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Zusammenfassung

Der Verkehr auf den Stral3en nimmt immer mehr zu. Dennocheésfdzahl der Verkehrstoten
kontinuierlich zurtickgegangen. Dies liegt vor allem an gassiven Sicherheitssystemen, wie
Seitenaufprallschutz oder Airbag, welche in den vergaegelahrzehnten entwickelt wurden
und heute Standard in allen Neufahrzeugen ist. Zunehmertewektive Sicherheitssysteme
entwickelt. Sie sind in der Lage Unfélle zu vermeiden odenimglest abzuschwachen. So wer-
den die Abstandsregeltempomaten (ART), die urspringleKamfortsystem ausgelegt waren,
hin zu einem automatischen Notbremssystem entwickelt.

Aktive Sicherheit erfordert Sensoren, die die UmgebungF#szeugs erfassen. Fur ART
werden Radarsysteme oder Laserscanner eingesetzt. AdlfeKameras sind interessante Sen-
soren, da mit ihnen zusatzlich visuelle Informationen weekéhrsschilder oder Fahrbahnmar-
kierungen verarbeitet werden kdnnen. Im Stral3enverkebalespbewegte Objekte (Fahrzeuge,
Fahrradfahrer, FuRganger) eine entscheidende Rolle. uSegkennen ist essentiell fir aktive
Sicherheitssysteme. Die vorliegende Arbeit setzt sichdenitDetektion von bewegten Objekten
mittels einer monokularen Kamera auseinander.

Zur Detektion werden die Bewegungen im Videostrom (opesdfluss) ausgewertet. Ist
die Eigenbewegung und die Lage der Kamera in Bezug zur Sted@ee bekannt, kann die
aufgenommene Szene mittels des gemessenen optischeasHtlisglimensional rekonstruiert
werden. In der Arbeit wird ein Uberblick tiber bekannte Algfunen zur Schatzung der Eigen-
bewegung gegeben. Darauf aufbauend wird ein geeigneterifkighus ausgewahlt und um ein
Bewegungsmodell erweitert. Letzteres steigert sowoh{G#aauigkeit als auch die Robustheit
erheblich. Die Lage der Kamera zur Stral3enebene wird ardesdptischen Flusses der StralRe
geschatzt. Hierbei ist zu beachten, dass die Stral3e zkgfwaesnig texturiert sein kann, was
das Messen des optischen Flusses erschwert. Die Folgrestimgjenaue Schatzung der Kamer-
alage. Ein neuartiger Kalman-Filter Ansatz, welcher died&zung der Eigenbewegung und die
der Kameralage miteinander verbindet, fihrt zu deutlicdsbeen Ergebnissen.

Die 3D Rekonstruktion der aufgenommenen Szene geschiektyeise fir jeden gemesse-
nen optischen Flussvektor. Ein Punkt wird rekonstruiedem die Sehstrahlen, gegeben durch
den Flussvektor, zum Schnitt gebracht werden. Dies ergibtin statische, d.h. nicht bewegte,
Punkte ein korrektes Ergebnis. Ferner erfiillen statischekfe vier Bedingungen: Epipolarbe-
dingung, Trifokalbedingung, Bedingung der positiven @iehd der positiven Hohe. Ist min-
destens eine Bedingung verletzt, handelt es sich um eingaegben Punkt. Es wird eine Fehler-
metrik entwickelt, welche erstmals alle vier Bedingungesrautzt und die Abweichung von den
Bedingungen einheitlich und quantitativ beschreibt.

Anhand dieser Fehlermetrik werden die Grenzen der Detéktikeit untersucht. Konkret
wird gezeigt, dass uUberholende Objekte sehr gut erkennbdy dagegen Uberholte Objekte
(Objekte, die langsamer sind als das Eigenfahrzeug) nussélecht. Gegenverkehr auf gerader
Strecke ist nur unter den zusétzlichen Annahmen, dass dek@kauf dem Boden stehen und
undurchsichtig sind, detektierbar. Eine entsprechendgisték wird vorgestellt.

In Summe stellen die entwickelten Algorithmen ein System robusten Detektion von
fremdbewegten Punkten dar. Auf das Problem der Gruppied@énd®unkte zu Objekten wird
kurz eingegangen. Es dient als Ausgangspunkt fur weitergdd Forschungsaktivitaten.






Abstract

Traffic is increasing continuously. Nevertheless the nunatbéraffic fatalities decreased in the
past. One reason for this are the passive safety systenisasigide crash protection or airbag,
which have been engineered the last decades and which agastan today’s cars. Active safety
systems are increasingly developed. They are able to ava@itieast to mitigate accidents. For
example, the adaptive cruise control (ACC) original destyas a comfort system is developed
towards an emergency brake system.

Active safety requires sensors perceiving the vehiclerenment. ACC uses radar or laser
scanner. However, cameras are also interesting sensdrgyaare capable of processing visual
information such as traffic signs or lane markings. In traffioving objects (cars, bicyclists,
pedestrians) play an important role. To perceive them isreid for active safety systems. This
thesis deals with the detection of moving objects utiliznignonocular camera.

The detection is based on the motions within the video stré@aptical flow). If the ego-
motion and the location of the camera with respect to the mlade are known the viewed
scene can be 3D reconstructed exploiting the measuredabfitiw. In this thesis an overview
of existing algorithms estimating the ego-motion is givd8ased on it a suitable algorithm is
selected and extended by a motion model. The latter one demakily increases the accuracy
as well as the robustness of the estimate. The location ofdheera with respect to the road
plane is estimated using the optical flow on the road. The noigtit be temporary low-textured
making it hard to measure the optical flow. Consequentlyrdlael homography estimate will
be poor. A novel Kalman filtering approach combining thereate of the ego-motion and the
estimate of the road homography leads to far better results.

The 3D reconstruction of the viewed scene is performed pasetfor each measured optical
flow vector. A point is reconstructed through intersectiéhe viewing rays which are deter-
mined by the optical flow vector. This only yields a correctule for static, i.e. non-moving,
points. Further, static points fulfill four constraints:iggar constraint, trifocal constraint, pos-
itive depth constraint, and positive height constraintatlieast one constraint is violated the
point is moving. For the first time an error metric is develdp&ploiting all four constraints. It
measures the deviation from the constraints quantitgtineh unified manner.

Based on this error metric the detection limits are invegéid. It is shown that overtaking
objects are detected very well whereas objects being dsertare detected hardly. Oncoming
objects on a straight road are not detected by means of thial@eaconstraints. Only if one
assumes that these objects are opaque and touch the greuthetéiation becomes feasible. An
appropriate heuristic is introduced.

In conclusion, the developed algorithms are a system tatlgteving points robustly. The
problem of clustering the detected moving points to objectsutlined. It serves as a starting
point for further research activities.
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Chapter 1

Introduction

1.1 Motivation

Traffic is increasing continuously. Nevertheless the nunatbéraffic fatalities decreased in the
past. One reason for this are the safety systems which havedngjineered the last decades and
which are standard in today’s cars.

Passive safety systems such as side crash protection agaatiuce the potential of an injury
in case of an accident. In order to avoid accidents activetgal/stems have been engineered.
For example, the anti-lock brake (ABS) prevents the wheels foeing locked, so that the car
remains steerable. The electronic stability program (EB&Kes individual wheels when the car
is over-steering or under-steering. Within physical Isrthie skidding of the car is reduced, and
the car remains on course. Investigations showed that mawsrsl press the brake pedal too
moderately when braking in an emergency. The brake assstatem (BAS) assists the driver
when performing an emergency brake to obtain maximum dextela.

ABS, ESP, and BAS process the momentary vehicle state. Theyptlook into the future
and thus cannot avoid accidents if the driver is inattenfieeovercome this, noval driver assis-
tance systems are under development. To look ahead theyasgnsors perceiving the vehicle
environment. Some examples are listed below.

e The adaptive cruise control (ACC) uses a lidar or a radar taiolihe distance and the
relative speed of the vehicle ahead. It automatically kélepsight distance to the vehicle.
This comfort system typically brakes with a maximum decdien of 48&21 If a higher
deceleration is needed the driver is just warned acoulstiaat / or optically.

e The lane departure warning (LDW) detects the lane markisiysgua camera and warns
the driver if he crosses the markings unintended.

e The blind spot monitoring (BSM) detects objects within thied spot of the rear mirror
and warns the driver if any object is present. A camera or arrptbvides the necessary
information.



2 CHAPTER 1. INTRODUCTION

The driver assistance systems mentioned above are alréf@dgdoas an option. In order
to avoid accidents they still need the drivers interventidariants of above driver assistance
systems reacting autonomously are under development.

1.2 Sensors for Driver Assistance Systems

A crucial part of driver assistance systems is the sensaghahust be able to take over parts
of the recognition tasks of the human eyes. Although we fausptical sensor input here,
the following list of sensors covers the most popular sengar driver assistance systems and
is provided for completeness. Only one sensor out of thistli® camera, operates passively,
i.e. relies solely on reflected, not self-emitted, radiatsignals. The other sensors measure
the distance by measuring the time of flight of the signal femmission to reception, which is
proportional to the distance. Envisioning a world of ve&gckquipped with driver assistance
systems, interference among similar active sensors magidrbe a problem.

Radar A RAdio Detection And Ranging (RADAR) sensor sends out eteatagnetic waves
and senses the incoming reflections. Typical frequencidhanautomotive field are 24GHz
and 77GHz. The emitted signals are pulse-coded and / ordreyumodulated, enabling the
concurrent measurement of the distance and the relative sebjects.

Electrically conducting materials such as iron or alummnieflect the signal very well. Other
materials such as plastic or rubber let pass the rays. Hédmese materials are not detected by
radar. Radar works well at day and night. Rain and fog do niatrideate the signal significantly
whereas heavy snowfall causes problems.

One drawback is the limited total opening angle achievabtama time. Even a combination
of radar beam signals provides only a limited angular ré¢swiu To get a reasonable open-
ing angle and several signals, the radar beam is usuallynedamechanically or electronically.
Scanning is performed very quickly (about 50ms) to avoidv@derange measurements.

Lidar The function of Light Detection And Ranging (LIDAR) is sirailto that of radar. Also
electro-magnetic waves are sent out, but the frequencyiraagnitues higher, namely 300THz
(infrared light). This has an impact on the properties: Tigea is strongly focussed, allowing
to measure distances and directions highly accurate. Taig/eespeed cannot be measured. The
signals are susceptible to rain and fog.

As in case of radar a scanning mechanism (rotating mirragqgaired to obtain a reasonable
opening angle.

Camera Cameras do not emit any signals. They receive the visibld anthfrared light sent
out by light sources such as the sun or street lamps. Camevdage intensity greyscale or
color images that do not deliver direct Euclidean measuntésnd he images must be processed
to obtain these measurements.
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Another feature of vision sensors is the ability to deteaffic signs, whereas radar and lidar
measure distances which are not discriminative for traffjos

With one camera, the distance of static objects can be nehbyrevaluating the optical flow
(image displacements from frame to frame). When using twoecas rigidly mounted with a
common field of view (stereo), the distance of moving objectietermined in addition to static
objects.

PMD The Photonic Mixer Device (PMD) extends a normal camera bg#pability of measur-
ing distances by time-of-flight. It emits pulsed non-fo@ésfrared light. Each sensor element
(pixel) receives the sum of the emitted light and the ligbtrirthe surroundings. The incoming
photons are converted to electrons (charges). A chargegswymchronized with the emitted
light, puts the electrons into two distinct bins. The conmaar of the collected charges in both
bins yields the phase delay between emitted and receiMed Ringbecket al. 07]. The time of
flight follows directly from the phase delay.

The PMD technology offers the simultaneous measuremenglaff intensity and distance.
However, larger distances require a high power of emittgut li

1.3 Objectives of this Thesis

We have met several sensors for the perception of the v&harteironment. Cameras are highly
interesting since they are not only able to detect obstécieslso lane markings and traffic signs.
The simultaneous applicability of cameras for differemidtions makes this sensor cost-efficient.

In many applications (ACC, BSM) moving objects play the esis¢role. With a stereo cam-
era moving objects are reconstructable and thus directbctible [Franket al. 05]. However,
this has a price: the second camera causes additional cmkte@uires space inside the car. An
arbitrary location for the second camera is not possibleesinhas to be attached rigidly to the
first camera.

From these thoughts the question raises as to whether ongetact moving objects using
a monocular camera? If yes, how to do so and are there angfindihis dissertation answers
these questions.

The most frequent objects in traffic are vehicles (cars amckr). Many different methods
have been developed trying to identify vehicles in monacuteges. [Suret al. 06] gives an
exhaustive overview. There are knowledge based, appeab@sed, and motion based methods.
The knowledge based methods exploit the symmetry betwedafttand right half of the vehicle
or the fact, that the vehicle creates a shadow in its vicinkpother method tries to find the
corners of the vehicle. Appearance based methods learnrélyevglue structures typical for
vehicles and recognize these structures online. The mbased method analyzes the optical
flow. This method is able to detect arbitrary shaped objeatkiding cyclists and pedestrians
and is investigated in this thesis.
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1.4 Thesis Overview and Contributions

The thesis is organized following the data processing ctiam the image acquisition up to the
warning of the driver. Figure 1.1 shows the chain. We now gough the individual blocks.
Contributions of the thesis are written in boldface. Related work is given in the appropriate
chapters.

optical flow ego—motion road homography
computation estimation estimation
camera Ch.3 Ch. 4 Ch.5
situation . detection of
| clustering ) .
<< 3 assessment moving points
Sec. 6.4 Ch.6

warn driver

Figure 1.1: Thesis overview and data processing chain. fdhgidual blocks are discussed in
the appropriate chapters.

The first step after the image acquisition is the computadfdhe optical flow. In the litera-
ture there are a lot of algorithms computing the optical flowchapter 3 the algorithm used in
this thesis is explained. This algorithm is designed forusage within the automotive field.

The detection of moving objects requires the 3D reconsbmaif the viewed scene. Note
that for a better understanding the detection of movingabjes explained here by means of
3D reconstructed points. The actual algorithm avoids th@i@kreconstruction in favour of a
reduced computational complexity and a better statistitahageability. The viewed scene is
reconstructable if the camera ego-motion from frame to &#@known. The ego-motion can be
obtained by two different ways. Firstly, by an inertial mgasnent unit (IMU) or secondly, by
the evaluation of the optical flow. In this thesis the secoag i8 preferred. The computer vision
community originated a plethora of algorithms estimatimg ¢go-motion.

In chapter 4 an overview of existing algorithms estimating he ego-motion is given.
Based on it a suitable algorithm is selected and extended byraotion model. The latter
one considerably increases the accuracy as well as the roltness. The algorithm includes
the minimization of a non-linear error function. A slight ch ange of this error function
speeds up the minimization. It is shown that the image regiancontribute differently to the
estimate.

The reconstructed 3D scene lives in the camera coordinateefr However, it is advanta-
geous if the reconstruction lives in the road coordinate&ai.e. if the x-z plane coincides with
the road plane. Then all 3D points above the road plane hagsiiye y value. In order to trans-
form the coordinate frame from the camera to the road, thevlgdge about the camera location
with respect to the road is necessary. The camera locatefiised by the normal vector of the
road plane and the height of the camera above the road pléwedogation itself is a parameter
of the road homography. With the road homography one corsphiéeoptical flow of a 3D point
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lying on the road. On the other hand, if the optical flow of sal/8D points on the road is given
the road homography can be estimated.

In chapter 5 the road homography is estimated. The road mightoe temporary low-
textured making it hard to measure the optical flow. Consequetly, the road homography
estimate will be poor. A novel Kalman filtering approach combning the estimate of the
ego-motion and the estimate of the road homography leads taf better results.

Once the ego-motion and the road homography are known, tvn@8D points can be
separated from the static 3D points. This separation relethe constraints static 3D points
fulfill.

In chapter 6 the constraints for static 3D points are named. Anovel error metric is
introduced combining these constraints in a unified mannerBased on this error metric the
detection limits are investigated. It is shown that objectsnoving anti-parallel with respect
to the camera are not detected by means of the available comaints. Only if one assumes
that these objects are opaque and touch the ground the deteéoh becomes feasible. An
appropriate heuristic is introduced.

The problem of clustering the detected moving points toabjes outlined in section 6.5. A
detailed investigation of this problem is beyond the scdhis thesis.

When looking at figure 1.1 one sees that there is a block betteeclustering and the final
driver warning, the situation assessment. In this blocldéna@sion is made whether the detected
object constitutes a danger or not. Furthermore, the apiptepeaction is selected. Is it enough
to warn the driver (acoustically, optically, or hapticallyr should the vehicle be braked? The
situation assessment is a research topic of its own and sduvessed in this thesis. The reader
is referred to [Hillenbrand 07].

The thesis closes with chapter 7, a summary and outlook.r8efe go into detail we address
some algebraic and geometric basics, because:

Life is pointless without geometry.
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Chapter 2

Mathematical Background

2.1 Projective Geometry

Throughout the thesis we will use a wide range of transfoionat including translation, rotation,
projection, and other special transformations. WithinEuelidean space these transformations
are algebraically expressed in different ways. The trdiasias represented by a vector-vector
addition, the rotation is represented by a matrix-vectottiglication. The projection is per-
formed by a division. Concatenating different types of sfanmations leads to unaesthetic, not
easy to handle, expressions.

The solution of this issue is named projective geometrynifies the transformations in such
a way that all transformations are expressed by a matrisevenultiplication. Concatenating
transformations means to multiply the matrices of the sirighnsformations. So the overall
transformation is described by a single matrix. For exapniplge want to translate a poimtby
T, then rotate it byR, and finally project it onto the image Bywe can writeM =P-R-T. The
transformed point just computesib- x.

Within the projective geometry also the representationiradd and planes is easily done.
The next sections discuss the aspects of the projective gfeprwhich are relevant for the
thesis. A complete treatment of this topic can be found iressdvtext books, for example
[Faugeras & Luong 01], [Hartley & Zisserman 03], or [M&al. 04].

2.1.1 From Euclidean SpaceéR" to Projective SpaceP"

Within the n-dimensional Euclidean space a point is unigaelfined byn coordinates. In the
projective space the point is extended by one coordinatethere are+ 1 coordinates. How-
ever, the point still has degrees of freedom. This means that there is a unique mafpimg
projective to Euclidean space but not vice versa. The maggpidefined as the central projection
through the origin onto the hyper-plane with tfre+ 1)th coordinate being one.
Figure 2.1 illustrates this for the 2-dimensional case. piogective point(x,y,w)T cP?is

associated to the Euclidean po{p/w,y/w)" € R2. The point(x,y,w)" which is a multiple
of (X,y, w)T is associated to the same Euclidean point. In other wordtajective points are

7
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equivalent iff they differ only in scale. The poiff, O, O)T does not exist.

(x.y,w)
W
A,ly,lwy)

7 (xIw, yiw)

y point at
infinity

X

Figure 2.1: The Euclidean spa@é represented by the plame= 1 is embedded in the projective
spaceP?. The projective pointgx,y,w) and(X,y,w) are both associated to the Euclidean point

(X/W,y/w).

Points at infinity The projective space also allows the description of poinitsfeity which is
not possible in the Euclidean space. A short example dematestthis: Lek = (1,1)" be a point
in R?. If the point moves away from the origimon the lineox the coordinates grow and grow,
and at infinity the coordinates aré = (c0,)T. Unfortunately, all points who went to infinity
share the same coordinates. The information from whickctine a point was coming is lost.
In the projective space this information is preserved. Hehas the coordinates= (1,1,1)7.
Going to infinity now means to decrease the last coordinateto yieldingx’ = (1,1,0)T. All
other points at infinity who came from different directiorsvk different coordinates. Due to
the unified treatment of finite and infinite points the cooad@s of projective points are called
homogeneous coordinateSuclidean points ha@homogeneous coordinates

2.1.2 Working with Lines in P?

In Euclidean space lines can be represented as an equatmar{las the Hesse formax+ by-+
c = 0. In projective space andy are substituted by/w andy/w respectively. This leads to the
equation:ax+ by-+cw= 0 and in vector notation with= (a,b,c)" andx = (x,y,w)":

ITx=0 (2.1)

Thus a line is represented by the 3-vectarb,c)” where(a,b)" corresponds to the normal
vector of the line inR? andc is the distance to the origin provided t%{a, b)T = 1. A pointx

lies on the lind if and only if (2.1) is true. Although has three components a line has only two
degrees of freedom since (2.1) is immune to an arbitraredeator so the two ratiosa: b: c}
are sufficient to determine a line uniquely.
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The linel joining the pointsx; andxs is obtained by:

| = X1 X Xp (2.2)

The line at infinity A general point at infinity has the coordinatesy;, O)T. There is one
special line joining all these points. Itlis = (0,0, 1):. One may check whether these points are
part of that line with equation (2.1)0,0,1) (x,y,0)" = 0 which is obviously true. Of course it
is impossible to draw this line onto the plane. But when ttanplis projected to another plane
the line at infinity is mapped to a line with finite coordinatés example is shown in figure 2.2.

@ : A image of the

4@, line at infinity
PYA

Figure 2.2: The image of the line at infinity. The world plaseprojected to the image plane.
The line at infinity gets visible.

Duality between points and lines Points and lines are both represented as a 3-vector. In the
basic incidence equation for points and lines (see 2.1)dleeaf both entities is interchangeable
since the equation is symmetricx = x| = 0.

The intersection of two lines (2.3) and the line through tveings (2.2) are essentially the
same, with the roles of points and lines swapped.

Note that this duality only holds if2. In P2 the representation of lines is much more com-
plicated than inP?. One way of representation are Pliicker matrices. Howenethi$ thesis
3D lines are not required. For details refer to the text boukstioned at the beginning of this
section. InP? there is a duality between points and planes (see sectiof)2.1

Intersection of lines The intersection point of two linesl, andl; is given by:
X=11xl (2.3)

In Euclidean space parallel lines do not have an intersegtoint. In projective space however
they meet at a point at infinity. Consider two lings= (a,b,c)" andl, = (a,b,c)" with ¢ #

. The intersection point i x |, = (¢ —c) (b,—a,0)" = (b,—a,0)". This point lies on both
lines and has infinite large inhomogenous coordinates dimedast coordinate is zero. The
intersection point only depends on the direction of theding translation (varying) keeps the
point unchanged.
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Distance of a point to a line The distancal of a pointx to a linel in 2D expressed in homo-
geneous coordinates is:

wheren is the normal vector of the line (the first two coordinates}= ((1),, (I),). The pointx
must be homogenize@X); = 1). Then the equation fat is identical to the Hesse form:

g 01003+ (1 (0 +1- (1
Wi+

and(l); is the distance of the line to origin.

Distance between two points The distance vector of the two homogeneous pc(intgll,wl)T
and(xz,yg,wz)T is given by:

Xd w 0 —Xx X1
Ya |=| 0 w2 —y2 |-| W1
Wq 0 0 wp W1

Perpendicular line to a given line going through a point A line m € P2 perpendicular to the
line | and going through the pointnot necessarily lying ohis given by:

The first two components of the linalefine the direction of the line. The first two components
of the perpendicular linen are built as in the Euclidean space: swap the first two comuene
and put a minus sign to one component.

In matrix notation:
0 (X3 O (D1
m=|-(x); 0 0| ()
X); —(x); O (N3

Line given a direction and a point The linel with the directiord = ((d),, (d),,0) and going
through the poink is:

[=dxp
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Projection of a point onto a line The pointx; lying at the foot of the perpendicular to the line
| from the pointx computes to:
X =dxXx x|

with d = ((I)l,(I)Z,O)T the direction of the line perpendicularito
In matrix notation:
] ‘X

One of the benefits of the projective geometry is that the comtransformations are expressed
by a matrix-vector multiplication. All transformation nnates are defined up to scale meaning
that any arbitrary scaling of the matrix does not change tt®m of the matrix. To see this
consider two transformations of the po{mty,w)" once withM and once witi\M, A # O:

2.1.3 Transformations inP?

X

X X
(y) M(y) H<W> (2.4)
w w %
X! X AX AX
(Y’)AM(y)(Ay)H<))‘\W> (2.5)
w’ w AW %

The resulting Euclidean point is the same for both transédions since in equation 2.5 the
scaling factoiA cancels out.

Due to the duality of points and lines the transformationdyapo both entities. But there is
an important distinction. If a given transformativhapplies to points:

x' = Mx (2.6)

then lines are transformed according to:
I"=M~TI (2.7)

The following paragraphs build up a hierarchy of transfdiores starting with the most spe-
cialized ones - translation and rotation - and ending wightiost general one - the homography.

Translation A translation in the Euclidean plane using homogeneousduoates is repre-
sented as

X 1 0 ty X
OEEE
w 0 01 w
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which is:
X+ Wiy X ot
y+wy | — ( Y ) (2.9)
W wTly
This gives exactly the same vector as one gets it if one paddhe translation in Euclidean

space. There the point is first projected oRfo (x,y,w)" — (x/w,y/w)", and then the transla-
tion vector(ty,ty) T is added:(x/w,y/w)T + (tx, ty)T = (X/W+tg,y/w+ty)T.

Rotation A rotation of the coordinate frame about the arglesing homogeneous coordinates
is represented as

X cos® —sin® 0 X
y | =] sin6 cosH O y (2.10)
1 0 0 1 1

Rotations in the three-dimensional space can be found ierajip A.

Isometry An isometry is composed of a translation, a rotation and @ctdin. InP? it is
represented as:

X gcosh —sind ty X
y | =| €sin@ cosb ty y
1 0 0 1 1

with € € 0, 1. If e = 1 then the isometry isrientation-preservingnd is aEuclidean transforma-
tion. Else ife = —1 then the isometry reverses orientation. A planar Euclideansformation
can be written more concisely in block form as:

x’:MEx:[ORr i}x

This transformation has three degrees of freedom, one fatioo and two for translation.
Lengths (distance between two points) and angles (angheslettwo lines) are invariant. They
are not affected by isometries.

Similarity A similarity is an isometry plus an isotropic scaling. In tb&se of a Euclidean
transformation (i.e. no reflection) the similarity has thatnx representation:

X scosf —ssind ty X
y | = ssin® scosb ty y
1 0 0 1 1
or in block form:
x’:Msx:[SR t}x
o' 1

This transformation has four degrees of freedom, the sgaotounting for one more degree
than a Euclidean transformation. Angles and ratios of lesgte invariant.
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Affinity  An affinity is a non-singular transformation followed by arislation. In fact it is a
similarity plus a perpendicular shear.

X a1 a2 tx X
Y | =] a1 a2 ty y
1 0 0 1 1

or in block form:

x’:MAx:{g} ;[L}x

The affine matri¥A can always be decomposed as:
A =R(8)R(-¢)DR(q)

whereR(0) is the rotation of the Euclidean transformation. The reptegents a shear. To do
this first the coordinate frame is rotated into the scalimgations, the = diag(A1,A2) applies
a non-isotropic scaling and finally the coordinate frametated back.

The affinity has two more degrees of freedom than the sinylaiThese are the angle
and the scaling ratigA1 : A2}. Parallel lines and ratios of lengths of parallel line segtaare
invariant to affinities. The line at infinitl, is fixed under an affine transformation meaning that
infinite points stay infinite. Howevel, is not fixed pointwise: Generally a point dnis mapped
to another point Oih.

Homography The homography is the most general non-singular lineastoamation of ho-
mogeneous coordinates. It projects points on a plane omtih@nplane. This is the reason why
itis also called planar projective transformation or slygotojectivity in 2D Since we will often
meet homographies throughout this thesis the |éites reserved for it. The block form is:

x’:Hx:[A} t}x
vy

The homography has eight degrees of freedom according taoitieeelements oH less one
for an arbitrary scale factor. Lengths and angles are naepved by this transformation, but
co-linear points stay co-linear. The cross ratio of foutioear points is the most fundamental
projective invariant. Figure 2.3 shows an example. Thescraso is given by:

d(x1,%2) - d(X3,X4)

Cross=
d(X1,X3) - d(X2,X4)

(2.11)

with d(-, ) representing the distance between two points.

Homographies form a group, i.e. a concatenation of two hoapiges is a homography.
Thus a mapping of image points onto a world plane and frometbato another image is ex-
pressed by a singlex®3 matrix. Figure 2.4 illustrates this.
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Xq X, X3 Xy

Figure 2.3: A homography transformation of four co-lineaimps. The cross ratio is invariant

- d(xa %) d(xaxa) _ d(X(.%p)-d(x5.%,)
under a homography, |.%(Xix§).d(xix4) = d(x,;xi). d(xixg)

Figure 2.4: Concatenated homography. The homogr&phymaps points from image one onto
the world plane. The homography, maps points on the world plane onto image two. The
concatenated homographis - H, directly maps points from image one onto image twe:=
HaoH1x1

Decomposition of a homography A homography can be decomposed into a chain of transfor-
mations, where each matrix in the chain represents a tnanafmmn higher in the hierarchy than
the previous one.

e[S [5 [0 [40] e

with A a non-singular matrix given bj = sRK +tv’ andK an upper-triangular matrix nor-
malized as déK) = 1. This decomposition is valid provided# 0, and is unique i is chosen
positive.

2.1.4 Working with Planes in[P3

The representation of planeslid is derived in a similar way as the representation of liné®%n
A plane in Euclidean space in Hesse form is expressedwas:by+ cz+d = 0. Forming this
into homogeneous coordinates and vector notation gives:

Tx=0 (2.13)
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wherett= (a,b,c, d)T is the plane and = (x,y,z, W)T is a point lying on the planet has three
degrees of freedom (four minus one for an arbitrary scal@facThe first three components of
Tt correspond to the plane normal of Euclidean geometry.

A plane joining the three points;, X2 andxs is obtained by

x) | m=0 (2.14)

Ttis the right null-space. It is a one dimensional space if thiatg are linearly independent (not
co-linear). If the points are co-linear themns a two dimensional null-space and defines a pencil
of planes with the line of co-linear points as axis. Instebdabculating the null-space a more
convenient direct formula exists which can be found in [Kgr& Zisserman 03].

The plane at infinity As the line at infinity inP? the plane at infinityr,, in P2 contains all
points lying at infinity. If the space is not projectively thged the plane at infinity takes the
canonical positiontt,, = (0,0,0,1)", and all pointsc with (x), = 0 are part of this plane since

X)

(

(x)

(X>§ T =0 (2.15)
0

[

The plane at infinity is a fixed plane under an affinity sincenitdi points stay infinite. An
affine reconstruction of a projectively distorted spacedaegal homography was applied to the
space) is possible if the image of the plane at infinity is knowhis reconstruction is done by
transformingr., back to its canonical position. The three degrees of freediorg, measure the
projective component of a general homography.

Intersection of planes Having three planesy, ™ and 1z, and stacking the equation 2.13
together gives:

m |x=0 (2.16)

wherex is a point lying on all planes and thus is the intersectiompoWith two planes only
the null-space is two dimensional and defines a pencil of points on the ietdign line of the
planes.

Duality between points and planes In the two-dimensional case? there is a duality between
points and lines (section 2.1.2). Herefifipoints and planes are dual to each other. Both entities
are represented as a 4-vector. The intersection of threepl@.15) and the plane joining three
points (2.16) are essentially the same, with the roles aftp@nd planes swapped.

Note that this duality only holds i&3. In general points ifP" are dual to hyper-planes .
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2.1.5 Transformations inPP3

The transformations ifP? discussed in section 2.1.3 are easily extended to threendiores.
They are not repeated here. But the transformation of plegepsires special attention. Due
to the duality of points and planes the transformationsyappboth entities with a small but
important difference: If a given transformatibh applies to points:

x' = Mx (2.17)
then planes are transformed according to:
T=MTm (2.18)

The projection fronP? to P? is deferred until section 2.2.1.

2.2 Image Formation

Images are projections of the three-dimensional spaceatwo-dimensional space. The latter
one can be any free-formed surface.

In order to process the images the light from the 3D scenedks tonverted to electrical
signals. Technically, this is done by either CCD (chargeapbed device) or CMOS (comple-
mentary metal oxide semiconductor) sensors. [Litwillef @8es a short overview of these two
technologies. It is hard to arrange these sensors on sarédbers than a plane. This is the
reason why common cameras project the 3D scene onto a platien We plane the sensors are
arranged in a rectangular grid. Every single sensor isatalf@xel standing for picture element.

When surfaces other than a plane are desired one uses mar-piarors. The 3D scene
is first projected onto the mirror, and from there onto the ea®s sensor. An example is the
hyperbolic mirror enabling an omnidirectional view (3$0An image taken by such a mirror-
camera system is shown in figure 2.5a. In [Gehrig 05] two ohssistems are employed to
reconstruct the 3D scene.

Even free-form surfaces are possible. For instance in [Wassel 04] projections of the 3D
scene onto the hood of a car are exploited to enable a stef@oseconstruction utilizing one
camera only. The hood is modelled as a free-form mirror. fl&@uU5b shows an example image.
The 3D scene is imaged twice, once directly onto the planareca sensor and once via the
hood.

Throughout this thesis we think of about planar images. Wheractual images are taken
by a mirror-camera system one may apply a transformatiojegting the images virtually onto
a plane. This type of transformation is callettification. Note that a real camera does not
constitute an exact planar projection due to distortiodsioed by the lens. Several calibration
approaches including distortion models were developeld tivé aim to measure and to undo this
distortion. A well-known approach is the "Camera CalibatiToolbox for Matlab" by Jean-
Yves Bouguet
http://www.vision.caltech.edu/bouguetj/calib_doc/in dex.html
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(b)

Figure 2.5: Types of image surfaces. (a) The 3D scene isqisgjeonto a hyperbolic mirror
enabling an omnidirectional view. The camera is mounted thearear mirror of the car. (cour-
tesy of Stefan K. Gehrig). (b) The vehicle is imaged twicezedirectly onto the planar camera
sensor and once via the hood, which is modelled as a freefeflective surface (courtesy of

Alexander Wirz-Wessel).

2.2.1 Finite Projective Camera

In this section the algebraic description of the projecttmough the camera center onto a plane,
calledcentral projection, is discussed. Figure 2.6 illustrates this projection. finst stage the
3D world pointx = (X, Yw, Zy) " iS projected onto the image plane yieldixig Algebraically this

is expressed as follows:

fxw
! Zy
fyw

Zw

(2.19)

wheref is the distance of the image plane to the camera center, alsad focal length. Thanks
to the projective geometry equation 2.19 can be written aataixavector multiplication:

X f 0 X
vy |=| t of.| M

The 3x4 projection matrixP is not invertable. It is apparent that a projection come$ witoss
of information. Once the world point is projected it is imptdse to reconstruct it from the image
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viewing ray

image point in

projection center pixel coordinates

z, B arctan 3-

optical axis

image plane

() (b)

Figure 2.6: Pinhole camera model with pixels. The 3D worlohpw is projected onto the image
plane yieldingx’ (a). The camera center is placed at the coordinate origie.ifflage plane is
parallel to thexy,yw plane and lies at, = f. After the projection the pointis transformed to pixel
coordinates (b). The origin is the top-left corner. The Widt a pixel isky, the height isky. The
point where the optical axis meets the pixel coordinate &&rcalled principal point.

point. Nevertheless, one may compute the pseudo-inveiBe of

1/

1/f

Pt = (2.21)

1
0 0 O

One verifies thaP*x = (x,y,z,0)" for any image poink, i.e. the resulting world point lies at
infinity.

After the projection the image point is transformed to po@rdinates (fig. 2.6b). The origin
of the pixel coordinate frame is the top-left corner. Evengte pixel has a width ok and a
height ofky. The coordinate axes, andyp need not stand perpendicular. The skew parameter
s accounts for this. For most normal camesasill be zero. The point where the optical axis
meets the pixel coordinate frame is calf@ihcipal pointand has the coordinatéxy,yo)™. The
transformation to pixel coordinates then reads:

X! E$ % X
( y ) L (y) 222
W’ 1 7

With the focal length expressed in units of pixel width= f /ks and pixel heightfy = f /k, the
overall transformation is

A S

Lol | & (2.23)
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The transformation matrix may also be writterkg$|0] with | the 3x 3 identity matrix. The &3
matrixK captures all intrinsic camera parameters and is cabdibration matrix If K is known
one says that the cameradalibrated otherwise it isuncalibrated In the field of the industrial
image processing (as well as in driver assistance systdmaq)tilized cameras are known in
advance so they can be calibrated before use. Throughothébis the camera is considered
calibrated.

Sometimes it is not practical to work with pixel coordinateédne can undo the effect of
K through multiplication of the pixel coordinates by the irse of K: x' = K~1x”. For the
computation oK ~1 see appendix B.1. The coordinates representex! Byen arenormalized
image coordinates

Camera rotation and translation So far, the camera center coincided with the origin of the
world coordinate frame. This will be unlikely in real lifendtead the camera will be rotated and
translated with respect to the world coordinate frame. beoto apply the projection (equa-
tion 2.23) the world coordinate frame first has to be tramstat into the camera coordinate
frame. This is done by an Euclidean transformation:

R —Rt
XC:[OT 1 ]-XW (2.24)

The 3x3 rotation matrixR performs the rotation. The translation is performedt wheret
is the (inhomogeneous) location of the camera center in tirkdwoordinate frame. The point
Xc IS then projected using equation 2.23. Combining both foarmsations yields:

X" =KR[I| =] - Xw (2.25)

This is the algebraic description offiaite projective cameravith P = KR [l | —t] the projection
matrix. It will be used within this thesis.

Pseudo-inverse The pseudo-inverse & maps image points onto a certain world planghich
is derived now. An inverse projected image poiries ontortif:

(P*x)Tn:xTP”n:O (2.26)
From section B.2 we know th&" = [I| —t]*RTK ~. Putting this into equation 2.26 yields
X'K TR[I| -t Tt=0 (2.27)

Settingrt= (t"|1)" which is the right null-space df| —t]*T solves equation 2.27. Thus inverse
projected image points lie on the world plame- (t7|1)T. If there is no translation between the
camera and the worlds origin the points lie on the plane atitgfi
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2.2.2 Affine Cameras

For the sake of completeness specialized cameras are shsicunsthis section. The reason why
these cameras are not applicable in driver assistencarsyselso given.

The finite projective camera in general does not map parates$ in the world to parallel
lines in the image. This perspective distortion dependfenistance of the camera to the object
which is looked at, and on the depth variation of the objeetaRel lines in the world become
more and more parallel in the image with increasing distamokedecreasing the objects depth
variation. This is due to the fact that the viewing rays beeanore and more parallel. For very
large distances the viewing rays can be considered par@hel central projection transforms to
a parallel projection leading to tladfine camera

Algebraically an affine camera has a projection ma®ir which the last row is of the form
(0,0,0, 1)T. From this there follow the properties of an affine camera:

e The camera center lies at infinity.

e Parallelism is preserved.

e Points at infinity are mapped to points at infinity.
e The principal point is not defined.

There are some important specializations of the affine cameé&igure 2.7 shows how these
specializations act on a world point. They are discussedstarting with the basic operation of
parallel projection. More general cases of parallel priogacwill follow.

Orthographic projection A parallel projection along tha, axis is called orthographic. This
type of projection ignores the depth of an object. Two id=aitbbjects placed at different depths
have identical images. Actually, one would expect that the ef the imaged object is smaller
for larger depths. The weak-perspective projection, dised next, accounts for that expectation.
The orthographic projection is represented by the matrix:

Py = (2.28)

O O
o+ O
o O o
= OO

Weak-perspective projection In the weak-perspective projection the 3D scene is "flatténe
to a fronto-parallel plane (a plane parallel to the imagen@)a The depth of that plane is the
average depth,g of the 3D scene. It means the world points are projected gréphically
onto that plane. From there the points are projected peigplconto the image plane, which
in this case is nothing else than a simple scaling s, Within each weak-perspective view,
there is still no variation of reprojection size with thetdisce. However, the scale can change
with each view, as opposed to the orthographic projectionis Thakes it possible to account
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avg average plane
zavg P gep

pp P ° image plane

(o}

Figure 2.7: Action of different camera models. The imagethefworld pointx,, are shown in
the perspectivexp), the orthographicx,), the weak-perspectivep), and the para-perspective
model &pp). Note that the camera centercorresponds only to the perspective model. The
actual camera center of the other models lies at infinity. fidwee just illustrates the action of
the different models, not their actual way of projection.

for a displacement of the camera towards or away from the Desc The weak-perspective
projection is represented by the matrix:

0
0

O O —
o —+~ 0O
o O o

Zavg

Para-perspective projection For a large field of view, the fact that the points are first pctgd
orthographically in the weak-perspective projection tean large approximation error. In the
para-perspective projection the points are first projepeadllel along the direction defined by
the camera center and the average 3D scene poiatg = (Xavg, Yavg, za\,g,)T (dashed line in
figure 2.7). The para-perspective projection is represemyehe matrix:

f 0 —Xavg/Zavg Xavg
Pop=| 0 f —Yavg/Zavyg Yavg (2.30)
00 0 Zavg

This type of projection is a first order Taylor approximatiton the perspective projection
[Poelman & Kanade 97].
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Affine cameras and traffic scenes Affine cameras are good approximations to the finite pro-
jective camera if the depth variation of the 3D scene is spw@tipared to the average depth of
the 3D scene. In traffic scenes this is not the case. Figurehi®s a typical image. There
are close objects as well as far objects. The size of the ichabcts is very different. Also,
parallel world lines are not mapped to parallel lines in thage at all. Thus affine cameras are
not applicable in traffic scenes. The full perspective canmeust be employed.

Figure 2.8: In traffic scenes the depth variation is very higgwallel world lines made up by the
curb, the fence, and the parking cars are not parallel inrttagye (red lines). Cars at different
distances are imaged differently in size (blue rectangles)

2.3 Two View Geometry

2.3.1 Epipolar Constraint

If the 3D scene is seen by two cameras having a different oewfhe images are related to each
other. The images of one and the same world point satisfy mgg constraint, calledpipolar
constraint Figure 2.9 illustrates this constraint. The world poigtis projected onto the first
image plane yielding; and onto the second image plane yieldkg We say thak, < X, are
corresponding points, or shortlycarrespondence

Now imagine that,, shifts along the viewing rag;x; to the pointx,. The image of that
point in the first view is stilix;, whereas the image in the second view has changed. tén
particular, the image point has moved along the 8. This line arises from the intersection
of two planes: the second image plane and the plane defindaehyointscy, co, andx;. The
latter one is called thepipolar plane. The resulting intersection line is called tepipolar line
. Also the pointse; ande, have a special namepipole. An epipole is the image in one view of
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€1

Figure 2.9: Epipolar constraint. A world poir§, moving along the viewing rag;X; is imaged
as a lineeyxy in the second view.

the camera center of the other view or in other words it is tibersection of the line joining the
camera centers (tHeseling with the image plane.

Epipolar constraint  Two image pointg; andx, satisfy the epipolar constraint if and only if
Xz lies on the epipolar line corresponding x@. Alternatively, one may say that has to lie on
the epipolar line corresponding tc.

After this geometric excursion the algebraic represenati the epipolar geometry is discussed.
Starting from the image poimt; we search for a world point lying on the viewing regk;. The
pseudo-inverse of the projection matRx provides such a point. Lets recycle the texmpfor
that point: x,, = P1"x1. The corresponding point in the second view is just= Pox,. The
epipolar line joinings; andx; is: I2 = & x X2 = [e2] «X2. Combining all three steps yields &3
matrix, calledfundamental matrix

F = [e]xP2P1 " (2.31)

The fundamental matrix transforms points in the first viewdaresponding epipolar lines in the
second viewl, = Fx;. The above approach could have also started from the imagexan
the second view which would end with the corresponding dpidme |, in the first view. This
would lead to the transposed fundamental matrix|i.es F' x,. The algebraic representation of
the epipolar constraint reads:

Xo' Fx1 =0 (2.32)

This constraint is linear in the entries Bfand bilinear in the entries of the correspondence
X1 <> X2. That is why equation 2.32 is sometimes caltéithear constraint

If the calibration matrice& ; andK, are known the fundamental matrix can be expressed in
terms of normalized image coordinate$:= K ~1x; andx, = K ~1x,:

Xo Fx1 = XK TFK 1%, = x5 Ex} =0 (2.33)
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The matrixE = K~ TFK ! is calledessential matrix It covers the relative location of the two
cameras. If the world coordinate frame is identical to thet flamera, i.eP; = K1[I]0] then
P> = K2R[l| —t], andE simply computes to:

E=[-Rt]\R (2.34)

2.3.2 Triangulation

Looking at figure 2.9 it can be seen that given the correspuebe, < X, the 3D pointxy

is reconstructable through intersectidrigngulation) of the two viewing rays,X; and cxo.
Prerequisite is the knowledge about the location of the casn® each other. In particular it
means that the projection matrices must be known.

The triangulation fails if the viewing rays are co-incideithis holds for the viewing rays
defined by the epipoles. The reconstruction in this case Eguous. All 3D points along the
ray C;€; = C,€, induce the same correspondergge— e,. Correspondences near the epipoles
have almost co-incident viewing rays which results in inaate (noisy) reconstructions.

There are different triangulation methods in the literatuA fast but statistically not op-
timal method is thedirect linear transform(DLT). Another - statistically optimal - method
is the optimal polynomial methodvhich minimizes the reprojection error. For details refer
to [Hartley & Zisserman 03].

The triangulation works if the 3D point, is static. A moving 3D point in general is not
reconstructable, due to a manifold ambiguity. However,efplace a constraint on the shape of
the trajectory of the moving point, for instance a straighé lor a conic section, the 3D point
becomes reconstructable except for some degenerate cases.

In the case of the straight line five images (or to be more pedgifive rays towards the
moving point) are required to get a unique solution for theonstruction. The solution is the
generator line of a linear line complex including the rays, ithe line intersecting all rays.
Once this line is calculated the 3D position of the movingnp@ determined by triangulation
between the line and the single rays. That is why this methazhlledtrajectory triangula-
tion [Avidan & Shashua 00]. Figure 2.10 illustrates this.

Degenerate situations occur when the moving 3D point anddheera center trace trajecto-
ries that live in the same ruled quadric surface. Such aseirfagenerated by two sets of disjoint
lines. Each line from one set meets each line from the othe”swy intersection of the surface
with a plane yields a curve of second order. Ruled quadrifases are the hyperboloid of one
sheet, the cone, two planes, the line, and the point.

2.4 Parameter Estimation

Within this thesis we will estimate parameters of certairdele based on measurements. These
measurements are related algebraically to the model, gm givsufficient number of measure-
ments the parameters of the model can be computed. For exahgimodel of a 2D line:
y(X) = m-x+ b is characterized by the two parametemrsandb. With two measurements (2D
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Figure 2.10: Trajectory triangulation. If the trajectofyaomoving 3D point is a line five images
of this point define it’s trajectory uniquely.

points): (x1,y1) and(xz,y2) the parametersr andb are uniquely defined. In real life, however,
the measurements are uncertain which prevents an exactutatiop of the parameters. They
can only be estimated. In order to achieve accurate estmateexploits the power of statistics:
Increasing the number of measurements stabilizes theastim

Next section the least squares estimation method is disduBssed on the 2D line example
its effectiveness is shown. The example also shows thatrtbibod is vulnerable to gross errors
in the measurements\tliers), i.e. the least squares estimate may be perturbed if caithie
present. For this reason methods were developed which lwstrto outliers. Two of them are
discussed in the sections 2.4.2 and 2.4.3. Section 2.4.pa@% the diferent methods where the
2D line serves as an example again.

2.4.1 Least Squares

The question now is how to get an estimate forand b given a set of uncertain measure-
ments(x1,Y1), (X2,¥2), .-, (Xn,¥Yn)? Note that only the y-component is subject to errors. The
x-component is assumed error free (denoted by the bar gc@@htourse, we want to get the
best achievable estimate. To this end, we have to know thmapility density function (PDF) of
each individual measurement error (residugd: y(x;) —yi. The probability of observing a cer-
tain residual depends of, m, andb. For convenience we summarigeandb in the parameter
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vectorp = (m,b)T. The probability then is given by pdfi|x,p). Assuming that the residuals
are independent the joint probability of observing thererget of residuals is:

L(p) =[] pdfi(rilx;, p) (2.35)

L is called the likelihood function. The parameter vegidor which L becomes maximal:

p =arg rrg)ax_(p) (2.36)

represent the best achievable estimate, since this paaeator is the most likely one which
has generated the given set of measurements (sample). fdragiar vector achieved this way
constitute anaximum likelihood estimat&LE).

In practice one commonly assumes that the residuals obeyuas@a distributiorr; ~
N(0,0). Then equation 2.36 becomes:

D = argma e*_c's2 2.37
p gpxﬂ 2 (2.37)

The normalization constant of the Gaussian distributiceguation 2.37 is omitted, since it does
not effect the solution. Equation 2.37 is simplified by takihe negative logarithm:

A~ . 2
=argminy r; 2.38
p=argmi Z . (2.38)

yielding the well-knowreast squares methodFigure 2.11 demonstrates the effectiveness of this
method, but also shows its limit. In figure 2.11a the 2D linesimated based on two measure-
ments only. Clearly, the estimate differs considerablynfithe true 2D line. In figure 2.11b the
least squares method is applied using ten measurement&siihmated 2D line is very close to
the true one. Figure 2.11c shows that gross errors in theureragnts spoil the estimate. Such
measurements are calledtliers The least squares method is not robust to outliers.
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Figure 2.11: Least squares estimation. A 2D line (yellongssmated based on uncertain mea-
surements (black dots). The true 2D line is marked by theathhe. (a) Two measurements
are required to compute the 2D line. The result is poor. (k8 [East squares estimate based on
ten measurements yields a good result. (c) Outliers (res) dpbil the estimate.

The next sections deal with estimation methods which cadleasutliers appropriately.
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2.4.2 M-Estimation

We have seen that the least squares method constitute a oraxikelihood estimate if the
residualg are Gaussian distributed. Outliers, however, either atré&aassian or have a higher
variance than the inliers. The least squares method is niobaldn such cases.

To overcome this issue Huber proposed the generalized nuaxifikelihood estimation
[Huber 81] and called itM-estimationwhere M stands for "maximum likelihood-type". His
approach generalizes the square function in equation 8.88 &rbitrary cost functio@ = C(r).
This allows to formulate MLE’s for non-Gaussian distribditeesiduals. For example, if the
inliers as well as the outliers are Gaussian distributetl gdndard deviationsi, andogt, re-
spectively, the PDF with the normalization constant orditeepdf(r) = eexp(—r?/202,) + (1 —
£) exp(—r?/202,,) with € the expected fraction of the inliers. The cost function tisen

C(r) = —log (eexp(—r?/20%) + (1 —€) exp(—r?/202,)) (2.39)

The cost function 2.39 is calletbrrupted GaussianIn contrary to the least squares function
the corrupted Gaussian attenuates the influence of thewmuffig. 2.12) which results in more

robust estimates. In summary, if the distribution of thedeals is known, it is always possible

to construct a MLE by settinG(r) appropriately.
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Figure 2.12: Different cost functions. (a) square functi@@) corrupted Gaussian with, = 1,
Oout = 5, € = 0.8. (c) Tukey withoj, = 0.5. (d) Huber withl' = 1

There are also cost functions motivated more by heurigtias by adherence to a specific
noise-distribution model. A famous function is thekey functioriMosteller & Tukey 77]:

(cOn)? )2\ .
cr={ ¢ 1—<1—(@))] Irl < eoin (2.40)

(cain)</6 , |r| > coin
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wherec = 4.6851 is the tuning constant. The graph of this functiorhisas in figure 2.12c.
The Tukey function is able to suppress the outliers comiglesenceC(r) takes on a constant
value for large residuals. The drawback of this functiortgsion-convexity. Thus, the sum of
the Tukey evaluated residuals will have several local miich can make convergence to
the global minimum chancy. It should by applied only when @itidlization near the global
minimum is guaranteed.

The fourth and last cost function we discuss hereHuber functionis convex and thus does
not introduce additional local minima. The price we havedy {3 a reduced robustness over the
Tukey function. It is defined as:

2
C(r):{ r2T| 12 I l; (2.41)

Residuals larger thai are treated as outliers. Their influence grows only lineateiad of
guadratic. The thresholtl should be chosen to one to three times the inlier standardte®v.
The graph of the Huber function is shown in figure 2.12d. We uge this function throughout
the thesis.

Inherent in all robust cost functions is the knowledge altbetinlier standard deviationy,.
The robust estimation of it is related to the median of theohlis values of the residuals:

Oin = 1.48261+5/(N —dim(p))] meidiadri| (2.42)

The magic number 1.4826 comes from the Gaussian normaibdistn. The median of the
absolute values of random numbers sampled from the disitsibhi (0, 1) is equal tod—1(3/4) ~
1.4826. The term % 5/(N —dim(p)), with N the number of measurements, compensates for
the effect of a small set of measurements. More about theytleédM-estimation can be found

in [Maronnaet al. 06].

2.4.3 RANSAC

RANSAC (RANdom SAmple Consensdg)roposed by [Fischler & Bolles 81] seeks to detect
outliers by sampling and rating several minimal subsets ftioe given set of measurements. A
minimal subset contains the minimal number of elements gmeanents) required to compute
the parameters of the model. In the case of the 2D line, twosarements (2D points) are
required.

After a minimal subset was randomly sampled and the paraswgre computed, the subset
is rated based on the number of measurements consistenth&iftarameters. The higher the
number the better the quality. This is done for a certain remolb subsets. The best solution is
the subset with the highest quality. Two points are not yatfebd: What does consistency mean
and how many subsets should be sampled?

The original RANSAC method defines the consistency by meétiseathreshold function.

A measurement is consistent if its residuals smaller than the threshold. As in the case of

1By the way the websiteww.ransac.org has nothing to do with our RANSAC. It is the website of the Raiss
American Nuclear Security Advisory Council.
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the robust cost functions the threshold should reflect thedstrd deviation of the inliers. Later
works substitute the discrete threshold function by cartus ones.

For example MLESAC (Maximum Likelihood Estimation SAmplesensus) proposed
by [Torr & Zisserman 00] incorporate robust cost functionswn from the M-estimation.

LMedS (Least Median of Squares) uses the very robust me&langseeuw 84]. Here the
concept of consistent measurements is not appropriataddrtheless, the median states a good
function providing the quality of a subset. The best solutgthe subset with the lowest median
of the squared residuals.

There is still the question how many subsets should be sa?pnce the measurements
are contaminated by outliers, one subset is definetelyfingirft. The hope is to collect a subset
containing only inliers. Such a subset will provide a gootineste. The more subsets that are
sampled, the higher the probability that at least one sudus®tins only inliers. Let the desired
probability beP and the inlier fraction be, then the number of subséésshould be:

log(1—P)

. 2.4
Z log (1 camio)) 249

SinceM may be large ¥ 50) RANSAC is computationally expensive. In recent yearsNSAC
has been accelerated. GASAC (Genetic Algorithm SAmple €©usis)
[Rodehorst & Hellwich 06] for example samples subsets wlainh close to the best solution
found so far. Preemptive RANSAC [Nistér 03] scores all stdbseparallel by testing the mea-
surements successively. During this process bad subsgtagha low support, are rejected early
which speeds up the computation.

Another problem with RANSAC is that the sampled measuremeih& subset may lie close
to each other making the estimate instable. Such subsetsaless and should be avoided. A
method addressing this problem is GOODSAC (GOOd SAmple @wss) [Michaelseeat al. 06].
It ensures that the measurements contained in a subsetimenin distributed.

2.4.4 Comparison

We take up the 2D line example to show the robustness of theoprdy discussed estimation
methods. Figure 2.13 shows the estimated 2D lines for éffteoutlier fractions. With 23% out-
liers only the non-robust least squares method performiy.balll other methods (M-estimation
with Huber function, RANSAC, LMedS) provide good estimat®¥ghen the outlier fraction is
increased to 38% M-estimation as well as RANSAC reach timeit.| The very robust LMedS
still provides a good estimate. 54% outliers are an overkitte that these outlier fractions are
just examples. They do not reflect the actual breakdown goifthe individual methods.

The breakdown point of an estimation method is the smalletlieo fraction that can cause
the estimator to take values arbitrary far away from theesirestimate. For least squares it
is 1/N with N the number of measurements. M-estimation breaks down-at1}2)1/ dim(p)
whereas LMedS takes on the maximum value of 50% indeperndéotin any parameters.
[Stewart 99] compares the presented methods in more detail.
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Figure 2.13: Robust estimation of a 2D line with (a) 23% @utli(b) 38% outliers and (c) 54%
outliers. The true 2D line is marked by the dashed line. Thstlsquares method (yellow) is
not robust. M-estimation (green) and RANSAC (blue) get of88% outliers whereas LMedS

(cyan) still performs well. No method is able to handle 54%iets.)



Chapter 3

Optical Flow

The optical flow is the source of information on which the aitjons developed in this thesis
rely on and thus deserves an extra chapter.

The optical flow represents local grey-value displacemtais frame to frame. These dis-
placements have two reasons: first because the camera antjéots move through the scene
and second because the illumination changes.

lllumination changes are manifold. The light source mayngigatheir spectrum of emitted
light. Surfaces may vary the fraction of reflectance whenstiméace normal is rotated (diffuse
and specular reflection). Structured light varying temfppiaauses moving shadows on illumi-
nated objects. All three types occur in traffic scenes. Whamngj into and out of a tunnel the
light source changes from the sun to a manmade lamp an bable teun. In most cases the
spectrum of the lamp is different from that of the sun. Whems eae driving curves their surface
normals rotate. Structured light is caused by the shadoviree$ for example. To model all
three types of illumination changes is cumbersome for adggenes. The parameter space of
a complete model is very high. The parameter estimation ofi sumodel based on acquired
images is infeasable due to lots of ambiguities. In practiien simple illumination models are
used, for example the linear model (scale + offset).

In contrast to image displacements induced by illuminatimenges the image displacements
induced by a moving camera have exactly one reason, the mofitlhe parameter space of
motion models is low. Hence, the estimation of the model patars is feasable. Indeed, we
will estimate them when we will deal with the ego-motion (ptex 4). In the next section two
motion models are discussed. The entire set of image deplasts computed by a motion
model is callednotion field

In the second section we estimate the image displacemerds o consecutive frames.
The issues coming with the estimation are discussed as svillegestimation algorithm used in
this thesis.

31
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3.1 Motion Field

3.1.1 Discrete Motion Field

The discrete motion field describes the image displacenuémiojected 3D points caused by a
moving camera. The projected motion of a 3D point betweenftames is computed utilizing
the projection matrices of the last cam@jaand the current cameR. The latter one depends
on the time interval\t between the two frames. The choice of the world coordinateér does
not matter since it does not affect the image positions optiogected 3D points. For simplicity
the world coordinate frame is set such that it coincides wighlast camera. The last projection
matrix then just contains the calibration matkx P, = K [I|0]. The current projection matrix
arises from the transformation of the world coordinate fanto the current camera coordinate
frame plus the projection onto the image plaRg= KR [I| —t] (see also section 2.2.1).

The projected motion of a 3D poir{, then computes to:

The tilde accent denotes inhomogeneous vectors.

The drawback of this discrete motion are the complex depeneég on the motion parame-
ters. To see this we consider a simple example where the egostrrotates about the y-axis,
i.e. R =R(0,Ay,0) andt = 0. In order to get a simpler formula fdxx we normalize the image
coordinates by applying ~* to the image points. By doing thi¢ becomes the identity matrix.
The projected motion in normalized coordinates then reads:

- 1 = (05 +1) sinay
Ax= COSAY + (X)), SINAY < —(<x|)2(cosA)qJ+(X|)1SinALU—1) ) 2

This example shows that the discrete motion is non-lineahémotion parametedy, and
further trigonometric functions are involved. Howeverpation 3.2 holds for arbitrarily large
Ayr’s. If the camera motion is small due to a small time inte&althe motion field can be
computed much simpler, which is described next.

3.1.2 Instantaneous Motion Field

The discrete motion field describes image displacementsechloy an arbitrarily large time in-
terval. In contrary the instantaneduunterpart is only valid for infinitesimal time intervals.
practice infinitesimal time intervals are not possible Imatyertheless, the instantaneous motion
field is a good approximation if the time interval is small.

The instantaneous motion field arises from differentiabdbAx (equation 3.1) with respect
to At and setting\t = O:
. 0AX

_ 98X 3.3
X7 0t [y (33)

Lin the literature the terms continuous and differentialiomfield are also found meaning one and the same.
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With normalized image coordinates and given tRéAt = 0) = | andt(At = 0) = 0 we get:
1. :

with
10 —(x) ) (), 1 E —(x)
S R I B S o B

andz= (Xw)5 the depth of the 3D point. Sino® andB only contain image coordinates equa-
tion 3.4 is linear in the motion parameters- %‘ andw = %‘ , Wherew covers the
At=0 At=0

three rotation angles. Also, the trigonometric functioasdwanished making the computation of
x much simpler compared to that&k. Note that the instantaneous motion field is characterized
by thetranslational velocityt and therotational velocityc which is different from the discrete
case. The instantaneous image displaceméntalledimage velocitylt is the projection of the
3D velocity.

Figure 3.1 shows some exemplary motion fields caused byreliffecamera motions and
compares the discrete and the instantaneous motion fieldcto @her. In the figurét is set
to a high valug/At = 1) to point out the difference between the discrete and thamaheous
motion field. In case of a translation along the optical afigs @8.1a) the instantaneous motion
vectors are too short. In case of a horizontal translatign &fiLb) the instantaneous motion field
is equivalent to the discrete one. Figure 3.1c and 3.1d sbtations about the optical axis and
the vertical axis, respectively. Here, the directions @& thotion vectors change continuously
over time causing an error in the instantaneous motion v&cto

3.1.3 Focus of Expansion

The motion field induced by a camera moving along the optikal @ig. 3.1a) has a form like

a star. The motion vectors seem to have a common origin. Adinstxons of the motion vectors
intersect in the origin, théocus of expansiofFoE). When the camera moves backwards the
origin is called focus of contraction.

The star-like motion field is preserved as long as the camedargoes a pure translation.
The FoE, in this case, points in the direction of travel, nieguthat the viewing ray defined by
the FOE and the camera translaticare parallel. In turn, it means that the FOE and the epipole
in the last frame coincide.

If the camera rotates in addition, the focus of expansiorsdud exist. The motion vec-
tors do not intersect in a common point, see figure 3.2. Naettiere may be still points
having zero motion, calletixed points The set of 3D points inducing fixed points in the im-
age is callechoropter. In general the horopter is a twisted cubic (a curve of degjnege in
P3). [Verri et al. 89] characterizes fixed points as center, spiral, focuse nsatidle, or improper
node. It also shows how the motion field looks like in the vitgirof such points. In figure 3.2
the fixed point is a spiral.
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Figure 3.1: Discrete (black) vs. instantaneous (red) nndtedd. (a) Translation along the z-axis.
(b) Translation along the x-axis. (c) Rotation about thexs-avith 10°. (d) Rotation about the
y-axis with 10.

3.2 Optical Flow

Last section we have seen how the motion field is computeaddnsa moving camera. In prac-
tice, the motion parameters of the camera as well as the Bibtste of the scene are unknown.
Thus, the motion field cannot be computed. Instead, it ha® tddbermined directly from the

images. In particular, the task is to find corresponding fqairs based on the similarity of local

grey-value structures. This is not easy to accomplish simeee are several hurdles to take:

¢ lllumination change. Physical illumination changes from frame to frame occur whe
the light source changes its output, or when diffuse or dpecaflections change due to
a rotation of 3D surfaces. lllumination changes also entmuwvhen the camera adapts
its exposure settings. In these cases the grey-value wtesatio not just "flow" over the
image, but change their brightness, too. This spoils thdasitty between them, which
makes it hard to find corresponding point pairs.
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Figure 3.2: Non-existent focus of expansion. Motion fielduoed by a camera moving along
and rotating about the optical axis. The dotted lines sha#ttiere is no common intersection
point of the motion vectors.

e Aperture problem. If the local grey-value structure occurs multiple timeshe image
there are also multiple matching candidates. The correzicannot be found. This prob-
lem arises especially at long grey-value edges inducedigyrtaarkings for example. Also
low textured image regions, i.e. regions with low grey-ealariations, suffer from this
problem.

e Occlusion. A 3D point in the background seen in one frame is not seen irother
frame if the foreground occludes the background. Consetyiencorresponding point
pair associated with that 3D point does not exist. The probkethat occlusions are not
known a priori. An algorithm still tries to find matching greplue structures and may
give wrong results.

Figure 3.3 shows an example of tiderrespondence problem The grey-value structure
inside the green image patch is unique in the image. It is ablpm to find the matching patch
in the other image. In contrast to this, the red patch coimgithe curb occurs multiple times.
There is no unique matching patch. The blue patch is just seene image. The oncoming
vehicle occludes it in the other image.

Due to the problems mentioned above the apparent displaxterakgrey-value structures
may be different from the actual displacements defined byrtbgon field. It means we deter-
mine the former one, which is callegbtical flow field and hope that it is sufficiently close to the
latter one.

Unfortunately, the term "optical flow" is not used consisheim the literature. Some authors,
e.g. [Vidal 05], link it to the instantaneous motion field. ejhspeak of optical flow if the dis-
placements are infinitesimal or very small at least. If treedite motion field is applied due to
large displacements they speak of correspondences. Budwba small and large mean? There
is no strict threshold separating these terms.

In [Haussecker & Spies 99] the differentiation is made ugenway the displacements are
estimated. Optical flow-based techniques "try to minimiaeohjective function pooling con-
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Figure 3.3: Correspondence problem. Two images taken @hctisime instances are shown.
The green image patch matches uniquely. The red patch haplmwhatches. The blue patch
has no match.

straints over a small finite area". These techniques faihéf temporal sampling theorem is
violated. "Correspondence-based techniques try to eienbest match of features ...". "They
are also capable of estimating long-range displacemehts ..

In this thesis, the terms optical flow and correspondence lidentical meanings. They
both denote a corresponding point pair, regardless of tigninale of the displacement between
them.

The next section describes the optical flow algorithm usetthi;ithesis. The literature ex-
plains plenty of other flow algorithms. They are not discds&ether since the establishment
of correspondences is beyond the scope of this thesis. Tdueras referred to [Jahne 05,
Haussecker & Spies 99] which give a good overview.

3.2.1 Census Transform based Estimation

The requirements to an optical flow algorithm depend heanlyhe application. In the field of
driver assistance the requirements are:

e real-time capability
e ability to handle large image displacements
e robustness to illumination changes

The flow algorithm developed by [Stein 04] meets these reguants. It uses the census trans-
form as the representation of local image patches. Thelséarcorrespondences is done using
a table based indexing scheme. In detail the method workslas/s:
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The census transform as applied in [Stein 04] compares thterceixelx of an image patch
to the other pixels’ inside the patch:

E,x,xX)=¢ 1 , [I(X)— I( )\<s (3.6)
2, 1xX)-1X)<e

with | (x) the grey-value (intensity) at The census digf just measures the similarity between
the grey-values at andx’. Typically,e = 12...16. This representation is very robust to noise
and is insensitive to a wide range of illumination changes.

All census digits of the image patch are clockwise unrolladding the signature vectar
Figure 3.4 illustrates this. The signature vector is usesktrch for corresponding point pairs.

124|174 | 32 21110
124|64 |18|—= | 2 | x | 0 | —= 210002222

157|116| 84 212 |2

grey values census digits signature vector

Figure 3.4: Census transform o33 image patch.

To this end, all signature vectors of the first image are gtorex hash-table together with their
pixel position. Then, all signature vectors of the secondgeare compared to the hash-table
entries. This gives a list of putative correspondencesdthgses) for each signature. The list is
empty if a signature in the second image does not exist inrfstarfiage. In the event of multiple
entries, the list is reduced by applying some photometritggometric constraints. If there are
still multiple entries, the one with the shortest displaeeains taken. Thanks to the indexing
scheme, arbitrary large displacements are allowed. Eveamwsh image patch moves from the
top left image corner to the buttom right corner it is matched

The method is summarized in algorithm 3.1, with an examplesafse shown in figure 3.5.

Comparison to Ground-Truth

The flow field retrieved by this algorithm is compared to grdiruth in order to measure its
accuracy. An artifical scene rendered with OpenGL servessasi@e for the ground-truth data.
Since the 3D structure of the scene as well as the cameramargdknown the motion field can
be computed. Illumination changes are not present, so theabflow field is identical to the
motion field. Figure 3.6 shows an image of this artifical sdegether with the measured and the
ground-truth optical flow field. Some measured flow vectoesaunexpected large magnitude
for instance at the street-lamp. They are obviously mishetcThe error histograms are shown
in figure 3.7. The peaks at the margins collect all errorstleas -2 pixels and greater than +2
pixels, respectively. Flow vectors having these errorspaodably mismatched and treated as
outliers. From the histograms we compute:



38 CHAPTER 3. OPTICAL FLOW

Algorithm 3.1 Optical Flow
1. Scan first image.Compute signature vector for each pixel

s1(x) = Q) &(11,%,X)

x'eD

with @ the concatanation operator abDdhe image patch centeredxat

2. Filter out useless signaturesPatches containing no grey-value corners are vulnerable to
the aperture problem. They are not processed further.

3. Store signature in hash-table.Signature vectos(x) is interpreted as a decimal number
and serves as the key to the hash-table in which the centelnqix stored.

4. Filter out useless signatures.If one and the same signhature occurs too frequently it is
deleted from the table. It is very likely that this signatoceurs also frequently in the second
image, so a unique correspondence will not be found.

5. Scan second imageCompute signature vector for each pixel

$(x) = X) &(12,%,X)

x'eD

6. Compare signature vectors.Look for eachsy(x) in the hash-table whether there are one
or more entries with the same signature vector.

7. Establish correspondence hypothesesAll point pairs x1, Xz with $1(X1) = S(X2) are
correspondence hypotheses.

8. Reduce the number of hypothesesThere may be several point pairs with identical sig-
natures. Filter out the hypotheses where the illuminatltange is too high (e.g. > 20%) or
where the displacemelik; — x| is too high (e.g. > 70px). From the remaining hypotheses
take the one with the shortest displacement.
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Figure 3.5: Optical flow field. The length of the flow vectors@or coded from blue (Opx) to
red (> 20px). There are 27639 vectors in total. The imageg waken by a VGA camera with
12bit resolution.

horizontal dir.| vertical dir.
mean -0.0013px | -0.0004px

std. dev. 0.538px 0.483px

outliers 6.3% 4.8%

A standard deviation of about half a pixel is not surprisibgcause the flow algorithm is
"only" pixel precise. Other flow algorithms achieve subgbiprecision (typical accuracy 0.1px),
however, they are computationally more expensive. An examspKLT, which stands for the
inventors Kanade, Lucas, and Tomasi [Tomasi & Kanade 91&Sltimasi 94]. The pixel pre-
cision property prevents the ability to track features, tioeestablish correspondences (with high
accuracy) over more than two frames.
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(b)

Figure 3.6: Comparison of the measured optical flow field tmugd-truth data. (a) The flow
algorithm applied to an artifical scene. (b) The groundhtytical flow field.
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Figure 3.7: Error in the measured optical flow field. (a) Ehistogram in horizontal direction.
(b) Error histogram in vertical direction.



Chapter 4

Ego-Motion Estimation

A reconstruction of the 3D scene seen by two cameras is estjuirorder to detect moving ob-
jects. The scene can be reconstructed only if the relatiemt@ation of the two cameras to each
other is known (section 2.3.2). In stereo vision, the camara rigidly mounted enabling the pos-
sibility to determine the relative orientation through ioil calibration. However, in monocular
vision, the camera relative orientation changes continskyodue to the ego-motion. Conse-
guently, the relative orientation (ego-motion) has to beeeined in each frame.

This desirable information could be obtained from accursgial measurement unitgMu).
Fully featured IMU’s are equipped with 3 linear acceleratamd 3 gyroscopic acceleration sen-
sors. They measure all 6 degrees of freedom. In practice ofeced to two issues related
to the use of IMU’s. The first is that the IMU has to be couplegldiy to the camera, oth-
erwise the IMU will not reproduce the camera ego-motion adéely. The second is that the
IMU and the camera have to be calibrated to each other. Térmatitre addresses both issues.
In [Chalimbaudet al. 05] a visuo-inertial sensor is presented which brings a CM@&ger
(camera) close to a 6 DoF IMU. This compact design guarariteesgidity. The calibration
issue is addressed in the works [Lobo & Dias 05] and [Lang & Pi5].

Alternatively to IMU’s the ego-motion may also be estimateiizing the images directly.
The disadvantage of vision is that the ego-motion estimatmes not work well in all situations
(e.g. at night, or during bad wheather where the optical fleld is sparse and noisy). The IMU’s
on the other side are expensive. An additional question ethdr they provide accurate results
within the entire velocity range. Another advantage ofarisis that the estimated ego-motion is
inherently synchronous to the acquired images. No timgstaattie!

In this chapter the vision based estimation of the ego-maBoconsidered. Next section
the ego-motion is explained in detail. A comprehensive st existing ego-motion estima-
tion schemes follows. Based on it an appropriate schemdédstsd (section 4.3) and explained
(sections 4.4 and 4.5). In section 4.6 this scheme is extehge motion model. It includes
the iterative minimization of a non-linear function. Secti4.7 is dedicated to that issue. The
advantages of the motion model are pointed out in sectionh@ sensitivity analysis in sec-
tion 4.9 shows that the image regions contribute diffeyettdlthe estimate. The chapter ends
with experimental results (section 4.10).

41
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4.1 Ego-Motion in Detail

The camera undergoes an Euclidean transformation fromefrtaniframe, consisting of three
rotations and three translations along the coordinate. a&@gen nothing else than the optical
flow five out of these six degrees of freedom can be estimateel léihgth of the baseline (driven
distance) between the two frames stays undetermined. @kemdor this is found in the equation
of the instantaneous motion field 3.4: One can simultangausiltiply the depthz and the
translational velocity by an arbitrary scale factdrwithout changing the image velociky

1. | . _
—ZA-t+B-t00= —A-(A\t)+B- 4.1
== +B-® = (At)+B-® (4.1)

Fixing the scale factor requires the knowledge about ettiverdepthz of at least one point or
the magnitude of the velocity't|| or the distance in 3D of at least two points (e.g. the height
of a house). Thiscale ambiguitycan be explained intuitively: Looking out of a locomotive
while driving through the landscape one does not know whekiee"universe" is real or a model
railway. The observed scene as well as the motion are idgmitoth cases.

If image points are tracked over time and the initial drivestahce (distance between the first
two views) is known the distances between the upcoming viems determinable
[vdHengelet al. 07].

4.2 Ego-Motion Estimation Schemes in the Literature

The problem of the reconstruction of the 3D scene seen by &mecas has attracted researchers
for more than 100 years. The physicist and physiologistidann von Helmholtz was the first
who investigated the human ability to see three dimensidt@lpublished his work "Handbuch
der physiologischen Optik" in 1867. It was translated inmtglesh in 1925 [vHelmholtz 25]. Also
the psychologist James J. Gibson [Gibson 50] has dealt ngthisual perception of animals and
humans. The term "optical flow" traces back to him.

Longuet-Higgins and Prazdny [LonguetHiggins & Prazdny &8} published a method for
estimating the full ego-motion, meaning translation andtion. They show that the instanta-
neous optical flow (2D velocities) is composed by the sum efrtitational velocities and the
translational velocities. The rotational velocities amosth over the entire image and indepen-
dent from the scene structure whereas the translationatitiels are only smooth if the depth
variations in the scene are continuous (compare to equatfn This fact can be exploited to
separate the translation from the rotation: Optical flowteexin a local neighbourhood have an
almost equal rotation part. Taking the difference of adjaoptical flow vectors cancels out the
rotation. The difference between the translations, cattetion parallax, remains. This vector
points towards or away from the focus of expansion (FOEhéfe¢ is no depth discontinuity in
the scene the motion parallax vector is zero, i.e. the tadiosi part also cancels out, which is
fatal. This is the drawback: A depth discontinuity is regditut the measurement of optical
flow at discontinuities is difficult.
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During the years the literature has produced a wealth onnegfen estimation schemes
driven by the photogrammetry and robotics. Next, five propgerare discussed on which the
schemes are characterized:

e Direct vs. Optical Flow: Direct methods warp image patches according to the estimate
ego-motion and compare the grey-values of the originalpatc¢he last frame with the
warped patch in the current frame. This avoids the compmntaif the optical flow. Low
textured regions can also be taken into account. Directoastheed knowledge about the
scene structure (e.g. the homography when looking at a sitane) otherwise a warping
would not be feasible. When there is aopriori knowledge the scene depth of every
single point can be included as a parameter in the estimptamoess. However, this would
increase the computional effort considerably (see [Maralghet al. 98]). Sometimes
direct methods are callambrrespondencelessethods.

e Discrete vs. Instantaneousinstantaneous approaches employ the instantaneous motion
field (section 3.1.2). They are applicable when the imagplatements are small. The
equations involved when using the instantaneous epipolastaaint or the instantaneous
motion parallax are more tractable than the discrete copates (no trigopnometric func-
tions are required). There is no work known to the author winwestigates the break
down point of the instantaneous methods. So it is not cleatWwémall displacement”
really means.

e All Parameters together vs. Splitting of the Parameters:Splitting the parameters (com-
monly into the translational and the rotational parametexduces first the search space
and second resolves the ambiguity between translationaatian [Tianet al. 96].

e Two-View vs. Multiple View: Two-view approaches just consider two consecutive im-
ages. They avoid tracking points over time. This is advastag in siutations where
tracking is infeasible. Rainy scenes with the windscreepewiactivated or scenes at
night having a low image contrast are examples where trgakiproblematic. Multiple
view approaches are more powerful in the motion segmentafiorthermore the multiple
measurements lead to more accurate estimates. A good eweofithe work on ego-
motion estimation in "long" image sequences can be found&hafiat & Price 90] and
[Wu et al. 95].

e Motion parameters only vs. Additional nuisance parameters Some approaches es-
timate not only the ego-motion parameters but also scenetste parameters (e.g. lo-
cations of individual 3D points), though we are not integesin such parameters. Their
incorporation improves the estimates but also increagesdmputational complexity.

The literature on ego-motion estimation is so rich that ome combine the above proper-
ties almost arbitrarily and one will find at least one methathwhese properties. Hence it is
quite hard to put the crowd of methods into a relational ordaeking comparisons even more
cumbersome. Indeed, there is a very limited number of pagergaring the different methods
([Tian et al. 96], [Armanguéet al. 02], [Zhang & Tomasi 02]).

In the following sections some representative methodsiaceisised briefly.
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4.2.1 Direct Methods

Grey-value domain. Direct methods define an error metric based on the grey-saidech
they minimize over the ego-motion and scene structure patenr1 The sum of squared differ-
ences (SSD):

ssd= S [li(x) — le(f (x1)))? (4.2)

is a common error metric. The grey-values (intensities)damoted byl; andl.. The function
f transforms a point in the last frame into the current framelepends on the ego-motion and
scene structure parameters. In the most general case eathxploas its own depth. All the
depth values have to be estimated together with the egamptrameters which would be an
overkill. The solution is to model the scene. A 3D plane, faaraple, has only three parameters
(normal vectom plus distancel to origin). So, if the camera looks at a plane only these three
scene structure parameters have to be estimated.

The methods [Steirt al. 00] and [Ke & Kanade 03] model the road as a plane and consider
only the image region where the road is present. The SSDartkid region is minimized. The
general idea behind this is illustrated in figure 4.1. Thepivay function f depending on

(b) (c)

Figure 4.1: Direct method for estimating the ego-motione Tdst image (a) is subtracted from
the warped current image (b) yielding the difference image The grey-value differences on
the road are minimal.

the parameterst, w,n,d virtually transforms the current camera to a new locatidrthé new
location is equal to the last camera’s location the warpeteatiimage is the same as the last
image. Hence, the grey-value difference (fig. 4.1c) is zédme says that the image regions
(containing the road plane) are registrated.

Frequency domain. It is also possible to estimate the ego-motion in the frequetomain.
Strictly speaking methods doing so are neither direct nosthmor optical flow methods. Nev-
ertheless, they are treated as direct methods becausehttueythe idea of using the complete
information included in the images. Frequency based methoahage cluttered 3D scenes (a
scene containing, for example, bushes and trees). Suckssaes the natural enemy of optical
flow algorithms due to the high number of occlusions.
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One representative is [Langer & Mann 04] which estimatesrtreslational direction of the cam-
era. Itis assumed that there is no rotation. In local imagehgs the image velocities (instanta-
neous motion field) all lie on a line. The position within tlwee depends on the image position
and scene depth. The spatio-temporal image cube is tramsfointo the 3D frequency domain.
In that domain the motions lie on planes all intersecting toeamon line, depending on the
translational direction. The proposed algorithm seardébethat line. In [Mann & Langer 05]
the method was extended to motions containing rotations.

In [Makadiaet al. 05] the Radon transform is employed to estimate the egoemotA corre-
lation integral is formulated measuring how well the epgralonstraint is met given particular
ego-motion parameter&(@ndt):

G(R,t):/X/X a(x1,Xc) - A(RX|, Xc, t) dx; dXc
| c

g(x1,Xc) measures the similarity between the two image positigraadx.. The authors uses
the Euclidean distance of SIETeatures computed at the positionsandx.. TheA function
measures how close the image positi@nandx; comes to satisfying the epipolar constraint.
The maximum value 06(R,t) gives the ego-motion which is searched for. However samgplin
G(R,t) would result in a combinatorial explosion. The authors dtbis sampling by the appli-
cation of the spherical Fourier transform. The computatib®(R,t) in the Fourier domain is
much easier. The approach is very robust against outlieosveMer, the computational burden
prevents the algorithm of being real-time capable.

The method developed by Domke and Aloimonos [Domke & Aloio®A6] is a hybrid
methd. It computes correspondence candidates based ohdbke pf tuned Gabor filters. The
more similar the responses between two image patches anegtier the correspondence proba-
bility is. The ego-motion then is estimated maximizing tbm{ probability. Repetitive patterns
in the image inducing ambiguities in the optical flow are ngethby this method.

4.2.2 Optical Flow Methods

Instantaneous motion. Ego-motion estimation methods based on the instantaneotisrm
field as described in section 3.1.2 typically minimize soio of:

N

1, .
-ZlHXm’i — A =B - Q)|? (4.3)
1=

with Xm j thei-th measured image velocity. This error metric requiresittimmze over the depth

valuesz (nuisance parameters), too. Methods have been develoghecimg these parameters or

even eliminating them completely. [Bruss & Horn 81] impoaesnstraint on the depth:
IAt]?

(Xm — Bco) T At

(4.4)

1Scale Invariant Feature Transform [Lowe 99]
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This effectively chooses the depth minimizing the distaoiCen, to the instantaneous epipolar
line. For computational ease the authors drop the t&hmi? in equation 4.4. Putting this into
equation 4.3 yields:

N
Z\‘ (xm3 — Bica), <Ait)2 — (Xmj — Biw), (Ait)l |2 (4.5)

This error metric imposeslalinear constrainton the ego-motion parameters which is equivalent
to theinstantaneous epipolar constrairit is minimized easily, however, the estimate is biased.
The reason is the improper scaling of the residuals causddipping of{|At||%. In the end an al-
gebraic error is minimized instead of a geometric error. RNeL1.2 method [Zhang & Tomasi 02]
takes||At||2 into account leading to unbiased and consistent estimtatesobustness the square
function in expression 4.5 is substituted oy

ii

The error metric 4.6 is appropriate if the noise in the meagptical flow is homoscedastic,
i.e. independent from the lengiix||. For heteroscedastic noise different scalings are redjuire
The appropriate scaling for noise proportional to the titieal component of the optical flow
is presented in [Zhet al. 05].

(Xm,i - Bi(b)l (Ait)z — <Xm,i _ Bi(b)z (Ait)l 1.2
IAL|

(4.6)

In contrast to [Bruss & Horn 81], which completely eliminatae depth values in expression 4.3,
[Zucchelliet al. 02] reduces the number of depth values by incorporating B88sland planes.
For all points on a plane with the normal vectoand the distance it holds:

d
7= ——— 4.7
xTn (4.7)
There are only three scene structure parameters to estimatein addition to the ego-motion
parameters.

[Jepson & Heeger 90] split the ego-motion parameters by gebahic manipulation of the in-
stantaneous motion field. The resulting constraints depatydon the translatioh This allows
the estimation of seperately fromv. Their method, which they called tiseibspace method
should attract a lot of researchers later on. The authorsdbkres developed a version which is
linear ont and found out that the outcoming estimates are biased [H&edepson 92].

[Lawn & Cipolla 96] introduced the linearised subspace radttwhich is applicable if small
image patches are considered. Here, only four image pai@tseeeded to extract a constraint on
t instead of seven as needed in [Heeger & Jepson 92]. This hastades for outlier rejection
and may also improve the stability of the solution with redp® noise on the optical flow
measurements.

The multiple view method in [Soatto & Perona 97] takes thespalse method as a basis to
formulate a recursive estimation of the ego-motion using Kalman filters.
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Another method [Iranét al. 97] splittingt and  first searches for an image region looking at
a planar surface and then estimates the instantaneous haphggegistrating the last and the
current region. This cancels out the rotational veloGityl he translational velocityis estimated
from the residual motion parallax.

[Pauwels & Hulle 04] addresses the issuamége stabilizationwhich is closely related to
ego-motion estimation. The objective here is to get rid ef ¥ibrations in the images caused
by camera rotations. To this end, the rotational componeéiiteego-motion has to be esti-
mated. [Pauwels & Hulle 04] employs a phase based opticaldlgarithm and minimizes the
vibrations of the optical flow in the phase realm.

[Baumelaet al. 00] uses the instantaneous epipolar constraint to estithatego-motion.
The results, when compared to the discrete counterpagtntabetter. The authors doubt whether
there are practical advantages of the instantaneous ngethojd\rmanguéet al. 02] the method
is compared to other linear methods based on the instantamgipolar constraint. All methods
provide biased estimates due to the linearization.

Discrete motion. In this paragraph the focus is on two-view discrete motiortho@s. The
multiple view methods are the topic of the next paragrapho Vigw methods are mostly based
on the epipolar geometry. Longuet-Higgins was one of thewite proposed a method for the
estimation of the fundamental matrix [LonguetHiggins 8djs lineareight-point algorithmis
the basis for many other algorithms.

With the camera calibration matriXx known the fundamental matrik can be upgraded
to the essential matriE (see sec. 2.3.1). Thelx, can be decomposed to solve for the ego-
motion parameters [Hartley & Zisserman 03]. Alternativelge may estimatE directly using
the five-point algorithm presented in [Nistér 04] or the newersion [Steweéniust al. 06] which
is numerically more stable. The advantage over the eigimtpégorithm is that it works even if
the scene is planar which iscaitical surfacefor the eight-point algorithm [Maybank 92]. Both
algorithms have got their names from the minimal number oftsaequired to solve for the
unknowns. They can process more points getting more aecestitmates. However, they do not
constitute maximum likelihood estimates due to the minatian of an algebraic error.

Thegold standardnethod [Hartley & Zisserman 03] minimizes a geometric erfdns requires
the estimation of nuisance parameters in form of correctedespondences < Xc, which
satisfy the epipolar constraint exactly, i.&l Fx; = 0. The sum of all squaretkprojection
errors:

d(x,i,%1,i)% +d(Xcj, Xc,i) (4.8)

M=

is minimized. Each perfect correspondence- Xc has three degrees of freedom, namely the
3D point to which it triangulates. Thus, there afd -85 parameters in total to estimate. The
effort pays off as the result is a maximum likelihood estimatovided that the measured image
positionsx; andxc areN(0, o) distributed.
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Multiple views. Correspondences over more than two frames, if availableog® more con-
straints on the ego-motion parameters leading to more amx@stimates. Usually, multiple
views are considered istructure from motior{(SfM) methods where the aim is to reconstruct
the scene. In this case one is mainly interested in the réwmbesd 3D points rather than in the
ego-motion. The reconstruction quality benefits if the 3hfmare seen from several different
points of view. The typical error metric which is minimizeslthe reprojection error as in the
gold standard method but this time applied~t@iews:

2

F
> D d(PiXwi, Xi.j)? (4.9)
j=1li=

The unknowns are the 3D poirtg,; and the projection matrice®; = KR [l |t;] (whereP; =
KI10]) covering the ego-motion of each frame. There ae436(F — 1) — 1 parameters in
total to estimate. The-1 accounts for the free overall scale factor. It may be fixeddtying
the driven distance of the second camera to urijtgll = 1. Then, the other driven distances
Itj|| j € [3,F] are normal paramters and must be estimated. Hence, we havearameters for
the first camera, five parameters for the second and six p&eesrfer every additional camera.
The algorithm minimizing the cost function 4.9 is known tdasdle adjustmenDue to the high
number of parameters and the intrinsic non-linearity tige@ihm is computationally expensive.
Many endeavors have been made to develop efficient implemens.

Bundle adjustment involves the formulation of a large scgde sparse, minimization prob-
lem. [Engelset al. 06] exploits the block diagonal (sparse) form of the Jacobmatrix of the
error metric. The Jacobian matrix is used within the Levegitddarquardt (LM) minimization.
On a 3.4GHz Xeon processor one iteration of LM requires jusmn@ & = 7,N = 260).

Lourakis and Argyros [Lourakis & Argyros 05] compare the kaberg-Marquardt mini-
mization to Powell's dog leg minimization. The main adva®af the latter one is that it re-
quires less computations of the Gauss-Newton update:(JTJ)~1g whereJ is the Jacobian
andg the gradient of the error metric. The solution of this linequation system is costly if it is
high dimensional, which is the case for the bundle-adjustmpeoblem. The dog leg algorithm
is 2.0 to 7.0 times faster than LM depending on the number @mpaters.

The mobile robotics community is faced with a problem relai® SfM: One of the tasks of a
mobile robot is to localize itself within its working envinment. This requires the knowledge
about the environment (scene structure or landnfarkslowever, the environment might be
unknown to the robot. Another task of the robot is to expldre ¢nvironment while moving
trough it. Once, the environment is learned the robot shkeé&p it in mind, so that the robot
can immediately re-localize itself after it has been kidmegor switched off and on. Typically,
the working environment is too large to have it entirely ie tiobots’s field of view. Hence, it
must store everything it has seen so far in a map and it mudtlbd@associate the data in the
map with the data currently present in the field of view. Therhailding and localization are
continuous processes. In contrast to SfM the images camnmtdzessed as a whole. They must

2Landmarks are distinctive objects in the physical world eieample corners of buildings or traffic signs.
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be processed recursively. Algorithms solving these tasksederred to asnline simultaneous
localization and mappingonline SLAM) [Thrunet al. 05].

SLAM is a probabilistic framework abstracting from specgfansor technologies. The online
version of SLAM estimates the a posteriori probability of turrent pose; = (x,y,z, o, y,$)T,
relative to a fixed coordinate frame, along with the mapvheremis either a list of landmarks
(feature-basey] or a discretized grid of the 3D worldocation-base)l The a posteriori proba-
bility is a function of all sensor measuremerts and all controlsi;t. The subscript 1:denotes
the complete history from time instant 1 upttdn summary, the task is to estimate:

P(Xt, M|z, U1t) (4.10)

Where is the ego-motion hidden in this probability? The nib&ly current pose is the one
which maximizes the a posteriori probability:

X; = arg )r(p%xp(xt,m| Z11,U11) (4.11)

The very recent posg_1 is computed in the same way. The ego-motion directly follfnom
both poses. The map comprising estimated 3D points is a nuisance parametenoAgh a lot
of algorithms estimating have been proposed - examples are Extended Kalman filter SieM
FastSLAM 2.0 (see [Thruat al. 05] for details) - SLAM is still a highly active field of resedr,
as the recent conferences on robotwesw.iros2006.org  , www.icra07.org ) indicate.

When the SLAM problem is tackled utilizing a camera, the dedialgorithms are referred
to asvisual SLAM One representative is [Silveied al. 07]. This direct method assumes the
imaged scene to be locally planar. The structure param@tersal vector plus distance of the
plane) of each image patch (feature) are estimated alohghétego-motion parameters utilizing
the SSD error metric. Additonally, affine illumination cliges are modelled for each patch. The
estimates are fed into a Kalman filter fulfilling the needs nifrte SLAM.

While [Silveiraet al. 07] only compares the image patches (more precisely theyr walue
structures) over the last three frames, [Molairal. 04] compares the image patch in the first
frame to that in the current frame exploiting larger drivéstahces. An Extended Kalman filter
predicts the appearance of an image patch in the currenef@sed on the observations in the
past. The template patch (= patch in the first frame) is prgs@gaccording to that prediction.
It is then matched with the actual observed patch in the ntiframe. This approach provides
more accurate results, especially reducing the drift opiteh’s position.

4.3 Motivation

In the last section we have seen that a lot of ego-motion asittimmethods exist in the literature.
The question is: which method is the most suitable for ouds@aVhat are our needs?

e The camera displacement between consecutive frames maydee tue to a high speed
of the ego-vehicle and / or a low frame rate. This causes alpfiow vectors of a high
magnitude. Hence the instantaneous motion field does nét.app
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e The algorithm used for the computation of the optical flonc{®s 3.2.1) does not track
features over time, so multiple view methods are ruled out.

e The algorithm must run in real-time. Methods estimatingance parameters are therefore
problematic.

As a consequence of these needs we concentrate on two-\gevetd motion methods which

forbear from the estimation of nuisance parameters. Lap#tirihe literature we find out that the
methods based on the epipolar geometry meet our needs.

4.4 Parameterization

Due to the fact that only the translational direction is deieable, a representation of the trans-
lation in polar coordinates makes sense. Figure 4.2 idtes$rthe camera coordinate frame and
the Euclidean transformation between two views. We asgigeiiic names to the entities

Ad

Figure 4.2: Euclidean transformation of the camera (egtieanpbetween two frames.

involved:
e rotation about the x-axis: pitch ratéa

e rotation about the y-axis: yaw rafe)

3Although the ternrateis commonly used to express a temporal derivative, we ussétio express differences
from frame to frame.
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rotation about the z-axis: roll ratsp

horizontal translational directiody,

vertical translational directio6,

driven distances.

The translations along the coordinate afigdy,t,) are related to the polar coordinate represen-
tation as follows:

ty 0
ty | =R(—6y,—6,,0) O (4.12)
tz S

with R(ay,ay,a;) being a rotation matrix with Euler angles in the ordey,x, see also ap-
pendix A. The five ego-motion parameters we can estimatewarengarized in the parameter
vectorpe = (Aa,AY, A, By, 6y).

4.5 Error Metric

The ego-motion parameters are estimated utilizing theotgnigeometry. In section 2.3.1 we
have seen that a correspondemge— x. satisfies the epipolar constraint.' Fx; = 0. The
fundamental matri¥ depends on the ego-motion parameters:

F(pe) =K T[-Rt] RK 1 (4.13)

with R = R(Aa, Ay, Ap) andt = R(—8,, —8,,0)(0,0,1)T. Note, that irt the driven distance,

is implicitly set to one. The incorporation &f would not influencd-, sinceF is a homogeneous
entity. Given at least five correspondences one may minithizeleviations from the epipolar
constraint to find an estimafg:

N
Pe = argrggeni;J(F, X|,i, Xcii) (4.14)

with J(F, x|, Xc) = Xc' Fx|. However,J is an algebraic error providing biased estimates. An error
metric representing a geometric error is fygnmetric epipolar distand&ED):

(XcTFxi) 2 (XcTFxi) 2

(Fx)5+(Fx)3  (FTxo); + (FTxc)3

Jsep= (4.15)

Jsep measures the squared distances of the image points to tredsponding epipolar lines:
d2(xc, Fxi) + dz(x|,FTxC). It provides estimates close to the optimal gold standarthate
[Faugeras & Luong 01, Hartley & Zisserman 03].

We use this error metric for the estimation but it is not rabret. In case of ego-motion
estimation we are faced with two types of outliers. Firstsrmatched correspondences and
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second, correspondences on independently moving obj&®)(In section 2.4 we have dealt
with robust estimation. When a robust estimation method Iset selected the expected amount
of outliers have to be guessed.

The fraction of mismatched correspondences have beertigats in section 3.2.1. It was
about 6%. The outlier fraction due to an IMO depend mainlytersize in the image, which is
large when the IMO is close to the camera. There is one faatiwinelps reducing this fraction:
In traffic scenes IMO’s do not suddenly appear direct in frofnthe ego-vehicle. Instead they
are only seen partially when they enter the field of view. @ythtart small and get larger when
the ego-vehicle is approaching them. Once the IMO’s arectidehey should be tracked. This
allows the exclusion of these image regions from the egaemastimation. Thus, IMO'’s are
only outliers as long as they are not detected.

The expected amount of outliers is minor, so the M-estinmagdhe method of choice. We
employ the Huber cost function (equation 2.41) in its "ra8ferm sincelsgpis already squared:

C(r)= { ' A< (4.16)

V2T =T2 | |r|>T?
Finally, the robust estimate is given by:

N
Pe = arg rgin > C(Jsen) (4.17)
¢ i=1

The efficient iterative minimization of this error metricaddressed in section 4.7. The estimated
parameters are used as an initial guess for the next frame.

4.6 Motion Model of the Camera

Since we know that the camera is mounted in a vehicle the @anmetergoes a restricted motion.
We model this motion which reduces the degrees of freedommekes the estimated ego-motion
more stable and accurate. The motion model has also beeisipedin [Klappsteiret al. 06a].

4.6.1 Horizontal Translational Direction and the Circular Motion Con-
straint

In this section we consider the steering of the ego-vehitighin a small time period (the time
between two frames, typically 40 ms) the yaw angle can bexxopated as constant. During that
time the ego-vehicle on the road drives along a circulariacit fulfills a planar circular motion.
If the camera is mounted at the rear axle of the ego-vehielétinizontal translational direction
is independent of the driven distance (see figure 4.3). Hewaeis influenced by the driven
angle (yaw rate). Figure 4.4 illustrates this. The yaw ratates the horizontal translational
direction away from the z-axis. It rotates by an angle whghalf the yaw rate angle. This is
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computed via the isosceles trianglec, m and the sum of the inner angles of a triangle:

[ =90° — 6, (4.18)
6}, + 6}, + AY = 180° (4.19)
Oh = %ALU (4.20)

C1 (:l

(@) (b)

Figure 4.3: Planar circular movement. (a) The camera mouwes romc; to ¢, and once

to ¢, while rotating around 90each time. The horizontal translational direction (red)in
parametrized with the angk, is identical in both cases. (b) The same consideration with a
rotation angle of 60

a
o\~ Mr
X6, Ay
I’r m

Figure 4.4. Geometric relations of the horizontal transtal direction (red line) and the yaw
rateAY of the camera8y, = &

Now we consider the more common case where the camera is etbsotewhere in front
of the car. Hered,, = 1Ay + B wherep is the kinematic side slip angfe It depends on the
distance of the camera to the rear axle and on the radius afuvature. For simplicity the
Ackermann model [Zomotor 91] is used here (center of grdietyon the road, no longitudinal
forces). The model allows to combine the two wheels into oheekin the middle of the axle.
Further we consider the stationary steering with no sige 3lhe latter one only holds for small
lateral accelerations. Under all these conditions theckeliynamic is modelled as illustrated in
figure 4.5a.

4Following the definition of the term "side slip angle”, it digs only at the center of gravity of the vehicle. Here
it is used also at the location of the camera.
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front wheel

camera

rear wheel

)l I’r U " rear wheel
(a)

Figure 4.5: Ackermann model and the driven distance of theeca. (a) The camera’s velocity
and the velocity of the rear axig are different. The angle between these tw@.igb) The driven
distance of the camer can be computed if the yaw rafep and the angl§ were measured
(see text for details).

The velocity of the rear axle is parallel to the vehicle’s longitudinal axis (dashed )iaad
the velocity of the front axle; shows to the same direction as the front wheel. The intemsect
point of the lines orthogonal t¢ andvs forms the centem of the circle. The radius of curvature
at the rear axle is,. The camera is mounted at the distamgg w.r.t. the rear axle. This
arrangement lets the camera’s veloaifyotate by the angl:

d
B= arctan% (4.21)
r

4.6.2 Determining the Scale Factor

In this section an interesting idea is presented how to deterthe driven distance (scale factor)
utilizing the knowledge about the distandg of the camera to the rear axle.

The fact tha3 depends o1s; can be exploited to determirsg, meaning to resolve the scale
ambiguity. The relevant geometry is depicted in figure 4\8hile the rear axle’s circular motion
has a radius af; the camera’s radius is slightly larger:

ro= /02, +r2 (4.22)

The driven distance of the camera is given by:

S = 2r¢ sinA7llJ (4.23)

Substitutingr, in equation 4.22 with the equation 4.21 and puttipgnto equation 4.23 results

In:
B 1 Ay
S = 2dc7r 1+ m S|n7 (424)
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In order to get an imagination of the required accurac§ tife driven distance is plotted against
B as shown in figure 4.6. Thereby, realistic values for the cardesplacement to the rear axle
and for the yaw angle between two consecutive frames arenhé®r smallef’s (larger radii

of curvature) the gradient becomes larger, which meanssthatl errors i3 have a more and
more severe influence @®.

10

driven distance [m]
wn

beta [degree]

Figure 4.6: The driven distance of the camgragains3. The distance was setth, = 2mand
the yaw rate td\) = 0.5°.

Next the relative error o8 in dependence on the relative errorspfis computed in order to
derive the required relative accuracy [@f A measurement errdkf at a specific true valup
causes an error is: Asc = S.(B+AB) — s(B). The relative error of; is:

As; _ o(B+DOB)—so(B)
s(B) (B)

Applying the Taylor series expansion up to first ordfe([ngAB) ~ s(B) +s’c([§) -AB along with
the relative errogg = AB/( yields:

&= (4.25)

$(B)-B

&= (4.26)
s(B) %
Substituting equation 4.24 into 4.26 we get:
B
- _ . 4.27
& anp (4.27)

From tar ~ 3 for B < 1 it follows: eg = —és.
We now give a little example to point out a realistic requieeduracy: Let’'s assume that the
desired relative accuracy of the driven distance is 546= 0.05). Then, the required relative
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accuracy off3 is about 5 % too. Let’s say the largest radius of curvatung is 230m. This
corresponds t = 0.5° whend.; = 2m. Then the required accuracy pfis 0.025’! Note, that
we cannot estimat@ directly, but the horizontal translational directi6f In section 4.8 we will
find out that the accuracy &, is much less than the required one.

It is a rather freaky idea to determine the driven distanisatiay. It works only in curves and
the required accuracies are very high. We will strike anothare promising path: the estimation
of the road homography.

4.6.3 \Vertical Translational Direction

The horizontal translational direction is linked to the yiate as seen in the last section. Can we
also find a link between the vertical translational angle tedpitch rate?

Strictly speaking, no! The reason is that, in contrary toltbgzontal direction, the pole of
rotation is not constant. This is illustrated in figure 4.7.wolexamples of pitch motion are

Figure 4.7: Geometric relations of the vertical translaticand the pitch ratéa of the camera.
Two motion examples are shown demonstrating thet not directly linked toAa. Althought,
andAa are constartt, # t)’,. Note, that the situation is exaggerated for better vigatbn.

shown. In the first one the ego-vehicle drives up a hill (bumgad). It pitches about the angle
Aa whereas the pitching pole is the rear axle. This causes @alranslatiort, of the camera.
In the second example the ego-vehicle drives down a hill. fiteh angle is the same but the
pitching pole is now the front axle. This causes a vertieni$tatiort§, which is different front,.
Consequently, there is no direct link between the vertiealdlational directio®, and the pitch
rateAa. Without knowing the pitching pole a correct modellinggyfis infeasible.

We, nevertheless, mod&). We just pretend that the height of the camera above the @esl d
not change, i.ty is clamped to zero and the pitching pole is assumed to caveith the camera
center. Under these assumptions the vertical transladtiiregtion is equal the pitch angle of the
road w.r.t. the camerd, = a. Due to pitch motions of the ego-vehicle the pitch angle gean
continuously. However, the current pitch angle cannot ltienased from the optical flow alone.
Only rotations from frame to frame, i.e. the pitch rdie, can be estimated. If the road has a
constant vertical slope as in figure 4.8a the pitch rate istidal to the temporal derivative of the
absolute pitch angla. Consequentlya may be retrieved through integration:
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Figure 4.8: Absolute pitch angle in relation to the pitclesat(a) The road has a constant vertical
slope. The pitch angle is the sum of the pitch ratesa;. (b) The vertical slope of the road is
changing. The actual pitch angle is totally different frdme summed pitch rates.

N
o =do+ ) Aq; (4.28)
2,

whereqy is the initial pitch angle. It can be determined through oéflcalibration. Alternatively,
one can exploit the fact that the long term average of thénpate must be zero, otherwise the
ego-vehicle would loop the loop (see section 4.8 accuraggofmotion).

One drawback of this pitch integration approach is thatiivalid if the vertical slope of the
road changes as illustrated in figure 4.8b. The integratieth pates do not reflect the absolute
pitch angle. Another severe drawback is the feedback intred by settin@, = a, depicted in
figure 4.9. The current pitch rate estimation depends ondbent estimated pitch rates. If the

6y /—\Aw Ad
ego—-motion | =

——( estimation

image ~————— Ad a

corresp.

ay

Figure 4.9: Feedback within in the motion model based egtemestimation.

initial angleay is set too high (or too low) the pitch rate estimates are tg ljor too low) as
well. This is an amplifying effect. The estimation erroriieases (or decreases) in each frame.
Thus, the entire estimation process is a labile equilibrium

To confirm this experimentally we estimate the ego-motiangia highway sequence shown
in figure 4.10. Figure 4.11a shows the results of the pitcheaiog the highway sequence where
0 was slightly too low. In figure 4.11b was too high. Note, that the difference for tigs in
both figures is just @1°. The instability becomes apparent. The feedback in this dsss
not work. In chapter 5 we will estimate the road homographyctviwill give us an estimate of
the absolute pitch angle. We will use it to refine the feedback
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(@) (b)

Figure 4.10: The sequence used to investigate the estimatithe pitch angle. A highway
was chosen which has a constant vertical slope. The installpitch angle was obtained by
calibration which wasig = —4.66°. (a) First frame of the sequence. (b) Frame 100 of the
sequence.
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Figure 4.11: Integrated pitch angleof the highway sequence. (a) The initial anglgwas set
to —5.15° which was too low. (b was set to-5.14° which was too high.

4.6.4 Rolling

One might think that the rolling of the vehicle is negligiblBut experiments have shown that
a considerable roll rate exists in the real world. Noticd tha ego-motion parameters describe
the motion of the ego-vehicle with respect to the world, die road. So, the roll rate will be
different from zero, if the road itself rolls. An example tsosvn in figure 4.12.

If the roll rate is not estimated (set to zero) the other rotetl parameters are influenced by
the effects of the roll rate which leads to wrong estimatémr&fore the rolling must be included
in the estimation.
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(@) (b)

Figure 4.12: Highway sequence with present roll rate. (ajrfer 240 (b) Frame 270. The vehicle
has driven approximately 35 meters and it rolled arounhd 3

4.6.5 Summary

The motion of the camera is modelled as planar and circulae Horizontal translational di-
rectionBy, is a function of the pitch ratAa and the driven distancg. The latter one is either
retrieved by odometry or by the estimated road homograpline Vertical translational direc-
tion By is clamped to the pitch installation angig obtained by calibration. The motion model
reduces the ego-motion parameters to the rotational qres:(Aa, Ay, Ad).

4.7 Efficient Minimization

As discussed in section 4.5 the solution of the ego-motioblpm is given by:

N
5 — inS C(J 4.29
Pe arg”SL“i; (JseD) (4.29)

Due to the non-linearity o€ (Jsgp) the solutionpe must be found by an iterative minimization.
The time spent for this minimization is the crucial point tbe real-time capability. In this
section we study three minimization schemes of differepesy The first uses only the func-
tion itself. The second takes advantage of the gradienttlanthst uses the Hessian matrix in
addition.

The Powell algorithm [Presst al. 02], a gradient free descent approach, efficiently mini-
mizes quadratic functions. Note that near a minimum anytfands approximately quadratic
(Taylor series expansion up to second order).

C(Jsep) is quadratic in a relative large area around the minimum.ureigt.13 shows the
graph ofC(Jsgp) when varying the yaw rate. The other two parameters (pitchrathrate) are
kept constant in the minimum. The cuts@©fJsep) through the other parameters are similar.
They are not shown here.

Given an N-dimensional quadratic function Powell needseastiN - (N + 1) - 3 function
calls to find the minimumN iterations are required to establish the optimal (congigsg¢arch
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Figure 4.13: Cut of2(Jsep) through the yaw rate. The Taylor series expansion up to secon
order of (Jsep) (blue line) shows that(Jsep) is almost quadratic in a wide range around the
minimum.

directions. In each iteration the function is minimizedredN + 1 one-dimensional directions
(lines). Every line minimization is performed by a parabdii requiring 3 function calls.

When the gradient and the Hessian matrix of the function aadable, the minimum is
found in a single step, called Newton step. The complexitgdmg so is H N+ N-(N—1).
This is 1 function call, N calls of the first partial derivagis, and\ - (N — 1) calls of the second
partial derivatives. It is assumed that computing the @#itres is as expensive as computing the
function itself.

The error metricC(Jsgp) depends on the rotational parameters, thus we have a
three-dimensional minimization task. In such a space Howveelds 36 function calls while the
usage of the gradient + Hessian matrix needs only 10 “functdls’® to find the minimum of a
guadratic function.

Thus computing the first and second derivatives saves a litnef By doing this another
fact shortens the computation time: Every single functialh rzquires the CPU to load the
correspondences into its registers. This is very expelifsikie correspondences are not cached.
Less function calls reduce the amount of cache misses.

The usage of the gradient and Hessian matrix requires a nziaiion scheme which handles
this information. HUMSL (Hessian provided Unconstrainethivhization SoLver) [Gay 83] is
such a scheme. It is available undevw.netlib.org/port

The Powell and the HUMSL algorithm are designed to minimizeuitrary function. When
the function is based on least squares, i.e.:

X(p) =3 r(p)? (4.30)

with r(p); the individual residuals anglithe parameter vector, special minimization schemes can
be applied to find the minimum ovex. A very famous one is the Levenberg-Marquardt (LM)
minimization [Pres®t al. 02]. One key idea of LM is an abbreviation in the computatién o
the Hessian matrix. To see this we compute the first derwativ.30 with respect to the k-th

5The term "function call" here subsumes the actual functiahand the call of the derivatives.
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parameter:
0x or
TR
The second derivative with respect to the k-th and I-th patanthen reads:
0%x arj  or; a°r;

———=2 + i (4.32)

I 0),  223(0) 3Pl 3(P)a(P)
The Levenberg-Marquardt algorithm cancels out the seoearnrir’qa(lo‘;:ig(p)I in 4.32. By doing

so one assumes that the residualare zero-mean and uncorrelated. The zero-mean property
can only hold in the minimum of(p). Near the minimum the residuals are approximately zero-
mean. Beside the assumption of zero-mean and uncorrelggetl is assumed that they are
uncorrelated with their second derivatives. When the sgclemivatives are zero or nearly zero
also the second term cancels out. Iterative minimizatidreses using these assumptions are
known as Gauss-Newton schemes. The minimizatioq(p§ requires just % N function calls
if the assumptions are true. In our three-dimensional syidcee rotational DoF) 4 calls are
enough.

In most LM implementations the user is requested to put ireés&lualg;. Is it a good idea
to useC(Jsgp) as residuat? No,C(Jsep) represents the squared symmetric epipolar distance,
thus is always positive. Further, the second derivativedarfrom zero. In order to apply the
LM algorithm we have to modif£(Jsep) slightly. The "rooted" version dlsgp:

1 1
JRsED= X¢' FX - +
\/ (Fx)i+(Fx)5  (FTxo)i + (FTxc)5

along with the point-symmetric "rooted" Huber cost funatio

(4.33)

_ : < T2
o) ={ ari T s o (434

makes the epipolar distance positive or negative deperainvghich side of the epipolar line the
corresponding point lies. The necessary condition for-meean residuals is now fulfilled. The
consideration of the sufficient condition is postponedlatttion 5.6.2 where we will prove that
under isotropic noise the residuals are actually zero-mean

Are the second derivatives of 4.33 zero? No, they dependeagh-motion parameters and
the image position. Figure 4.14 shows the second derisativéhe minimum oflJrsgpfor an
ego-motion along the optical axis. Some of the second darésaare unbounded in the epipole.
Image regions near the epipolgsnde; are therefore excluded:

Jrsep= 0| |[Xi — €| < 3pXU ||Xc — €]l < 3pX (4.35)

Figure 4.14 shows three out of six second derivatives. Theat&es not shown look similar to

the ones shown. Rotating 4.14(a) around @elds a?ijED and 4.14(c) rotated around 99ields

aZJRSED i i 2 RSED i i Tall
anyong- | he second derivative w.r.t. the roll ra—atg?M)—2 is zero in the minimum,
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Figure 4.14: Second derivatives &fsepin dependence of the image position for an ego-motion
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Near the minimum all second derivatives only change skghilhe figure shows that the
second derivatives are not zero in all image regions. Howet/@oints out that the second
derivatives are symmetric or point-symmetric relativehte épipole. If the correspondences are
uniformly distributed over the image the second derivatiaee zero-mean satisfying the LM
assumption. Thus, we expect the LM algorithm to be superier the other two algorithms. In
the following this is confirmed experimentally.

Up to now we assumed that computing the first and second tigasds as expensive as
computing the function which makes LM considerably fastd(4 calls, HUMSL: 10, Powell:
36). However, computing the derivativeS@f( Jrsep is cumbersome since the rotation matRix
included in the Fundamental matfixcomprises products of sine and cosine functions. Luckily
for us, the expected rotations are small, thus we can empélrtearized rotation matrix:

Ao 1 AP Ay
Rin=1+ || Ay —| -Aad 1 Aa (4.36)
XA Ay —Aa 1

making the derivatives much easier to compute. The matheahaffort for computingC,(Jrsep),
measured in terms of multiplications, is 22 per corresponee Each first derivative costs 29
multiplications and each second derivative costs 40 mid#pons. There is an additonal cost
for the preparation required once per call: compositiorhefE-matrix and computation of the
epipoles: 138 multiplications, and computation of the d#ives of the F-matrix: 301 multipli-
cations.

The average number of function calls required to find the mimm was obtained by exper-
imental tests. They are 102 (Powell), 6.5 (B)yland 5 (HUMSL). The overall mathematical
effort is summarized in table 4.1. Compared to Powell, LMVhigée times faster. But looking at
the actual computation times, which were measured on alPeiti 2.4 GHz, LM is even four

5The implementation is due to Lourakisww.ics.forth.gr/” lourakis/levmar
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‘ ‘ Powell ‘ LM ‘HUMSL‘

usage of function | function | function
gradient| gradient
Hessian
multipl. per preparation 138 439 439
multipl. per corresp. 22 22 22
+3-29 | +3-29
+6-40
avg. number of calls 102 6.5 5
overall effort for 300 corresp. 687276 | 215404 | 525695
relative to Powell 100% 31% 76%
computation time 45ms | 1.1ms | 2.1ms
relative to Powell 100% 24% 47%

Table 4.1: Comparison of different minimization schemes.

times faster. This is due to less cache misses. By the waypuating the derivatives numerically
using forward differences is not faster than the analytesivatives.

4.8 Accuracy of the Ego-Motion Estimation

In this section we address the following questions:
e How many correspondences are required to get a good estimate
e To which extent does the motion model improve the estimate?
e Does awrong camera installation angle spoil the estimatizen using the motion model?
e Does the noise in the optical flow have a high influence on tharacy?

To answer these questions we carry out the following sirmanatA certain number of world
points is generated and imaged onto the last and currenefemmmording to some random but
known ego-motion. The image points in the last frame areoumily distributed over the image.
The deptte of the world points is distributed as~ % whereznin is the minimal depth and
G(0,1) is the uniform distribution. This allows world points to Nery far away. The image
points in the current frame get an additive noise according(D,0). A certain fraction of the
points become outliers. To this end the image point in theectiframe is set randomly around
the image point in the last frame, whereas the distance leettbe two image points is normal
distributed withN(p = Opx, 0 = 30pXx).

The ego-motion is estimated 250 times while varying the dvpdints and the ground truth
ego-motion each time. The estimated parameters are thepacethto the ground-truth param-

eters. The ranges of the ego-motion parameters in traffieescare typically -0.5 .. Oé%ge for
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parameter | sign | value |
number of correspondences 100
focal length fx = fy | 1000px
minimal depth Zmin 10m
distance between last and current frame s 1m
noise in the correspondences o 0.55px
outlier fraction 0%

Table 4.2: Parameter values used in the simulation.

the rotational and -20 .. 20deg for the translational patarse The ground truth ego-motion is
uniformly distributed within these ranges.

The upcoming figures depict the accuracy of the ego-motiimason in dependence on
single parameters. All other parameters are fixed to valvess in table 4.2.

4.8.1 Number of Correspondences

Figure 4.15 shows the standard deviations of the rotatjper@meters against the number of cor-
respondences. In figure 4.15a all five parameters are estimiatfigure 4.15b the translational
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Figure 4.15: Accuracy of ego-motion estimation dependingh@ number of correspondences.
(a) All five parameters (rotation and translation) are eated. (b) Only rotations are estimated.
The translations are fixed at their actual value.

parameters are known (set to the actual values) and onlptaganal parameters are estimated.
This is equal to applying the motion model. The usage of theananodel almost doubles the
precision of the pitch and the yaw rate. The precision of tilerate, however, does not benefit
from the motion model.

The standard deviation of the estimated parameters iresdesavily when less than 50 cor-
respondences are supplfedThis is mainly the case if all five parameters are estimafég-
ure 4.15a is zoomed out in figure 4.16.

"We observe this empirically but we cannot explain the “50”.
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Figure 4.16: Accuracy of ego-motion estimation dependingh@ number of correspondences.
All five parameters are estimated. Using less than 50 cavregnces provides poor results.

4.8.2 Minimal Depth

The estimation of the translational parameters is not ordyeninaccurate than the one of the
rotational parameters but also the estimation requires@bBtpwhich are close to the camera.
What happens if close 3D points are missing is illustratefiguwre 4.17. In traffic scenes it can
not be guaranteed that close 3D points are present. Thusatisgational parameters can not be
estimated reliably. And when some parameters cannot beagstil reliably why should they be
estimated at all? This is another reason to apply the motiahein
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Figure 4.17: Accuracy of ego-motion estimation in depecdeasn the minimal depth of the 3D-
scene. The standard deviation of the translational paemigtcreases when near 3D-points are
missing (a), whereas the rotational parameters are harfilyenced (b).

4.8.3 Deviation from the Motion Model

When the motion model is used, the knowledge about the camstedlation angles is required.

Commonly this knowledge is obtained by calibration. If tietual angles deviate from the cali-

bration, for example due to a lack of long term stability dcpimotions, the estimated rotational
parameters are biased. In figure 4.18 the bias in the pitehgahown when the vertical transla-
tional direction deviates from the actual one. This biagjisa¢ to the average of the pitch rates,
since pitch rotations are zero mean. Otherwise we would tbepoop.



66 CHAPTER 4. EGO-MOTION ESTIMATION

The pitch installation angleg may be calibrated online by observing the average of thé pitc
rates. However, the bias depends on the scene structurthebaverage scene structure is not
known. One cannot deduce directly the error of the insiatlaangle from the bias. The true
installation angle must be found iteratively. The yaw ifiateon angle is found in the same way
as the pitch installation angle, because the yaw motiorageel over a long time period is zero,
too. It means in average the ego-vehicle drives straigrdadh€he roll installation angle cannot
be determined this way.

]
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I I
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Figure 4.18: Bias in the pitch rate estimation when the agslwertical translatiof, is wrong.

4.8.4 Outliers

In the simulations discussed so far the correspondences fines from outliers. In real life
outliers occur when the optical flow algorithm produces na@tshed correspondences or when
independently moving objects (IMO’s) are present. Misrhattcorrespondences are uncorre-
lated whereas correspondences on IMO'’s are highly coectlddere we care about uncorrelated
outliers. The generation of outliers is explained at tharm@gg of this section.
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Figure 4.19: Accuracy of ego-motion estimation dependinghe outlier fraction. All five
parameters are estimated (rotation and translation).

Figure 4.19 shows the accuracy of the ego-motion estimatiate the fraction of outliers
is varied. As expected, the accuracy becomes worse for hagltker fractions, especially the
translational parameters are influenced heavily by ostli€he application of the motion model
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Figure 4.20: Accuracy of ego-motion estimation dependinghe outlier fraction. (a) All five
parameters are estimated (rotation and translation). THoueefiis a close-up of figure 4.19 to
point out the rotational parameters. (b) Only rotationsesmtgmated. The translations are fixed
to their actual value.

stabilizes the ego-motion estimation to a surprising extegure 4.20): The accuracy of the
roll rate doubles when the outlier fraction is high30%). The pitch and the yaw rate are
already more accurate (factor of 2) when the motion modgpjdied. If outliers are present in
addition the headstart of the accuracy increases furtt@rexample having an outlier fraction
of 30% the pitch and the yaw rate are 10 times (I) more accuatepared to the full five
DoF estimation. This observation confirms the high cori@abetween the translational and
the rotational parameters. Trying to estimate the traioslat parameters will result in an overall
poor performance.

Ego-motion estimation methods that split the translatigpaaameters from the rotational
ones, for instance the series of linear subspace methodginaly introduced by
[Jepson & Heeger 90], may provide better results than ouimmnimation of the symmetric epipo-
lar distance (SED). However, in the literature there is rnieesive study on the achievable accu-
racy.

The accuracy of the ego-motion parameters is also influebgetthe focal length of the
camera and by the noise in the optical flow. The graphs arersihofigure 4.21.

0.1

0.05 :
: . - pitch : - pitch - *
g 0.04 B -+ yaw g 008 — ., yaw
@ . © Ve
= . -+ roll = -xroll
< . <
o 0.03 - o 0.06 -
Q Q -
g \ g -
0.02 +— +— - 0.04 .
> * —4 \ - > .-
) S Q —
© s o
001 L\\g\ 2002 e Lt
a4
0 200 400 600 800 1000 1200 1400 0 0.5 1 15 2
focal length [px] noise  [px]
() (b)

Figure 4.21: Accuracy of ego-motion estimation dependinga) the focal length and (b) the
noise level.
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4.8.5 Summary

A reasonable estimate involves at least 50 correspondendes translational parameters are
inaccurate, especially when close 3D points are missinghemvoutliers are present. Due to
the correlation between translation and rotation the ianat parameters suffer from the poor
accuracy of the translational parameters. The motion maéalks the correlation and improves
the accuracy of the rotational parameters considerably.

4.9 Sensitivity of the Ego-Motion Parameters

In the last section, we have seen the different accuracideafgo-motion parameters. We now
ask for the reason of these differences.

In general, parameter estimation means minimization ofesoost function. The higher the
curvature of the error metric in the minimum, the more acimutiae estimation will be. If a slight
change in the parameter causes a high change in the errac,ndete to a high curvature, we
say the parameter is sensitive. To get the sensitivitieseégo-motion parameters we compute
the second partial derivatives (curvature) of the SED fiancin the minimumpe obtained by
equation 4.17:

Sha = 66223520 - (4.37)
2

Sy = aaiprZD . (4.38)

Sap = 6;234)520 . (4.39)

Sney = 6;236? . (4.40)

She, = a;isé'éD . (4.41)

The sensitivities depend on the image positignand the camera calibration. Further-
more Spg, and syg, also depend on the depth of the 3D point. Figure 4.22 showséhe
sitivities depending on the image positigp for a camera motion along the optical axis, i.e.
Pe = (0,0,0,0,0)T. The driven distance is one meter and the focal lengtl is fy = 1000px.
The principal point is set to the center of the image. The ldeptthe 3D point isz= 20m.
One clearly sees that not all image regions provide an equtibution to the accuracy of the
ego-motion parameters.

The reason for this is explained in figure 4.23. It shows wlagipens if the ego-motion
parameters move slightly away from their true values. Letssider a point correspondence
X| <> Xc In the image. A slight change of a rotation parameter (figue8d to 4.23c) shifts the
original pointxc to Xq, Xy, andxy respectively. The new epipolar lilegoes through the shifted
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point and the epipolg. The wrong value of the parameter induces an epipolar disthof the
pointx; to the epipolar lindy. In the case of the translational parameters (figure 4.28dl&8e)

a slight change shifts the epipoledg andeg, respectively. The new epipolar line goes through
the shifted epipole ang, since a 3D point at infinity is always imaged to the same looat
namelyx|, regardless of the translation of the camera.

All figures, 4.23a to 4.23e, contain two correspondenges; Xc andxl’ — Xg, at different
image positions to demonstrate the dependence of theigsépsédistance) on the image position.
The primed positiox; has a higher distana® than the non-primes..

The sensitivity analysis shows that the translational patars are more insensitive than the
rotational ones. The poor results regarding the accuracghtained last section (sec. 4.8) are
the consequence of this insensitivity.

There is another important point revealed by this analysiteh and yaw rotations shift the
epipole out of its central position. The sensitive areaskethwhite in figure 4.22) go hand in
hand with the epipole. Hence, the sensitivity decreasesnitre the camera pitches or yaws.
This is especially the case if the epipole goes outside tlgé&nStrong yaw movements occur at
intersections when the car turns into another road. We éxpestiuced accuracy in such a case.

The translational parameters, which are linked to the @tahto the yaw installation angles,
have a quite similar impact on the epipole.

Commonly, the camera looks straight ahead. But when thagdekobserve crossing traffic
at an intersection the camera must look sidewards. The ystaliation angle then may be Q0
This implies that9, = 90° provided that the yaw rate is zeray = 0). It means the camera
moves sidewards. The epipole in that case is at infinity aratsohe sensitive areas of the yaw
rate. Figure 4.24a shows this. The yaw rate’s maximum geitis reduced by a factor of 130
compared t®;, = 0°. The effect on the accuracy is shown in figure 4.24b.

A last point shall be mentioned in this section: we have shahthe sensitivities in some
image regions are higher than in others. As a consequenegctturacy of the estimates is
affected by the selection of the correspondences. If cooredences are selected only in low-
sensitive regions the estimate will be poor. In order to en¢\this, they should be uniformly
distributed over the image.
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Figure 4.22: Sensitivities of the ego-motion parametepedding on the image position. Dark
regions are regions with low sensitivity. White regions énélve maximum sensitivity for that
parameter. (a) pitch ratespg max = 4.43* 10° (b) yaw rate. Sy max = 4.43* 10° (c) roll rate.
Sap.max= 6.4 10° (d) horizontal directionsag, max= 1.1 10% (€) vertical directionsyg, max=
1.1%10%
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(d) (€)

Figure 4.23: Epipolar distanced &ndd’) depend on the positiox; andx,. For detailed expla-
nation see the text. (a) pitch rate. (b) yaw rate. (c) rok rétl) horizontal direction. (e) vertical
direction.
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Figure 4.24: Sideward motion of the camera. (a) Sensitwitthe yaw rate whe®, = 90°.
Dark regions are regions with low sensitivity. White regdmave the highest sensitivity of
Saw,max= 3.15% 10%. (b) Accuracy of the rotational parameters for increasialgyes ofy,.
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4.10 Experimental Results

In order to investigate the accuracy of the ego-motion edion not only simulated data can
be used but also real images. This is advantageous sincatihe grocessing from the image
aquisition up to the ego-motion estimation is considerele d@rawback is that getting ground
truth data is cumbersome. A highly accurate IMU could deliie ground truth. Such a device,
however, was not available to the author. Instead stand&Rl (Electronic Stability Program)
sensors were utilized. The comparison to them is discusstninext section. An examination
of the ego-motion results purely based on the images is skeclin section 4.10.2.

4.10.1 Comparison to Inertial Sensors

Modern vehicles are equipped with ESP, a system engineereidhproved vehicle stability.
Primarily they are used during severe cornering and on lastidn road surfaces, by helping to
reduce over-steering and under-steering. The systenvames by providing braking forces to
the appropriate wheels to correct the path of the vehicleaw sate sensor (beside some others)
is required to implement this functionality. When threelssensors are orthogonally aligned we
not only measure the yaw rate but also the pitch and the el ra

A vehicle equipped with three standard ESP sensors and aaasngsed for the data aqui-
sition. An image of an inner-city sequence taken by this alehis shown in figure 4.25 along
with the optical flow vectors selected for the ego-motioimeation. The ego-motion estimate is

(b)

Figure 4.25: An image of an inner-city sequence along wighaptical flow vectors selected for
the ego-motion estimation. (a) Inliers widlbep < (1.7px)2. (b) Outliers withJsgp > (1.7px)2.

given by equation 4.17 incorporating the motion model {sect.6). The threshold@ involved
in the Huber function which itself is involved in equatiori4.is set tol = 1.7px. It separates
the inliers (fig. 4.25a) from the outliers (fig. 4.25b). Thesmlus mismatched correspondences
(long flow vectors in the sky) and the correspondences on 8Mfw vectors on the (moving)
Mercedes star) are correctly detected as outliers.

The estimation result for the entire sequence is shown imdigL26. It turns out that in the
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Figure 4.26: Comparison of the estimated ego-motion tdiadesensors. (a) Pitch ratsn. (b)
Yaw rateAu.

case of the pitch rate the data obtained by vision is much §moocompared to that obtained by
the inertial sensor. Therefore one can freely assert tieatiion based ego-motion is less noisy.

4.10.2 Visual Inspection

The visual inspection method exploits the fact that imadeg@aints located far away are consid-
ered invariant against a translation of the camera. Exaiptesuch points are clouds or objects
in the background.

The investigation is carried out as follows. The ego-motdrnwo consecutive frames is
estimated. Based on that ego-motion the second image iedansuch a way that the camera
rotation vanishes, i.e. the image is stabilized. This issdoynapplying the infinite homography:
Ho. = KRK ~1. A (virtual) pure translational camera motion remains testwthe two frames. By
using visual inspection, it is examined whether points edistance have identical positions in
both images. Furthermore, the obtained ego-motion isiated over several frames. In addition
this reveals small errors in the ego-motion estimation.y@frthe estimates are accurate objects
in the distance stay at fixed positions over several frames.

An image sequence recorded out of a truck is used to perfoenvitual inspection. Fig-
ure 4.27a shows one frame of this sequence. The outlinedtshjethe background (the house
and the bridge) are depicted in figure 4.27b. Figure 4.27wslibe outlined image region 30

frames later. During this time period of2lseconds the camera undergoes considerable rotations.

Figure 4.27d and 4.27e show the rotation compensated im&igesmage positions of the house
and the bridge in the two images differ about 3 pixels, whichqual to an offset 0of.007 degree
per frame.
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(a)
Figure 4.27: Visual inspection of the ego-motion estimatiesults. (a) Frame 183 of the truck
sequence. The installation height of the cameragsi2the speed is 50km/h. The region marked
white is enlarged in (b). Figure (c) shows the same imageneg0 frames later. The camera
undergoes considerable rotations. (d) and (e) show theaoteompensated images. The image
positions of the house and the bridge differ about 3 pixels.
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Chapter 5

Road Homography Estimation

The ego-motion gives us the relative orientation of the gamehis information is not sufficient
for a fully featured object detection. We have to know theo#lite orientation, too, which is
comprised of the absolute angles and the height of the raad the camera. The estimation of
the road homography gives us this information, except the afagle. The estimation relies on
the measured optical flow on the road. Only the part of the ar@taining the road should be
considered. In section 5.1, this part, called dneing corridor, is computed.

Two types of error metrics are discussed in section 5.2. €bemmended geometric error
metric is non-linear. Its efficient minimization is addredsn section 5.3. The achievable accu-
racy of the estimate is investigated in section 5.4. As ingp@-motion case the image regions
contribute differently to the estimate. This is shown intest5.5. The novel Kalman filtering
of the road homography is introduced in section 5.6.

5.1 Computation of the Driving Corridor

Using the ego-motion information retrieved by the estimatithe driving corridor is deployed
by the extrapolation of the ego-motion. This assumes tleaegfo-motion is constant over time.
Figure 5.1 shows an example of the driving corridor. Thedimethe figure show where the
camerawillbein 1, 2, 3, ... frames.

The marginal points of the driving corridor are now computett first the width of the
corridor has to be defined. Experiments have shown that i casses the driver keeps a distance
of 0.5m to the roadside. Assuming a vehicle width of 2m theidg corridor sums up to 3m.
Inside the driving corridor we expect to see nothing elsa tha road.

The beginning of the driving corridor is deployed by the wigsbints on the road which are
seen by the camera and which are lying as close as possilile wamera. These points are
found by mapping the lower image corners to the road usingntre¥se projection matrix. The
projection matrixP, maps a world poink,, € P2 to the image poiincludent; in the current
frame:

Xe = PcXw (5.1)

If the world coordinate frame is chosen such that the roadeptaincides with the X-Z plane,

77
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Figure 5.1: Marginal points of the driving corridor. The pts of the same time instant are
joined by a line. Each line, starting at the lowest and cawgntipwards, predicts the projected

ego-motion one more frame to the future. The ego-motion éslipted 30 frames, which are
1.2 seconds. The width of the corridor is 3m.

the Y-coordinate of a point on the road is zero and equatibf&comes:

X

0

z (5.2)
W

The second column d¥; vanishes and we get a 3x3 invertable maRjix The point on the road
is then computed as follows:

XC: Pc

X
z | =P. % (5.3)
w
Mapping now the lower image corners (assuming VGA resatjtomto the road yields:
0 639
xw1=P. | 479 | xwe=P.7'[ 479 (5.4)
1 1

Using the larger depth of these two poi@igax = max(gﬁgz, gﬁ;z) we define two points on
the road as the beginning of the driving corridor:

—w/2 w/2
0 0
Xcorl(o) = Zinax Xcorz(o) = Zinax (5.5)

1 1
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wherew is the width of the corridor. The entire corridor is deploy®dpredicting the vehicle’s
motion based on the estimated ego-motion. Pitch and rollomstre changing rapidly thus they
are hard to predict. However we know they are zero on aver@gging them to zero is a good
prediction. The yaw motion changes slowly and is predietaldfe just say the current yaw rate
will be the same in near future. The term yaw rate here meagheerotation of the vehicle’s
longitudinal axis within the road plane. It is different fnothe yaw rateAy we got from the
ego-motion estimation, due to the rotation sequeaRce R(Aa, 0,0) - R(0,Ay,0) - R(0,0,Ad)
we used internally in the ego-motion estimation. In ordegét the desired yaw rat, the
Z-axis of the camera is projected onto the road plane (= Xafw@). This is depicted in figure 5.2.
The angle between the last projected Z-axis and the currejeqied Z-axis giveAyp:

|

Figure 5.2: Projection of the camera’s Z-axis onto the rokhe (=XZ-plane). The camera
moves frong to c.. The Z-axes are projected onto the plane yieldipgThe angle between the
last projected Z-axis and the current projected Z-axisig.

zo=| 0 Zpe= |RT| O = 0 (5.6)
1 1 (-)2=0 (R)33

;
_1Zpl Zpc

A, = cos 1P 5.7

G [20d] &7

The translation of the camera is also projected onto the pteatk. This is done by setting the
second component to zero:

tp = [t]),—0 (5.8)
The camera motion projected onto the road pldie=£ R(0,Ap,0), tp) is now used to move
the marginal pointgcor1 (¥ andxcor2@:

Ro  tp )\ " Ro tp )"
Xcorl(n):<o Op 0 5)_) Xcorl(n_l) Xcorz(n):<o Op 0 ?_) XcorZ(n_l) (5.9)
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These recursively formulated equations apply the projectanera motion n-times. Thus the
marginal pointsccor1™ andxcor2™ are the predictions n-frames in the future. Finally all thes
points are projected onto the current frame using the ptiojeenatrix Pc. The closed polygon
joining the projected points defines the driving corrideet Q denote the set of all image points
inside the driving corridor.

5.2 Error Metric

In section 5.1 the driving corridor was computed. It is assdnhat there is only the road inside
this corridor. The optical flow measured inside the corriderves as input data for the road
homography estimation. As in the case of ego-motion esiimahere are two types of error
metrics which can be used for the estimation, algebraic amingtric. The algebraic error
metric constitutes a closed form solution but is more vidber to noise as we will see in the
next section. Furthermore it is difficult to integratepriori knowledge. The geometric error
metric considers the distances of measured image pointgitcttue (expected) image points.

In general, image points corresponding to a plane in thedvaré mapped between two
images via homography. A general homography has eight Dexfe We search for a homography
which is compatible with the estimated ego-motRrt. This reduces the DoF to three, namely
the pitch angle, the roll angle, and the height. With therimaécalibration of the cameid the
(road) homography is composed according to [Hartley & Zissa 03]:

H =K(R—ev K1 (5.10)

wheree; = —Rt is the current epipole expressed in normalized coordinafhe three dimen-

sional vectowv encodes the plane normalk= ﬁ and the distance (height) of the camera to the

plane:h = ﬁ The plane normal itself is defined by the pitch anglend the roll anglé of the
road w.r.t. the camera:

n=R(a,0,4)(0,—1,0)" (5.11)

With the homograph¥,, an image poink; in the last frame is mapped to the corresponding
pointX. in the current frame according to:

In the next section the homography estimation method censigithe algebraic error metric
is described. The geometric counterpart which is recommeigldescribed in section 5.2.2.

5.2.1 Algebraic Error Metric

The algebraic error metric which is presented now stems figantley & Zisserman 03]. The
aim is to solve linearly for ther vector given a set of correspondences. To this end we first
eliminate theK matrix by a normalization of the image coordinates= K~1x andx} = K ~x..
Each correspondence generates a linear constrainasen

X, = (R—ev")X{ = RX| — (VX)) (5.13)
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However equation 5.13 cannot be used directly, siicde a homogeneous point with the third
component fixed by the right-hand side. We are only able tosomeainhomogeneous image
points. Homogeneous points represent the same inhomagepemts iff they are parallel (=
cross product is zero). When taking the cross product:

X, x [RX| — ec(VTX{)] = (X5 x RX|) — (X, x &) (VT x]) = 0 (5.14)

we can put in our inhomogeneous measurementsdnaémdx;. Forming the scalar product with
the vector(x;, x &) gives:
Ty = e X RX) (&) (5.15)
(Xe x &) T (Xg x &)
Each correspondence generates an instance of the equbtive. aHaving several correspon-
dences one stacks all equations together yielding therlgepsation systenMv = b. The rows
of the matrixM are the single points;.. v is found by the least squares solution:

v=MTM)MTb (5.16)

This method works well if no outliers are present in the agtilow. However, in real life
we expect outliers. In order to be robust the method is autgdesith the iteratively reweighted
least squares (IRLS) approach. It incorporates the conaept-estimation that we already
applied to the ego-motion estimation. The higher the redidfia correspondence, the lower its
weight. Thus the influence of "bad" correspondences is @dtiexl. The residual vector is given
by d = Mv —b. We apply the Huber cost functi@(d) again to compute the single weights:

o
] (5.17)

The linear equation systemMv = b is extended by the diagonal weight matrix
W = diag((w);,(W),,...) and then solved fov:

(W); =

WMv = Wb (5.18)

Defining the weights, as in equation 5.17, the least squatesan of 5.18 effectively minimizes
the sum of the Huber evaluated residugl€((d)i). The equation system 5.18 is solved multiple
times until convergence. Each time the weights are updatied) the solution of from the last
time. The weights are initially set to 1.

5.2.2 Geometric Error Metric

The geometric error metric represent a geometric meanirggidual, namely the parallax vector

W
_ HrX)s

U= H,

(Xe)o ~ (i

(5.19)
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Thev vector capturing the road normal and the camera height isdfday minimization of
the sum of all parallax vectors:

Nn
¥ =arg rr\)in_zlcp((u(v, X1i,Xei))1)? +Cp((M(V, X1 i, Xe.i))2)® with xij € Q (5.20)

with C, being the point-symmetric rooted Huber cost function idtrced in the ego-motion
chapter (eq. 4.34, p. 61). We apply Levenberg-Marquardt)(tdvperform the minimization.
The termsCp((U(V,Xij,Xc,i))1) andCp((H(V,Xi1i,Xci))2) serve as residuals. In section 5.3 we
will see that the assumptions made by the LM algorithm arduifiled exactly but nevertheless
LM performs well.

The iterative minimization allows easily the incorporatiof a priori knowledge, such as
the heighth of the camera. Doing this reduces the DoF to two, pitch angénd roll angle
¢. However, we do not minimize over and¢ directly but over the first and the third compo-
nent of the normal vector, i.e(n), and( ) respectively. The second component is enforced

such that/n|| =1: (n), = \/1 ThIS parameterization circumvents trigonometric
functions.

5.3 Efficient Minimization

The geometric error metric (eq. 5.20) is non-linear and Bancast be minimized iteratively.
When we dealt with the ego-motion estimation, we alreadgudised minimization schemes and
found out that the Levenberg-Marquardt (LM) method is veficient. The LM minimization
works well only if the assumptions made by this algorithm fatélled. Fulfilled assumptions
legitimate to shorten the computation of the Hessian maiffe recapitulate equation 4.32 on
page 61.:
02 ri 9°r;
R R o e Iy

(5.21)

LM assumes that the termw is small compared tg— aa“ and thus is neglected.
the minimum the residuals are zero-mean, and the assumpﬁohillled However, the task is

to find the minimum given a close starting point. The zero-nma)perty of the residuals does
not hold outside the minimum. It follows that the second\dsﬁwesﬁ itself have to be

small compared to the product of the first derivatives. Bid ifinot the case for the derivatives
containing the roll anglé. Figure 5.3 shows examples %a“ and aacxe;h; Thereby, the camera

moves rotation free along the optical axis, pg.= (0,0,0,0,0)T. The optical axis is parallel to
the road and the camera height ig,1.e. v = (0,—1, O)T. The derivatives depend on the image
position. Only in some regions the assumption is fulfilled.

The error functiory incorporates a set of (equally distributed) corresponédgnce. the

actual question i§; gg 33 >y a":—ga) ? A good approximation of the sum is to consider the
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Figure 5.3: The first and the second derivatives of the reside: (1)1 + (1)2 w.r.t. the pitch

anglea and roll angle. The derivatives depend on the image position.gé%. (b) 6?125¢'

integral over the entire lower image half:

480 640 ari ari

240/0 9 8¢ | Pe=(0,0,0,0,0)7 dudv = 0 (5.22)
v=(0,-1,0)T

480 640 aZri ,

240/0 00d¢ | Pe=(0,0,0,0,0)7 dudv = 1.7-10 (5.23)

V= (07 _17 O)T

Oops! The assumption is not fulfilled. A similar result is aibed wherg—g% is considered. By
the way, all other derivatives behave inconspicuously.

Does this violation spoil the minimization speed? Not gallhe LM method is still very
efficient. On average, 4.2 calls of the function plus deiwest are enough to find the minimum.
The entire minimization is performed in 0.7 ms on a Pentiun21¥ GHz when 300 correspon-
dences are utilized.

5.4 Accuracy of Road Homography Estimation

In this section, we investigate the accuracy of the road lgyaphy estimation based on synthetic
data. We compare the algebraic to the geometric error mainit to the geometric metric with
given camera height. It is not necessary to estimate thénhedgce it can be determined by a
calibration.

The synthetic data consists of 100 world points lying on te&lr They are equally distributed
in the lastimage frame. The points are mapped into the cuinraame using the ground-truth road
homography. There the points get an additive noise acoptdiN(0,0). Some of the points are
not mapped by the homography. Instead, their position irctineent frame is the position in the
last frame plus an additive noise according\t@®, 30pX). These points represent outliers.
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The road homography is estimated 100 times while varyingvbréd points and the ground-
truth road homography each time. Concretely, the pitch hedall angle of the road are uni-
formly distributed in the range-20..20°. The height of the camera is within.2m. The ego-
motion is constant: the camera moves &long the optical axis and does not rotate. In all
simulations the focal length of the camerds= fy, = 1000px.

The mean of the estimation error is nearly zero in all simoitest. 1t seems that both error
metrics produce unbiased estimates. More interestingttteamean is the standard deviation of
the estimation error, shown in figure 5.4. The geometric im@gnoduces more accurate results
than the algebraic metric. Especially the accuracy of tk&h@ngle is better. Using the camera
height asa priori knowledge (figure 5.5) increases the pitch angle’s accuwrangiderably (factor
of 3). This is not surprising since certain combinationsafiera height and pitch angle produce
a similar flow field for the road, i.e. these two entities areelated. An example is depicted in
figure 5.6.

0.4 ‘ , 0.4 ‘
e
— 035 — — height — —0.35 — = height
& 03 & pitch .. & o3| -+ pich
= « roll 4 = -+ roll .
£025 — — £025 —
= 02 A = 02 4 —-
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3 0.15 —t = 7 0.15 e
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® 0.05 5~ — 005 F——f——
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noise [px] noise  [px]
(@) (b)

Figure 5.4: Accuracy of the road homography estimation ipetelence of the noise level. (a)
algebraic metric (equation 5.18). (b) geometric metriciggopn 5.20).
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Figure 5.5: Accuracy of the road homography estimation jedelence of the noise level. The
geometric metric is minimized using the camera heigha pgori knowledge.

Beside the noise influence we investigate the robustnes®abaid homography estimation.
Figure 5.7 shows how the accuracy evolves when the outhetiém increases. Up to 60% out-
liers the estimate is influenced hardly. Higher outlier fiaecs degrade the estimate drastically.
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Figure 5.6: Different combinations of camera heigland pitch angle produce a similar flow
field for the road. (ah=2m,a =0°. (b)h=1.5m,a = —-1.7°

In this simulation the noise level is set tbo= 0.55px and the geometric metric is used. The
algebraic metric behaves similar to the geometric one.
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Figure 5.7: Accuracy of the road homography estimation ddimg on the outlier fraction. The
geometric metric is minimized. The estimation is robustap@% outliers.

We have seen that the road homography estimation is much acoreate if the camera
height is not estimated but given. Thereby we assumed tightisi error free, which does not
hold in practice. Therefore, we ask: To which extent doesmetain height spoil the estimate?
When is it better to forbear from the given height and estimgtinstead? To answer these
guestions we carry out another simulation. This time theaa the height is varied. The noise
in the optical flow is constant witlh = 0.55px. There are no outliers. Figure 5.8 shows the
resulting accuracy. For an uncertainty (standard deviath0.015m the pitch angle’s standard
deviation is 006°. This value is also obtained if the height is estimated (campo fig. 5.4b),
i.e. up to an uncertainty of.015m it makes sense to trust the given height.

Until now, we have discussed the effect of an uncertain carheight. What is if the driven
distancal between the frames (retrieved by odometry) is uncertairé’afiswer is: The effect is
nearly the same. To see this the homography matrix is condpgseg vectors of length one:

H, :K(R+%Rt|1nT)Kl (5.24)



86 CHAPTER 5. ROAD HOMOGRAPHY ESTIMATION

The camera translatidnis split intod = ||t|| andt); = é The homography depends only on the
relation%. This means that small uncertaintieihave the same effect as small uncertainties in

d. Also we can estimate the relati(ﬂnather than the height In other words, if the height is
given, for example via offline calibration, we can estiméte driven distancd which makes us
independent from the odometry.
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Figure 5.8: Accuracy of the road homography estimation sea# an uncertain camera height.

5.5 Sensitivity of the Road Homography Parameters

The estimation of the road homography is performed by miration of the geometric error
metric (eqg. 5.20). The accuracy of the estimated parame¢gesnds on the curvature (2nd partial
derivatives) of the error metric in the minimuim The higher the curvature, the more sensitive
the parameter. In the following we investigate the serisiw of the parameters pitch angie
roll angled, and camera height. We prefer these parametersviodue to their better physical
representation. They are directly relatedstand thus do not effect the estimation result. Their
sensitivities are given by:

62 2 2
62 2 2
02 2 2
$h= [(“glhi (3] A (5.27)

As for the ego-motion case, the parameters have differerditsgties. Furthermore, the sen-
sitivity depend on the image position. Figure 5.9 shows fiighe standard ego-motion case
(translation along the optical axis, no rotation) and stéaddoad homography case & 0°,

¢ = 0°, andh = 1m). All three parameters have their maximum sensitivity atldwer left and
lower right image corner. In theory, taking correspondsraé of these regions lead to the most
accurate estimate. However, in these regions the motianatdo reaches its maximum value
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causing more noise in the correspondences. In practice a@sehan equally distributed subset
from the available correspondences.
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Figure 5.9: Sensitivities of the road homography pararselepending on the image position.
Dark regions are regions with low sensitivity. White regdrave the maximum sensitivity for
that parameter. (a) pitch anglg max= 9.59* 10° (b) roll angle.sy max = 9.82x 10* (c) height.
Shmax = 5.52% 10%

5.6 Road Homography Filtering

The estimation of the road homography relies on the avéitiabif a well textured road. How-
ever, sometimes the road is low-textured or even homogehetaxtured. In that case the ho-
mography estimation performs poorly and measurementseoélisolute pitch and roll angles
fail. Only the ego-motion estimate is reliable, i.e. we andyable to estimate rotations from
frame to frame. Under the assumption that the road has aardnsrtical slope, the rotations
from frame to frame are identical to the temporal derivatio€the absolute angles. Figure 5.10
illustrates this for the pitch angle. In times wherea is estimated badly, it can be updated
through an integration of the pitch ratAs. In this section, we develop a Kalman filter based
approach, which uses the ego-motion to stabilise the hoapbgrestimation in this way. It has
been published in [Klappstegt al. 07a].
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Figure 5.10: The camera moves framto c4 while pitching. The absolute pitch angbe of
the road w.r.t. the camera is the sum of the pitch rates This assumes a road with constant
vertical slope and known initial pitch angie: i = ag+ S A

A block diagram of the approach is shown in figure 5.11. At tinstego-motion is estimated
utilizing the current pitch angle as the vertical translational directi®p. This feedback we had
already built in in section 4.6.3, where we had discussedniibgon model of the vehicle. There
the estimated pitch rates were only integrated and fed aukh led to unstable behavior. Now,
with the additional measurement of the absolute pitch anléebehavior becomes stable as the
experimental results will show.
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Figure 5.11: Block diagram of the homography filtering agmtm At first the ego-motion is
estimated utilizing the current pitch angleas the vertical translational directi@). The result
is used to estimate the normal vector of the road. In the taptlsoth results are combined in a
Kalman filter.

In the second step, the result of the ego-motion estimatiarsed to estimate the road ho-
mography. Following the outcome of the accuracy investigatsection 5.4, we forbear from
the estimation of the camera height and the driven distdnséead, we assume that the camera
height is given and that an accurate odometer is in use. tlisases the estimation accuracy of
the remaining parameters, the absolute pitch and the @bswolilangle. These two parameters
define the normal vector of the road. In the last step the egitemestimate and the road normal
estimate are combined in a Kalman filter.

The quality of the estimated homography varies with thettbeedness" of the road. A low-
textured road makes it hard to establish image correspaedein such a case, we cannot trust
the estimate, so we put our confidence into the ego-motiomata. To this end the Kalman filter
requires a statement about the (un)certainties of the astahego-motion and homography. This
statement is developed in the following sections.

5.6.1 Uncertainty of an Estimate

In general, an estimate results from uncertain (inaccumapeit data. For example, the estimated
road homography results from uncertain image correspaegerCommonly, the uncertainty is
expressed with the covariance matrix. If the relation betwne estimate and the input data is
explicit, a first order approximation of the uncertainty bétestimate is computed by the well-
known covariance propagation: Ligbe the estimates the input data, anflan explicit function
such thap = f(x). The covariance matri€o\p] of the estimate is then:

CoVp] = J-Covx]-JT (5.28)
whereJ = g—f()_ is the Jacobian matrix evaluated at the meani x. In practice one evaluatels
X

at the concrete measured valuexphssuming that the value is sufficiently close to the mean.
However, if the relation is implicit, i.ef(x,p) = 0, things become more complicated. This
is the case whep is obtained as the minimum of some error functignsince the gradient

f= g—é has to be zero. Faugeras and Luong [Faugeras & Luong O1kaithk implicit functions

theorem to derive the covariance propagation for this cise theorem says: if the Jacobiggq
is invertable ap the implicit function can be locally transformed into an Bsipone feyp, and its
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Jacobian is given by:

Ofexp  (OF\ ' of
> <%) "X (5.29)
To get the explicit Jacobian of the implicit error functignts gradient is put into equation 5.29
yielding:
Oexp (32X~ 0X
ox (a—p2 " 9pox (5.30)

This Jacobian evaluated ptcan be used ad in the covariance propagation, equation 5.28.
Thus we have a first order approximation of the estimate’aigaxce matrix, even if the relation
between the estimate and the input data is implicit.

Faugeras and Luong [Faugeras & Luong 01] adapted the cacar@opagation for the case
thaty is a least-squares error function= ZiN r(p,xi)?. Under the following assumptions:

1. The termsi% are negligible with respect to the terré%)

is made by the Levenberg-Marquardt minimization.

Ton

o The same assumption

2. Thex;’s are independent.
3. The residuals; are independent and identically distributed.
4. The mean of thg’s at the minimum is zero.

the covariance propagation can be simplified:

2Xmin H_T

N=dim®) (5.31)

Covp] =

With Xmin = Y i andH =251 (?TB) g_g

the approximate Hessian matrix in the mini-
. p=p
mump.

5.6.2 Uncertainty of the Ego-Motion Estimate

We now use the general formulation, discussed in the latibseto compute the uncertainty of
the ego-motion. To this end we recapitulate the error methich is minimized:

Ne
be=argming Cp(Jrseni) ? (5.32)
i£ T/

The vectorpe = (Aa,AP,Ap)T contains the ego-motion parameters. The assumptions made
in conjunction with equation 5.31 are (nearly) fulfilled. dection 4.7, we had shown that the
second derivatives af with respect tqe are negligible (1st assumption). Of course the image
correspondences (%’'s) are independent (2nd assumption) as well as the residigl since
every individual correspondence is made from its own imagon.
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The residuals depend on the image correspondences, wiactséives depend on the tex-
ture’s "cornerness" in the image. The lower the cornerngssriore inaccurate the correspon-
dences. Thus, the correspondences as well as the residealstadentically distributed (3rd
assumption). However, the optical flow algorithm used is thiesis excludes image regions of
low cornerness, so the correspondences have a comparabla@ac Furthermore, we model
their covariance matrices as a multiple of the identity matr

Next, we show that the residualé are zero-mean at the minimum (4th assumption). In fact,
we show that every individual residual is zero-mean, rathan the set of all residuals. To this
end, we consider the true ego-motion and the noise in thespondences. It is assumed that
the minimum coincides with the true ego-motion. The noisthencorrespondences is modeled
as follows. The poink; in the last frame is measured error-free. Its correspongaigt X¢ in
the current frame is measured with an emoe ((n),, (n)z,O)T: X¢ = X¢ + N wherex, is the
(homogenized) true point is modeled as a zero-mean normal distributions N(0,CoVn|)

with the propability distribution function p¢ifi) = Wwe*%mcw[ﬂ*ln_ )
Formally, the zero-mean property of the residuat r(F,x|,Xc) = Cp(JrsedF,Xi,Xc)) iS

verified by showing that the following equation holds:
// r-pdf(n)dn=0 VF,X < Xe (5.33)

The double integral means that the first and the second caempoiin is integrated. Instead of
solving this unaesthetic integtaive will show geometrically that the residual is zero-meEme
rooted symmetric epipolar distandgsepconsists of two parts: the distancexfto its epipolar
line I} = F-x. measured in the last frame, and the distance.ab its epipolar lind; = F - x|
measured in the current frame. The noise acts differentthese distances. In the current frame
it shifts x; around the true point, whereas in the last frame it variesgiipolar linel;. This
results in different statistical behaviors of the two ep@palistances.

Figure 5.12 shows the current frame with its epipolar distan The uncertain poimnt
is characterized by its covariance ellipse, representiogjtipns of x. of constant propabil-
ity. It can be seen that the epipolar distamigas point-symmetric regarding the noisei.e.:
dc(n) = —dc(—n). Please note thal; is positive or negative depending on whethgfies on
the "left" or on the "right" side of.. Although, the terms "left" and "right" are wacky unless
a mathematical meaning is given to them, it is hoped thatéhder understand what is meant.
Any point-symmetric function maintains the zero-mean propif the argument of the function
is symmetrically distributed. With ~ N(0,CoVn]), this is the case and}, is zero-mean.

What about the epipolar distandgin the last frame? Is it also zero-mean? Figure 5.13
shows how the noise acts on the epipolar lineFor better visualization a rotation-free ego-
motion is chosen, producing points lying onl;. This comes without loss of generality. Again
the uncertainty ok is represented by its covariance ellipggtogether with the epipole. form
the epipolar lind|. A point x; is defined as the result from reflecting over the true epipolar
linel;. In the same way the reflected epipolar lihes defined. The epipolar distanceéisandd,
are identical except the sigif = —d;. If the covariance ellipse is a circle, as in figure 5.13a,

1A closed-form solution does not exist.
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(@) (b)

Figure 5.12: The epipolar distandgin the current frame is point-symmetric regarding the noise
n in the measured poindc = Xc +N. dc is the distance oX. to its epipolar lind which goes
through the epipole; and the true poink.. The pointx, results from reflecting. through

Xc. The "reflected" distance, andd. differ only in the sign, i.e.d, = —d;. Furthermorex
andx¢ have identical propabilities, regardless whether the itamee ellipse is (a) circular or (b)
elliptic.

the reflected poink;, has the same propability as the original poigt Thus, the propability of
dy being positive is the same as being negative, in other wayrtdszero-mean. By the way, the
functiond, is not point-symmetricd, (n) # —d; (—n).

Where the covariance ellipse is actually elliptic, as inffggh.13b, the zero-mean property
of d; is lost. Only in the special case where one of the ellipsdfsaxas is parallel tdy, d, is still
zero-mean. This is because the propabilitglas not symmetric anymore.

We have just shown that the epipolar distadgm the current frame is zero-mean (regardless
of the shape of the covariance ellipse), and that the epiplidtanced, in the last frame is zero-
mean ifCoVn] = diag(o(zn)l, ofn)Z,O). From experiments with simulated traffic scenes, we know
that the correspondences produced by the optical flow &fgorapproximately obey a zero-
mean normal distribution wit@ovin] = diag(0.55%,0.55%,0), i.e. the condition is fulfilled. The
rooted symmetric epipolar distandgsepthus is zero-mean. The residuak Cp(Jrsgp is also
zero-mean, sincgp, is the point-symmetric rooted Huber cost function.

All assumptions made in conjunction with equation 5.31 atflled. Thus, equation 5.31 is
used to compute the covariance matrix of the estimated egmm

2Xmin

N 3H_T (5.34)
o

Co"[ﬁe] =
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(@) (b)

Figure 5.13: The epipolar distandgin the last frame is symmetric regarding the true epipolar
linel;. This line is defined by the epipoée and the true point.. For better visualizatioh goes
throughx, (rotation-free ego-motion). The noisein the measured point: = Xc +n changes

l} to I} producing the epipolar distanag. The pointx resulting from the reflection ovdy
produces the epipolar distande Both distancesl| andd, are equal except for the sign. In (a)
the covariance ellipse is circular inducing identical @bitities forx; andx;. This does not hold

if the ellipse is elliptic (b).

5.6.3 Uncertainty of the Road Homography Estimate

In section 5.4, we recommended to employ the geometric eratric together with the known
height of the camera when the road homography needs to Ineag¢stl. This approach led to the

following estimate:
Nn

Pn = argming Co((1)1)" + Col(1)2)° (5.35)

with p, = (a,c]))T the parameter vector capturing the pitch aregknd the roll anglé. Here the
residuals arej = Cp((14)1) +Cp((14)2) with pthe parallax vector.

In order to apply equation 5.31, we have to show that the agg8ans made in conjunction
with this equation are fulfilled. The terms(f;—ga) are negligible w.r.t. the ter 0'(3—3; (1st as-
sumption) since thg’s are zero-mean in the minimum (see 4th assumption for theore. The
correspondences X7s) produced by the optical flow algorithm are independend(2ssump-
tion). The parallax vectau is equal to the noise: p= ((n),, (n)z)T. Due ton ~ N(0,CoV[n]),
andC, point-symmetric the;j’s are identically distributed (3rd assumption) and zeram (4th
assumption).

The assumptions are fulfilled thus equation 5.31 is applkcab

o min
Covpn] = ZN):'TZH T (5.36)
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5.6.4 Kalman Filtering

The road homography estimation gives us the normal vecttireofoad w.r.t. the camera. How-
ever, this vector may be inaccurate due to a low-textured.roa

We take the ego-motion into account to improve the estimatad normal. Assuming a road
of constant vertical slope, as shown in figure 5.10, the egtiem expressed with the rotation
matrix R = R(Aa, A, Ad) represents the temporal derivative of the road normalthenormal
vector at time instark is the previous one &— 1 rotated byRy_;:

Nk = Rk—1-Nk—1 (5.37)

We now have two measurements of the road normal, first theatsth (built from p,), and
second, the update rule (equation 5.37). Before we will damthem within a Kalman filter,
we pay attention to the update rule. Due to the uncertainténestimated rotatioR (built
from pe), the normal will drift away, if only this rule is applied. €hupdate rule in conjunction
with the estimated road normalprevents a drift. In situations whereis poorly estimated, we
need an alternative measurement: the average normal vedtads learned online, employing a
recursive low-pasdik = Afig_1 + (1 —A)ng_1 with A € (0,1).

The thoughts above lead to the following Kalman filter desigmmbining the estimates
R, A together with their corresponding covariance matriges|pe] andCovp,] computed with
the equations 5.34 and 5.36 respectively. The notationrdegathe Kalman filter is taken
from [Welch & Bishop 01].

e The process model reads; = Ax_1-Xk_1 + Wk_1 Where the state vectarrepresents the
filtered normal vector. The state transition matrix is edoahe rotation matrix provided
by the ego-motion estimatiols = R.

e The process nois& ~ N(0, Q) reflects the uncertainty of the rotation and is charactdrize

by the process covariance mat@x= JeCoMpe| Je' With Je = g—& the Jacobian matrix.

e The measurement model is

7 — ( iy ) _ ( - ) v (5.38)

We have two "measurements” for the state There is the average normal vecigrand
the estimated road normai. The uncertainties ai, andfy decide which measurement
can be more trusted.

e The measurement noise~ N(0,R) characterized with the measurement covariance ma-
trix2 R consists of the variance @éf:

0%(fi)k = AG® ()1 + (1= A) (N — i) ? (5.39)

2Sorry that the letter R is assigned to two distinctive egiti
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and of the covariance ai;:

on on\"
CoVing] = =—CoVp — 5.40
in = 52 Copn] () (5.40)
The measurement covariance matrix is:
[ diag(c?(R)) O
R= { 0 Covii] (5.41)

When the Kalman filter performs the update step the stat®@wveatill change its length. How-
ever,X represents a normal vector which should have a length of Baethis reasomx is nor-
malized to||x|| = 1 after each update. The complete approach is summarizéghiritam 5.1.

5.6.5 Experimental Results

In this section, the Kalman filtering is tested on real tradfienes. Three experiments are carried
out.

Experiment 1

In order to visually compare the estimated road plane wighattual one, a straight road with
a constant vertical slope is required. The vanishing pditii@ (parallel) road boundaries gives
us one point on the horizon. The horizon of the estimated pbaide should pass through that
point. Figure 5.14 shows such a road. The image correspoadersed for ego-motion and road
normal estimation are shown in figure 5.14a. There are mamggmondences on the road -
thanks to a well textured road - allowing a good estimatiothefroad plane (yellow horizon line
in 5.14b).

667 frames later the vehicle drives under a bridge causieglaced illumination and there-
fore a low-textured road. Only a few correspondences aned@m the road (figure 5.15a). This
leads to a poor estimate of the road plane which can be seegune f5.15b. This situation cor-
responds to a high variance of the estimate depicted in figur@. Around the frame 667 the
variance is higher than normal indicating a poor estimatesulch a situation the Kalman filter
updates the road normal incorporating mainly the ego-maggtimate. As a consequence the
filtered road plane (red horizon line in fig.5.15b) compared o the actual one. Beside the
estimated and the filtered horizon, the integrated horig@mown in figure 5.15b. It is the result
of the integration of the estimated ego-motion from frame &rame 667 using equation 5.37
together with an appropriate initial road normal. One caaxy see that the integral has drifted
away.

The Kalman filtering effectively prevents a drift in the roadrmal and is able to cope with
temporary lacks of texture on the road.
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Algorithm 5.1 Road Homography Estimation and Filtering
Task: Estimate and filter the road homography given the ego-motion estimafig and cor-
respondenceg < X

1. Compute the driving corridor. Compute recursively the marginal point&xl(”) and
Xcor2™ for n = 0..30 (see section 5.1 for details). Apply the projection nxaf to get the
images of these points. The closed polygon joining the palefines the driving corridof2

is the set of all image points inside the driving corridor.

2. Parameterize the road homography. The road homography, = K(R —eci)K_1 com-
0,

h
patible with the ego-motion is parameterized by the norreatarn = R(a,0,¢)(0,—1,0)T
depending on the parameter veggr= (o, ).

3. Estimate the road homography. Use the parallax vector:
Hr
ae [ UehT s
= He
(Xc)o — EHrﬁiﬁ

Nn
pn = arg rginzlCp((“(pnaxhi,Xc,i)>1>2"‘Cp((u(pn,xl,iaxqi))Z)z with x; € Q
n |:

to find the best estimafa,:

with C,, the point-symmetric rooted Huber cost function. The fumaal is minimized by LM.

4. Compute the covariance matrice®f the ego-motion estimat@oV|pe] and the road normal
estimateCoV{p,] according to
2Xmin

H-T
N-3

See section 5.6.1 for details.

5. Compute the average road normal and its variance.

average road normal:fix = Afig_1+ (L —A)nk_1

variance: 0?(fi)k = Aa?(A)k_1+ (1— ) (ng — fAig)?
with A € (0,1) andk the current time step.

6. Filter the road homography.
Feed the Kalman filter with the estimatgg; pn, i and their uncertaintie€€oVpe|, CoVpn],
2 ~
o-(h).
Update the Kalman filter. Then normalize the state vekttw ||x|| = 1. It represents the
filtered road normal.
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7
/

(b)

Figure 5.14: Frame 20 of an image sequence containing glstraiad with a constant vertical
slope. The road is well textured. (a) The image correspacetenutside the driving corridor
(yellow area) are used to estimate the ego-motion. The gmoredences inside the driving corri-
dor are used to estimate the road normal. (b) The road noapedsented by its yellow horizon
line lies close to the vanishing point (black dot), i.e. iwsell estimated. Also the integrated
(green) and the filtered (red) horizons lie close to it.

Experiment 2

In the second experiment, we generate a series of poor @stiroathe road plane in order to
investigate the filtering power. To this end, we take the 13 frames of the straight road
sequence and vary the number of correspondeNgesed for the road normal estimation. In
each framé\,, correspondences are selected randomly from the set of neglasarrespondences.
The lowerN,, the worse the estimate will be. We compare the estimatediltereéd road normal
to the ground truth. The cloud in the middle of the image sea& ground truth (fig. 5.17a).
This object is immune to camera translations, since it iW@ay. Yaw and roll rotations shift
the cloud horizontally and pitch rotations shift it vertigaSince the cloud’s structure is mainly
horizontal, horizontal shifts cannot be tracked very w&hus, we concentrate only on vertical
(pitch) motions. The vertical shift of the cloud is trackesing [Hager & Belhumeur 98].

Figure 5.17b shows the resulting standard deviations far @f the estimated and filtered
pitch angle. The stabilising effect of the Kalman filter isdmnt. The error of the estimated pitch
angle increases rapidly fof, < 10 correspondences, whereas the error of the filtered pitgle a
increases moderately.

Experiment 3

The proposed approach also works well if the ego-vehicleedra curve. In figure 5.18 the
vehicle just turned left at an intersection. In this sitaatithe lane markings are not straight
which makes it unfeasible to extract the vanishing pointreHemnother special point is used as
ground-truth information: the camera is mounted near theview mirror in the ego-vehicle.
The rearview mirror of the car seen by the camera (fig. 5.18}lmasame height above the road
as the "ego-mirror". Any world point having the same heighttze camera lies on the roads
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filtered

(b)

Figure 5.15: Frame 667 of the straight road sequence. Thelgehives under a bridge causing a
reduced illumination and therefore a low-textured roaji T{eere are only some correspondences
inside the driving corridor resulting in a poor estimate lué toad normal (yellow horizon line
in figure (b)), whereas the filtered road normal (red line}il§ rsear the vanishing point (black
dot). The integrated road normal (green line) has driftedyaw
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Figure 5.16: Standard deviatiogi (CoV{pn])11 of the estimated pitch angle computed with
equation 5.36. Around frame 667 the road is low-texturegiceuhigher values.

horizon line regardless of its depth. Furthermore, it dagsmatter whether the point is moving
or not. This means that the horizon line should pass throlughdarview mirror of the car. The
filtered as well as the estimated horizon line lie very clasi.tTo see that the filtered horizon
is correct whereas the estimated is not, we have to look 4t fhidars. The filtered horizon line
intersects both (c-saulen) at a same height, which doesotefdr the estimated horizon line.

The entire approach - consisting of the ego-motion estomathe road normal estimation,
and the Kalman filtering - is very fast, since the computati@xpensive iterative minimizations
are limited to a 3+2 parameter space. When 300 correspoesi@ane used, the algorithm runs in
about 2ms (Pentium IV 2.4GHz), excluding the computatiothefcorrespondences.
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Figure 5.17: (a) The cloud in the background is tracked o@érftames and serves as ground

truth for the pitch angle. (b) Standard deviation for errbthe estimated and filtered pitch angle
depending on the number of correspondences used for thenooadhl estimation.

(b)

Figure 5.18: Frame 201 of the intersection sequence. Thev&gicle turns left inducing a
curved driving corridor (a). The correspondences insiéedfiving corridor are used for the
road normal estimation. They are limited to 10 simulatingwa-textured road. Figure (b) shows
the resulting poor estimate of the road normal (yellow hamritine). The filtered road normal
(red line) is in sane whereas the integrated road normagigree) has drifted away.



Chapter 6

Detection of Independently Moving Objects

In the last chapters we had dealt with the estimation of tleeregtion and road homography.
Why this effort? Well, we are now able to reconstruct theistadrt of the 3D scene, and we can
put reconstructed 3D points into relation to the road. Themstruction is the access point to
the detection of moving objects: For 3D points which are altjustatic the reconstruction will
be fine, but for 3D points which are moving the reconstructidihfail (in general). What does
this mean?

A reconstructed 3D point has to fulfill certain constraimsorder to be a valid static 3D
point. If it violates any of them the 3D point is not staticniee it must move. These constraints
play the essential role in the detection of moving objects.

In the following section the constraints for static 3D peiate discussed. These constraints
are well known to the computer vision community, but theneaslgorithm which exploits them
all. An algorithm doing so is introduced in section 6.3. lalates the constraints quantitatively
in a unified manner. Experimental results in section 6.4 sheveffectiveness. The points
detected as moving must be grouped together to form broagttshj This clustering issue is
pointed out in section 6.5. Although a lot of constraintsdtatic 3D points exist there are some
kinds of motion which (nearly) fulfill all constraints andutare not detectable. These detection
limits are investigated in section 6.6.

6.1 Constraints for Static 3D Points

In traffic scenes a static 3D point fulfills four constrainihe first three constraints apply for
correspondences over two views. The fourth constraint diable if correspondences over
three views are available. Each individual constraintaaihie quality of detection.

e Epipolar Constraint
The epipolar constraint expresses that the viewing raysstdtec 3D point (the lines join-
ing the projection centers and the 3D point) must meet. A npdD point in general
induces skew viewing rays violating the constraint. Figbre illustrates it. This con-
straint we had already used when we estimated the ego-mdtienknowledge about the
fundamental matrix is sufficient to evaluate this constrain

99
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Figure 6.1: Epipolar constraint. The image of the second/vg&eshown. The camera moves
along its optical axis. An object moves lateral w.r.t. theneaa inducing a horizontal optical
flow shown by the correspondencgs— x» andxj < x5. The subscripts 1 and 2 denote entities
in the first and the second view, respectivedy.does not lie on the epipolar ling inducing the
epipolar erroie. X; moves along its epipolar ling and thus fulfills the epipolar constrairg,

is the epipole.

¢ Positive Depth Constraint
The fact that all points seen by the camera must lie in frorit, & known as the positive
depth constraint. It is also called cheirality constraititviewing rays intersect behind
the camera, as in figure 6.2a, the actual 3D point must be mgovirhis constraint is
independent of the scene structure. In order to evaludteitranslation direction (forward
or backward) of the camera has to be known, in addition to gseftial matrix.

e Positive Height Constraint

All 3D points must lie above the road. If viewing rays intassenderneath the road, as in
figure 6.2b, the actual 3D point must be moving. This constiiginot as powerful as the

positive depth constraint since it applies only for imagafsounder the horizon. Further-
more the geometry of the road has to be known. Commonly thek ibpapproximated as

a plane which is accurate enough in most cases. The driveandesbetween consecutive
frames is also required, which is either retrieved with aorodter, or is extracted from the
images directly using the measured optical flow of the road.

e Trifocal Constraint
A triangulated 3D point utilizing the first two views, mustamgulate to the same 3D
point when the third view comes into consideration. Thisstraint is also called trilinear
constraint. In figure 6.3 it is violated.

In traffic scenes no more constraints for static 3D pointstexn other applications there may
be further constraints. In the field of robot indoor navigatifor example, the valid height is
restricted due to the ceil. With the known height of the ro@immaximum height constraint" is
applicable.
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Figure 6.2: Side view: Positive depth (a) and positive higjighconstraint. The camera is moving
from ¢y to c,. A 3D point on the road is moving fro@; to Z,. In (a) the travelled distance of the
point is greater than the distance of the camera (overtaiijgct). The triangulated 3D point
Z; lies behind the camera, violating the positive depth caistr In (b) the travelled distance of
the point is smaller (preceding object). The triangulatBdpdint Y lies underneath the road,
violating the positive height constraint.

Epipolar Plane

Figure 6.3: Trifocal Constraint. The camera observes adhtaoving 3D point X1 to X3)
while moving itself fromc; to c3. The triangulated point of the first two views X§12. The
triangulation of the last two views yield$;>3 which does not coincide witiX1, violating the
trifocal constraint.

6.2 Motion Detection Schemes in the Literature

The existing motion detection schemes exploit a subsetefctnstraints we have discussed
in section 6.1 either directly or indirectly. In the follomg paragraphs three error metrics are
described measuring the deviation from the constraintstidic 3D points:

Cone criterion In [Wagneret al. 99] an error function for the ego-motion estimation utitigi

the epipolar and the positive depth constraint is presefased on the "half-perspective” view,
a conic error model is developed. An error cone is assoctatadziewing ray. The apex of this
cone coincides with the projection center of the cameralenthie central vector is the viewing
ray. The aperture anglg of the cone reflects the errerof two corresponding viewing rays.
Y is the minimal angle where the intersection of correspomdirror cones is not empty. If
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the the viewing rays intersect each other in front of both @a®, is zero. However, if they
intersect behind one camerp.is greater zero. In comparison, the epipolar geometry aslia "f
perspective" approach would yield an error equal to zero.

Angle criterion The angle criterion uses the direction of the optical flomoe When mov-
ing purely translational towards the scene, all flow vectmes parallel to the corresponding
epipolar lines and point away from the epipole (focus of &gi@n). This holds true for the
entire static scene. We call this tegpected flovdirection. If this expectation is violated due
to an independently moving object, the measured flow wiliatevfrom the expected flow. Any
camera rotations are removed in advance by applying thatenfiomography.

(@) (b)

Figure 6.4: Angle criterion. (a) The image point of a stafix Boint moves fromx; to x, due

to the camera motion towards the scene. The (expected) flparalel to the epipolar line and
points away from the epipole;. (b) The image point of a moving 3D point moves fromto

X2. The measured flow has an angleelative to the expected flow. In comparison, the epipolar
errorg; is also depicted.

Figure 6.4(a) shows an example of the expected flow whiledigu4(b) exemplifies a mea-
sured flow and the relation between the epipolar error anchtigge error. A flow vector is
classified as moving if the angle is greater than a certagstiold. This criterion requires a flow
vector of sufficient length, since the angle is unstable foalsflow vectors. In the event of zero
flow an angle does not exist.

The angle criterion indirectly exploit the epipolar and thesitive depth constraint. The in-
corporation of this criterion into a statistical framewaskcumbersome due to its unfavourable
properties: The angle does not fully correlate with the piwlity that a correspondence is ac-
tually moving. For example, if the correspondence obeysepipolar constraint but not the
positive depth constraint, the angle is always °18&gardless of the flow length. The work
of [Woelk & Koch 04] employing the angle criterion in a Bayasiframework pays attention to
that issue.

The angle criterion is also employed in [Pauwels & Hulle @4id [Claus®t al. 05].

Planar motion parallax The parallax vectay, defined as the deviation of the measured optical
flow from the expected flow on the road plane (see equation) caf be used to detect moving
points. For correspondences violating the positive heighnistraint, the parallax vector points
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towards the epipole since the measured flow is shorter thpacéad. In [Giachetet al. 98]
and [Baehringet al. 05] the planar motion parallax is evaluated.

In section 6.5 we will discuss cluster algorithms explajtthe epipolar, the trifocal, or the
multifocal constraint. They assign the correspondencekdadalistinct motions they find. The
detection of the moving objects follows directly once th@-egotion is identified among the
found motions. Commonly, the dominant motion, i.e. the wotvith the highest number of
correspondences, is supposed to be the ego-motion.

6.3 Error Metric Combining the Constraints

With the constraints in mind, the objective now is to measquantitatively to which extent
these constraints are violated. The resulting measurefueation, called error metric, shall
be correlated to the likelihood that the point is moving, ildgher values indicate a higher
probability.

The error metric is developed in two steps. First, the tweavconstraints are evaluated
taking view one and two into account. Afterwards, the trdloconstraint is evaluated including
the third view.

6.3.1 Two-view Constraints

The algorithm which is being developed combines the twavwenstraints (epipolar, positive
height, and positive depth constraint). An early version ibfwas published in
[Klappsteinet al. 06b]. The result of the algorithm is an error metric meagyutime distance
of the end point of a measured optical flow vector, to the reggreint which fulfills all con-
straints. The confidence of being a moving point is propaogiado the error. In detail, the error
increases with the skewness of the viewing rays and with éigative height of the triangulated
3D point. The error is also high for viewing rays meeting dilgbehind the camera.

The error is measured in units of pixel (no angles or otheitiestinvolved) allowing an
easy incorporation into statistical evaluations. The genio relations of the involved entities
is depicted in figure 6.5. In the next section, when we worlklitree views, the notions "last
frame" and "current frame" usually used in this thesis areappropriate any more. For this
reason we change the notions: the last frame becomes frambemnwne X1) = x|, and the
current frame becomes frame number two £ Xc).

The measured flow vector startsxip (last frame) and ends ixy (current frame). The start
point x1 defines the epipolar link going through the epipole,. In the example shown in fig-
ure 6.5x; lies under the horizon linky. Thus, the positive height constraint is applied: Assuming
a forward moving camera, the point in the second frame maggberfectly withx; and lying on
the road is<;. The pointx; lies on the epipolar line and has zero height. Points on tippk
line farther tharx, are above the road. They fulfill all constraints. Points etds the epipole
thanx, are under the road (violate the positive height constrairtig linel, perpendicular tde
defines the border line. In figure 6.5a the positive heighstramt is violated. In this case the
nearest poinks, fulfilling all constraints is equal to the point on the roxgi = x;. In figure 6.5b
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() (b)

Figure 6.5: Two-view error. The second view is shown. Theespondence&, < X, violates
the epipolar constraint. Additionally, in (a) the positiveight constraint is violated. The point
Xi2 is the nearest point fulfilling all constraints. The twowierrord, measures the distance of
X5 to that point. For detailed explanation see the text.

the positive height constraint is fulfilled. Herg;p lies at the foot of the perpendicular from the
pointx,. Thetwo-view error @ is the distance from to Xs,.

For pointsx; above the horizon line, the positive depth constraint asplin that case the
point on the road, is substituted by the point at infinits,. This point perfectly matches with
X1, whenxg is the image of an infinite 3D poink. also lies on the epipolar line. Points on the
epipolar line farther thar., are in front of the camera. The others lie behind it. The bolide
and the poinks, are constructed analogue to the positive height constraint

After this geometrical consideration we compute the twaaverror. At first we need the
horizon linely. Its computation requires the rotation of the camera witré.road. This rotation
we had estimated in chapter 5. The maRjx= R(a,0, ¢) rotates points from the road coordinate
frame into the camera frame, whexeand¢ are the pitch angle and the roll angle of the road,
respectively. With this information the vanishing poinfstioe road’s x-axis and z-axis can be
computed:

1 0
Vx:KRr O VZ: KRr O (61)
0 1

The line joining these two vanishing points results in thazem line:

Ih
|h = (6-3)
(Ih)s
Equation 6.3 homogenizes the horizon line. This makes tkiecoenputation easier. The position
of X, decides which spatial constraint is appliedxiflies under the horizon, the positive height
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constraint is applied requiring the point on the ro@adotherwise the positive depth constraint is
applied requiring the infinite point,:

Xr ,X1'lh <O

Xp = { %o XqTlh >0 (6.4)
wherex;, describes the generalized border point. The scalar prodlibt is positive wherx,
lies on the same side as the origin of the image (upper lefteror(0,0, 1)T). This is easily
verified sincg(0,0,1) - I, = 1). It is assumed that the origin itself lies above the horizon.

The infinite point in equation 6.4 is computed via the infiimographyH. = KRK ~1
mapping a point in the second frame onto the plane at infimtyt@ack onto the image plane of
the first frame:

Xeo = Hog X1 (6.5)

The road point also present in equation 6.4 is computed wardd homography,. The
estimation ofH, was the topic of chapter 5.

Xr = Hy1xq (6.6)

Next we compute the border lilg To this end we need the knowledge about the ego-motion we
had obtained in chapter 4. The ego-motion reflects in the dmahtal matrix:
F =K~ T[-Rt], RK~1 whereK was the calibration matrit,the translation vector of the cam-
era from the first frame to the second @Rdhe rotation matrix of the second camera w.r.t to the
first. The border line is perpendicular to the epipolar ligand goes through the border point
Xp-

b= —(Xb)3 0 0| Fxq (6.7)

(Xp);  —(X0)1 O

The pointx;, fulfilling all constraints depends on the location»of If x, lies on the same side
of I, as the epipole,, thenxs, is equal to the border point, otherwise it lies at the foothsf t
perpendicular fronx,:

T T
_ Xp X2'lp-&'lp >0
sz_{ dxxoxle ,else (6.8)

with d = ((Ie)l,(le)z,O)T. Remember thal, is a homogeneous entity. Hence a single scalar
productx, "I, is insufficient to check on which side lies. Only together with the check for the
epipole:e;Tl,, yields the desired result.

The final two-view error metritis the distance fromy to Xs»:

dz = d (X2, Xt2) (6.9)

To be honesty, is a pseudometric since we may halg, X2 ) = 0 for distinct points<a # Xio.
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6.3.2 Three-view Constraint

We now add the third view and consider the correspondgpnee X, < X3. As the pointxs, is
defined such that it fulfills the two-view constraints, theaestructed 3D point arising from the
triangulation of the pointg; andxz, constitute a valid 3D point. This 3D point is projected into
the third view yieldingxsz. The measured image poixg will coincide with x¢3 if the observed
3D point is actually static. Otherwise there is a distadgéfigure 6.6) between them which
we call thetrifocal error. Xtz is computed via the point-point-point transfer using thiadal
tensor [Hartley & Zisserman 03]. This fast approach avomtsexplicit triangulation of the 3D
point.

The overall error, combining the two-view constraints anel three-view constraint, =
d> + d3. It measures the minimal required displacement in pixetesgary to change a given
correspondence into a correspondence belonging to a vatid 8D point. The highed is the
higher the likelihood is that the observed point is movinge Tomputation ofl is summarized
in algorihm 6.1.

Figure 6.6: Trifocal error. The image of the second view ievah. The camera moves along its
optical axis observing a lateral moving poxit«< X2 < X3. The closest point t&, fulfilling the
two-view constraints igs,. The error arising from two-views is the distargie Transfering the
pointsx; andxs, into the third view yieldss. If the observed 3D point was actually static its
imagexs would coincide withxs3. However, the 3D point is moving which causes the trifocal
errords. The overall error i = dy + d3. Note, that in generat; andxs; do not lie on the
epipolar linel,.

The error metric relies on the optical flow which itself is ent@in in its measurement. To
take this into account the error can be weighted by someyergjiresenting the certainty of
the measured optical flow. The weight function depends orusiesl optical flow algorithm.
A simple weight function for example is theorner response functiodefined by Harris and
Stevens [Harris & Stevens 88] measuring the "cornernessinaimage patch. A corner-like
grey value structure is localized more accurately than adgmneous structure resulting in a
higher certainty of the optical flow. The flow algorithm usedthis thesis (chapter 3) filters
out non-corner-like structures. The resulting optical fleetors have nearly the same accuracy.
A weighting of the error would not have a significant benefiheile are other flow algorithms
dealing not only with corner-like structures, but also watlige-like structures. An example is



6.3. ERROR METRIC COMBINING THE CONSTRAINTS 107

Algorithm 6.1 Motion Detection
Task: Computation of the combined error of a correspondencegiven:

e acorrespondency « Xz < X3

e fundamental matri¥ of the first and second view, defined by the ego-motion
e trifocal tensorr, defined by the ego-motion

e road homographi,

1. Compute the horizon line.The vanishing points of the roads x-axis and z-axis are:

1 0
VX - KR]’ O VZ = KRr O
0 1
The horizon line then is:
Ih - Vx X VZ

|
Ih::—h

(Ih)3

2. Choose the border point.If x; lies under the horizon the point on the rogd= H(lxl is
taken otherwise the infinite poist, = Hy1xq:

Xr ,X1'lh <0
Xp = T
Xo ,X1'1h>0

3. Compute the border line.

0 (Xp)3 O
b= —(Xb)3 0 0 | Fxg
(Xp), —(Xb); O

4. Compute the point fulfilling the two-view constraints.

ey — Xb XoTlp-eTly >0
f2 dxx, xle else

with d = ((le);, (le)5,0)".
5. Compute the point fulfilling the three-view constraint. This is done using the trifocal
tensor based point-point-point transfer. For details Blsgtey & Zisserman 03].

Xt3 = X3 (X1,X2,7")
6. Compute the combined error.

d = d(X2,Xr2) + d(X3,Xs3)
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KLT [Tomasi & Kanade 91, Shi & Tomasi 94]. When using such agoathm the weighting is
highly beneficial.

6.4 Experimental Results

The motion detection algorithm developed last section i8 applied to real imagery. To this
end, all three algorithms 3.1, 5.1, and 6.1 are applied. Tdw ¥lectors are classified as the
static environment or as a moving object according to theinlsined errod. A value of T =
1.7px is used as the threshold, according to the precisioneofrteasured optical flow plus an
additive safety margin. Figure 6.7 shows two traffic sitoiasi. Thanks to the exploitation of all
constraints, almost all parts of the objects are detectedoaing.

(b)

Figure 6.7: Detection of moving points. (a) Crossing tru@X. Preceding vehicles. The optical
flow vectors shown are classified as moving. Few mismatchebrgeoccur in the sky and on
the road. Due to visual clearness the number of vectors igeghto one eighth.

6.5 Clustering

At this time we are able to detect moving 3D points based oopiieal flow. But single moving
points are insufficient to implement a robust driver asaistesystem. If one relies on single
points, one misclassified point may cause a faulty reactiam.this reason the 3D points must
be clustered to obtain broad objects. The task is to find thed@bts which belong to one and
the same physical (moving) object (a vehicle, a pedestrign,This is not easy to accomplish
since an algorithm does not know how physical objects lodie dnly information an algorithm
has are the 3D points.

In general a cluster algorithm searches for "common fatesing the input data. In our case
3D points, which are close together and which have a simdartgined error, share the same
fate. The likelihood that such points belong to one physitgct is very high.
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At this point a simple algorithm shall be discussed, althotige clustering issue is beyond
the scope of this thesis. The algorithm is based onctiected component analy$GCA).
The CCA clusters a binary image which is generated as follows

We consider correspondencgs— Xc over two views and their two-view errab. If the
correspondence was classified as moving,d,e> T = 1.7, a one in the binary image is set at
Xc. Zeros are set where no correspondences were measuredrertivbeorrespondences were
classified as static. An example is shown in figure 6.8. Oneebthary image is made up,

(b)
Figure 6.8: Clustering using CCA. (a) Blue flow vectors agesslfied as static, the magenta ones

as moving. Due to visual clearness the number of vectorgliscerl to one eighth. (b) Binary
image. (c) Bounding boxes of the clusters.

the CCA goes through it pixel by pixel. If a one is found it I@okhether there is a cluster in

the neighbourhood of the current position. If yes, the aurp®sition is attached to this cluster,

otherwise a new cluster is spawned. This approach is vegieffisince one pass is enough to
cluster to the image. The outcome of the algorithm is showigire 6.9.

Note, that this algorithm does not take all the availablermfation into account. Beside
the check for spatial vicinity, one could additionally ckdor similarities in the optical flow.
Correspondences having a similar displacenxgnt x| (inhomogeneous points here) probably
belong to one object. Sincg remains unused in the CCA algorithm its performance is éuhit

The literature has two-view cluster algorithms utilizimagandx.. However, these algorithms
only rely on a subset of the available constraints. Ther@ialgorithm taking full advantage of
all constraints. This remains as future research. Theiegistuster algorithms not only estimate
the ego-motion, but also the motions of the moving objectshis multibody motion estimation
concept it is not differentiated between the ego-motion tardmotions of the objects. Indeed,
for clustering purposes it is not necessary to know whichiomois the motion caused by the
ego-vehicle. The task of finding the different motions gieeset of correspondences is tackled
mainly in three ways:

Multibody epipolar constraint The epipolar constraint for multiple objects is made up by
multiplying the single epipolar constraints:

N
-
Xe Fixi=0 (6.10)
M
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(©) (d)

Figure 6.9: Results of motion detection + clustering. Thewah flow vectors were classified
as moving. The rectangles denote the bounding boxes of tis¢ecs. (a) cut-in vehicle. (b)
running child. (c) cyclist within the blind spot. The flow \tecs on the ego-vehicle are moving,
too. They were not incorporated into the clustering. (diofeer just before rear crash.

Each fundamental matri; encodes one motion. Suppose we have two motions in the image,

for example the ego-motion and the motion caused by an imakpely moving object (IMO). In

particular, we have two fundamental matricés &ndF,) we are searching for, not knowing to

which fundamental matrix the correspondences belong. Tilgbady epipolar constraint 6.10

is fulfilled regardless of the motion the corresponderce- x. belongs to. If it belongs to

the first motion, them.' F1x| - Xc' F2x; = 0. Otherwise, if it belongs to the second motion, the
=0 £0

second factor would be zero.

Each correspondence gives rise to one instance of cortsdraih Having a sufficient num-
ber of correspondences the constraint 6.10 is decompaosabline distinct fundamental matri-
ces [Maet al. 04]. Once the~’s are identified, the individual correspondences are assigo
the fundamental matrix which mostly fulfills the epipolanstraint. This approach was extended
to three views, resulting in the multibody trifocal consttdHartley & Vidal 04].
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Multibody factorization The multibody factorization is a multiple view approach aighat
the decomposition of a huge matiiX containing the correspondencé¥. is decomposed into
a product of two matrice®/ = MS separating the motion parameters contained in the motion
matrixM from the 3D points contained in the shape ma8ix

Suppose we have an orthographic camera and a 3D ggimhoving relative to it. The
projection of this 3D point at time instant k is given by:

()-[esdB e e

Note, thatxy is an inhomogeneous poinRk andty denote the rotation and translation of the
3D point at time instant k. Suppose that we have N correspaegeover F frames, and that we
collect all the measurements into a single matrix:

[ (Xea)1 - (N1 ] [ (t)r ]
_ | Xe2)1 o (XeN)1 | 'T (tr)a _
W= (X11)2 -+ (XgN)2 | J'l;r (t1)z2 | [ Xw XwN ] =MS (6.12)
i (XF.,l)z (XF:N)Z ] JE (tF.)z_

with i} andj] the first and second row of the k-th rotation matrix. The feization is done using
the singular value decomposition and exploiting the faat the vectora’;;(r ande are orthogonal.

When two motions are present and when the corresponderessrded, the shape mati$x
takes on a block diagonal form:

W* = [M|M]- {% gz] (6.13)

The task is to find a column permutation\&f determining the canonical formw*. OnceW*

is known the segmentation is done. All 3D points containe8;itmove according tdvl1 and
belong to the first object. The other 3D pointsSp belong to the second object. For details
on the column permutation & refer to [Costeira & Kanade 98]. The multibody factorizatio
method was recently extended to perspective cameras [Vial

Expectation Maximization Expectation Maximization (EM) alternates between motisti-e
mation and clustering. Given an initial set of clusters thation of each cluster is estimated.
The results are used to refine the clusters. With refinedesithie motions are estimated again,
and so on, until the solutions converge. [Torr 98] employs #pproach and further selects the
appropriate motion model out of four models: fundamentatirixaaffine fundamental matrix,
homography, and affinity.
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6.6 Detection Limit

The experimental results we have seen last section are girgmi Each moving object was
detected. But when we look at figure 6.10 we get disappointddhe car in front of the ego-

Figure 6.10: Detection of preceding objects. Only the vextgdm part of the car in front of the
ego-vehicle is detected. The cars on the right hand sideadeeted to a higher extent.

vehicle is hardly detected. This raises the question zirtdgi the different constraints for static
3D points, which kinds of motion are detectable and to whidert?

The answers we give here were also published in [Klappsteah 07b]. In order to detect
a moving object reliably, the error metric developed in ieec6.3 must be greater than a certain
thresholdT, whereas the threshold should reflect the noise in the quonelences (optical flow).
A reasonable choise i = 30 with o the standard deviation of the correspondences.

In the following we consider the three most frequent kindsnaition in traffic: parallel,
lateral and circular motion. We model the motion of the caremd the object as shown in
figure 6.11. It is not necessary to investigate camera ostatabout its projection center, since
they do not influence the detection limit. One can always camspte these rotations by a virtual
inverse rotation.

6.6.1 Linear Motion

The detection limits for the linear motions (parallel angtal motion) are illustrated by means
of three examples:

1. Overtaking object: The object moves parallel to the carbet faster.
VCZ - 30km/h,VOZ - 40km/h,V0x - Okm/h

2. Preceding object: The object moves parallel to the caimgralower.
Vez = 30km/h, Vo, = 20km/h,vox = Okm/h

3. Crossing object: The object moves lateral to the camera.
Vez = 30km/h,vo; = Okm/h,vox = —5km/h
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object plane

| |, ,

road plane

() (b)

Figure 6.11: Motion model utilized for the investigationtble detection limit. The cameras
projection center in the first view is,. The moving object is modelled as a plane. (a) Linear
motion: The (object)plane moves parallel (w.r.t. the capeavith speeds,; and lateral with
speedvox. The distance of the camera to the objedt, it the road it ish. The camera moves
along its optical axis with speed,. (b) Circular motion: Both, camera and object, move along
a circle with radiug. The tangential speed of the cameradsthat of the object is.

The subscripts stand foc.= camerap = object,z = longitudinal directionx = lateral direction.
Anti-parallel motion Y., > Okm/h, v, < Okm/h, vox = Okm/h) is not detectable. This issue is
addressed in subsection 6.6.4. In the examples, other tenpguarameters are: focal length
f = 1000px, principal poin{xp,Yyo) = (320,240), height of camera above the road= 1m,
distance to object = 20m, time between consecutive franfg¢s= 40ms.

The detection limits of the linear motions are shown in figerE2. Each image shows the
first view. Inside the black regions the error metric is lotv&mT = 0.5px (assuming a std. dev.
in the correspondences of= 0.167px). Parts of the object seen in these regions are nattddte
as moving. There is one important point in the image: ghent of collision This is the point
where the camera will collide with the object, provided ttinegt object is slower than the camera.
We will see that this dangerous point is not detectable inyncases.

The first row of figure 6.12 considers the epipolar constramy. As can be seen, parallel
motion is not detected at all. Lateral motion is detected togh extent. The black region is
shaped like a bow tie.

In the second row of figure 6.12, the positive depth condtiaiadded. Overtaking objects
are now detected. The error metric in this case is identictllé motion parallax induced by the
plane at infinity. The optical flow of points at infinity is zefcamera does not rotate). Thus,
the motion parallax is equal to the length of the measuredadtow. The contour lines (lines
where the error metric takes on a constant value) are ciremtaund the epipole. Preceding
objects are still not detected. In the case of lateral mdterbow tie is cracked. The motion is
also detected between the epipole and the point of collidieto the violation of the positive
depth constraint.

The use of the positive height constraint (third row of figbire2) gains the power of detection
for the image part below the horizon. In the case of parallefiom (overtaking and preceding
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Figure 6.12: Detection limits for different kinds of linearotion and constraints. The images
show the first view (compare to fig. 6.11). They are truncatedw 290, since below this row
there is no object but the road. Inside the black regions thiomis not detected. The contour
lines 2T and 4T are shown, too. The red point marks the epipole, the red ¢sdte point of
collision. Further explanation is given in the text.

objects) the error metric below the horizon is identicaht® notion parallax induced by the road
plane. It is possible to detect preceding objects but it isadlenging task. Lateral motion only
benefits from the positive height constraint only on the trigdéind side of the epipole.

Adding the trifocal constraint yields the best achievaleleutts. The parallel motion profits
mainly from the larger driven distance of the camera, siheecamera moves from to cz (not
justtocy). This just increases the signal to noise ratio. Similauitesvould be obtained if only
the first and the third view would be evaluated. This does odd for the lateral motion. The
trifocal constraint also allows detection to the left of #@pole.

The reason for that is given in figure 6.3 on page 101. Theredhgera moves fror, to
C3 observing a point moving fronX, to X3. A situation is chosen such that the trajectories of
the camera and the point are co-planar. They move withinpigo&ar plane. Considering the
first two views, the two-view constraints are fulfilled. Thewing rays meet perfectly at the
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point Xi12. This point lies in front of the cameras and above the roachs€quently, this kind
of motion is not detected over two views alone. Taking thedthiew into account reveals the
motion, since the triangulated poiXt,3 of the second and third view is different froa;».

We have seen that in case of the linear motion the strengtiedfifocal constraint is not very
high. The trifocal constraint shows its strength if the ceasdranslational direction changes over
time, as is the case with circular motion.

6.6.2 Circular Motion

The circular motion is modelled as shown in figure 6.11b. Tmaolestrate the detection limit
for this case we consider an example similar to the "precgdbject” examplev, = 30km/h,
Vo = 20km/h,z=20m, and = 100m.
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Figure 6.13: Detection limit in the case of circular motiomhe images show the first view
(comparetofig. 6.11b). They are truncated at row 274, sialmthere is no object but the road.
Inside the black regions the motion is not detected. Theororines Z' and 4T are also shown.
The red point marks the epipole, the red cross is the poinoliion. (a) Epipolar constraint.
(b) + positive depth constraint. (c) + positive height coaisit. (d) + trifocal constraint.
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Figure 6.14: Detection limit in the case of circular motiorthatripled time periodAt compared
to figure 6.13. (a) Epipolar + positive depth + positive heéiggnstraint. (b) + trifocal constraint.

Figure 6.13 shows the detection limit. Although the objedtlower than the camera, which
was a problem for the parallel motion case, the circular amois detected to a high extent
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(fig. 6.13a). With the positive depth constraint taken intoaunt, the entire region to the left
of the epipole is detected. It seems that the trifocal cairgt(fig. 6.13d) just shrinks the black
region, meaning that it only improves the signal to noiseratiowever, this is not true. If we
triple the time perioddt = 120ms the black region vanishes (figure 6.14b). Consequé¢hd
entire object is detected as moving and so is the point ofscaitl. The power of the two-view
constraints is insufficient to detect that point.

Taking more than three views into account just increasesitreal to noise ratio and hence
shrinks the black regions but does not change the shapes obttiour lines (unless camera and
object accelerate differently).

6.6.3 Experimental Verification

In this section we apply the study on the detection limit tal imagery. Furthermore, we detect
the moving objects based on the measured optical flow andrtdpoged error metrid,. The
detection result is compared to the theoretical detectioit. |

v, = 5353 km/h
v:m 6289 km/h

(a) ()

Figure 6.15: Experimental verification. (a) Original imageh two moving vehicles in front.

(b) The semi-transparent yellow region shows the imageoregihere the motion is not de-
tectable. The measured optical flow vectors are classifiestade (blue / dark) and moving
(magenta / bright).

Figure 6.15a shows two vehicles driving in front of the caagggo-vehicle). They are
faster than the camera and move parallel to it. First, theatieh limit is computed. To this
end, the distance to the objects and the speed of them areeeqilihe on-board radar sensor
provides this informationz = 16.5m andvy, = 62.9km/h. The speed of the camera, retrieved
by odometry, is/;; = 53.5km/h. With this information, together with the camera loedtion, the
non-detectable region computes to that shown in figure 6.Bé&reby the two-view constraints
are considered.

The actual detection of the vehicles is carried out by théuew@mn of the two-view error
metric dy utilizing the measured optical flow. Radar data is ignoretbwFvectors withd, >
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T = 1.7px are classified as moving. The result is shown in figurel6.1Bne can see that the
theoretical detection limit matches well to the practica¢ o

The vehicle on the right side is completely detected whevabsthe lower part of the vehicle
in the middle of the image is detected.

6.6.4 Issue of Anti-Parallel Motion

Oncoming objects on a straight road constitute an antiHearaotion. There is no way to detect
this motion by means of the constraints for static 3D poiAtsinherent ambiguity prevents this.
The moving object also could be a static object with smallex and shorter depth. We call such
a static pendant a phantom object (see figure 6.16(a)).

Only a heuristic approach enables the detection of suchomdiilappsteiret al. 06a]. We
can assume that any object in the world is opaque and stanthearound. The latter one is
violated for traffic signs, since in most situations it isfidifilt to measure any optical flow on
the pole. Hence, the traffic sign seems to hover over the grovehicles, however, are almost
completely present in the optical flow, due to their cubofdain.

With this heuristic we are able to distinguish between tlergag static object and the mov-
ing one: The assumptions create a zone behind the phant@ut ajwhich no other object is
allowed to be present. If there is a triangulated point witthiat zone the phantom object is
revealed (see figure 6.16(b)).

Cy Co c c
phantom 9 :
object

phantom
object

() (b)

Figure 6.16: Anti-parallel motion. (a) The camera movesnr, to ¢, observing the pole
moving fromZ; to Z,. The triangulation provides a hovering phantom object Whéccloser
than the orignal one. (b) The green zone is prohibited. Ifehea measured point within this
zone, such as the green point, the phantom object is revagalaanoving object.

The algorithm evaluating the region under the object (fdden zone) is now developed.
Figure 6.17a shows an oncoming vehicle. After the ego-maiwd the road homography were
estimated and moving objects were detected we look forcstdgjects. An efficient method
detecting them is the evaluation of the planar motion paxalthich we had already met when
we estimated the road homography, see equation 5.19. Shgéicts do not belong to the road,
hence their parallax is significantly higher than zero. FegbL17b shows this. In the next step,
the flow vectors are clustered using the CCA from sectionB&. cluster shown in figure 6.17b
forms the phantom object.

We now need the depth of the phantom object in order to contpateorbidden zone. Here
the direct linear transform (DLT) triangulation method fHey & Zisserman 03] is employed
getting the depth of one correpondence. Although this ntettmes not constitute a MLE it
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Figure 6.17: Detection of anti-parallel moving objects). &a oncoming vehicle. (b) Clustered

vehicle. The parallax of the shown correspondences is hitjiag 2 pixels. (c) The forbidden

zone under the vehicle contains a piece of the road. Thesmwnelences are color-coded by
their parallaxes. The color goes from blue to red represgrai parallax of 0 and 2 pixels,

respectively. The zone contains 364 correspondences wikkdéan parallax of 0.52 pixels. The

object is revealed as a moving object.

is accurate enough and easy to compute. The median depthaoirg@spondences inside the
phantom object is a robust estimate of its depth.

Using the depth, the bottom line of the object is now projeéaiato the road, forming the
forbidden zone. If this zone contains a piece of the road bieodis revealed as a moving object.
Whether there is road or not is found out by evaluating thalfgacagain. If the median parallax
falls below a certain threshold (e.g. 1 pixel) the zone issodered as road. In figure 6.17c this
is the case.

This approach requires a well-textured road. When no cooredences are available inside
the forbidden zone the ambiguity cannot be resolved.

6.6.5 Summary

The investigation of detection limits for independentlyvimg objects revealed that:

e Objects which are faster than the camera are detected tdartegtent than those which
are slower. That is a pity because slower objects are theetdang ones. We will not
collide with a faster object.

¢ In the event of linear motion, the dangerous point of callsis not detected at all, what
an irony of fate!

e The trifocal constraint exhibits its potential if the matiof the camera is circular (non-
linear). Then the point of collision is detectable (in pipie).

e Anti-parallel moving objects are not detected at all by nseainthe constraints for static
3D points. A heuristic approach helps to detect such motion.



Chapter 7

Summary and Outlook

Summary

In this thesis the detection of moving objects in traffic ®ebased on the optical flow has been
investigated. To this end, the flow vectors belonging to thécsscene must be separated from
the flow vectors on the moving objects. This separationge@liethe four constraints a valid static
3D point obeys. In this thesis these constraints were narRedher constraints supplying the
detection of single moving points do not exist. A novel altfon was developed combining the
constraints in a unified manner. The resulting error meteasores the minimal displacement
required to change a given correspondence into a correspoadepresenting a valid static 3D
point. The formulation of the error metric in the image domaiows an easy incorporation into
a statistical framework, i.e. when the uncertainty in thesueed optical flow is considered.

The detectability of moving objects was investigated amnebis found out that in the event of
linear motion the dangerous point of collision is not degdctn practice, this means the smaller
the image of an object being on a collision course, the mdfeult its detection. Crossing
objects as occuring at intersections and objects drivinglighto and faster than the ego-vehicle
(overtaking objects) are detected to a high extent. In esttiobjects driving parallel to and
slower than the ego-vehicle (objects which are overtakenhardly detected.

In case of non-linear motion, e.g. circular, the point ofis@n is detectable provided that the
time period of observation is sufficiently long. This meartgew cornering objects are detectable
even if they are slower than the ego-vehicle. Oncoming @bjex a straight road (anti-parallel
motion) are only detectable if the heuristic, which wasadtrced in this thesis, is applied.

In order to compute the error metric measuring the devidtom the constraints for static
3D points, the knowledge about the ego-motion and the locaif the camera relative to the
road plane is required. A known approach estimating theregtten was extended by a motion
model. It was shown that the estimation became considerabhg robust. The known error
metric Jsep as well as the Huber cost function were changed slightly abttie assumptions
made by the Levenberg-Marquardt minimization are fulfill€tis helped saving time needed for
the minimization. It was found out that not all image regicnatribute similarly to the estimate.
In particular, it was hinted that the yaw rate is estimatedrlyaf the camera is mounted at 90
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angle w.r.t. the vehicle’s longitudinal axis.

The location of the camera relative to the road plane casfghe normal vector of the road
plane, and the height of the camera above the road. An digoritas developed estimating the
road normal using the planar motion parallax. In contrafiéoego-motion estimation, here one
is faced with poorly localized correspondences in cased@iaextured road. For this reason,
a Kalman filter was designed which is able to cope with temyateop outs of the estimation.

Outlook

Clustering

The algorithms developed in this thesis constitute a robystem for the detection of moving
points. The clustering of the detected moving points to cisj&vas addressed briefly. In par-
ticular, the CCA algorithm was discussed. There are moraistipated cluster algorithms in
the literature, for examplgraph cut[Boykov & Veksler 05] or thdevel set methofSethian 99,
Aubert & Kornprobst 02], which perform the clustering by mnivization of an energy functional.
All cluster algorithms are recipes describing the food prafion but not the ingredients. The
latter ones, meaning the input data, are problem specificage of level set the question is how
to formulate the energy functional. In case of graph cut thestjon is how to deploy the graph.
These questions have a severe impact on the performance cimstering and are not trivial to
answer. A first work using graph cut to cluster the detectedingppoints exists [Gruber 08].

Optical Flow

In this thesis an optical flow algorithm was used computirgdhtical flow over two consecu-
tive frames. An optical flow algorithm which is able to tradcal image features over several
frames is advantageous, as the time of observation is isede#@n increased time of observation
involves an increased driven distance of the ego-vehidighét driven distances benefits the de-
tectability of moving objects. If an optical flow algorithmitv tracking capability is applied the
guestion raises how to evaluate the constraints for st&tipdnts in a recursive fashion.

The ego-motion estimation benefits from higher driven dis¢s, too. How can be the ego-
motion estimated recursively? Online SLAM methods do sgé¢pé8). However, they involve
the estimation of nuisance parameters, namely 3D pointfiele a way to avoid this in favour
of a reduced computational burden?



Appendix A

Rotation Matrices in R3

A rotation matrix rotates the coordinate system. The md(ix, 0,0) for example rotates the
coordinate system about the x-axis through an angheasured in rad. The rotation sequence:

R(x,Y,2) = R(x,0,0) -R(0,y,0) - R(0,0,2)

first rotates the coordinate system about the z-axis. Thisrrdtated about the rotated y-axis.
Finally it is rotated about the twice rotated x-axis. Suck@uence is also calldtuler sequence

Alternatively, the same sequence can be treated as a rottiout fixed axes. In that case
the coordinate system is first rotated about the x-axis, tb&ted about the original y-axis, and
finally about the original z-axis.

If one wants to rotate points instead of the coordinate sysire has to apply the inverse
rotationR~1. Since rotation matrices are ortho-normal the inverse isaktp the transposed
matrix: R~1 =RT.

The rows of the rotation matrix show how the unit vectors atated. For example, the
third row indicates the new z-axis. Reason: The pt0,1)" representing the z-unit-vector is
rotated according tRT (0,0,1)T = ((r)ay, (r)32, (r)33)".

e R(x,0,0) =
1 0 0
0 cosx sinx
0 —sinx cosx
e R(0,y,0) =
[ cosy 0 —siny |
0O 1 0
| siny 0 coy |
e R(0,0,2) =

[ cosz sinz 0]
—sinz cosz O
0 0 1
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* R(xy,2) =

COSyCc0oSsz cosysinz —siny
COSZSINXSiny — COSXSiNZ  COSXCOSZ+ Sinxsinysinz — cosysinx
COSXC0SzSiny + SINXSiNZ  — C0SzSiNX+ COSXSiNysinz  cosXxcosy

e R(0,0,2)-R(0,y,0) - R(x,0,0) =

COSyCOSZ COSzZSINXSiNy+ COSXSiNZ — COSXCOSZSiny+ Sinxsinz
—CO0Sysinz C€0SXC0Sz— sinxsinysinz  coszsinx-+ cosxsinysinz
siny —cosysinx cosxcosy

e R(0,y,0)-R(x,0,0)-R(0,0,2) =

COSyCO0Sz— SinXsinysinz  coszsinxsiny+ cosysinz  — cosxsiny
—Ccosxsinz COSXC0Sz sinx
COSzSiny 4 CoSysSiNXsinz — CcoSyCcoszsinX-+ sinysinz  cosxcosy

In case of very small rotation angles the trigonometric fioms can be approximated by
the first order term of their Taylor series: cos 1 and sirx = x. Applying this and setting
the bilinear and trilinear monomials zey(= xz= yz= xyz= 0) yields the linearized rotation
matrix:

X 1 z -y
Riin =1+ y =| -z 1 X
z y —x 1

X

The rotation order does not matter here. The multiplicatbhinearized rotation matrices is
commutative.



Appendix B

Miscellaneous

B.1 Calibration Matrix and its Inverse

The calibration matrix captures the intrinsic camera patans:
o focal length in horizontal directionty
e focal length in vertical directionfy
e horizontal component of the principal poing

¢ vertical component of the principal pointy

fx 0 X
0 0 1
Often the inverse of the calibration matrix is needed. liasily computed:

% 0 %
-1 _ 1 Y
KZ=10 4 -3

0O 0 1

B.2 Projection Matrix and its Inverse

The projection matrix of a finite perspective camera is cosepdy the calibration matrik, the
rotation matrixR, and the translatiot

P=KR[l|—t] (B.1)

P is a 3x4 matrix and thus not invertable. However, the (Moore-Psey@seudo-inverse™
can be appliedP" is defined such tha®P™ = |. For quadratic matrices the pseudo-inverse is

123



124 APPENDIX B. MISCELLANEOUS

equal the common inverse. In genefAB)™ # BTA™. Nevertheless, it holds in the case of the
projection matrix. Thus the pseudo-inverse is given by:

P =[I|-t]"RTK ! (B.2)
with
1+(7+1F —(O ),  —(1(t)s
o=t | 012 14O+ —()(0s (B.3)
LT[ —(0)()  — (W) 1+ + ()3
— (), — (1), —(t);

B.3 Cross Product Matrix

The cross product of two three-dimensional vectasnidb may be expressed in terms of a3
skew-symmetric matrix:

0 —(a); (a),
@x=| (@3 0 —(a) (B.4)
—(@, () 0

(B.5)
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IRLS, 81

isometry, 12

least squares, 26
Levenberg-Marquardt, 60
line at infinity, 9

LMedS, 29

M-estimation, 27

maximum likelihood estimate, 26

motion detection, 99

multibody epipolar constraint, 109

multibody factorization, 110

Newton step, 59

normalized image coordinates, 19

optical flow field, 35
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orthographic projection, 20
outlier, 25

para-perspective projection, 21
parallax, 81, 102

pixel, 16

plane at infinity, 15

point at infinity, 8

point of collision, 113

positive depth constraint, 100
positive height constraint, 100
Powell, 59

principal point, 18

projection matrix, 17, 123

RANSAC, 28
rectification, 16
reprojection error, 47
rotation, 12

scale ambiguity, 42

similarity, 12

SLAM, 48

structure from motion, 47
subspace method, 46
symmetric epipolar distance, 51

trajectory triangulation, 24
translation, 11
triangulation, 24

trifocal error, 106

trifocal tensor, 106

trifocal constraint, 100
Tukey function, 27
two-view error, 104

weak-perspective projection, 20
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