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Abstract 

In the olfactory bulb and other brain areas, basic cellular and synaptic properties of 

individual neurons have been studied extensively in reduced preparations. Nevertheless, it is 

still poorly understood how intactions among multiple neurons shape spatio-temporal activity 

patterns and give rise to the computational properties of the the intact circuit.  

In this thesis, I used pharmacological manipulations of excitatory and inhibitory 

neurotransmitter receptors to examine the synaptic interactions underlying spontaneous and 

odor-evoked activity patterns in the intact OB of zebrafish. Electrophysiological and 

conventional and two-photon calcium imaging methods were used to record activity from the 

principal neurons of the OB (mitral cells), their sensory input, and local interneurons.  

The combined blockade of AMPA/kainate and NMDA receptors abolished odor-

evoked excitation of mitral cells (MCs), indicating that sensory input to the OB is mediated 

by ionotropic glutamate receptors. Surprisingly, however, the blockade of AMPA/Kainiate 

receptors alone increased the mean response of MCs and decreased the mean response of 

interneurons (INs). The blockade of NMDA receptors alone caused little or no change in the 

mean responses of MCs and INs. In addition, antagonists of both glutamate receptor types had 

diverse effects on the magnitude and time course of individual MC and IN responses and, 

thus, changed spatio-temporal activity patterns across neuronal populations. The blockade of 

GABA(A) receptors increased spontaneous and odor evoked firing rates of mitral cells and 

often induced rhythmic bursting. Moreover, the blockade of, GABA(A) or AMPA/kainate 

receptors abolished fast oscillatory activity in the local field potential. Blockade of GABA(B) 

receptors reduced calcium influx into terminals of afferent sensory axons and modulated 

response time courses of mitral cells.  

These results indicate that (1) IN activity during an odor response depends mainly on 

AMPA/Kainiate receptor input, (2) interactions between MCs and INs regulate the total OB 

output activity, (3) AMPA/Kainiate receptors and GABA(A) receptors underly the 

synchronization of odor-dependent neuronal ensembles and (4) odor-specific patterns of OB 

output activity are shaped by circuits containing iGlu receptors and GABA receptors. These 

results provide insights into the mechanisms underlying the processing of odor-encoding 

activity patterns in the OB. 

 



Zusammenfassung 

Im olfaktorischen Bulbus (OB) und anderen Hirnarealen wurden grundlegende 

zelluläre und synaptische Eigenschaften der Einzelneurone ausführlich in reduzierten 

Präparaten studiert. Trotzdem ist kaum bekannt, wie die Interaktionen mehrerer Nervenzellen 

untereinander räumlich-zeitlich strukturierte Aktivitätsmuster formen und dadurch die 

rechnerischen Eigenschaften der intakten Schaltkreise entstehen.  

In dieser Arbeit nutzte ich pharmakologische Manipulationen der erregenden und 

hemmenden Neurotransmitter-Rezeptoren, um die synaptischen Interaktionen zu untersuchen, 

die spontanen und geruchsinduzierten Aktivitätsmustern im intakten OB des Zebrafisch 

zugrunde liegen. Methoden der Elektrophysiology sowie der konventionellen und Zwei-

Photonen-Mikroskopie wurden genutzt, um Aktivität von Ausgangsneuronen des OB 

(Mitralzellen, MCs), ihrem sensorischen Eingang, und Interneuronen (INs) zu messen.  

Die gleichzeitige Blockierung von AMPA/Kainate- und NMDA-Rezeptoren 

verhinderte die geruchsinduzierte Erregung von MCs, was darauf hinweist, dass der 

sensorische Eingang des OB durch ionotrope Glutamatrezeptoren vermittelt wird. Die 

Blockierung von AMPA/Kainate Rezeptoren allein jedoch erhöhte überraschender Weise im 

Mittel die Antwort von MCs und reduzierte im Mittel die Antwort von INs. Die Blockierung 

von NMDA Rezeptoren allein lösten im Mittel geringe oder keine Veränderung der 

Antworten von MCs and INs aus. Außerdem hatten die Antagonisten für beide 

Glutamatrezeptoren unterschiedliche Einflüsse auf Größe und Zeitverlauf individueller MC- 

und IN- Antworten und veränderten daher das räumlich-zeitliche Aktivitätsmuster innerhalb 

der Nervenzellpopulation. Die Blockierung von GABA(A)-Rezeptoren  erhöhte spontane und 

geruchsinduzierte Feuerraten in MCs und induzierten oft rhythmische, stoßweise Aktivität. 

Die Blockierung von GABA(A)- und AMPA/Kainate-Rezeptoren hob überdies 

geruchsinduzierte Oszillationen im Feldpotenzial auf. Die Blockierung von GABA(B)-

Rezeptoren verringerte den Kalziumeinstrom in die Endigungen afferenter sensorischer 

Axone und modulierte den Zeitverlauf von MC-Antworten.  

Die Ergebnisse zeigen, dass (1) die Aktivität der Interneurone während der 

Geruchsantwort hauptsächlich von AMPA/Kainate-Rezeptoren  abhängt, (2) die Interaktionen 

zwischen Mitralzellen und Interneuronen die Gesamtaktivität des Ausgangssingnales des 

olfaktorischen Bulbus regulieren, (3) AMPA/Kainate-Rezeptoren und GABA(A)-Rezeptoren 

der Synchronisation geruchsabhängiger Gruppen von Nervenzellen zugrunde liegen und (4) 

geruchsspezifische Muster im Ausgangssignal des olfaktorischen Bulbus durch Schaltkreise 



geformt werden, die iGlu Rezeptoren und GABA Rezeptoren enthalten. Diese Ergebnisse 

ermöglichen Einblick in die Mechanismen die der Verarbeitung geruchskodierender 

Aktivitätsmuster im olfaktorischen Bulbus unterliegen.  
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Abbreviations 

 
 
AMPA  alpha-amino-3-hydroxy-5-methyl-isoxazole proprionic acid 
AP5  D-(-)-2-Amino-5-phosphonopentanoic acid, specific antagonist for NMDA 

receptors  
 
Ca2+  calcium 
CGP54626 CGP54626 hydrochloride,  

chemical name: [S-(R*,R*)]-[3-[[1-(3,4-Dichlorophenyl)ethyl]amino]-2-
hydroxypropyl](cyclohexylmethyl) phosphinic acid, specific antagonist for 
GABA(B) receptors 

Cl-  chloride 
 
GABA  gamma-aminobutyric acid 
 
HCO3

-  hydrogen carbonate 
 
iGlu receptor ionotropic glutamate receptor 
IN   interneuron 
 
K+  potassium 
 
LFP  local field potential 
 
MC  mitral cell 
Mg2+  magnesium 
 
Na+  sodium 
NBQX  2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide, 

antagonist for AMPA receptors  
NMDA N-methyl-D-aspartate 
 
OB  olfactory bulb 
OSN  olfactory sensory neuron 
 
PSTH  peri-stimulus time histogram  
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Introduction 

Olfaction is an evolutionarily old and essential sense for vertebrates. Important 

behaviors such as the search for food and mating partners or the detection of predators and 

harmful substances are guided by olfaction. Odor processing in the olfactory system needs to 

provide reliable information on identity and category of usually complex odors, as well as on 

changes in the olfactory environment and concentration gradients. The first olfactory 

processing center in vertebrates is the OB. Tissue and cell structure, synaptic connectivity, 

transmitter substances,  and properties of biophysical membranes and response characteristic 

of neuron types have been investigated in reduced systems such as brain slices. Other 

experiments were done in the intact brain to study odor-evoked activity and functional 

properties of the system. However, it is still unclear how properties of the system arise from 

the interactions of individual neurons in the circuit. This bridge between investigations at the 

cellular and systems level is necessary to understand the mechanistic basis of neuronal circuit 

function.  

Here I studied functions of the OB network during the processing of odor-evoked 

activity patterns in the intact brain. The major excitatory and inhibitory pathways in the 

system were chosen for pharmacological manipulations. Effects were analysed with respect to 

synaptic circuitries and some hypothesis on odor processing mechanisms provided from 

structural and functional studies.  

The major excitatory transmitter in the OB is glutamate. The most important receptors 

are the ionotropic glutamate receptors of the types NMDA and AMPA/Kainate. The main 

inhibitory transmitter is GABA with the receptors of the types GABA(A) and GABA(B). An 

explant of the whole brain from zebrafish (Danio rerio) with attached nose was chosen as 

model system for several reasons. The zebrafish OB is anatomically and functionally similar 

to those of higher vertebrates but much smaller. This has two major advantages. First, 

explanted functional brains can easily be maintained for hours in standardized solutions. 

Measurments are bare of artefacts from heartbeat and breathing but can be performed with 

natural odor stimulation of the nose and provide approaches for intracellular recordings. 

Second, optical methods benefit from good light penetration and allow for the simultaneous 

observation of large numbers of individual neurons by two-photon Ca2+ imaging. Amino acids 

are known to be natural odor stimuli for fish and were used in addition to extracts from 

commercial fish food. The zebrafish was established as model system for the study of spatio-
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temporal activity patterns in the intact OB. A substantial amount of data exists from previous 

studies of odor processing in this system. 

 

The structure of the olfactory bulb 

Odors are transduced into neuronal activity by OSNs located in the olfactory 

epithelium inside the nose. Each of those cells is thought to express only one olfactory 

receptor out of a large repertoire of genes (Vassar et al., 1993; Ressler et al., 1994); but also 

see (Goldman et al., 2005). There are 143 different olfactory receptor genes in the zebrafish 

(Alioto and Ngai, 2005) and even more than 1400 genes in mice (Zhang et al., 2004). OSN 

project unbranched axons to the surface of the (OB).  

Functional and morphological properties of the OB are highly conserved across all 

vertebrates (Allison, 1953; Andres, 1970) and even share many features with the 

corresponding structure in insects, the antennal lobe. Several layers can be distinguished in 

the OB (Satou, 1990; Shepherd et al., 2004). Common to mammals and fish are olfactory 

nerve layer, glomerular layer, MC layer and internal cell layer. In mammals in addition the 

inner and the outer plexiform layer are distuingished, which enclose the MC layer. The outer 

layer of the OB is the olfactory nerve layer which contains axons from OSNs.  These axons 

ramify in distinct neuropil modules called glomeruli. Axons from OSNs expressing the same 

receptor molecule converge and terminate in the same glomerulus konvergieren (Ressler et 

al., 1994; Vassar et al., 1994; Mombaerts et al., 1996). OSNs release the excitatory 

neurotransmitter glutamate onto the output neurons of the OB, the MCs, and a subset of INs, 

the juxtaglomerular cells. Juxtaglomerular cells are a heterogeneous group of cells mediating 

predominantly inhibitory effects on MCs. Periglomerular cells are the major subgroup of 

these neurons and possess mainly short processes. Dendrites extensively ramify inside 

glomeruli and provide GABAergic synaptic input to MCs, the same or other periglomerular 

cells and inhibit transmitter release from the axon terminals of OSNs by paracrine activation 

of GABA(B) receptors (Smith and Jahr, 2002; Murphy et al., 2005). In mammals a subgroup 

of juxtaglomerular cells with longer axons, called short axon cells, appears to excite remote 

periglomerular cells and exerts long range inhibition of MCs (Aungst et al., 2003). MCs are 

glutamatergic and project axons to multiple higher brain centres. They interact with INs in the 

glomerular layer and INs in the inner plexiform layer which are called granule cells. INs are 
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activated through dendrodendritic synapses and axon collaterals and feed back inhibition 

through reciprocal or unidirectional synapses via GABA release (Fig. 1).  
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Figure 1. Simplified architecture of synaptic pathways in the OB. Within glomeruli, 
glutamatergic OSNs provide excitatory synaptic input to MCs and a subpopulation of 
periglomerular cells via AMPA receptors and NMDA receptors. Periglomerular cells also receive 
glutamatergic input from MC dendrites and provide GABAergic output to MCs of the same and 
neighbouring glomeruli. In addition, GABA (green arrow) and dopamine (not shown) released 
from periglomerular cells reduces glutamate release from OSN axon terminals by acting on 
GABA(B) and D2 receptors, respectively, in the same glomerulus (Nickell et al., 1994; Hsia et al., 
1999; Wachowiak and Cohen, 1999a; Aroniadou-Anderjaska et al., 2000; Murphy et al., 2005; 
Wachowiak et al., 2005a). In subglomerular layers, glutamate release from MC dendrites and 
axon collaterals stimulates axonless granule cells via AMPA receptors and NMDA receptors. 
Granule cells release GABA back onto GABAA receptors on the same and other MCs. Glutamate 
release from a MC can therefore cause recurrent inhibition of the same MC and lateral inhibition 
of other MCs via periglomerular and granule cells. These interactions, here collectively referred 
to as the MC IN MC pathway, can extend over distances corresponding to multiple glomeruli. 
An additional pathway mediating lateral inhibition that is not detailed in this scheme is the short 
axon cell periglomerular MC pathway identified in rodents (Aungst et al., 2003; Wachowiak 
and Shipley, 2006). Centrifugal inputs from higher brain areas are also not shown in detail. Many 
of these inputs terminate on INs and are glutamatergic. Not included in the scheme are 
metabotropic glutamate receptors, interactions between INs in the granule cell layer (Pressler and 
Strowbridge, 2006), glutamate spillover (Isaacson, 1999a), and a small glutamatergic 
subpopulation of granule cells (Didier et al., 2001). Abbreviations: OSN: olfactory sensory 
neuron, PGC: periglomerular cell, MC: mitral cell, GC: granule cell, SAC: short axon cell. 
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The main receptors for glutamate are the ionotropic NMDA and AMPA receptors 

which are co-localized at the OSN MC synapse and at MC IN synapses (Sassoe-Pognetto 

and Ottersen, 2000; Shepherd et al., 2004). Released GABA inhibits MC activity and OSN 

axon terminals via GABA(A) and GABA(B) receptors. Within glomeruli, MCs can excite 

each other via gap junctions and fast volume transmission of glutamate (Aroniadou-

Anderjaska et al., 1999a; Schoppa and Westbrook, 2002; Urban and Sakmann, 2002; Christie 

et al., 2005). Across glomeruli, synaptic interactions are mediated by INs, predominantly 

periglomerular and granule cells (Shepherd et al., 2004; Wachowiak and Shipley, 2006, Fig. 

1).  The most prominent inter-glomerular synaptic pathway is the MC IN MC pathway, 

where periglomerular or granule cells are excited by glutamatergic MC IN synapses and 

feed back GABAergic inhibition onto the same and other MCs at IN MC synapses.  

The olfactory network receives centrifugal input from multiple higher brain areas. 

Retrograde labeling studies in rodents revealed input from the anterior olfactory nucleus, 

locus coeruleus, raphe nuclei, ventral hippocampal rudiment, dorsal peduncular cortex, 

piriform cortex, lateral olfactory tract, medial septal area, diagonal band of Broca and the 

hypothalamus (Broadwell and Jacobowitz, 1976; Macrides et al., 1981). Cortical fibers were 

found to excite granule cells by activation of NMDA and AMPA receptors (Pinching and 

Powell, 1972; Luskin and Price, 1983; Laaris et al., 2007) Input from basal forebrain 

structures, the diagonal band of Broca and the substantia innominata, are partially cholinergic 

and partially GABAergic (Mesulam et al., 1983; Ichikawa and Hirata, 1986; Zaborszky et al., 

1986) and project throughout all layers of the OB  (Carson and Burd, 1980; Macrides et al., 

1981; Ichikawa and Hirata, 1986; Gomez et al., 2006) Acetylcholine modulates activity of 

INs and MCs through activation of nicotinic and muscarinic receptors (Castillo et al., 1999; 

Pressler et al., 2007) and is involved in olfactory learning (Wilson et al., 2004). The role of 

GABAergic fibers is, to my knowledge, not investigated. Fibers from raphe nuclei are 

serotoninergic (McLean and Shipley, 1987) and innervate all layers of the OB but with 

particular high density inside glomeruli. Serotonin depolarizes MCs and INs (Tani et al., 

1992; Hardy et al., 2005) and appears to be involved in olfactory learning (McLean et al., 

1996) and odor discrimination (Moriizumi et al., 1994). The locus coeruleus is the origin of 

noradrenergic projections (Fallon and Moore, 1978; Shipley et al., 1985). Noradrenalin can 

reduce spontaneous activity in GCs and MCs (Czesnik et al., 2001) but also directly excite 

MCs (Hayar et al., 2001).  

In fish the major centrifugal input arises from the telencephalon and terminates 

presumably on granule cells (Satou, 1990). Centrifugal fibers apparently play a role for odor 
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learning (Kiselycznyk et al., 2006), which was also suggested for the zebrafish (Satou et al., 

2006) and influence network oscillations (Martin et al., 2006).  
 

Functional properties of the vertebrate olfactory bulb  

Each OSN detects a spectrum of different molecules while each molecule can activate 

several different types of OSNs ((Sicard and Holley, 1984; Shepherd, 1994; Buck, 1996; 

Dulac, 1997; Friedrich and Korsching, 1997; Duchamp-Viret et al., 1999; Malnic et al., 

1999). The response profiles of individual glomerli are therefore broad and overlapping and 

the information provided by the response of a single glomerulus is limited. Glomeruli are 

thought to be independent units because OSN axons in one glomerulus respond very similarly 

to odor stimulation (Wachowiak et al., 2004) and associated MCs show correlated activity 

(Buonviso and Chaput, 1990; Carlson et al., 2000; Schoppa and Westbrook, 2002; Urban and 

Sakmann, 2002). Therefore, odors are encoded in a combinatorial fashion by patterns of 

activity across the array of glomeruli ((Leveteau and MacLeod, 1966; Stewart et al., 1979; 

Shepherd, 1994; Dulac, 1997; Friedrich and Korsching, 1997; Mori et al., 1999; Wachowiak 

and Cohen, 2001), Glomeruli with similar response profiles tend to build clusters (Friedrich 

and Korsching, 1998; Wachowiak and Cohen, 2001; Mori et al., 2006). Different odor classes 

as amino acids, bile acids or nucleotides evoke responses in specific regions of the zebrafish 

OB which only partially overlap (Friedrich and Korsching, 1998). Chemically closely related 

substances as amino acids with long side chain, basic side chain or aromatic side chain 

activate glomeruli in segregated subregions (Friedrich and Korsching, 1997). In mice 

segregated groups of glomeruli show different preferences for functional groups of substances 

with similar carbon chains (Wachowiak and Cohen, 2001) and aliphatic aldehydes of 

increasing carbon chain length evoked systematically shifting responses along a rostral-caudal 

strip of the dorsal bulb (Belluscio and Katz, 2001). The hierarchically mapping of chemical 

properties across the array of glomeruli is referred to as chemotopy. 

In contrast to OSNs, odor responses of MCs do not follow a stereotyped phasic-tonic 

time course (Meredith, 1986; Hamilton and Kauer, 1989; Wellis et al., 1989; Buonviso et al., 

1992; Friedrich and Laurent, 2001; Luo and Katz, 2001; Tabor et al., 2004). The firing 

frequency is dynamically changed in an odor- and cell-specific manner. Particularly during 

the first few hundreds of milliseconds after stimulus onset firing rates can change rapidly. 

Phases of excitation can be followed by inhibition or vice versa. In the zebrafish, odor-evoked 

activity patterns are reorganized over time, leading to reduced overlap between 
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representations of related odors (Friedrich and Laurent, 2001; Friedrich et al., 2004; Friedrich 

and Laurent, 2004). This pattern decorrelation might be useful for fine discriminations of 

similar odors and for other computations in higher brain areas. 

Odor-evoked responses in the OB are further temporally structured by fast oscillations, 

which were measured by field potential recordings in many species (Adrian, 1942; Bressler 

and Freeman, 1980; Gray and Skinner, 1988; Gelperin and Tank, 1990; Laurent and 

Davidowitz, 1994; Lam et al., 2000; Friedrich et al., 2004) These oscillations likely reflect 

rhythmical interactions between MCs and INs. It was shown that subpopulations of MCs can 

become synchronized in odor-dependent ensembles (Kashiwadani et al., 1999; Laurent, 2002; 

Friedrich et al., 2004). In the zebrafish the separate analysis of synchronized and non-

synchronized action potentials revealed that activity patterns made up of synchronized action 

potentials remain similar over time for related odors, whereas activity patterns made up of 

non-synchronized action potentials undergo decorrelation. The high correlation of 

synchronized action potential patterns in response to related odors might preserve information 

on odor similarity. The parrallel transmission of odor category by synchronous spikes and 

odor identity by asynchronous activity might be an example for multiplexing in brain activity 

(Friedrich et al., 2004). Temporal modulations of MC firing during an odor response and 

rhythmical synchronizations of OB neurons change odor representations and temporally 

structure odor evoked activity. Feedback from inhibitory INs inside the network is likely to 

play an important role for these dynamics.  

 

Ionotropic glutamate receptors 

Glutamate is recognized by special receptor proteins in the membrane of neurons that 

either are ionotropic glutamate (iGlu) receptors, which are ligand-gated ion channels or 

metabotropic glutamate receptors, which are G-protein coupled receptors. The family of iGlu 

receptors has been separated according to specific agonists into NMDA, AMPA and Kainate 

receptors. Receptor properties were extensively discussed elsewhere (Dingledine et al., 1999). 

Briefly, functional iGlu receptors are assemblies of four subunits (Rosenmund et al., 1998; 

Tichelaar et al., 2004). All subunits have a common basic structure. The long N-terminal is 

located in the extracellular space. Adjacent to the transmembrane domain (TM-I) it contains a 

sequence (S1) that is one of two domains responsible for transmitter binding. The second 

sequence (S2) is part of an extracellular loop between the third and fourth transmembrane 
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domain (TM-III and TM-IV). The second transmembrane domain (TM-II) does not cross the 

membrane, but returns to the intracellular site. In the protein complex TM-II domains form 

the ion-channel. The intracellular C-terminal, following TM-IV, interacts with the 

cytosceleton and signal proteins and is target for modulations at several phosphorylation sites. 

A substantial number of subunit isoforms arise from splice variation of this region.  

In physiological studies AMPA and Kainate receptors have traditionally been lumped 

together as “non-NMDA-receptors”. The historically late development of specific antagonists 

against Kainate receptors hampered the scientific progress in this field. The traditional 

separation is nowadays often kept as the functionally well described NMDA receptor is, in 

contrast to the other two iGlu receptors, in addition voltage dependent. 

NMDA receptors are inactive at resting membrane potentials. In physiological 

concentration of Mg2+ a depolarization is required before the ion pore can be activated by 

transmitter binding. NMDA receptor subunits are NR1, four types of NR2 (NR2A-D) and 

NR3. Most functional neuronal receptors are composed of two NR1 subunits and two NR2 

subunits. In addition to glutamate also glycine is needed to activate this receptor. Glycine is 

bound by the NR1 subunits and glutamate is bound at the junction of NR1 and NR2. Upon 

opening the channel allows Na+-, K+- and Ca2+-ions to cross the membrane leading to 

depolarization. The high permeability for Ca2+-ions is thought to be crucial for the induction 

of synaptic plasticity (Miyamoto, 2006). In the experiments reported here, NMDA receptors 

were blocked by AP5, which is a widely used specific antagonist.  

AMPA receptors mediate fast glutamatergic cation-currents leading to transient 

depolarization of postsynaptic membrane (Jonas, 2000). Subunits are GluR1-4. Most neuronal 

AMPA receptors contain GluR2 subunits (Isaac et al., 2007) and are Ca2+-impermeable. The 

subunit composition is often specific to the type of neuron and plays a role for synaptic 

plasticity (Derkach et al., 2007; Liu and Zukin, 2007; Shepherd and Huganir, 2007). Here I 

used NBQX to pharmacologically interfere with these receptors. NBQX blocks AMPA 

receptors with high affinity but also blocks Kainate receptors (Sheardown et al., 1990). 

 

GABA receptors 

GABAergic synaptic transmission is found throughout the whole brain (Sivilotti and 

Nistri, 1991). There are three types of GABA receptors. GABA(B) receptors are metabotropic 

receptors. Pharmacological properties were used to divide ionotropic GABA receptors into 
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GABA(A) and GABA(C) receptors but this separation is still controversial (Barnard et al., 

1998; Bormann, 2000) 

The predominant type of GABA receptors is the GABA(A) receptor. The relevance of 

this receptors for clinical treatment of anxiety, epilepsy and sleep disorders led to intense 

investigations and detailed clarification of molecular structure and physiological function (for 

review see: Nutt, 2006; Michels and Moss, 2007). Briefly, upon GABA binding an ion-

channel is opened, which is permeable for Cl--ions and to some extend to HCO3
-. The effect is 

a stabilization of the resting potential and inhibition of neuronal activity by hyperpolarization 

or shunting. Synaptic currents are usually phasic while extrasynaptic receptors can mediate 

tonic inhibition. GABA(A) receptors belong to the superfamily of nicotinic ligand-gated ion 

channels. Other members of this family are nicotinic acetylcholine receptors, glycin receptors 

and the 5HT3 serotonine receptors. Functional GABA(A) receptors are composed of five 

subunits arranged as a ring around the central pore. Receptors are functionally heterogeneous 

caused by a large number of subunits. Subunits are grouped into α with isoforms 1-6, β with 

isoforms 1-4, γ with isoforms 1-3, δ, ε and σ subunits. The number of isoforms can vary from 

species to species. The most common GABA(A) receptor consists of two α1, two β2 and one 

γ2 subunits but the subunit composition is often specific to the type of neuron and even  to the 

subcompartmental localization of the receptor. The binding site for GABA is located between 

α and β subunits. Each subunit consists of four transmembrane domains (TM1-TM4). The 

large N-terminus and the short C-terminus are directed to the extracellular space. A large loop 

between TM3 and TM4 carries domains for intracellular interactions. TM2 provides the lining 

of the ion pore. 

Clinically most relevant GABA(A) modulators are Benzodiazepines. They bind to a 

modulatory site distinct from the GABA binding site. An allosteric change leads to increased 

efficiency of the receptor without direct activation. In the work described here GABA(A) 

receptors were blocked by gabazine, which has no clinical relevance. Gabazine is specific for 

GABA(A) receptors and competes with GABA for the GABA binding site (Ueno et al., 

1997).  

GABA(B) receptors act through activation of a G-protein. The receptor has diverse 

synaptic functions (for review see: Calver et al., 2002; Kornau, 2006). Presynaptic receptors 

suppress transmitter release by inhibition of voltage gated Ca2+-channels or second messenger 

effects on vesicle priming. Postsynaptic receptors usually hyperpolarize neurons by activation 

of K+-channels. They are also involved in synaptic plasticity. In addition GABA(B) receptors 

are often extrasynaptically expressed. Activation of these receptors is thought to depend on 
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transmitter spill-over from distant release sites (Isaacson, 2000). Increases in extrasynaptic 

transmitter concentrations are unlikely to arise from weak activity. These receptors therefore 

might respond to synchronous activity or hyperexcitation.  

Only two types of GABA(B) receptors subunits were found. They belong to family C 

of the superfamily of 7-transmembrane G protein-coupled receptors as also metabotropic 

glutamate receptors do. The GABA(B1) subunit exists in two isoforms, GABA(B1a) and 

GABA(B1b), which both combine with GABA(B2) subunits to heteromeric dimers forming 

the functional receptor. The intracellular C-terminus forms a coiled-coil structure involved in 

heterodimerization. The N-terminal contains a venus flytrap module responsible for 

transmitter binding. GABA(B1) is sufficient for transmitter binding but dimerisation increases 

the affinity and is needed for G protein coupling. In this work these receptors were blocked by 

CGP54626, which is a specific antagonist with high affinity. In some Ca2+-imaging 

experiments the specific agonist Baclofen was used to activate GABA(B) receptors. 

 

Role of ionotropic glutamate and GABA receptors for odor 

processing 

Role of reciprocal synapses in network activity 

Important synaptic contacts in the OB are reciprocal dendrodendritic synapses 

between MCs and INs, where both cell types are pre- and postsynaptic at the same time. 

Glutamate mediated excitation of INs can evoke GABA release locally in the same synapse 

that released the glutamate. If the excitatory signal spreads throughout the dendritic tree, 

GABA release is also evoked from other, remote synapses. These synaptic connections can 

produce recurrent feedback inhibition onto activated MCs (Jahr and Nicoll, 1982; Isaacson 

and Strowbridge, 1998) and laterally inhibit neighboring MCs (Yokoi et al., 1995; Isaacson 

and Strowbridge, 1998). The impact of recurrent and lateral inhibition during odor processing 

in the intact olfactory system, however, is not clear.  

Reciprocal synapses are likely to be involved in the generation of rhythmic neuronal 

activity. The release of glutamate from activated MCs elicits release of GABA from INs. This 

suppresses MC activity and leads to a decay of the excitatory signal in INs. The reduced 

release of GABA then allows MCs to recover from inhibition and become active again. The 

fast GABA(A) receptors which mediate the inhibition of MCs appear to be crucial for the 

generation of rhythmical neuronal activity in the OB (Lagier et al., 2004; Schoppa, 2006a). As 
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both, MCs and INs, are synaptically connected to multiple partners the rhythmic activity can 

synchronize action potential firing in many cells.  

The lateral coupling of MCs through inhibitory INs might also be involved in other 

network properties as sharpening of odor response profiles (Yokoi et al., 1995; Uchida et al., 

2000) or slow temporal modulations of firing patterns leading to decorrelation of initially 

similar representations of different odors (Friedrich and Laurent, 2004). Furthermore, 

inhibitory feedback might be crucial for the regulation of network excitability and total output 

strength. The amplitude and complexity of sensory input varies considerably dependent on the 

odor stimulus (Friedrich and Laurent, 2004). To keep firing frequencies of the neurons in an 

appropriate range some sort of gain control mechanism must exist. GABA(A) receptors 

appear likely candidates as their blockade leads to hyperexcitability and epileptiform activity 

in the brain (McCormick and Contreras, 2001).  

To understand the relative contribution of reciprocal synaptic interactions to the 

different mechanisms it might help to clarify how the GABA release from INs is evoked 

during odor processing. If INs preferentially release GABA locally restricted at the sites of 

direct glutamatergic excitation rhythmic synchronization of activated MCs might be the 

dominant function, while global dendritic GABA release suggested an important role for 

functions dependent on lateral inhibition, as sharpening of odor response profiles or slow 

temporal patterning.  

 

GABA release in the reciprocal synapse 

Brief electrical stimulations of MCs are typically followed by longlasting inhibitory 

signals in MCs. It was obsered that those long-lasting events are composed from discrete 

synaptic events with rapid decay time courses (Wellis and Kauer, 1993; Schoppa et al., 1998) 

The underlying synaptic pathway is assumed to be the MC IN MC pathway. The 

glutamate released form MCs activates NMDA and AMPA receptors which are colocated in 

dendritic synapses of INs (Sassoe-Pognetto and Ottersen, 2000; Shepherd et al., 2004). This 

evokes release of GABA from INs leading to activation of GABA(A) receptors in MC 

membranes. The prolonged period of inhibition in MCs following brief pulse stimulations 

therefore appears to come from an asynchronous GABA release from INs. 

In the hippocampus it was hypothezised that asynchrounous transmitter release 

depends on prolonged presynaptic Ca2+-signals (Hefft and Jonas, 2005). Such prolonged Ca2+-

events might arise in the absence of intracellular Ca2+-buffers during strong stimulation. Also 

N-type voltage sensitive Ca2+-channels or cell type-specific Ca2+-sensors with high and low 
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affinity might support prolonged presynaptic Ca2+-signals. In MCs Ca2+-influx through 

NMDA receptors channels might be involved (Chen et al., 2000b; Halabisky et al., 2000). 

 Experiments in brain slices demonstrated that the activation of GABA release from 

INs in the OB can depend on NMDA receptor input (Isaacson and Strowbridge, 1998; 

Schoppa et al., 1998). Glutamate release from MCs can cause long-lasting inhibitory 

GABA(A) receptor currents in the same MC even in the absence of action potential firing 

(Jahr and Nicoll, 1982; Isaacson and Strowbridge, 1998; Schoppa et al., 1998). In part, the 

long-lasting GABA release from INs appears to be triggered directly by Ca2+-influx through 

the NMDA receptor (Chen et al., 2000a; Halabisky et al., 2000; Isaacson, 2001). Strong 

inputs to INs, in contrast, trigger Na+- or Ca2+-action potentials that invade large portions of 

the dendritic tree (Egger et al., 2005; Murphy et al., 2005; Zelles et al., 2006). Recent slice 

experiments indicated that GABA release from INs strongly depends on spike generation 

when background activity is introduced to approximate natural network dynamics (Schoppa, 

2006b). This suggests, that feedback inhibition during odor processing in an intact network 

may not be dominated by a mechanism depending on NMDA receptors.  

The experiments presented here can help to understand the relative contribution of 

local and lateral inhibition during an odor response in the intact system. 

 

GABA(B) receptors mediated presynaptic inhibition of sensory input 

GABA(B) receptors are mainly expressed in the glomerular layer (Bowery et al., 

1987; Chu et al., 1990; Panzanelli et al., 2004) at the terminals of OSNs (Kratskin et al., 2006) 

where they inhibit transmitter release from OSN axon terminals and reduce stimulus evoked 

activity in the OB (Nickell et al., 1994; Wachowiak and Cohen, 1999b; Aroniadou-

Anderjaska et al., 2000; McGann et al., 2005; Murphy et al., 2005; Wachowiak et al., 2005b; 

Vucinic et al., 2006). The density of GABA(B) receptors in deeper layers is very low 

(Bowery et al., 1987; Chu et al., 1990; Panzanelli et al., 2004). Nevertheless, GCs might be 

inhibited through GABA(B) receptors directly (Palouzier-Paulignan et al., 2002; Isaacson and 

Vitten, 2003). The presynaptic inhibition of OSN terminals via GABA(B) receptors might 

modulate the spatial and temporal pattern of activation across the array of glomeruli (Vucinic 

et al., 2006) and support slow temporal modulations of odor evoked responses in output 

neurons (Palouzier-Paulignan et al., 2002; Wilson and Laurent, 2005). It was also suggested 

that GABA(B) receptors plays a role for gain control, as they presynaptically control MC 
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excitation (Wachowiak et al., 2005a). However, the function of GABA(B) receptors during 

odor processing and their impact on OB output in an intact system is still not clear. 

 

Objective of this thesis 

The goal of this work was to examine the synaptic mechanisms underlying the spatio-

temporal patterning of odor-evoked activity patterns in the intact OB of zebrafish. Odor 

responses of MCs and INs were measured using extra- and intracellular electrophysiological 

recordings and two-photon Ca2+-imaging. To analyze the functional role of different synaptic 

interactions in an odor response, NMDA, AMPA, GABA(A) and GABA(B) receptors were 

manipulated pharmacologically. The results provide insights into the regulation of network 

excitability, receptor functions involved in neuronal synchronization and temporal modulation 

of MC odor responses.  
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Materials and Methods 

Animals, preparation and odor stimulation 

Zebrafish (Danio rerio) were kept at 26.5 °C at a day/night rhythm of 13/11 hours. 

Experiments were performed in an explant of the intact brain and nose (Friedrich and Laurent, 

2001, 2004; Tabor et al., 2004). Adult zebrafish (>3 month old) were cold-anaesthetized, 

decapitated, and olfactory forebrain structures were exposed ventrally after removal of the 

eyes, jaws and palate. To optimize access of drugs, the dura mater over the ventro-lateral 

telencephalon close to the OB was removed with a fine forceps. Care was taken to avoid 

damage to the OB. The preparation was then placed in a custom made flow-chamber, 

continuously superfused with teleost artificial cerebro-spinal fluid (ACSF) (Mathieson and 

Maler, 1988), and warmed up to room temperature (~22 °C). All animal procedures were 

performed in accordance with the animal care guidelines issued by the Federal Republic of 

Germany. 

Odors were applied to the nasal epithelium through a constant perfusion stream using 

a computer-controlled, pneumatically actuated HPLC injection valve (Rheodyne, Rohnert 

Park, CA, USA) as described in the literature (Friedrich and Laurent, 2001; Tabor et al., 

2004). The volume of the applied solution and the flow rate were adjusted to obtain a stimulus 

duration of ~2.4 s. Stock solutions of amino acids (Fluka, Neu-Ulm, Germany) were made in 

distilled water at a concentration of 1 mM, stored at -18°C, and diluted in fresh ACSF to a 

final concentration of 10 µM immediately before the experiment. Extracts of commercially 

available dry fish food were prepared as described in the literature (Tabor et al., 2004) and 

kept at -6 °C for up to two weeks. Briefly, 200 mg of dry food was suspended in 50 ml of 

ACSF overnight, filtered through a filter paper and diluted 1:100 in ACSF immediately before 

the experiment. Different sorts of fish food were numbered arbitrarily. Food odor I was made 

from dry flake food, which was also used for daily feeding. Food odor III was made from dry 

bloodworms.  

 

Pharmacological agents 

Stock solutions of AP5 (10 mM in ACSF) and NBQX (1 mM in DMSO; both from 

Tocris Bioscience, Bristol, UK) were kept frozen and diluted 1:100-200 in ACSF immediately 
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before the experiment, yielding final concentrations of 5 – 10 µM NBQX and 50 – 100 µM 

AP5. Drug solutions were applied through the bath. In pilot experiments, effects of different 

drug concentrations between 50 – 500 µM AP5 and 5 – 50 µM NBQX were compared but no 

qualitative differences observed, indicating that drugs penetrated well into the tissue and 

produced maximal effects at the concentration used. 

Stock solutions of [S-(R*,R*)]-[3-[[1-(3,4-Dichlorophenyl)ethyl]amino]-2-

hydroxypropyl] (cyclohexylmethyl) phosphinic acid (CGP54626, 1 mM in ACSF, 2% 

DMSO), (R)-Baclofen (0.5 mM in ACSF) and SR 95531 hydrobromide (Gabazine, 25 mM in 

distilled and sterilized water; all from Tocris Bioscience, Bristol, UK) were kept frozen and 

further diluted in ACSF immediately before the experiment. Solutions were applied through 

the bath. In pilot experiments, different drug concentrations were tried. In all experiments 

concentrations were used, that showed clear effects: CGP54626 1-10µM, (R)-Baclofen 10-

50µM and Gabazine 50-100µM. 

 

Electrophysiological recordings 

Electrophysiological recordings from MCs were performed in the ventro-lateral OB 

where amino acid-responsive neurons are located (Friedrich and Korsching, 1997; Friedrich 

and Laurent, 2001). Borosilicate patch pipettes (8 - 13 MΩ) were pulled on a P-2000 

electrode puller (Sutter Instruments) and filled with intracellular solution containing (in mM): 

130 K-gluconate, 10 Na-gluconate, 10 Na-phosphocreatine, 4 NaCl, 4 Mg-ATP, 0.3 Na-GTP, 

10 HEPES (pH 7.25; ~300 mosm). Cells in the OB were visualized by differential 

interference contrast video microscopy or similar methods through a coverslip in the bottom 

of the chamber. Recorded neurons were selected for their large soma diameter (~10 µm) and a 

position close in the glomerular/MC layer. Anatomical studies demonstrated that these are 

characteristics of MCs (Edwards and Michel, 2002; Li et al., 2005; Fuller et al., 2006; Yaksi 

and Friedrich, 2006). Membrane potential values were corrected for a junction potential of -13 

mV. 

Recordings were performed using an Axoclamp 2B amplifier (Axon Instruments, 

Navato, USA) and digitized at 10 kHz using National Instruments hardware (National 

Instruments GmbH, Munich, Germany) and custom software written in IgorPro 

(Wavemetrics, Inc., Portland,USA). To prevent early clogging of the glass capillary tip, a 

pressure of ~100 mbar was applied to the pipette interior during penetration of the tissue and 

lowered to ~40 mbar before a target cell was approached. After formation of a Giga-seal and 
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break-in, intracellular whole-cell recordings were performed in current clamp mode (n = 35 

MCs). In most cells, a small negative holding current was applied to stabilize recordings. 

When Giga-seal formation or break-in could not be achieved, pipette pressure was 

released and extracellular recordings were performed in the loose-patch or cell-attached mode 

(n = 49 MCs). Two whole-cell recordings were lost during the experiment and continued as 

loose-patch recordings. Spontaneous firing rates of cells recorded in whole-cell mode 

(4.6 ± 3.8 Hz; mean ± SD) were slightly lower than those recorded extracellularly (7.6 ± 6.1 

Hz), probably due to the holding current. When a recording was established, typically two 

food extracts and six amino acids were applied to select one or two stimuli that evoked a 

strong response in the recorded cell. These two stimuli were then applied two - eight times 

(normally five times) at 2 min intervals in a pseudo-randomly interleaved sequence, followed 

by ~15 min without odor stimulation to wash in drugs. The original stimulus sequence was 

then repeated. Completion of this stimulus protocol required continuous recordings for 

approximately 60 min. Recordings that were not stable up to this point, as judged by the 

measured resting potential and action potential amplitude, were excluded from the analysis. 

Drugs were then washed out for at least 30 min. When recordings were still stable, the 

stimulus sequence was repeated again. In total, responses of 74 neurons to 238 odor stimuli 

were measured before and during drug application, and 36 of these responses were tested 

again after wash-out. 

To measure odor-evoked oscillatory activity in the LFP, glass micropipettes were 

filled with ACSF (8 – 13 MΩ) and positioned in the glomerular/MC layer. Recordings were 

made in bridge mode using an Axoclamp 2B amplifier (Axon Instruments) and band-pass 

filtered offline between 8 – 43 Hz. The position of the micropipette was optimized by small 

movements of the capillary tip while measuring oscillation amplitudes during stimulation with 

food extract. 

 

Calcium Imaging  

Two-photon Ca2+-imaging 

Two-photon Ca2+-imaging experiments were performed in transgenic fish expressing 

yellow cameleon (YC) under the control of a fragment of the HuC promoter (HuC:YC) 

(Higashijima et al., 2003). In the adult OB, HuC:YC is expressed selectively in MCs (Li et al., 

2005). HuC:YC-negative cells were collectively classified as INs and include periglomerular 
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and granule cells. YC fluorescence did not change in response to odor stimulation and was 

exclusively used as an anatomical marker. 

The red-fluorescent Ca2+-indicator, rhod-2-AM ester (Invitrogen, Karlsruhe, 

Germany), was injected into the OB as described previously (Yaksi and Friedrich, 2006). 

Briefly, 50 µg of rhod-2-AM was dissolved in 16 µl Pluronic F-127 (20% solution in DMSO, 

Invitrogen). This solution was then diluted 1:10 in ACSF before the experiment. The dye 

solution was loaded into a patch pipette after gently breaking off the very tip and pressure-

injected into the OB under fluorescence optics. Injections were terminated when a 

predetermined fluorescence intensity level was reached to avoid excessive dye loading. To 

label MCs, multiple brief injections were made into the glomerular/MC layer at different sites. 

To label INs, injections were made into the granule cell layer. For details see Yaksi and 

Friedrich (2006).  

Fluorescence images were acquired using a custom-built two-photon microscope 

(Wachowiak et al., 2004) equipped with a 20x water immersion objective (NA 0.95; 

Olympus, Hamburg, Germany). Two-photon fluorescence was excited at 830 nm by a mode-

locked Ti:Sapphire laser (Mira900; 76 MHz; Coherent, Inc., Santa Clara, USA) pumped by a 

10 W diode laser (Verdi; Coherent, Inc.). Fluorescence emission was detected externally by a 

photomultiplier-based whole-field detector in two wavelength channels (515/30 nm and 

610/75 nm), allowing for the separate and simultaneous detection of HuC:YC and rhod-2 

fluorescence, respectively. Image acquisition was controlled by custom software (CFNT; 

written by Ray Stepnoski at Bell Labs, Murry Hill, NJ, USA and Michael Müller at the Max-

Planck-Institute for Medical Research, Heidelberg, Germany). Laser intensity was adjusted to 

minimize photobleaching. 

To measure Ca2+ signals, series of images from a single focal plane were acquired at 

128 ms/frame and 128 x 256 pixels or 256 ms/frame and 256 x 256 pixels. Previous 

experiments demonstrated that odor-evoked patterns of Ca2+ signals measured with this 

protocol are reproducible and stable over hours (Yaksi et al., 2007). To verify the stability of 

responses, the first stimulus was repeated least once in the sequence before the drug treatment 

was started, and typically multiple times during the initial phase of the experiment. When 

responses were not stable, experiments were discarded. Responses of INs were recorded in 

deep layers of the OB that contain predominantly granule cells. The focal plane was kept 

constant during an experiment. Slow drift was corrected if necessary using natural landmarks 

in the raw fluorescence image and in the HuC:YC fluorescence image.  
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Image series of raw rhod-2 fluorescence were converted into image series representing 

the fractional change in pixel intensity relative to a pre-stimulus baseline fluorescence (ΔF/F). 

Response maps were constructed by averaging ΔF/F images during a period of 5 s around 

response peak and mild spatial low-pass filtering using a Gaussian kernel (width, 5 pixels; σ, 

1.2 pixels).  

 

Conventional Ca2+-imaging with a camera  

Odor evoked activity in terminals of OSNs was visualized by fluorescence imaging 

with Calcium Green-1-dextran (10 kD; Invitrogen) as described in the literature (Friedrich 

and Korsching, 1997). In order to fill neurons, fish were anesthetized with 0.01% MS-222 and 

about 1 µl of a staining solution, containing 6 – 8 % Calcium Green-1-dextran in 3 mM NaCl 

and 0.1 % Triton X-100, was injected into each naris. After 5 min the solution was washed 

away and fish were allowed to recover from anaesthesia. Triton X-100 permeabilized the 

membrane of olfactory cilia to allow the dye uptake into the neurons. Cilia regenerate during 

48 hr (Friedrich and Korsching, 1997). After 3-6 d of recovery fish were used for imaging 

experiments. 

Odor responses from OSN terminals were viewed with a custom-made upright 

epifluorescence microscope equipped with a BX-RFA epifluorescence condenser (Olympus), 

a 40 x water immersion objective (NA 0.95; Olympus) and a high speed, low-noise CCD 

camera (NeuroCCD-SM; 80 x 80 pixels, 14 bits; RedShirtImaging, LLC, Decatur, USA). 

Fluorescence was excited with a 150 W Xe arc lamp equipped with a stabilized power supply 

(Opti-Quip, Highland Mills, USA) through an excitation filter (bandpass 485/20). Light was 

attenuated to 1.5 % of the full intensity by neutral density filters to minimize photobleaching. 

Excitation filter, dichroic mirror and emission filters used were 485 ± 20 nm, 510 nm and 515 

nm (long-pass) or 540 ± 25 nm, respectively. Series of images (80 x 80 pixels, 14 bits) were 

recorded at 40 - 500 Hz and binned temporally to a final frame interval of 2 – 200 ms. Stimuli 

were presented two or three times and image series were averaged.  

Image series were processed as described for two-photon-imaging.  

 

Data analysis 

Data were analyzed off-line using routines written in Igor pro (Wavemetrics, Inc., 

Portland, USA) or MATLAB (Mathworks, Inc., Natick, USA). Trains of APs were described 
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as series of delta functions and convolved with a Gaussian kernel (σ, 200 ms; other values 

gave similar results) to obtain firing rate functions.  Firing rate functions from repeated 

stimulus applications (3 – 8 repetitions per stimulus, usually ≥ 5) were averaged, yielding 

PSTHs. As the flow rate was not absolutely constant throughout the experiments and across 

experiments, the response onset was defined at the beginning of increased or decreased firing 

about 2 seconds after switch of the odor valve. The earliest event across all individual odor 

presentations was considered as odor stimulus onset. Spontaneous firing rates were measured 

during the 2 s - prestimulus period and/or in recordings without stimulation.  Action potentials 

and the time intervals considered per individual cell (usually > 10 s) were summed up and 

used to calculate the average firing rate. Effects of drugs on odor responses were assessed by 

subtracting PSTHs measured in the presence of a drug from PSTHs measured before drug 

application in response to the same odors.  

Mean response amplitudes of single neurons measured under different conditions were 

compared using a paired Student’s t-test because measurements of responses from individual 

neurons in repeated trials were approximally normally distributed. Mean responses across 

population of neurons were usually not normally distributed and compared using a non-

parametric sign test. To test for statistical differences between correlation strengths, 

correlation coefficients were transformed using the Fisher Z transform and compared using 

the z statistic. 
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Results 

Pharmacological investigation of GABA receptor function in the 

olfactory bulb 

To examine the role of GABAergic interactions on odor-evoked activity patterns in the 

OB I first pharmacologically manipulated GABA receptors in an explant of the entire brain 

and nose of adult zebrafish. I investigated presynaptic glomerular activity patterns by Ca2+-

dependent imaging with a camera, evoked oscillations in the field potential measured by 

electrodes and MC responses by loose-patch extracellular and whole-cell intracellular 

recordings. Odor stimuli included food extracts and amino acids. Amino acids are natural 

odors for aquatic animals and were used at a concentration (10 µM) that is in the intermediate 

physiological range and does not saturate glomerular odor responses in zebrafish (Friedrich 

and Korsching, 1997). GABA(B) receptors were activated using the selective agonist, 

baclofen (10 – 50 µM), and inhibited using the selective antagonist, CGP54626 (1 – 10 µM). 

GABA(A) receptors were inhibited using the selective antagonist, Gabazine (50 – 100 µM). 

Unless otherwise noted, spontaneous activity and odor responses were first measured in the 

absence of drugs. Drugs were then washed in through the bath for at least 10 min and 

responses to the same set of odors were measured again. When recordings were stable for an 

extended period of time, drugs were washed out for at least 30 min and odor responses were 

measured again. 

 

Presynaptic inhibition of olfactory sensory neuron terminals by GABA(B) receptors 

In various vertebrate and invertebrate species, the activation of GABA(B) receptors on 

OSN axon terminals decreases presynaptic Ca2+-influx and thereby attenuates the release of 

glutamate during an odor response (Wachowiak and Cohen, 1999b; Aroniadou-Anderjaska et 

al., 2000; McGann et al., 2005; Murphy et al., 2005; Wachowiak et al., 2005b; Vucinic et al., 

2006). In order to examine whether GABA(B) receptors mediate a similar effect in zebrafish, 

I loaded OSNs with the fluorescent Ca2+-indicator, Calcium Green-1 dextran, and measured 

odor-evoked Ca2+ signals in OSN axon terminals. In control experiments, odors evoke 

specific patterns of fluorescence changes in the OB, reflecting patterns of sensory input across 

the array of glomeruli (Friedrich and Korsching, 1997).  
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Figure 2. GABA(B) receptors modulate odor evoked signals in OSN terminals. 
(A) Presynaptic glomerular calcium signals evoked by food odor stimulation and 
measured by Calcium Green-1-dextran (A1) before drug application, (A2) after wash 
in of Gabazine, (A3) and after rinsing and wash in of CGP54626 in the same fish. (B) 
Time course of the calcium signal averaged over pixels in three regions indicated by 
arrowheads in (A). (B1) Before drug application, (B2) after wash in of Gabazine, (B3) 
and after rinsing and wash in of CGP54626. (C) Response amplitudes averaged over 
six regions indicated by circles before drug application, after wash in of Gabazine and 
after rinsing and wash in of CGP54626. Error bars show SDs. Star indicates change 
relative to control significant with p<0.04 (sign test). (D) Effect of Baclofen for 3 
experiments and 6 odors. Response amplitudes are normalized to control. Individual 
changes are indicated by lines. Bars and error bar show average and SD. Star indicates 
change significant with p<0.04 (sign test). (E) Effect of CGP54626 for 6 experiments 
and 11 odors. Response amplitudes are normalized to control. Individual changes are 
indicated by lines. Bars and error bar show average and SD. Star indicates change 
significant with p<0.01 (sign test).  
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In the presence of baclofen or CGP54626, the spatial distribution of odor-evoked Ca2+-

signals was similar to control. However, baclofen significantly reduced the amplitude of Ca2+-

signals (n = 6 odors in 3 OBs; mean ± SD: 49 ± 17 % of control; Student’s t-test: P = 0.01; 

Fig. 2A-D) while CGP54626 enhanced them (n = 11 odors in 6 OBs; 167 ± 46 % of control; 

mean ± SD; Student’s t-test_ P = 0.005; Fig. 2A - C, E). These effects of baclofen and 

CGP54626 were observed in all experiments. Hence, GABA(B) receptors attenuate Ca2+-

influx in OSN axon terminals during an odor response, consistent with reports from other 

species. 

 

Effect of GABA(B) receptor blockade on mitral cell odor responses 

To investigate how GABA(B) receptors influence the output activity of the olfacory 

bulb, I examined the effect of the GABA(B) receptor antagonist, CGP54626, on spontaneous 

and odor-evoked activity of MCs (n = 20 odor responses from 11 MCs). CGP54626 did not 

significantly change the average spontaneous firing rate of MCs (n = 11 MCs; control: 

7.0 ± 3.9 Hz, mean ± SD; CGP54626: 7.5 ± 4.3 Hz; sign test: P = 0.6) and caused no obvious 

changes in subthreshold membrane potential fluctuations (Fig. 3A).  

The effects of CGP54626 on odor evoked responses were heterogeneous (Fig. 3B). In 

11 out of 20 cases, CGP54626 caused no obvious effect on the amplitude or time course of 

the response. In the remaining 9 responses, the amplitude was decreased by CGP54626 in two 

cases and increased in 7 cases. In 4 out of the 9 responses, the change in response amplitude 

was nearly constant throughout the course of the odor response. As a consequence, the time 

course of the response remained similar to control. In the remaining 5 responses, CGP54626 

changed response amplitude during specific epochs of the response and, hence, changed the 

time course (Fig. 3B2, B4). Effects of CGP54626 were at least partially reversible after 

washout.  

Response amplitudes reach their maximum usually during the first second after odor 

onset and were quantified in the interval from 0.25 to 0.75 s. On average, odor stimulation 

increased MC firing rates under control conditions by 8.4 ± 16.1 Hz (mean ± SD; n = 20 

responses). In the presence of CGP54626, the average response amplitude was not 

significantly changed (9.8 ± 15.9 Hz; sign test: P = 0.8; Fig. 4A) and the cumulative 

distribution of response amplitudes remained similar (Fig. 4B). 
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Figure 3. Effect of the GABA(B) antagonist, CGP54626, 
on odor responses of MCs. (A) Whole-cell recordings of 
food odor responses from two MCs (thick bar indicates 
stimulus) before (black) and during (red) bath-application of 
the drug. (B1 – B4) Four examples illustrating effects of 
CGP54626. Ticks denote individual action potentials. Each 
row shows one trial. Black: control; red: CGP54626 
application. Continuous lines are PSTHs, averaged over all 
trials under each condition. Thick portions depict time bins 
where PSTHs were significantly different (Student’s t-test; 
P < 0.05) from the corresponding time bin in the control 
PSTH (black).  
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Figure 4. Effect of CGP54626 on odor responses of MCs: 
quantitative analysis. (A) Mean firing rate change evoked 
by odor stimulation before (control) and during CGP54626 
treatment in the time window between 0.25 and 0.75 s after 
response onset. Error bars show SD. P = 0.5 (sign test). (B) 
Cumulative distribution of odor-evoked firing rate changes 
in MCs before (control) and during drug application. (C) 
Left: MC odor responses ranked according to the firing rate 
change measured before application of CGP54626. Right: 
Responses of the same MCs to the same odors in the 
presence of the drug (same rank order as control). Asterisks 
denote responses that were significantly changed (Student’s 
t-test; P < 0.05). (D) Top (continuous lines): average PSTH 
of MC odor responses before (control) and during 
CGP54626 treatment. Dashed lines show SD (bottom). (E) 
Differences of PSTHs (CGP54626 – control) for all MC 
odor responses. 
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Because CGP54626 had heterogeneous effects on individual odor responses, I 

visualized the individual effects of CGP54626 by ranking recorded responses according to 

their amplitude under control conditions (Fig. 4C). Although some response amplitudes in the 

presence of CGP54626 were significantly different from control, the pattern of response 

amplitudes remained relatively similar. On average firing frequencies were slightly, though 

not significantly increased throughout the whole time course of the odor response, as visible 

in the averaged PSTHs (Fig. 4 D). The effect of CGP54626 on the time course of individual 

odor responses was visualized by subtraction of the PSTH of an odor response measured 

under control condition from the corresponding PSTH measured in the presence of 

CGP54626. Individual changes were mostly long-lasting but often small (Fig. 4 E). Hence, 

the blockade of GABAB receptors had little or no effect on the mean amplitude of MC 

responses but caused a slight reorganization of odor-evoked activity patterns across the MC 

population. 

 

Effect of GABA(A) receptor blockade on mitral cell odor responses 

Next, I studied the effect of GABA(A) receptor blockade on MC activity using 

Gabazine (29 odor responses measured in 19 MCs). On average, Gabazine significantly 

increased the spontaneous firing rate (control: 4.2 ± 4.9 Hz, Gabazine: 8.5 ± 6.5 Hz, sign test: 

P = 0.001). In individual MCs, spontaneous firing was either similar to control or increased, 

while decreased spontaneous firing was never observed. Moreover, in 7/20 MCs, the pattern 

of spontaneous action potential firing changed from irregular firing under control conditions 

to burst firing in the presence of Gabazine. 

In the presence of Gabazine all neurons were still responsive to odor stimulation (Fig. 

5). Evoked firing rates were usually much higher than in the control measurements. 

Particularly transiently increased firing rates immediately after odor onset were drastically 

amplified. Responses that were dominated by inhibition under control conditions became 

excitatory in 2/8 cases. In the remaining 6 cases, however, inhibitory response epochs were 

still observed in the presence of Gabazine. In the presence of Gabazine, many odor responses 

started with a high-frequency burst of firing, followed by a period of silence. Thereafter, MCs 

often fired a series of bursts at a frequency of about 1 Hz. For a given MC and stimulus, these 

firing patterns were at least partially reproducible in successive trials and therefore apparent in 

averaged PSTHs (Fig. 5 B1, B3, B4). 
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Figure 5. Effect of the Gabazine on odor responses of MCs. (A) 
Whole-cell recordings of responses from two different MCs before 
(black) and during (red) bath-application of the drug. Thick bar 
indicates stimulus. (B1 – B5) Four examples illustrating the effects 
of Gabazine. Conventions as in Fig. 3. Responses are from different 
cells and were recorded in the whole-cell, cell-attached or loose-
patch configuration. 
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Figure 6. Effect of Gabzine on odor responses of MCs: 
quantitative analysis. (A) Mean firing rate change evoked by 
odor stimulation before (control) and during Gabazine treatment 
in the time window between 0.25 and 0.75 s after response 
onset. Error bars show SD. P = 0.46 (sign test). (B) Cumulative 
distribution of odor-evoked firing rate changes in MCs before 
(control) and during drug application. (C) Left: MC odor 
responses ranked according to the firing rate change measured 
before application of Gabazine. Right: Responses of the same 
MCs to the same odors in the presence of the drug (same rank 
order as control). Asterisks denote responses that were 
significantly changed (Student’s t-test; P < 0.05). (D) Top 
(continuous lines): average PSTH of MC odor responses before 
(control) and during Gabazine treatment. Thick portions depict 
time bins where the PSTH was significantly different from 
control (sign test; P < 0.05). Dashed lines show SD (bottom). 
(E) Differences of PSTHs (Gabazine – control) for all MC odor 
responses. 
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The average response amplitude between 0.25 and 0.75 s after onset was enhanced in 

the presence of Gabazine (control: 5.9 ± 10.7 Hz; Gabazine: 13 ± 23.3 Hz; Fig. 6 A). Even 

though this effect appeared pronounced, it was not statistically significant (sign test: P = 0.5), 

presumably because the magnitude of inhibitory responses was also increased due to the 

elevated spontaneous firing rate. The cumulative distribution of odor-evoked firing rate 

changes shows that strong excitatory responses became more frequent in the presence of 

Gabazine (Fig. 6 B). The pattern of recorded response amplitudes was substantially different 

from control (Fig. 6 C). The average PSTH and the analysis of individual responses revealed 

that Gabazine substantially increases the average MC firing rates particularly during the initial 

phase of the odor response (Fig. 6 C), consistent with the frequent occurrence of high-

frequency bursts shortly after response onset. However, MC firing rates were also 

significantly increased during later response phases and during spontaneous firing (before 

stimulus onset; Fig. 6 E). These data indicate that GABA(A)-mediated inhibition regulates 

MC firing rates during spontaneous and odor evoked activity. 

During treatment with Gabazine odor stimulation usually evoked rhythmical bursting 

with a frequency around 1 Hz (Fig. 5A1, B1, B3 + Fig. 7). This periodicity is at least loosely 

time-locked to odor onset and also visible in the averaged odor response of individual odor 

responses (Fig. 5B1 + B3) but the exact frequencies can vary among responses to different 

odors. An analysis of the Power spectral density shows a peak at 1Hz that is not present under 

control conditions. This indicates that blockade of GABA(A) receptors cause slow rhythmic 

bursting which is reminiscent of epileptic activity.  
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Figure 7. Periodic activity in MC odor responses induced by Gabazine. 
(A) Whole-cell recording of a MC response to food odor stimulation before 
and during treatment with Gabazine. Bar indicates stimulus. (B) Average 
(solid line) and SD (dashed line) of power spectra derived from PSTHs of 
29 experiments during a four seconds window starting 1 second after 
stimulus onset.  Black: control; Red: Gabazine. (C) Average power from 
PSTHs of 29 experiments calculated from 0.8 to 1.2 Hz before and during 
Gabazine treatment. Error bars show SD. Star indicates statistically 
significant change (P < 0.001 t-test) 
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Effect of GABA(A) receptor blockade on odor evoked oscillations in the local field 

potential 

Previous studies indicated that GABAergic feedback at the reciprocal synapse between 

MCs and local INs is involved in the synchronization of output neurons (Nusser et al 2001, 

Friedman and Strawbridge 2003, Lagier et al 2004). In zebrafish odor stimulation reliably 

evokes 20 Hz oscillations in the LFP. To investigate whether GABA(A) receptors are 

involved in this synchronization the effect of Gabazine on LFP oscillations was analyzed. A 

blockade of GABA(A) receptors lead to a complete loss of fast odor evoked oscillations 

(Fig. 8 B). Instead low frequency oscillations of about 1Hz appeared when no odor stimulus 

was present but vanished after stimulus onset (Fig. 8 A). The Fast Fourier Transformation 

reveals a clear peak at about 20 Hz during odor stimulation that is abolished by Gabazine.  

These data show that synaptic interactions mediated by GABA(A) receptors are 

necessary for odor evoked network oscillations and indicate that fast inhibitory feedback also 

suppresses spontaneously synchronized network activity. 
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Figure 8. Effect of Gabazine on 
oscillations in the LFP. (A) 
Recording of odor evoked activity 
in the LFP before (black) and 
during application of Gabazine 
(red) and after wash-out (grey). 
Traces were filtered by a 40 Hz 
lowpass filter and corrected for 
slow drifts by subtraction of a box 
car smoothed (box width 1 s) 
average of nine individual 
recordings. Bar indicates stimulus. 
(B) Power spectral density of odor 
evoked oscillations and averaged 
over trails from one experiment 
before and during application of 
Gabazine. (C) Power in the 
frequency band from 15 to 30 Hz 
normalized to control and averaged 
over 5 experiments before and 
during Gabazine treatment. Error 
bars show SD. Star indicates 
statistically significant change. P < 
0.001 

0.
1

m
V

1 sFood odor 1

control

wash

Gabazine

(t-test)



  
 
34 

Pharmacological investigations of ionotropic glutamate receptor 

function in the olfactory bulb 

I pharmacologically manipulated AMPA receptor and NMDA receptor function using 

the selective antagonists NBQX (5 – 10 µM) and AP5 (50 – 100 µM), respectively. I first 

measured the effect on odor responses of MCs by loose-patch extracellular and whole cell 

intracellular recordings.  

 

Combined blockade of AMPA receptors and NMDA receptors 

First, I blocked all iGlu receptors with NBQX and AP5. In the presence of NBQX and 

AP5, spontaneous AP firing was either completely abolished or became slow and periodic 

(n = 4 MCs; Fig. 9A). Sub-threshold membrane potential fluctuations were reduced or 

eliminated and spontaneous fluctuations in the LFP were decreased (Fig. 9A, B). Odor 

stimulation failed to elicit MC depolarization and action potential firing (3 amino acid odors 

and 3 food extracts tested; 1 – 2 stimuli per MC; Fig. 9A). Moreover, odor-evoked LFP 

oscillations were completely abolished (n = 6 stimuli in 4 OBs; 4 ± 1 % of control power in 

15 – 30 Hz band; t-test: P < 0.001; Fig. 9B, C, D). These results show that glutamatergic 

synaptic transmission is essential for responses of OB neurons to odors, most likely because 

glutamate is the neurotransmitter of OSNs (Berkowicz et al., 1994; Ennis et al., 1996). 
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Figure 9. iGluRs are essential for odor responses of 
MCs. (A) Whole-cell recording from a MC during 
odor stimulation (food extract; bar) before (black) and 
during (red) application of NBQX and AP5. (B) LFP 
recording during odor stimulation (food extract; bar) 
before (black), during (red) and after (gray) 
application of NBQX and AP5. Traces are band-pass 
filtered between 8 – 43 Hz. (C) Power spectra of LFP 
traces (average of 6 trials; from unfiltered data) for the 
examples shown in (B). (D) Average LFP power (15 –
 30 Hz) in the presence of NBQX and AP5, 
normalized to control (n = 4 OBs). ***, P < 0.001 (t-
test) (Tabor and Friedrich, 2008) 
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Blockade of AMPA receptors: effect on mitral cell responses 

In contrast to the combined application of AMPA receptor and NMDA receptor 

antagonists, the selective blockade of AMPA receptors by NBQX produced diverse effects on 

MC activity. The spontaneous activity of individual MCs could decrease, remain similar, or 

even increase relative to control levels. On average, NBQX did not significantly change the 

spontaneous firing rate (control: 6.6 ± 3.61 Hz; NBQX: 5.51 ± 4.90 Hz; mean ± SD; sign test: 

p = 0.23; n = 13 MCs). Sub-threshold activity was analyzed in six mitral cells. In five of these 

cells steep subthreshold transients in the membrane potential were strongly reduced while 

slow fluctuations could still be observed (Fig. 10A). 

All MCs were still odor-responsive in the presence of NBQX (n = 22 odor responses 

in 13 MCs; 1 – 3 different odors per MC), but the magnitude and time course of odor 

responses was usually altered (Fig. 10 A, B). Paradoxically, NBQX often enhanced transient 

periods of excitation shortly after response onset (Fig. 3B1 – B3), while reductions in the 

amplitude of excitatory responses were rare. Inhibitory responses were prolonged in two cases 

(Fig. 10 B4) and unchanged in one case. In two other cases, the sign of the response changed 

from an inhibition to a weak excitation (Fig. 10 B5). In both of these cases, NBQX almost 

completely suppressed spontaneous activity. Changes in the sign of the response from 

excitatory to inhibitory were not observed. The effects of NBQX were at least partially 

reversed after wash-out. 

To quantify the effects of NBQX on odor responses I first compared the average odor-

evoked firing rate change before and during NBQX treatment between 0.25 and 0.75 s after 

response onset. On average, odor stimulation evoked an increase in MC firing under control 

conditions (4.0 ± 9.7 Hz above baseline) that was significantly enhanced by NBQX (11.5 ± 

18.9 Hz; sign test: P = 0.02; Fig. 11 A). The cumulative distribution of response amplitudes 

was shifted to the right and saturated at higher frequencies (Fig. 11 B), showing that smaller 

responses became less frequent and maximal response magnitudes were increased. However, 

not all responses were enhanced by NBQX and the effect of NBQX depended on the neuron 

and stimulus, suggesting that NBQX may also affect the pattern of activity across the 

population of MCs. I therefore compared responses of different MCs to different odors before 

and during application of NBQX in a diagram where responses are ranked according to the 

response magnitude before drug application (Fig. 11 C). Response patterns before and during 

application of NBQX showed obvious similarities, indicating that NBQX did not cause major 

changes in population activity patterns. Nevertheless, many, but not all, responses in the 
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presence of NBQX were significantly different from control. Thus, the blockade of AMPA 

receptors not only scaled odor responses but also caused small changes in the distribution of 

activity across the MC population. 

To assess the effect of NBQX on the time course of MC responses in more detail, I 

constructed PSTHs. The enhancement of the mean response of MCs was most pronounced 

during the early phase of the odor response (Fig. 11 D). The effect of NBQX on individual 

responses was examined by subtracting the PSTH measured before NBQX treatment from the 

corresponding PSTH measured in the presence of NBQX (Fig. 11 E). This analysis confirmed 

that NBQX increased odor responses in a subset of MCs, particularly during the initial phase 

of the odor response, while suppressive effects of NBQX were small.  

 

 

Figure 10. Effect of the AMPA receptor antagonist, NBQX, on odor 
responses of MCs. (A) Whole-cell recording of a MC response to odor 
stimulation before (black), during (red) and after (gray) bath-application of 
NBQX. Thick bar indicates odor stimulus. (B1 – B5) Five examples 
illustrating effects of NBQX on odor responses. Conventions as in Fig. 3. 
Responses are from different cells and were recorded in the whole-cell, cell-
attached or loose-patch configuration. (Tabor and Friedrich, 2008) 
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Figure 11. Effect of NBQX on odor responses of 
MCs: quantitative analysis. (A) Mean firing rate 
change evoked by odor stimulation before (control) 
and during NBQX treatment in the time window 
between 0.25 and 0.75 s after response onset. Error 
bars show SD. *, P = 0.02 (sign test). (B) Cumulative 
distribution of odor-evoked firing rate changes in MCs 
before (control) and during NBQX application. (C) 
Left: MC odor responses ranked according to the 
firing rate change measured before NBQX application. 
Right: Responses of the same MCs to the same odors 
in the presence of NBQX (same rank order as control). 
Asterisks denote responses that were significantly 
changed in the presence of NBQX (Student’s t-test; P 
< 0.05). (D) Top (continuous lines): average PSTH of 
MC odor responses before (control) and during NBQX 
treatment. Thick portions depict time bins where the 
PSTH was significantly changed (sign test; P < 0.05). 
Dashed lines show SD. (E) Differences of PSTHs 
(NBQX – control) for all MC odor responses. (Tabor 
and Friedrich, 2008) 
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Blockade of NMDA receptors: effects on mitral cell responses 

The selective blockade of NMDA receptors by AP5 had little effect on spontaneous 

MC activity. In one MC, spontaneous AP firing was completely abolished, while it was 

slightly increased in others. On average, spontaneous firing rates in the presence of AP5 were 

not significantly different from control (control: 8.6 ± 6.5 Hz, AP5: 9.4 ± 7.2 Hz, sign test: 

P = 1.00; n = 12 MCs) and fluctuations in the membrane potential appeared largely 

unchanged (Fig. 12 A). 

Odor responses were still observed after AP5 treatment in all recorded neurons (n = 25 

responses from 12 MCs; 1 – 3 different odors per MC), but the amplitude and time course 

were often changed (Fig. 12 A, B). The effects caused by AP5 appeared more complex than 

those caused by NBQX. While excitatory response amplitudes were often slightly increased 

by AP5 (Fig. 12 B2-B4), decreases in response amplitude were also observed (Fig. 12 A, 

5B1). In some neurons, AP5 affected mainly the initial response transients (Fig. 12 B4) 

whereas in others it changed the later response phases (Fig. 12 B1, B2, B3, B5). Changes in 

the sign of the response amplitude were observed in 4 out of the 25 responses. In one case, a 

weak inhibitory response became excitatory while in the other three cases excitatory 

responses became inhibitory (Fig. 12 A, B1). Effects of AP5 were at least partially reversible 

after washout. 

In the presence of AP5, the average firing rate change of MCs between 0.25 and 0.75 s 

was not significantly different from control (control: 5.0 ± 15.7 Hz ; AP5: 8.5 ± 20.8 Hz 

above baseline, sign test: p = 0.71; Fig. 13 A) and the cumulative histogram of response 

amplitudes showed little or no change (Fig. 13 B). The analysis of individual responses, 

however, revealed that AP5 increased some responses and decreased others. Consequently, 

the distribution of responses across the population of MCs in the presence of AP5 was 

different from control (Fig. 13 C). PSTHs revealed that the average time course of MC firing 

was similar to control (Fig. 13 D) but individual MC responses could be increased or 

decreased, often within certain time windows (Fig. 13 E). Largest changes were observed 

shortly after response onset, but later phases could also be affected. Hence, AP5 had little 

effect on the average magnitude and time course of the population response but caused 

complex changes of individual MC responses and spatio-temporal activity patterns.  
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Figure 12. Effect of the NMDAR antagonist, AP5, on odor responses of MCs. 
(A) Whole-cell recording of a MC response to odor stimulation (Lys, 10 µM; bar) 
before (black) and during (red) application of AP5. (B1 – B5) Five examples 
illustrating effects of AP5 on odor responses. Conventions as in Fig. 3. Responses 
are from different cells and were recorded in the whole-cell, cell-attached or loose-
patch configuration. (Tabor and Friedrich, 2008) 
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Figure 13. Effect of AP5 on odor responses of MCs: 
quantitative analysis. (A) Mean firing rate change 
evoked by odor stimulation before (control) and 
during AP5 treatment in the time window between 
0.25 and 0.75 s after response onset. (B) Cumulative 
distribution of odor-evoked firing rate changes in MC 
before (control) and during application of AP5. (C) 
Left: MC odor responses ranked according to the 
firing rate change measured before application of AP5. 
Right: Responses of the same MCs to the same odors 
in the presence of AP5 (same rank order as control). 
Asterisks denote responses that were significantly 
changed in the presence of AP5 (t-test; P < 0.05). (D) 
Top (continuous lines): average PSTH of MC odor 
responses before (control) and during application of 
AP5. Thick portions depict time bins where the PSTH 
in the presence of AP5 was significantly different from 
the control PSTH in the corresponding time bin (sign 
test; P < 0.05). Bottom (dashed lines): SD. (E) 
Differences of PSTHs (AP5 – control) for all MC odor 
responses. (Tabor and Friedrich, 2008) 
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Effects of ionotropic glutamate receptor antagonists on local field potential oscillations 

In the absence of drugs, all stimuli evoked LFP oscillations with a frequency of around 

20 Hz (Fig. 14  A, B). Because amplitudes were largest in response to food extracts, I 

concentrated on these stimuli for further experiments. NBQX completely abolished LFP 

oscillations in response to food odors (n = 6 OBs; 5 ± 1 % of control power in 15 – 30 Hz 

band; t-test: P < 0.001; Fig. 14 A, C). AP5 reduced, but not completely abolished, LFP 

oscillations (4 OBs; 44 ± 30 % of control power in 15 – 30 Hz band; t-test: P < 0.01; Fig. 14 

B, C). Moreover, the oscillation frequency was slightly increased compared to control in all 

experiments (Fig. 14 B). The effects of both drugs were reversible after washout. 
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Figure 14. Effect of NBQX and AP5 on LFP oscillations. (A) Example of 
an LFP recording (bandpass-filtered 8 – 43 Hz) of an odor response (food 
odor; bar) before (black), during (red) and after (gray) application of NBQX. 
(B) Power spectra of LFP responses before and during application of NBQX 
(same recording; average of 7 trials; calculated from raw data). (C) and (D) 
Effect of AP5 on LFP oscillations evoked by food odor stimulation. 
(conventions as in (A) and (B) Power spectra are average of 14 trials). (E) 
Average LFP power (15 – 30 Hz) in the presence of NBQX (n = 6 OBs) or 
AP5 (n = 4 OBs), normalized to control. ***, P < 0.001; **, P < 0.01 (t-test). 
(Tabor and Friedrich, 2008) 
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Measurements of odor-evoked activity patterns by two-photon Ca2+-imaging 

Although AMPA receptors and NMDA receptors mediate excitatory synaptic input 

from OSNs to MCs, the blockade of one receptor type alone did not reduce the average 

excitation of MCs, suggesting that iGluRs also influence MC responses via other, 

multisynaptic pathways. I therefore analyzed the effect of iGluR antagonists on network 

activity patterns using two-photon Ca2+-imaging after bolus loading of OB neurons with the 

red-fluorescent Ca2+-indicator, rhod-2. MCs and INs were distinguished by the expression of 

the MC marker, HuC:YC, that was detected simultaneously in a separate emission channel. 

Somatic Ca2+-signals reflect the spike output of individual MCs and INs (Yaksi and Friedrich, 

2006) and are stable over hours (Yaksi et al., 2007). Two-photon Ca2+-imaging therefore 

permits measurements of odor-evoked action potential firing from many neurons, including 

INs in deep layers that are difficult to record using electrophysiological methods. 

I first examined the effect of glutamate receptor antagonists on odor-evoked 

Ca2+-signals of MCs before, during and after drug treatment using the same protocol as before 

(Fig. 15 A). In many MCs, NBQX increased the amplitude of odor-evoked Ca2+-signals, 

while decreases in response amplitude were rarely observed. On average, NBQX significantly 

increased Ca2+-signals (150 % of control; sign test: P = 0.002; Fig. 15 B). Consequently, the 

cumulative distribution of response amplitudes was shifted towards higher amplitudes (Fig. 

15 C). At the level of individual MCs, the effect of NBQX varied in magnitude (Fig. 15 D, E). 

The correlation coefficient between MC activity patterns before and during NBQX treatment 

was 0.73 (Fig. 15 D; n = 190 responses, pooled over all MCs and odors). As a control, I 

performed the same procedures in a different set of fish except that NBQX was omitted 

during the wash-in period. The correlation between activity patterns in these control 

experiments (r = 0.78; n = 126 responses) was slightly, but not significantly (P = 0.32), higher 

than in experiments using NBQX. Hence, NBQX increased the amplitude of the MC 

population response but had little or no effect on the odor-evoked pattern of Ca2+ signals 

across the MC population.  

Blockade of NMDA receptors by AP5 had diverse effects on odor-evoked Ca2+ signals 

of individual MCs, including increases and decreases of the response (Fig. 16 A). The average 

response amplitude was not significantly different from control (86 % of control; p = 0.26; 

sign test; Fig. 16 B) and the cumulative histogram of response amplitudes showed no obvious 

change (Fig. 16 C). However, the activity pattern across the MC population differed from 

control because some responses were increased while others were decreased (Fig. 16 D, E).  
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Figure 15. Effect of NBQX on MC responses measured by two-photon Ca2+-imaging. 
(A) Odor-evoked Ca2+-signals in MCs before, during and after application of NBQX 
(stimulus: Trp, 10 µM). Arrows depict somata of neurons identified as MCs by expression 
of the genetically encoded fluorescence marker HuC-YC. (B) Average somatic 
Ca2+-signals before (control) and during application of NBQX, normalized to control. 
Error bars show SD. **, P = 0.002 (sign test). (C) Cumulative distribution of Ca2+-signal 
amplitudes before (black), during (red) and after (gray) application of NBQX. (D) 
Comparison of Ca2+-signal amplitudes evoked by the same odors in the same MCs before 
and during application of NBQX. Data were pooled over all cells, odors and animals 
(n = 190 responses). r, Pearson correlation coefficient. Inset shows the density of data 
points in the boxed region. Lines are diagonals with slope one. (E) Left: MC odor 
responses ranked according to the Ca2+-signal before application of NBQX. Inset shows 
an enlargement of a subregion. Right: Responses of the same MCs to the same odors in 
the presence of NBQX, ranked in the same order as in the control. (Tabor and Friedrich, 
2008) 
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Figure 16. Effect of AP5 on MC responses measured by two-photon Ca2+-imaging. 
(A) Odor-evoked Ca2+-signals in MCs before, during and after application of AP5 
(stimulus: food odor). Arrows depict somata of neurons identified as MCs by expression 
of the genetically encoded fluorescence marker HuC-YC. Black and white arrows show 
MCs whose response was increased and decreased, respectively, by AP5 treatment. (B) 
Average somatic Ca2+-signals before (control) and during application of AP5, normalized 
to control. Error bars show SD. (C) Cumulative distribution of Ca2+ signal amplitudes 
before (black), during (red) and after (gray) application of AP5. (D) Comparison of 
Ca2+-signal amplitudes evoked by the same odors in the same MCs before and during 
application of AP5. Data were pooled over all cells, odors and anminals (n = 742 
responses). r, Pearson correlation coefficient. Inset shows the density of data points in the 
boxed region. Lines are diagonals with slope one. (E) Left: MC odor responses ranked 
according to the Ca2+-signal before application of AP5. Inset shows an enlargement of a 
subregion. Right: Responses of the same MCs to the same odors in the presence of AP5, 
ranked in the same order as in the control. (Tabor and Friedrich, 2008) 
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The correlation between activity patterns before and during AP5 treatment was 0.45 (n = 742 

responses) and significantly different from control (r = 0.78; n = 126 responses; P < 0.001). 

Hence, AP5 did not significantly affect the mean response amplitude of MCs but changed the 

pattern of activity across the population. The effects of AP5 and NBQX on odor-evoked 

patterns of Ca2+-signals across MCs are therefore consistent with those observed by 

electrophysiological measurements. 

 

Effects of ionotropic glutamate receptor antagonists on interneuron activity 

Somata of INs in the deeper layers of the OB are densely packed and show 

pronounced Ca2+-signals in response to odor stimulation (Fig. 10A; Yaksi and Friedrich, 

2006; Yaksi et al., 2007). In the presence of NBQX, response amplitudes of many INs were 

decreased and response patterns appeared sparser. Ca2+-signals in the neuropil were also 

substantially reduced (Fig. 10A). The average somatic Ca2+-signal of INs was significantly 

smaller than control (47 % of control; sign test: P < 0.001; Fig. 10B) and the cumulative 

distribution of response amplitudes was shifted towards lower amplitudes (Fig. 10C). NBQX 

therefore increased the ratio between the mean MC response and the mean IN response by a 

factor of 3.2. At the level of individual IN somata, the effect of NBQX was diverse. Not all 

responses were reduced by the same amount, and some responses were even enhanced (Fig. 

10A, D, E). The correlation between activity patterns before and during NBQX treatment was 

0.41 (n = 5878 responses; pooled over all INs and odors) and significantly lower than the 

correlation between activity patterns in control experiments without drugs (r = 0.71; n = 208 

responses; P < 0.001). Hence, blockade of AMPA receptors decreased the mean response of 

INs and changed the activity pattern across the IN population.  

 Blockade of NMDA receptors by AP5 caused only a slight change in the mean 

response amplitude of INs (109 % of control; sign test: P < 0.001; Fig. 11A, B) and the 

cumulative histogram of response amplitudes remained similar (Fig. 11C). AP5 therefore 

changed the ratio between the mean MC response and the mean IN response by a factor of 

0.79. Individual IN responses, however, were often increased or decreased by AP5 (Fig. 11D, 

E). The correlation between activity patterns before and during AP5 treatment was 0.40 

(n = 14884 responses) and significantly different from control (r = 0.71; n = 208 responses; 

P < 0.001). Hence, the blockade of NMDA receptors had little effect on the overall amplitude 

of IN responses but caused a redistribution of activity across the population. 
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Figure 17. Effect of NBQX on IN responses measured by two-photon Ca2+-imaging. 
(A) Odor-evoked Ca2+-signals in INs before, during and after application of NBQX 
(stimulus: food odor). (B) Average somatic Ca2+-signals before (control) and during 
application of NBQX, normalized to control. Error bars show SD. ***, P < 0.001 (sign 
test). (C) Cumulative distribution of Ca2+-signal amplitudes before (black) and during 
(red) application of NBQX. (D) Comparison of Ca2+-signal amplitudes evoked by the 
same odors in the same INs before and during application of NBQX. Data were pooled 
over all cells, odors and anminals (n = 5878 responses). r, Pearson correlation coefficient. 
Inset shows the density of data points in the boxed region. Lines are diagonals with slope 
one. (E) Left: IN odor responses ranked according to the Ca2+-signal before application of 
NBQX. Inset shows an enlargement of the boxed region. Right: Responses of the same 
INs to the same odors in the presence of NBQX, ranked in the same order as in the 
control. Inset shows an enlargement of a subregion to demonstrate that low-amplitude 
values are interspersed between high amplitude values. The visual impression in the full 
diagram that many amplitudes are increased during NBQX treatment is therefore an 
artifact caused by crowding of bars in the graph. (Tabor and Friedrich, 2008)  
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Figure 18. Effect of AP5 on IN responses measured by two-photon Ca2+-imaging. (A) 
Odor-evoked Ca2+ signals in INs before, during and after application of AP5 (stimulus: 
food odor). (B) Average somatic Ca2+-signals before (control) and during application of 
AP5, normalized to control. Error bars show SD. ***, P < 0.001 (sign test). (C) 
Cumulative distribution of Ca2+-signal amplitudes before (black) and during (red) 
application of AP5. (D) Comparison of Ca2+ signal amplitudes evoked by the same odors 
in the same INs before and during application of AP5. r, Pearson correlation coefficient. 
Inset shows the density of data points in the boxed region. Lines are diagonals with slope 
one. (E) Left: IN odor responses ranked according to the Ca2+-signal before application of 
AP5. Data were pooled over all cells, odors and anminals (n = 14884 responses). Inset 
shows an enlargement of the boxed region. Right: Responses of the same INs to the same 
odors in the presence of AP5, ranked in the same order as in the control. Inset shows an 
enlargement of a subregion to demonstrate that low-amplitude values are interspersed 
between high amplitude values. The visual impression in the full diagram that many 
amplitudes are increased during AP5 treatment is therefore an artifact caused by crowding 
of bars in the graph. (Tabor and Friedrich, 2008) 
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Discussion 

I used pharmacological manipulations in combination with electrophysiology and 

Ca2+-sensitive fluorescence imaging to study the functions of GABA receptors and iGlu 

receptors in neuronal circuits of the intact OB. Electrophysiological recordings monitor action 

potentials and subthreshold synaptic input at high temporal resolution and were used to 

analyse spontaneous and odor evoked MC activity. Ca2+-sensitive fluorescence measurements 

allow observations of spatially distributed activity patterns. Terminals from OSNs were 

imaged with a Camera system while two-photon imaging was used to measure odor responses 

of INs and in some cases of MCs with single cell resolution. Both recording methods have 

complementary advantages and yielded consistent results. The blockade of GABA(B) 

receptors increased odor evoked Ca2+-signals in the terminals of OSNs and modulated 

responses in a subset of MCs. The blockade of GABA(A) receptors amplified spontaneous 

and odor evoked MC activity, induced burst firing, abolished odor evoked oscillations in the 

LFP and changed the slow temporal modulations of MC odor responses.  The combined 

blockade of AMPA receptors and NMDA receptors completely suppressed spontaneous and 

odor-evoked activity of MCs. The selective blockade of AMPA receptors or NMDA 

receptors, however, did not decrease the mean response of MCs but had complex effects on 

neuronal responses. AMPA receptor blockade rather increased MC responses and particularly 

NMDA receptor blockade changed the spatio-temporal patterns of activity across MC and IN 

populations. The results indicate that the studied receptors fulfil differential functions during 

odor processing and provide insights into mechanisms for slow temporal modulations of MC 

responses, synchronization of neurons and gain control. 

 

Functions of presynaptic inhibition of sensory input by GABA(B) 

receptors  

Studies in the rat showed, that GABA(B) receptors are densely expressed in the 

glomerular layer while their expression in other layers is much lower (Bowery et al., 1987; 

Chu et al., 1990; Panzanelli et al., 2004) This suggests a predominant role of GABA(B) 

receptors for presynaptic inhibition of the sensory input. Therefore, I examined the impact of 

GABA(B) receptors on Ca2+-signals in terminals of zebrafish OSNs. I found that odor evoked 

Ca2+-signals were increased by the specific GABA(B) receptor antagonist CGP54626 while 

they were reduced by the specific agonist baclofen. This is consistent to observations in other 
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species including vertebrates and invertebrates (Wachowiak and Cohen, 1999b; McGann et 

al., 2005; Wachowiak et al., 2005b; Vucinic et al., 2006). The presynaptic modulation of 

sensory input by GABA(B) receptors appears therefore to be a common principle in the 

olfactory system.  

The function of GABA(B) receptors on the axon terminals of OSNs might be to 

mediate presynaptic gain control or to participate in the modulation of spatio-temporal 

activity patterns. Experiments in mice indicated that a reduction of the presynaptic Ca2+-signal 

mediated by GABA(B) receptors is accompanied by even stronger reduction in transmitter 

release (Wachowiak et al., 2005b) which might be caused by a Ca2+-independent second 

messenger pathway that modulates priming of synaptic vesicles (Sakaba and Neher, 2003). 

This suggests a substantial influence on the gain of glomerular input and might lead to a 

pronounced effect on postsynaptic excitation. This mechanism might be involved in the 

adjustment to changing stimulus conditions. Other Ca2+-imaging studies indicated that 

glomeruli might be modulated independently by self-inhibition (McGann et al., 2005; 

Wachowiak et al., 2005b; Vucinic et al., 2006). As glomerular activity patterns evoked by 

similar odors often overlap primarily in clusters of strongly responsive units, this mechanism 

could reduce the relative contribution of such units to the whole activity pattern, thereby 

contributing to fine discrimination. Further, presynaptic inhibition may affect the temporal 

patterning of glomerular input signals (Spors et al., 2006) and MC responses and thereby also 

influence odor processing.  

In my experiments spontaneous activity was unchanged when GABA(B) receptors 

were blocked. This result is consistent with previous findings in the frog (Duchamp-Viret et 

al., 2000). In contrast to that, the activation of GABA(B) receptors was shown to reduce or 

even completely block spontaneous activity in MCs (Duchamp-Viret et al., 2000; Palouzier-

Paulignan et al., 2002). Different specific antagonists can restore spontaneous MC activity 

from GABA(B) receptors mediated inhibition but do not elicit a further increase. Together 

this suggests that GABA(B) receptors are not activated during spontaneous activity. It is 

likely that synaptic activity needs to exceed a certain threshold before interneurons release 

sufficient amounts of GABA for the paracrine activation of presynaptic receptors. 

MC responses evoked by odor stimulation (Duchamp-Viret et al., 2000) or brief 

electrical pulses (Nickell et al., 1994; Aroniadou-Anderjaska et al., 2000; Palouzier-Paulignan 

et al., 2002) are usually reduced by GABA(B) receptor-mediated inhibiton. The blockade of 

GABA(B) receptors in the experiments here in contrast changed response amplitude only in a 

subset of MCs without major effect on the average activity. Similarly experiments in the 
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intact frog brain failed to demonstrate an effect of the GABA(B) receptor antagonist on odor-

evoked activity (Duchamp-Viret et al., 2000). This is somewhat surprising, as the presynaptic 

Ca2+-responses evoked by odor stimulation were clearly increased. 

The data presented here show a prominent role of inhibitory feedback from local 

circuits in the OB for the regulation of MC excitability. The mean MC response amplitude in 

my experiments at least had a slight tendency to be amplified during blockade of GABA(B) 

receptors, although not statistically significant. A stronger inhibitory feedback from local 

interneurons might therefore cover the effect of amplified sensory input. A study of 

glomerular response patterns induced by GABA(B) receptor blockade indicated that strongly 

activated glomeruli inhibit the surrounding ones (Vucinic et al., 2006). Glomeruli inside 

centres of high activity might therefore benefit more from a GABA(B) receptor blockade than 

moderately activated glomeruli further apart. Further, as synaptic activity apparently needs to 

exceed a certain threshold for GABA(B) receptor activation, autoinhibition of glomerular 

activity might be inactive in weaker activated glomeruli.  The antagonist then affected only a 

small subset of glomeruli while many glomeruli are not affected. This may also explain the 

high variability of effects observed across odor responses in MCs. MC excitation, therefore, 

appears under control of inhibitory interneurons and not linerarly dependent on presynaptic 

input signal. Experiments in the rat revealed further, that GABA release from interneurons 

can be inhibited through GABA(B) receptors (Isaacson and Vitten, 2003). It appears possible 

that the amplified sensory input here is partially compensated by increased GABA(A) 

mediated feedback from disinhibited INs. The results indicate that network circuits largely 

compensate for changes in total afferent excitation.  

The slow kinetic of this metabotropic receptor suggests a role for periods of inhibition 

during MC odor responses lasting from tens to thousands of milliseconds. The data presented 

here show that GABA(B) receptor blockade changed odor-evoked response patterns in MCs 

in early and late phases of the response. On average the effect did not decline during the time 

course of MC odor responses while GABA(A) receptors blockade primarily amplified a 

transient phase immediately after odor response onset. Similar results were reported from 

experiments on the output neurons in the antennal lobe of Drosophila (Wilson and Laurent, 

2005). GABA(B) receptor mediated influences on MC response are therefore distinct from 

those of GABA(A) receptors. GABA(B) receptors appear to participate in the generation of 

long-lasting phases of inhibition in MC responses but do not provide the only mechanism, as 

such inhibitory epochs were still observed and sometimes even enhanced in the presence of 

the GABA(B) receptor antagonist. Beyond the presynaptic inhibition of afferents GABA(B) 
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receptors were also found to modulate GABA release from INs, already mentioned above. 

Although functional evidence for a direct inhibition of MCs is still missing, GABA(B) 

receptor expression in the MC layer was found, too (Bonino et al., 1999; Margeta-Mitrovic et 

al., 1999). The slow modulations of the MC response might therefore involve receptors at 

multiple levels in the OB network. 

 

Receptors involved in the regulation of neuronal excitability  

The sensory input to the OB network varies substantially in strength and complexity 

depending on concentration and composition of the odor stimulus. Transmission of the 

sensory signal to MCs and inhibitory input from OB interneurons, both shape the output 

signal. The regulation of neuronal excitability is central to the adaptation to changing stimulus 

conditions.  

Here, I found that a combined blockade of AMPA receptors and NMDA receptors 

completely suppressed spontaneous and odor-evoked activity of MCs. This indicates that 

excitatory synaptic transmission from OSNs to MCs is mainly mediate by iGlu receptors, as 

reported in other vertebrates (Berkowicz et al., 1994; Ennis et al., 1996). Paradoxically, 

however, the selective blockade of AMPA receptors or NMDA receptors did not decrease the 

mean response of MCs. Rather, the AMPA receptor antagonist even increased the mean MC 

response, and both antagonists had complex effects on neuronal responses including changes 

in the sign. These effects cannot be explained by a partial blockade of the excitatory 

OSN MC synapse alone, but imply that iGlu receptors influence MC firing also via 

additional, multisynaptic pathways. The increased excitability must be based on a strong 

reduction of inhibitory feedback from local INs. The most obvious pathways are the 

OSN juxtaglomerular cell MC and the MC IN MC pathway. The results therefore 

indicate that OB output activity is strongly influenced by synaptic pathways within and 

possibly beyond the OB. 

AMPA and NMDA receptors not only mediate excitatory transmission from OSNs to 

MCs but are also involved in synaptic pathways that activate inhibitory INs. The net effect of 

an iGlu receptor antagonist on mean MC response amplitudes may therefore be reduced, 

unchanged, or even increased responses, depending on the relative contribution of each iGlu 

receptor type to each of these pathways. Although NBQX partially blocks excitatory synaptic 

transmission from OSNs to MCs, it increased the mean response of MCs. This indicates that 

AMPA receptor blockade strongly attenuates input from inhibitory INs. Consistently I found 
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the mean response of INs significantly decreased. This hypothesis is further supported by 

experiments  performed in brain slices of the rat, where AMPA receptors appeared important 

for the activation of GABAergic interneurons (Schoppa, 2006b). The ratio between excitation 

and inhibition of MCs therefore depends on circuits with multisynaptic AMPA receptor 

signaling. Pathways as the OSN juxtaglomerular cell MC pathway, the MC IN MC 

pathway or glutamatergic connections from higher brain areas terminating on INs are likely 

involved. Hence, the GABAergic inhibitory system is closely linked to AMPA receptor 

signaling, which is thereby involved in the regulation of MC population activity during an 

odor response. 

The occurrence of prominent odor responses in the presence of NBQX confirms that 

NMDA receptors contribute to basal synaptic transmission in the OB (Trombley and 

Westbrook, 1990; Aroniadou-Anderjaska et al., 1999b; Edwards and Michel, 2002) under 

natural conditions. Unlike the blockade of AMPA receptors, however, the blockade of NMDA 

receptors had little or no effect on the mean activity of MCs and INs. Nevertheless, I observed 

changes in the magnitude and time course of individual MC responses. NMDA receptors 

therefore appear less important for the global regulation of MC population activity than 

AMPA receptors. 

 Inhibitory input to MCs is provided from GABAergic INs in the OB and mediated 

by activation of GABA(A) receptors (Nowycky et al., 1981; Wellis and Kauer, 1993; Lowe, 

2002). However, the effect of GABA(A) receptor antagonists on odor responses in the intact 

olfactory system has been examined only in insects, so far (MacLeod and Laurent, 1996; 

Wilson and Laurent, 2005). Here I found that blockade of GABA(A) receptors enhanced 

spontaneous activity and odor-evoked excitation of MCs in the intact olfactory bulb of 

zebrafish. The results indicate, that GABA(A) receptors are crucial for the regulation of the 

OB output. 

 The increased spontaneous firing rates indicate that MCs in an intact olfactory 

system are under tonic inhibition from local INs. Spontaneous subthreshold fluctuations are 

likely to be of synaptic origin and suggest continuous excitatory and inhibitory input from 

primary afferents and local INs. A result that is expected as MCs in the intact OB are 

spontaneously active (MacLeod, 1976; Kay and Laurent, 1999; Friedrich and Laurent, 2001).  

 Gabazine particularly amplified firing rates during the initial phase of an odor 

response similar to NBQX. Hence, the pharmacological manipulation of GABA(A) receptors 

and AMPA receptors apparently changes the ratio between excitatory and inhibitory input to 

MCs. This indicates that inhibitory GABAergic feedback onto the population of MCs strongly 
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influences MC firing and performs a gain control at the population level that regulates MC 

firing when the intensity of glomerular inputs varies. Indeed, the total firing of MCs 

converges towards a common level within a few hundred milliseconds in response to odors 

that evoke different amounts of sensory input (Friedrich and Laurent, 2004). 

The blockade of GABA(A) receptors, furthermore, led to rhythmical burst in subsets 

of  MCs before and most MCs after stimulus onset. The exact frequency was variable among 

odor responses and might even change during the odor response. However, a broad but clear 

peak in the averaged power spectral density graph marked 1Hz as mean frequency. This was 

at least similar to the frequency observed under the same conditions in the LFP but without 

stimulation. This might indicate that the network changed into a different physiological state 

of massively synchronized and rhythmical activty. The lack of inhibition may enable 

spontaneous excitatory events to drive the MC membrane potential above firing threshold. 

Hyperpolarizations which terminate phases of raised activity might be caused by intrinsic, 

activity dependent conductances, as Ca2+-activated K+-channels (Knaus et al., 1996) and/or 

synaptic input.  

Blockade of GABA(A) receptors is known to induce epileptiform activity in other 

brain areas, such as cortex, hippocampus and thalamus (for review see: Traub et al., 1996; 

McCormick and Contreras, 2001). The rhythm of such persistent bursting is thought to 

depend on neurons able to generate bursts intrinsically and rhythmic interplay between 

excitatory and inhibitory neurons. Mechanisms leading to prolonged depolarizations which 

underlie intrinsic bursts can be persistent voltage gated sodium currents or slow dendritic 

Ca -spikes (Azouz et al., 1996). In synapses NMDA receptors can evoke long-lasting 

depolarizations. Voltage-, 

2+

Ca2+- or Na -activated K -currents seem to determine the 

hyperpolarization period after the burst intrinsically. But also synaptic inhibition as in 

thalamo-cortical interactions through GABA(B) receptors can be involved. 

+ +

It appears likely, 

that mechanisms involved in the generation of epileptiform activity, are also responsible for 

the rhythmic bursting observed here.

Epileptic activity usually depends on recurrent excitatory connections. Long-lasting 

depolarizations in MCs leading to rhythmical bursting with about 1 Hz were described in rat 

slices (Carlson et al., 2000; Puopolo and Belluzzi, 2001) and appeared based on 

intraglomerular dendrodendritic interactions. MCs associated with the same glomerulus can 

excite one another by gap junctions and spillover of dendritically released glutamate (Carlson 

et al., 2000; Urban and Sakmann, 2002; Christie and Westbrook, 2006). During blockade of 
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GABA(A) mediated inhibitory network feedback, intraglomerular recurrent excitatory 

mechanisms might be involved in the synchronization of MC activity. 

The generation of bursts demands mechanisms that mediate prolonged periods of 

excitation. Massive release of glutamate upon strong neuronal activity is likely to facilitate 

spillover. This might activate NMDA receptors, which may even prolong excitation periods in 

MCs by autoexcitation (Aroniadou-Anderjaska et al., 1999a; Isaacson, 1999b; Friedman and 

Strowbridge, 2000; Didier et al., 2001; Salin et al., 2001). Experiments on slices of rat OBs 

revealed, that the blockade of NMDA receptors prevents rhythmical burst generation 

(Puopolo and Belluzzi, 2001). Moreover, a subclass of juxtaglomerular neurons in rodents, 

the external tufted cells, were shown to intrinsically generate burst with help of a persistent 

voltage activated Na -conductance (Hayar et al., 2004).+  A similar type of neurons might also 

exist in zebrafish. Both mechanisms might be involved and lead to burst firing in MCs. 

Inter-burst intervals usually lack action potential firing and suggest that mechanisms 

are involved, which mediate long-lasting inhibition or prevent firing intrinsically. Gabazine-

insensitive inhibitory synaptic input might be provided by the activation of GABA(B) 

receptors. Their expression on MC dendrites was shown in mice (Kratskin et al., 2006). But 

also glycinergic synaptic transmission might be involved that has been shown to inhibit MCs 

in the rat OB (Trombley and Shepherd, 1994; Trombley et al., 1999). In situ hybridization 

experiments in zebrafish found glycine receptor subunits only in the internal cellular layer, 

which might indicate that only INs receive glycinergic input (Imboden et al., 2001). However, 

functional studies are still missing. Also a remaining effect of GABA can not be ruled out, as 

Gabazine is an competitive inhibitor of GABA(A) receptors which shifts the concentration-

response curve to higher GABA concentrations without changing the maximal response 

(Hamann et al., 1988). In addition, MCs might be inhibited by Ca2+-activated K+-currents 

(Knaus et al., 1996). MCs often showed a prolonged period of hyperpolarization after intense 

firing, which might indicate that a Ca2+-activated K+-current is involved. However, in some 

cases hyperpolarizations without preceding firing was observed, too. Hence, this suggests that 

both intrinsic and synaptic effects play a role.   

Further, also ephaptic effects might contribute to the generation of epileptiform 

activity. Massively synchronized bursting in epileptic brain centers can cause strong, 

pulsating electrical fields which might contribute to coupling of neurons. Such intensive 

neuronal activity might even cause changes of extracellular ion- concentrations. A reduced 

K -gradient for example can depolarize neurons and thereby facilitate action potential +
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generation. Here, ephaptic effects based on changes of extracellular K - or Ca -

concentrations are unlikely in the OB because the bath solution was continuously exchanged 

but might play a role inside brain structures still covered by bones and skin. In the 

experiments discussed here the GABA(A) antagonist was bath applied and affected the whole 

brain. Epileptic activity in telencephalic and other brain structures providing excitatory input 

to OB INs might also contribute to rhythmic synchronization of the OB network. Ephaptic 

effects might even elicit synchronous antidromic action potentials in MC axons.  

+ 2+

Taken together, the results indicate that GABA(A) mediated inhibition from INs is 

crucial for the regulation of neuronal excitability in the OB network.

 

AMPA receptor-dependent control of interneuron activity and mitral 

cell inhibition 

In mammalian brain slices in the absence of background activity, NMDA receptors are 

critically involved in the activation of granule cells and in the recurrent inhibition of MCs by 

asynchronous GABA release from IN dendrites (Isaacson and Strowbridge, 1998; Schoppa et 

al., 1998; Isaacson, 2001). When synaptic background activity is introduced into an OB slice, 

however, activation of granule cell firing becomes NMDA receptor independent and 

asynchronous GABA release appears to be strongly diminished (Schoppa, 2006b). Under 

these conditions, recurrent inhibition is likely to be weak (Schoppa, 2006b). It is therefore 

unclear how IN firing and inhibition of MCs is controlled during an odor response in the 

intact OB. I found that the mean odor-evoked somatic Ca2+-signal in INs was reduced by the 

blockade of AMPA receptors, but not by the blockade of NMDA receptors. Somatic Ca2+-

signals in zebrafish MCs and INs reflect action potential firing (Yaksi and Friedrich, 2006; 

Yaksi et al., 2007). The data therefore indicate that IN firing is controlled primarily by AMPA 

receptors during an odor response. Nevertheless, individual IN responses were often changed 

by AP5. Hence, NMDA receptors appear to influence odor responses in a subset of neurons 

and thereby cause complex effects on spatio-temporal activity patterns within the network. 

Although NMDA receptors appear to play a minor role in initiating action potential 

firing of INs, they may contribute to recurrent inhibition of MCs by triggering asynchronous 

GABA release from IN dendrites in an action potential-independent fashion (Isaacson and 

Strowbridge, 1998; Schoppa et al., 1998). If so, however, the blockade of NMDA receptors 

should increase the ratio between the mean activity of MCs and INs, which was not observed. 
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The data therefore suggest that the effect of recurrent inhibition by NMDA receptor-

dependent asynchronous GABA release at reciprocal synapses on MC firing is, on average, 

weak compared to the effect of other synaptic pathways. 

Unlike inhibition of NMDA receptors, the blockade of AMPA receptors increased the 

mean response of MCs and decreased the mean somatic Ca2+ response of INs. The most likely 

explanation for these effects is that inhibitory input to MCs during an odor response is 

mediated primarily by AMPA receptor-dependent action potential firing of INs, consistent 

with predictions based on data from mammalian brain slices in the presence of synaptic 

background activity (Schoppa, 2006b). Action potentials invade large portions of the dendritic 

tree in INs (Egger et al., 2005; Murphy et al., 2005; Zelles et al., 2006) and are thought to 

trigger GABA release onto multiple postsynaptic MCs. Hence, lateral inhibition, rather than 

recurrent inhibition, may be the dominant mode of MC inhibition during an odor response. 

Further experiments are, however, required to test this hypothesis and to identify the synaptic 

pathways underlying the AMPA receptor-dependent activation of IN firing during an odor 

response. 

 

GABA(A) and AMPA receptors are required for odor-evoked 

rhythmical synchronization 

The oscillatory synchronization of neuronal ensembles in the OB during an odor 

response is thought to be based on the reciprocal coupling of MCs and INs by fast excitatory 

and inhibitory transmission (Rall et al., 1966; Eeckman and Freeman, 1990; Friedman and 

Strowbridge, 2003). Experiments in mammalian brain slices indicated that the fast inhibitory 

connection is mediated by GABA(A) receptors (Lagier et al., 2004; Schoppa, 2006a; Lagier et 

al., 2007) and that the fast excitatory connection is mediated by AMPA receptors (Schoppa, 

2006b). Also computational modeling (Bazhenov et al., 2001b), and experiments in the insect 

antennal lobe (MacLeod and Laurent, 1996; Stopfer et al., 1997) indicate that fast, GABA(A) 

receptor-mediated inhibition is essential for the oscillatory synchronization of odor-specific 

subsets of MCs during a response. However, to my knowledge, this has not been tested 

directly in the intact OB. In agreement to the hypothesis I found oscillatory LFP activity 

during odor stimulation abolished by the blockade of AMPA receptors and GABA(A) 

receptors. The NMDA receptor antagonist only reduced oscillation amplitude but did not 

completely block them. This shows that fast transmitter receptors are required for the 
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rhythmic synchronization of neuronal ensembles in the OB while the slower NMDA receptors 

appear not directly involved. Other mechanisms suggested generating LFP oscillations, as 

voltage-dependent Na+-channels intrinsic to MC membranes (Desmaisons et al., 1999), 

oscillatory activity in olfactory sensory neurons (Nikonov et al., 2002) and electrical coupling 

(Friedman and Strowbridge, 2003) might support network oscillations but are not sufficient 

by themselves.  

Because of their slow kinetics, NMDA receptors are unlikely to be directly involved in 

fast oscillatory synchronization in the OB. Nevertheless, NMDA receptor antagonists reduced 

odor-evoked LFP oscillations and slightly increased the oscillation frequency. One possible 

explanation is that NMDA receptor-mediated depolarization facilitates spiking of INs, which 

could enhance synchronization. However, NMDA receptor antagonists did not, on average, 

reduce odor-evoked Ca2+-signals in IN somata. Further experiments are therefore necessary to 

clarify the role of NMDA receptors in oscillatory synchronization. 

 

Slow temporal modulations of MC response patterns 

The slow temporal modulation of MC firing frequencies during an odor response 

reflects a dynamic reorganization of the firing pattern across the MC population. On a 

timescale of a few hundred milliseconds the redundancies of activity patterns evoked by 

chemically related stimuli are reduced (Friedrich and Laurent, 2001; Friedrich et al., 2004; 

Friedrich and Laurent, 2004). Because GABA(B) receptors influence both the early and the 

late phase of MC responses, they may be involved in the time-dependent decorrelation of 

odor-evoked firing patterns across MCs. Although the effect of GABA(B) antagonist on 

individual responses appears relatively small, this does not rule out the possibility that 

GABA(B) receptors shape odor-encoding patterns of activity across the population of MCs in 

important ways. Response amplitudes during late phases of the response are lower on average 

so that apparently small changes in the firing rates of individual neurons could cause 

important changes in population firing. Late patterns are decorrelated and therefore contain 

information about precise odor identity. It is therefore possible that GABA(B) receptors are 

involved in pattern decorrelation as suggested by computer models (Bazhenov et al., 2001a). 

Nevertheless, it appears unlikely that pattern decorrelation is mediated exclusively by 

GABA(B) receptor-dependent mechanisms because responses of projection neurons in insects 

(Wilson and Laurent, 2005) and responses of MCs in vertebrates are still temporally patterned 
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in the presence of GABA(B) receptor antagonists. Further studies are therefore required to 

investigate the role of GABA(B) receptor -mediated inhibition in pattern decorrelation. 

Both iGlu receptor antagonists had complex effects on the temporal profile of MC 

odor responses including changes in the sign. Particularly AP5, further, changed the spatial 

patterns of activity across MC and IN populations. This is expected, as both receptors drive 

IN excitation and therefore also affect timing and amount of GABA release. Beyond the level 

of sensory input asynchronous transmitter release was suggested to cause long-lasting 

inhibitory influence from granule cells (Wellis and Kauer, 1993; Schoppa et al., 1998). 

Although the data presented here indicate a dominance of lateral inhibition during odor 

processing, it does not exclude that such a mechanism enables long-lasting GABA(A) 

mediated inhibition and thereby is involved in the slow temporal patterning. Recent results 

indicate that pattern decorrelation is caused, at least in part, by the local sparsening of MC 

activity patterns in regions where glomerular input is dense and overlapping (Yaksi et al., 

2007). The most likely mechanism underlying this local sparsening is the spatially restricted 

inhibitory feedback from INs. 

In addition, iGlu receptor antagonists may modulate other sub-circuits in the OB or the 

feedback from higher brain regions onto INs which might participate in spatio-temporal 

modulations. 

 

Functional implications and outlook 

IGlu receptors and GABA receptors underlie the basic synaptic transmission in the OB 

network and therefore provide the basis for odor processing. Under natural conditions, the 

number and intensity of activated glomeruli varies greatly between different odors and 

concentrations. The regulation of transmitter release from OSNs through GABA(B) receptors 

and feedback circuits involving AMPA and GABA(A) receptors may therefore contribute to 

the robustness of odor representations against changes in stimulus intensity. 

Mechanisms modulating the temporal profile of MC odor responses, as GABA(B) 

receptor mediated presynaptic inhibition and inhibitory feedback from interneurons, likely 

contribute to decorrelation (Friedrich and Laurent, 2001) that may promote odor 

discrimination (Rinberg et al., 2006) and prepare odor representations for memory formation 

(Hasselmo et al., 1990).   

The oscillatory synchronization of odor-specific neuronal ensembles has been 

implicated in odor discrimination in insects (Stopfer et al., 1997) and affords the simultaneous 
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transmission of different information from the OB to higher brain regions in zebrafish 

(Friedrich et al., 2004). The synchronization of neuronal ensembles by the help of fast 

GABA(A) and AMPA receptors therefore contributes to the temporal formatting of odor 

representations. 

I conclude that different receptor types play distinguishable roles for odor processing. 

The fast GABA(A) and AMPA receptors showed a major impact on firing frequencies during 

a transient phase immediately after the odor onset. They appear involved and most effective 

for the adaptation to changing stimulus conditions. The slow GABA(B) and NMDA receptor 

had no particular influence on the initial phase of the odor response which suggests a different 

role during odor evoked activity. The interplay of different receptor types apparently allows 

the parallel performance of different computations. One example is the GABA(A) receptor, 

that shows that a receptor with fast kinetic might simultaneously be involved in fast and slow 

synaptic effects. While its interactions with the fast AMPA receptor provide a mechanism for 

fast neuronal synchronization, its interactions with the slow NMDA receptor might support 

slow temporal effects through asynchronous transmitter release.  

Here I did a first step in the pharmacological analysis of OB network function during 

odor processing in the intact brain. Pharmacological substances, even though they were 

receptor specific, induced multiple effects. Further, the effects were unfortunately not 

localizable to a specific synapse. In future experiments this might be possible by the usage of 

drugs which are specific for the subunit composition of receptors and /or novel genetic and 

molecular tools able to target specific cell types (e. g., Zhang et al., 2007). 
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	In the olfactory bulb and other brain areas, basic cellular and synaptic properties of individual neurons have been studied extensively in reduced preparations. Nevertheless, it is still poorly understood how intactions among multiple neurons shape spatio-temporal activity patterns and give rise to the computational properties of the the intact circuit. 
	In this thesis, I used pharmacological manipulations of excitatory and inhibitory neurotransmitter receptors to examine the synaptic interactions underlying spontaneous and odor-evoked activity patterns in the intact OB of zebrafish. Electrophysiological and conventional and two-photon calcium imaging methods were used to record activity from the principal neurons of the OB (mitral cells), their sensory input, and local interneurons. 
	The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells (MCs), indicating that sensory input to the OB is mediated by ionotropic glutamate receptors. Surprisingly, however, the blockade of AMPA/Kainiate receptors alone increased the mean response of MCs and decreased the mean response of interneurons (INs). The blockade of NMDA receptors alone caused little or no change in the mean responses of MCs and INs. In addition, antagonists of both glutamate receptor types had diverse effects on the magnitude and time course of individual MC and IN responses and, thus, changed spatio-temporal activity patterns across neuronal populations. The blockade of GABA(A) receptors increased spontaneous and odor evoked firing rates of mitral cells and often induced rhythmic bursting. Moreover, the blockade of, GABA(A) or AMPA/kainate receptors abolished fast oscillatory activity in the local field potential. Blockade of GABA(B) receptors reduced calcium influx into terminals of afferent sensory axons and modulated response time courses of mitral cells. 
	These results indicate that (1) IN activity during an odor response depends mainly on AMPA/Kainiate receptor input, (2) interactions between MCs and INs regulate the total OB output activity, (3) AMPA/Kainiate receptors and GABA(A) receptors underly the synchronization of odor-dependent neuronal ensembles and (4) odor-specific patterns of OB output activity are shaped by circuits containing iGlu receptors and GABA receptors. These results provide insights into the mechanisms underlying the processing of odor-encoding activity patterns in the OB.
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