is then called Gâteaux derivative of f at y.

Definition 2.3 (Fréchet derivative). Let Y and Z be normed vector spaces, Y0 be a nonempty
subset of Y and f : Y0 → Z be a given mapping. Furthermore let an element y ∈ Y0 be given.
If there is a continuous linear mapping f ′(y) : Y → Z with the property

lim
‖δy‖Y→0

‖f(y + δy)− f(y)− f ′(y)(δy)‖Z
‖δy‖Y

= 0,

then f ′(y) is called the Fréchet derivative of f at y and f is called Fréchet differentiable at y.
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Remark 2.5. The given definitions of the different kinds of derivatives can directly be extended
to higher order derivatives. We give here as example the definition of second order Fréchet
derivatives: If f : Y0 → Z is Fréchet differentiable at all y ∈ Y0 and the mapping f ′ : Y0 →
L(Y,Z) is Fréchet differentiable at y ∈ Y0, then f is called two times Fréchet differentiable at
y. The second derivative is denoted by f ′′(y) := (f ′)′(y). We call f two times continuously
Fréchet differentiable at y ∈ Y0 if the second derivative f ′′ is continuous in y.

We are now prepared to state the first and second order necessary and second order sufficient
optimality conditions. The proofs follow the classical techniques, see for instance Tröltzsch [78],
and are presented here just for completeness.

Theorem 2.4 (First order necessary optimality condition). Let the reduced cost functional j
be Gâteaux differentiable on an open subset Q0 ⊆ Q. If q ∈ Q0 is a local optimal solution of
the optimization problem (Pred), then there holds the first order necessary optimality condition

j′(q)(δq) = 0 ∀δq ∈ Q. (2.7)

Proof. For given direction δq ∈ Q, there exists λ > 0 such that q+λδq ∈ Q0 and j(q+λδq) ≥ j(q).
Then, we have

j(q + λδq)− j(q)
λ

≥ 0.

With λ tending to 0, we obtain
j′(q)(δq) ≥ 0.

Since the Gâteaux derivative is linear in δq and since with δq also −δq is a feasible direction,
we achieve the stated condition.

Remark 2.6. If a convex (not necessary open) subset Q0 ⊆ Q is considered, the first order
necessary optimality condition (2.7) is given as the variational inequality

j′(q)(q − δq) ≥ 0 ∀δq ∈ Q0.

This situation occurs in many application problems where additional constraints on the control
variable have to be imposed.
Remark 2.7. If the functional j is additionally convex, that is

j(λq1 + (1− λ)q2) ≤ λj(q1) + (1− λ)j(q2)

for all λ ∈ [0, 1] and all q1, q2 ∈ Q, then condition (2.7) is also sufficient for q to be a solution
of (Pred).

Theorem 2.5 (Second order necessary optimality condition). Let the reduced cost functional
j be two times continuously Fréchet differentiable on an open subset Q0 ⊆ Q. If q ∈ Q0 is a
local optimal solution of the optimization problem (Pred), then there holds the second order
necessary optimality condition

j′′(q)(δq, δq) ≥ 0 ∀δq ∈ Q.
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Proof. For given δq ∈ Q, there is λ > 0 such that q + λδq ∈ Q0. It holds by Taylor expansion

0 ≤ j(q + λδq)− j(q) = λj′(q)(δq) + λ2

2
j′′(q)(δq, δq) + rj2(q, λδq)

with the remainder term rj2 of second order. Applying the first order necessary optimality
condition and dividing by λ2/2 leads to

0 ≤ j′′(q)(δq, δq) + 2rj2(q, λδq)
λ2 .

Tending to the limit λ ↓ 0 yields the stated condition.

Theorem 2.6 (Second order sufficient optimality condition). Let the reduced cost functional
j be two times continuously Fréchet differentiable on a neighborhood Q0 ⊆ Q of q. Moreover,
let the control q fulfill the first order necessary optimality condition

j′(q)(δq) = 0 ∀δq ∈ Q

and assume the existence of γ > 0 such that the second order sufficient optimality condition

j′′(q)(δq, δq) ≥ γ‖δq‖2Q ∀δq ∈ Q

is valid. Then, a constant ρ > 0 exists such that the quadratic growth condition

j(q + δq) ≥ j(q) + γ

4
‖δq‖2Q

holds for all δq ∈ Q with ‖δq‖Q ≤ ρ. Consequently, q is a local solution of the optimization
problem (Pred).

Proof. By means of Taylor expansion, we obtain with some θ ∈ (0, 1) for ρ chosen small enough
such that q + δq ∈ Q0 for ‖δq‖Q ≤ ρ

j(q + δq) = j(q) + j′(q)(δq) + 1
2
j′′(q + θδq)(δq, δq)

= j(q) + 1
2
j′′(q + θδq)(δq, δq)

= j(q) + 1
2
j′′(q)(δq, δq) + 1

2
[j′′(q + θδq)− j′′(q)](δq, δq).

For ‖δq‖Q ≤ ρ small, the proposed continuity of j′′ yields∣∣[j′′(q + θδq)− j′′(q)](δq, δq)
∣∣ ≤ γ

2
‖δq‖2Q.

In total, we achieve by applying the second assumption

j(q + δq) ≥ j(q) + γ

2
‖δq‖2Q −

γ

4
‖δq‖2Q = j(q) + γ

4
‖δq‖2Q,

which is the stated result.

Remark 2.8. Often, j is Fréchet differentiable with respect to a “stronger” space Q̃ ⊂ Q and
the coercivity of j′′ can only be shown with respect to Q. In this situation, the so called
two-norm-discrepancy occurs and the second order sufficient condition has to be formulated
using the norms of both spaces Q̃ and Q; see for instance Tröltzsch [78] for details on this.
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2.5 Representation formulas for the derivatives

For evaluating the optimality conditions stated in the previous section and to apply derivative-
based optimization algorithms to the optimization problem under consideration, it is necessary
to provide computable representations of the first and second derivatives of the reduced cost
functional j. Here, “computable” has to be understood in the sense, that similar expressions
can be evaluated on the discrete level; see Chapter 3.

In this section, we establish different computable representations of the derivatives and discuss
their advantages and disadvantages depending on the concrete configuration of the optimization
problem. The presented construction is already published in Becker, Meidner, and Vexler [8].
Similar derivations of the presented concepts for other types of state equations or in terms of
operators instead of semilinear forms can be found in Becker [2, 3] and Ulbrich [79].

Throughout this thesis, we assume the semilinear form a, the cost functional J , and the
solution operator S to be smooth enough that all required directional derivatives exist; see
for instance Tröltzsch [78] for a discussion on Fréchet differentiability of S in some model
configurations. We indicate the variables to which the directional derivatives are applied by a
subscript. For instance a′q(q, u)(δq, ϕ) denotes the directional derivative of the semilinear form
a(q, u)(ϕ) with respect to q in direction δq.

2.5.1 First derivatives

The most obvious approach for calculating the first derivatives of j is the so-called sensitivity
approach. For q ∈ Q and a direction δq ∈ Q, the chain rule yields with u = S(q) for the
directional derivative j′(q) the expression

j′(q)(δq) = α(q − q̂, δq)Q +
∫
I
J ′1(u)(δu) dt+ J ′2(u(T ))(δu(T )). (2.8)

Here, the sensitivity δu := S′(q)(δq) ∈ X is required to evaluate this expression. By totally
differentiating the state equation (2.3) with respect to q in the direction δq (see Becker [2] for
a rigorous justification of this procedure), we obtain

(∂tδu, ϕ)I + a′u(q, u)(δu, ϕ) + (δu(0), ϕ(0))
= −a′q(q, u)(δq, ϕ) + (u′0(q)(δq), ϕ(0)) ∀ϕ ∈ X. (2.9)

Hence, the sensitivity δu is given as the solution of the linearized state equation (2.9). Therefore,
to calculate the directional derivative j′(q)(δq) for a given direction δq via the sensitivity
approach, the following two steps are required (additionally to the solution of the state
equation for q ∈ Q):

(i) Compute the sensitivity δu ∈ X by solving (2.9).

(ii) Compute j′(q)(δq) via (2.8).
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This procedure is expensive if the whole derivative j′(q) respectively the gradient ∇j(q) is
required, as in this case for a whole basis { δqi } of Q, the derivatives j′(q)(δqi) have to be
computed. Since each of these evaluations requires the solution of a linear parabolic equation,
this procedure rapidly becomes prohibitive for large dimensions of the (discretized) control
space.

We now derive a more efficient way to represent the derivative j′(q). For this so-called adjoint
approach, we make use of the Lagrangian L : Q×X ×X → R of the optimization problem (P)
defined by

L(q, u, z) := J(q, u) + (f − ∂tu, z)I − a(q, u)(z) + (u0(q)− u(0), z(0)).

Remark 2.9. In the given definition of the Lagrangian, the choice of the Lagrange multiplier
z(0) ∈ H for the initial condition u0(q) − u(0) seems to be arbitrary. However, choosing
a second independent Lagrange multiplier z̃ ∈ H for coupling the initial condition yields
necessarily the condition z̃ = z(0) in stationary points of the Lagrangian. Hence, the a priori
choice of z̃ = z(0) constitutes no restriction.

By means of the useful identity

j(q) = J(q, u) = L(q, u, z),

which holds true for u = S(q) and arbitrary z ∈ X, we obtain with the abbreviation δu =
S′(q)(δq) the following expression of the directional derivative j′(q)(δq) in terms of derivatives
of the Lagrangian:

j′(q)(δq) = L′q(q, u, z)(δq) + L′u(q, u, z)(δu).

If we now determine the adjoint state z ∈ X such that the adjoint equation

L′u(q, u, z)(ϕ) = 0 ∀ϕ ∈ X

is fulfilled, then we obtain the expression

j′(q)(δq) = L′q(q, u, z)(δq)
= α(q − q̂, δq)Q − a′q(q, u)(δq, z) + (u′0(q)(δq), z(0)).

(2.10)

The adjoint equation is given in explicit form as

− (ϕ, ∂tz)I + a′u(q, u)(ϕ, z) + (ϕ(T ), z(T ))

=
∫
I
J ′1(u)(ϕ) dt+ J ′2(u(T ))(ϕ(T )) ∀ϕ ∈ X. (2.11)

It is obtained by integration by parts with respect to time which is admissible for functions in
X; cf. Wloka [88].

For evaluating the directional derivative j′(q)(δq) in a given direction δq via the adjoint
approach, the following two steps are required:

(i) Compute the adjoint state z ∈ X by solving (2.11).

(ii) Compute j′(q)(δq) via (2.10).
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2.5 Representation formulas for the derivatives

In contrast to the proceeding in the sensitivity approach, here the adjoint equation has to be
solved only once—even if the whole derivative j′(q) is needed. This is because the adjoint
equation does not depend on the direction δq. If j′(q)(δqi) is required for a basis { δqi } of
Q, only expression (2.10) has to be evaluated one by one for each δq ∈ { δqi }. Thus, this
variant of expressing the first derivatives of the reduced cost functional j is also applicable to
optimization problems with high-dimensional (discretized) control space.
Remark 2.10. Due to the regularity assumption on the linearization of the semilinear form,
the necessary optimality condition of first order stated in Theorem 2.4 in terms of the reduced
functional is equivalent to the existence of a triple (q, u, z) ∈ Q×X ×X solving the optimality
system of problem (P). It is given by the derivatives of the Lagrangian defined above:

L′z(q, u, z)(ϕ) = 0 ∀ϕ ∈ X (State equation),
L′u(q, u, z)(ϕ) = 0 ∀ϕ ∈ X (Adjoint equation),
L′q(q, u, z)(ψ) = 0 ∀ψ ∈ Q (Gradient equation).

(2.12)

2.5.2 Second derivatives

We now turn to the calculation of the second derivatives of the reduced cost functional. They
are needed for instance for the evaluation of the second order optimality condition or to apply
second order optimization algorithms like Newton’s method to solve problem (Pred).

Since the sensitivity approach was not competitive for the computation of the first derivatives,
we restrict ourselves to the adjoint approach. Even though, we obtain two different repre-
sentations of the second derivatives. But in contrast to the two representations of the first
derivatives, they are both applicable and have their advantages in different configurations of
concrete optimization problems.

For representing the second derivatives, we take into account the implicit dependence of the
adjoint solution z on the control due to (2.11): We assume the existence of a sufficiently
smooth solution operator T : Q→ X with z = T (q). Then, differentiation of

j(q) = L(q, u, z) = L(q, S(q), T (q))

yields for two given directions δq, τq ∈ Q

j′′(q)(δq, τq) = L′′qq(q, u, z)(δq, τq) + L′′qu(q, u, z)(δq, τu) + L′′qz(q, u, z)(δq, τz)

+ L′′uq(q, u, z)(δu, τq) + L′′uu(q, u, z)(δu, τu) + L′′uz(q, u, z)(δu, τz)

+ L′′zq(q, u, z)(δz, τq) + L′′zu(q, u, z)(δz, τu)

+ L′u(q, u, z)(δτu) + L′z(q, u, z)(δτz).

(2.13)

The abbreviations of the directions obtained by the chain rule are defined as

δu := S′(q)(δq), τu := S′(q)(τq), δτu := S′′(q)(δq, τq),
δz := T ′(q)(δq), τz := T ′(q)(τq), δτz := T ′′(q)(δq, τq).
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2 Theoretical Results

Since u is assumed to be a solution of the state equation (2.3) and z to be a solution of the
adjoint equation (2.11), the two terms in the last line of (2.13) vanish. Consequently, we
obtain the representation

j′′(q)(δq, τq) = L′′qq(q, u, z)(δq, τq) + L′′qu(q, u, z)(δq, τu) + L′′qz(q, u, z)(δq, τz)

+ L′′uq(q, u, z)(δu, τq) + L′′uu(q, u, z)(δu, τu) + L′′uz(q, u, z)(δu, τz)

+ L′′zq(q, u, z)(δz, τq) + L′′zu(q, u, z)(δz, τu).

(2.14)

Here, the boxes indicate the two different possibilities to express the second derivatives, which
we discuss in what follows:

(I) We collect all terms containing the directions τz and τu and require them to be zero for
all possible directions by choosing δu ∈ X and δz ∈ X such that

L′′qz(q, u, z)(δq, ϕ) + L′′uz(q, u, z)(δu, ϕ) = 0 ∀ϕ ∈ X, (2.15a)
L′′qu(q, u, z)(δq, ϕ) + L′′uu(q, u, z)(δu, ϕ) + L′′zu(q, u, z)(δz, ϕ) = 0 ∀ϕ ∈ X. (2.15b)

These terms are the parts of (2.14) boxed by solid lines. Then, the remainder parts are
the expression of the second derivative:

j′′(q)(δq, τq) = L′′qq(q, u, z)(δq, τq) + L′′uq(q, u, z)(δu, τq) + L′′zq(q, u, z)(δz, τq). (2.16)

(II) We collect all terms containing the directions τz and δz and require them to be zero for
all possible directions by choosing δu ∈ X and τu ∈ X such that

L′′qz(q, u, z)(δq, ϕ) + L′′uz(q, u, z)(δu, ϕ) = 0 ∀ϕ ∈ X, (2.17a)
L′′zq(q, u, z)(ϕ, τq) + L′′zu(q, u, z)(ϕ, τu) = 0 ∀ϕ ∈ X. (2.17b)

These are the parts of (2.14) boxed by dashed lines. Then, the remainder parts are the
expression of the second derivative:

j′′(q)(δq, τq) = L′′qq(q, u, z)(δq, τq) + L′′qu(q, u, z)(δq, τu)
+ L′′uq(q, u, z)(δu, τq) + L′′uu(q, u, z)(δu, τu). (2.18)

Before discussing the advantages and disadvantages of the two derived representations, we
first present the concrete form of the expressions formulated in terms of the Lagrangian above.
First, we note that the equations (2.15a), (2.17a), and (2.17b) are identical if we are allowed
to change the order of taking derivatives. Taking the concrete form of the Lagrangian into
account, we obtain the explicit formulation of these three equations for δu ∈ X:

(∂tδu, ϕ)I + a′u(q, u)(δu, ϕ) + (δu(0), ϕ(0)) = −a′q(q, u)(δq, ϕ) + (u′0(q)(δq), ϕ(0)) ∀ϕ ∈ X.

This is the already known linearized state or tangent equation (2.9).

The explicit formulation of (2.15b) is given by an additional adjoint equation for δz ∈ X:

− (ϕ, ∂tδz)I + a′u(q, u)(ϕ, δz) + (ϕ(T ), δz(T )) = −a′′uu(q, u)(δu, ϕ, z)

− a′′qu(q, u)(δq, ϕ, z) +
∫
I
J ′′1 (u)(δu, ϕ) dt+ J ′′2 (u(T ))(δu(T ), ϕ(T )) ∀ϕ ∈ X. (2.19)
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2.5 Representation formulas for the derivatives

Let us now summarize the necessary computational steps to assess the second derivative
j′′(q)(δq, τq) in two given directions δq and τq. We therefor assume that the state u and adjoint
state z are already computed for the given control q.

(I) (i) Compute the solution δu ∈ X of the tangent equation (2.9) for the direction δq.

(ii) Compute the solution δz ∈ X of the additional adjoint equation (2.19).

(iii) Compute j′′(q)(δq, τq) via:

j′′(q)(δq, τq) = α(δq, τq)Q − a′′qq(q, u)(δq, τq, z)− a′′uq(q, u)(δu, τq, z)
− a′q(q, u)(τq, δz) + (u′0(q)(τq), δz(0)) + (u′′0(q)(δq, τq), z(0)). (2.20)

(II) (i) Compute the solution δu ∈ X of the tangent equation (2.9) for the direction δq.

(ii) Compute the solution τu ∈ X of the tangent equation (2.9) for the direction τq.

(iii) Compute j′′(q)(δq, τq) via:

j′′(q)(δq, τq) = α(δq, τq)Q +
∫
I
J ′′1 (u)(δu, τu) dt+ J ′′2 (u(T ))(δu(T ), τu(T ))

− a′′qq(q, u)(δq, τq, z)− a′′uq(q, u)(δu, τq, z)− a′′qu(q, u)(δq, τu, z)
− a′′uu(q, u)(δu, τu, z) + (u′′0(q)(δq, τq), z(0)). (2.21)

If the derivative j′′(q)(δq, τq) is required only once for two given directions δq and τq, the
approaches (I) and (II) have the same effort. However, if j′′(q)(δq, τq) has to be evaluated for
one δq and τq running through a basis { τqi } of Q, approach (I) is much more efficient than
approach (II) since in (I) the auxiliary solutions do not depend on τq ∈ { τqi } and have to be
computed only once. Conversely, if j′′(q)(τqi, τqj) is required for a basis { τqi }, it is cheaper
to use approach (II) because here we only need to solve the tangent equation (2.9) for all
δq ∈ { τqi } and do not need to compute the solutions of the additional adjoint equation (2.19).
A criterion indicating in which situations one should use which approach inside a Newton-based
optimization loop is given in Chapter 4.

Finally, we collect the representations of the three auxiliary equations for comparing them
later on with the corresponding discrete equations established in Chapter 3. First, we recall
the formulations in terms of derivatives of the Lagrangian:

Adjoint: Find z ∈ X such that

L′u(q, u, z)(ϕ) = 0 ∀ϕ ∈ X.

Tangent: Find δu ∈ X such that

L′′qz(q, u, z)(δq, ϕ) + L′′uz(q, u, z)(δu, ϕ) = 0 ∀ϕ ∈ X.

Additional Adjoint: Find δz ∈ X such that

L′′qu(q, u, z)(δq, ϕ) + L′′uu(q, u, z)(δu, ϕ) + L′′zu(q, u, z)(δz, ϕ) = 0 ∀ϕ ∈ X.
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2 Theoretical Results

Explicitly, the equations are given as follows:

Adjoint: Find z ∈ X such that

− (ϕ, ∂tz)I + a′u(q, u)(ϕ, z) + (ϕ(T ), z(T ))

=
∫
I
J ′1(u)(ϕ) dt+ J ′2(u(T ))(ϕ(T )) ∀ϕ ∈ X. (2.11)

Tangent: Find δu ∈ X such that

(∂tδu, ϕ)I + a′u(q, u)(δu, ϕ) + (δu(0), ϕ(0))
= −a′q(q, u)(δq, ϕ) + (u′0(q)(δq), ϕ(0)) ∀ϕ ∈ X. (2.9)

Additional Adjoint: Find δz ∈ X such that

− (ϕ, ∂tδz)I + a′u(q, u)(ϕ, δz) + (ϕ(T ), δz(T )) = −a′′uu(q, u)(δu, ϕ, z)

− a′′qu(q, u)(δq, ϕ, z) +
∫
I
J ′′1 (u)(δu, ϕ) dt+ J ′′2 (u(T ))(δu(T ), ϕ(T )) ∀ϕ ∈ X. (2.19)
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3 Space-Time Finite Element Discretization

In this chapter, we discuss suitable discretizations of the optimization problem (P). To this end,
we use Galerkin finite element methods separately in space and time for discretizing the state
equation. This allows us to give a natural computable representation of the discrete gradient
and Hessian in the same manner as shown in Section 2.5 for the continuous problem. The use
of exact discrete derivatives is important for the convergence of the optimization algorithms
given in Chapter 4. Moreover, our systematic approach to a priori and a posteriori error
estimation (cf. the Chapters 5 and 6) relies on the usage of Galerkin discretizations. In addition,
the proposed Galerkin discretizations exhibit the property that the discretize-then-optimize
approach and the optimize-then-discretize approach lead to the same discrete systems.

Section 3.1 is devoted to the semidiscretization in time by continuous Galerkin (cG) and
discontinuous Galerkin (dG) methods. Section 3.2 deals with the space discretization of the
semidiscrete problems arising from time discretization. This is done by means of continuous
Galerkin finite element methods. The discretization of the control space Q is treated in
Section 3.3. Since this part of the discretization depends strongly on the concrete choice
of the control space Q, it is kept rather abstract by choosing a finite-dimensional subspace
Qd ⊆ Q. Nevertheless, possible concretizations are discussed on the basis of the examples given
in Section 2.2. Two concrete variants of the proposed discretizations, which are equivalent
to some time stepping schemes, are presented in Section 3.4. Finally, in Section 3.5, we
discuss a possibility of numerically proving the crucial property of exactness of the computed
discrete derivatives of the reduced cost functional. We close this chapter by substantiating the
representation formulas for the derivatives by numerical experiments.

3.1 Time discretization of the state variable

We consider two Galerkin finite element methods for the time discretization of the state
equation (2.3) of optimization problem (P). A more detailed introduction and motivation of
the concepts presented in the sequel can be found for instance in the textbook of Eriksson,
Estep, Hansbo, and Johnson [29].

The first type of discretization we consider, is defined using discontinuous trial and test
functions of degree r. We call this method discontinuous Galerkin method of degree r or simply
dG(r) method; see Section 3.1.1. The second method considered is defined using continuous
trial functions of degree r and discontinuous test functions of degree r − 1. This method is
called continuous Galerkin method of degree r or cG(r) method; see Section 3.1.2.
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3 Space-Time Finite Element Discretization

To define the proposed semidiscretizations in time, let us partition the time interval Ī = [0, T ]
as

Ī = { 0 } ∪ I1 ∪ I2 ∪ · · · ∪ IM−1 ∪ IM
with left open and right closed subintervals Im = (tm−1, tm] of size km := tm − tm−1 and time
points

0 = t0 < t1 < · · · < tM−1 < tM = T.

The discretization parameter k is defined as piecewise constant function by setting k
∣∣
Im

:= km
for m = 1, 2, . . . ,M . Especially in the theoretical analysis presented in Chapter 5, we use the
symbol k also for the maximal length of a subinterval, that is

k := max
m=1,2,...,M

km.

By means of the subintervals Im, we define for r ∈ N0 the two semidiscrete spaces Xr
k and X̃r

k

by
Xr
k :=

{
vk ∈ C(Ī , H)

∣∣∣ vk∣∣Im ∈ Pr(Im, V ), m = 1, 2, . . . ,M
}
,

X̃r
k :=

{
vk ∈ L2(I,H)

∣∣∣ vk∣∣Im ∈ Pr(Im, V ), m = 1, 2, . . . ,M and vk(0) ∈ H
}
.

Here, Pr(Im, V ) denotes the space of polynomials up to order r defined on Im with values
in V . Thus, Xr

k consist of functions which are continuous and piecewise polynomials with
respect to time. This space is used as trial space in the continuous Galerkin method. The
functions in X̃r

k do not have to be continuous, they may have discontinuities at the borders of
the subintervals Im. This space is used as test space in the continuous Galerkin method and
as trial and test space in the discontinuous Galerkin method.
Remark 3.1. By construction, we have the inclusion Xr

k ⊆ X. However, such an inclusion does
not hold for X̃r

k since we have X ⊆ C(Ī , H) and X̃r
k 6⊆ C(Ī , H).

3.1.1 Discontinuous Galerkin methods

When using dG(r) methods, we define the solution uk in the space X̃r
k of piecewise polynomials

of degree r. To account for discontinuities of functions vk ∈ X̃r
k at the time nodes tm, we

introduce the notations

v+
k,m := lim

t↓0
vk(tm + t), v−k,m := lim

t↓0
vk(tm − t) = vk(tm), and [vk]m := v+

k,m − v
−
k,m.

That is, v+
k,m is the limit “from above”, v−k,m is the limit “from below”, and [vk]m is the “jump”

in vk(t) at time tm. This notation is depicted in Figure 3.1.

Then, the dG(r) semidiscretization of the state equation (2.3) reads: Find for given control
qk ∈ Q a state uk ∈ X̃r

k such that

M∑
m=1

(∂tuk, ϕ)Im + a(qk, uk)(ϕ) +
M−1∑
m=0

([uk]m, ϕ+
m) + (u−k,0, ϕ

−
0 )

= (f, ϕ)I + (u0(qk), ϕ−0 ) ∀ϕ ∈ X̃r
k . (3.1)

26



3.1 Time discretization of the state variable

v−k,m

v+
k,m

[vk]m

tm−1 tm tm+1

Im

vk

Figure 3.1. Notation for the dG(r) method in the case r = 0

Here, (v, w)Im is defined on Im correspondingly to the definition of (v, w)I on I by

(v, w)Im :=
∫
Im

(v(t), w(t)) dt.

Remark 3.2. Many authors prefer the formulation

M∑
m=1

(∂tuk, ϕ)Im + a(qk, uk)(ϕ) +
M∑
m=2

([uk]m−1, ϕ
+
m−1) + (u+

k,0, ϕ
+
0 )

= (f, ϕ)I + (u0(qk), ϕ+
0 ) ∀ϕ ∈ X̃r

k . (3.2)

of the dG(r) method and eliminate the value vk(0) in the definition of X̃r
k . The equivalence

of (3.1) and (3.2) can be seen by subtracting the two equations obtaining the implication

(u−k,0, ϕ
−
0 − ϕ

+
0 ) = (u0(q), ϕ−0 − ϕ

+
0 ) =⇒ (3.1)⇔ (3.2).

The prerequisite is fulfilled either directly due to formulation (3.1) since the terms containing
ϕ−0 can be separated from the remainder, or by defining the undefined value u−k,0 in the case of
considering formulation (3.2). In the major parts of this thesis, we stay at representation (3.1),
since it has advantages especially for implementational reasons. This is due to the fact, that
then for the dG(0) method the same data structures can be used as for the cG(1) formulation
introduced in the next subsection. However, in Chapter 5, we use formulation (3.2) since this
representation has advantages for the theoretical analysis of the dG(r) schemes.

In many cases, the unique existence of solutions uk ∈ X̃r
k to (3.1) can be obtained for instance

by means of the decoupling method shown in Schötzau [73]: When doing so, (3.1) is equivalent
to an elliptic system of r + 1 equations which can be chosen upper triangular. Under standard
assumptions on the semilinear form a(·, ·)(·), the unique solvability of these equations is ensured.
In the case of a linear state equation, the unique existence of solutions can also be proven by
means of Fourier analysis; see Thomée [76].

Then, the semidiscrete optimization problem for the dG(r) time discretization has the form

Minimize J(qk, uk) subject to the state equation (3.1), (qk, uk) ∈ Q× X̃r
k . (P̃k)
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3 Space-Time Finite Element Discretization

We pose the Lagrangian L̃ : Q× X̃r
k × X̃r

k → R associated with the dG(r) time discretization
of the state equation as

L̃(qk, uk, zk) := J(qk, uk) + (f, zk)I −
M∑
m=1

(∂tuk, zk)Im

− a(qk, uk)(zk)−
M−1∑
m=0

([uk]m, z+
k,m) + (u0(qk)− u−k,0, z

−
k,0).

Remark 3.3. Here, as in the continuous case, the initial condition is coupled to the Lagrangian
by z−k,0 = zk(0). This constitutes no restriction because also in this semidiscrete situation, we
would immediately obtain z̃k = zk(0) if we couple the initial condition via a separate Lagrange
multiplier z̃k.

Following the lines of the continuous case, we introduce a semidiscrete solution operator
Sk : Q → X̃r

k such that uk = Sk(qk) fulfills for qk ∈ Q the semidiscrete state equation (3.1).
Similar to Section 2.3, we define the semidiscrete reduced cost functional jk : Q→ R as

jk(qk) := J(qk, Sk(qk)),

and reformulate the optimization problem (P̃k) as unconstrained problem:

Minimize jk(qk), qk ∈ Q. (P̃red
k )

With these preliminaries, we obtain similar expressions for the three auxiliary equations in
terms of the semidiscrete Lagrangian as stated in Section 2.5. However, the derivation of the
explicit representations for the auxiliary equations requires some care due to the special form
of the Lagrangian L̃ for the dG(r) discretization.

By computing derivatives, we arrive at the following three auxiliary equations expressed in
terms of derivatives of the modified Lagrangian L̃:

Adjoint for dG(r): Find zk ∈ X̃r
k such that

L̃′u(qk, uk, zk)(ϕ) = 0 ∀ϕ ∈ X̃r
k .

Tangent for dG(r): Find δuk ∈ X̃r
k such that

L̃′′qz(qk, uk, zk)(δqk, ϕ) + L̃′′uz(qk, uk, zk)(δuk, ϕ) = 0 ∀ϕ ∈ X̃r
k .

Additional Adjoint for dG(r): Find δzk ∈ X̃r
k such that

L̃′′qu(qk, uk, zk)(δqk, ϕ) + L̃′′uu(qk, uk, zk)(δuk, ϕ) + L̃′′zu(qk, uk, zk)(δzk, ϕ) = 0 ∀ϕ ∈ X̃r
k .
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3.1 Time discretization of the state variable

Calculating the derivatives and applying interval-wise integration by parts to the adjoint equa-
tions lead to the explicit form of the auxiliary equations in the case of dG(r) semidiscretization
in time:

Adjoint for dG(r): Find zk ∈ X̃r
k such that

−
M∑
m=1

(ϕ, ∂tzk)Im + a′u(qk, uk)(ϕ, zk)−
M−1∑
m=0

(ϕ−m, [zk]m)

+ (ϕ−M , z
−
k,M ) =

∫
I
J ′1(uk)(ϕ) dt+ J ′2(u−k,M )(ϕ−M ) ∀ϕ ∈ X̃r

k . (3.3a)

Tangent for dG(r): Find δuk ∈ X̃r
k such that

M∑
m=1

(∂tδuk, ϕ)Im + a′u(qk, uk)(δuk, ϕ) +
M−1∑
m=0

([δuk]m, ϕ+
m) + (δu−k,0, ϕ

−
0 )

= −a′q(qk, uk)(δqk, ϕ) + (u′0(qk)(δqk), ϕ−0 ) ∀ϕ ∈ X̃r
k . (3.3b)

Additional Adjoint for dG(r): Find δzk ∈ X̃r
k such that

−
M∑
m=1

(ϕ, ∂tδzk)Im + a′u(qk, uk)(ϕ, δzk)−
M−1∑
m=0

(ϕ−m, [δzk]m)

+ (ϕ−M , δz
−
k,M ) = −a′′uu(qk, uk)(δuk, ϕ, zk)− a′′qu(qk, uk)(δqk, ϕ, zk)

+
∫
I
J ′′1 (uk)(δuk, ϕ) dt+ J ′′2 (u−k,M )(δu−k,Mϕ

−
M ) ∀ϕ ∈ X̃r

k . (3.3c)

The representation formulas for the first and second derivatives stated in Section 2.5 can now
be translated directly to the semidiscrete level: We obtain exactly the same expressions as
given in (2.10), (2.20), and (2.21), but with q, u, z, δq, τq, δu, and δz replaced by qk, uk, zk,
δqk, τqk, δuk, and δzk.

3.1.2 Continuous Galerkin methods

Using the semidiscrete spaces defined at the beginning of this section, the cG(r) formulation
of the state equation can be stated directly as follows: Find for given control qk ∈ Q a state
uk ∈ Xr

k such that

(∂tuk, ϕ)I + a(qk, uk)(ϕ) + (uk(0), ϕ−0 ) = (f, ϕ)I + (u0(qk), ϕ−0 ) ∀ϕ ∈ X̃r−1
k . (3.4)

Remark 3.4. Again, we use here the subscript k to indicate the semidiscretization of the state
in time. This eases the notation and is unproblematic since we always tell explicitly which
time discretization is considered.
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3 Space-Time Finite Element Discretization

Remark 3.5. In the formulation of the cG(r) method, the polynomial degree of the test functions
is reduced by one compared to the degree used for the trial functions. This is necessary to
obtain a quadratical system of equations since we have to compensate the additional degrees
of freedom in X̃r

k due to the allowed discontinuity of its elements.

The corresponding semidiscretized optimization problem reads as follows:

Minimize J(qk, uk) subject to the state equation (3.4), (qk, uk) ∈ Q×Xr
k . (Pk)

Since the state equation semidiscretized by the cG(r) method has the same form as in the
continuous setting, the corresponding Lagrangian is analogously defined on Q×Xr

k × X̃
r−1
k

by

L(qk, uk, zk) := J(qk, uk) + (f − ∂tuk, zk)I − a(qk, uk)(zk) + (u0(qk)− uk,0, z−k,0).

To ease the notation, we use here additionally to the notation introduced for the dG(r)
discretization the abbreviation vk,m := vk(tm).
Remark 3.6. The coupling of the initial condition is done here like it was done for the dG(r)
discretization and the statement of Remark 3.3 applies also in this case.

Using the same notation as in the previous subsection, we define the semidiscrete reduced cost
functional jk : Q→ R as

jk(qk) := J(qk, Sk(qk)),
and reformulate the optimization problem (Pk) as unconstrained problem:

Minimize jk(qk), qk ∈ Q. (Pred
k )

We again base on the representation of the auxiliary equations in terms of derivatives of the
Lagrangian, which are formally identical to the continuous case considered in Section 2.5:

Adjoint for cG(r): Find zk ∈ X̃r−1
k such that

L′u(qk, uk, zk)(ϕ) = 0 ∀ϕ ∈ Xr
k .

Tangent for cG(r): Find δuk ∈ Xr
k such that

L′′qz(qk, uk, zk)(δqk, ϕ) + L′′uz(qk, uk, zk)(δuk, ϕ) = 0 ∀ϕ ∈ X̃r−1
k .

Additional Adjoint for cG(r): Find δzk ∈ X̃r−1
k such that

L′′qu(qk, uk, zk)(δqk, ϕ) + L′′uu(qk, uk, zk)(δuk, ϕ) + L′′zu(qk, uk, zk)(δzk, ϕ) = 0 ∀ϕ ∈ Xr
k .

Proceeding as for the dG(r) discretization leads to the explicit form of the three auxiliary
equations in the setting of the cG(r) semidiscretization in time:

Adjoint for cG(r): Find zk ∈ X̃r−1
k such that

−
M∑
m=1

(ϕ, ∂tzk)Im + a′u(qk, uk)(ϕ, zk)−
M−1∑
m=0

(ϕm, [zk]m)

+ (ϕM , z−k,M ) =
∫
I
J ′1(uk)(ϕ) dt+ J ′2(uk,M )(ϕM ) ∀ϕ ∈ Xr

k . (3.5a)
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3.2 Space discretization of the state variable

Tangent for cG(r): Find δuk ∈ Xr
k such that

(∂tδuk, ϕ)I + a′u(qk, uk)(δuk, ϕ) + (δuk,0, ϕ−0 )
= −a′q(qk, uk)(δqk, ϕ) + (u′0(qk)(δqk), ϕ−0 ) ∀ϕ ∈ X̃r−1

k . (3.5b)

Additional Adjoint for cG(r): Find δzk ∈ X̃r−1
k such that

−
M∑
m=1

(ϕ, ∂tδzk)Im + a′u(qk, uk)(ϕ, δzk)−
M−1∑
m=0

(ϕm, [δzk]m)

+ (ϕM , δz−k,M ) = −a′′uu(qk, uk)(δuk, ϕ, zk)− a′′qu(qk, uk)(δqk, ϕ, zk)

+
∫
I
J ′′1 (uk)(δuk, ϕ) dt+ J ′′2 (uk,M )(δuk,M , ϕM ) ∀ϕ ∈ Xr

k . (3.5c)

By inspection of the auxiliary equations of the dG(r) and cG(r) methods, one may recognize
that the adjoint equation for dG(r) (3.3a) and the adjoint equation for cG(r) (3.5a) are quite
similar. However, the main difference lies in the selection of the test space. In contrast to
the dG(r) method, where the test functions are discontinuous in time, the cG(r) method uses
continuous test functions. This fact has to be incorporated especially when computing the
concrete time stepping schemes as done in Section 3.4.

As for the dG(r) discretization, the representation for the derivatives of the reduced func-
tional derived in Section 2.5 carries over from the continuous level to the level of cG(r)
semidiscretization just by adding the subscript k to all arising variables.

3.2 Space discretization of the state variable

Up to now we have considered only semidiscretization in time, that is, the introduced spaces
Xr
k and X̃r

k still contain the continuous spatial space V in their definitions. The current section
is devoted to the space discretization of the semidiscrete equations from the previous section.
This is done by choosing finite-dimensional subspaces V s

h ⊆ V consisting of finite elements up
to order s. Moreover, we allow different space discretizations in each time interval Im. Details
on this construction are given in Section 3.2.2.

3.2.1 Triangulations and finite element spaces

In this subsection, we describe the finite element triangulations of the computational domain
Ω ⊆ Rn for n ∈ { 2, 3 } and the construction of the corresponding finite element spaces. For
simplicity, we assume the boundary ∂Ω to be polygonal. The case of non-polygonally bounded
domains is not considered here; details on this can be found for instance in Braess [17].

Depending on the dimension, the domain Ω is partitioned into open quadrilaterals or hexahe-
drals K—in the sequel denoted as cells. The resulting triangulation is denoted by Th = {K }.
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3 Space-Time Finite Element Discretization

The mesh parameter h is defined as a cellwise constant function describing the diameter of the
cell by

h
∣∣
K

:= hK := diam(K).

Additionally, we use the symbol h also for the maximal cell diameter, that is

h := max
K∈Th

hK .

The maximal straight parts which make up the boundary ∂K of a cell K are called faces.

Following the literature as Ciarlet [22] or Braess [17], we propose the following definition:

Definition 3.1 (Regularity). A triangulation Th = {K } is called regular if the following
conditions are fulfilled:

(i) Ω̄ =
⋃
K∈Th K̄.

(ii) For each distinct cells K1,K2 ∈ Th, one has K1 ∩K2 = ∅.

(iii) Any face of any cell K1 in the triangulation Th is either a subset of the boundary ∂Ω or
a face of another cell K2 ∈ Th.

To allow local mesh refinement without using connecting elements, we weaken the last condition
of Definition 3.1 and introduce hanging nodes: Cells are allowed to have nodes which lie on
midpoints of faces of neighboring cells. At most one hanging node is permitted on each face
(cf. Figure 3.2).

Figure 3.2. A two-dimensional triangulation with three hanging nodes

In addition, we require the triangulation Th to be organized in a patch-wise manner. This
means that it results from a global uniform refinement of a coarser triangulation T2h. By
a patch of cells, we denote a group of four cells in Th which results from a refinement of a
common coarser cell in T2h. We make use of this construction in the context of a posteriori
error estimation in Section 6.4. An example of this construction is given in Figure 3.3.

Following Ciarlet [22], Brenner and Scott [18], or Johnson [48], we construct continuous
V -conforming finite element spaces V s

h by

V s
h :=

{
v ∈ C(Ω̄) ∩ V

∣∣∣ v∣∣
K
∈ Qs(K), K ∈ Th

}
,
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3.2 Space discretization of the state variable

Th T2h

Figure 3.3. A two-dimensional triangulation with patch structure and hanging nodes
(left) resulting from a coarser regular triangulation (right) by global
uniform refinement

where Qs(K) denotes a suitable space of polynomial-like functions on the cell K ∈ Th. To
define the spaces Qs(K), we introduce the polynomial spaces Q̂s(K̂) on the reference cell
K̂ = (0, 1)n given by

Q̂s(K̂) := span
{

n∏
i=1

xαii

∣∣∣∣∣ αi ∈ { 0, 1, . . . , s }
}
.

Then, the spaces Qs(K) are obtained using the transformations TK : K̂ → K (cf. Figure 3.4)
as

Qs(K) =
{
v : K → R

∣∣∣ v ◦ TK ∈ Q̂s(K̂)
}
.

If we additionally have TK ∈ Q̂s(K̂)n, then we call the resulting finite element space isopara-
metric.

TK

KK̂

Figure 3.4. Transformation TK from the reference cell K̂ to a computational cell K

The case of hanging nodes requires some additional remarks: There are no degrees of freedom
corresponding to these irregular nodes. The values of the finite element functions at such
nodes are determined by point-wise interpolation. This implies continuity and therefore global
conformity. For details on the implementation see for instance Carey and Oden [19].

By means of Cea’s lemma, it is possible to estimate the approximation error of finite elements
by an interpolation error. The interpolation error of the point-wise interpolation for continuous
functions ih : C(Ω̄)→ V s

h can be estimated by the following lemma:

Lemma 3.1. Let Th be a regular triangulation of the domain Ω and V s
h be a space of (isopara-

metric) finite elements of order s. Then, there exists a constant C depending only on Ω and s
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3 Space-Time Finite Element Discretization

such that there holds for each cell K ∈ Th and u ∈ Hm(Ω) with 2 ≤ m ≤ s+ 1 and 0 ≤ k ≤ m:

|u− ihu|Hk(K) ≤ C
hmK
ρkK
|u|Hm(K).

Here, ρK denotes the diameter of the biggest ball inscribed in the cell K.

Proof. The proof is done using the Bramble-Hilbert lemma and can be found for example in
Braess [17].

Remark 3.7. A family { Th | h ↓ 0 } of regular triangulations is called to be quasi uniform, if
there exists a constant θ such that for all K ∈

⋃
h Th the condition

hK
ρK
≤ θ

is fulfilled. Under the assumption of quasi uniformity, the assertion of Lemma 3.1 can be
formulated as

|u− ihu|Hk(Ω) ≤ Chm−k|u|Hm(Ω).

Especially in Chapter 5, we use this and related estimates for deriving a priori convergence
estimates for the space-time finite element discretization of the state equation formulated in
the following subsection.

3.2.2 Discretization on dynamic meshes

In this subsection, we construct the fully discrete versions of the semidiscrete equations derived
in Section 3.1 and introduce also the concept of dynamic meshes. This is done in the same way
as in Schmich and Vexler [72]. We allow dynamic mesh changes in time whereas the time steps
km are kept constant in space. Therefore, we associate with each time point tm a triangulation
T mh and a corresponding finite element space V s,m

h ⊆ V which is used as spatial trial and test
space in the adjacent time interval Im.

By means of this choice, we define the fully discrete space-time finite element space

X̃r,s
k,h :=

{
vkh ∈ L2(I,H)

∣∣∣ vkh∣∣Im ∈ Pr(Im, V s,m
h ), m = 1, 2, . . . ,M and vkh(0) ∈ V s,0

h

}
.

Due to the conformity of V s,m
h , we have the inclusion X̃r,s

k,h ⊆ X̃r
k .

Thus, the so-called cG(s)dG(r) discretization of the state equation (3.6) is obtained from
the dG(r) semidiscretization by adding the supplementary index h to the variables and by
replacing the semidiscrete space X̃r

k by X̃r,s
k,h: Find for given control qkh ∈ Q a state ukh ∈ X̃r,s

k,h

such that

M∑
m=1

(∂tukh, ϕ)Im + a(qkh, ukh)(ϕ) +
M−1∑
m=0

([ukh]m, ϕ+
m) + (u−kh,0, ϕ

−
0 )

= (f, ϕ)I + (u0(qkh), ϕ−0 ) ∀ϕ ∈ X̃r,s
k,h. (3.6)
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3.2 Space discretization of the state variable

Remark 3.8. The notation cG(s)dG(r) (and also the notation cG(s)cG(r) used below) is taken
from Eriksson, Estep, Hansbo, and Johnson [29] and describes continuous discretizations in
space of order s combined with (dis-)continuous discretizations in time of order r.

The semidiscrete optimization problem for the cG(s)dG(r) discretization has the form

Minimize J(qkh, ukh) subject to the state equation (3.6), (qkh, ukh) ∈ Q× X̃r,s
k,h. (P̃kh)

Utilizing the reduced cost functional jkh : Q → R defined by means of the discrete solution
operator Skh : Q→ X̃r,s

k,h, we obtain the reduced optimization problem

Minimize jkh(qkh), qkh ∈ Q. (P̃red
kh )

By following the recipe of adding the index h, we also obtain the fully discrete versions of
the auxiliary equations (3.3). We skip here the repetition of these equations since we give a
realization for a concrete choice of discretizations of the control variable in Section 3.4.

The formulation of the cG(s)cG(r) discretization is more involved since we have to ensure
global continuity in time of functions in the trial space. To this end, we describe an approach
similar to the one presented in Becker [2]: Let { τ0, τ1, . . . , τr } be a basis of Pr(Im,R) with
the property

τ0(tm−1) = 1, τ0(tm) = 0, and τi(tm−1) = 0, i = 1, 2, . . . , r.

By means of the spaces Xr,s,m
k,h ⊆ Pr(Im, V ), given as

Xr,s,m
k,h := span

{
τivi

∣∣∣ v0 ∈ V s,m−1
h , vi ∈ V s,m

h , i = 1, 2, . . . , r
}
,

we define the trial space for the cG(s)cG(r) formulation by

Xr,s
k,h :=

{
vkh ∈ C(Ī , H)

∣∣∣ vkh∣∣Im ∈ Xr,s,m
k,h , m = 1, 2, . . . ,M

}
.

The definition of Xr,s,m
k,h ensures the continuity in time of all functions in Xr,s

k,h. This is due
to the fact that the spatial degrees of freedom which vanish when stepping from V s,m−1

h to
V s,m
h are only coupled to the temporal basis function τ0 which is zero at the right boundary of

the subinterval Im. Vice versa, the degrees of freedom in V s,m
h which appear when coming

from V s,m−1
h are only coupled to the basis functions τi, i = 1, 2, . . . , r which are zero at the

left boundary of Im.

Remark 3.9. In the case r = 1, we can choose the Lagrange basis of P1(Im,R) given by

τ0(t) = tm − t
km

and τ1(t) = t− tm−1
km

.

This basis fulfills the proposed requirements.
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3 Space-Time Finite Element Discretization

Remark 3.10. If all spatial triangulations and consequently all spatial finite element spaces are
the same (that is V s,m

h = V s
h for m = 0, 1, . . . ,M), we have the identity

Xr,s,m
k,h = Pr(Im, V s

h ),

and thus the definition of the space Xr,s
k,h coincides with the more familiar one

Xr,s
k,h =

{
vkh ∈ C(Ī , H)

∣∣∣ vkh∣∣Im ∈ Pr(Im, V s
h ), m = 1, 2, . . . ,M

}
of the usual trial space for the cG(s)cG(r) discretization.

Using these spaces, we formulate the cG(s)cG(r) discretized state equation as: Find for given
control qkh ∈ Q a state ukh ∈ Xr,s

k,h such that

(∂tukh, ϕ)I + a(qkh, ukh)(ϕ) + (ukh(0), ϕ−0 ) = (f, ϕ)I + (u0(qkh), ϕ−0 ) ∀ϕ ∈ X̃r−1,s
k,h . (3.7)

Similar to the procedure mentioned during the presentation of the cG(s)dG(r) discretization,
the fully discrete state equation (3.7) is obtained by adding the index h to the variables and by
replacing the spaces Xr

k and X̃r
k by Xr,s

k,h and X̃r,s
k,h, respectively. The three auxiliary equations

are obtained from the semidiscrete ones (3.5) by doing so, too. A concrete realization of these
equations is presented in Section 3.4 after discussing possible discretizations of the control
variable. Also the expressions for the derivatives of the discrete reduced cost functional jkh
are directly obtained from the continuous level by replacing the continuous solutions by the
discrete ones.

3.3 Discretization of the control variable

In this section, we discuss possible discretizations of the control space which was kept undis-
cretized up to now. Before doing so, we remark that it is possible to solve optimization
problems numerically even if an infinite-dimensional control space is not discretized explicitly.
Details of this approach for linear-quadratic elliptic optimization problems can be found in
Hinze [44]. Since this approach exhibits computational difficulties in situations where the
control enters the state equation nonlinearly, we stay here with the classical approach of
discretizing the controls and present an a priori analysis for it in Chapter 5.

We recall that the Hilbert space of controls Q was in general characterized by the inclusion

Q ⊆ L2(I,R)

with a spatial Hilbert space R. In the sequel, we describe possible Galerkin-type discretizations
of the control spaces Q chosen in the Examples 2.1, 2.2, 2.3, and 2.4 given in Section 2.2.

Example 3.1 (Concerning Example 2.1). Here, we have

R = L2(Ω) and Q = L2(I,R) = L2(I, L2(Ω)).

For the time discretization of Q, we choose the dG(rd) method as presented in Section 3.1.1
for the state space X, but with polynomials of order rd ∈ N0. In general, we allow the time
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3.3 Discretization of the control variable

discretization of Q to be coarser than the one for X. That is, we always enforce the set of
time points used for the control discretization to be a subset of the time points of the state
discretization.

The spatial part of Q is either discretized as the state space by a cG(sd) method, or we
discretize it by cellwise constant functions. We call this discretization dG(0) method as for
the time discretization. Our theoretical results to be developed in Chapter 5 also include the
possibility of a coarser mesh with cell size hd which is again constructed by coarsening of
the triangulation used for discretizing the states. However, for computational reasons, in the
presented numerical computations we always use hd = h and sd = s.

Summarizing, we choose a finite-dimensional subset Qd ⊆ Q defined by the cG(sd)dG(rd) or
by the dG(0)dG(rd) method. These discretizations lead in combination with the discretization
of the state space to the fully discrete optimization problem.

Example 3.2 (Concerning Example 2.2). Here, we have

R = L2(∂Ω) and Q = L2(I,R) = L2(I, L2(∂Ω)).

For the time discretization of Q, we proceed as in Example 3.1. The space discretization of
R is done by traces γ(vh) ∈ C(∂Ω) of functions vh ∈ V sd

h constructed by means of a cG(sd)
finite element discretization on Ω.

Example 3.3 (Concerning Example 2.3). Here, we have

R = L2(Ω) and Q = P0(Ī , R) = P0(Ī , L2(Ω)).

Since here the temporal component of Q is already discrete, it needs not to be discretized.
The spatial discretization of R can be done as described in Example 3.1.

Example 3.4 (Concerning Example 2.4). Here, we have

R = R and Q = P0(Ī , R) = P0(Ī ,R).

Thus, the control space Q is already finite-dimensional and we choose Qd = Q.

Since all presented choices of Qd lead to conforming discretizations of Q, the discrete state
and auxiliary equations stated in the section before can be transfered directly to the level
of discrete controls. The solution variables as q and u on this level are denoted by qkhd and
ukhd, respectively. We abbreviate the indices “khd”, which symbolize the space and time
discretization of the state and the discretization of the control, by “σ”.

Finally, we state the fully discrete optimization problem with cG(s)dG(r) discretization of the
state space and discretized control space Qd as

Minimize J(qσ, uσ) subject to the state equation (3.6), (qσ, uσ) ∈ Qd × X̃r,s
k,h. (P̃σ)

Especially for the a priori analysis given in Section 5.3, we make use of this problem for the
precise formulation of the error estimates to be derived.
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3 Space-Time Finite Element Discretization

3.4 Time stepping schemes

In what follows, we present one concrete time-stepping scheme for the cG(s)dG(r) and the
cG(s)cG(r) discretizations both combined with the cG(s)dG(r) discretization of the control
space. These schemes correspond to the widely-used implicit Euler and Crank-Nicolson
schemes.

To solve the individual time steps of the discrete schemes presented in the sequel, we employ a
Newton solver for treating the nonlinearities. The arising linear subproblems are then solved
by a multigrid iteration with an ILU decomposition as smoother. Details on the construction
of a multigrid solver on adaptively refined meshes are given in Becker and Braack [4].

3.4.1 Implicit Euler scheme

To obtain the well-known implicit Euler scheme as a special case of the dG(r) time discretization,
we choose r = 0 and approximate the temporal integrals arising by the box rule. We define for
brevity

Qm := q−σ,m, Um := u−σ,m, Zm := z−σ,m,

∆Qm := δq−σ,m, ∆Um := δu−σ,m, ∆Zm := δz−σ,m

for m = 0, 1, . . . ,M . With this, we obtain the following schemes for the cG(s)dG(0)-discretized
state and auxiliary equations combined with a cG(s)dG(0) discretization of the control space,
which all should be fulfilled for every ψ ∈ V s,m

h :

State for cG(s)dG(0):

m = 0:
(U0, ψ) = (u0(Q0), ψ)

m = 1, 2, . . . ,M :

(Um, ψ) + kmā(Qm, Um)(ψ) = (Um−1, ψ) + km(f(tm), ψ)

Adjoint for cG(s)dG(0):

m =M :

(ψ,ZM ) + kM ā
′
u(QM , UM )(ψ,ZM ) = kMJ

′
1(UM )(ψ) + J ′2(UM )(ψ)

m =M − 1,M − 2, . . . , 1:

(ψ,Zm) + kmā
′
u(Qm, Um)(ψ,Zm) = (ψ,Zm+1) + kmJ

′
1(Um)(ψ)

m = 0:
(ψ,Z0) = (ψ,Z1)

38



3.4 Time stepping schemes

Tangent for cG(s)dG(0):

m = 0:
(∆U0, ψ) = (u′0(Q0)(∆Q0), ψ)

m = 1, 2, . . . ,M :

(∆Um, ψ) + kmā
′
u(Qm, Um)(∆Um, ψ) = (∆Um−1, ψ)− kmā′q(Qm, Um)(∆Qm, ψ)

Additional Adjoint for cG(s)dG(0):

m =M :

(ψ,∆ZM ) + kM ā
′
u(QM , UM )(ψ,∆ZM ) =

− kM ā′′uu(QM , UM )(∆UM , ψ, ZM )− kM ā′′qu(QM , UM )(∆QM , ψ, ZM )
+ kMJ

′′
1 (UM )(∆UM , ψ) + J ′′2 (UM )(∆UM , ψ)

m =M − 1,M − 2, . . . , 1:

(ψ,∆Zm) + kmā
′
u(Qm, Um)(ψ,∆Zm) =

(ψ,∆Zm+1)− kmā′′uu(Qm, Um)(∆Um, ψ, Zm)− kmā′′qu(Qm, Um)(∆Qm, ψ, Zm)
+ kmJ

′′
1 (Um)(∆Um, ψ)

m = 0:
(ψ,∆Z0) = (ψ,∆Z1)

The implicit Euler scheme is known to be a first order strongly A-stable method. The resulting
schemes for the auxiliary equations have basically the same structure and lead consequently
to a first order approximation in time, too. However, the precise a priori error analysis
for the optimization problem requires more care and depends on the given structure of the
problem under consideration; see Chapter 5 for the analysis in the case of a linear-quadratic
optimal control problem. Furthermore, the approximation of the integrals by the box rule has
disadvantages especially in the case of long time integration. In Eriksson and Johnson [32], the
authors demonstrate this actuality in the case of a scalar linear ordinary differential equation.
In such cases, the utilization of a quadrature rule of higher order is profitable.

Since the obtained time stepping scheme for the adjoint equation is identical to the implicit
Euler scheme applied to the continuous adjoint equation, we note that even when using
numerical integration, the implicit Euler scheme (as well as all dG(r) schemes) exhibits the
property that the presented discretize-then-optimize approach leads to the same time stepping
scheme as the optimize-then-discretize approach.

However, this is only the case when the time stepping equation is formulated as

(Um, ψ) + kmā(Qm, Um)(ψ) = (Um−1, ψ) + km(f(tm), ψ).
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3 Space-Time Finite Element Discretization

As shown, this leads to

(ψ,Zm) + kmā
′
u(Qm, Um)(ψ,Zm) = (ψ,Zm+1) + kmJ

′
1(Um)(ψ) (3.8)

as adjoint time stepping scheme. However, when using the equivalent standard formulation

1
km

(Um, ψ) + ā(Qm, Um)(ψ) = 1
km

(Um−1, ψ) + (f(tm), ψ)

of the implicit Euler scheme for the state equation, the discretize-then-optimize-approach
produces the adjoint scheme

1
km

(ψ, Z̃m) + ā′u(Qm, Um)(ψ, Z̃m) = 1
km+1

(ψ, Z̃m+1) + kmJ
′
1(Um)(ψ).

In contrast, the optimize-then-discretize approach, that is the application of this variant of the
implicit Euler scheme to the continuous adjoint equation gives

1
km

(ψ,Zm) + ā′u(Qm, Um)(ψ,Zm) = 1
km

(ψ,Zm+1) + J ′1(Um)(ψ),

which is obviously equivalent to (3.8), the formulation obtained by the Galerkin ansatz. Hence,
the adjoint Z̃ (obtained by the discretize-then-optimize-approach) is related to the adjoint Z
(obtained either by the optimize-then-discretize approach or by the Galerkin ansatz) via

Z̃m = kmZm.

Due to the construction of Z, it is an approximation of the continuous adjoint state z. Thus,
we have Z → z for k → 0 (cf. Section 5.3.1 for the precise formulation). Consequently, we
obtain Z̃ = kZ → 0 for k → 0. Although the usage of Z̃ also leads to correct computations of
the discrete derivatives if the representations of j′kh and j′′kh are adjusted correspondingly, the
behavior of Z̃ for small k is unfavorable from a computational point of view.

3.4.2 Crank-Nicolson scheme

The Crank-Nicolson scheme can be obtained in the context of the cG(r) time discretizations
by choosing r = 1 and approximating the temporal integrals arising by the trapezoidal rule.
Using the representation of the Crank-Nicolson scheme as a cG(r) scheme allows us to give
directly the concrete form of the auxiliary equations leading to the exact computation of the
discrete gradient and Hessian.

We set here for brevity

Qm := q−σ,m, Um := uσ,m, Zm := z−σ,m,

∆Qm := δq−σ,m, ∆Um := δuσ,m, ∆Zm := δz−σ,m

for m = 0, 1, . . . ,M . With this, we obtain the following schemes for the cG(s)cG(1)-discretized
state and auxiliary equations combined with a cG(s)dG(0) discretization of the control space,
which all should be fulfilled for every ψ ∈ V s,m

h :
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State for cG(s)cG(1):

m = 0:
(U0, ψ) = (u0(Q0), ψ)

m = 1, 2, . . . ,M :

(Um, ψ) + km
2
ā(Qm, Um)(ψ) = (Um−1, ψ)

− km
2
ā(Qm, Um−1)(ψ) + km

2
(f(tm−1), ψ) + km

2
(f(tm), ψ)

Adjoint for cG(s)cG(1):

m =M :

(ψ,ZM ) + kM
2
ā′u(QM , UM )(ψ,ZM ) = kM

2
J ′1(UM )(ψ) + J ′2(UM )(ψ)

m =M − 1,M − 2, . . . , 1:

(ψ,Zm) + km
2
ā′u(Qm, Um)(ψ,Zm) = (ψ,Zm+1)

− km+1
2

ā′u(Qm+1, Um)(ψ,Zm+1) + km + km+1
2

J ′1(Um)(ψ)

m = 0:
(ψ,Z0) = (ψ,Z1)−

k1
2
ā′u(Q1, U0)(ψ,Z1) + k1

2
J ′1(U0)(ψ)

Tangent for cG(s)cG(1):

m = 0:
(∆U0, ψ) = (u′0(Q0)(∆Q0), ψ)

m = 1, 2, . . . ,M :

(∆Um, ψ) + km
2
ā′u(Qm, Um)(∆Um, ψ) =

(∆Um−1, ψ)− km
2
ā′u(Qm, Um−1)(∆Um−1, ψ)

− km
2
ā′q(Qm, Um−1)(∆Qm, ψ)− km

2
ā′q(Qm, Um)(∆Qm, ψ)
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3 Space-Time Finite Element Discretization

Additional Adjoint for cG(s)cG(1):

m =M :

(ψ,∆ZM ) + kM
2
ā′u(QM , UM )(ψ,∆ZM ) =

− kM
2
ā′uu(QM , UM )(∆UM , ψ, ZM )− kM

2
ā′qu(QM , UM )(∆QM , ψ, ZM )

+ kM
2
J ′′1 (UM )(∆UM , ψ) + J ′′2 (UM )(∆UM , ψ)

m =M − 1,M − 2, . . . , 1:

(ψ,∆Zm) + km
2
ā′u(Qm, Um)(ψ,∆Zm) = (ψ,∆Zm+1)

− km+1
2

ā′u(Qm+1, Um)(ψ,∆Zm+1)−
km
2
ā′′uu(Qm, Um)(∆Um, ψ, Zm)

− km+1
2

ā′′uu(Qm+1, Um)(∆Um, ψ, Zm+1)−
km
2
ā′′qu(Qm, Um)(∆Qm, ψ, Zm)

− km+1
2

ā′′qu(Qm+1, Um)(∆Qm, ψ, Zm+1) + km + km+1
2

J ′′1 (Um)(∆Um, ψ)

m = 0:

(ψ,∆Z0) = (ψ,∆Z1)−
k1
2
ā′u(Q1, U0)(ψ,Z1)−

k1
2
ā′′uu(Q1, U0)(∆U0, ψ, Z1)

− k1
2
ā′′qu(Q1, U0)(∆Q0, ψ, Z1) + k1

2
J ′′1 (U0)(∆U0, ψ)

The resulting Crank-Nicolson scheme is known to be of second order. However, in contrast to
the implicit Euler scheme, this method does not possess the property of strong A-stability.
The structure of the time steps for the adjoint equations is quite unusual since in the first and
in the last steps “half steps” occur, and in the other steps, terms containing the sizes of two
adjacent time intervals km and km+1 appear. This complicates the a priori error analysis for
the adjoint schemes, which is discussed for instance in Becker [2].

Even if the schemes for the state and adjoint equations differ, also this type of discretization
exhibits in a certain sense the property of interchanging of discretization and optimization:
Discretization of the weakly formulated optimality system and building the discrete optimality
system using the discretized state equation lead to the same discrete time stepping schemes.

3.5 Numerical results

Since the solution algorithms which we present in the following Chapter 4 strongly depend on
the exactness of the computed derivatives of the reduced cost functional jkh, we discuss in this
section a possibility of validating the correctness of the derivatives numerically and present
results on this for the four example configurations given in Section 2.2.
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3.5 Numerical results

The main idea thereby is to compare the derivatives computed by the adjoint approaches from
the Sections 2.5, 3.1, and 3.2 with difference quotients. For the numerically evaluated first
and second central difference quotient for jkh, we obtain under the assumption of sufficient
regularity the error representations

e1(ε) :=
∣∣∣∣jkh(q + εδq)− jkh(q − εδq)

2ε
− j′kh(q)(δq)

∣∣∣∣ ≈ Cε2j′′′kh(r) + c

ε
,

e2(ε) :=
∣∣∣∣jkh(q + εδq)− 2jkh(q) + jkh(q − εδq)

ε2
− j′′kh(q)(δq, δq)

∣∣∣∣ ≈ Cε2j′′′′kh(r) + c

ε2
,

where r ∈ (q− εδq, q+ εδq) is an intermediate point and the constants c and C are independent
of ε. Thereby, the parts of the error representation containing the positive exponents of ε
are obtained by standard convergence analysis (Taylor expansion), whereas the parts with
negative exponents come from an analysis of the truncation error for small ε.

That is, if the derivatives obtained by the adjoint approach are computed correctly, one
may observe for ε → 0 primarily quadratical convergence of the difference quotients to the
numerically determined derivatives. But if ε is small enough, the truncation errors dominate
and the difference quotients diverge. Since a reliable determination of a suitable value of ε is
virtually impossible, the usage of derivatives computed by difference quotients is prohibitive
for optimization algorithms.

The Figures 3.5, 3.6, 3.7, and 3.8 depict the errors e1(ε) and e2(ε) between the values of the
derivatives computed by means of the difference quotients above and by mens of the adjoint
approach presented in the preceding chapters for the configurations of the four examples
presented in Section 2.2. Thereby, as discretization for the state space, the cG(1)dG(0) and the
cG(1)cG(1) were examined. The control space was discretized as discussed in the Examples 3.1,
3.2, 3.3, and 3.4 in Section 3.3.

Except for Figure 3.5, we find in all figures quadratic convergence of the errors e1 and e2 which
then moves to divergence when ε is getting too small. Due to the linear-quadratic structure
of Example 2.1, which implies j′′′kh = 0, we observe in Figure 3.5 only the divergence of the
difference quotient originated by the truncation error.

Thus, these tests confirm the correctness of the computed derivatives of first and second order.
Especially, they verify the correctness of the linearized and adjoint time stepping schemes
derived in Section 3.4.
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Figure 3.5. Convergence of the difference quotients for the reduced cost functional
for Example 2.1
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Figure 3.6. Convergence of the difference quotients for the reduced cost functional
for Example 2.2
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Figure 3.7. Convergence of the difference quotients for the reduced cost functional
for Example 2.3
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Figure 3.8. Convergence of the difference quotients for the reduced cost functional
for Example 2.4
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4 Algorithmic Aspects of Numerical
Optimization

In this chapter, we present algorithmic aspects of numerical methods for solving the prototypical
PDE-constrained optimizations problem (P) after reformulation as unconstrained optimization
problem (Pred) and discretization as described in Chapter 3. In the first section, we present two
variants of Newton-based optimization loops. In Section 4.2, we discuss aspects of solving the
linear systems arising from the application of such (exact and inexact) Newton methods and
present possible globalizations techniques. Thereby, we focus in particular on matrix-free linear
solvers and on globalization by line search and trust-region methods. Section 4.3 is devoted to
the discussion of storage reduction techniques, the so-called checkpointing techniques, which
provide the possibility of reducing the size of memory required for executing the proposed
algorithms in the context of nonstationary optimization. Finally, we close this chapter with
the presentation of a numerical example in Section 4.4.

Some results of Section 4.3 on the application of storage reduction techniques in the context of
nonstationary optimization problems are already published in Becker, Meidner, and Vexler [8].

Throughout this chapter, we consider the discretized control space Qd of finite dimension with
a basis

{ τqi | i = 1, 2, . . . ,dimQd } . (4.1)

Furthermore, we skip for simplicity the subscript σ at the arising solution variables. Since we
only consider discrete states and controls here, this does not cause any misunderstandings.

4.1 Newton-type methods

As announced, we present in this section two variants of Newton’s method for solving the
reduced optimization problem (Pred) respectively its discrete analogs. The two presented
algorithms differ in the way of computing the update. In general, Newton-type methods
are successfully used for solving optimization problem governed by time-dependent partial
differential equations; see for example Hinze and Kunisch [45] and Tröltzsch [77].

The well known motivation (see for instance Deuflhard [26]) of the classical ordinary Newton
method for solving a nonlinear operator equation

f(y) = 0,
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4 Algorithmic Aspects of Numerical Optimization

with a continuously Fréchet differentiable mapping f : Y → Z on Banach spaces Y and Z is
done by means of the Taylor expansion

0 = f(y + δy) = f(y) + f ′(y)(δy) + rf1 (y, δy)

for a given point y ∈ Y and a direction δy ∈ Y . By dropping the higher order term rf1 , we
arrive at the equation determining the Newton update δy:

f ′(y)(δy) = −f(y).

The next iterate y+ of Newton’s Method is then defined by y+ = y + δy.

Under some assumptions on the derivatives of f , Newton’s method is known to be quadratically
convergent if it is started with an initial guess lying in a neighborhood of the solution. This
assertion is proven in abstract spaces by the classical Newton-Kantorovich and Newton-
Mysovskikh theorems; see for instance Kantorovich and Akilov [49] and Mysovskikh [63].

For unconstrained optimization, Newton’s method is employed to find a control q ∈ Qd fulfilling
the first order necessary optimality condition for the discrete reduced cost functional jkh, that
is

j′kh(q)(τq) = 0 ∀τq ∈ Qd.

Applying Newton’s method to this equation, each performed step requires the solution of the
linear system

j′′kh(q)(δq, τq) = −j′kh(q)(τq) ∀τq ∈ Qd. (4.2)

However, in the context of numerical optimization, Newton’s method is usually introduced
differently to the motivation given above: We note, that the linear system (4.2) is the first
order necessary optimality condition of the linear-quadratic subproblem

Minimize m(q, δq) := jkh(q) + j′kh(q)(δq) + 1
2
j′′kh(q)(δq, δq), δq ∈ Qd. (4.3)

Thus, if δq is a solution of (4.3), it solves the linear system (4.2), too. Moreover, if the second
derivatives j′′kh(q) are positive definite, also the reversal of this assertion holds true.

To keep the algorithms presented in the sequel as general as possible, we consider additional
restrictions to the unconstrained subproblem (4.3). We impose the constraint ‖δq‖Q ≤ µ for
given µ ∈ R ∪ {+∞} and formulate the constrained subproblem as

Minimize m(q, δq), δq ∈ Qd, ‖δq‖Q ≤ µ. (4.4)

This offers the possibility to incorporate line search as well as trust-region globalization
techniques in the formulation of Newton’s method; see Section 4.2.2 for details on these
techniques.

For stating the optimization loops based on Newton’s method, we have to represent the
derivatives of the reduced cost functional used in the formulations (4.2) and (4.3) in terms of
vectors and matrices in RdimQd and RdimQd×dimQd . Therefore, we introduce as first step the
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4.1 Newton-type methods

gradient ∇jkh(q) ∈ Qd and the Hessian ∇2jkh(q) : Qd → Qd defined as usual by the Hilbert
space identifications

(∇jkh(q), τq)Q = j′kh(q)(τq) ∀τq ∈ Qd,
(∇2jkh(q)δq, τq)Q = j′′kh(q)(δq, τq) ∀δq, τq ∈ Qd.

By means of these representations, the key equation (4.2) determining the Newton update can
be written as

(∇2jkh(q)δq, τqi)Q = −(∇jkh(q), τqi)Q, i = 1, 2, . . . ,dimQd. (4.5)

We now formulate this system of equations in terms of coefficient vectors and matrices: Let us
first consider the term (∇jkh(q), τqi)Q on the right-hand side of (4.5). We express ∇jkh(q) ∈ Qd
by means of its coefficient vector f ∈ RdimQd with respect to the basis (4.1) and obtain

(∇jkh(q), τqi)Q =
dimQd∑
j=1

fj(τqj , τqi)Q.

Hence, f is determined as solution of

Gf =
(
(∇jkh(q), τqi)Q

)dimQd

i=1
=
(
j′kh(q)(τqi)

)dimQd

i=1
,

where G is the Gramian matrix of the basis (4.1) defined by Gij := (τqj , τqi)Q.
Remark 4.1. The concrete form of the Gramian matrix depends on the discrete control space
Qd. If, for instance, Qd origins from a finite element discretization, G equals the mass matrix.
In contrast, if Qd = Q is a finite-dimensional space of parameters, then G usually equals the
identity matrix.

Concerning the left-hand side of (4.5), we represent δq by means of its coefficient vector
d ∈ RdimQd . Then,

(∇2jkh(q)δq, τqi)Q =
dimQd∑
j=1

dj(∇2jkh(q)τqj , τqi)Q

implies that d fulfills

Kd =
(
(∇2jkh(q)δq, τqi)Q

)dimQd

i=1
=
(
j′′kh(q)(δq, τqi)

)dimQd

i=1
,

where the matrix K is given by Kij := (∇2jkh(q)τqj , τqi)Q = j′′kh(q)(τqj , τqi).

Consequently, the Newton equation (4.5) is equivalent to the following linear system for the
coefficient vectors:

Hd = −f .

Here, the coefficient matrix H of the Hessian ∇2jkh(q) is given in terms of the regular Gramian
matrix G by H := G−1K.
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4 Algorithmic Aspects of Numerical Optimization

Especially if dimQd is large, the computation of the whole matrix H is very costly and should
be avoided. In such situations, it is reasonable to compute only the coefficient vector h of the
product ∇2jkh(q)δq ∈ Qd in order to use it within an iterative solver. Similar as before, we
obtain

(∇2jkh(q)δq, τqi)Q =
dimQd∑
j=1

hj(τqj , τqi)Q,

and h is given as solution of

Gh =
(
(∇2jkh(q)δq, τqi)Q

)dimQd

i=1
=
(
j′′kh(q)(δq, τqi)

)dimQd

i=1
.

For stating the algorithms, we employ the following notations for coefficient vectors a, b ∈
RdimQd :

〈a, b〉 := aTGb and |a| := 〈a,a〉
1
2 .

Via these definitions, we have that RdimQd equipped with |·| is isometric isomorphic to Qd
equipped with ‖·‖Q. Furthermore, we can rewrite the linear-quadratic subproblem from (4.3)
in terms of the introduced coefficient vectors as

m(q,d) = jkh(q) + 〈f ,d〉+ 1
2
〈Hd,d〉.

Now, we are prepared to state the announced two versions of Newton’s method. In both
algorithms, the required information on the first derivative j′kh to obtain f is computed
using representation (2.10). However, the two algorithms differ in the way how they solve
the linear-quadratic subproblem (4.4) to obtain a correction δq for the current control q. If
problem (4.4) is solved exactly by a direct solver, the resulting algorithm belongs to the class
of exact Newton methods, whereas it is called to be an inexact Newton method if the linear
systems are solved only approximatively, that is by an iterative solver as for instance the
methods of conjugate gradients; see Section 4.2.1 for a detailed discussion.
Remark 4.2. For many concrete optimization problems, the inverting of G to compute f and
h can be avoided. In the configuration of Example 2.1, we have for instance

∇jkh(q) = α(q − q̂) + zkh and ∇2jkh(q)δq = αδq + δzkh.

Consequently, here f and h can be expressed directly in terms of the coefficient vectors for q,
q̂, zkh, δq, and δzkh.

4.1.1 Optimization loop without assembling the Hessian

Algorithm 4.1 treats the computation of a solution to (4.4) by an iterative solver, which only
requires products of the Hessian with given vectors and does not necessitate the whole Hessian
matrix. A widely used solver which fulfills these requirements of matrix-freeness is the already
mentioned conjugate gradient method. Thus, when using this approach, we always end up
with an inexact Newton method.
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4.1 Newton-type methods

Algorithm 4.1. Optimization loop without assembling the Hessian

1: Choose an initial q0 ∈ Qd, µ0 ∈ R ∪ {+∞}, and set l = 0.
2: repeat
3: Compute ul, i.e., solve the discrete state equation.
4: Compute zl, i.e., solve the discrete adjoint equation.
5: Assemble the coefficient vector f of the gradient ∇jkh(ql). For doing so, evaluate the

right-hand side of representation (2.10) for τq = τqi, i = 1, 2, . . . ,dimQd and solve the
linear system

Gf =
(
j′kh(ql)(τqi)

)dimQd

i=1
.

6: Solve the problem

Minimize m(ql,d), d ∈ RdimQd , |d| = ‖δq‖Q ≤ µl,

approximately by use of a solver which only requires matrix-vector products of the
Hessian computed by Algorithm 4.2.

7: Choose µl+1 and νl depending on the behavior of the algorithm.
8: Set ql+1 = ql + νlδq.
9: Increment l.
10: until |f | = ‖∇jkh(ql)‖Q < TOL

Algorithm 4.2. Computation of the product ∇2j(ql)δq

Require: ul and zl are already computed for the given ql.
1: Compute δul, i.e., solve the discrete tangent equation.
2: Compute δzl, i.e., solve the discrete additional adjoint equation.
3: Assemble the coefficient vector h of the product ∇2jkh(ql)δq. For doing so, evaluate the

right-hand side of representation (2.20) for τq = τqi, i = 1, 2, . . . ,dimQd and solve the
linear system

Gh =
(
j′′kh(q)(δq, τqi)

)dimQd

i=1
.

In Algorithm 4.1, several steps have to be concretized. Possibilities therefor are presented in
Section 4.2.

The computation of the required matrix-vector products can be done using representation (2.20)
and is described in Algorithm 4.2. We note that in order to obtain the product of the Hessian
with a given vector, we have to solve one tangent equation and one additional adjoint equation.
This has to be done in each step of the linear solver.

4.1.2 Optimization loop with assembling the Hessian

In contrast to Algorithm 4.1, Algorithm 4.3 assembles the whole Hessian respectively its
representation as coefficient matrix. Consequently, one may use every (direct or iterative)
linear solver for solving (4.4) or respectively the linear system (4.2). To compute the coefficient
matrix H of the Hessian ∇2jkh(q), we employ the representation of the second derivatives of
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the reduced cost functional given by (2.21). Thus, in each Newton step we have to solve the
tangent equation for each basis vector in (4.1).

Algorithm 4.3. Optimization loop with assembling the Hessian

1: Choose an initial q0 ∈ Qd, µ0 ∈ R ∪ {+∞}, and set l = 0.
2: repeat
3: Compute ul, i.e., solve the discrete state equation.
4: Compute { τuli | i = 1, 2, . . . ,dimQd } for the chosen basis of Qd, i.e. solve the discrete

tangent equation for each of the basis vectors τqi in (4.1).
5: Compute zl, i.e., solve the discrete adjoint equation.
6: Assemble the coefficient vector f of the gradient ∇jkh(ql). For doing so, evaluate the

right-hand side of representation (2.10) for τq = τqi, i = 1, 2, . . . ,dimQd and solve the
linear system

Gf =
(
j′kh(ql)(τqi)

)dimQd

i=1
.

7: Assemble the coefficient matrix H of the Hessian ∇2jkh(ql). For doing so, evaluate the
right-hand side of representation (2.21) for δq = τqj τq = τqi, δu = τuj , and τu = τui,
i = 1, 2, . . . ,dimQd and solve the matrix equation

GH =
(
j′′kh(ql)(τqi, τqj)

)dimQd

i,j=1
.

8: Solve the problem

Minimize m(ql,d), d ∈ RdimQd , |d| = ‖δq‖Q ≤ µl

exactly or approximately by means of a (linear) solver.
9: Choose µl+1 and νl depending on the behavior of the algorithm.

10: Set ql+1 = ql + νlδq.
11: Increment l.
12: until |f | = ‖∇jkh(ql)‖Q < TOL

As noted for Algorithm 4.1, concretizations for the vaguely formulated steps of Algorithm 4.3
are presented in Section 4.2.

4.1.3 Comparison of the presented optimization loops

We now compare the efficiency of the two presented algorithms under the assumption of using
the conjugate gradient method for solving the linear system in the Algorithms 4.1 and 4.3. Then,
for one step of Newton’s method, Algorithm 4.1 requires the solution of two linear problems
(tangent equation and additional adjoint equation) per step of the CG-iteration, whereas for
Algorithm 4.3, it is necessary to solve dimQd many tangent equations for assembling the
Hessian matrix.

Thus, if we have to perform nCG steps of the CG method per Newton step (a number, which
can hardly be determined a priori), we should favor Algorithm 4.3, if and only if

dimQd
2

≤ nCG. (4.6)
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In Section 4.3, we discuss a comparison of these two algorithms in the context of storage
reduction techniques.

4.2 Extensions and concretizations of Newton methods

In this section, we give concretizations of the vaguely formulated steps of the Algorithms 4.1
and 4.3. That is, we present an iterative method for solving the subproblems (4.3) and (4.4)
and two globalization techniques extending the region of convergence of Newton’s method.

4.2.1 Linear solvers

Since algorithms for solving the unconstrained as well as the constrained subproblems (4.3)
and (4.4) are well-known for cases where the whole Hessian is available (cf. Nocedal and
Wright [65]), we focus here on a matrix-free algorithm for solving these subproblems. As one
possibility, we present the classical Steihaug conjugate gradient method (cf. Steihaug [74]). This
algorithm is designed for solving the constrained subproblem (4.4) approximatively to obtain
the Newton update δq respectively its coefficient vector d. Since for µ = +∞, the constrained
problem coincides with the unconstrained one, the algorithm presented in the sequel can be
applied to both subproblems.

Algorithm 4.4. Steihaug conjugate gradient method

1: Set p0 = 0, r0 = −f , g0 = r0, and i = 0.
2: loop
3: Compute the coefficient vector h of the product ∇2j(ql)gi by means of Algorithm 4.2.
4: Set γ = 〈h, gi〉.
5: if γ ≤ 0 then
6: if µl <∞ then
7: Compute ξ > 0 such that |pi + ξgi| = µl.
8: Set d = pi + ξgi.
9: else

10: Set d = pi−1 or d = p0 if i = 0.
11: break (Negative curvature found.)
12: Compute α = |ri|2/γ.
13: Set pi+1 = pi + αgi.
14: if |pi+1| > µl then
15: Compute ξ > 0 such that |pi + ξgi| = µl.
16: Set d = pi + ξgi

17: break (Norm of approximation too large.)
18: Compute ri+1 = ri − αh
19: if |ri+1|/|r0| < TOL then
20: Set d = pi+1.
21: break (Approximation good enough.)
22: Compute β = |ri+1|2/|ri|2.
23: Set gi+1 = ri+1 + βgi.
24: Increment i.
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Algorithm 4.4 includes three different termination rules: We terminate . . .

• . . . in step 21, if we have a sufficiently good approximation to the Newton step (4.2).

• . . . in step 17, if the norm of the approximation is too large with respect to the bound µl.
Then, we take a linear combination of the previous iterate and the current one.

• . . . in step 11, if we encounter a direction of negative curvature. Then, we move to the
boundary given by µl if finite or take in the unconstrained case the previous iterate.

The last termination rule extends the classical conjugate gradient (CG) method to the cases
where the Hessian is not necessarily positive definite.

It is crucial to start Algorithm 4.4 with the initial guess p0 = 0, because then, the computed
directions δq are always descent directions. Additionally, we obtain the following properties of
the iterates pi which are necessary to show that all proposed termination rules are reasonable:

0 = |p0| < · · · < |pi| < |pi+1| < · · · < |d| = ‖δq‖Q ≤ µl,
m(ql,p0) > · · · > m(ql,pi) > m(ql,pi+1) > · · · > m(ql,d) = m(ql, δq).

Proofs of these assertions can be found for instance in Steihaug [74] and Nocedal and
Wright [65].

The unpreconditioned CG method as described here can be inefficient when the Hessian is ill-
conditioned and may even fail to reach the desired accuracy. Hence, it is important to introduce
preconditioning techniques into the CG method. It is possible to modify Algorithm 4.4 such
that it solves directly the preconditioned system. Details on this and a rigorous convergence
analysis of the whole algorithm can again be found in Steihaug [74].

4.2.2 Globalization techniques

In this subsection, we give two possible concretizations of how to choose µ and ν in the
Algorithms 4.1 and 4.3 for enlarging the region of convergence of Newton’s method. Such
globalization techniques are necessary since the classical Newton method does not necessarily
converge for every initial guess. That means, it is in general not globally convergent. The
resulting algorithms are then—depending on the choice of the globalization approach—called
line search Newton-CG method or trust-region Newton-CG method.

In what follows, we just give an overview over two of these techniques (line search and trust-
region methods) from a practical point of view. A detailed discussion can be found in the
standard literature as Nocedal and Wright [65] and Conn, Gould, and Toint [23].

Line search methods

For using line search, we set µ0 = +∞ and keep it constant during the Algorithms 4.1 and 4.3.
That is, we have only to solve the unconstrained subproblem (4.3). Thus, as crucial part
remains the proper choice of νl > 0 to maximize the reduction of the cost functional in the
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computed direction δq. Here, one can find several possibilities in the literature. The best
possibility would be

νl = arg min
ν>0

jkh(ql + νδq).

However, in most cases this exact line search is too expensive. A popular simplification is
the Armĳo backtracking: Let β, γ ∈ (0, 1) (often β = 0.5, γ = 0.01) be chosen constants.
Determine the largest step size νl ∈ { 1, β, β2, . . . } fulfilling

jkh(ql + νlδq) ≤ jkh(ql) + γνl∇jkh(ql)δq.

This choice leads under some assumption on jkh to a globally convergent Newton method
which has the same local convergence properties as the classical Newton method.

Trust-region methods

In trust-region methods, νl is always set as 0 or 1, but now a finite µ is chosen. In a prototypical
trust-region Newton algorithm (cf. Nocedal and Wright [65]), we choose constants µmax > 0,
µ0 ∈ (0, µmax), and γ ∈ [0, 0.25). The determination of µl+1 is then depending on the ratio

ρl := jkh(ql)− jkh(ql + δq)
m(ql, 0)−m(ql, δq)

,

which measures how good the model function m, which is minimized when solving the
subproblem (4.4), approximates the functional jkh. We then choose µl+1 and νl by means of
Algorithm 4.5.

Algorithm 4.5. Determination of µl+1 and νl

1: if ρl < 0.25 then
2: Set µl+1 = 0.25‖δq‖Q.
3: else if ρl > 0.75 and ‖δq‖Q = µl then
4: Set µl+1 = min(2µl, µmax).
5: else
6: Set µl+1 = µl.
7: if ρl > γ then
8: Set νl = 1.
9: else

10: Set νl = 0.

Under standard assumptions on jkh, also this trust-region Newton method is globally convergent
and converges locally like the classical Newton method.

4.3 Storage reduction techniques

When computing the gradient of the reduced cost functional as described in the algorithms
in the previous sections, we need to have access to the solution u of the state equation at
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all points in space and time while computing the adjoint solution z. Similarly, we need the
solutions of the state (u), tangent (δu), and adjoint (z) equations to solve the additional adjoint
equation for δz when computing matrix-vector products with the Hessian of the reduced cost
functional. If all data are stored, the storage grows linearly with respect to the number of time
intervals in the time discretization and the dimension of the space discretization dimV s

h . For
large problems, especially in three space dimensions, storing all the necessary data might be
impossible. To overcome this difficulty, storage reduction techniques have been developed in
Griewank [41], Berggren, Glowinski, and Lions [14], and Walther and Griewank [86]. All the
techniques presented there exhibit the property of reducing the storage when performing M
time steps from O(M) to O(log2M) at the cost of O(M log2M) additional time steps. For
the so-called binomial checkpointing proposed for instance in [41] and [86], optimal complexity
was proven.

In this section, we present an approach, which relies on ideas from Berggren, Glowinski, and
Lions [14]. We analyze the complexity of this algorithm and prove that the required storage
grows only logarithmic with respect to the number of time intervals. The main purpose of
this section is to discuss this storage reduction technique in the context of the optimization
algorithms described in Section 4.1. Due to its structure, we call the presented approach
multi-level windowing.

In the last years, the capacities of main memory and hard discs have been growing rapidly.
Hence, such storage reduction techniques can often be superseded by storing all data. Although
the costs of writing all data on the hard disc are much higher than for keeping them in the main
memory, storing of data on hard discs could be advantageous in view of run-time trade-offs in
the range of O(logM) which are implicated by the checkpointing approaches. At the end of
Section 4.4, we discuss this drawback in more detail.

4.3.1 Abstract algorithm

First, we consider the following abstract setting: Let the two time stepping schemes

xm−1 7→ xm for m = 1, 2, . . . ,M,

(ym+1,xm) 7→ ym for m = M − 1,M − 2, . . . , 0

be given together with an initial value x0 and the mapping xM 7→ yM prescribing the
terminal condition for y. The time stepping schemes coming from the dG(0) and cG(1)
semidiscretizations derived in Section 3.4 are concrete realizations of these abstract schemes.

Additionally, we assume the solutions xm as well as ym to be of the same size for all m =
0, 1, . . . ,M . However, if this is not the case, the checkpointing technique presented in the
sequel can be applied to clusters of time steps similar in size instead of single time steps.
Such clustering is for instance important when using dynamical meshes, since in this case, the
amount of storage for a solution xm depends on the mesh currently used.

The trivial approach of performing the forward and backward iterations is to compute and
store the whole forward solution (xm)Mm=0, and use these values to compute the backward
solution (ym)Mm=0. The required amount of storage to do this is M + 1 in terms of the size
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of one forward solution xm. The number of forward steps necessary to compute the whole
backward solution is M , the number of backward steps is M , too.

The aim of the following checkpointing algorithms is to reduce the needed storage by performing
some additional forward steps. To introduce the checkpointing, we assume that we can factorize
the number of given time steps M as M = PR with positive integers P and R. With this, we
can separate the set of time points { 0, 1, . . . ,M } in P slices each containing R− 1 time steps
and P + 1 sets containing one element as

{ 0, . . . ,M } = { 0 } ∪ { 1, . . . , R− 1 } ∪ {R } ∪ · · ·
· · · ∪ { (P − 1)R } ∪ { (P − 1)R+ 1, . . . , PR− 1 } ∪ {PR } .

The algorithm works as follows: First, we compute the forward solution xm for m = 1, 2, . . . ,M
and store the P +1 samples {x0,xR, . . . ,xPR }. Additionally, we store the R− 1 values of x in
the last slice {x(P−1)R+1,x(P−1)R+2, . . . ,xPR−1 }. Now, we have the necessary information on x
to compute ym form = M,M−1, . . . , (P−1)R+1. After doing so, the values of x in the last slice
are no longer needed. We can replace them with the values of x in the next-last slice, which we
can compute directly using the forward time stepping scheme since we stored the value x(P−2)R
in the first run. Thereby, we can compute ym for m = (P −1)R, (P −1)R−1, . . . , (P −2)R+1.
This can now be done iteratively till we have computed y in the first slice and finally obtain
the value y0. The so called one-level windowing is presented in detail in Algorithm 4.6.

Algorithm 4.6. OneLevelWindowing(P,R,M)

Require: M = PR.
1: Store x0.
2: Take x0 as initial value for x.
3: for m = 1 to (P − 1)R do
4: Compute xm.
5: if m is a multiple of R then
6: Store xm.
7: for i = (P − 1)R downto 0 step R do
8: Take xi as initial value for x.
9: for m = i+ 1 to i+R− 1 do

10: Compute xm.
11: Store xm.
12: if i = M −R then
13: Compute xM .
14: Store xM .
15: for m = i+R downto i+ 1 do
16: Compute ym in virtue of xm.
17: Delete xm from memory.
18: if i = 0 then
19: Compute y0.
20: Delete x0 from memory.

During the Execution of Algorithm 4.6, the needed amount of memory is not exceeding
(P + 1) + (R− 1) forward solutions. Each of the backward solutions ym is computed exactly
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once, so we need like in the direct approach M solving steps to obtain the whole solution y.
To compute the necessary values of xm, we have to solve M + (P − 1)(R− 1) forward steps,
since we have to compute each of the values of x once additionally in the first P − 1 slices. We
have in total

S({P,R }) = P +R and W ({P,R }) = 2M − P −R+ 1,

where S denotes the required amount of memory in terms of the size of one forward solution
and W denotes the number of time steps to provide the forward solution x needed to compute
the whole backward solution y. Each of them depends on the used factorization {P,R }.

The presented approach can be extended to factorizations FM = {M0,M1, . . . ,ML } of M in
|FM | = L+ 1 factors for L ∈ N0. This extension can be obtained via the following inductive
argumentation: Assuming M = M0M1 · · ·ML with positive integers Ml, we can apply the
algorithm described above to the factorization M = PR with P = M0 and R = M1M2 · · ·ML,
and then recursively to each of the P slices. This so called multi-level windowing is described
in Algorithm 4.7. It has to be initiated by the call MultiLevelWindowing(0, 0,FM ,M).

Algorithm 4.7. MultiLevelWindowing(s, l,FM ,M)

Require: M =
∏
Mj∈FM Mj .

1: Set L = |FM | − 1, P = Ml, and R = Ml+1 · · ·ML.
2: if l = 0 and s = 0 then
3: Store x0.
4: Take xs as initial value for x.
5: for m = 1 to (P − 1)R do
6: Compute xs+m.
7: if m is a multiple of R then
8: Store xs+m.
9: for i = (P − 1)R downto 0 step R do

10: if l + 1 < L then
11: Call MultiLevelWindowing(s+ i, l + 1,FM ,M).
12: else
13: Take xs+i as initial value for x.
14: for m = i+ 1 to i+R− 1 do
15: Compute xs+m.
16: Store xs+m.
17: if s+ i = M −R then
18: Compute xM .
19: Store xM .
20: for m = i+R downto i+ 1 do
21: Compute ys+m in virtue of xs+m.
22: Delete xs+m from memory.
23: if s+ i = 0 then
24: Compute y0.
25: Delete x0 from memory.

Of course, there holds by construction

OneLevelWindowing(P,R,M) = MultiLevelWindowing(0, 0, {P,R } ,M).
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Remark 4.3. The presented approach can be extended to cases where a suitable factorization
M = M0M1 · · ·ML does not exist. Then, we consider a representation of M as M =
(M0 − 1)R0 + R̃0 with positive integers M0, R0, and R̃0 fulfilling R0 ≤ R̃0 < 2R0 and apply
this idea recursively to the generated subintervals of length R0 or R̃0. This can easily be done,
since by construction, the reminder interval of length R̃0 has at least the same length as the
regular subintervals.

In the following theorem, we calculate the necessary amount of storage and the number of
forward steps necessary to perform the multi-level windowing described in Algorithm 4.7 for a
given factorization FM = {M0,M1, . . . ,ML } of length |FM | = L+ 1:

Theorem 4.1. For given L ∈ N0 and a factorization FM = {M0,M1, . . . ,ML } of the number
of time steps M with Ml ∈ N, the required amount of memory of the multi-level windowing
algorithm to perform all backward solution steps is

S(FM ) =
∑

Ml∈FM

(Ml − 1) + 2.

To achieve this storage reduction, the number of performed forward steps enhances to

W (FM ) = |FM |M −
∑

Ml∈FM

M

Ml
+ 1.

Proof. We prove the theorem by mathematical induction:

L = 0: Here we use the trivial approach where the entire forward solution x is saved. As
considered in the beginning of this section, we then have S(FM ) = M + 1 and W (FM ) =
M for FM = {M }.

L− 1  L: We consider the factorization F∗M = {M0,M1, . . . ,ML−2,ML−1ML } of length
L additionally to the given factorization FM of length L+ 1. Then, we obtain in the
same way as for the one-level windowing, where we have reduced the storage mainly
from PR− 1 to (P − 1) + (R− 1), the identity

S(FM ) = S(F∗M )− (ML−1ML − 1) + (ML−1 − 1) + (ML − 1).

In virtue of the induction hypothesis for S(F∗M ), it follows

SL(FM ) =
∑

Ml∈F∗M

(Ml − 1)− (ML−1ML − 1) + (ML−1 − 1) + (ML − 1) + 2

=
∑

Ml∈FM

(Ml − 1) + 2.

Now, we prove the assertion for W . To this end, we justify the equality

W (FM ) = W (F∗M ) + M

ML−1ML
(ML−1 − 1)(ML − 1).
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The asserted identity follows immediately from the fact that we divide each of the
M

ML−1ML
slices

{ s+ 1, s+ 2, . . . , s+ML−1ML − 1 } , s = 0,ML−1ML, . . . ,

(
M

ML−1ML
− 1

)
ML−1ML

of length ML−1ML − 1 as

{ s+ 1, . . . , s+ML−1ML − 1 } = { s+ 1, . . . , s+ML − 1 } ∪ { s+ML } ∪ · · ·
· · · ∪ { s+ (ML−1 − 1)ML } ∪ { s+ (ML−1 − 1)ML + 1, . . . , s+ML−1ML − 1 } .

Since we just need to compute the forward solution in the first ML−1 − 1 subslices when
we change from the factorization of length L to the one of length L+ 1, the additional
work equals

M

ML−1ML
(ML−1 − 1)(ML − 1)

as stated. Then, we obtain in virtue of the induction hypothesis for W (F∗M )

W (FM ) = |F∗M |M +M −
∑

Ml∈F∗M

M

Ml
+ M

ML−1ML
− M

ML−1
− M

ML
+ 1

= |FM |M −
∑

Ml∈FM

M

Ml
+ 1.

If M
1

L+1 ∈ N, the minimal storage SL of all possible factorizations of length L+ 1 is

SL := S({M
1

L+1 , . . . ,M
1

L+1 }) = (L+ 1)(M
1

L+1 − 1) + 2.

The numbers of forward steps for the memory-optimal factorization then results in

WL := W ({M
1

L+1 , . . . ,M
1

L+1 }) = (L+ 1)(M −M
L
L+1 ) + 1.

If we choose additionally L ≈ log2M , we obtain for the optimal factorization from above the
proposed logarithmic growth of the necessary amount of storage and the corresponding number
of forward steps

SL = O(log2M) and WL = O(M log2M).

In the following subsections, we consider the multi-level windowing described here in the
context of nonstationary optimization. We give a detailed estimate for the number of steps
and the amount of memory required to perform one Newton step for a given number of levels
L ∈ N0.
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4.3.2 Optimization loop without assembling the Hessian

First, we treat the variant of the optimization algorithm, which does not assemble the entire
Hessian of the reduced cost functional and is given in Algorithm 4.1. As stated in this algorithm,
it is necessary to compute the value of the reduced cost functional and the gradient once per
Newton step. To apply the derived checkpointing techniques, we set x = u, y = z and note,
that Algorithm 4.7 can easily be extended to compute the necessary terms for evaluating the
functional and the gradient during the forward or backward computation, respectively. Thus,
the total number of times steps needed to do this, is W grad = W (FM ) +M . The required
amount of memory is Sgrad = S(FM ).

Additionally to the gradient, we need to compute one matrix-vector product of the Hessian times
a given vector in each of the nCG steps of the conjugate gradient method (cf. Algorithm 4.4).
This is done as described in Algorithm 4.2. For avoiding the storage of u or z in all time steps,
we have to recompute u, δu, z, and δz again in every CG step. Consequently, we set here
x = (u, δu) and y = (z, δz). We obtain W hess = 2(W (FM ) +M) and Shess = 2S(FM ).

In total we achieve

W (1) = W grad + nCGW
hess = (1 + 2nCG)(W (FM ) +M) and

S(1) = max(Sgrad, Shess) = 2S(FM ).

Remark 4.4. The checkpointing algorithm (Algorithm 4.7) can be modified to reduce the
necessary forward steps under acceptance of increasing the needed amount of storage as follows:
We do not delete u while computing z at the initial checkpoints where u is saved before starting
the computation of z. Additionally, we store z at these checkpoints. These saved values of u
and z can be used to reduce the necessary number of forward steps to provide the values of u
and δu for computing one matrix-vector product with the Hessian. Of course, when saving
additional samples of u and z, the needed amount of storage increases. For one Newton step
we obtain the total work W̃ (1) and storage S̃(1) as

W̃ (1) = W (1) − 2nCG min(S(FM ),M) and S̃(1) = S(1) + 2S(FM )−M0 − 2.

Due to this modification, the algorithm includes the case of not using checkpointing at all for
L = 0, while the original form of the algorithm deletes u during the computation of z also for
L = 0.

4.3.3 Optimization loop with assembling the Hessian

For using Algorithm 4.3, it is necessary to compute u, τui (i = 1, 2, . . . ,dimQd), and z. Again,
the evaluation of the reduced cost functional can be done during the first forward computation,
and the evaluation of the gradient and the Hessian can be done during the computation of z.
So, we set x = (u, τu1, τu2, . . . , τudimQd) and y = z. Thus, the required number of steps and
the needed amount of memory are

W (2) = (1 + dimQd)W (FM ) +M and S(2) = (1 + dimQd)S(FM ).
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4.3.4 Comparison of the presented optimization loops

We obtain directly S(2) ≥ S(1), since we have obviously dimQd ≥ 1. The relation between
W (1) and W (2) depends on the factorization of M . A simple calculation leads to the following
condition:

W (2) ≤W (1) ⇐⇒ dimQd
2

≤ nCG
(

1 + M

W (FM )

)
.

If we choose FM and L such that W (FM ) ≈M log2M , we can express the condition above
just in terms of M as

W (2) .W (1) ⇐⇒ dimQd
2

. nCG

(
1 + 1

log2M

)
. (4.7)

This implies, that even though the required memory for the second algorithm with assembling
the entire Hessian is greater, this algorithm requires only then fewer steps than the first one, if
condition (4.7) is fulfilled. Note, that condition (4.7) is the extension of criterion (4.6) to the
case when applying checkpointing.
Remark 4.5. If we apply globalization techniques such as line search or trust-region methods (cf.
Section 4.2.2) to one of the presented optimization algorithms, we have to compute the solution
of the state equation and the value of the cost functional several times without computing the
gradient or the Hessian. The direct approach for doing this, is to compute the state, evaluate
it and delete it afterwards. This might not be optimal, since for the following computation of
the gradient (and the Hessian) via checkpointing, the needful preparations are not done. So,
the better way of doing this is to run Algorithm 4.7 until line 19 and break consequently after
completing the forward solution. If after that the value of the gradient is needed, it is possible
to restart directly on line 20 with the computation of the backward solutions. If we consider
the version with assembling the Hessian, we have to compute the tangent solutions in an extra
forward run in which we can also use the stored values of the state solution.

4.4 Numerical results

In this section, we examine the behavior of the two types of optimization algorithms described
in the Sections 4.1 and 4.2 as well as the checkpointing technique presented in Section 4.3 in
the situation of a given optimization problem with finite-dimensional control. To this end,
we consider an optimal control problem with terminal observation where the control variable
q ∈ Q = R8 enters the initial condition of the nonlinear state equation. We choose as spatial
domain Ω = (0, 1)3, the final time T = 1 and pose the state equation as

∂tu− ε∆u+ u2 = 0 in Ω × I,
ε∂nu = 0 on ∂Ω × I,

u = g0 +
8∑
i=1
giqi on Ω × { 0 } .

(4.8)

Here, gi (i = 1, 2, . . . , 8) are given shape functions. The desired state û (see Figure 4.1) is
given for x = (x1, x2, x3)T as

û(x) = 1
6
(3 + x1 + x2 + x3),
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and the cost functional to be minimized is chosen as

J(q, u) = 1
2
‖u(T )− û‖2L2(Ω) + α

2

8∑
i=1

q2i .

Figure 4.1. Isosurfaces of the desired state û

The parameters ε and α are selected as ε = 10−1 and α = 10−4, and the state space X is
given in virtue of the choices V = H1(Ω) and H = L2(Ω). For discretizing the state space,
we employ the cG(1)dG(0) and cG(1)cG(1) schemes performing 100 time steps on a mesh
consisting of 4,096 hexahedral cells with diameter h = 0.0625. Since Q = R8, the control space
needs not to be discretized. Thus, we set Qd = Q.

In Table 4.1, we show the progression of the norm of the gradient of the reduced functional
‖∇jhk‖Q and the reduction of the values of the cost functional jhk during the executions of
Newton’s method applied to the optimization problem. Since condition (4.6) is not fulfilled in
this example, one should prefer rather Algorithm 4.1 which makes only use of matrix-vector
products of the Hessian than the alternative Algorithm 4.3.

Table 4.1. Results of the optimization loop with dG(0) and cG(1) time discretization
starting with initial guess q0 = (0, 0, . . . , 0)T

cG(1)dG(0) cG(1)cg(1)

Newton step nCG ‖∇jhk‖Q jhk nCG ‖∇jhk‖Q jhk

0 — 1.21 ·10−01 2.76 ·10−01 — 1.21 ·10−01 2.76 ·10−01

1 2 4.99 ·10−02 1.34 ·10−01 2 4.98 ·10−02 1.34 ·10−01

2 2 2.00 ·10−02 6.28 ·10−02 2 1.99 ·10−02 6.33 ·10−02

3 3 7.61 ·10−03 2.94 ·10−02 3 7.62 ·10−03 3.00 ·10−02

4 3 2.55 ·10−03 1.64 ·10−02 3 2.57 ·10−03 1.70 ·10−02

5 3 6.03 ·10−04 1.32 ·10−02 3 6.21 ·10−04 1.37 ·10−02

6 3 5.72 ·10−05 1.29 ·10−02 3 6.18 ·10−05 1.34 ·10−02

7 3 6.37 ·10−07 1.29 ·10−02 3 7.62 ·10−07 1.34 ·10−02

8 3 1.75 ·10−10 1.29 ·10−02 3 1.21 ·10−10 1.34 ·10−02

In the Figures 4.2 and 4.3 we show isosurfaces of the initial control q0 and the optimal control
q8 obtained after eight Newton steps of the proposed algorithm. Figure 4.3(f) demonstrates
the good qualitative agreement of the optimal solution with the desired state depicted in
Figure 4.1.

We now consider the behavior of the presented checkpointing technique described earlier in
this chapter when applied to the considered optimization problem. Table 4.2 demonstrates the
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(a) t = 0.0 (b) t = 0.2 (c) t = 0.4 (d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 4.2. Isosurfaces of the state corresponding to the initial control q0

(a) t = 0.0 (b) t = 0.2 (c) t = 0.4 (d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 4.3. Isosurfaces of the state corresponding to the optimal control q8

reduction in storage requirements as proposed in Section 4.3. We achieve a storage reduction
about the factors 30 and 45 for the two variants of the optimization loop. Thereby, the total
number of time steps grows about the factor 3.2 for the algorithm with, and about the factor 4.0
for the algorithm without assembling the Hessian. Comparable run-time trade-offs are obtained
in Sternberg [75], where the binomial checkpointing routine introduced in Griewank [41] was
examined in the context of optimal control.

Table 4.2. Reduction of the storage requirement due to windowing for 500 time
steps in the cG(1)dG(0) discretization

With Hessian Without Hessian

Factorization #Checkpoints #Time steps #Checkpoints #Time steps

500 4509 45000 1503 35000
5 · 100 945 80640 210 87948
10 · 50 540 84690 120 90783

2 · 2 · 5 · 25 288 120582 64 118503
5 · 10 · 10 216 114174 48 113463
4 · 5 · 5 · 5 153 136512 34 130788

2 · 2 · 5 · 5 · 5 144 146646 32 138663

We remark, that although the factorization 2 · 2 · 5 · 25 consists of more factors than the
factorization 5 · 10 · 10, both the storage requirement and the total number of time steps are
greater for the first factorization than for the second one. The reason for this is the imbalance
of the size of the different factors in 2 · 2 · 5 · 25. As shown in Section 4.3, in the optimal
factorization all factors are identical. So it is plausible that a factorization as for instance
5 · 10 · 10 is more efficient than one where the size of the factors varies much.

Table 4.2 also proves the asserted dependence on condition (4.7) which states when to use which
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variant of the optimization loop on the considered factorization of M . For the factorizations
5 · 100 and 10 · 50, the variant with assembling the Hessian needs less forward steps than the
other variant without assembling the Hessian. However, for the remaining factorizations the
situation is vice versa.

For a concrete chosen spatial mesh size of for example to 32,768 cells per time step, application
of the checkpointing routine would reduce the necessary amount of memory from initially
1,236MB to 39MB when assembling the Hessian and from 412MB to 9MB otherwise. However,
these numbers result only from theoretical investigations based on the memory consumption
of one solution sample on the considered mesh.

A practical examination of the behavior of the windowing technique seems only possible on
coarse discretizations since even run-time trade-offs in the region of 3 make computations
on finer discretizations extremely time consuming. Thus, from a practical point of view, the
run-time trade-off of checkpointing compared to the basic approach (storing all solutions)
limits its usage to situations where the numerical recomputation of solutions is rather fast.
Usually, this is only the case if the size of the solutions is small. On the other hand, in view
of the rapidly growing capacities of main memory in modern compute servers, larger and
larger solutions can be stored. Thus, the need for storage reduction techniques becomes only
necessary for highly memory consuming systems originating from fine discretizations especially
in three space dimensions. An example of such a configuration, namely the simulation of a
three-dimensional flow around a cylinder, is investigated in Heuveline and Walther [43].

But even in such large scale computations, the limitations of main memory can be avoided
by storing all the data on hard disk. Even if the access times to hard disc are much larger
than for accessing the main memory, this approach can be competitive since the checkpointing
procedure needs in practice at least three times the run-time of the approach with storing
everything in main memory. It is arguable whether this trade-off can totally be consumed by
reading and writing access to hard disc. Since the capacity of hard discs is virtually unlimited,
this approach constitutes a serious alternative to the checkpointing routines.
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5 A Priori Error Analysis

In this chapter, we derive a priori estimates for the error caused by discretizing the optimization
problem in space and time. In particular, we estimate the error due to the cG(s)dG(r)
discretization of the state and the discretization of the control concerning a linear-quadratic
parabolic model problem with distributed control.

While the a priori error analysis for finite element discretizations of optimal control problems
governed by elliptic equations is discussed in many publications, see for example Falk [34],
Geveci [40], Arada, Casas, and Tröltzsch [1], Meyer and Rösch [62], Casas, Mateos, and
Tröltzsch [21], Hinze [44], Becker and Vexler [13], and Rösch and Vexler [71], there are only
a few published results on this topic for parabolic problems. Amongst others, there are the
following articles presenting error estimates for Galerkin type discretizations of parabolic
optimal control problems:

• In McNight and Bosarge [58], the authors consider a general class of parabolic optimal
control problems and proof an estimate which assesses the error caused by discretization
of the control, state, and adjoint state in space only.

• In Winther [87], an optimal control problem with Neumann boundary control and
terminal observation is considered. For this configuration, the author shows estimates in
L∞(I, L2(Ω)) for the error in the state and the adjoint state variable when discretizing
the state by a backward discretization in time and linear finite elements in space. Since
the control variable is eliminated from the optimality system, no estimates for the control
are given.

• The objective of Lasiecka and Malanowski [51] are (control-constrained) optimal control
problems with control by right-hand side and a cost functional which is distributed over
space and time. As discretization scheme, the discrete-time Ritz-Galerkin scheme for the
state and the control variable is chosen. There, the state is discretized by linear finite
elements in space and the control discretization uses piecewise constant polynomials in
space. With respect to time, the discrete-time Ritz-Galerkin method utilizes for both
variables the θ-scheme which includes implicit Euler (θ = 0) and Crank-Nicolson (θ = 1/2)
schemes. An estimate for the error in the control variable is proven which is optimal
with respect to the parameters of the control discretization in the case θ = 0. Based on
this result, the authors show the same order of convergence for the error in the state and
adjoint state variables.

• In Malanowski [57], the author considers (control-constrained) optimal control problems
with control via right-hand side or via boundary conditions of Neumann type. The
state variable is again discretized by the discrete-time Ritz-Galerkin scheme with linear
finite elements in space. For the control discretization, the discrete-time Ritz-Galerkin
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scheme combined with either linear or constant finite elements in space is examined. An
estimate for the error in terms of the control variable of optimal order in the case θ = 0
is presented under the restriction of a prescribed coupling of the temporal and spatial
discretization parameters; that is under the condition k ≈ h.

Our a priori analysis differs from the approaches used in the presented literature: For the
discretization error between the solution (q, u) of the continuous optimization problem and the
optimal solution (qσ, uσ) of the Galerkin-discretized problem, we prove optimal error estimates
of the structure

‖q − qσ‖L2(I,L2(Ω)) ≤ C1(u, z) kr+1 + C2(u, z)hs+1 + C3(q) krd+1
d + C4(q)hsd+1

d ,

where r, rd are the highest degrees of polynomials used in the time discretization of the state
and the control variable, respectively, and s, sd are the highest degree of polynomials used in the
space discretization of the state and the control variable. The constants C1(u, z) and C2(u, z)
depend on the temporal and spatial regularity of the optimal state u and the corresponding
adjoint state z. The temporal and spatial regularity of the optimal control q determines the
constants C3(q) and C4(q).

Based on this result for the error in the control variable, estimates of optimal order for the
error in the state and adjoint state variable and also in terms of the cost functional are proven.
This extends the results presented in [57] in the following directions: Firstly, we consider
not only the lowest order discretization cG(1)dG(0) (which corresponds to the investigated
discrete-time Ritz-Galerkin scheme in the case θ = 0) but also higher order cG(s)dG(r) schemes
and secondly, we strictly separate the influences of the temporal and spatial regularities of
the solutions and also the influences of the time and space discretizations. In particular, the
discretization parameters of all involved discretizations can be chosen independently of each
other.

In the following section, we give the precise formulation of the optimal control problem
investigated in this chapter. Furthermore, we recall results on existence, uniqueness, and
regularity of solutions to the considered optimal control problem and concretize the dG(r)
semilinear form. Based on the stability estimates to be developed in Section 5.2, we provide
an a priori error analysis for the state equation in Section 5.3. The main results on the error
analysis for the considered optimal control problem are given in Section 5.4. In this section,
error estimates for the error in the control, state, and adjoint state variables are developed.
Furthermore, we derive an a priori estimate for the error in terms of the cost functional. In
the last section, we present numerical results illustrating our theoretical predictions.

The estimates developed here are also collected in Meidner and Vexler [60] and the proposed
techniques are successfully employed in Meidner and Vexler [61] for the development of an a
priori error analysis for linear-quadratic optimal control problems with pointwise inequality
constraints on the control variable.
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5.1 Continuous optimal control problem

5.1 Continuous optimal control problem

As state equation, we consider the linear heat equation

∂tu−∆u = f + q in Ω × I,
u = u0 on Ω × { 0 }

(5.1)

combined with either homogeneous Dirichlet or homogeneous Neumann boundary conditions
on ∂Ω × I. Throughout this chapter, the spatial domain Ω is assumed to be polygonally
bounded and convex. By means of a given desired state û, the cost functional J is chosen to
be of tracking type:

J(q, u) = 1
2

∫
I
‖u(t)− û(t)‖2L2(Ω) dt+ α

2

∫
I
‖q(t)‖2L2(Ω) dt. (5.2)

Then, the optimal control problem considered in this chapter is given as concretization of the
abstract optimization problem (P) by

Minimize J(q, u) subject to (5.1), (q, u) ∈ Q×X. (P)

As already discussed in Example 2.1, we choose here

H = L2(Ω), V = H1
0 (Ω) or V = H1(Ω), and Q = L2(I,H) (5.3)

for embedding this control problem in the abstract setting of Chapter 2. The right-hand side
f and the desired state û are assumed to be in L2(I,H) and the initial condition u0 to be in
V . Under these assumptions, there exists a solution u ∈ X to (5.1) which is of even higher
regularity:

Theorem 5.1. Let V and H be chosen accordingly to (5.3). Then, there exists for fixed control
q ∈ Q, f ∈ L2(I,H), and u0 ∈ V a unique solution u ∈ X of problem (5.1) equipped with
homogeneous Dirichlet or homogeneous Neumann boundary conditions. Moreover, the solution
u exhibits the improved regularity

u ∈ L2(I,H2(Ω) ∩ V ) ∩H1(I, L2(Ω)) ↪→ C(Ī , V ).

It holds the stability estimate

‖∂tu‖I + ‖∆u‖I ≤ C
{
‖f + q‖I + ‖∇u0‖I

}
.

Proof. The proof of existence and uniqueness is given in Lions [53] and Wloka [88]. The
improved regularity is proven in Evans [33], and the embedding of L2(I,H2(Ω) ∩ V ) ∩
H1(I, L2(Ω)) into C(Ī , V ) can be found for instance in Dautray and Lions [25].

The improved regularity of the state carries over to the regularity of the optimal control:

Theorem 5.2. For given f, û ∈ L2(I,H), u0 ∈ V , and α > 0, the optimal control problem (P)
admits a unique solution (q, u) ∈ Q×X. The optimal control q possesses the regularity

q ∈ L2(I,H2(Ω) ∩ V ) ∩H1(I, L2(Ω)).
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Proof. The existence of a unique optimal solution (q, u) ∈ Q×X can be shown here like in
Section 2.3 for the optimal control problem from Example 2.1. Then, the first order necessary
optimality condition (2.7) respectively the optimality system (2.12) and Theorem 5.1 (applied
to the adjoint solution z) imply the stated regularity of q.

In contrast to the remaining chapters of this thesis, we use here for the a priori analysis the
formulation (3.2) of the dG(r) discretization of the state equation without the jump term at
t0. The equivalence of this scheme to the scheme (3.1) used before was proven in Remark 3.2
for the dG(r) semidiscretization and holds true also for space-time discretizations on a fixed
spatial mesh. Hence, we restrict ourselves to the case of fixed spatial discretizations, that is

V s,m
h = V s

h , m = 0, 1, . . . ,M.

However, the results of the analysis presented in the Sections 5.1 and 5.3.1 also hold true
in the case when dynamical changes of the space discretization are allowed. The results of
Section 5.3.2 can not be applied directly when dynamical meshes are used.

We abbreviate the u-dependent part of the left-hand side of the dG(r) semilinear form (3.2)
concretized for the linear-quadratic problem (P) by B defined for uk, ϕ ∈ X̃r

k as

B(uk, ϕ) :=
M∑
m=1

(∂tuk, ϕ)Im + (∇uk,∇ϕ)I +
M∑
m=2

([uk]m−1, ϕ
+
m−1) + (u+

k,0, ϕ
+
0 ). (5.4)

We note that with integration by parts, it also holds

B(uk, ϕ) = −
M∑
m=1

(uk, ∂tϕ)Im + (∇uk,∇ϕ)I −
M−1∑
m=1

(u−k,m, [ϕ]m) + (u−k,M , ϕ
−
M ). (5.5)

Since we have left out the parts of the dG(r) formulation that depend on the control q, the
bilinear form B represents also the left-hand side of the dG(r) method for the uncontrolled
problem, that is for (5.1) in the case q = 0. Thus, we may employ B for both the analysis of
the uncontrolled case derived in the Sections 5.2 and 5.3 and for the analysis of the optimal
control problem (P) developed in Section 5.4.

In what follows, we use the abbreviations

‖v‖ := ‖v‖L2(Ω), ‖v‖I := ‖v‖L2(I,L2(Ω)), and ‖v‖Im := ‖v‖L2(Im,L2(Ω))

to shorten the notation. They are defined analogously to those of the inner products (·, ·),
(·, ·)I , and (·, ·)Im already used in the previous chapters.

5.2 Stability estimates for the state and adjoint state

The first step in proving the desired a priori estimates is to show stability estimates for the
solution of the semidiscrete and the fully discretized state equation (5.1) in the case q = 0.
The state equation for the dG(r) discretization of (5.1) reads by means of the bilinear form B
for given right-hand side f and initial condition u0 as

B(uk, ϕ) = (f + q, ϕ)I + (u0, ϕ
+
0 ) ∀ϕ ∈ X̃r

k . (5.6)
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Remark 5.1. Since we use here the modified dG(r) formulation (3.2) which does not contain
conditions for values at time t−0 , we redefine X̃r

k and X̃r,s
k,h in the sense that its elements do not

necessarily possess values at t−0 .
Remark 5.2. Using a density argument, it is possible to show that the continuous solution
u ∈ X of (5.1) satisfies also the identity

B(u, ϕ) = (f + q, ϕ)I + (u0, ϕ
+
0 ) ∀ϕ ∈ X̃r

k .

Thus, we have here the property of Galerkin orthogonality

B(u− uk, ϕ) = 0 ∀ϕ ∈ X̃r
k ,

although the dG(r) semidiscretization is a nonconforming Galerkin method (X̃r
k 6⊆ X).

The fully cG(s)dG(r)-discretized formulation (cf. Section 3.2) of the state equation (5.1) aims
at the determination of ukh ∈ X̃r,s

k,h such that

B(ukh, ϕ) = (f + q, ϕ)I + (u0, ϕ
+
0 ) ∀ϕ ∈ X̃r,s

k,h. (5.7)

Now, we are going to proof a first stability estimate for the semidiscrete uncontrolled state
equation, that is for (5.6) in the case q = 0. A similar estimate is shown in Eriksson and
Johnson [30, 31]. However, it is proven therein only for the case f = 0. This would not be
applicable to the considered control problem (P) where the control acts as right-hand side of
the state equation.

Theorem 5.3. For the solution uk ∈ X̃r
k of the uncontrolled dG(r)-semidiscretized state

equation (5.6) with right-hand side f ∈ L2(I,H) and initial condition u0 ∈ V , the stability
estimate

M∑
m=1
‖∂tuk‖2Im + ‖∆uk‖2I +

M∑
m=1

k−1
m ‖[uk]m−1‖2 ≤ C

{
‖f‖2I + ‖∇u0‖2

}
holds. The constant C only depends on the polynomial degree r and the domain Ω. The jump
term [uk]0 at t = 0 is defined as u+

k,0 − u0.

Proof. We first note that by means of the definition [uk]0 = u+
k,0 − u0, the solution uk ∈ X̃r

k

of (5.6) in the case q = 0 fulfills also for all ϕ ∈ Pr(Im, V ) the following system of equations:

(∂tuk, ϕ)Im + (∇uk,∇ϕ)Im + ([uk]m−1, ϕ
+
m−1) = (f, ϕ)Im m = 1, 2, . . . ,M. (5.8)

The proof of the estimate consist of three steps—one for each term of its left-hand side. The
steps base on consecutively testing with ϕ = −∆uk, ϕ = (t− tm−1)∂tuk, and ϕ = [uk]m−1.

(i) At first, we want to choose ϕ = −∆uk. For applying integration by parts in space
to (5.8), it is necessary to prove ∆uk

∣∣
Im
∈ Pr(Im, H). This assertion follows immediately

from applying elliptic regularity theory (cf. Evans [33]) to the transformed time stepping
equation

(∇uk,∇ϕ)Im = (f − ∂tuk, ϕ)Im − ([uk]m−1, ϕ
+
m−1).
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The fact that uk
∣∣
Im

is polynomial in time with values in V ⊆ H implies that the right-
hand side is in H for almost all t ∈ Im. Thus, ∆uk

∣∣
Im

is also in H for almost all t ∈ Im,
and since uk

∣∣
Im

is polynomial with respect to time, this yields ∆uk
∣∣
Im
∈ Pr(Im, H).

Consequently, it is feasible to integrate (5.8) by parts in space to obtain the formulation

(∂tuk, ϕ)Im − (∆uk, ϕ)Im + ([uk]m−1, ϕ
+
m−1) = (f, ϕ)Im m = 1, 2, . . . ,M. (5.9)

The arising boundary terms vanish for both homogeneous Neumann or homogeneous
Dirichlet boundary conditions.

Since there are no spatial derivatives on the test function ϕ anymore, formulation (5.9)
holds not only for all ϕ ∈ Pr(Im, V ) but by the density of V inH also for all ϕ ∈ Pr(Im, H).
Hence, we may choose ϕ = −∆uk as test function and get by applying integration by
parts in space a second time

(∂t∇uk,∇uk)Im + (∆uk,∆uk)Im + ([∇uk]m−1,∇u+
k,m−1) = (f,−∆uk)Im .

Again, the arising boundary terms vanish due to the prescribed homogeneous boundary
conditions of Neumann or Dirichlet type.

By means of the identities

(∂tv, v)Im = 1
2
‖v−m‖2 −

1
2
‖v+
m−1‖

2, (5.10a)

([v]m−1, v
+
m−1) = 1

2
‖v+
m−1‖

2 + 1
2
‖[v]m−1‖2 −

1
2
‖v−m−1‖

2, (5.10b)

we achieve
1
2
‖∇u−k,m‖

2 + 1
2
‖[∇uk]m−1‖2 −

1
2
‖∇u−k,m−1‖

2 + ‖∆uk‖2Im = (f,−∆uk)Im .

Summation of the equations for m = 1, 2, . . . ,M leads to

1
2
‖∇u−k,M‖

2 + 1
2

M∑
m=1
‖[∇uk]m−1‖2 + ‖∆uk‖2I = (f,−∆uk)I + 1

2
‖∇u0‖2.

Using Young’s inequality on the right-hand side, we obtain the first intermediary result

‖∆uk‖2I ≤ ‖f‖2I + ‖∇u0‖2. (5.11)

(ii) To bound the time derivative ∂tuk, we use the inverse estimate

‖vk‖2Im ≤ Ck
−1
m

∫
Im

(t− tm−1)‖vk‖2 dt, (5.12)

which holds true for all functions vk ∈ Pr(Im, V ) and is obtained by a transformation
argument. We choose ϕ = (t− tm−1)∂tuk and obtain from (5.9) utilizing the fact that
ϕ+
m−1 = 0:∫
Im

(t− tm−1)‖∂tuk‖2 dt =
∫
Im

(t− tm−1)(f + ∆uk, ∂tuk) dt

≤
(∫

Im
(t− tm−1)‖f + ∆uk‖2 dt

) 1
2
(∫

Im
(t− tm−1)‖∂tuk‖2 dt

) 1
2
.

72



5.2 Stability estimates for the state and adjoint state

The inverse estimate (5.12) yields by means of Hölder’s inequality

‖∂tuk‖2Im ≤ Ck
−1
m

∫
Im

(t− tm−1)‖f + ∆uk‖2 dt ≤ C
{
‖f‖2Im + ‖∆uk‖2Im

}
.

Then, (5.11) implies the second intermediary result

M∑
m=1
‖∂tuk‖2Im ≤ C

{
‖f‖2I + ‖∇u0‖2

}
. (5.13)

(iii) It remains to estimate the jump terms. Therefor, we choose ϕ = [uk]m−1 (to be understood
as function constant with respect to time) and obtain

‖[uk]m−1‖2 = (f + ∆uk − ∂tuk, [uk]m−1)Im

≤ km
2
‖f + ∆uk − ∂tuk‖2Im + 1

2km
‖[uk]m−1‖2Im .

Since [uk]m−1 is constant in time, we have ‖[uk]m−1‖2Im = km‖[uk]m−1‖2. This implies

k−1
m ‖[uk]m−1‖2 ≤ ‖f + ∆uk − ∂tuk‖2Im .

The results (5.11) and (5.13) yield the remaining estimate

M∑
m=1

k−1
m ‖[uk]m−1‖2 ≤ C

{
‖f‖2I + ‖∇u0‖2

}
.

The result of the previous theorem is also applied for the dual (adjoint) equation

−∂tz −∆z = g in Ω × I,
z = zT on Ω × {T } ,

with given right-hand side g ∈ L2(I,H), terminal condition zT ∈ V , and homogeneous
boundary conditions of Dirichlet or Neumann type. Then, the corresponding semidiscrete dual
equation is given by

B(ϕ, zk) = (ϕ, g)I + (ϕ−M , zT ) ∀ϕ ∈ X̃r
k , (5.14)

whereas the fully discretized equation reads as

B(ϕ, zkh) = (ϕ, g)I + (ϕ−M , zT ) ∀ϕ ∈ X̃r,r
k,h. (5.15)

Remark 5.3. The continuous, semidiscrete, and fully discretized adjoint equations of the
optimal control problem (P) fit in this formulation by setting zT = 0 and g = u− û, g = uk− û,
or g = ukh − û, respectively.

Corollary 5.4. For the solution zk ∈ X̃r
k of the semidiscrete dual equation (5.14) with right-

hand side g ∈ L2(I,H) and terminal condition zT ∈ V , the estimate from Theorem 5.3 reads
as

M∑
m=1
‖∂tzk‖2Im + ‖∆zk‖2I +

M∑
m=1

k−1
m ‖[zk]m‖2 ≤ C

{
‖g‖2I + ‖∇zT ‖2

}
.

Here, the jump term [zk]M at t = T is defined as zT − z−k,M .
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Proof. Let zk ∈ X̃r
k be the solution of (5.14). Then, formula (5.5) implies that zk also fulfills

for all ϕ ∈ X̃r
k the following system of equations:

−(ϕ, ∂tzk)Im + (∇ϕ,∇zk)Im − (ϕ−m, [zk]m) = (g, ϕ)Im m = 1, 2, . . . ,M.

Based on this representation, all steps of the proof of Theorem 5.3 can be repeated similarly
to obtain the stated estimate.

For proving a priori estimates for the control problem (P), we additionally need stability
estimates for the L2(I, L2(Ω))-norm of the solution uk and of its gradient ∇uk. These are
given by the following theorem:

Theorem 5.5. For the solution uk ∈ X̃r
k of the uncontrolled dG(r)-semidiscretized state

equation (5.6) with right-hand side f ∈ L2(I,H) and initial condition u0 ∈ V , the stability
estimate

‖uk‖2I + ‖∇uk‖2I ≤ C
{
‖f‖2I + ‖∇u0‖2 + ‖u0‖2

}
holds true with a constant C that only depends on the polynomial degree r, the domain Ω, and
the final time T .

Remark 5.4. In the case of homogeneous Dirichlet boundary conditions, the estimate from
Theorem 5.5 can be proven by means of Poincaré’s inequality with a constant independent
of T .

Proof. The proof is done using a duality argument: Let z̃ ∈ X be the solution of

−(ϕ, ∂tz̃)I + (∇ϕ,∇z̃)I = (ϕ, uk)I ∀ϕ ∈ X

with the terminal condition z̃T = 0. Thus, due to Remark 5.2, z̃ fulfills also

B(ϕ, z̃) = (ϕ, uk)I ∀ϕ ∈ X̃r
k .

By means of this equality, we write

‖uk‖2I = B(uk, z̃) =
M∑
m=1

(∂tuk, z̃)Im + (∇uk,∇z̃)I +
M∑
m=2

([uk]m−1, z̃(tm−1)) + (u+
k,0, z̃(0)).

Usage of the setting [uk]0 = u+
k,0 − u0 leads to

‖uk‖2I =
M∑
m=1

(∂tuk, z̃)Im + (∇uk,∇z̃)I +
M∑
m=1

([uk]m−1, z̃(tm−1)) + (u0, z̃(0)),

from which we obtain with integration by parts in space and Hölder’s inequality

‖uk‖2I ≤
(

M∑
m=1
‖∂tuk‖2Im

) 1
2

‖z̃‖I + ‖∆uk‖I‖z̃‖I

+
(

M∑
m=1

k−1
m ‖[uk]m−1‖2

) 1
2
(

M∑
m=1

km‖z̃(tm−1)‖2
) 1

2

+ ‖u0‖‖z̃(0)‖.
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The stability estimate for the continuous solution z̃ ∈ X

max
t∈Ī
‖z̃(t)‖ ≤ C‖uk‖I ,

which makes use of the continuity of the mapping uk 7→ z̃ ∈ X (cf. Lions [53]) and the
continuous embedding of X into C(Ī , H), implies

‖uk‖I ≤ C
√
T

(
M∑
m=1
‖∂tuk‖2Im

) 1
2

+ C
√
T‖∆uk‖I + C

√
T

(
M∑
m=2

k−1
m ‖[uk]m−1‖2

) 1
2

+ C‖u0‖,

from what the desired estimate for ‖uk‖2I follows by application of Theorem 5.3.

To prove the estimate for ‖∇uk‖2I , we proceed similarly to the proof of Theorem 5.3 and
test (5.8) with ϕ = uk. We obtain for m = 1, 2, . . . ,M

(∂tuk, uk)Im + (∇uk,∇uk)Im + ([uk]m−1, u
+
k,m−1) = (f, uk)Im .

The identities (5.10) lead to

1
2
‖u−k,m‖

2 + 1
2
‖[uk]m−1‖2 −

1
2
‖u−k,m−1‖

2 + ‖∇uk‖2Im = (f, uk)Im .

After summing up these equations for m = 1, 2, . . . ,M and by application of Young’s inequality,
we have

‖∇uk‖2I ≤
1
2
{
‖f‖2I + ‖uk‖2I + ‖u0‖2

}
.

Insertion of the already proven estimate for ‖uk‖2I completes the proof.

Corollary 5.6. For the solution zk ∈ X̃r
k of the semidiscrete dual equation (5.14) with right-

hand side g ∈ L2(I,H) and terminal condition zT ∈ V , the estimate from Theorem 5.5 reads
as

‖zk‖2I + ‖∇zk‖2I ≤ C
{
‖g‖2I + ‖∇zT ‖2 + ‖zT ‖2

}
.

Proof. The proof is done similarly to the proof of Theorem 5.5.

All the estimates proven in this section also hold true for the fully discrete cG(s)dG(r) solutions
ukh, zkh ∈ X̃r,s

k,h of (5.7) and (5.15) almost without any changes. Only two differences have to be
regarded: We have to replace the continuous Laplacian ∆ by its discrete analog ∆h : V s

h → V s
h

defined by
(−∆hu, ϕ) = (∇u,∇ϕ) ∀ϕ ∈ V s

h ,

and the jump terms [ukh]0 and [zkh]M are given here by means of the spatial L2-projection
Πh : V → V s

h as

[ukh]0 = u+
kh,0 −Πhu0 and [zkh]M = ΠhzT − z−kh,M .
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For the convenience of the reader, we state here the estimates for the fully discrete solution:

Theorem 5.7. For the solution ukh ∈ X̃r,s
k,h of the uncontrolled cG(s)dG(r)-discretized state

equation (5.7) with right-hand side f ∈ L2(I,H) and initial condition u0 ∈ V , the stability
estimate

M∑
m=1
‖∂tukh‖2Im + ‖∆hukh‖2I +

M∑
m=1

k−1
m ‖[ukh]m−1‖2 ≤ C

{
‖f‖2I + ‖∇Πhu0‖2

}
holds. The constant C only depends on the polynomial degree r and the domain Ω. The jump
term [ukh]0 at t = 0 is defined as u+

kh,0 −Πhu0. Furthermore, the estimate

‖ukh‖2I + ‖∇ukh‖2I ≤ C
{
‖f‖2I + ‖∇Πhu0‖2 + ‖Πhu0‖2

}
holds true with a constant C that only depends on the polynomial degree r, the domain Ω and
the final time T .

Corollary 5.8. For the solution zkh ∈ X̃r,s
k,h of the discrete dual equation (5.15) with right-hand

side g ∈ L2(I,H) and terminal condition zT ∈ V , the estimates from Theorem 5.7 read as

M∑
m=1
‖∂tzkh‖2Im + ‖∆hzkh‖2I +

M∑
m=1

k−1
m ‖[zkh]m‖2 ≤ C

{
‖g‖2I + ‖∇ΠhzT ‖2

}
and

‖zkh‖2I + ‖∇zkh‖2I ≤ C
{
‖g‖2I + ‖∇ΠhzT ‖2 + ‖ΠhzT ‖2

}
.

Here, the jump term [zkh]M at t = T is defined as ΠhzT − z−kh,M .

5.3 Error analysis for the state equation

In this section, we prove a priori estimates for the discretization error of the uncontrolled state
equation (5.1). Such error estimates can also be found in Eriksson and Johnson [30, 31] and
recently in Feistauer and Švadlenka [35]. However, the estimates presented therein are not
applicable to the optimal control problem (P) under consideration, since they are formulated
either by means of L∞-norms in time or they measure the error in the norm of L2(I,H1(Ω)).
Nevertheless, we make use of the ideas presented therein to prove the desired estimates which
bound the errors caused by the time and space discretizations in the norm of Q = L2(I, L2(Ω)),
that is by means of temporal and spatial L2-norms.

Let u ∈ X be the solution of the state equation (5.1), uk ∈ X̃r
k be the solution of the

corresponding semidiscrete equation (5.6), and ukh ∈ X̃r,s
k,h be the solution of the fully discretized

state equation (5.7) each with q = 0. To separate the influences of the space and time
discretizations, we split the total discretization error e := u − ukh in its temporal part
ek := u− uk and its spatial part eh := uk − ukh. The temporal discretization error is estimated
in the following subsection, the spatial discretization error is treated afterwards in Section 5.3.2.
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5.3 Error analysis for the state equation

The two main results proven there in the Theorems 5.10 and 5.14 can be summarized in the
following corollary:

Corollary 5.9. For the error e := u−ukh between the continuous solution u ∈ X of (5.1) and
the cG(s)dG(r)-discretized solution ukh ∈ X̃r,s

k,h of (5.7) each with q = 0, the error estimate

‖e‖I ≤ Ckr+1‖∂r+1
t u‖I + Chs+1‖∇s+1uk‖I

holds with constants C which are independent of the size of the time steps k and the mesh size
h.

Throughout this section, we assume that the solutions u ∈ X and uk ∈ X̃r
k possess the

regularity ∂r+1
t u ∈ L2(I,H) and ∇s+1uk ∈ L2(I,H). Note, that the Theorems 5.1 and 5.3

ensure this assumption for r = 0 and s = 1 on convex polygonally bounded domains. Results
on higher regularity for r > 0 or s > 1 usually require stronger assumptions on the domain
and additional compatibility conditions between the given initial state and the prescribed
boundary conditions; see for instance Wloka [88].

5.3.1 Analysis of the temporal discretization error

In this subsection, we prove the following error estimate for the temporal discretization
error ek:

Theorem 5.10. For the error ek = u − uk between the continuous solution u ∈ X of (5.1)
and the dG(r)-semidiscretized solution uk ∈ X̃r

k of (5.6) each with q = 0, we have the error
estimate

‖ek‖I ≤ Ckr+1‖∂r+1
t u‖I ,

where the constant C is independent of the size of the time steps k.

For clarity of presentation, we divide the proof of this theorem into several steps, which are
discussed in the following lemmas.

We define a semidiscrete projection πk : C(Ī , V ) → X̃r
k piecewise for m = 1, 2, . . . ,M and

r ∈ N by

πku
∣∣
Im
∈ Pr(Im, V ), (πku− u, ϕ)Im = 0 ∀ϕ ∈ Pr−1(Im, V ), πku(tm) = u(tm).

In the case r = 0, the projection πku is determined for m = 1, 2, . . . ,M by the two conditions

πku
∣∣
Im
∈ P0(Im, V ) and πku(tm) = u(tm).

The projection πk is well-defined by these conditions, see for instance Thomée [76] or
Schötzau [73]. We remark here, that due to Theorem 5.1 the solution u ∈ X of (5.1)
belongs also to C(Ī , V ) and therefore this projection is applicable to u.

To shorten the notation in the following analysis, we introduce the abbreviations

ηk := u− πku and ξk := πku− uk,

and split the error ek as
ek = ηk + ξk.
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5 A Priori Error Analysis

Lemma 5.11. For the projection error ηk defined above, the identity

B(ηk, ϕ) = (∇ηk,∇ϕ)I

holds for all ϕ ∈ X̃r
k.

Proof. By means of (5.5), we have

B(ηk, ϕ) = −
M∑
m=1

(ηk, ∂tϕ)Im + (∇ηk,∇ϕ)I −
M−1∑
m=1

(η−k,m, [ϕ]m) + (η−k,M , ϕ
−
k,M ) = (∇ηk,∇ϕ)I ,

since the terms (ηk, ∂tϕ)Im , (η−k,m, [ϕ]m), and (η−k,M , ϕ
−
k,M ) vanish due to the definition of πk.

Lemma 5.12. The temporal discretization error ek = u − uk is bounded by the projection
error ηk in the sense

‖ek‖I ≤ C‖ηk‖I .

Proof. We define z̃k ∈ X̃r
k to be the solution of

B(ϕ, z̃k) = (ϕ, ek)I ∀ϕ ∈ X̃r
k .

Thus, we obtain by Galerkin orthogonality (cf. Remark 5.2)

‖ek‖2I = (ξk, ek)I + (ηk, ek)I = B(ξk, z̃k) + (ηk, ek)I = −B(ηk, z̃k) + (ηk, ek)I .

Using Lemma 5.11, integration by parts in space, and the stability estimate from Corollary 5.4,
it follows

−B(ηk, z̃k) = −(∇ηk,∇z̃k)I = (ηk,∆z̃k)I ≤ ‖ηk‖I‖∆z̃k‖I ≤ C‖ηk‖I‖ek‖I .

Note, that again the arising boundary terms vanish for both homogeneous Neumann or
homogeneous Dirichlet boundary conditions. This leads by means of Cauchy’s inequality to
the desired assertion.

Lemma 5.13. For the projection error ηk = u− πku the following estimate holds:

‖ηk‖Im ≤ Ckr+1
m ‖∂r+1

t u‖Im .

Proof. Similarly to Thomée [76], the proof is done by standard arguments utilizing the
Bramble-Hilbert lemma.

After these preparations, we can give the proof of Theorem 5.10:

Proof of Theorem 5.10. From the Lemmas 5.12 and 5.13 we obtain directly

‖ek‖2I ≤ C‖ηk‖2I = C
M∑
m=1
‖ηk‖2Im ≤ C

M∑
m=1

k2r+2
m ‖∂r+1

t u‖2Im ≤ Ck
2r+2‖∂r+1

t u‖2I ,

which implies the stated result.
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5.3 Error analysis for the state equation

5.3.2 Analysis of the spatial discretization error

In this subsection, we are going to prove the following result for the spatial discretization error
on space discretizations which do not vary in time:

Theorem 5.14. For the error eh = uk − ukh between the dG(r)-semidiscretized solution
uk ∈ X̃r

k of (5.6) and the fully cG(s)dG(r)-discretized solution ukh ∈ X̃r,s
k,h of (5.7) each with

q = 0, we have the error estimate

‖eh‖I ≤ Chs+1‖∇s+1uk‖I .

Here, the constant C is independent of the mesh size h and the size of the time steps k.

Similar to the subsection before, the proof is divided into several steps which are collected in
the following lemmas.

We define the projection πh : X̃r
k → X̃r,s

k,h pointwise in time by means of the spatial L2-projection
Πh : V → V s

h as
(πhuk)(t) := Πhuk(t).

For the solutions of the semidiscrete and fully discretized heat equation uk ∈ X̃r
k and ukh ∈ X̃r,s

k,h

and for z̃k ∈ X̃r
k being the solution of the dual equation (5.14) with right-hand side g = eh

and terminal condition z̃T = 0, we use the abbreviations

ηh := uk − πhuk, ξh := πhuk − ukh, and η∗h := z̃k − πhz̃k,

and split the error eh as
eh = ηh + ξh.

Lemma 5.15. For the projection errors ηh and η∗h defined above, the identities

B(ηh, ϕ) = (∇ηh,∇ϕ)I and B(ϕ, η∗h) = (∇ϕ,∇η∗h)I

hold for all ϕ ∈ X̃r,s
k,h.

Proof. As in the proof of Lemma 5.11, we obtain

B(ηh, ϕ) = −
M∑
m=1

(ηh, ∂tϕ)Im + (∇ηh,∇ϕ)I −
M−1∑
m=1

(η−h,m, [ϕ]m) + (η−h,M , ϕ
−
M ) = (∇ηh,∇ϕ)I

by means of the definition of πh. The assertion for B(ϕ, η∗h) follows immediately when employing
representation (5.4) instead of (5.5).

Lemma 5.16. For the error ξh and the projection error ηh the estimate

‖∇ξh‖I ≤ ‖∇ηh‖I

holds.
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Proof. Like done in Feistauer and Švadlenka [35], we have for all v ∈ X̃r
k by (5.4) and (5.5):

B(v, v) =
M∑
m=1

(∂tv, v)Im + (∇v,∇v)I +
M−1∑
m=1

([v]m, v+
m) + (v+

0 , v
+
0 )

B(v, v) = −
M∑
m=1

(v, ∂tv)Im + (∇v,∇v)I +
M−1∑
m=1

(−v−m, [v]m) + (v−M , v
−
M ).

We arrive at
B(v, v) ≥ (∇v,∇v)I ∀v ∈ X̃r

k

by adding these two identities. Utilizing the Galerkin orthogonality of the space discretization,
we may write

‖∇ξh‖2I = (∇ξh,∇ξh)I ≤ B(ξh, ξh) = −B(ηh, ξh) = −(∇ηh,∇ξh)I ≤ ‖∇ηh‖I‖∇ξh‖I .

Division by ‖∇ξh‖I leads to the asserted result.

Lemma 5.17. The projection errors ηh and η∗h fulfill the following inequality:

B(ηh, η∗h) ≤ ‖∇ηh‖I‖∇η∗h‖I + C‖ηh‖I‖eh‖I .

Proof. Since πhz̃k ∈ X̃r,s
k,h, it holds by Lemma 5.15 and formula (5.5)

B(ηh, η∗h) = B(ηh, z̃k)−B(ηh, πhz̃k)
= B(ηh, z̃k)− (∇ηh,∇πhz̃k)I

= −
M∑
m=1

(ηh, ∂tz̃k)Im + (∇ηh,∇η∗h)I −
M−1∑
m=1

(η−h,m, [z̃k]m) + (η−h,M , z
−
k,M ).

Because z̃T = 0, we may subtract the term (η−h,M , z̃T ) to obtain by means of the definition
[z̃k] = z̃T − z̃−k,M the identity

B(ηh, η∗h) = −
M∑
m=1

(ηh, ∂tz̃k)Im + (∇ηh,∇η∗h)I −
M∑
m=1

(η−h,m, [z̃k]m). (5.16)

Now, we treat the three terms on the right-hand side above separately: For the term containing
spatial derivatives, we have immediately

(∇ηh,∇η∗h)I ≤ ‖∇ηh‖I‖∇η∗h‖I . (5.17)

By Cauchy’s inequality and with the stability estimate from Corollary 5.4, we achieve for the
term containing the time derivatives

−
M∑
m=1

(ηh, ∂tz̃k)Im ≤ ‖ηh‖I

(
M∑
m=1
‖∂tz̃k‖2Im

) 1
2

≤ ‖ηh‖I‖eh‖I . (5.18)
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5.3 Error analysis for the state equation

For the jump terms, we obtain again by Cauchy’s inequality

−
M∑
m=1

(η−h,m, [z̃k]m) ≤
(

M∑
m=1

km‖η−h,m‖
2
) 1

2
(

M∑
m=1

k−1
m ‖[z̃k]m‖2

) 1
2

.

Utilizing the inverse estimate
km‖η−h,m‖

2 ≤ C‖ηh‖2Im ,

which holds true for polynomials in time (cf. Eriksson and Johnson [30]), and the stability
estimate from Corollary 5.4, we obtain

−
M∑
m=1

(η−h,m, [z̃k]m) ≤ C‖ηh‖I‖eh‖I . (5.19)

We complete the proof by inserting the three estimates (5.17), (5.18), and (5.19) into (5.16).

We are now prepared to give the proof of Theorem 5.14:

Proof of Theorem 5.14. The solution z̃k ∈ X̃r
k is determined by

B(ϕ, z̃k) = (ϕ, eh)I ∀ϕ ∈ X̃r
k .

Due to Galerkin orthogonality, which is applicable for πhz̃k ∈ X̃r,s
k,h, the identity

‖eh‖2I = B(eh, z̃k) = B(eh, z̃k − πhz̃k) = B(ξh, η∗h) +B(ηh, η∗h)

is fulfilled. For the first term on the right-hand side, we obtain using the Lemmas 5.15 and 5.16:

B(ξh, η∗h) = (∇ξh,∇η∗h)I ≤ ‖∇ξh‖I‖∇η∗h‖I ≤ ‖∇ηh‖I‖∇η∗h‖I .

This yields together with Lemma 5.17 applied to the second term on the right-hand side

‖eh‖2I ≤ 2‖∇ηh‖I‖∇η∗h‖I + C‖ηh‖I‖eh‖I . (5.20)

Due to the definition of πh, well-known a priori estimates for the spatial L2-projection Πh can
be employed to directly obtain estimates for the projection errors ηh and η∗h. We have

‖ηh‖I ≤ Chs+1‖∇s+1uk‖I , ‖∇ηh‖I ≤ Chs‖∇s+1uk‖I , and ‖∇η∗h‖I ≤ Ch‖∇2z̃k‖I .

These estimates applied to (5.20) lead to

‖eh‖2I ≤ Chs+1‖∇s+1uk‖I
{
‖∇2z̃k‖I + ‖eh‖I

}
.

Due to the fact that the domain Ω is assumed to be polygonal and convex, elliptic regularity
theory yields

‖∇2z̃k‖I ≤ C‖∆z̃k‖I ,

and we obtain the stated result by means of the stability estimate from Corollary 5.4.
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5.4 Error analysis for the optimal control problem

In this section, we prove the main results of this chapter, namely the estimation for the error
in the control, the state, and the adjoint state variables for the optimal control problem (P)
as concrete formulation of the general optimization problem (P). Moreover, we derive an
estimate of the error in terms of the cost functional. In what follows, we make use of the
control problems (P̃k), (P̃kh), and (P̃σ) which are defined on the different levels of discretization
as the concretizations of the abstract optimization problems (P̃k), (P̃kh), and (P̃σ) by means
of (P).

Throughout this section, we indicate the dependence of the state and the adjoint state on a
specific control q ∈ Q by notations like u(q), z(q) on the continuous level, uk(q), zk(q) on the
semidiscrete, and ukh(q), zkh(q) on the discrete level.

5.4.1 Error in the control variable

The techniques used in the following proofs are already successfully employed to prove error
estimates in the context of optimal control problems governed by elliptic equations, see for
instance Vexler [83], Becker and Vexler [13], or Rösch and Vexler [71]. The stability estimates
derived in Section 5.2 and the error estimates for the state equation from the previous section
make it possible to apply these techniques to the here considered case of parabolic governing
equations.

The main result of this chapter is formulated in the following theorem:

Theorem 5.18. The error between the solution q ∈ Q of the continuous optimal control
problem (P) and the solution qσ ∈ Qd of the associated discrete optimal control problem (P̃σ)
with cG(s)dG(r) state discretization can be estimated as

‖q − qσ‖I ≤
C

α
kr+1{‖∂r+1

t u(q)‖I + ‖∂r+1
t z(q)‖I

}
+ C

α
hs+1{‖∇s+1uk(q)‖I + ‖∇s+1zk(q)‖I

}
+
(

2 + C

α

)
inf

pd∈Qd
‖q̂ − pd‖I ,

where q̂ ∈ Q can be chosen either as the continuous solution q of (P) or as the solution qkh of
the purely state-discretized problem (P̃kh). The arising constants are independent of the mesh
size h, the size of the time steps k and the choice of the discrete control space Qd ⊆ Q.

We first discuss the infimum term appearing on the right-hand side of the error estimate above.
Thereby, we make use of the two possible formulation of this term using q̂ = q or q̂ = qkh.

By inspection of the optimality condition for problem (P̃kh) with discrete state and continuous
control

(qkh, δq)I = 1
α

(zkh(qkh), δq)I ∀δq ∈ Q,
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5.4 Error analysis for the optimal control problem

the optimal control qkh satisfies qkh = 1
αzkh ∈ X̃

r,s
k,h ⊆ Q. Thus, if Qd is chosen such that

Qd ⊇ X̃r,s
k,h, the term

inf
pd∈Qd

‖qkh − pd‖I

vanishes. In this case, the solution qσ of the fully discretized control problem (P̃σ) coincides
with the solution qkh of (P̃kh); cf. Hinze [44]. Consequently, it is reasonable to discretize the
control here at most as fine as the adjoint state. The same conclusion can be drawn in this
case by inspection of the a posteriori error estimates developed in Chapter 6.

If the discrete control space Qd does not contain the discrete state space X̃r,s
k,h (Qd 6⊇ X̃r,s

k,h), it
is desirable to choose q̂ = q in the above theorem to obtain an a priori estimate for the infimum
term. Concerning the possibilities discussed in Example 3.1 for the model problem under
consideration, we obtain for the control discretization done like the state discretization by the
cG(sd)dG(rd) method from stability and error estimates for the L2-projection πd : Q→ Qd

inf
pd∈Qd

‖q − pd‖I ≤ ‖q − πdq‖I ≤ Ckrd+1
d ‖∂rd+1

t q‖I + Chsd+1
d ‖∇sd+1q‖I .

By the same arguments, we obtain for the discretization of the control by means of the
dG(0)dG(rd) discretization the estimate

inf
pd∈Qd

‖q − pd‖I ≤ Ckrd+1
d ‖∂rd+1

t q‖I + Chd‖∇q‖I .

Here, kd and hd indicate a possibly coarser time and space discretization for the control than
for the state.

The proof of Theorem 5.18 makes use of assertions formulated in the following lemmas and is
given at the end of this section.

Lemma 5.19. Let q ∈ Q be a given control. The error between the continuous state u =
u(q) ∈ X determined by (5.1) and the discrete state ukh = ukh(q) ∈ X̃r,s

k,h determined by the
corresponding discrete state equation (5.7) can be estimated as

‖u(q)− ukh(q)‖I ≤ Ckr+1‖∂r+1
t u(q)‖I + Chs+1‖∇s+1uk(q)‖I .

For the error between the continuous adjoint state z = z(q) ∈ X and the discrete state
zkh = zkh(q) ∈ X̃r,s

k,h, we have

‖z(q)− zkh(q)‖I ≤ Ckr+1{‖∂r+1
t u(q)‖I + ‖∂r+1

t z(q)‖I
}

+ Chs+1{‖∇s+1uk(q)‖I + ‖∇s+1zk(q)‖I
}
.

Proof. The estimate for the error in terms of the state variable is immediately obtained by
splitting the error as

‖u(q)− ukh(q)‖I ≤ ‖u(q)− uk(q)‖I + ‖uk(q)− ukh(q)‖I

and applying the Theorems 5.10 and 5.14 to ‖u(q) − uk(q)‖I and ‖uk(q) − ukh(q)‖I for the
right-hand side f + q ∈ L2(I,H) instead of f .
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For estimating the error in z, we split again

‖z(q)− zkh(q)‖I ≤ ‖z(q)− zk(q)‖I + ‖zk(q)− zkh(q)‖I

and introduce the solutions z̃k ∈ X̃r
k and z̃kh ∈ X̃r,s

k,h solving

B(ϕ, z̃k) = (ϕ, u(q)− û)I ∀ϕ ∈ X̃r
k and B(ϕ, z̃kh) = (ϕ, uk(q)− û)I ∀ϕ ∈ X̃r,s

k,h.

Since in the considered model situation the adjoint state z(q) ∈ X is determined by the adjoint
equation

−(ϕ, ∂tz(q))I + (∇ϕ,∇z(q))I = (ϕ, u(q)− û)I ∀ϕ ∈ X,

we may apply Theorem 5.10 to obtain

‖z(q)− z̃k‖I ≤ Ckr+1‖∂r+1
t z(q)‖I . (5.21)

Correspondingly, due to the definition of the semidiscrete adjoint solution zk(q) ∈ X̃r
k by

B(ϕ, zk(q)) = (ϕ, uk(q)− û)I ∀ϕ ∈ X̃r
k ,

Theorem 5.14 yields the estimate

‖zk(q)− z̃kh‖I ≤ Chs+1‖∇s+1zk(q)‖I . (5.22)

Furthermore, the difference z̃k − zk(q) solves

B(ϕ, z̃k − zk(q)) = (ϕ, u(q)− uk(q))I ∀ϕ ∈ X̃r
k ,

and the stability estimate from Corollary 5.4 implies together with Theorem 5.10

‖z̃k − zk(q)‖I ≤ C‖u(q)− uk(q)‖I ≤ Ckr+1‖∂r+1
t u(q)‖I . (5.23)

Since zkh(q) ∈ X̃r,s
k,h is the solution of the discrete adjoint equation

B(ϕ, zkh(q)) = (ϕ, ukh(q)− û)I ∀ϕ ∈ X̃r,s
k,h,

the difference z̃kh − zkh(q) fulfills

B(ϕ, z̃kh − zkh(q)) = (ϕ, uk(q)− ukh(q))I ∀ϕ ∈ X̃r,s
k,h.

In the same way as before, the stability estimate from Corollary 5.8 yields together with
Theorem 5.14

‖z̃kh − zkh(q)‖I ≤ C‖uk(q)− ukh(q)‖I ≤ Chs+1‖∇s+1uk(q)‖I . (5.24)

Then, the estimates (5.21), (5.22), (5.23), and (5.24) lead to the proposed result.

Lemma 5.20. For given controls q, r ∈ Q, the difference between the derivatives of the
continuous reduced functional j and the discrete reduced cost functional jkh can be estimated as

|j′(q)(r)− j′kh(q)(r)| ≤ ‖z(q)− zkh(q)‖I‖r‖I .
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Proof. The representations for j′ and j′kh given here as concretizations of (2.10) by

j′(q)(r) = α(q, r)I − (z(q), r)I and j′kh(q)(r) = α(q, r)I − (zkh(q), r)I (5.25)

imply directly the assertion:

|j′(q)(r)− j′kh(q)(r)| = |(z(q)− zkh(q), r)I | ≤ ‖z(q)− zkh(q)‖I‖r‖I .

Lemma 5.21. The derivatives of the discrete reduced cost functional jkh are Lipschitz contin-
uous on Q. That is, for arbitrary p, q, r ∈ Q, the estimate

|j′kh(q)(r)− j′kh(p)(r)| ≤ (C + α)‖q − p‖I‖r‖I

holds true.

Proof. By means of (5.25), we have again

|j′kh(q)(r)− j′kh(p)(r)| ≤ α|(q − p, r)I |+ |(zkh(q)− zkh(p), r)I |
≤ α‖q − p‖I‖r‖I + ‖zkh(q)− zkh(p)‖I‖r‖I .

Since zkh(q)− zkh(p) solves

B(ϕ, zkh(q)− zkh(p)) = (ϕ, ukh(q)− ukh(p))I ∀ϕ ∈ X̃r,s
k,h,

and ukh(q)− ukh(p) satisfies

B(ukh(q)− ukh(p), ϕ) = (q − p, ϕ)I ∀ϕ ∈ X̃r,s
k,h,

the stability estimate for zkh from Corollary 5.8 and for ukh from Theorem 5.7 yield

‖zkh(q)− zkh(p)‖I ≤ C‖ukh(q)− ukh(p)‖I ≤ C‖q − p‖I ,

which implies the desired result.

With the aid of these preliminary results, we now proof Theorem 5.18:

Proof of Theorem 5.18. To obtain the asserted result, we split the error to be estimated in
two different ways:

‖q − qσ‖I ≤ ‖q − pd‖I + ‖pd − qσ‖I , (5.26)
‖q − qσ‖I ≤ ‖q − qkh‖I + ‖qkh − pd‖I + ‖pd − qσ‖I . (5.27)

Here, pd is an arbitrary element of Qd and q, qkh, and qσ are the optimal solutions of (P),
(P̃kh), and (P̃σ) on the different levels of discretization.

Due to the linear-quadratic structure of the control problem under consideration, the second
order sufficient optimality condition holds. That is, we have for all p, r ∈ Q

j′′kh(p)(r, r) ≥ α‖r‖2I ,
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and the derivative j′′kh(p) does not depend on p. This implies for arbitrary p ∈ Q, pd ∈ Qd

α‖pd − qσ‖2I ≤ j′′kh(p)(pd − qσ, pd − qσ) = j′kh(pd)(pd − qσ)− j′kh(qσ)(pd − qσ).

Since q, qkh, and qσ are the optimal solutions of the continuous, semidiscrete, and discrete
optimal control problems and pd − qσ is an element of the discrete control space Qd, we have

j′kh(qσ)(pd − qσ) = j′kh(qkh)(pd − qσ) = j′(q)(pd − qσ) = 0.

Using these identities, we obtain for separation (5.26) the estimate

α‖pd − qσ‖2I ≤ j′kh(pd)(pd − qσ)− j′(q)(pd − qσ)
= j′kh(pd)(pd − qσ)− j′kh(q)(pd − qσ) + j′kh(q)(pd − qσ)− j′(q)(pd − qσ),

which we use to prove the theorem in the case q̂ = q. By means of the Lemmas 5.20 and 5.21,
we achieve

α‖pd − qσ‖2I ≤ (C + α)‖pd − q‖I‖pd − qσ‖I + ‖z(q)− zkh(q)‖I‖pd − qσ‖I .

Using (5.26), we get the estimate

‖q − qσ‖I ≤
1
α
‖z(q)− zkh(q)‖I +

(
2 + C

α

)
‖q − pd‖I . (5.28)

To use separation (5.27) for proving the theorem in the case q̂ = qkh, we estimate alternatively
by means of Lemma 5.21

α‖pd − qσ‖2I ≤ j′kh(pd)(pd − qσ)− j′kh(qkh)(pd − qσ) ≤ (C + α)‖pd − qkh‖I‖pd − qσ‖I .

In the same manner as before, we can estimate ‖q − qkh‖I using Lemma 5.20 as

α‖q − qkh‖2I ≤ j′′kh(p)(q − qkh, q − qkh)
= j′kh(q)(q − qkh)− j′kh(qkh)(q − qkh)
= j′kh(q)(q − qkh)− j′(q)(q − qkh)
≤ ‖z(q)− zkh(q)‖I‖q − qkh‖I ,

since we have for q − qkh ∈ Q

j′kh(qkh)(q − qkh) = j′(q)(q − qkh) = 0.

Then, the two latter estimates imply together with (5.27)

‖q − qσ‖I ≤
1
α
‖z(q)− zkh(q)‖I +

(
2 + C

α

)
‖qkh − pd‖I . (5.29)

Finally, the inequalities (5.28) and (5.29) prove the assertion by means of the estimate for
‖z(q)− zkh(q)‖I from Lemma 5.19.
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To concretize the result of Theorem 5.18, we consider the following choice of discretizations:
The state space is discretized by the cG(1)dG(0) method, that is we consider the case r = 0
and s = 1. The time discretization of the control space is chosen as for the state space, that is
piecewise constant discontinuous polynomials in time (dG(0)). For the space discretization of
the controls, both possibilities discussed in Example 3.1 are examined:

• discretization by continuous piecewise (bi-/tri-)linear polynomials (cG(1))

• discretization by discontinuous piecewise constant polynomials (dG(0))

Thereby we assume that the control discretization uses the same triangulation of the spatial
domain and the same distribution of the time steps as the discretization of the states, that is
hd = h and kd = k.

For the dG(0)dG(0) discretization of the controls, the infimum term of the error estimation
from Theorem 5.18 has to be taken into account, whereas for the cG(1)dG(0) discretization it
is zero since the discrete control space equals the discrete state space; see the discussion at the
beginning of this subsection.

Thus, Theorem 5.18 implies for the discretization error to be of order

‖q − qσ‖I = O(k + h2)

for the cG(1)dG(0) discretization, and to be of order

‖q − qσ‖I = O(k + h)

for the dG(0)dG(0) discretization case. Note, that the regularity of the optimal solutions
required for these estimates is ensured by the Theorems 5.1 and 5.2 for the continuous solutions
q, u, and z and by Theorem 5.3 and Corollary 5.4 for the time-discrete solutions uk and zk.

A numerical validation of these error estimates is given in Section 5.5.

5.4.2 Error in the state and adjoint state variable

In this subsection, we are going to prove error estimates for the optimal state and the
corresponding adjoint state. That is, we consider the discretization errors

‖u− uσ‖I = ‖u(q)− ukh(qσ)‖I and ‖z − zσ‖I = ‖z(q)− zkh(qσ)‖I

for the choice of discretizations described at the end of the previous subsection.

A first estimate of the error ‖u−uσ‖I between the state u = u(q) associated with the continuous
optimal control q and the discrete state uσ = ukh(qσ) associated with the discrete optimal
control qσ can be derived by means of the stability of the discrete state ukh, a priori estimates
for the error caused by the discretization of the state space, and a priori estimates for the error
in the control: We have by the definitions of u and uσ

‖u− uσ‖I ≤ ‖u(q)− ukh(q)‖I + ‖ukh(q)− ukh(qσ)‖I . (5.30)
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The second term on the right-hand side of (5.30) can be estimated using the stability of the
solution ukh(q)− ukh(qσ) for the right-hand side q − qσ and the initial condition u0 = 0 from
Theorem 5.7, that is

‖ukh(q)− ukh(qσ)‖I ≤ C‖q − qσ‖I .

With (5.30), we obtain the following theorem:

Theorem 5.22. Let (q, u) ∈ Q×X be the solution of the continuous control problem (P) and
(qσ, uσ) ∈ Qd × X̃r,s

k,h the solution of the corresponding discrete control problem (P̃σ). Then,
the following estimate holds:

‖u− uσ‖I ≤ ‖u(q)− ukh(q)‖I + C‖q − qσ‖I .

A similar result holds for the error in the adjoint variable z:

Corollary 5.23. We consider the configuration of Theorem 5.22. Let z = z(q) ∈ X be the
continuous adjoint state for (P) and zσ = zkh(qσ) be the discrete adjoint state for (P̃σ). Then,
it holds:

‖z − zσ‖I ≤ ‖z(q)− zkh(q)‖I + C‖q − qσ‖I .

Proof. For ‖z − zσ‖I we obtain directly by means of the stability results from Corollary 5.8
and Theorem 5.7:

‖z − zσ‖I ≤ ‖z(q)− zkh(q)‖I + ‖zkh(q)− zkh(qσ)‖I
≤ ‖z(q)− zkh(q)‖I + C‖ukh(q)− ukh(qσ)‖I
≤ ‖z(q)− zkh(q)‖I + C‖q − qσ‖I .

When discretizing the control by cG(1)dG(0), these estimates lead to optimal orders of
convergence using the assertions

‖q− qσ‖I = O(k+ h2), ‖u(q)− ukh(q)‖I = O(k+ h2) and ‖z(q)− zkh(q)‖I = O(k+ h2),

from Theorem 5.18 and Lemma 5.19. Thus, we have

‖u− uσ‖I = O(k + h2) and ‖z − zσ‖I = O(k + h2).

However, in the case of dG(0)dG(0) discretization, these simple estimate do not lead to the
optimal orders of convergence: In this case, we have indeed as before

‖u(q)− ukh(q)‖I = O(k + h2) and ‖z(q)− zkh(q)‖I = O(k + h2)

since the discretization of the state space is unaffected by the discretization of the controls,
but we only have

‖q − qσ‖I = O(k + h)

due to the lower order discretization of the control space. This would lead to O(k + h)-
convergence for the state and adjoint state variable.
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Utilizing a more detailed analysis, we can prove also in this case the optimal oder of convergence
O(k + h2) for the errors ‖u − uσ‖I and ‖z − zσ‖I . For that purpose, we again consider the
two mentioned types of control discretizations and introduce the space-time L2-projection
πd : Q→ Qd to split the second term in (5.30) as

‖ukh(q)− ukh(qσ)‖I ≤ ‖ukh(q)− ukh(πdq)‖I + ‖ukh(πdq)− ukh(qσ)‖I . (5.31)

The first term on the right-hand side of (5.31) is estimated using a duality argument: Let
z̃kh ∈ X̃0,1

k,h be the solution of

B(ϕ, z̃kh) = (ϕ, ukh(q)− ukh(πdq))I ∀ϕ ∈ X̃0,1
k,h.

By means of the state equation for ukh(q)− ukh(πdq), we have

‖ukh(q)− ukh(πdq)‖2I = B(ukh(q)− ukh(πdq), z̃kh) = (q − πdq, z̃kh)I .

Since πd is the L2-projection, we may insert πdz̃kh ∈ Qd to obtain

‖ukh(q)− ukh(πdq)‖2I = (q − πdq, z̃kh − πdz̃kh)I ≤ ‖q − πdq‖I‖z̃kh − πdz̃kh‖I . (5.32)

Employing the fact that the same time discretization is used for the control and the adjoint state
variable, the space-time L2-projection πd applied to z̃kh can be expressed as spatial L2-projection
Πdz̃kh. Here, we have to distinguish the two considered cases of control discretizations:

• In the case of cG(1)dG(0) discretization, we have πdz̃kh = Πdz̃kh = z̃kh and thus

‖z̃kh − πdz̃kh‖I = 0.

• For dG(0)dG(0) discretization we obtain by estimating the projection error

‖z̃kh − πdz̃kh‖I = ‖z̃kh −Πdz̃kh‖I ≤ Ch‖∇z̃kh‖I .

Accordingly, by the stability estimate of Corollary 5.8 for ‖∇z̃kh‖I , we achieve in both cases

‖z̃kh − πdz̃kh‖I ≤ Ch‖ukh(q)− ukh(πdq)‖I .

Plugging this into (5.32) yields for the first term on the right-hand side of (5.31)

‖ukh(q)− ukh(πdq)‖I ≤ Ch‖q − πdq‖I . (5.33)

For the second term on the right-hand side of (5.31), we obtain due to Theorem 5.7

‖ukh(πdq)− ukh(qσ)‖I ≤ C‖πdq − qσ‖I .

Now, it remains to derive an estimate for ‖πdq− qσ‖I . In the same way as done for ‖pd − qσ‖I
in the proof of Theorem 5.18, we have

α‖πdq − qσ‖2I ≤ j′kh(πdq)(πdq − qσ)− j′(q)(πdq − qσ).
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By using the representation (5.25) of j′ and j′kh in terms of the adjoint state we get

α‖πdq − qσ‖2I ≤ α(πdq − q, πdq − qσ)I + (zkh(πdq)− z(q), πdq − qσ)I .

Since πdq − qσ ∈ Qd, the term (πdq − q, πdq − qσ)I vanishes, and due to Corollary 5.8 we end
up with

α‖πdq − qσ‖I ≤ ‖zkh(πdq)− z(q)‖I
≤ ‖zkh(πdq)− zkh(q)‖I + ‖zkh(q)− z(q)‖I
≤ C‖ukh(πdq)− ukh(q)‖I + ‖zkh(q)− z(q)‖I ,

(5.34)

which implies by (5.33) the estimate

‖ukh(πdq)− ukh(qσ)‖I ≤
C

α
‖ukh(πdq)− ukh(q)‖I + C

α
‖zkh(q)− z(q)‖I

≤ C

α
h‖q − πdq‖I + C

α
‖zkh(q)− z(q)‖I .

(5.35)

Plugging (5.33) and (5.35) in (5.31), estimates ‖ukh(q)− ukh(qσ)‖I by

‖ukh(q)− ukh(qσ)‖I ≤ Ch
(

1 + 1
α

)
‖q − πdq‖I + C

α
‖z(q)− zkh(q)‖I , (5.36)

which leads together with (5.30) to the following Theorem:

Theorem 5.24. The error between the state u = u(q) ∈ X associated with the solution
q ∈ Q of the continuous optimal control problem (P) and the discrete state uσ = ukh(qσ) ∈
X̃0,1
k,h associated with the solution qσ ∈ Qd of the discrete optimal control problem (P̃σ) with

cG(1)dG(0) state discretization and discretization of the control by cG(1)dG(0) or dG(0)dG(0)
can be estimated as

‖u− uσ‖I ≤ Ch
(

1 + 1
α

)
‖q − πdq‖I + ‖u(q)− ukh(q)‖I + C

α
‖z(q)− zkh(q)‖I .

The constants are independent of the mesh size h, the size of the time step k and the choice of
the discrete control space Qd ⊆ Q.

By means of Lemma 5.19, we have as before

‖u(q)− ukh(q)‖I = O(k + h2) and ‖z(q)− zkh(q)‖I = O(k + h2).

In contrast to the estimate derived at the beginning of this subsection, the estimate from
Theorem 5.24 leads to an improved order of convergence since in both considered cases of
control discretizations the limiting order of convergence of the error

‖q − πdq‖I ≤ Ck‖∂tq‖I + Chs+1‖∇s+1q‖I for s ∈ { 0, 1 } (5.37)

is now enhanced by the gained additional h. Thus, we have in all cases the optimal order of
convergence for the state variable, that is

‖u− uσ‖I = O(k + h2).
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By similar techniques, the following convergence result can be obtained for the error in the
adjoint solution:

Corollary 5.25. We consider the configuration of Theorem 5.24. For the error between the
adjoint state z ∈ X associated with q ∈ Q and the adjoint state zσ ∈ X̃0,1

k,h associated with
qσ ∈ Qd, the estimate

‖z − zσ‖I ≤ Ch
(

1 + 1
α

)
‖q − πdq‖I + C

(
1 + 1

α

)
‖z(q)− zkh(q)‖I

holds true.

Proof. We deduce using the stability of the solution zkh of the fully discrete adjoint equation
from Corollary 5.8:

‖z − zσ‖I = ‖z(q)− zkh(qσ)‖I
≤ ‖z(q)− zkh(q)‖I + ‖zkh(q)− zkh(qσ)‖I
≤ ‖z(q)− zkh(q)‖I + C‖ukh(q)− ukh(qσ)‖I .

By means of (5.36), this inequality proves the assertion.

Thus, Corollary 5.25 implies for the error ‖z − zσ‖I in terms of the adjoint state variable the
same order of convergence as for ‖u− uσ‖I , that is

‖z − zσ‖I = O(k + h2).

Numerical experiments confirming these results are given in Section 5.5.

5.4.3 Error in terms of the cost functional

In many applications, the quality of approximation is measured in terms of the cost functional J .
There, the error

|J(q, u)− J(qσ, uσ)|

is of interest. We also aim at this error in the development of goal-oriented a posteriori error
estimates presented in Chapter 6.

Due to the structure of J given by (5.2), we have

J(q, u)− J(qσ, uσ) = 1
2
{
‖u− û‖2I − ‖uσ − û‖2I

}
+ α

2
{
‖q‖2I − ‖qσ‖2I

}
. (5.38)

Thus, we have to consider the order of convergence separately for the u-term and the q-term.
At first glance, one might guess that the order of convergence of the error |J(q, u)− J(qσ, uσ)|
is limited by the convergence orders of the errors ‖u− uσ‖I and ‖q − qσ‖I . However, similarly
to the analysis for the discretization error in the state variable, we obtain a better order of
convergence for the difference ‖q‖2I − ‖qσ‖2I than for the discretization error ‖q − qσ‖I .
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Using the identity
‖v‖2I − ‖w‖2I = 2(v, v − w)I − ‖v − w‖2I

for functions v, w ∈ L2(I,H), we have for the terms on the right-hand side of (5.38):

‖u− û‖2I − ‖uσ − û‖2I = 2(u− û, u− uσ)I − ‖u− uσ‖2I ,
‖q‖2I − ‖qσ‖2I = 2(q, q − qσ)I − ‖q − qσ‖2I .

For the u-term, this implies directly

1
2

∣∣∣‖u− û‖2I − ‖uσ − û‖2I ∣∣∣ ≤ {‖u‖I + ‖û‖I
}
‖u− uσ‖I + 1

2
‖u− uσ‖2I .

Hence, this term exhibits the optimal order of convergence O(k + h2).

Application of the same techniques to the q-part of (5.38), that is the difference ‖q‖2I − ‖qσ‖2I ,
would for the dG(0)dG(0) discretization of the controls not lead to the optimal order of
convergence. However, by proceeding as in the previous subsection when proving the O(k+h2)-
convergence of the error ‖u− uσ‖I , it is possible to show here optimal order of convergence,
too.

By means of the already introduced space-time L2-projection πd : Q→ Qd, we have

(q, q − qσ)I = (q, q − πdq)I + (q, πdq − qσ)I = ‖q − πdq‖2I + (q, πdq − qσ)I ,

and thus
|(q, q − qσ)I | ≤ ‖q − πdq‖2I + ‖q‖I‖πdq − qσ‖I .

Then, the estimates (5.34) and (5.33) imply

|(q, q − qσ)I | ≤ ‖q − πdq‖2I + C

α
h‖q‖I‖q − πdq‖+ 1

α
‖q‖I‖z(q)− zkh(q)‖I ,

and we obtain for the second term on the right-hand side of (5.38) the assessment

α

2

∣∣∣‖q‖2I − ‖qσ‖2I ∣∣∣ ≤ α‖q − πdq‖2I + α

2
‖q − qσ‖2I + Ch‖q‖I‖q − πdq‖+ ‖q‖I‖z(q)− zkh(q)‖I .

Consequently, we proved the following theorem:

Theorem 5.26. Let the cost functional J be defined by (5.2), (q, u) ∈ Q×X be the optimal
solution of (P), and (qσ, uσ) ∈ Qd × X̃0,1

k,h be the optimal solution of (P̃σ). If the discrete
control space is constructed employing cG(1)dG(0) or dG(0)dG(0) discretizations, the following
estimate holds for the error in terms of the cost functional:

|J(q, u)− J(qσ, uσ)| ≤
{
‖u‖I + ‖û‖I

}
‖u− uσ‖I + 1

2
‖u− uσ‖2I

+ α‖q − πdq‖2I + α

2
‖q − qσ‖2I + Ch‖q‖I‖q − πdq‖+ ‖q‖I‖z(q)− zkh(q)‖I = O(k + h2).

In particular, for all considered types of discretizations, the two terms building the cost
functional, 1/2‖uσ − û‖2I and α/2‖qσ‖2I , exhibit the same order of convergence.
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Proof. It only remains to proof the order of convergence in terms of k and h: The order of
convergence O(k + h2) for the u-term is obtained by the estimate from Theorem 5.24 for
‖u− uσ‖I , whereas the convergence of order O(k + h2) for the q-term is implied by (5.37) and
the assertions of Theorem 5.18 and Lemma 5.19.

This result is in particular important for justifying the a posteriori error analysis derived in
the following chapter. If the two parts of the cost functional J depending on the state and the
control would exhibit different orders of convergence, it would be quite questionable to choose
J as a meaningful measure for the approximation quality.

5.5 Numerical results

In this section, we numerically validate the a priori error estimates for the error in the control,
state, and adjoint state as well as the error in terms of the cost functional. To this end, we
consider the following concretization of the model problem (P) with known analytical solution
on Ω × I = (0, 1)2 × (0, 0.1) equipped with homogeneous Dirichlet boundary conditions. The
right-hand side f , the desired state û, and the initial condition u0 are given in terms of the
eigenfunctions

wa(t, x1, x2) = exp(aπ2t) sin(πx1) sin(πx2), a ∈ R

of the operator ±∂t −∆ as

f(t, x1, x2) = −π4wa(T, x1, x2),

û(t, x1, x2) = a2 − 5
2 + a

π2wa(t, x1, x2) + 2π2wa(T, x1, x2),

u0(x1, x2) = −1
2 + a

π2wa(0, x1, x2).

For this choice of data and with the regularization parameter α chosen as α = π−4, the optimal
solution triple (q, u, z) of the control problem (P) is given by

q(t, x1, x2) = −π4{wa(t, x1, x2)− wa(T, x1, x2)},

u(t, x1, x2) = −1
2 + a

π2wa(t, x1, x2),

z(t, x1, x2) = wa(t, x1, x2)− wa(T, x1, x2).

We validate the estimates developed in the previous section by separating the discretization
errors, that is we consider at first the behavior of the error for a sequence of decreasing sizes
of the time steps on a fixed spatial triangulation with N = 1,089 nodes. Secondly, we examine
the behavior of the error under refinement of the spatial triangulation for M = 2,048 time
steps.

For the following computations, we choose the free parameter a in the definition of wa to be
−
√

5. For this choice, the right-hand side f and the desired state û do not depend on time
what avoids side effects introduced by numerical quadrature. The considered state and control
discretizations are chosen as discussed in the previous subsection.
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Figure 5.1. Discretization error ‖q − qσ‖I
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Figure 5.2. Discretization error ‖u− uσ‖I
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Figure 5.3. Discretization error ‖z − zσ‖I
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Figure 5.4. Discretization error |J(q, u)− J(qσ, uσ)|
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Figure 5.1(a) depicts the development of the error ‖q − qσ‖I under refinement of the temporal
step size k. Up to the spatial discretization error, it exhibits the proven convergence order O(k)
for both kinds of spatial discretizations of the control space. For piecewise constant control, the
discretization error is already reached at 128 time steps, whereas in the case of bilinear control,
the number of time steps could be increased up to M = 4,096 before reaching the spatial
accuracy. In Figure 5.1(b), the development of the error in the control variable under spatial
refinement is shown. The expected order O(h) for piecewise constant control (dG(0)cG(0)
discretization) and O(h2) for bilinear control (cG(1)dG(0) discretization) is observed. Hence,
these results confirm the estimate for the error ‖q − qσ‖I from Theorem 5.18.

The Figures 5.2 and 5.3 show the errors ‖u− uσ‖I and ‖z − zσ‖I in terms the state variable
u and the adjoint variable z for separate refinement of the time and space discretizations.
Thereby, we observe for all errors convergence of order O(k + h2) as proven in the previous
section, regardless the type of spatial discretization used for the controls. This substantiates
the assertions of Theorem 5.24 and Corollary 5.25.

Finally, the estimate from Theorem 5.26 concerning the error |J(q, u)− J(qσ, uσ)| is confirmed
by Figure 5.4. The error exhibits the proposed convergence of order O(k + h2).
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6 A Posteriori Error Estimation and Adaptivity

The main goal of this chapter is to derive a posteriori error estimates which assess the
error between the solution (q, u) of the continuous and the solution (qσ, uσ) of the discrete
optimization problem with respect to a given quantity of interest. This quantity of interest
(denoted by E) may coincide with the cost functional J or expresses a different goal for the
computation. In order to set up an efficient adaptive algorithm, we separate the influences
of the different discretizations (time and space discretizations of the state discretization of
the control) on the total discretization error measured in terms of the quantity of interest.
This quantitative error estimation allows to balance the different types of errors during an
equilibration procedure and to successively improve the accuracy by the construction of locally
refined discretizations.

The use of adaptive techniques based on a posteriori error estimation is well accepted in
the context of finite element discretization of partial differential equations; see for instance
Eriksson, Estep, Hansbo, and Johnson [28], Verfürth [81], or Becker and Rannacher [9, 10]. In
the last years, the application of these techniques has also been investigated for optimization
problems governed by partial differential equations. Energy-type error estimators for the error
in the control, state, and adjoint state variable are developed in Liu and Yan [55, 56] in the
context of distributed elliptic optimal control problems subject to pointwise control constraints.
Recently, these techniques are also applied in the context of optimal control problems governed
by linear parabolic equations; see Liu, Ma, Tang, and Yan [54]. In Picasso [66], an anisotropic
error estimate is derived for the error due to the space discretization of an optimal control
problem governed by the linear heat equation.

However, in many applications, the error in global norms does not provide useful error bounds
for the error in the quantity of physical interest. In Becker and Kapp [6], Becker, Kapp, and
Rannacher [7], and Becker and Rannacher [10], a general concept for a posteriori estimation of
the discretization error with respect to the cost functional in the context of optimal control
problems is presented. In Becker and Vexler [11, 12], this approach is extended to the estimation
of the discretization error with respect to an arbitrary functional depending on both the control
and the state variable, that is with respect to a given quantity of interest. This allows—amongst
others—an efficient treatment of parameter identification and model calibration problems.

In this chapter, these approaches are extended to optimization problems governed by parabolic
partial differential equations: At First, we derive an a posteriori error estimate with respect to
the cost functional J :

J(q, u)− J(qσ, uσ) ≈ ηJk + ηJh + ηJd .

Thereby, the estimators ηJk , ηJh , and ηJd assess the errors caused by the discretization of the
state variable in time and space (cf. the Sections 3.1 and 3.2) and by the discretization of
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the control variable (cf. Section 3.3). This splitting allows for balancing the different error
contributions within an adaptive refinement algorithm; see Section 6.5.

Since in many applications the quantity of physical interest does not coincide with the cost
functional, we also investigate error estimations which assess the error in terms of a given
quantity of interest E:

E(q, u)− E(qσ, uσ) ≈ ηEk + ηEh + ηEd .

Again, ηEk , ηEh , and ηEd estimate the error contributions due to the discretization of the state
variable in space and time and due to the control discretization.

This chapter is organized as follows: After recalling an abstract error identity in Section 6.1,
we derive an a posteriori error estimate in terms of the cost functional in Section 6.2. Thereby,
we present the detailed derivation of the error estimator for the fully discrete optimization
problem in the case of discontinuous Galerkin time discretization. For the continuous Galerkin
time discretization, we only present the results since the derivation can be done similarly to the
discontinuous case. This applies also for Section 6.3, where we extend the presented techniques
to obtain estimates in terms of a given quantity of interest. The Sections 6.4 and 6.5 are
devoted to the practical aspects of error estimation and adaptive refinement of the underlying
discretizations. In particular, we cover thereby the topics of approximating the weights arising
in the error estimator and localizing the error indicators as well as equilibration strategies to
balance the different types of discretization errors. For comparison purposes, we introduce in
Section 6.6 a heuristic error estimator based on smoothness properties of the optimal state and
adjoint state. In Section 6.7, we present two numerical examples elucidating the theoretical
results developed in this chapter. Furthermore, we compare the derived techniques with the
performance of the heuristic error estimator introduced in Section 6.6.

Major parts of the results presented here are already published in Meidner and Vexler [59].
Additionally, we present in this thesis results obtained by the usage of dynamically changing
meshes, which are not included in the article. Using dynamically changing meshes means to
allow different spatial meshes for different time steps; see the detailed discussion in Section 3.2.2.
This offers further possibilities for saving computational costs especially when considering
highly dynamical systems as done later in Chapter 7.

6.1 Abstract error estimate

As a preparation we recall a modification of an abstract result from Becker and Rannacher [10],
which we utilize below to establish the desired a posteriori error estimates:

Lemma 6.1. Let Y be a function space and L be a three times Gâteaux differentiable functional
on Y . We seek a stationary point y1 of L on a subspace Y1 ⊆ Y , that is we seek y1 fulfilling

L′(y1)(δy1) = 0 ∀δy1 ∈ Y1. (6.1)

This equation is approximated by a Galerkin method using a subspace Y2 ⊆ Y . The approxima-
tive problem seeks y2 ∈ Y2 satisfying

L′(y2)(δy2) = 0 ∀δy2 ∈ Y2. (6.2)
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6.2 Error estimator for the cost functional

If the continuous solution y1 fulfills additionally

L′(y1)(y2) = 0, (6.3)

then we have for arbitrary ŷ2 ∈ Y2 the error representation

L(y1)− L(y2) = 1
2
L′(y2)(y1 − ŷ2) +R, (6.4)

where the remainder term R is given by means of e := y1 − y2 as

R = 1
2

∫ 1

0
L′′′(y2 + se)(e, e, e) · s · (s− 1) ds.

Proof. By the main theorem of calculus, we have

L(y1)− L(y2) =
∫ 1

0
L′(y2 + se)(e) ds.

Evaluation of this integral by the trapezoidal rule∫ 1

0
f(s) ds = 1

2
f(0) + 1

2
f(1) + 1

2

∫ 1

0
f ′′(s) · s · (s− 1) ds

yields
L(y1)− L(y2) = 1

2
L′(y2)(e) + 1

2
L′(y1)(e) +R.

Due to the assertions (6.1) and (6.3), the term L′(y1)(e) vanishes and due to (6.2), the term
L′(y2)(e) can be replaced by L′(y2)(y1 − ŷ2) for any ŷ2 ∈ Y2. This completes the proof.

Remark 6.1. Usually, Lemma 6.1 is formulated with the stronger requirement Y1 = Y instead
of condition (6.3). However, the presented formulation is necessary, since we can not always
assure the property Y2 ⊆ Y1 for the concrete discretizations considered in the following.

6.2 Error estimator for the cost functional

In this section, we use the abstract result of Lemma 6.1 for deriving error estimators in terms
of the cost functional J assessing the error

J(q, u)− J(qσ, uσ).

Here, (q, u) ∈ Q×X denotes the continuous optimal solution of problem (P) and (qσ, uσ) ∈
Qd × X̃r,s

k,h is the optimal solution of problem (P̃σ) where the state is discretized by the
cG(s)dG(r) method and the control is searched in the discrete control space Qd ⊆ Q.

To separate the influences of the different discretizations on the discretization error we are
interested in, we split

J(q, u)− J(qσ, uσ) = J(q, u)− J(qk, uk) + J(qk, uk)− J(qkh, ukh) + J(qkh, ukh)− J(qσ, uσ),
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where (qk, uk) ∈ Q× X̃r
k is the solution of the time-discretized problem (P̃k), and (qkh, ukh) ∈

Q× X̃r,s
k,h is the solution of the time- and space-discretized problem (P̃kh) where the control

space is still continuous.

The following theorem forms the basis for a posteriori estimation of the discretization error
with respect to the cost functional in the context of parabolic optimization problems:

Theorem 6.2. Let (q, u, z), (qk, uk, zk), (qkh, ukh, zkh), and (qσ, uσ, zσ) be stationary points
of L resp. L̃ on the different levels of discretization, that is

L′(q, u, z)(δq, δu, δz) = L̃′(q, u, z)(δq, δu, δz) = 0 ∀(δq, δu, δz) ∈ Q×X ×X,
L̃′(qk, uk, zk)(δqk, δuk, δzk) = 0 ∀(δqk, δuk, δzk) ∈ Q× X̃r

k × X̃r
k ,

L̃′(qkh, ukh, zkh)(δqkh, δukh, δzkh) = 0 ∀(δqkh, δukh, δzkh) ∈ Q× X̃r,s
k,h × X̃

r,s
k,h,

L̃′(qσ, uσ, zσ)(δqσ, δuσ, δzσ) = 0 ∀(δqσ, δuσ, δzσ) ∈ Qd × X̃r,s
k,h × X̃

r,s
k,h.

Then, there holds for the errors with respect to the cost functional J due to dG(r)-time,
cG(s)-space, and control discretization:

J(q, u)− J(qk, uk) = 1
2
L̃′(qk, uk, zk)(q − q̂k, u− ûk, z − ẑk) +RJk ,

J(qk, uk)− J(qkh, ukh) = 1
2
L̃′(qkh, ukh, zkh)(qk − q̂kh, uk − ûkh, zk − ẑkh) +RJh ,

J(qkh, ukh)− J(qσ, uσ) = 1
2
L̃′(qσ, uσ, zσ)(qkh − q̂σ, ukh − ûσ, zkh − ẑσ) +RJd .

Here, (q̂k, ûk, ẑk) ∈ Q × X̃r
k × X̃r

k, (q̂kh, ûkh, ẑkh) ∈ Q × X̃r,s
k,h × X̃r,s

k,h, and (q̂σ, ûσ, ẑσ) ∈
Qd × X̃r,s

k,h × X̃
r,s
k,h can be chosen arbitrarily and the remainder terms RJk , RJh, and RJd have

the same structure as given in Lemma 6.1 for L = L̃.

Proof. Since all the used solution pairs are optimal solutions of the optimization problem on
different discretization levels, we obtain for arbitrary z ∈ X, zk ∈ X̃r

k , and zkh, zσ ∈ X̃
r,s
k,h

J(q, u)− J(qk, uk) = L̃(q, u, z)− L̃(qk, uk, zk), (6.5a)
J(qk, uk)− J(qkh, ukh) = L̃(qk, uk, zk)− L̃(qkh, ukh, zkh), (6.5b)
J(qkh, ukh)− J(qσ, uσ) = L̃(qkh, ukh, zkh)− L̃(qσ, uσ, zσ), (6.5c)

whereas the identity
J(q, u) = L(q, u, z) = L̃(q, u, z)

follows from the fact that u ∈ X is continuous and thus the additional jump terms in L̃
compared to L vanish.

To apply the abstract error identity (6.4) to the three right-hand sides in (6.5), we choose the
spaces Y1 and Y2 in Lemma 6.1 as

Y1 = Q×X ×X, Y2 = Q× X̃r
k × X̃r

k for (6.5a),
Y1 = Q× X̃r

k × X̃r
k , Y2 = Q× X̃r,s

k,h × X̃
r,s
k,h for (6.5b),

Y1 = Q× X̃r,s
k,h × X̃

r,s
k,h, Y2 = Qd × X̃r,s

k,h × X̃
r,s
k,h for (6.5c).
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6.2 Error estimator for the cost functional

Hence, for the second and third pairing we have Y2 ⊆ Y1 since we have X̃r,s
k,h ⊆ X̃r

k and Qd ⊆ Q.
Thus, we can choose Y = Y1 in these cases which implies directly condition (6.3).

For the choice of the spaces for (6.5a), we have to take into account the fact that X̃r
k 6⊆ X.

Thus, we choose Y = Y1 + Y2 and have to ensure condition (6.3), which reads here as

L̃′(q, u, z)(qk, uk, zk) = 0

with (qk, uk, zk) ∈ Q×X̃r
k×X̃r

k the optimal solution of (P̃k). This can be expressed equivalently
in terms of assertions for the three derivatives of L̃:

L̃′q(q, u, z)(qk) = 0, L̃′u(q, u, z)(uk) = 0, L̃′z(q, u, z)(zk) = 0.

We only demonstrate the details of proving the condition

L̃′u(q, u, z)(uk) = 0. (6.6)

The other two conditions can be treated similarly. Due to the continuity of z with respect to
time, (6.6) can be rewritten after integration by parts in time as

−(uk, ∂tz)I + a′u(q, u)(uk, z) + (u−k,M , z(T )) =
∫
I
J ′1(u)(uk) dt+ J ′2(u(T ))(u−k,M ).

The adjoint equation (2.11) implies for the continuous adjoint solution z the equality

(ϕ, z(T )) = J ′2(u(T ))(ϕ) ∀ϕ ∈ H.

Consequently, the terms containing u−k,M cancel out and it remains to ensure

−(uk, ∂tz)I + a′u(q, u)(uk, z) =
∫
I
J ′1(u)(uk) dt.

Again from the continuous adjoint equation (2.11), we have that z fulfills

−(ϕ, ∂tz)I + a′u(q, u)(ϕ, z) =
∫
I
J ′1(u)(ϕ) dt ∀ϕ ∈ X.

Since X is dense in L2(I, V ) in regard to the L2(I, V )-norm and since there are no time
derivatives on the test function ϕ in this formulation, it also holds true for all test functions
ϕ ∈ L2(I, V ). Then, the inclusion uk ∈ X̃r

k ⊆ L2(I, V ) implies that condition (6.6) is fulfilled.

Finally, the assertion of the theorem follows immediately by application of Lemma 6.1 to the
three separated errors (6.5).

For the cG(r) time discretization, Theorem 6.2 reads as:

Corollary 6.3. Let (q, u, z), (qk, uk, zk), (qkh, ukh, zkh), and (qσ, uσ, zσ) be stationary points
of L on the different levels of discretization, that is

L′(q, u, z)(δq, δu, δz) = 0 ∀(δq, δu, δz) ∈ Q×X ×X,
L′(qk, uk, zk)(δqk, δuk, δzk) = 0 ∀(δqk, δuk, δzk) ∈ Q×Xr

k × X̃r
k ,

L′(qkh, ukh, zkh)(δqkh, δukh, δzkh) = 0 ∀(δqkh, δukh, δzkh) ∈ Q×Xr,s
k,h × X̃

r,s
k,h,

L′(qσ, uσ, zσ)(δqσ, δuσ, δzσ) = 0 ∀(δqσ, δuσ, δzσ) ∈ Qd ×Xr,s
k,h × X̃

r,s
k,h.
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Then, there holds for the errors with respect to the cost functional J due to cG(r)-time,
cG(s)-space, and control discretization:

J(q, u)− J(qk, uk) = 1
2
L′(qk, uk, zk)(q − q̂k, u− ûk, z − ẑk) +RJk ,

J(qk, uk)− J(qkh, ukh) = 1
2
L′(qkh, ukh, zkh)(qk − q̂kh, uk − ûkh, zk − ẑkh) +RJh ,

J(qkh, ukh)− J(qσ, uσ) = 1
2
L′(qσ, uσ, zσ)(qkh − q̂σ, ukh − ûσ, zkh − ẑσ) +RJd .

Here, (q̂k, ûk, ẑk) ∈ Q × Xr
k × X̃r

k, (q̂kh, ûkh, ẑkh) ∈ Q × Xr,s
k,h × X̃r,s

k,h, and (q̂σ, ûσ, ẑσ) ∈
Qd ×Xr,s

k,h × X̃
r,s
k,h can be chosen arbitrarily and the remainder terms RJk , RJh, and RJd have

the same structure as given in Lemma 6.1 for L = L.

By means of the residuals of the three equations building the optimality system in term of the
semidiscrete Lagrangian (cf. (2.12) for the continuous Lagrangian)

ρ̃u(q, u)(ϕ) := L̃′z(q, u, z)(ϕ),
ρ̃z(q, u, z)(ϕ) := L̃′u(q, u, z)(ϕ),
ρ̃q(q, u, z)(ϕ) := L̃′q(q, u, z)(ϕ),

the statement of Theorem 6.2 can be rewritten as

J(q, u)− J(qk, uk) ≈
1
2

{
ρ̃u(qk, uk)(z − ẑk) + ρ̃z(qk, uk, zk)(u− ûk)

}
,

J(qk, uk)− J(qkh, ukh) ≈
1
2

{
ρ̃u(qkh, ukh)(zk − ẑkh) + ρ̃z(qkh, ukh, zkh)(uk − ûkh)

}
,

J(qkh, ukh)− J(qσ, uσ) ≈
1
2
ρ̃q(qσ, uσ, zσ)(qkh − q̂σ).

Here, we employed the fact, that the terms

ρ̃q(qk, uk, zk)(q − q̂k), ρ̃q(qkh, ukh, zkh)(qk − q̂kh),
ρ̃u(qσ, uσ)(zkh − ẑσ), ρ̃z(qσ, uσ, zσ)(ukh − ûσ)

are zero for the feasible choices

q̂k = q ∈ Q, q̂kh = qk ∈ Q,
ẑσ = zkh ∈ X̃r,s

k,h, ûσ = ukh ∈ X̃r,s
k,h.

This is possible since for the errors J(q, u) − J(qk, uk) and J(qk, uk) − J(qkh, ukh) only the
state space is discretized, and for J(qkh, ukh)− J(qσ, uσ) we keep the discrete state space while
discretizing the control space Q.

6.3 Error estimator for an arbitrary functional

We now tend towards an estimation of the different types of discretization errors in terms of a
given functional E : Q×X → R describing a quantity of interest. This is done by utilizing
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solutions to some auxiliary problems. In order to ensure the solvability of these problems we
make the following assumptions:

• The semidiscrete and the fully discrete optimal solutions (qk, uk), (qkh, ukh), and (qσ, uσ)
are in the neighborhood W ⊆ Q×X of the optimal solution (q, u) introduced at the end
of Section 2.3.

• These (semi-)discrete solutions as well as the continuous solution (q, u) fulfill a second
order sufficient optimality condition as stated in Theorem 2.5.

Remark 6.2. In most publications concerning the topic of estimating the discretization error in
terms of a quantity of interest, this quantity was denoted by I. To avoid confusion concerning
the time interval which is here also called I, we denote the functional by E like it was initially
denoted in Vexler [82].

For formulating the error estimate, we define exterior LagrangiansM : [Q ×X ×X]2 → R

and M̃ : [Q× X̃r
k × X̃r

k ]2 → R as

M(ξ, χ) := E(q, u) + L′(ξ)(χ) and M̃(ξk, χk) := E(qk, uk) + L̃′(ξk)(χk)

with ξ := (q, u, z), χ := (p, v, y) and ξk := (qk, uk, zk), χk := (pk, vk, yk). In this connection, the
variables χ and χk can be interpreted as dual variables for optimization problem (P).

Now we are in a similar setting as in the section before: We split the total discretization error
with respect to E as

E(q, u)−E(qσ, uσ) = E(q, u)−E(qk, uk) +E(qk, uk)−E(qkh, ukh) +E(qkh, ukh)−E(qσ, uσ)

and obtain the following theorem:

Theorem 6.4. Let (ξ, χ), (ξk, χk), (ξkh, χkh), and (ξσ, χσ) be stationary points of M resp.
M̃ on the different levels of discretization, that is

M′(ξ, χ)(δξ, δχ) = M̃′(ξ, χ)(δξ, δχ) = 0 ∀(δξ, δχ) ∈ [Q×X ×X]2,

M̃′(ξk, χk)(δξk, δχk) = 0 ∀(δξk, δχk) ∈ [Q× X̃r
k × X̃r

k ]2,

M̃′(ξkh, χkh)(δξkh, δχkh) = 0 ∀(δξkh, δχkh) ∈ [Q× X̃r,s
k,h × X̃

r,s
k,h]

2,

M̃′(ξσ, χσ)(δξσ, δχσ) = 0 ∀(δξσ, δχσ) ∈ [Qd × X̃r,s
k,h × X̃

r,s
k,h]

2.

Then, there holds for the errors with respect to the quantity of interest E due to dG(r)-time,
cG(s)-space, and control discretization:

E(q, u)− E(qk, uk) = 1
2
M̃′(ξk, χk)(ξ − ξ̂k, χ− χ̂k) +REk ,

E(qk, uk)− E(qkh, ukh) = 1
2
M̃′(ξkh, χkh)(ξk − ξ̂kh, χk − χ̂kh) +REh ,

E(qkh, ukh)− E(qσ, uσ) = 1
2
M̃′(ξσ, χσ)(ξkh − ξ̂σ, χkh − χ̂σ) +REd .

Here, (ξ̂k, χ̂k) ∈ [Q× X̃r
k × X̃r

k ]2, (ξ̂kh, χ̂kh) ∈ [Q× X̃r,s
k,h × X̃

r,s
k,h]2, and (ξ̂σ, χ̂σ) ∈ [Qd × X̃r,s

k,h ×
X̃r,s
k,h]2 can be chosen arbitrarily and the remainder terms REk , REh , and REd have the same

structure as given in Lemma 6.1 for L = M̃.
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Proof. Since M̃′ = 0 implies L̃′ = 0, we have on the different levels of discretization the
representations

E(q, u)− E(qk, uk) = M̃(ξ, χ)− M̃(ξk, χk), (6.7a)

E(qk, uk)− E(qkh, ukh) = M̃(ξk, χk)− M̃(ξkh, χkh), (6.7b)

E(qkh, ukh)− E(qσ, uσ) = M̃(ξkh, χkh)− M̃(ξσ, χσ), (6.7c)

where the identity
E(q, u) =M(ξ, χ) = M̃(ξ, χ)

follows again from the fact that u ∈ X and z ∈ X are continuous and thus the additional jump
terms in M̃ compared toM vanish.

We choose the spaces Y1 and Y2 for application of Lemma 6.1 as

Y1 = [Q×X ×X]2, Y2 = [Q× X̃r
k × X̃r

k ]2 for (6.7a),
Y1 = [Q× X̃r

k × X̃r
k ]2, Y2 = [Q× X̃r,s

k,h × X̃
r,s
k,h]

2 for (6.7b),

Y1 = [Q× X̃r,s
k,h × X̃

r,s
k,h]

2, Y2 = [Qd × X̃r,s
k,h × X̃

r,s
k,h]

2 for (6.7c),

and end up with the stated error representations after ensuring the prerequisites of Lemma 6.1
as done in the proof of Theorem 6.2.

In the case of cG(r) time discretization, Theorem 6.4 reads as:

Corollary 6.5. Let (ξ, χ), (ξk, χk), (ξkh, χkh), and (ξσ, χσ) be stationary points of M on the
different levels of discretization, that is

M′(ξ, χ)(δξ, δχ) = 0 ∀(δξ, δχ) ∈ [Q×X ×X]2,
M′(ξk, χk)(δξk, δχk) = 0 ∀(δξk, δχk) ∈ [Q×Xr

k × X̃r
k ]2,

M′(ξkh, χkh)(δξkh, δχkh) = 0 ∀(δξkh, δχkh) ∈ [Q×Xr,s
k,h × X̃

r,s
k,h]

2,

M′(ξσ, χσ)(δξσ, δχσ) = 0 ∀(δξσ, δχσ) ∈ [Qd ×Xr,s
k,h × X̃

r,s
k,h]

2.

Then, there holds for the errors with respect to the quantity of interest E due to the cG(r)-time,
cG(s)-space, and control discretization:

E(q, u)− E(qk, uk) = 1
2
M′(ξk, χk)(ξ − ξ̂k, χ− χ̂k) +REk ,

E(qk, uk)− E(qkh, ukh) = 1
2
M′(ξkh, χkh)(ξk − ξ̂kh, χk − χ̂kh) +REh ,

E(qkh, ukh)− E(qσ, uσ) = 1
2
M′(ξσ, χσ)(ξkh − ξ̂σ, χkh − χ̂σ) +REd .

Here, (ξ̂k, χ̂k) ∈ [Q×Xr
k × X̃r

k ]2, (ξ̂kh, χ̂kh) ∈ [Q×Xr,s
k,h × X̃

r,s
k,h]2, and (ξ̂σ, χ̂σ) ∈ [Qd ×Xr,s

k,h ×
X̃r,s
k,h]2 can be chosen arbitrarily and the remainder terms REk , REh , and REd have the same

structure as given in Lemma 6.1 for L =M.
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6.3 Error estimator for an arbitrary functional

To apply Theorem 6.4 for instance to E(qkh, ukh)− E(qσ, uσ), we have to require that

M̃′(ξσ, χσ)(δξσ, δχσ) = 0 ∀(δξσ, δχσ) ∈ [Qd × X̃r,s
k,h × X̃

r,s
k,h]

2,

or equivalently

M̃′ξ(ξσ, χσ)(δξσ) = 0 ∀δξσ ∈ Qd × X̃r,s
k,h × X̃

r,s
k,h and

M̃′χ(ξσ, χσ)(δχσ) = 0 ∀δχσ ∈ Qd × X̃r,s
k,h × X̃

r,s
k,h.

Since ξσ = (qσ, uσ, zσ) is already determined by the condition

M̃′χ(ξσ, χσ)(δχσ) = L̃′(ξσ)(δχσ) = 0 ∀δχσ ∈ Qd × X̃r,s
k,h × X̃

r,s
k,h,

the triple ξσ is the solution of the fully discrete optimization problem. Thus, the solution triple
χσ = (pσ, vσ, yσ) ∈ Qd × X̃r,s

k,h × X̃
r,s
k,h is given as solution of

M̃′ξ(ξσ, χσ)(δξσ) = 0 ∀δξσ ∈ Qd × X̃r,s
k,h × X̃

r,s
k,h. (6.8)

Thereby, the derivative M̃′ξ(ξσ, χσ)(δξσ) is the sum of the partial derivatives

M̃′q(ξσ, χσ)(δqσ) = E′q(qσ, uσ)(δqσ) + L̃′′qq(ξσ)(pσ, δqσ) + L̃′′uq(ξσ)(vσ, δqσ) + L̃′′zq(ξσ)(yσ, δqσ),

M̃′u(ξσ, χσ)(δuσ) = E′u(qσ, uσ)(δuσ) + L̃′′qu(ξσ)(pσ, δuσ) + L̃′′uu(ξσ)(vσ, δuσ) + L̃′′zu(ξσ)(yσ, δuσ),

M̃′z(ξσ, χσ)(δzσ) = L̃′′qz(ξσ)(pσ, δzσ) + L̃′′uz(ξσ)(vσ, δzσ).

For ensuring the existence of a triple χσ = (pσ, vσ, yσ) solving the system (6.8), we observe by
minor transformations, that (6.8) is the optimality system of the following linear-quadratic
optimization problem:

Minimize G(ξσ; pσ, vσ) := E′q(qσ, uσ)(pσ) + E′u(qσ, uσ)(vσ)

+ 1
2
L̃′′qq(ξσ)(pσ, pσ) + L̃′′qu(ξσ)(pσ, vσ) + 1

2
L̃′′uu(ξσ)(vσ, vσ) (6.9a)

such that (pσ, vσ) ∈ Qd × X̃r,s
k,h fulfills

L̃′′qz(ξσ)(pσ, ϕ) + L̃′′uz(ξσ)(vσ, ϕ) = 0 ∀ϕ ∈ X̃r,s
k,h. (6.9b)

Hence, the existence of a triple χσ solving (6.8) is equivalent to the solvability of the auxiliary
optimization problem (6.9).

Since (6.9b) is identical to the fully discretized tangent equation (cf. the Chapters 2 and 3), vσ
can be expressed in terms of the discrete solution operator Skh : Q→ X̃r,s

k,h as vσ = S′kh(qσ)(pσ).
For the reduced cost functional gkh(ξσ; ·) : Q→ R associated to (6.9) given by

gkh(ξσ; pσ) := G(ξσ; pσ, S′kh(qσ)(pσ)),

we obtain with the abbreviation δvσ := S′kh(qσ)(δpσ) the following relation:

g′′kh(ξσ; pσ)(δpσ, δpσ) = L̃′′qq(ξσ)(δpσ, δpσ) + 2L̃′′qu(ξσ)(δpσ, δvσ) + L̃′′uu(ξσ)(δvσ, δvσ)
= j′′kh(qσ)(δpσ, δpσ).
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6 A Posteriori Error Estimation and Adaptivity

Assuming the second order sufficient condition for problem (P̃σ) at the solution qσ ∈ Qd, that
is

j′′kh(qσ)(δqσ, δqσ) ≥ γ‖δqσ‖2Q ∀δqσ ∈ Qd,
implies the convexity and coercivity of gkh. Consequently, we obtain by Theorem 2.1 the
solvability of problem (6.9). Hence, under the second order sufficient optimality condition for the
discrete optimization problem (P̃σ), the existence of a solution χσ to the auxiliary problem (6.8)
is ensured. For ensuring the solvability of (6.8) on the other levels of discretization, we proceed
similarly.

To state an efficient way for solving system (6.8) numerically, we split yσ = y
(0)
σ + y

(1)
σ , where

y
(0)
σ ∈ X̃r,s

k,h is given as the solution of

E′u(qσ, uσ)(ϕ) + L̃′′zu(ξσ)(y(0)
σ , ϕ) = 0 ∀ϕ ∈ X̃r,s

k,h.

Consequently, y(1)
σ ∈ X̃r,s

k,h is determined by

L̃′′qu(ξσ)(pσ, ϕ) + L̃′′uu(ξσ)(vσ, ϕ) + L̃′′zu(ξσ)(y(1)
σ , ϕ) = 0 ∀ϕ ∈ X̃r,s

k,h.

This is the already introduced discrete additional adjoint equation, but now formulated in
terms of the variables (pσ, vσ, y(1)

σ ) instead of (δqσ, δuσ, δzσ); cf. the Chapters 2 and 3. Hence,
the second derivative j′′kh(qσ)(pσ, ·) of the reduced cost functional jkh can be expressed as

j′′kh(qσ)(pσ, δqσ) = L̃′′qq(ξσ)(pσ, δqσ) + L̃′′uq(ξσ)(vσ, δqσ) + L̃′′zq(ξσ)(y(1)
σ , δqσ).

Using this representation, system (6.8) can be rewritten as

j′′kh(qσ)(pσ, δqσ) = −E′q(qσ, uσ)(δqσ)− L′′zq(ξσ)(y(0)
σ , δqσ) ∀δqσ ∈ Qd,

with vσ, y(0)
σ , and y(1)

σ defined as above. Consequently, solving system (6.8) is—apart from a
different right-hand side—equivalent to the execution of one step of Newton’s method for the
reduced cost functional j.

By means of the residuals of the presented equations for v, y, and p, that is

ρ̃v(ξ, p, v)(ϕ) := L̃′′uz(ξ)(v, ϕ) + L̃′′qz(ξ)(p, ϕ),
ρ̃y(ξ, p, v, y)(ϕ) := L̃′′zu(ξ)(y, ϕ) + L̃′′qu(ξ)(p, ϕ) + L̃′′uu(ξ)(v, ϕ) + E′u(q, u)(ϕ),
ρ̃p(ξ, p, v, y)(ϕ) := L̃′′qq(ξ)(p, ϕ) + L̃′′uq(ξ)(v, ϕ) + L̃′′zq(ξ)(y, ϕ) + E′q(q, u)(ϕ),

and the already defined residuals ρ̃u, ρ̃z, and ρ̃q, the result of Theorem 6.4 can be expressed
as

E(q, u)− E(qk, uk) ≈
1
2

{
ρ̃u(qk, uk)(y − ŷk) + ρ̃z(qk, uk, zk)(v − v̂k)

+ ρ̃v(ξk, pk, vk)(z − ẑk) + ρ̃y(ξk, pk, vk, yk)(u− ûk)
}
,

E(qk, uk)− E(qkh, ukh) ≈
1
2

{
ρ̃u(qkh, ukh)(yk − ŷkh) + ρ̃z(qkh, ukh, zkh)(vk − v̂kh)

+ ρ̃v(ξkh, pkh, vkh)(zk − ẑkh) + ρ̃y(ξkh, pkh, vkh, ykh)(uk − ûkh)
}
,

E(qkh, ukh)− E(qσ, uσ) ≈
1
2

{
ρ̃q(qσ, uσ, zσ)(pkh − p̂σ) + ρ̃p(ξσ, pσ, vσ, yσ)(qkh − q̂σ)

}
.
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6.4 Evaluation of the error estimators

As for the estimator for the error in the cost functional, we employed here the fact, that the
terms

ρ̃q(qk, uk, zk)(p− p̂k), ρ̃p(ξk, pk, vk, yk)(q − q̂k),
ρ̃q(qkh, ukh, zkh)(pk − p̂kh), ρ̃p(ξkh, pkh, vkh, ykh)(qk − q̂kh),
ρ̃u(qσ, uσ)(ykh − ŷσ), ρ̃z(qσ, uσ, zσ)(vkh − v̂σ),
ρ̃v(ξσ, pσ, vσ)(zkh − ẑσ), ρ̃y(ξσ, pσ, vσ, yσ)(ukh − ûσ)

vanish if p̂k, q̂k, p̂kh, q̂kh, ŷσ, v̂σ, ẑσ, ûσ are chosen appropriately.

As shown, for the error estimation with respect to the cost functional no additional equations
have to be solved. However, the error estimation with respect to a given quantity of interest
requires the computation of the three auxiliary variables pσ, vσ, yσ. This additional numerical
effort is comparable to the execution of one step of Newton’s method employed for solving the
optimization problem.

6.4 Evaluation of the error estimators

In this section, we concretize the a posteriori error estimator developed in the previous sections
for the case of cG(1)dG(0) and cG(1)cG(1) space-time discretizations on quadrilateral meshes
in two space dimensions. That is, we consider the combination of dG(0) or cG(1) time
discretization with piecewise bilinear finite elements for the space discretization. As before, we
present the detailed derivation for the dG(0) time discretization, the cG(1) discretization can
be treated in exactly the same manner.

6.4.1 Approximation of the weights

The error estimates presented in the previous sections still contain the unknown solutions
u, z, and q as well as their semidiscrete analogs. When appearing in the weights, that is in
the differences q − q̂k, u− ûk, z − ẑk, and so on, they are approximated using interpolations
in higher-order finite element spaces. This approach relies on the “super-closeness” of the
constructed higher-order interpolants to the corresponding exact solutions. It has been observed
to work very satisfactory in the context of a posteriori error estimation; see for example Becker
and Rannacher [10].

To define this higher-order approximation, we introduce linear operators Ph, Pk, and Pd, which
map the computed solutions to the approximations of the interpolation errors:

z − ẑk ≈ Pkzk, u− ûk ≈ Pkuk, y − ŷk ≈ Pkyk, v − v̂k ≈ Pkvk,
zk − ẑkh ≈ Phzkh, uk − ûkh ≈ Phukh, yk − ŷkh ≈ Phykh, vk − v̂kh ≈ Phvkh,
qkh − q̂σ ≈ Pdqσ, pkh − p̂σ ≈ Pdpσ.
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6 A Posteriori Error Estimation and Adaptivity

For the considered case of cG(1)dG(0) and cG(1)cG(1) discretizations of the state space, the
operators Pk and Ph are chosen as

Pk = I
(1)
k − id with I

(1)
k : X̃0

k → X1
k for cG(1)dG(0),

Pk = I
(2)
2k − id with I

(2)
2k : X1

k → X2
2k for cG(1)cG(1),

Ph = I
(2)
2h − id with I

(2)
2h : V 1

h → V 2
2h for cG(1)dG(0) and cG(1)cG(1).

Here, the elements of X2
2k are constructed as piecewise quadratic polynomials defined on unions

of two adjacent subintervals. The actions of the piecewise linear and piecewise quadratic
interpolation operators I(1)

k and I(2)
2k in time are depicted in Figure 6.1.

tm−1 tm tm+1

Im

I
(1)
k vk

vk

(a) Piecewise linear interpolation of a piecewise constant function

tm−1 tm tm+1

Im

I
(2)
2k vk

vk

(b) Piecewise quadratic interpolation of a piecewise linear function

Figure 6.1. Action of the interpolation operators I(1)
k and I(2)

2k

The piecewise biquadratic spatial interpolation I(2)
2h into the space V 2

2h consisting of biquadratic
finite elements on patches of cells can easily be computed since the underlying mesh is required
to provide a patch structure; see Section 3.2. That is, one can always combine four adjacent
cells to a macro cell on which the biquadratic interpolation can be defined. An example of
such a patched mesh is shown in Figure 3.3 in Section 3.2. The interpolation I(2)

2h defined on
V 1
h is extended to functions vkh in X̃0,1

k,h and X1,1
k,h pointwise in time(

I
(2)
2h vkh

)
(t) := I

(2)
2h vkh(t).
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6.4 Evaluation of the error estimators

The choice of Pd depends on the discretization of the control space Q for which we have
presented several reasonable possibilities in Section 3.3. If the finite-dimensional subspaces
Qd are constructed like the discrete state spaces, Pd can be chosen as a modification of the
operators Pk and Ph defined above. If for example the control q depends only on time and
the discretization is done with piecewise constant polynomials, we can choose Pd = I

(1)
d − id.

If the control space Q is already finite-dimensional, which is usually the case in the context
of parameter estimation, it is possible to choose Pd = 0 and thus, the estimator for the error
J(qkh, ukh)− J(qσ, uσ) is zero—as well as this discretization error itself.
Remark 6.3. The error estimator for the error due to discretization of the control space vanishes
also if the optimality conditions for qσ and pσ

L̃′q(ξσ)(·) = 0 and L̃′′qq(ξσ)(pσ, ·) + L̃′′uq(ξσ)(vσ, ·) + L̃′′zq(ξσ)(yσ, ·) + E′q(qσ, uσ)(·) = 0

are fulfilled not only in a variational sense for all test functions δq ∈ Qd but also pointwise.
Then, the corresponding residuals

ρ̃q(ξσ)(·) and ρ̃p(ξσ, pσ, vσ, yσ)(·)

are zero independently of the choice of the test functions. This situation is usually found in
problems where the control enters linearly the right-hand side, the boundary conditions, or
the initial condition and the discrete control space is chosen as the discrete state space. For
instance, there is no error due to the discretization of the control space Q for the Examples 2.1
and 2.3 when choosing the discrete spaces appropriately. We refer to the a priori error analysis
derived in Section 5.4 where similar observations are made for the optimal control problem
considered there.

In order to make the error representations from the previous sections computable, we now
replace all unknown solutions appearing in the residuals and weights by their fully discrete
analogs. That is, we replace for instance

ρ̃u(qk, uk)(Pkzk) by ρ̃u(qσ, uσ)(Pkzσ) and ρ̃u(qkh, ukh)(Phzkh) by ρ̃u(qσ, uσ)(Phzσ).

While the replacement of the unknown solutions in the weights seems uncritical and is also
well accepted, one can argue about the replacement of the solution in the residuals, that is,
about the replacement of the linearization point. Here too, it would be possible to replace the
continuous and semidiscrete solutions by higher order interpolations of the discrete solutions.
However, the numerical results (see Section 6.7 and Chapter 7) yield that we can pass on this
additional effort and that the proposed replacement of the unknown solutions by their discrete
analogs is sufficient.
Remark 6.4. This observation is substantiated by the fact, that the errors caused by the
discussed replacement are usually of “higher order”: In the concrete configuration of the
optimization problem from Example 2.1 with cG(1)dG(0) discretization of the state and
the control, we have accordingly to Remark 6.3 that ξkh = (qkh, ukh, zkh) coincides with
ξσ = (qσ, uσ, zσ). Hence, in the given situation, only the error caused by the replacement of
ξk = (qk, uk, zk) by ξkh = ξσ needs to be considered. In the case of error estimation with
respect to the cost functional, it is given in terms of derivatives of the Lagrangian as

L̃′(ξk)(ξ − ξ̂k)− L̃′(ξσ)(ξ − ξ̂k) = L̃′′(ξk + s(ξσ − ξk))(ξ − ξ̂k, ξk − ξσ)
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with some parameter s ∈ [0, 1]. When choosing ξ̂k to be some interpolant of ξ, it can be shown
that this error is of order O(kh2), whereas the error J(q, u)− J(qσ, uσ) itself is not better than
O(k + h2); cf. Theorem 5.26 in Section 5.4.3.

By the proposed procedure, we obtain the computable a posteriori error estimate

J(q, u)− J(qσ, uσ) ≈ ηJk + ηJh + ηJd

for the cost functional J , where estimators ηJk , ηJh , and ηJd are given by

ηJk := 1
2

{
ρ̃u(qσ, uσ)(Pkzσ) + ρ̃z(qσ, uσ, zσ)(Pkuσ)

}
,

ηJh := 1
2

{
ρ̃u(qσ, uσ)(Phzσ) + ρ̃z(qσ, uσ, zσ)(Phuσ)

}
,

ηJd := 1
2
ρ̃q(qσ, uσ, zσ)(Pdqσ).

By proceeding similarly, we obtain for the quantity of interest E the error estimate

E(q, u)− E(qσ, uσ) ≈ ηEk + ηEh + ηEd

with the estimators ηEk , ηEh , and ηEd given by

ηEk := 1
2

{
ρ̃u(qσ, uσ)(Pkyσ) + ρ̃z(qσ, uσ, zσ)(Pkvσ)

+ ρ̃v(ξσ, vσ, pσ)(Pkzσ) + ρ̃y(ξσ, vσ, yσ, pσ)(Pkuσ)
}
,

ηEh := 1
2

{
ρ̃u(qσ, uσ)(Phyσ) + ρ̃z(qσ, uσ, zσ)(Phvσ)

+ ρ̃v(ξσ, vσ, pσ)(Phzσ) + ρ̃y(ξσ, vσ, yσ, pσ)(Phuσ)
}
,

ηEd := 1
2

{
ρ̃q(qσ, uσ, zσ)(Pdpσ) + ρ̃p(ξσ, vσ, yσ, pσ)(Pdqσ)

}
.

To give an impression of the terms that have to be evaluated when using these error estima-
tors, we present for the implicit Euler variant of the cG(1)dG(0) discretization the explicit
form of the state residuals ρ̃u(qσ, uσ)(Pkzσ) and ρ̃u(qσ, uσ)(Phzσ) and the adjoint residuals
ρ̃z(qσ, uσ, zσ)(Pkuσ) and ρ̃z(qσ, uσ, zσ)(Phuσ) used by ηJk and ηJh for estimating the discretiza-
tion error due to time and space discretization of the state variable. We evaluate the arising
integrals in time for the residuals weighted with zσ or uσ by the box rule and for the residuals
weighted with I(1)

k zσ or I(1)
k uσ by the trapezoidal rule. Hence, we have to assume the right-hand

side f to be continuous in time, that is f ∈ C(Ī , H). Then, we obtain with the abbreviations
Qm := q−σ,m, Um := u−σ,m, and Zm := z−σ,m known from Section 3.4 the following parts of the
error estimators:

ρ̃u(qσ, uσ)(Pkzσ) =
M∑
m=1

{
(Um − Um−1, Zm − Zm−1) + km

2
ā(Qm, Um)(Zm − Zm−1)

+ km
2

(f(tm−1), Zm−1)−
km
2

(f(tm), Zm)
}
,
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6.4 Evaluation of the error estimators

ρ̃z(qσ, uσ, zσ)(Pkuσ) =
M∑
m=1

{
km
2
ā′u(Qm, Um)(Um, Zm)− km

2
ā′u(Qm−1, Um−1)(Um−1, Zm)

+ km
2
J ′1(Um−1)(Um−1)−

km
2
J ′1(Um)(Um)

}
,

ρ̃u(qσ, uσ)(Phzσ) =
M∑
m=1

{
km(f(tm), I(2)

2h Zm − Zm)− kmā(Qm, Um)(I(2)
2h Zm − Zm)

− (Um − Um−1, I
(2)
2h Zm − Zm)

}
− (U0 − u0(qσ), I(2)

2h Z0 − Z0),

ρ̃z(qσ, uσ, zσ)(Phuσ) =
M∑
m=1

{
kmJ

′
1(Um)(I(2)

2h Um − Um)− kmā′u(Qm, Um)(I(2)
2h Um − Um, Zm)

+ (I(2)
2h Um−1 − Um−1, Zm − Zm−1)

}
+ J ′2(UM )(I(2)

2h UM − UM )

− (I(2)
2h UM − UM , ZM ).

For the cG(1)cG(1) discretization, the terms that have to be evaluated are very similar and
the evaluation can be treated as presented here for the cG(1)dG(0) discretization. Of course,
to evaluate the time integrals for the residuals weighted with I(2)

2k uσ and I(2)
2k zσ exactly, higher

order quadrature formulas have to be employed.

6.4.2 Localization of the error estimators

The presented a posteriori error estimators are directed towards two aims: assessment of the
discretization error and improvement of the accuracy by adaptive refinement of the underlying
discretizations. For the second aim, the information provided by the error estimators has
to be localized to cellwise or nodewise contributions (local error indicators). We concretize
this procedure here for the error estimators ηJk and ηJh assessing the error with respect to the
cost functional. For concrete choices of discretizations for the control space one can proceed
with ηJd in the same manner. Of course, the error indicators ηEk , ηEh , and ηEd can be treated
similarly, too.

For localizing the error estimators, we split up the error estimates ηJk and ηJh into their
contributions on each subinterval Im by

ηJk =
M∑
m=1

ηJ,mk and ηJh =
M∑
m=0

ηJ,mh ,

where the contributions ηJ,mk and ηJ,mh are given in terms of the time stepping residuals ρ̃um
and ρ̃zm as

ηJ,mk = 1
2

{
ρ̃um(qσ, uσ)(Pkzσ) + ρ̃zm(qσ, uσ, zσ)(Pkuσ)

}
,

ηJ,mh = 1
2

{
ρ̃um(qσ, uσ)(Phzσ) + ρ̃zm(qσ, uσ, zσ)(Phuσ)

}
.
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Thereby, the time stepping residuals ρ̃um and ρ̃zm are those parts of the global residuals ρ̃u and
ρ̃z belonging to the time interval Im or to the initial time t = 0 for m = 0.

Whereas the temporal indicators ηJ,mk can be used directly for determining the time intervals
to be refined, the indicators ηJ,mh for the spatial discretization error have to be further localized
to indicators on each spatial mesh. Since a direct localization of ηJ,mh by separating the
contributions of the different mesh cells leads to large over-estimation of the error due to the
oscillatory behavior of the residual terms (see Carstensen and Verführt [20]), the localization is
often done by using integration by parts in space (see for instance Becker and Rannacher [9, 10]).
To compute the indicators obtained by this procedure, the strong formulation of the differential
operator and jump terms of the discrete solution over faces of the mesh cells have to be
evaluated.

We avoid this additional computations by using the following technique introduced in Braack
and Ern [16], which also leads to local error indicators with the correct local order of convergence.
For doing so, we consider the Lagrange nodal bases

{ ϕmi | i = 1, 2, . . . , Nm }

of V 1,m
h (m = 0, 1, . . . ,M) with Nm := dimV 1,m

h . By means of these bases, we introduce the
sets of quadratic nodal functions{

ψmi := I
(2)
2h ϕ

m
i

∣∣∣ i = 1, 2, . . . , Nm

}
⊆ V 2,m

2h

associated with each node of the triangulation T mh . Let Ψum and Ψ zm be the difference of the
contributions of the state and adjoint residuals with respect to the bilinear basis {ϕmi } and
the biquadratic basis {ψmi }, that is

Ψum,i := ρ̃um(qσ, uσ)(ψmi − ϕmi ) and Ψ zm,i := ρ̃zm(qσ, uσ, zσ)(ψmi − ϕmi ).

Since for the considered case of dG(0) time discretization, uσ and zσ are constant in time on
the interval Im, we have

uσ
∣∣
Im

=
Nm∑
i=1

ϕmi U
m
i , zσ

∣∣
Im

=
Nm∑
i=1

ϕmi Z
m
i ,

I
(2)
2h uσ

∣∣
Im

=
Nm∑
i=1

ψmi U
m
i , I

(2)
2h zσ

∣∣
Im

=
Nm∑
i=1

ψmi Z
m
i ,

with Um, Zm ∈ RNm the nodal vectors of uσ
∣∣
Im

and zσ
∣∣
Im

, respectively. Thus, we can formulate
the spatial error indicators as

ηJ,mh = 1
2
{
〈Ψum, Zm〉+ 〈Ψ zm, Um〉

}
,

where 〈·, ·〉 denotes the Euclidean inner product on RNm .

Further, we introduce a filtering operator π given by

π := id−I(1)
2h with I

(1)
2h : X̃0,1

k,h → X̃0,1
k,2h.
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The spaces V 1,m
2h , which are implicitly used in the definition of X̃0,1

k,2h, are spaces of bilinear
finite elements on patches. This construction again makes use of the patch-structure of the
triangulation, which implies that the finite element spaces V 1,m

2h and V 1,m
h are nested, that is

V 1,m
2h ⊆ V 1,m

h .

We denote the nodal vectors of the filtered solution of the state equation πuσ
∣∣
Im

and of the
adjoint solution πzσ

∣∣
Im

by Uπ,m and Zπ,m given as

πuσ
∣∣
Im

=
Nm∑
i=1

ϕmi U
π,m
i and πzσ

∣∣
Im

=
Nm∑
i=1

ϕmi Z
π,m
i .

Since I(2)
2h is the identity on V 1,m

2h , we have the equality

I
(2)
2h πϕ

m
i − πϕmi = I

(2)
2h ϕ

m
i − ϕmi = ψmi − ϕmi .

Then, the linearity of the residuals with respect to the weights implies (cf. Braack and
Ern [16])

ηJ,mh = 1
2
{
〈Ψum, Zm〉+ 〈Ψ zm, Um〉

}
= 1

2
{
〈Ψum, Zπ,m〉+ 〈Ψ zm, Uπ,m〉

}
.

We obtain the computable quantities

ηJ,mh,i := 1
2
{
Ψum,iZ

π,m
i + Ψ zm,iU

π,m
i

}
, i = 1, 2, . . . , Nm

providing the upper bound ∣∣∣ηJ,mh ∣∣∣ ≤ Nm∑
i=1

∣∣∣ηJ,mh,i ∣∣∣
for the error estimator ηJ,mh .

While the error estimator ηJh itself is almost independent on the size of the time steps (cf.
Table 6.1 in Section 6.7.1), its parts ηJ,mh depend linearly on the size of the (possibly locally
refined) time steps km. For obtaining independent spatial error indicators which can be treated
simultaneously in a mesh adaptation process, it is necessary to get rid of this dependence. This
can be done by rescaling the indicators ηJ,mh,i by means of the reference time step k̂ := T/M as

η̃J,mh,i := k̂

km
ηJ,mh,i , i = 1, 2, . . . , Nm, m = 0, 1, . . . ,M.

By reassembling the computed nodewise error indicators η̃J,mh,i , we obtain cellwise indicators
η̃J,mh,K for cells K ∈ T mh suitable for the usage in an adaptive refinement procedure.

Hence, we end up with two sets of error indicators, one for the temporal and one for the spatial
discretization error, given as

Σk :=
{
ηJ,mk

∣∣∣ m = 1, 2, . . . ,M
}

and Σh :=
{
η̃J,mh,K

∣∣∣ K ∈ T mh , m = 0, 1, . . . ,M
}
.

In the next section, we state an adaptive refinement algorithm for the automatic choice of
suitable discretizations, which bases on these sets of indicators.
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6.5 Adaptive refinement algorithm

Goal of the adaption of the different types of discretizations has to be the equilibrated reduction
of the corresponding discretization errors. For this purpose, it is crucial to have reliable and
especially quantitative information about the sizes of the different error contributions. This is
provided by the error estimates derived in the Sections 6.2 and 6.3.

If a given tolerance TOL has to be reached, the equilibration can be done by refining each
discretization as long as the value of this part of the error estimator is greater than TOL/ν if ν
different types of discretizations are considered. Typically we have ν ∈ { 2, 3, 4 } depending
on the type of discretization of the control space: no discretization, only time or space
discretization or discretization in time and space. We present here a strategy which equilibrates
the different discretization errors even if no tolerance is given.

Aim of the equilibration algorithm presented in the sequel is to obtain discretizations such
that

|η(1)| ≈ |η(2)| ≈ · · · ≈ |η(ν)|,

and to keep this property during further refinement. Here, the estimators η(i) may denote
some of the estimators ηJk , ηJh , and ηJd for the cost functional J or ηEk , ηEh , and ηEd for the
quantity of interest E.

For doing this equilibration, we choose an equilibration factor κ ≥ 1 (usually κ ≈ 5) and propose
the following strategy: We compute a permutation (i1, i2, . . . , iν) of the indices (1, 2, . . . , ν)
such that

|η(i1)| ≥ |η(i2)| ≥ · · · ≥ |η(iν)|,

and define the relations

γj :=
∣∣∣∣∣ η(ij)

η(ij+1)

∣∣∣∣∣ ≥ 1, j = 1, 2, . . . , ν − 1.

Then, we decide by means of Algorithm 6.1 in every repetition of the adaptive refinement
algorithm given by Algorithm 6.2, which discretizations shall be refined. For simplicity, we
present Algorithm 6.2 for the case of three discretizations symbolized by σ = (k, h, d) as already
introduced before.

Algorithm 6.1. Equilibration algorithm

Require: The relations γj , j = 1, 2, . . . , ν − 1 are computed.
1: for j = ν − 1 downto 1 do
2: if γj > κ then
3: Refine discretizations i1, i2, . . . , ij .
4: return
5: Refine all discretizations.

In Algorithm 6.1, we test all γj , j = ν − 1, ν − 2, . . . , 1, for γj > κ. That is, we start by testing
the quotient γν−1 of the two error estimators |η(iν−1)| and |η(iν)| with the smallest values. We
break whenever we reach a quotient γj with γj > κ and refine all discretizations i1, i2, . . . , ij
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with corresponding error contributions larger than |η(ij+1)|. If all quotients γj fulfill γj ≤ κ,
then the errors are equilibrated and we refine all discretizations for a further reduction of the
error.

Algorithm 6.2. Adaptive refinement algorithm

1: Choose an initial triple of discretizations Tσ0 , σ0 = (k0, h0, d0) for the space-time dis-
cretization of the states and an appropriate discretization of the controls.

2: Set l = 0.
3: loop
4: Compute the optimal solution pair (qσl , uσl).
5: Evaluate the a posteriori error estimators ηkl , ηhl and ηdl .
6: if the given maximal degree of refinement is reached then
7: return
8: Determine the discretization(s) to be refined by means of Algorithm 6.1.
9: Separately refine the selected discretizations using the information from the corre-

sponding set of error indicators obtained from the estimators ηkl , ηhl , or ηdl . Obtain
the new discretization Tσl+1 .

10: Increment l.

The termination rule in Algorithm 6.2 is formulated in terms of degrees of refinement. That is,
we stop Algorithm 6.2 if a given maximal degree of refinement (a maximal number of cells or
subintervals) is reached. If, of course, a given tolerance has to be met, the stopping criterion
can be stated by means of a comparison of the sum of the estimators ηl := ηkl + ηhl + ηdl and
the given tolerance.

For every discretization to be adapted, we select the cells for refinement by means of sets of
local error indicators like Σk and Σh introduced at the end of the previous section. Hence,
we have to choose subsets ΣR

k ⊆ Σk and ΣR
h ⊆ Σh of cells to be refined. Then, we refine the

time intervals corresponding to the indicators in ΣR
k and the cells of the spatial triangulations

corresponding to the indicators in ΣR
h . That is, we apply the selection procedure for the spatial

cells simultaneously on all triangulations T mh , m = 0, 1, . . . ,M .

Several standard approaches are available for choosing such subsets. For the computations
done in this thesis, we use a selection scheme which differs from most other methods and is
presented for instance in Richter [68, 69]. For convenience of the reader, we briefly sketch
its key idea for a prototypical set of error indicators Σ = { ηi | i = 1, 2, . . . , N }, which is
assumed to be the localization of some error indicator η: At first, we compute a permutation
(i1, i2, . . . , iN ) of the indices (1, 2, . . . , N) such that

|ηi1 | ≥ |ηi2 | ≥ · · · ≥ |ηiN |.

The subset ΣR ⊆ Σ of indicators to be determined is always chosen as coherent queue
ΣR = { ηi1 , ηi2 , . . . , ηir }. Thereby, the number r is determined by

r = arg min
1≤r≤N

E(r)N (r)δ, (6.10)

where E(r) is a prediction of the discretization error on the refined discretization and N (r) is
the number of degrees of freedom in the refined discretization. The parameter δ depends on
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the degree of the polynomials used for discretization and on the dimension of the domain to be
discretized. The explicit formulation of (6.10) can be found in Richter [69] and a justification
of this approach under some regularity assumptions is given in Braack [15].

The practical behavior of the algorithms presented in this section in concrete configurations is
demonstrated in Section 6.7 and in Chapter 7.

6.6 A heuristic error estimator

For substantiating the capabilities of the systematic and quantitative error estimation techniques
derived in the Sections 6.2 and 6.3, we introduce additionally a heuristic estimator for the
spatial discretization error based on the smoothness of the optimal state u and the optimal
adjoint state z. After motivating this estimator, we use it in Section 6.7.3 as reference in
numerical comparison to the quantitative error estimator.

To derive the heuristic smoothness-based error estimator, we examine the classical Poisson
equation

−∆u = f in Ω
u = 0 on ∂Ω

on a domain Ω ⊂ R2. For this equation, the estimator for assessing the discretization error
with respect to the energy norm ‖∇u−∇uh‖ is given for instance in Verführt [80] by

‖∇u−∇uh‖ ≤ CI

 ∑
K∈Th

h2
K

{
ρK(uh)2 + ρ∂K(uh)2

} 1
2

(6.11)

with the cell residuals ρK(uh) and the jump residuals ρ∂K(uh) defined as

ρK(uh) := ‖f + ∆uh‖L2(K) and ρ∂K(uh) := 1
2
h
− 1

2
K ‖[∂nuh]‖L2(∂K).

Additionally, estimate (6.11) involves an interpolation constant CI whose value is in general
unknown.

It is known (cf. Carstensen and Verführt [20]), that in the case of bilinear finite elements
the influence of the cell residuals ρK(uh) can usually be disregarded compared to the jump
residuals ρ∂K(uh). There holds

ρK(uh) = ρ∂K(uh) +O(hK).

Furthermore, the jump [∂nuh] of the normal derivatives of uh over faces ∂K can be estimated
by a suitable recovery of the second derivatives of uh. This recovery process can be done for
instance by means of the biquadratic interpolant I(2)

2h uh (see Section 6.4) leading to

ρ∂K(uh) ≈ ‖∇2I
(2)
2h uh‖L2(K).
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In total, we obtain the following approximation to the energy estimator (6.11):

‖∇u−∇uh‖ . CI

 ∑
K∈Th

h2
K‖∇2I

(2)
2h uh‖

2
L2(K)

 1
2

.

Hence, we define the heuristic energy-based error estimator η̃h(uh) by

η̃h(uh) := CI

 ∑
K∈Th

η̃h,K(uh)2
 1

2

with the indicators η̃h,K(uh) := hK‖∇2I
(2)
2h uh‖L2(K).

Applying this result to the prototypical stationary optimal control problem

Minimize J(q, u) such that
{
−∆u = q in Ω

u = 0 on ∂Ω

leads under incorporation of the adjoint equation to the estimator

η̃h := η̃h(uh) + η̃h(zh).

Even if this estimator is motivated for stationary problems, we use it for spatial refinement in
the here considered situation of time-dependent optimization problems to compare the results
obtained from this process to the results obtained from the application of the quantitative
error estimators derived in the Sections 6.2 and 6.3. Therefore, we rewrite the estimator in
terms of the solutions uσ and zσ of the fully discretized optimization problem as

η̃h = η̃h(uσ) + η̃h(zσ).

and apply it separately to each time interval Im and the corresponding triangulation T mh .
Similarly, a heuristic estimator for the error due to time discretization can be derived. However,
we restrict ourselves here to the more interesting case of comparing different local refinements
of the spatial triangulation.

6.7 Numerical results

Our aim for this section is to substantiate the methods for error estimation and mesh adaptation
developed in the previous sections of this chapter. Therefore, we examine two prototypical
configurations similar to the examples discussed in Section 2.2. In the examples considered
here, we assess the error with respect to the cost functional. More involved applications
including the estimation of the error in terms of a quantity of interest which is different from
the cost functional are treated in Chapter 7. In the final Section 6.7.3, we substantiate our
approach to error estimation by comparing its performance to those of the heuristic approach
described in the previous section.
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6.7.1 Time-dependent Neumann boundary control

We consider the linear parabolic state equation on the two-dimensional unit square Ω = (0, 1)2
(see Figure 6.2) with final time T = 1 given by

∂tu− ε∆u+ u = f in Ω × I,
∂nu = 0 on Γ0 × I,
∂nu = qi on Γi × I, i = 1, 2,
u = 0 on Ω × { 0 } .

(6.12)

The control q = (q1, q2) acts as a purely time-dependent boundary control of Neumann type
on the two parts of the boundary denoted by Γ1 and Γ2. Thus, the control space Q is chosen
as Q = [L2(I,R)]2 with R = R and the spaces V and H used in the definition of the state
space X are set to V = H1(Ω) and H = L2(Ω).

Γ0

Γ0

ΩΓ1 Γ2

Figure 6.2. Computational domain Ω

As cost functional J to be minimized subject to the state equation (6.12) we choose

J(q, u) = 1
2

∫
I
‖u(t)− 1‖2L2(Ω) dt+ α

2

∫
I
{q21(t) + q22(t)} dt

of tracking type endowed with a L2-regularization term.

For the computations, the right-hand side f of (6.12) is chosen as

f(t, x) = 10t exp
(

1− 1
1− 100‖x− x̃‖2

)
with x̃ =

(2
3
,
1
2

)T
,

and the parameters α and ε are set to α = 0.1 and ε = 0.1, respectively.

The discretization of the state space is done here via the cG(1)cG(1) space-time Galerkin
method which is a variant of the Crank-Nicolson scheme (cf. Section 3.4.2). Consequently,
the state is discretized in time by piecewise linear and the adjoint state by piecewise constant
polynomials. The controls are discretized using piecewise constant polynomials on a partition
of the time interval I which has to be at most as fine as the time discretization of the states
(cf. the discussions in the Sections 5.3 and 6.3).

At first, we present in Table 6.1 the numerical justification for splitting the total discretization
error in three parts regarding the discretizations of time, space, and control. The table
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Table 6.1. Independence of one part of the error estimator on the refinement of the
other parts

M N dimQd ηJk ηJh ηJd

256 289 16 −4.9104 ·10−04 −8.6152 ·10−04

512 289 16 −4.9110 ·10−04 −8.6232 ·10−04

1024 289 16 — −4.9111 ·10−04 −8.6251 ·10−04

2048 289 16 −4.9111 ·10−04 −8.6256 ·10−04

4096 289 16 −4.9112 ·10−04 −8.6258 ·10−04

1024 25 16 −3.8360 ·10−07 −8.7015 ·10−04

1024 81 16 −4.3463 ·10−07 −8.5900 ·10−04

1024 289 16 −4.5039 ·10−07 — −8.6251 ·10−04

1024 1089 16 −4.5529 ·10−07 −8.6398 ·10−04

1024 4225 16 −4.6096 ·10−07 −8.6432 ·10−04

4096 289 16 −2.8171 ·10−08 −4.9112 ·10−04

4096 289 32 −3.0332 ·10−08 −4.8826 ·10−04

4096 289 64 −3.1317 ·10−08 −4.8688 ·10−04 —
4096 289 128 −3.1704 ·10−08 −4.8651 ·10−04

4096 289 256 −3.1828 ·10−08 −4.8642 ·10−04

demonstrates the independence of each part of the error estimator on the refinement of the
other parts. This feature is especially important to reach an equilibration of the discretization
errors by applying the adaptive refinement algorithm given in Section 6.5.

Table 6.2. Local refinement with equilibration

N M dimQd ηJh ηJk ηJd eJ Ieff

25 64 16 2.0 ·10−03 −9.7 ·10−05 −8.5 ·10−04 −2.567 · 10−04 −0.23
81 64 20 −1.0 ·10−03 −1.1 ·10−04 −3.2 ·10−04 −7.818 · 10−04 0.50
289 64 20 −4.8 ·10−04 −1.3 ·10−04 −3.2 ·10−04 −8.009 · 10−04 0.84
813 74 32 −2.2 ·10−05 −4.7 ·10−05 −1.3 ·10−04 −2.116 · 10−04 1.02
813 74 48 −2.2 ·10−05 −4.8 ·10−05 −7.7 ·10−05 −1.493 · 10−04 1.01
2317 87 76 1.1 ·10−05 −2.7 ·10−05 −2.9 ·10−05 −4.559 · 10−05 1.00
8213 104 128 2.7 ·10−06 −1.8 ·10−05 −1.3 ·10−05 −2.842 · 10−05 0.96
8213 208 128 2.7 ·10−06 −4.3 ·10−06 −1.5 ·10−05 −1.661 · 10−05 0.99
8213 208 192 2.7 ·10−06 −4.2 ·10−06 −7.0 ·10−06 −8.335 · 10−06 0.97

Table 6.2 shows the development of the discretization error eJ := J(q, u)− J(qσ, uσ) and the a
posteriori error estimators ηJk , ηJh , and ηJd during an adaptive run with local refinement of all
three types of discretizations. Here and in what follows, M denotes the number of time steps,
N denotes the number of nodes in the spatial mesh, and dimQd is the number of degrees of
freedom for the discretization of the control. The effectivity index to measure the quality of
the error estimator given in the last column of this table is defined by Ieff := eJ/ηJ using the
estimation for the total discretization error given by ηJ := ηJk + ηJh + ηJd . In Table 6.2, we
observe for finer discretizations that Ieff ≈ 1. This demonstrates the very good quantitative
assessment of the discretization error by the developed estimator.
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10−4

10−3

104 105 106 107 108 109 1010

dimX1,1
k,h · dimQd

uniform
uniform equilibration

local equilibration

Figure 6.3. Comparison of the error |eJ | for different refinement strategies

A comparison of the error eJ for the different refinement strategies is depicted in Figure 6.3.
Therein, the following labeling is used:

• “uniform”: Here, we apply uniform refinement of all discretizations after each run of the
optimization loop.

• “uniform equilibration”: Here, we still allow only uniform refinements but use the
error estimators within the equilibration strategy (Algorithm 6.1) to decide which
discretizations have to be refined.

• “local equilibration”: Here, we combine local refinement of all discretizations with the
proposed equilibration strategy. Thereby, only one spatial triangulation is employed for
the whole time interval I.

The figure shows for example, that to reach a discretization error of 4 · 10−5 the uniform
refinement needs about 70 times the number of degrees of freedom the fully adaptive refinement
needs. This reduction of degrees of freedoms reflects also in a significant saving of computational
costs.

6.7.2 Space- and time-dependent control by right-hand side

As second exemplary configuration, we consider the following nonlinear optimal control problem:
The governing equation is given on Ω = (0, 3)× (0, 1) with final time T = 1 by

∂tu−∆u+ u3 = q in Ω × I,
u = 0 on Γ × I,
u = u0 on Ω × { 0 } .

(6.13)
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The initial condition u0 is given by means of g : R→ R,

g(s) =

exp
(
1− 1

1−s2

)
|s| < 1,

0 otherwise,

as

u0(x) = g

(10
3
|x− x̃|

)
with x̃ =

(1
2
,
1
2

)T
,

and is depicted in Figure 6.4. The control q depends on space and time and acts as source term
in the domain. Thus, the control space Q is chosen here as Q = L2(I,R) with R = L2(Ω).
Because of the homogeneous Dirichlet boundary conditions, the spaces V and H used for
defining the state space X are set to V = H1

0 (Ω) and H = L2(Ω).

Figure 6.4. Initial condition u0

As functional J to be minimized subject to the state equation (6.13) we consider

J(q, u) = 1
2
‖u(T )− û‖2L2(Ω) + α

2

∫
I
‖q(t)‖2L2(Ω) dt.

Thereby, the desired state û is given bilateral symmetric to the initial condition as

û(x) = g

(10
3
|x− x̃|

)
with x̃ =

(5
2
,
1
2

)T
.

It is shown in Figure 6.5. The regularization parameter α is chosen to be α = 10−2.

Figure 6.5. Desired state û

In the computations, the control space was discretized as the state space by the cG(1)dG(0)
method. Because of this choice, the optimality condition (gradient equation) can be fulfilled
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pointwise, and thus there is no additional discretization error arising from discretizing the
control (cf. Remark 6.3).

Table 6.3 shows the behavior of the equilibration strategy used to balance the errors due to
space and time discretization on locally refined discretizations using dynamically changing
meshes. Thereby, Ntot denotes the total number of degrees of freedom which is also given by
dim X̃0,1

k,h, the dimension of the discrete state space. Conversely, Nmax denotes the maximal
number of degrees of freedom used in one spatial mesh. As already introduced, M is the
number of time steps. We observe in Table 6.3 the desired equilibration of the spatial and
temporal contributions to the overall error estimator.

Table 6.3. Local refinement on dynamic meshes with equilibration

Ntot Nmax M ηJh ηJk

441 21 20 2.0 · 10−02 −3.6 · 10−03

531 51 20 9.2 · 10−05 −1.6 · 10−03

633 51 22 1.1 · 10−04 −1.4 · 10−03

837 51 26 1.1 · 10−04 −1.2 · 10−03

1041 51 30 1.1 · 10−04 −9.5 · 10−04

1245 51 34 1.2 · 10−04 −6.9 · 10−04

1449 51 38 1.3 · 10−04 −5.0 · 10−04

5981 173 60 −2.8 · 10−04 −2.7 · 10−04

27445 431 104 −1.2 · 10−04 −1.4 · 10−04

133703 1281 194 −3.7 · 10−05 −7.2 · 10−05

380585 3673 210 −1.0 · 10−05 −6.1 · 10−05

760855 3673 406 −1.0 · 10−05 −3.0 · 10−05

1520389 3673 796 −1.0 · 10−05 −1.5 · 10−05

Comparisons of different refinement strategies for separate refinement of the time and space
discretizations are given in the Figures 6.6 and 6.7. Thereby, we consider for the space
discretization additionally to uniform and adaptive local refinement on a fixed triangulation the
promising approach of dynamically changing meshes introduced in Section 3.2.2. The depicted
errors eJk := J(qhd, uhd)− J(qσ, uσ) and eJh := J(qkd, ukd)− J(qσ, uσ) are defined by means of
approximations of the values for J(qhd, uhd) and J(qkd, ukd) computed by extrapolation. The
figures also depict the very good approximation of the discretization error by the corresponding
estimators ηJk and ηJh .

The development of the total discretization error under uniform refinement and under local
refinement using dynamic meshes and equilibration is compared in Figure 6.8. We observe a
remarkable reduction of the degrees of freedom of both the discretization of the states and the
controls by a factor of 43.

Figure 6.9 depicts the distribution of the time steps obtained by local refinement based on the
error indicators. Thereby, we observe a strong refinement towards the end of the time interval.
This behavior is hardly surprising since the objective functional for both the optimization and
the error estimation acts only on the final time T . The coarsest and finest time step size used
differ by 12 levels of refinement.

122



6.7 Numerical results
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Figure 6.6. Comparison of the error |eJk | and the estimator |ηJk | for uniform and
local refinement of the time steps
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Figure 6.7. Comparison of the error |eJh | and the estimator |ηJh | for uniform and local
refinement of a fixed spatial triangulation as well as local refinement on
dynamically changing meshes
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Figure 6.8. Comparison of the error |eJ | for uniform and local space-time refinement
on dynamically changing meshes using equilibration
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Figure 6.9. Visualization of the adaptively determined time step size k
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Finally, we present in Figure 6.10 a selection of adaptively refined triangulations obtained from
the computation on dynamically changing meshes. It is remarkable that due to the presented
techniques of error estimation, the meshes near the final time t = T are much more refined
than near the initial time t = 0 although the optimal state exploits almost the same structure
at t = 0 and t = T (cf. Figures 6.4 and 6.5). Furthermore, we observe that three quarters of
the time interval, that is for t ∈ [0, 0.75], the grid is kept almost unrefined.

(a) t = 0.00 (b) t = 0.75 (c) t = 0.80

(d) t = 0.85 (e) t = 0.90 (f) t = 0.91

(g) t = 0.92 (h) t = 0.93 (i) t = 0.94

(j) t = 0.95 (k) t = 0.96 (l) t = 0.97

(m) t = 0.98 (n) t = 0.99 (o) t = 1.00

Figure 6.10. Spatial triangulations at certain time points

6.7.3 Comparison to a heuristic error estimator

To compare the quality of the different discretizations obtained by the heuristic and quantitative
error estimators, we consider the model configuration investigated in Section 6.7.2. Thereby,
the configuration used for the numerical tests is the same as employed there for obtaining the
results depicted in Figure 6.7. That is, we consider only refinement of the spatial triangulations
for a fixed number of M time steps.

At first, we compare the resulting discretization errors for spatial refinement based on the
quantitative error estimator ηJh and based on the heuristic error estimator η̃h for both one fixed
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(b) Local refinement on dynamically changing meshes

Figure 6.11. Comparison of the discretization errors |eJh | obtained by the heuristic
and quantitative error estimators
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(a) Local refinement on a fixed spatial triangulation
obtained by the heuristic estimator vs. uniform
refinement
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(b) Local refinement on dynamically changing meshes
obtained by the heuristic estimator vs. local re-
finement on a fixed spatial triangulation obtained
from the quantitative estimator

Figure 6.12. Comparison of the discretization error |eJh | obtained by the heuristic
error estimator to other types of refinements
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spatial triangulation and using dynamically changing meshes. This comparison is depicted in
Figure 6.11. We observe in both presented situations, that the mesh generated by ηJh is more
efficient at reducing the error eJh in terms of the cost functional. Moreover, we note especially
in Figure 6.11(b) a “smoother” reduction of the error on meshes obtained by the quantitative
estimator. Figure 6.11(b) also shows a slightly better order of convergence of the discretization
error on meshes constructed by means of ηJh than by means of η̃h.

Nevertheless, one may conclude from these first observations, that there is no or only a minor
benefit from using the quantitative error estimator. However, by inspection of the results given
in Figure 6.12, this impression turns out to be wrong. Figure 6.12(a) compares the errors on a
sequence of uniformly refined triangulations with the error on locally refined meshes obtained
by means of the heuristic estimator. We observe, that during the whole computation the error
on the heuristically refined meshes is larger than the error on the sequence of uniform refined
meshes. Furthermore, Figure 6.12(b) shows that there is almost no benefit from using the
heuristic estimator on dynamically changing meshes compared to the quantitative estimator
on a fixed spatial triangulation.
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Figure 6.13. Comparison of the error |eJh | and the heuristic estimator |η̃h| for local
refinement of a fixed spatial triangulation as well as local refinement
on dynamically changing meshes with CI ≈ 9.64 · 10−5

A further drawback of the heuristic error estimator η̃h is that it is not constant-free. That
is, it contains the constant CI whose value has to be determined suitably a priori. If—as
in this model configuration—the value of the error is known, one can choose CI such that
at least on one mesh the relation eJh ≈ η̃h holds. The development of the error |eJh | and the
estimator |η̃h| with the adjusted constant CI ≈ 9.64 · 10−5 is depicted in Figure 6.13 for local
refinement on a fixed mesh and on dynamically changing meshes. We emphasize, that such
a adjustment of CI is virtually impossible in concrete applications. Consequently, the error
estimation obtained from η̃h can in general not be used within a space-time adaptive algorithm
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where the refinement strategy necessitates reliable information on the sizes of the errors for
equilibrating all involved discretization errors (cf. Section 6.5).

Furthermore, we observe in Figure 6.13 that even if CI is adjusted properly, the assessment
of the considered error in terms of the cost functional by the heuristic estimator η̃h is not
satisfactory. The estimator exhibits a different order of convergence than the error. This is
reasonable since η̃h is constructed to estimate the error in terms of the H1(Ω)-seminorm and
in the considered case the functional acts on L2(I, L2(Ω)).

(a) Quantitative estimator ηJh (b) Heuristic estimator η̃h

Figure 6.14. Comparison of the local refinement obtained by the two considered
estimators after six refinement cycles using a fixed spatial triangulation

A hint for this altogether poor behavior of the heuristic error estimator η̃h can be found when
considering the produced locally refined triangulations given in the Figures 6.14 and 6.15.
Figure 6.14 shows the two meshes obtained by means of the quantitative and heuristic error
estimators ηJh and η̃h using one fixed spatial triangulation for the whole time interval I. We
note, that the mesh produced by ηJh (see Figure 6.14(a)) is only refined on the right part
of the domain. In contrast, estimator η̃h advises to refine both the left and the right part
of the domain resulting in the mesh depicted in Figure 6.14(b). Thereby, the refinement on
the right part is at least one level of refinement coarser than on the left part. This stronger
concentration on the left part of the domain (leading to the poor error reduction which is
even worse than uniform refinement) can be explained by the rather irregular behavior of the
optimal state u at initial time. The quantitative estimator compensates this situation by its
multiplicative structure: It couples the roughness of u multiplicatively with information about
the adjoint state z which is rather smooth at this time.

Similar observations can be made by consideration of Figure 6.15 where a selection of spatial
triangulations from the computations on dynamically changing meshes is depicted. Whereas
the meshes obtained by the two different refinement indicators are comparatively similar at
final time t = 1 (cf. the Figures 6.15(i) and 6.15(j)) they differ totally at initial time t = 0 (cf.
the Figures 6.15(a) and 6.15(b)). At this time, the mesh obtained from using the quantitative
error estimator is at most one level finer than the initial mesh. Like in the situation of one
fixed mesh, the heuristic based refinement yields here a mesh for t = 0 which is strongly refined
in the left half of the domain. The mesh is here even finer than the mesh at final time t = 1.
Again, this stands in sharp contrast to the more efficient behavior of the proposed quantitative
estimator.

We close this chapter with the conclusion that the construction of temporal and spatial
discretizations for the efficient reduction of the error in terms of a quantity of interest is only
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practicable when based on systematic approaches to quantitative error estimation like the one
derived in the first sections of this chapter.

(a) Quantitative estimator ηJh : t = 0 (b) Heuristic estimator η̃h: t = 0

(c) Quantitative estimator ηJh : t = 0.25 (d) Heuristic estimator η̃h: t = 0.25

(e) Quantitative estimator ηJh : t = 0.5 (f) Heuristic estimator η̃h: t = 0.5

(g) Quantitative estimator ηJh : t = 0.75 (h) Heuristic estimator η̃h: t = 0.75

(i) Quantitative estimator ηJh : t = 1 (j) Heuristic estimator η̃h: t = 1

Figure 6.15. Comparison of the local refinement obtained by the two considered
estimators after six refinement cycles using dynamically changing
meshes
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7 Applications

In this chapter, we apply the a posteriori error analysis and the adaptive refinement techniques
derived in Chapter 6 to two optimization problems motivated by concrete applications from
engineering and chemistry.

As first application, we consider in Section 7.1 the optimal control of steel hardening induced
by a laser beam. Thereby, the goal of the optimization is to adjust the laser intensity in
such a way, that the thickness of the hardened part of the workpiece is close to a desired
hardening profile. As second application, we investigate in Section 7.2 a model describing
the propagation of laminar flames through a channel equipped with a cooled obstacle. The
model is constructed using an Arrhenius law containing unknown parameters. In this setting,
we consider the parameter identification problem of recovering one of these parameters from
measurements in four spatial points at final time. The cost functional is given by a least-square
formulation for penalizing the deviation from these measurements.

For the first configuration, the natural choice of measurement for error control is the cost
functional itself. However, in the second example, the cost functional is just an artificial
construction without any physical meaning. Thus, we aim there in estimating the discretization
error directly with respect to the unknown parameter via a suitable choice of the quantity of
interest.

7.1 Surface hardening of steel

We consider the optimal control of laser surface hardening of steel. In this process, a laser
beam moves along the surface of a workpiece. The heating induced by the laser is accompanied
by a phase transition, in which austenite, the high temperature phase in steel, is produced.
Due to further phase transitions (which are not contained in the considered model) the desired
hardening effect develops.

The goal is to control this hardening process such that a desired hardening profile is produced.
Since in practical applications, the moving velocity of the laser beam is kept constant, the most
important control parameter is the energy of the laser beam. Especially when there are large
variations in the thickness of the workpiece or in regions near the boundaries of the workpiece,
the proper adjustment of the laser energy is crucial to meet the given hardening profile.
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7.1.1 Formulation of the problem

The configuration of the control problem to be investigated in this section is mainly taken
from Fuhrmann and Hömberg [36] and Hömberg and Volkwein [46]. Accordingly to Leblond
and Devaux [52], the formation of austenite is described therein by the initial value problem

∂ta = 1
τ(θ)

[
aeq(θ)− a

]
+ in Ω × I,

a = 0 on Ω × { 0 } ,
(7.1)

where a is the volume fraction of austenite, aeq is the equilibrium volume fraction of austenite,
and τ is a time constant. Both aeq and τ depend on the temperature θ. The brackets

[v]+ := v + |v|
2

denote the non-negative part of v.

The temperature distribution θ in the workpiece is described by the following heat equation:

ρcp∂tθ − ε∆θ = −ρL∂ta+ qΛ in Ω × I,
∂nθ = 0 on ∂Ω × I,
θ = θ0 on Ω × { 0 } .

(7.2)

Here, the density ρ, the heat capacity cp, the heat conductivity ε, and the latent heat L are
assumed to be positive constants. The term q(t)Λ(x, t) describes the volumetric heat source
due to laser radiation, where q acts as time-dependent control variable. Thus, the optimal
control is searched for in Q = L2(I,R).

For theoretical as well as computational reasons, the term
[
aeq(θ)−a

]
+ from (7.1) is regularized

as [
aeq(θ)− a

]
+ ≈ (aeq(θ)− a)Hδ(aeq(θ)− a), (7.3)

where Hδ is a monotone regularization of the Heaviside function, given for instance by

Hδ(s) :=


1 for s ≥ δ,

10
(
s

δ

)6
− 24

(
s

δ

)5
+ 15

(
s

δ

)4
for δ > s ≥ 0,

0 for s < 0

with a parameter δ > 0.

Thus, as governing state equation, we consider the combination of (7.1) and (7.2) together
with the approximation (7.3):

∂ta = 1
τ(θ)

(aeq(θ)− a)Hδ(aeq(θ)− a) in Ω × I,

ρcp∂tθ − ε∆θ = −ρL∂ta+ qΛ in Ω × I,
∂nθ = 0 on ∂Ω × I,
a = 0 on Ω × { 0 } ,
θ = θ0 on Ω × { 0 } .

(7.4)
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7.1 Surface hardening of steel

In [46], it is proven that under some smoothness conditions for the data aeq and τ , and under
the assumptions θ0 ∈ H1(Ω), Λ ∈ L∞(I, L∞(Ω)), q ∈ L2(I,R) the state equation (7.4) admits
a unique solution u := (a, θ) ∈W 1,∞(I, L∞(Ω))×X. Here, because of the Neumann boundary
conditions for θ, the space X is defined using V = H1(Ω) and H = L2(Ω).

As cost functional to be minimized, we choose

J(q, u) = β

2

∫
I
‖a(t)− â(t)‖2L2(Ω) dt+ α

2

∫
I
q(t)2 dt,

where â is a given desired volume fraction of austenite. In [46], the authors considered
observation located only at final time T . Since we treat already an example with observation
at final time in the following section, we choose the objective functional distributed over time
and space. The numerical results (cf. the Figures 7.2 and 7.3 in the following subsection)
confirm that also this choice leads to the desired hardening profile especially at final time T .

For the computations, we choose the physical parameters for the heat equation accordingly to
[46] as

ρcp = 1.17, ε = 0.153, and ρL = 150.

The equilibrium volume fraction aeq and the time constant τ are constructed by cubic spline
interpolation of the values from Table 7.1. The resulting spline approximations are depicted in
Figure 7.1.

Table 7.1. Data for aeq and τ

θ aeq(θ) τ(θ)

730 0 1
830 0.91 0.2
840 1 0.18
900 1 0.05

The parameter δ in the definition of the regularized Heaviside function is chosen as δ = 0.15,
and the initial condition for the temperature is set to θ0 = 20. The laser source Λ is modeled
by

Λ(x, t) = 4κA
πD2 exp

(
−2(x1 − vt)2

D2

)
exp(κx2), x = (x1, x2)T ,

where the values of the parameters are taken from [46] as D = 0.47, κ = 60, A = 0.3, and
v = 1.15.

For the numerical computations, we choose the domain Ω to be (0, 5)× (−1, 0) and determine
the final time T such that the laser, which moves from (0, 0) to (5, 0), reaches the boundary at
(5, 0) at time T . Thus, we set T = 5/v ≈ 4.34782. The desired volume fraction â is chosen as

â(x) :=
{

1 for 0 ≥ x1 ≥ −1
8

0 for − 1
8 > x1 ≥ −1

, x = (x1, x2)T ,

and for the parameters α and β from the definition of the objective functional J we take
α = 10−4 and β = 3500.
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Figure 7.1. Spline interpolation of the data for aeq and τ

7.1.2 Numerical results

For discretizing the state space, we employ the cG(1)dG(0) discretization, that is, the discrete
state is piecewise bilinear in space and piecewise constant in time. Since the control space is
given by Q = L2(I,R), we have to discretize the controls only in time. Correspondingly to the
state space, we choose a dG(0) discretization based on a possibly coarser step size than the
step size used for discretizing the state space; cf. the discussion in Example 3.1.

At first, we investigate the qualitative behavior of the optimization algorithm. Figure 7.2
presents the distribution of austenite at final time T before (a) and after (b) the optimization
on a fine discretization of the state space. To compare with, the desired state is depicted
in Figure 7.2(c). Figure 7.3 proves the gain of optimization by showing the pointwise error
between the desired state and the uncontrolled (a) and controlled (b) volume fraction of
austenite at final time.

As next step, we verify the properties of the error estimator with respect to the temporal
discretization error of the state variable. That is, we consider the error eJk := J(qhd, uhd) −
J(qσ, uσ) and the corresponding error estimator ηJk . Thereby, an approximation of the values
for J(qhd, uhd) is computed by extrapolation of the values obtained on fine time discretizations.
The development of this error for uniform refinement of the temporal discretization and for
local refinement based on the information obtained from ηJk is depicted in Figure 7.4. We
observe almost no difference between the two types of refinement and consequently there is no
gain due to the local refinement at all. This can be explained by the global structure of the
problem: Both the functional and the laser beam act on the whole time interval. Nevertheless,
just the knowledge of the size of the temporal discretization error provided by the error
estimation leads to remarkable savings of computational costs when using this information
within a coupled refinement of all involved discretizations.
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(a) uncontrolled

(b) controlled

(c) desired

Figure 7.2. Distribution of austenite at final time T

(a) uncontrolled

(b) controlled

Figure 7.3. Discrepancy between the distribution of austenite and the desired state
at final time T
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Figure 7.4. Comparison of the relative error |eJk |/J for uniform and local refinement
of the time steps

In Figure 7.5, we present a comparison of different refinement strategies for the spatial
discretization. We depict the development of the error eJh := J(qkd, ukd) − J(qσ, uσ) caused
by the spatial discretization of the state space. For testing the temporal error estimator, an
approximation of the value for J(qkd, ukd) is obtained by extrapolation. Thereby, we consider
the following three types of refinement:

• Uniform refinement

• Local refinement based on the error indicator ηJh with one fixed mesh for all time steps

• Local refinement based on ηJh but allowing separate spatial meshes for each time interval
by using dynamically changing meshes

We observe that by the usage of local refinement the number of grid points can be reduced
from N = 16,641 to N = 5,271. Moreover, if we allow dynamically changing meshes, we
only need Nmax = 3,873 grid points. The total number of degrees of freedom in the space
discretization (dim X̃0,1

k,h) is reduced even by a factor of 5.7 when employing local refinement
on dynamic meshes.

In the Figures 7.6 and 7.7, a selection from the sequence of locally refined meshes is given.
Thereby, we detect a strong refinement at the position where the laser currently acts and
at the region around the transition from hardened to not hardened steel. In this region,
the optimal distribution of austenite as well as the desired hardening profile exhibits spatial
discontinuities.

We now couple the temporal and spatial estimators by the equilibration strategy described
in Section 6.5. Since we do not benefit from local refinement in time, we allow only uniform
refinement of the time steps. However, in space we allow the adaptation procedure to use
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Figure 7.5. Comparison of the relative error |eJh |/J for uniform and local refinement
of the triangulation using dynamically changing meshes

dynamically changing meshes. Results of this computation are given in Table 7.2. Therein,
we observe that the contribution from the spatial discretization error to the overall error is
much smaller than the contribution from the temporal discretization error. Consequently, the
equilibration procedure decides for example to keep the spatial meshes fixed while increasing
the number of time steps from 200 over 400 to 800 time steps.

Table 7.2. Local refinement on dynamic meshes with equilibration

Ntot Nmax M ηJh/J ηJk/J ηJh/J + ηJk/J eJkh/J Ieff

14739 289 50 −7.4 ·10−03 2.3 ·10−02 1.622 · 10−02 −4.916 · 10−03 −0.30
59325 675 100 −2.8 ·10−03 1.3 ·10−02 1.049 · 10−02 7.828 · 10−03 0.74
257867 1659 200 −3.9 ·10−04 6.3 ·10−03 6.040 · 10−03 7.445 · 10−03 1.23
515115 1659 400 −3.9 ·10−04 3.2 ·10−03 2.827 · 10−03 3.454 · 10−03 1.22
1029611 1659 800 −4.3 ·10−04 1.6 ·10−03 1.193 · 10−03 1.424 · 10−03 1.19
4721397 3911 1600 9.8 ·10−06 7.8 ·10−04 8.143 · 10−04 9.375 · 10−04 1.15

This implies that uniform refinement of the time and space discretizations without the
knowledge of the size of the different error contributions can not be competitive. For the
efficient equilibration—and thus the efficient reduction of the error—estimations of the size
of each involved discretization errors are essential. Furthermore, the table demonstrates that
the estimator ηJh/J + ηJk/J is in very good agreement with the relative error |eJkh|/J Thereby, the
error eJkh is defined as eJkh := J(qd, ud)− J(qσ, uσ) with an approximation of J(qd, ud) obtained
by extrapolation. For normalizing the errors and the estimators we use J , which denotes an
approximation of the exact value of the cost functional J(q, u).

We pass on a graphical comparison of this results with the results of a computation using
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(a) t = 0.43

(b) t = 0.87

(c) t = 1.30

(d) t = 1.74

(e) t = 2.17

Figure 7.6. Locally refined meshes for t ∈ { 0.43, 0.87, 1.30, 1.74, 2.17 }
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(a) t = 2.61

(b) t = 3.04

(c) t = 3.48

(d) t = 3.91

(e) t = 4.35

Figure 7.7. Locally refined meshes for t ∈ { 2.61, 3.04, 3.48, 3.91, 4.35 }
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uniform refinement with and without equilibration. As mentioned, when not having the
possibility to decide which type of discretization contributes the majority to the discretization
error, one could not solve this problem efficiently at all. If equilibration is employed, the
gain from the local refinement in space (cf. Figure 7.5) carries over directly to the space-time
adaptive computation.

Next, we show in Figure 7.8 a series of optimal controls obtained by dG(0) approximations
on refined discretizations of Q. We choose here for both the discretization of the state and
of the control the same number of time intervals. That is, we use M ∈ { 10, 20, 40, 80 } time
steps and consequently finite-dimensional subspaces Qd with dimQd ∈ { 10, 20, 40, 80 }. This
is motivated by the fact that for instance for linear-quadratic problems the discretization error
caused by the discretization of the control space is zero if the control discretization and the
discretization of the state variable fit together (cf. Remark 6.3). However, for the considered
problem, the optimality condition can not be fulfilled pointwise, and thus the error due to the
discretization of the control can at no time be neglected.

In this configuration, we observe that the computed optimal controls expose increasing
instabilities when enlarging simultaneously the number of performed time steps and the
dimension of the discrete control space. These instabilities may arise from the low regularity
of the volume fraction a and the discontinuous desired state â. As usual, the optimal control
can be smoothened by enlarging the regularization parameter α. However, when doing so, one
has to face that the focus of the optimization is moved more and more from minimizing the
deviation of the state to the desired state to minimizing the norm of the control. Consequently,
the quality of approximating the desired state by the optimization deteriorates. Hence, if not
given by properties of the problem, the choice of the regularization parameter is quite delicate.
A possible way out could be the usage of strategies for finding an optimal regularization
parameter proposed in the field of inverse problems.

Another possibility, which we favor here, is “stabilization by discretization”. That is, we want
to keep the discretization of Q relatively coarse to avoid the increasing instabilities in the
optimal control. This is qualitatively justified by the results given in Figure 7.9. There, we
depict also the optimal control for dimQd ∈ { 10, 20, 40, 80 } but now for a fixed number of
M = 160 time steps for the state. Here, we observe in contrast Figure 7.8, that the instabilities
appear first when using a discrete control space with dimQd = 80 degrees of freedom.

Table 7.3. Estimated errors due to time discretization of the state and the control
space during refinement of the control discretization

M dimQd ηJk/J ηJd/J

160 10 7.7 ·10−03 −7.6 ·10−04

160 20 8.4 ·10−03 −4.4 ·10−05

160 40 8.4 ·10−03 −6.1 ·10−05

160 80 8.3 ·10−03 −2.4 ·10−05

However, the a priori selection of a suitable step size for the control discretization leading
to accurate results and stable computations is virtually impossible. Hence, one can not
do so without an estimation of the error due to the discretization of the control and the
corresponding error indicators for the suitable adaptive refinement. For the concrete problem

140



7.1 Surface hardening of steel

0

200

400

600

800

1000

1200

0 1 2 3 4
Time t

(a) dimQd = 10 and M = 10

0 1 2 3 4
0

200

400

600

800

1000

1200

Time t
(b) dimQd = 20 and M = 20

0

200

400

600

800

1000

1200

0 1 2 3 4
Time t

(c) dimQd = 40 and M = 40

0 1 2 3 4
0

200

400

600

800

1000

1200

Time t
(d) dimQd = 80 and M = 80

Figure 7.8. Optimal control qσ for N = 4,225 spatial nodes and different levels of
refinements of Qd and different numbers of time steps
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(d) dimQd = 80

Figure 7.9. Optimal control qσ for N = 4,225 spatial nodes and different levels of
refinements of Qd and a fixed number of M = 160 time steps
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under consideration, Table 7.3 provides the information that the estimated error due to
the time discretization of the state using M = 160 time steps is at least ten times larger
than the estimated error due to the time discretization of the control on dimQd = 10 time
intervals. Hence, the discretization of the control space can be kept rather coarse here. This is
confirmed by the results given in Table 7.4 where we compare the values of the estimators
for the time discretization of the state space and the control space for dimQd = 10 and
M ∈ { 160, 320, 640, 1280 }. We observe that the error induced by the state discretization
dominates the error induced by the control discretization even for M = 1280 time steps.
That is, also for this choice of state discretization, a discretization of the control space with
dimQd = 10 is sufficient. This does not only save computational costs but it also enhances
the stability properties of the problem.

Table 7.4. Estimated errors due to time discretization of the state and the control
space during refinement of the state discretization

M dimQd ηJk/J ηJd/J

160 10 7.6 ·10−03 −7.5 ·10−04

320 10 4.0 ·10−03 −5.8 ·10−04

640 10 2.0 ·10−03 −5.1 ·10−04

1280 10 1.0 ·10−03 −4.8 ·10−04

Remark 7.1. In general, we have to confess that it is usually not possible to implement infinite-
dimensional controls in practice. Actually, in the optimization of real applications only a finite
number of controls should be considered. However, also in this case, the estimation of the error
due to practical constraints on the control space can be of interest. Based on these estimates,
one can for example advise to invest into a finer resolved control to reduce the gap between
the continuous optimal solution and the discrete one.

7.2 Propagation of laminar flames

In this section, we consider a parameter estimation problem arising from chemistry. We aim at
the identification of an unknown parameter in a reaction mechanism governed by an Arrhenius
law. This formulation is employed to model the propagation of laminar flames through a
channel. The channel is narrowed by two heat absorbing obstacles influencing the traveling of
the flame.

The identification of the unknown parameter is done employing measurements of the solution
components at four spatial points at final time. Using these values, the cost functional is
constructed by means of a least-squares formalism.

7.2.1 Formulation of the problem

The governing equation for the considered problem is taken from an example given in Lang [50].
It describes the major part of gaseous combustion under the low Mach number hypothesis.
In this approach, the dependency of the fluid density on the pressure is eliminated while
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the temperature dependence remains. If additionally the dependence on the temperature is
neglected, the motion of the fluid becomes independent on the temperature and the species
concentration. Hence, one can solve the temperature and the species equation alone specifying
any solenoidal velocity field v. In particular, v = 0 is an interesting case.

Introducing the dimensionless temperature θ, denoting by Y the species concentration, and
assuming constant diffusion coefficients yields the system of equations

∂tθ −∆θ = ω(Y, θ) in Ω × I,

∂tY −
1
Le
∆Y = −ω(Y, θ) in Ω × I,

θ = θ0 on Ω × { 0 } ,
Y = Y0 on Ω × { 0 } ,

(7.5)

where the Lewis number Le is the ratio of diffusivity of heat and diffusivity of mass. We use a
simple one-species reaction mechanism governed by an Arrhenius law given by

ω(Y, θ) = β2

2Le
Y e

β(θ−1)
1+α(θ−1) , (7.6)

in which an approximation for large activation energy has been employed.

Here, we consider a freely propagating laminar flame described by (7.5) and its response to
a heat absorbing obstacle, a set of cooled parallel rods with rectangular cross section (cf.
Figure 7.10). The computational domain has width H = 16 and length L = 60. The obstacle
covers half of the width and has length L/4. The boundary conditions are chosen as

θ = 1 on ΓD × I, ∂nθ = 0 on ΓN × I, ∂nθ = −κθ on ΓR × I,
Y = 0 on ΓD × I, ∂nY = 0 on ΓN × I, ∂nY = 0 on ΓR × I,

where the heat absorption is modeled by boundary conditions of Robin type on ΓR.

ΓR

ΓR

ΓN

ΓD

ΓN

ΓN

ΓN

p3

p4p2

p1

Ω

ΓN

Figure 7.10. Computational domain Ω and measurement points pi

The initial condition is the analytical solution of a one-dimensional right-traveling flame in the
limit β →∞ located left of the obstacle:

θ0(x) =
{

1 for x1 ≤ x̃1

ex̃1−x1 for x1 > x̃1
,

Y0(x) =
{

0 for x1 ≤ x̃1

1− eLe(x̃1−x1) for x1 > x̃1
.
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For the computations, the occurring parameters are set as in [50] to

Le = 1, β = 10, κ = 0.1, x̃1 = 9,

whereas the temperature ratio α, which determines the gas expansion in non-constant density
flows, is the objective of the parameter estimation.

To use the same notation as in the theoretical parts of this work, we define the pair of solution
components u := (θ, Y ) ∈ ũ+X2 and denote the parameter α to be estimated by q ∈ Q := R.
For the definition of the state space X, we use here the spaces V and H given as

V =
{
v ∈ H1(Ω)

∣∣∣ v∣∣
ΓD

= 0
}

and H = L2(Ω).

The function ũ is defined to fulfill the prescribed Dirichlet data as ũ
∣∣
ΓD

= (1, 0).

The unknown parameter α is estimated here using information from pointwise measurements of
θ and Y at four points pi ∈ Ω, i = 1, 2, 3, 4, at final time T = 60. This parameter identification
problem can be formulated by means of a cost functional of least-squares type, that is

J(q, u) = 1
2

4∑
i=1

(
θ(pi, T )− θ̂i

)2 + 1
2

4∑
i=1

(
Y (pi, T )− Ŷi

)2
.

The values of the artificial measurements θ̂i and Ŷi, i = 1, 2, 3, 4, are obtained from a reference
solution computed on fine space and time discretizations.

The consideration of point measurements does not fulfill the assumption on the cost functional
in (2.4), since the point evaluation is not bounded as a functional on H. Therefore, the point
functionals here have to be understood as regularized functionals defined on H. An a priori
analysis of parameter estimation problems governed by elliptic equations and using such types
of point functionals can be found in Rannacher and Vexler [67].

For the considered type of parameter estimation problems, one is usually not interested in
reducing the discretization error measured in terms of the cost functional J . The focus is
rather on the error in the parameter q itself. Hence, we define the quantity of interest E as

E(q, u) = q,

and apply the techniques presented in Section 6.2 for estimating the discretization error with
respect to E. Since the control space in this application is given by Q = R, it is not necessary
to discretize Q. Thus, there is no discretization error due to the control discretization and the
a posteriori error estimator ηE consists only of ηEk and ηEh .

7.2.2 Numerical results

For the computations, the state is discretized using the cG(1)dG(0) approach, that is by using
piecewise constant polynomials in time and piecewise bilinear polynomials in space. We define
the temporal and spatial discretization errors eEk and eEh as

eEk := E(qh, uh)− E(qkh, ukh) and eEh := E(qk, uk)− E(qkh, ukh).
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Figure 7.11. Comparison of the error |eEk | for uniform and local refinement of the
time steps
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Figure 7.12. Comparison of the error |eEh | for uniform and local refinement of the
triangulation using dynamically changing meshes
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The values of E(qh, uh) and E(qk, uk) are extrapolated from computations on a sequence of
fine time and space discretizations, respectively. Since we have E(q, u) = q = α ≈ 0.8, there is
no difference between the consideration of relative or absolute errors.

At first, we consider the case of refining only the time or only the space discretization. Thereby,
we compare the behavior of the temporal discretization error for uniform and local refinement
of the time grid and the behavior of the spatial discretization error for uniform and local
refinement of the spatial triangulations using dynamically changing meshes. The results of
these comparisons are depicted in the Figures 7.11 and 7.12. To reach for example an error
|eEk | ≈ 5 · 10−4, we gain a reduction of the number of time steps from M = 8,192 for uniform
refinement to M = 1,398 for refinement due to the error indicator ηEk . Correspondingly, to
reach the error |eEh | ≈ 2 · 10−3, we need at most Nmax = 5,005 grid points of the spatial
discretizations when using dynamic meshes instead of N = Nmax = 58,049 grid points when
using a fixed mesh with uniform refinement.

Table 7.5. Local refinement on a fixed mesh with equilibration

N M ηEh ηEk ηEh + ηEk eE Ieff

269 512 4.3 ·10−02 −8.4 ·10−03 3.551 · 10−02 −2.889 · 10−02 −0.81
635 512 5.5 ·10−03 −9.1 ·10−03 −3.533 · 10−03 −4.851 · 10−02 13.72
1847 722 −1.5 ·10−02 −3.6 ·10−03 −1.889 · 10−02 −3.024 · 10−02 1.60
5549 1048 −6.5 ·10−03 −2.5 ·10−03 −9.074 · 10−03 −1.097 · 10−02 1.20
14419 1088 −2.4 ·10−03 −2.5 ·10−03 −5.064 · 10−03 −5.571 · 10−03 1.10
43343 1102 −8.5 ·10−04 −2.5 ·10−03 −3.453 · 10−03 −3.693 · 10−03 1.06

The next computations are done using simultaneous refinement of the space and time dis-
cretizations. Thereby, the refinements are coupled by the equilibration strategy introduced in
Section 6.4. The Tables 7.5 and 7.6 demonstrate the effectivity of the error estimator ηEh + ηEk
on locally refined discretizations using fixed and dynamically changing spatial triangulations.

Table 7.6. Local refinement on dynamic meshes with equilibration

Ntot Nmax M ηEh ηEk ηEh + ηEk eE Ieff

137997 269 512 4.3 ·10−02 −8.4 ·10−03 3.551 · 10−02 −2.889 · 10−02 −0.81
238187 663 512 3.5 ·10−03 −8.6 ·10−03 −5.192 · 10−03 −5.109 · 10−02 9.84
633941 1677 724 −1.6 ·10−02 −3.5 ·10−03 −2.015 · 10−02 −3.227 · 10−02 1.60
1741185 2909 1048 −7.3 ·10−03 −2.5 ·10−03 −9.869 · 10−03 −1.214 · 10−02 1.23
3875029 4785 1098 −2.2 ·10−03 −2.5 ·10−03 −4.792 · 10−03 −5.432 · 10−03 1.13
9382027 10587 1140 −7.9 ·10−04 −2.5 ·10−03 −3.301 · 10−03 −3.588 · 10−03 1.08
23702227 25571 1160 −2.8 ·10−04 −2.4 ·10−03 −2.756 · 10−03 −2.944 · 10−03 1.06

In Figure 7.13, we compare uniform refinement of the space and time discretizations with local
refinement of both discretizations on a fixed spatial triangulation and on dynamically changing
triangulations. We gain an remarkable reduction of the required degrees of freedom for reaching
a given tolerance. To meet for instance an error of |eE | ≈ 10−2, the uniform refinement requires
in total 15,056,225 degrees of freedom, the local refinement needs 5,820,901 degrees of freedom,
and the dynamical refinement necessitates only 1,741,185 degrees of freedom. Thus, we gain a
reduction of about 8.6.
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Figure 7.13. Comparison of the error |eE | for different refinement strategies
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Figure 7.14. Visualization of the adaptively determined time step size k
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Figure 7.14 depicts the distribution of the temporal step size k resulting from a fully adaptive
computation on dynamic meshes. We observe a strong refinement of the time steps at the
beginning of the time interval, whereas the time steps at the end are determined by the
adaptation to be eight times larger.

Before presenting a sequence of dynamically changing meshes, we show in Figure 7.15 a typical
locally refined mesh obtained by computations on a fixed spatial triangulation. We note, that
the refinement is especially concentrated at the four reentrant corners and the two measurement
points behind the obstacle. The interior of the region with restricted cross section is also
strongly refined.

Figure 7.15. Locally refined fixed mesh

Finally, the Figures 7.16, 7.17, and 7.18 show the spatial triangulation and the reaction rate
ω for certain selected time points. Thereby, ω is computed from the numerical solution by
means of formula (7.6). We observe, that the refinement traces the front of the reaction rate ω
until t ≈ 56 (cf. Figure 7.17(d)). Afterwards, the mesh around the front becomes coarser and
the refinement is concentrated at the four measurement points pi. Compared to the usage of
one fixed triangulation, the usage of dynamically changing meshes enables us here to reduce
the discretization error in terms of the quantity of interest at lower computational costs; cf.
Figure 7.13.
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(a) t = 1

(b) t = 10

(c) t = 20

(d) t = 30

Figure 7.16. Locally refined meshes and reaction rate ω for t ∈ { 1, 10, 20, 30 }
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(a) t = 40

(b) t = 50

(c) t = 55

(d) t = 56

Figure 7.17. Locally refined meshes and reaction rate ω for t ∈ { 40, 50, 55, 56 }
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(a) t = 57

(b) t = 58

(c) t = 59

(d) t = 60

Figure 7.18. Locally refined meshes and reaction rate ω for t ∈ { 57, 58, 59, 60 }
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8 Conclusions and Perspectives

In this thesis, we developed efficient numerical algorithms for solving a wide class of optimization
problems governed by parabolic partial differential equations (PDEs). For the numerical
treatment of such problems, we proposed to discretize the governing equations by Galerkin
finite element methods in space and time. Also the control variable was approximated by
Galerkin discretizations. For this combination of discretizations, we derived a priori and
a posteriori estimates assessing the error caused by the discretization of the optimization
problem. In the a priori analysis, we showed in the situation of a linear-quadratic parabolic
optimal control problem optimal order of convergence for the error in the control, state, and
adjoint state variable, as well as for the error in terms of the cost functional. Moreover, in the
presented estimates, the influences of the involved discretizations on the total discretization
error were clearly separated.

The main issue of the work at hand was the development of an adaptive refinement procedure
aiming at the determination of efficient discretizations for the numerical solution of parabolic
optimization problems. To this end, the techniques of a posteriori error estimation for
optimization problems governed by elliptic PDEs were extended to estimate the error induced
by the finite element discretization of parabolic optimization problems. Therefor, an error
estimator was developed which is able to separately assess the errors caused by the temporal
and spatial discretizations of the state and the control variables independently of each other.
This allows for balancing the different errors by local refinement in space and time leading to
efficient discretizations of the considered optimization problems. The presented a posteriori
error estimates were derived in a general nonlinear setting for the error measured in terms of
the cost functional and in terms of a given quantity of interest. The efficiency of the error
estimation and the quality of the resulting discretizations were confirmed by several illustrative
examples including comparisons to results obtained from a more heuristic smoothness-based
error estimator.

In order to demonstrate the capabilities of our approach to a posteriori error estimation, we
applied the developed methods to highly nonlinear optimal control and parameter estimation
problems arising from concrete applications. In particular, we considered the optimal control
of the intensity of a laser beam employed for the hardening of steel and the identification of an
unknown parameter in an Arrhenius law utilized for modeling of traveling flames through a
channel. Here, and also for some academic test configurations considered in this thesis, the
application of the developed space-time adaptivity yielded a significant saving in terms of
degrees of freedom and thus in computational time necessary to solve the problems up to a
certain accuracy. Especially for the highly dynamic behavior of the solutions to the mentioned
application problems, the usage of spatial discretizations changing in time (dynamically
changing meshes) led to a further reduction of computational costs.
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Based on these achievements, we regard the following aspects as promising for future develop-
ments:

In this thesis, we considered optimization problems in the absence of inequality constraints.
However, many problems are characterized by additionally given constraints on the control or
the state variable. Hence, the extension of the ideas and techniques presented here on a priori
and a posteriori error analysis to the case of inequality constrained optimization problems is
an important topic.

In the already submitted article [61], Boris Vexler and the author applied the techniques
developed for the a priori analysis of linear-quadratic parabolic optimal control problems
successfully to the case of problems with pointwise inequality constraints on the control
variable. As mentioned, also the development of an a priori analysis for parabolic optimal
control problems with pointwise state constraints is of interest. Here, one has to handle
particularly the low regularity of the adjoint state. This leak of regularity carries over from the
Lagrange multipliers for the state constraint appearing on the right-hand side of the adjoint
equation, which are in general only regular Borel measures.

Also in the field of a posteriori error analysis, the derived approach has to be extended to
the case of optimization problems with pointwise inequality constraints. For the extension
to control constraints, it seems promising to combine the techniques presented in this thesis
with the approach developed in Vexler and Wollner [84] for optimization problems governed
by elliptic PDEs. In the presence of constraints on the state variable, which can be crucial for
concrete applications, there are still some open questions concerning the efficient a posteriori
error analysis. However, there exist some approaches to this topic in the case of elliptic
state equations. Both control and state constrained optimization problems leak on regularity
properties of the optimal solution and the corresponding Lagrange multipliers. This causes
serious difficulties which have to be incorporated in the analysis and the practical evaluation
of a posteriori error estimates.

A further extension of the derived a priori analysis could be the examination of other configu-
rations of optimal control problems. In the thesis at hand, we considered a linear-quadratic
problem with control by the right-hand side, and the cost functional acts distributed over space
and time. A next possible step could be the extension to the case where the control enters
the state equation via its initial values. Correspondingly, the case of terminal observation
(the cost functional is located only at final time) is of interest. Here, for instance, difficulties
arising from the low regularity of the state near the initial time have to be overcome. Also the
development of comparable a priori estimates for semilinear parabolic optimal control problems
with and without constraints is of major interest. Therefor, the estimates developed here have
to be combined with techniques for the treatment of (for instance monotone) nonlinearities
known from the analysis of semilinear parabolic equations.

Further, we want to apply the proposed error estimation and adaptive refinement strategies
to more specific applications including for instance problems arising from biophysics or fluid
dynamics.
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Utilized Software Platforms

We intend to give here an overview over the software platforms utilized and enhanced for the
numerical computations presented in this thesis:

• The optimization toolbox RoDoBo [70]. Here, all the techniques and algorithms for
PDE-constrained optimization presented and developed in this thesis were implemented.

• The finite element toolbox Gascoigne [39]. It provides the discretization and solution
capabilities for RoDoBo.

• The visualization software VisuSimple [85]. It was utilized to generate the images of
the numerical solutions presented in the Chapters 6 and 7.

RoDoBo

Principal developers: R. Becker, D. Meidner, and B. Vexler

Development team: A. Griesbaum, O. Benedix, and W. Wollner

At the beginning of the author’s Ph.D. research,
Roland Becker, Boris Vexler, and the author initi-
ated jointly the development of the optimization
toolbox RoDoBo [70]. The motivation was driven
by the matter of fact, that it seemed necessary
to have a software environment where all devel-

oped ideas concerning PDE-constrained optimization can be tested and applied to concrete
problems.

Since the part of RoDoBo dealing with the solution of partial differential equations bases on
Gascoigne [39] (see the following section), all features of Gascoigne concerning for instance
the types of equations that can be solved are inherited by RoDoBo. Besides the classical
Poisson and heat equations, these are especially

• Systems of convection-diffusion-reaction equations

• Incompressible and compressible Navier-Stokes equations

• Reactive flow systems
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Also inherited from Gascoigne are the capabilities of efficiently solving such problems. In
particular, we emphasize the following features:

• Stabilization schemes

• Multigrid methods

• A posteriori error control

• Adaptive mesh refinement in 2D and 3D

For the efficient discretization of nonstationary equations (cf. Chapter 3) and the extension of
the a posteriori error estimation techniques to this situation (cf. Chapter 6), RoDoBo was
enhanced by following features:

• Space-time finite element discretizations

• Dynamically changing meshes in time (in cooperation with M. Schmich)

Motivated by the very flexible user interface for describing the problems to be solved provided
by Gascoigne, RoDoBo is constructed to solve a wide class of optimization problems, that
is optimal control and parameter estimation problems where the control may enter via the
following parts:

• Equation (right-hand side, diffusion coefficients, reaction rates, . . . )

• Boundary conditions of Dirichlet, Neumann, or Robin type

• Initial condition

Furthermore, state-of-the-art optimization algorithms were implemented. Additionally to the
basic algorithms described in Chapter 4, these are

• Newton, Gauß-Newton, and Quasi-Newton methods

• Globalization techniques

• Primal-dual active set strategies

• Interior point methods

Besides this, RoDoBo provides a flexible concept for evaluating the various formulas describing
the derivatives of the reduced cost functional and for automatically assembling the different
auxiliary problems to be solved during the optimization procedure.

RoDoBo has become an extensively used software package at the Numerical Analysis Group
at the University of Heidelberg and at RICAM in Linz for research and also teaching purposes.
For instance, it has been used in software labs and for closed and ongoing diploma and Ph.D.
theses as well as research projects on:

• Numerical Analysis and Discretization Strategies for Optimal Control Problems with
Singularities (O. Benedix, B. Vexler)

• Efficient Computation of Regularization Parameters by Goal-Oriented Adaptive Dis-
cretization (A. Griesbaum, B. Kaltenbacher, B. Vexler)
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• A Priori Error Estimations for Finite Element Discretization of an Elliptic Optimal
Control Problem with a Bilinear State Equation (A. Kröner)

• A Priori Error Analysis for Finite Element Discretizations of Elliptic Optimal Control
Problems with Dirichlet Control (S. May)

• Model Reduction by Adaptive Discretization in Optimal Control (R. Rannacher, W. Woll-
ner)

• Adaptive Finite Element Methods for the Optimal Control of Elliptic PDEs with Control
Constraints (W. Wollner)

Gascoigne

Principal developers: R. Becker and M. Braack

Development team: T. Dunne, D. Meidner, T. Richter, M. Schmich, B. Vexler, and
W. Wollner

The object-oriented finite element toolkit Gascoigne [39] was initially
created by Roland Becker and Malte Braack at the University of
Heidelberg and at INRIA in Sophia-Antipolis. It has been further
developed by various contributors—mainly current or former members
of the Numerical Analysis Group at the University of Heidelberg.

The key features employed for solving partial differential equations are:

• Discretization by bi-/tri-linear (Q1) and bi-/tri-quadratic finite elements (Q2) in two
and three space dimensions

• Newton’s method for solving nonlinear problems

• Multigrid solver with ILU smoother on locally refined meshes

• Error estimation by goal-oriented weighted residual techniques

• Adaptive mesh refinement using quadrilaterals (2D) and hexahedrals (3D) with hanging
nodes

• Stabilization by local projection (LPS), GLS, and SUPG

Besides the extensions for optimization purposes collected in RoDoBo, there are several
other modules which base on the capabilities of Gascoigne. For example, a version made for
dealing with complex chemical systems (by M. Braack), a parallelized version (by T. Richter),
and an extension for the handling of dynamically changing meshes for solving nonstationary
PDEs (by M. Schmich) exist.

Gascoigne has become the basis of many diploma and Ph.D. theses on a wide range of topics
in the field of numerical analysis of partial differential equations. It has also been successfully
used in software labs for teaching students the practical aspects of PDE numerics.
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VisuSimple

Principal developers: R. Becker and R. Riviere

Development team: T. Dunne and D. Meidner

VisuSimple [85] is an interactive visualization and graphics/mpeg-
generation program for two- or three-dimensional data in the VTK
format—an easy to implement visual data format. The code of Vi-
suSimple is provided freely to the public under an MIT-like license.
Since VisuSimple is programmed using the scripting language Tcl
and the excellent visual data processing toolkit VTK, modifications

can be practically tested and integrated interactively into the source.

VisuSimple is a simple GUI for doing visualizations by means of VTK. Its main purpose
is to speed up the usage of VTK for repetitive applications when sophisticated visualization
algorithms are not needed and the size of data to be visualized is relatively small. For the
moment, one can (among other things):

• Read structured or unstructured data files in VTK format

• Visualize the grid

• Visualize isolines and isosurfaces

• Visualize carpets of 2D scalar data

• Visualize vectorfields as arrows

• Make simple animations

The VTK library has practically become an industry standard as a visual data post-processing
toolkit, so VisuSimple can be seen as an excellent learning opportunity to VTK.

A more detailed description of the capabilities of VisuSimple can be found in Dunne and
Becker [27].
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