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Zusammenfassung

Der Verkehr auf den Straßen nimmt immer mehr zu. Dennoch ist die Anzahl der Verkehrstoten
kontinuierlich zurückgegangen. Dies liegt vor allem an denpassiven Sicherheitssystemen, wie
Seitenaufprallschutz oder Airbag, welche in den vergangenen Jahrzehnten entwickelt wurden
und heute Standard in allen Neufahrzeugen ist. Zunehmend werden aktive Sicherheitssysteme
entwickelt. Sie sind in der Lage Unfälle zu vermeiden oder zumindest abzuschwächen. So wer-
den die Abstandsregeltempomaten (ART), die ursprünglich als Komfortsystem ausgelegt waren,
hin zu einem automatischen Notbremssystem entwickelt.

Aktive Sicherheit erfordert Sensoren, die die Umgebung desFahrzeugs erfassen. Für ART
werden Radarsysteme oder Laserscanner eingesetzt. Aber auch Kameras sind interessante Sen-
soren, da mit ihnen zusätzlich visuelle Informationen wie Verkehrsschilder oder Fahrbahnmar-
kierungen verarbeitet werden können. Im Straßenverkehr spielen bewegte Objekte (Fahrzeuge,
Fahrradfahrer, Fußgänger) eine entscheidende Rolle. Sie zu erkennen ist essentiell für aktive
Sicherheitssysteme. Die vorliegende Arbeit setzt sich mitder Detektion von bewegten Objekten
mittels einer monokularen Kamera auseinander.

Zur Detektion werden die Bewegungen im Videostrom (optischer Fluss) ausgewertet. Ist
die Eigenbewegung und die Lage der Kamera in Bezug zur Straßenebene bekannt, kann die
aufgenommene Szene mittels des gemessenen optischen Flusses dreidimensional rekonstruiert
werden. In der Arbeit wird ein Überblick über bekannte Algorithmen zur Schätzung der Eigen-
bewegung gegeben. Darauf aufbauend wird ein geeigneter Algorithmus ausgewählt und um ein
Bewegungsmodell erweitert. Letzteres steigert sowohl dieGenauigkeit als auch die Robustheit
erheblich. Die Lage der Kamera zur Straßenebene wird anhanddes optischen Flusses der Straße
geschätzt. Hierbei ist zu beachten, dass die Straße zeitweilig wenig texturiert sein kann, was
das Messen des optischen Flusses erschwert. Die Folge ist eine ungenaue Schätzung der Kamer-
alage. Ein neuartiger Kalman-Filter Ansatz, welcher die Schätzung der Eigenbewegung und die
der Kameralage miteinander verbindet, führt zu deutlich besseren Ergebnissen.

Die 3D Rekonstruktion der aufgenommenen Szene geschieht punktweise für jeden gemesse-
nen optischen Flussvektor. Ein Punkt wird rekonstruiert, indem die Sehstrahlen, gegeben durch
den Flussvektor, zum Schnitt gebracht werden. Dies ergibt nur für statische, d.h. nicht bewegte,
Punkte ein korrektes Ergebnis. Ferner erfüllen statische Punkte vier Bedingungen: Epipolarbe-
dingung, Trifokalbedingung, Bedingung der positiven Tiefe und der positiven Höhe. Ist min-
destens eine Bedingung verletzt, handelt es sich um einen bewegten Punkt. Es wird eine Fehler-
metrik entwickelt, welche erstmals alle vier Bedingungen ausnutzt und die Abweichung von den
Bedingungen einheitlich und quantitativ beschreibt.

Anhand dieser Fehlermetrik werden die Grenzen der Detektierbarkeit untersucht. Konkret
wird gezeigt, dass überholende Objekte sehr gut erkennbar sind, dagegen überholte Objekte
(Objekte, die langsamer sind als das Eigenfahrzeug) nur sehr schlecht. Gegenverkehr auf gerader
Strecke ist nur unter den zusätzlichen Annahmen, dass die Objekte auf dem Boden stehen und
undurchsichtig sind, detektierbar. Eine entsprechende Heuristik wird vorgestellt.

In Summe stellen die entwickelten Algorithmen ein System zur robusten Detektion von
fremdbewegten Punkten dar. Auf das Problem der Gruppierungder Punkte zu Objekten wird
kurz eingegangen. Es dient als Ausgangspunkt für weitergehende Forschungsaktivitäten.
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Abstract

Traffic is increasing continuously. Nevertheless the number of traffic fatalities decreased in the
past. One reason for this are the passive safety systems, such as side crash protection or airbag,
which have been engineered the last decades and which are standard in today’s cars. Active safety
systems are increasingly developed. They are able to avoid or at least to mitigate accidents. For
example, the adaptive cruise control (ACC) original designed as a comfort system is developed
towards an emergency brake system.

Active safety requires sensors perceiving the vehicle environment. ACC uses radar or laser
scanner. However, cameras are also interesting sensors as they are capable of processing visual
information such as traffic signs or lane markings. In trafficmoving objects (cars, bicyclists,
pedestrians) play an important role. To perceive them is essential for active safety systems. This
thesis deals with the detection of moving objects utilizinga monocular camera.

The detection is based on the motions within the video stream(optical flow). If the ego-
motion and the location of the camera with respect to the roadplane are known the viewed
scene can be 3D reconstructed exploiting the measured optical flow. In this thesis an overview
of existing algorithms estimating the ego-motion is given.Based on it a suitable algorithm is
selected and extended by a motion model. The latter one considerably increases the accuracy
as well as the robustness of the estimate. The location of thecamera with respect to the road
plane is estimated using the optical flow on the road. The roadmight be temporary low-textured
making it hard to measure the optical flow. Consequently, theroad homography estimate will
be poor. A novel Kalman filtering approach combining the estimate of the ego-motion and the
estimate of the road homography leads to far better results.

The 3D reconstruction of the viewed scene is performed pointwise for each measured optical
flow vector. A point is reconstructed through intersection of the viewing rays which are deter-
mined by the optical flow vector. This only yields a correct result for static, i.e. non-moving,
points. Further, static points fulfill four constraints: epipolar constraint, trifocal constraint, pos-
itive depth constraint, and positive height constraint. Ifat least one constraint is violated the
point is moving. For the first time an error metric is developed exploiting all four constraints. It
measures the deviation from the constraints quantitatively in a unified manner.

Based on this error metric the detection limits are investigated. It is shown that overtaking
objects are detected very well whereas objects being overtaken are detected hardly. Oncoming
objects on a straight road are not detected by means of the available constraints. Only if one
assumes that these objects are opaque and touch the ground the detection becomes feasible. An
appropriate heuristic is introduced.

In conclusion, the developed algorithms are a system to detect moving points robustly. The
problem of clustering the detected moving points to objectsis outlined. It serves as a starting
point for further research activities.
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Chapter 1

Introduction

1.1 Motivation

Traffic is increasing continuously. Nevertheless the number of traffic fatalities decreased in the
past. One reason for this are the safety systems which have been engineered the last decades and
which are standard in today’s cars.

Passive safety systems such as side crash protection or airbag reduce the potential of an injury
in case of an accident. In order to avoid accidents active safety systems have been engineered.
For example, the anti-lock brake (ABS) prevents the wheels from being locked, so that the car
remains steerable. The electronic stability program (ESP)brakes individual wheels when the car
is over-steering or under-steering. Within physical limits the skidding of the car is reduced, and
the car remains on course. Investigations showed that many drivers press the brake pedal too
moderately when braking in an emergency. The brake assistant system (BAS) assists the driver
when performing an emergency brake to obtain maximum deceleration.

ABS, ESP, and BAS process the momentary vehicle state. They do not look into the future
and thus cannot avoid accidents if the driver is inattentive. To overcome this, noval driver assis-
tance systems are under development. To look ahead they require sensors perceiving the vehicle
environment. Some examples are listed below.

• The adaptive cruise control (ACC) uses a lidar or a radar to obtain the distance and the
relative speed of the vehicle ahead. It automatically keepsthe right distance to the vehicle.
This comfort system typically brakes with a maximum deceleration of 4m

s2 . If a higher
deceleration is needed the driver is just warned acoustically and / or optically.

• The lane departure warning (LDW) detects the lane markings using a camera and warns
the driver if he crosses the markings unintended.

• The blind spot monitoring (BSM) detects objects within the blind spot of the rear mirror
and warns the driver if any object is present. A camera or a radar provides the necessary
information.

1
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The driver assistance systems mentioned above are already offered as an option. In order
to avoid accidents they still need the drivers intervention. Variants of above driver assistance
systems reacting autonomously are under development.

1.2 Sensors for Driver Assistance Systems

A crucial part of driver assistance systems is the sensor, which must be able to take over parts
of the recognition tasks of the human eyes. Although we focuson optical sensor input here,
the following list of sensors covers the most popular sensors for driver assistance systems and
is provided for completeness. Only one sensor out of this list, the camera, operates passively,
i.e. relies solely on reflected, not self-emitted, radiation signals. The other sensors measure
the distance by measuring the time of flight of the signal fromemission to reception, which is
proportional to the distance. Envisioning a world of vehicles equipped with driver assistance
systems, interference among similar active sensors might become a problem.

Radar A RAdio Detection And Ranging (RADAR) sensor sends out electro-magnetic waves
and senses the incoming reflections. Typical frequencies inthe automotive field are 24GHz
and 77GHz. The emitted signals are pulse-coded and / or frequency modulated, enabling the
concurrent measurement of the distance and the relative speed of objects.

Electrically conducting materials such as iron or aluminium reflect the signal very well. Other
materials such as plastic or rubber let pass the rays. Hence,these materials are not detected by
radar. Radar works well at day and night. Rain and fog do not deteriorate the signal significantly
whereas heavy snowfall causes problems.

One drawback is the limited total opening angle achievable at one time. Even a combination
of radar beam signals provides only a limited angular resolution. To get a reasonable open-
ing angle and several signals, the radar beam is usually scanned mechanically or electronically.
Scanning is performed very quickly (about 50ms) to avoid skewed range measurements.

Lidar The function of LIght Detection And Ranging (LIDAR) is similar to that of radar. Also
electro-magnetic waves are sent out, but the frequency is four magnitues higher, namely 300THz
(infrared light). This has an impact on the properties: The signal is strongly focussed, allowing
to measure distances and directions highly accurate. The relative speed cannot be measured. The
signals are susceptible to rain and fog.

As in case of radar a scanning mechanism (rotating mirror) isrequired to obtain a reasonable
opening angle.

Camera Cameras do not emit any signals. They receive the visible and/ or infrared light sent
out by light sources such as the sun or street lamps. Cameras produce intensity greyscale or
color images that do not deliver direct Euclidean measurements. The images must be processed
to obtain these measurements.
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Another feature of vision sensors is the ability to detect traffic signs, whereas radar and lidar
measure distances which are not discriminative for traffic signs.

With one camera, the distance of static objects can be measured by evaluating the optical flow
(image displacements from frame to frame). When using two cameras rigidly mounted with a
common field of view (stereo), the distance of moving objectsis determined in addition to static
objects.

PMD The Photonic Mixer Device (PMD) extends a normal camera by the capability of measur-
ing distances by time-of-flight. It emits pulsed non-focussed infrared light. Each sensor element
(pixel) receives the sum of the emitted light and the light from the surroundings. The incoming
photons are converted to electrons (charges). A charge swing, synchronized with the emitted
light, puts the electrons into two distinct bins. The comparison of the collected charges in both
bins yields the phase delay between emitted and received light [Ringbecket al. 07]. The time of
flight follows directly from the phase delay.

The PMD technology offers the simultaneous measurement of light intensity and distance.
However, larger distances require a high power of emitted light.

1.3 Objectives of this Thesis

We have met several sensors for the perception of the vehicle’s environment. Cameras are highly
interesting since they are not only able to detect obstaclesbut also lane markings and traffic signs.
The simultaneous applicability of cameras for different functions makes this sensor cost-efficient.

In many applications (ACC, BSM) moving objects play the essential role. With a stereo cam-
era moving objects are reconstructable and thus directly detectable [Frankeet al. 05]. However,
this has a price: the second camera causes additional costs and requires space inside the car. An
arbitrary location for the second camera is not possible since it has to be attached rigidly to the
first camera.

From these thoughts the question raises as to whether one candetect moving objects using
a monocular camera? If yes, how to do so and are there any limits? This dissertation answers
these questions.

The most frequent objects in traffic are vehicles (cars and trucks). Many different methods
have been developed trying to identify vehicles in monocular images. [Sunet al. 06] gives an
exhaustive overview. There are knowledge based, appearance based, and motion based methods.
The knowledge based methods exploit the symmetry between the left and right half of the vehicle
or the fact, that the vehicle creates a shadow in its vicinity. Another method tries to find the
corners of the vehicle. Appearance based methods learn the grey-value structures typical for
vehicles and recognize these structures online. The motionbased method analyzes the optical
flow. This method is able to detect arbitrary shaped objects including cyclists and pedestrians
and is investigated in this thesis.
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1.4 Thesis Overview and Contributions

The thesis is organized following the data processing chainfrom the image acquisition up to the
warning of the driver. Figure 1.1 shows the chain. We now go through the individual blocks.
Contributions of the thesis are written in boldface. Related work is given in the appropriate
chapters.

optical flow
computation

Ch. 3

ego−motion
estimation

Ch. 4

road homography
       estimation

Ch. 5

  detection of
moving points

Ch. 6

clustering

Sec. 6.4

   situation
assessment

warn driver

camera

Figure 1.1: Thesis overview and data processing chain. The individual blocks are discussed in
the appropriate chapters.

The first step after the image acquisition is the computationof the optical flow. In the litera-
ture there are a lot of algorithms computing the optical flow.In chapter 3 the algorithm used in
this thesis is explained. This algorithm is designed for theusage within the automotive field.

The detection of moving objects requires the 3D reconstruction of the viewed scene. Note
that for a better understanding the detection of moving objects is explained here by means of
3D reconstructed points. The actual algorithm avoids the explicit reconstruction in favour of a
reduced computational complexity and a better statisticalmanageability. The viewed scene is
reconstructable if the camera ego-motion from frame to frame is known. The ego-motion can be
obtained by two different ways. Firstly, by an inertial measurement unit (IMU) or secondly, by
the evaluation of the optical flow. In this thesis the second way is preferred. The computer vision
community originated a plethora of algorithms estimating the ego-motion.

In chapter 4 an overview of existing algorithms estimating the ego-motion is given.
Based on it a suitable algorithm is selected and extended by amotion model. The latter
one considerably increases the accuracy as well as the robustness. The algorithm includes
the minimization of a non-linear error function. A slight ch ange of this error function
speeds up the minimization. It is shown that the image regions contribute differently to the
estimate.

The reconstructed 3D scene lives in the camera coordinate frame. However, it is advanta-
geous if the reconstruction lives in the road coordinate frame, i.e. if the x-z plane coincides with
the road plane. Then all 3D points above the road plane have a positive y value. In order to trans-
form the coordinate frame from the camera to the road, the knowledge about the camera location
with respect to the road is necessary. The camera location isdefined by the normal vector of the
road plane and the height of the camera above the road plane. The location itself is a parameter
of the road homography. With the road homography one computes the optical flow of a 3D point
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lying on the road. On the other hand, if the optical flow of several 3D points on the road is given
the road homography can be estimated.

In chapter 5 the road homography is estimated. The road mightbe temporary low-
textured making it hard to measure the optical flow. Consequently, the road homography
estimate will be poor. A novel Kalman filtering approach combining the estimate of the
ego-motion and the estimate of the road homography leads to far better results.

Once the ego-motion and the road homography are known, the moving 3D points can be
separated from the static 3D points. This separation relieson the constraints static 3D points
fulfill.

In chapter 6 the constraints for static 3D points are named. Anovel error metric is
introduced combining these constraints in a unified manner.Based on this error metric the
detection limits are investigated. It is shown that objectsmoving anti-parallel with respect
to the camera are not detected by means of the available constraints. Only if one assumes
that these objects are opaque and touch the ground the detection becomes feasible. An
appropriate heuristic is introduced.

The problem of clustering the detected moving points to objects is outlined in section 6.5. A
detailed investigation of this problem is beyond the scope of this thesis.

When looking at figure 1.1 one sees that there is a block between the clustering and the final
driver warning, the situation assessment. In this block thedecision is made whether the detected
object constitutes a danger or not. Furthermore, the appropriate reaction is selected. Is it enough
to warn the driver (acoustically, optically, or haptically) or should the vehicle be braked? The
situation assessment is a research topic of its own and is notaddressed in this thesis. The reader
is referred to [Hillenbrand 07].

The thesis closes with chapter 7, a summary and outlook. Before we go into detail we address
some algebraic and geometric basics, because:

Life is pointless without geometry.
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Chapter 2

Mathematical Background

2.1 Projective Geometry

Throughout the thesis we will use a wide range of transformations, including translation, rotation,
projection, and other special transformations. Within theEuclidean space these transformations
are algebraically expressed in different ways. The translation is represented by a vector-vector
addition, the rotation is represented by a matrix-vector multiplication. The projection is per-
formed by a division. Concatenating different types of transformations leads to unaesthetic, not
easy to handle, expressions.

The solution of this issue is named projective geometry. It unifies the transformations in such
a way that all transformations are expressed by a matrix-vector multiplication. Concatenating
transformations means to multiply the matrices of the single transformations. So the overall
transformation is described by a single matrix. For example, if we want to translate a pointx by
T, then rotate it byR, and finally project it onto the image byP we can write:M = P·R ·T. The
transformed point just computes toM ·x.

Within the projective geometry also the representation of lines and planes is easily done.
The next sections discuss the aspects of the projective geometry which are relevant for the
thesis. A complete treatment of this topic can be found in several text books, for example
[Faugeras & Luong 01], [Hartley & Zisserman 03], or [Maet al. 04].

2.1.1 From Euclidean SpaceRn to Projective SpacePn

Within the n-dimensional Euclidean space a point is uniquely defined byn coordinates. In the
projective space the point is extended by one coordinate, i.e. there aren+1 coordinates. How-
ever, the point still hasn degrees of freedom. This means that there is a unique mappingfrom
projective to Euclidean space but not vice versa. The mapping is defined as the central projection
through the origin onto the hyper-plane with the(n+1)th coordinate being one.

Figure 2.1 illustrates this for the 2-dimensional case. Theprojective point(x,y,w)T ∈ P
2 is

associated to the Euclidean point(x/w,y/w)T ∈ R
2. The point(x′,y′,w′)T which is a multiple

of (x,y,w)T is associated to the same Euclidean point. In other words twoprojective points are

7
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equivalent iff they differ only in scale. The point(0,0,0)T does not exist.

point at
infinity

y

(x’,y’,w’)

x

(x/w, y/w)

(x,y,w)
w

1

Figure 2.1: The Euclidean spaceR
2 represented by the planew= 1 is embedded in the projective

spaceP2. The projective points(x,y,w) and(x′,y′,w′) are both associated to the Euclidean point
(x/w,y/w).

Points at infinity The projective space also allows the description of points at infinity which is
not possible in the Euclidean space. A short example demonstrates this: Letx = (1,1)T be a point
in R

2. If the point moves away from the origino on the lineox the coordinates grow and grow,
and at infinity the coordinates arex′ = (∞,∞)T . Unfortunately, all points who went to infinity
share the same coordinates. The information from which direction a point was coming is lost.
In the projective space this information is preserved. Herex has the coordinatesx = (1,1,1)T.
Going to infinity now means to decrease the last coordinate tozero yieldingx′ = (1,1,0)T. All
other points at infinity who came from different directions have different coordinates. Due to
the unified treatment of finite and infinite points the coordinates of projective points are called
homogeneous coordinates. Euclidean points haveinhomogeneous coordinates.

2.1.2 Working with Lines in P
2

In Euclidean space lines can be represented as an equation (known as the Hesse form):ax+by+
c = 0. In projective spacex andy are substituted byx/w andy/w respectively. This leads to the
equation:ax+by+cw= 0 and in vector notation withl = (a,b,c)T andx = (x,y,w)T :

lTx = 0 (2.1)

Thus a line is represented by the 3-vector(a,b,c)T where(a,b)T corresponds to the normal

vector of the line inR2 andc is the distance to the origin provided that
∥
∥
∥(a,b)T

∥
∥
∥= 1. A pointx

lies on the linel if and only if (2.1) is true. Althoughl has three components a line has only two
degrees of freedom since (2.1) is immune to an arbitrary scale factor so the two ratios{a : b : c}
are sufficient to determine a line uniquely.
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The linel joining the pointsx1 andx2 is obtained by:

l = x1×x2 (2.2)

The line at infinity A general point at infinity has the coordinates(x,y,0)T . There is one
special line joining all these points. It isl∞ = (0,0,1)T . One may check whether these points are
part of that line with equation (2.1):(0,0,1)(x,y,0)T = 0 which is obviously true. Of course it
is impossible to draw this line onto the plane. But when the plane is projected to another plane
the line at infinity is mapped to a line with finite coordinates. An example is shown in figure 2.2.

image of the
line at infinity

Figure 2.2: The image of the line at infinity. The world plane is projected to the image plane.
The line at infinity gets visible.

Duality between points and lines Points and lines are both represented as a 3-vector. In the
basic incidence equation for points and lines (see 2.1) the role of both entities is interchangeable
since the equation is symmetric:lTx = xT l = 0.

The intersection of two lines (2.3) and the line through two points (2.2) are essentially the
same, with the roles of points and lines swapped.

Note that this duality only holds inP2. In P
3 the representation of lines is much more com-

plicated than inP2. One way of representation are Plücker matrices. However, in this thesis
3D lines are not required. For details refer to the text booksmentioned at the beginning of this
section. InP

3 there is a duality between points and planes (see section 2.1.4).

Intersection of lines The intersection pointx of two linesl1 andl2 is given by:

x = l1× l2 (2.3)

In Euclidean space parallel lines do not have an intersection point. In projective space however
they meet at a point at infinity. Consider two linesl1 = (a,b,c)T and l2 = (a,b,c′)T with c 6=
c′. The intersection point isl1× l2 = (c′−c)(b,−a,0)T ∼= (b,−a,0)T . This point lies on both
lines and has infinite large inhomogenous coordinates sincethe last coordinate is zero. The
intersection point only depends on the direction of the lines. A translation (varyingc) keeps the
point unchanged.
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Distance of a point to a line The distanced of a pointx to a linel in 2D expressed in homo-
geneous coordinates is:

d =
|lTx|
‖n‖

wheren is the normal vector of the line (the first two coordinates):n = ((l)1 ,(l)2). The pointx
must be homogenized ((x)3 = 1). Then the equation ford is identical to the Hesse form:

d =
(l)1 · (x)1 +(l)2 · (x)2+1 · (l)3

√

(l)2
1+(l)2

2

and(l)3 is the distance of the line to origin.

Distance between two points The distance vector of the two homogeneous points(x1,y1,w1)
T

and(x2,y2,w2)
T is given by:





xd

yd

wd



=





w2 0 −x2

0 w2 −y2

0 0 w2



 ·





x1

y1

w1





Perpendicular line to a given line going through a point A line m ∈ P
2 perpendicular to the

line l and going through the pointx not necessarily lying onl is given by:

m =






(l)2
−(l)1

(l)1(x)2−(l)2(x)1
(x)3






The first two components of the linel define the direction of the line. The first two components
of the perpendicular linem are built as in the Euclidean space: swap the first two components
and put a minus sign to one component.

In matrix notation:

m =





0 (x)3 0
−(x)3 0 0
(x)2 −(x)1 0









(l)1
(l)2
(l)3





Line given a direction and a point The linel with the directiond = ((d)1 ,(d)2 ,0) and going
through the pointx is:

l = d×p
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Projection of a point onto a line The pointxf lying at the foot of the perpendicular to the line
l from the pointx computes to:

xf = d×x× l

with d = ((l)1 ,(l)2 ,0)T the direction of the line perpendicular tol.
In matrix notation:

xf =





(l)2
2 −(l)1(l)2 −(l)1(l)3

−(l)1(l)2 (l)2
1 −(l)2(l)3

0 0 (l)2
1+(l)2

2



 ·x

2.1.3 Transformations inP
2

One of the benefits of the projective geometry is that the common transformations are expressed
by a matrix-vector multiplication. All transformation matrices are defined up to scale meaning
that any arbitrary scaling of the matrix does not change the action of the matrix. To see this
consider two transformations of the point(x,y,w)T once withM and once withλM , λ 6= 0:





x′

y′

w′



 = M





x
y
w



 →

(
x′
w′

y′

w′

)

(2.4)





x′′

y′′

w′′



 = λM





x
y
w



=





λx′

λy′

λw′



 →

( λx′

λw′

λy′

λw′

)

(2.5)

The resulting Euclidean point is the same for both transformations since in equation 2.5 the
scaling factorλ cancels out.

Due to the duality of points and lines the transformations apply to both entities. But there is
an important distinction. If a given transformationM applies to points:

x′ = Mx (2.6)

then lines are transformed according to:

l′ = M−T l (2.7)

The following paragraphs build up a hierarchy of transformations starting with the most spe-
cialized ones - translation and rotation - and ending with the most general one - the homography.

Translation A translation in the Euclidean plane using homogeneous coordinates is repre-
sented as 



x′

y′

w′



=





1 0 tx
0 1 ty
0 0 1









x
y
w



 (2.8)
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which is: 



x+wtx
y+wty

w



→

( x
w + tx
y
w + ty

)

(2.9)

This gives exactly the same vector as one gets it if one performs the translation in Euclidean
space. There the point is first projected ontoR

2: (x,y,w)T → (x/w,y/w)T , and then the transla-
tion vector(tx, ty)T is added:(x/w,y/w)T +(tx, ty)T = (x/w+ tx,y/w+ ty)T .

Rotation A rotation of the coordinate frame about the angleθ using homogeneous coordinates
is represented as





x′

y′

1



=





cosθ −sinθ 0
sinθ cosθ 0

0 0 1









x
y
1



 (2.10)

Rotations in the three-dimensional space can be found in appendix A.

Isometry An isometry is composed of a translation, a rotation and a reflection. InP
2 it is

represented as:




x′

y′

1



=





εcosθ −sinθ tx
εsinθ cosθ ty

0 0 1









x
y
1





with ε ∈ 0,1. If ε = 1 then the isometry isorientation-preservingand is aEuclidean transforma-
tion. Else if ε = −1 then the isometry reverses orientation. A planar Euclidean transformation
can be written more concisely in block form as:

x′ = MEx =

[
R t
0T 1

]

x

This transformation has three degrees of freedom, one for rotation and two for translation.
Lengths (distance between two points) and angles (angle between two lines) are invariant. They
are not affected by isometries.

Similarity A similarity is an isometry plus an isotropic scaling. In thecase of a Euclidean
transformation (i.e. no reflection) the similarity has the matrix representation:





x′

y′

1



=





scosθ −ssinθ tx
ssinθ scosθ ty

0 0 1









x
y
1





or in block form:

x′ = MSx =

[
sR t
0T 1

]

x

This transformation has four degrees of freedom, the scaling accounting for one more degree
than a Euclidean transformation. Angles and ratios of lengths are invariant.
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Affinity An affinity is a non-singular transformation followed by a translation. In fact it is a
similarity plus a perpendicular shear.





x′

y′

1



=





a11 a12 tx
a21 a22 ty
0 0 1









x
y
1





or in block form:

x′ = MAx =

[
A t
0T 1

]

x

The affine matrixA can always be decomposed as:

A = R(θ)R(−φ)DR(φ)

whereR(θ) is the rotation of the Euclidean transformation. The rest represents a shear. To do
this first the coordinate frame is rotated into the scaling directions, thenD = diag(λ1,λ2) applies
a non-isotropic scaling and finally the coordinate frame is rotated back.

The affinity has two more degrees of freedom than the similarity. These are the angleφ
and the scaling ratio{λ1 : λ2}. Parallel lines and ratios of lengths of parallel line segments are
invariant to affinities. The line at infinityl∞ is fixed under an affine transformation meaning that
infinite points stay infinite. However,l∞ is not fixed pointwise: Generally a point onl∞ is mapped
to another point onl∞.

Homography The homography is the most general non-singular linear transformation of ho-
mogeneous coordinates. It projects points on a plane onto another plane. This is the reason why
it is also called planar projective transformation or shortly projectivity in 2D. Since we will often
meet homographies throughout this thesis the letterH is reserved for it. The block form is:

x′ = Hx =

[
A t
vT v

]

x

The homography has eight degrees of freedom according to thenine elements ofH less one
for an arbitrary scale factor. Lengths and angles are not preserved by this transformation, but
co-linear points stay co-linear. The cross ratio of four co-linear points is the most fundamental
projective invariant. Figure 2.3 shows an example. The cross ratio is given by:

Cross=
d(x1,x2) ·d(x3,x4)

d(x1,x3) ·d(x2,x4)
(2.11)

with d(·, ·) representing the distance between two points.
Homographies form a group, i.e. a concatenation of two homographies is a homography.

Thus a mapping of image points onto a world plane and from there onto another image is ex-
pressed by a single 3×3 matrix. Figure 2.4 illustrates this.
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c

Figure 2.3: A homography transformation of four co-linear points. The cross ratio is invariant

under a homography, i.e.d(x1,x2)·d(x3,x4)
d(x1,x3)·d(x2,x4)

=
d(x′1,x

′
2)·d(x′3,x

′
4)

d(x′1,x
′
3)·d(x′2,x

′
4)

H2

c2

x2

xw

c1

x1

world plane

H1

Figure 2.4: Concatenated homography. The homographyH1 maps points from image one onto
the world plane. The homographyH2 maps points on the world plane onto image two. The
concatenated homographyH2 ·H1 directly maps points from image one onto image two:x2 =
H2H1x1

Decomposition of a homography A homography can be decomposed into a chain of transfor-
mations, where each matrix in the chain represents a transformation higher in the hierarchy than
the previous one.

H = HSHAHP =

[
sR t
0T 1

][
K 0
0T 1

][
I 0

vT v

]

=

[
A t
vT v

]

(2.12)

with A a non-singular matrix given byA = sRK + tvT andK an upper-triangular matrix nor-
malized as det(K) = 1. This decomposition is valid providedv 6= 0, and is unique ifs is chosen
positive.

2.1.4 Working with Planes inP
3

The representation of planes inP
3 is derived in a similar way as the representation of lines inP

2.
A plane in Euclidean space in Hesse form is expressed as:ax+ by+ cz+ d = 0. Forming this
into homogeneous coordinates and vector notation gives:

πTx = 0 (2.13)
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whereπ = (a,b,c,d)T is the plane andx = (x,y,z,w)T is a point lying on the plane.π has three
degrees of freedom (four minus one for an arbitrary scale factor). The first three components of
π correspond to the plane normal of Euclidean geometry.

A plane joining the three pointsx1, x2 andx3 is obtained by




xT
1

xT
2

xT
3



π = 0 (2.14)

π is the right null-space. It is a one dimensional space if the points are linearly independent (not
co-linear). If the points are co-linear thenπ is a two dimensional null-space and defines a pencil
of planes with the line of co-linear points as axis. Instead of calculating the null-space a more
convenient direct formula exists which can be found in [Hartley & Zisserman 03].

The plane at infinity As the line at infinity inP
2 the plane at infinityπ∞ in P

3 contains all
points lying at infinity. If the space is not projectively distorted the plane at infinity takes the
canonical position:π∞ = (0,0,0,1)T , and all pointsx with (x)4 = 0 are part of this plane since







(x)1
(x)2
(x)3

0







π∞ = 0 (2.15)

The plane at infinity is a fixed plane under an affinity since infinite points stay infinite. An
affine reconstruction of a projectively distorted space (a general homography was applied to the
space) is possible if the image of the plane at infinity is known. This reconstruction is done by
transformingπ∞ back to its canonical position. The three degrees of freedomof π∞ measure the
projective component of a general homography.

Intersection of planes Having three planesπ1, π2 and π3; and stacking the equation 2.13
together gives:





πT
1

πT
2

πT
3



x = 0 (2.16)

wherex is a point lying on all planes and thus is the intersection point. With two planes only
the null-spacex is two dimensional and defines a pencil of points on the intersection line of the
planes.

Duality between points and planes In the two-dimensional caseP2 there is a duality between
points and lines (section 2.1.2). Here inP

3 points and planes are dual to each other. Both entities
are represented as a 4-vector. The intersection of three planes (2.15) and the plane joining three
points (2.16) are essentially the same, with the roles of points and planes swapped.

Note that this duality only holds inP3. In general points inPn are dual to hyper-planes inPn.
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2.1.5 Transformations inP
3

The transformations inP2 discussed in section 2.1.3 are easily extended to three dimensions.
They are not repeated here. But the transformation of planesrequires special attention. Due
to the duality of points and planes the transformations apply to both entities with a small but
important difference: If a given transformationM applies to points:

x′ = Mx (2.17)

then planes are transformed according to:

π′ = M−Tπ (2.18)

The projection fromP
3 to P

2 is deferred until section 2.2.1.

2.2 Image Formation

Images are projections of the three-dimensional space ontoa two-dimensional space. The latter
one can be any free-formed surface.

In order to process the images the light from the 3D scene has to be converted to electrical
signals. Technically, this is done by either CCD (charged coupled device) or CMOS (comple-
mentary metal oxide semiconductor) sensors. [Litwiller 05] gives a short overview of these two
technologies. It is hard to arrange these sensors on surfaces others than a plane. This is the
reason why common cameras project the 3D scene onto a plane. Within the plane the sensors are
arranged in a rectangular grid. Every single sensor is called apixel standing for picture element.

When surfaces other than a plane are desired one uses non-planar mirrors. The 3D scene
is first projected onto the mirror, and from there onto the cameras sensor. An example is the
hyperbolic mirror enabling an omnidirectional view (360◦). An image taken by such a mirror-
camera system is shown in figure 2.5a. In [Gehrig 05] two of such systems are employed to
reconstruct the 3D scene.

Even free-form surfaces are possible. For instance in [WürzWessel 04] projections of the 3D
scene onto the hood of a car are exploited to enable a stereoscopic reconstruction utilizing one
camera only. The hood is modelled as a free-form mirror. Figure 2.5b shows an example image.
The 3D scene is imaged twice, once directly onto the planar camera sensor and once via the
hood.

Throughout this thesis we think of about planar images. Whenthe actual images are taken
by a mirror-camera system one may apply a transformation projecting the images virtually onto
a plane. This type of transformation is calledrectification . Note that a real camera does not
constitute an exact planar projection due to distortions induced by the lens. Several calibration
approaches including distortion models were developed with the aim to measure and to undo this
distortion. A well-known approach is the "Camera Calibration Toolbox for Matlab" by Jean-
Yves Bouguet
http://www.vision.caltech.edu/bouguetj/calib_doc/in dex.html .
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(a) (b)

Figure 2.5: Types of image surfaces. (a) The 3D scene is projected onto a hyperbolic mirror
enabling an omnidirectional view. The camera is mounted near the rear mirror of the car. (cour-
tesy of Stefan K. Gehrig). (b) The vehicle is imaged twice, once directly onto the planar camera
sensor and once via the hood, which is modelled as a free-formreflective surface (courtesy of
Alexander Würz-Wessel).

2.2.1 Finite Projective Camera

In this section the algebraic description of the projectionthrough the camera center onto a plane,
calledcentral projection, is discussed. Figure 2.6 illustrates this projection. In afirst stage the
3D world pointx = (xw,yw,zw)T is projected onto the image plane yieldingx′. Algebraically this
is expressed as follows:

x′ =





f ·xw
zw

f ·yw
zw



 (2.19)

where f is the distance of the image plane to the camera center, also calledfocal length. Thanks
to the projective geometry equation 2.19 can be written as a matrix-vector multiplication:





x′

y′

w′



=





f 0
f 0

1 0





︸ ︷︷ ︸

·







xw

yw

zw

1







P

(2.20)

The 3×4 projection matrixP is not invertable. It is apparent that a projection comes with a loss
of information. Once the world point is projected it is impossible to reconstruct it from the image
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Figure 2.6: Pinhole camera model with pixels. The 3D world point x is projected onto the image
plane yieldingx′ (a). The camera center is placed at the coordinate origin. The image plane is
parallel to thexw,yw plane and lies atxz = f . After the projection the point is transformed to pixel
coordinates (b). The origin is the top-left corner. The width of a pixel iskx, the height isky. The
point where the optical axis meets the pixel coordinate frame is called principal point.

point. Nevertheless, one may compute the pseudo-inverse ofP:

P+ =







1/ f
1/ f

1
0 0 0







(2.21)

One verifies thatP+x = (x,y,z,0)T for any image pointx, i.e. the resulting world point lies at
infinity.

After the projection the image point is transformed to pixelcoordinates (fig. 2.6b). The origin
of the pixel coordinate frame is the top-left corner. Every single pixel has a width ofkx and a
height ofky. The coordinate axesxp andyp need not stand perpendicular. The skew parameter
s accounts for this. For most normal camerass will be zero. The point where the optical axis
meets the pixel coordinate frame is calledprincipal pointand has the coordinates(x0,y0)

T . The
transformation to pixel coordinates then reads:

x′′ =





x′′

y′′

w′′



=






1
kx

s
f x0
1
ky

y0

1




 ·





x′

y′

z′



 (2.22)

With the focal length expressed in units of pixel widthfx = f/kx and pixel heightfy = f/ky the
overall transformation is

x′′ =





x′′

y′′

w′′



=







fx s x0

fy y0

1
︸ ︷︷ ︸

0
0
0






·







xw

yy

zw

1







K

(2.23)
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The transformation matrix may also be written asK [I |0] with I the 3×3 identity matrix. The 3×3
matrixK captures all intrinsic camera parameters and is calledcalibration matrix. If K is known
one says that the camera iscalibratedotherwise it isuncalibrated. In the field of the industrial
image processing (as well as in driver assistance systems) the utilized cameras are known in
advance so they can be calibrated before use. Throughout thethesis the camera is considered
calibrated.

Sometimes it is not practical to work with pixel coordinates. One can undo the effect of
K through multiplication of the pixel coordinates by the inverse of K : x′ = K−1x′′. For the
computation ofK−1 see appendix B.1. The coordinates represented byx′ then arenormalized
image coordinates.

Camera rotation and translation So far, the camera center coincided with the origin of the
world coordinate frame. This will be unlikely in real life. Instead the camera will be rotated and
translated with respect to the world coordinate frame. In order to apply the projection (equa-
tion 2.23) the world coordinate frame first has to be transformed into the camera coordinate
frame. This is done by an Euclidean transformation:

xc =

[
R −Rt
0T 1

]

·xw (2.24)

The 3×3 rotation matrixR performs the rotation. The translation is performed by−Rt wheret
is the (inhomogeneous) location of the camera center in the world coordinate frame. The point
xc is then projected using equation 2.23. Combining both transformations yields:

x′′ = KR [I |− t] ·xw (2.25)

This is the algebraic description of afinite projective camerawith P = KR [I |− t] the projection
matrix. It will be used within this thesis.

Pseudo-inverse The pseudo-inverse ofP maps image points onto a certain world planeπ which
is derived now. An inverse projected image pointx lies ontoπ if:

(
P+x

)T π = xTP+Tπ = 0 (2.26)

From section B.2 we know thatP+ = [I |− t]+RTK−1. Putting this into equation 2.26 yields

xTK−TR[I |− t]+Tπ = 0 (2.27)

Settingπ = (tT |1)T which is the right null-space of[I |− t]+T solves equation 2.27. Thus inverse
projected image points lie on the world planeπ = (tT |1)T . If there is no translation between the
camera and the worlds origin the points lie on the plane at infinity.
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2.2.2 Affine Cameras

For the sake of completeness specialized cameras are discussed in this section. The reason why
these cameras are not applicable in driver assistence systems is also given.

The finite projective camera in general does not map parallellines in the world to parallel
lines in the image. This perspective distortion depends on the distance of the camera to the object
which is looked at, and on the depth variation of the object. Parallel lines in the world become
more and more parallel in the image with increasing distanceand decreasing the objects depth
variation. This is due to the fact that the viewing rays become more and more parallel. For very
large distances the viewing rays can be considered parallel. The central projection transforms to
a parallel projection leading to theaffine camera.

Algebraically an affine camera has a projection matrixP in which the last row is of the form
(0,0,0,1)T. From this there follow the properties of an affine camera:

• The camera center lies at infinity.

• Parallelism is preserved.

• Points at infinity are mapped to points at infinity.

• The principal point is not defined.

There are some important specializations of the affine camera. Figure 2.7 shows how these
specializations act on a world point. They are discussed nowstarting with the basic operation of
parallel projection. More general cases of parallel projection will follow.

Orthographic projection A parallel projection along thezw axis is called orthographic. This
type of projection ignores the depth of an object. Two identical objects placed at different depths
have identical images. Actually, one would expect that the size of the imaged object is smaller
for larger depths. The weak-perspective projection, discussed next, accounts for that expectation.
The orthographic projection is represented by the matrix:

Po =





1 0 0 0
0 1 0 0
0 0 0 1



 (2.28)

Weak-perspective projection In the weak-perspective projection the 3D scene is "flattened"
to a fronto-parallel plane (a plane parallel to the image plane). The depth of that plane is the
average depthzavg of the 3D scene. It means the world points are projected orthographically
onto that plane. From there the points are projected perspectively onto the image plane, which
in this case is nothing else than a simple scaling byf/zavg. Within each weak-perspective view,
there is still no variation of reprojection size with the distance. However, the scale can change
with each view, as opposed to the orthographic projection. This makes it possible to account
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Figure 2.7: Action of different camera models. The images ofthe world pointxw are shown in
the perspective (xp), the orthographic (xo), the weak-perspective (xwp), and the para-perspective
model (xpp). Note that the camera centerc corresponds only to the perspective model. The
actual camera center of the other models lies at infinity. Thefigure just illustrates the action of
the different models, not their actual way of projection.

for a displacement of the camera towards or away from the 3D scene. The weak-perspective
projection is represented by the matrix:

Pwp =





f 0 0 0
0 f 0 0
0 0 0 zavg



 (2.29)

Para-perspective projection For a large field of view, the fact that the points are first projected
orthographically in the weak-perspective projection creates a large approximation error. In the
para-perspective projection the points are first projectedparallel along the direction defined by
the camera centerc and the average 3D scene pointxavg = (xavg,yavg,zavg)

T (dashed line in
figure 2.7). The para-perspective projection is represented by the matrix:

Ppp =





f 0 −xavg/zavg xavg

0 f −yavg/zavg yavg

0 0 0 zavg



 (2.30)

This type of projection is a first order Taylor approximationto the perspective projection
[Poelman & Kanade 97].
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Affine cameras and traffic scenes Affine cameras are good approximations to the finite pro-
jective camera if the depth variation of the 3D scene is smallcompared to the average depth of
the 3D scene. In traffic scenes this is not the case. Figure 2.8shows a typical image. There
are close objects as well as far objects. The size of the imaged objects is very different. Also,
parallel world lines are not mapped to parallel lines in the image at all. Thus affine cameras are
not applicable in traffic scenes. The full perspective camera must be employed.

Figure 2.8: In traffic scenes the depth variation is very high. Parallel world lines made up by the
curb, the fence, and the parking cars are not parallel in the image (red lines). Cars at different
distances are imaged differently in size (blue rectangles).

2.3 Two View Geometry

2.3.1 Epipolar Constraint

If the 3D scene is seen by two cameras having a different viewpoint the images are related to each
other. The images of one and the same world point satisfy a geometric constraint, calledepipolar
constraint. Figure 2.9 illustrates this constraint. The world pointxw is projected onto the first
image plane yieldingx1 and onto the second image plane yieldingx2. We say thatx1 ↔ x2 are
corresponding points, or shortly acorrespondence.

Now imagine thatxw shifts along the viewing rayc1x1 to the pointx′w. The image of that
point in the first view is stillx1, whereas the image in the second view has changed tox′2. In
particular, the image point has moved along the linee2x2. This line arises from the intersection
of two planes: the second image plane and the plane defined by the pointsc1, c2, andx1. The
latter one is called theepipolar plane. The resulting intersection line is called theepipolar line
. Also the pointse1 ande2 have a special name:epipole. An epipole is the image in one view of
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Figure 2.9: Epipolar constraint. A world pointxw moving along the viewing rayc1x1 is imaged
as a linee2x1 in the second view.

the camera center of the other view or in other words it is the intersection of the line joining the
camera centers (thebaseline) with the image plane.

Epipolar constraint Two image pointsx1 andx2 satisfy the epipolar constraint if and only if
x2 lies on the epipolar line corresponding tox1. Alternatively, one may say thatx1 has to lie on
the epipolar line corresponding tox2.

After this geometric excursion the algebraic representation of the epipolar geometry is discussed.
Starting from the image pointx1 we search for a world point lying on the viewing rayc1x1. The
pseudo-inverse of the projection matrixP1 provides such a point. Lets recycle the termxw for
that point: xw = P1

+x1. The corresponding point in the second view is just:x2 = P2xw. The
epipolar line joininge2 andx2 is: l2 = e2×x2 = [e2]×x2. Combining all three steps yields a 3×3
matrix, calledfundamental matrix:

F = [e2]×P2P1
+ (2.31)

The fundamental matrix transforms points in the first view tocorresponding epipolar lines in the
second view:l2 = Fx1. The above approach could have also started from the image point x2 in
the second view which would end with the corresponding epipolar line l1 in the first view. This
would lead to the transposed fundamental matrix, i.e.l1 = FTx2. The algebraic representation of
the epipolar constraint reads:

x2
TFx1 = 0 (2.32)

This constraint is linear in the entries ofF and bilinear in the entries of the correspondence
x1 ↔ x2. That is why equation 2.32 is sometimes calledbilinear constraint.

If the calibration matricesK1 andK2 are known the fundamental matrix can be expressed in
terms of normalized image coordinates:x′1 = K−1x1 andx′2 = K−1x2:

x2
TFx1 = x2K−TFK−1x1 = x′2

TEx′1 = 0 (2.33)
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The matrixE = K−TFK−1 is calledessential matrix. It covers the relative location of the two
cameras. If the world coordinate frame is identical to the first camera, i.e.P1 = K1[I |0] then
P2 = K2R[I |− t], andE simply computes to:

E = [−Rt]×R (2.34)

2.3.2 Triangulation

Looking at figure 2.9 it can be seen that given the correspondencex1 ↔ x2 the 3D pointxw
is reconstructable through intersection (triangulation) of the two viewing raysc1x1 andc2x2.
Prerequisite is the knowledge about the location of the cameras to each other. In particular it
means that the projection matrices must be known.

The triangulation fails if the viewing rays are co-incident. This holds for the viewing rays
defined by the epipoles. The reconstruction in this case is ambiguous. All 3D points along the
ray c1e1 = c2e2 induce the same correspondencee1 ↔ e2. Correspondences near the epipoles
have almost co-incident viewing rays which results in inaccurate (noisy) reconstructions.

There are different triangulation methods in the literature. A fast but statistically not op-
timal method is thedirect linear transform(DLT). Another - statistically optimal - method
is the optimal polynomial methodwhich minimizes the reprojection error. For details refer
to [Hartley & Zisserman 03].

The triangulation works if the 3D pointxw is static. A moving 3D point in general is not
reconstructable, due to a manifold ambiguity. However, if we place a constraint on the shape of
the trajectory of the moving point, for instance a straight line or a conic section, the 3D point
becomes reconstructable except for some degenerate cases.

In the case of the straight line five images (or to be more precisely five rays towards the
moving point) are required to get a unique solution for the reconstruction. The solution is the
generator line of a linear line complex including the rays, i.e. the line intersecting all rays.
Once this line is calculated the 3D position of the moving point is determined by triangulation
between the line and the single rays. That is why this method is calledtrajectory triangula-
tion [Avidan & Shashua 00]. Figure 2.10 illustrates this.

Degenerate situations occur when the moving 3D point and thecamera center trace trajecto-
ries that live in the same ruled quadric surface. Such a surface is generated by two sets of disjoint
lines. Each line from one set meets each line from the other set. Any intersection of the surface
with a plane yields a curve of second order. Ruled quadric surfaces are the hyperboloid of one
sheet, the cone, two planes, the line, and the point.

2.4 Parameter Estimation

Within this thesis we will estimate parameters of certain models based on measurements. These
measurements are related algebraically to the model, so given a sufficient number of measure-
ments the parameters of the model can be computed. For example the model of a 2D line:
y(x) = m· x+ b is characterized by the two parameters:m andb. With two measurements (2D
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Figure 2.10: Trajectory triangulation. If the trajectory of a moving 3D point is a line five images
of this point define it’s trajectory uniquely.

points): (x̄1, ȳ1) and(x̄2, ȳ2) the parametersm andb are uniquely defined. In real life, however,
the measurements are uncertain which prevents an exact computation of the parameters. They
can only be estimated. In order to achieve accurate estimates one exploits the power of statistics:
Increasing the number of measurements stabilizes the estimate.

Next section the least squares estimation method is discussed. Based on the 2D line example
its effectiveness is shown. The example also shows that thismethod is vulnerable to gross errors
in the measurements (outliers), i.e. the least squares estimate may be perturbed if outliers are
present. For this reason methods were developed which are robust to outliers. Two of them are
discussed in the sections 2.4.2 and 2.4.3. Section 2.4.4 compares the diferent methods where the
2D line serves as an example again.

2.4.1 Least Squares

The question now is how to get an estimate form and b given a set of uncertain measure-
ments(x̄1,y1),(x̄2,y2), .. ,(x̄n,yn)? Note that only the y-component is subject to errors. The
x-component is assumed error free (denoted by the bar accent). Of course, we want to get the
best achievable estimate. To this end, we have to know the probability density function (PDF) of
each individual measurement error (residual)r i = y(x̄i)−yi . The probability of observing a cer-
tain residual depends on ¯xi , m, andb. For convenience we summarizem andb in the parameter
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vectorp = (m,b)T . The probability then is given by pdfi(r i|x̄i ,p). Assuming that the residuals
are independent the joint probability of observing the entire set of residuals is:

L(p) = ∏
i

pdfi(r i|x̄i ,p) (2.35)

L is called the likelihood function. The parameter vectorp̂ for whichL becomes maximal:

p̂ = argmax
p

L(p) (2.36)

represent the best achievable estimate, since this parameter vector is the most likely one which
has generated the given set of measurements (sample). The parameter vector achieved this way
constitute amaximum likelihood estimate(MLE).

In practice one commonly assumes that the residuals obey a Gaussian distributionr i ∼
N(0,σ). Then equation 2.36 becomes:

p̂ = argmax
p ∏

i
e−

r2i
2σ2 (2.37)

The normalization constant of the Gaussian distribution inequation 2.37 is omitted, since it does
not effect the solution. Equation 2.37 is simplified by taking the negative logarithm:

p̂ = argmin
p ∑

i
r2
i (2.38)

yielding the well-knownleast squares method. Figure 2.11 demonstrates the effectiveness of this
method, but also shows its limit. In figure 2.11a the 2D line isestimated based on two measure-
ments only. Clearly, the estimate differs considerably from the true 2D line. In figure 2.11b the
least squares method is applied using ten measurements. Theestimated 2D line is very close to
the true one. Figure 2.11c shows that gross errors in the measurements spoil the estimate. Such
measurements are calledoutliers. The least squares method is not robust to outliers.
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Figure 2.11: Least squares estimation. A 2D line (yellow) isestimated based on uncertain mea-
surements (black dots). The true 2D line is marked by the dashed line. (a) Two measurements
are required to compute the 2D line. The result is poor. (b) The least squares estimate based on
ten measurements yields a good result. (c) Outliers (red dots) spoil the estimate.

The next sections deal with estimation methods which can handle outliers appropriately.
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2.4.2 M-Estimation

We have seen that the least squares method constitute a maximum likelihood estimate if the
residualsr i are Gaussian distributed. Outliers, however, either are not Gaussian or have a higher
variance than the inliers. The least squares method is not optimal in such cases.

To overcome this issue Huber proposed the generalized maximum likelihood estimation
[Huber 81] and called itM-estimationwhere M stands for "maximum likelihood-type". His
approach generalizes the square function in equation 2.38 to an arbitrary cost functionC = C(r).
This allows to formulate MLE’s for non-Gaussian distributed residuals. For example, if the
inliers as well as the outliers are Gaussian distributed with standard deviationsσin andσout, re-
spectively, the PDF with the normalization constant omitted is pdf(r) = εexp(−r2/2σ2

in)+(1−
ε)exp(−r2/2σ2

out) with ε the expected fraction of the inliers. The cost function thenis:

C(r) = − log
(
εexp(−r2/2σ2

in)+(1− ε)exp(−r2/2σ2
out)
)

(2.39)

The cost function 2.39 is calledcorrupted Gaussian. In contrary to the least squares function
the corrupted Gaussian attenuates the influence of the outliers (fig. 2.12) which results in more
robust estimates. In summary, if the distribution of the residuals is known, it is always possible
to construct a MLE by settingC(r) appropriately.
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Figure 2.12: Different cost functions. (a) square function. (b) corrupted Gaussian withσin = 1,
σout = 5, ε = 0.8. (c) Tukey withσin = 0.5. (d) Huber withT = 1

There are also cost functions motivated more by heuristics than by adherence to a specific
noise-distribution model. A famous function is theTukey function[Mosteller & Tukey 77]:

C(r) =







(cσin)2

6

[

1−

(

1−
(

r
cσin

)2
)3
]

, |r| < cσin

(cσin)
2/6 , |r| ≥ cσin

(2.40)
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wherec = 4.6851 is the tuning constant. The graph of this function is shown in figure 2.12c.
The Tukey function is able to suppress the outliers completely, sinceC(r) takes on a constant
value for large residuals. The drawback of this function is its non-convexity. Thus, the sum of
the Tukey evaluated residuals will have several local minima which can make convergence to
the global minimum chancy. It should by applied only when an initialization near the global
minimum is guaranteed.

The fourth and last cost function we discuss here, theHuber function, is convex and thus does
not introduce additional local minima. The price we have to pay is a reduced robustness over the
Tukey function. It is defined as:

C(r) =

{
r2 , |r| < T
2T|r|−T2 , |r| ≥ T

(2.41)

Residuals larger thanT are treated as outliers. Their influence grows only linear instead of
quadratic. The thresholdT should be chosen to one to three times the inlier standard deviation.
The graph of the Huber function is shown in figure 2.12d. We will use this function throughout
the thesis.

Inherent in all robust cost functions is the knowledge aboutthe inlier standard deviationσin.
The robust estimation of it is related to the median of the absolute values of the residuals:

σ̂in = 1.4826[1+5/(N−dim(p))] median
i

|r i| (2.42)

The magic number 1.4826 comes from the Gaussian normal distribution. The median of the
absolute values of random numbers sampled from the distributionN(0,1) is equal toΦ−1(3/4)≈
1.4826. The term 1+ 5/(N−dim(p)), with N the number of measurements, compensates for
the effect of a small set of measurements. More about the theory of M-estimation can be found
in [Maronnaet al. 06].

2.4.3 RANSAC

RANSAC (RANdom SAmple Consensus)1 proposed by [Fischler & Bolles 81] seeks to detect
outliers by sampling and rating several minimal subsets from the given set of measurements. A
minimal subset contains the minimal number of elements (measurements) required to compute
the parameters of the model. In the case of the 2D line, two measurements (2D points) are
required.

After a minimal subset was randomly sampled and the parameters were computed, the subset
is rated based on the number of measurements consistent withthe parameters. The higher the
number the better the quality. This is done for a certain number of subsets. The best solution is
the subset with the highest quality. Two points are not yet clarified: What does consistency mean
and how many subsets should be sampled?

The original RANSAC method defines the consistency by means of the threshold function.
A measurement is consistent if its residualr i is smaller than the threshold. As in the case of

1By the way the websitewww.ransac.org has nothing to do with our RANSAC. It is the website of the Russian
American Nuclear Security Advisory Council.
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the robust cost functions the threshold should reflect the standard deviation of the inliers. Later
works substitute the discrete threshold function by continuous ones.

For example MLESAC (Maximum Likelihood Estimation SAmple Consensus) proposed
by [Torr & Zisserman 00] incorporate robust cost functions known from the M-estimation.

LMedS (Least Median of Squares) uses the very robust median [Rousseeuw 84]. Here the
concept of consistent measurements is not appropriate but,nevertheless, the median states a good
function providing the quality of a subset. The best solution is the subset with the lowest median
of the squared residuals.

There is still the question how many subsets should be sampled? Since the measurements
are contaminated by outliers, one subset is definetely insufficient. The hope is to collect a subset
containing only inliers. Such a subset will provide a good estimate. The more subsets that are
sampled, the higher the probability that at least one subsetcontains only inliers. Let the desired
probability beP and the inlier fraction beε, then the number of subsetsM should be:

M ≥
log(1−P)

log
(
1− εdim(p)

) (2.43)

SinceM may be large (> 50) RANSAC is computationally expensive. In recent years RANSAC
has been accelerated. GASAC (Genetic Algorithm SAmple Consensus)
[Rodehorst & Hellwich 06] for example samples subsets whichare close to the best solution
found so far. Preemptive RANSAC [Nistér 03] scores all subsets in parallel by testing the mea-
surements successively. During this process bad subsets, having a low support, are rejected early
which speeds up the computation.

Another problem with RANSAC is that the sampled measurements of a subset may lie close
to each other making the estimate instable. Such subsets areuseless and should be avoided. A
method addressing this problem is GOODSAC (GOOd SAmple Consensus) [Michaelsenet al. 06].
It ensures that the measurements contained in a subset are uniformly distributed.

2.4.4 Comparison

We take up the 2D line example to show the robustness of the previously discussed estimation
methods. Figure 2.13 shows the estimated 2D lines for different outlier fractions. With 23% out-
liers only the non-robust least squares method performs badly. All other methods (M-estimation
with Huber function, RANSAC, LMedS) provide good estimates. When the outlier fraction is
increased to 38% M-estimation as well as RANSAC reach their limit. The very robust LMedS
still provides a good estimate. 54% outliers are an overkill. Note that these outlier fractions are
just examples. They do not reflect the actual breakdown points of the individual methods.

The breakdown point of an estimation method is the smallest outlier fraction that can cause
the estimator to take values arbitrary far away from the correct estimate. For least squares it
is 1/N with N the number of measurements. M-estimation breaks down at 1− (1/2)1/dim(p)

whereas LMedS takes on the maximum value of 50% independently from any parameters.
[Stewart 99] compares the presented methods in more detail.
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Figure 2.13: Robust estimation of a 2D line with (a) 23% outliers (b) 38% outliers and (c) 54%
outliers. The true 2D line is marked by the dashed line. The least squares method (yellow) is
not robust. M-estimation (green) and RANSAC (blue) get off at 38% outliers whereas LMedS
(cyan) still performs well. No method is able to handle 54% outliers.)



Chapter 3

Optical Flow

The optical flow is the source of information on which the algorithms developed in this thesis
rely on and thus deserves an extra chapter.

The optical flow represents local grey-value displacementsfrom frame to frame. These dis-
placements have two reasons: first because the camera and / orobjects move through the scene
and second because the illumination changes.

Illumination changes are manifold. The light source may change their spectrum of emitted
light. Surfaces may vary the fraction of reflectance when thesurface normal is rotated (diffuse
and specular reflection). Structured light varying temporally causes moving shadows on illumi-
nated objects. All three types occur in traffic scenes. When driving into and out of a tunnel the
light source changes from the sun to a manmade lamp an back to the sun. In most cases the
spectrum of the lamp is different from that of the sun. When cars are driving curves their surface
normals rotate. Structured light is caused by the shadows oftrees for example. To model all
three types of illumination changes is cumbersome for natural scenes. The parameter space of
a complete model is very high. The parameter estimation of such a model based on acquired
images is infeasable due to lots of ambiguities. In practise, often simple illumination models are
used, for example the linear model (scale + offset).

In contrast to image displacements induced by illuminationchanges the image displacements
induced by a moving camera have exactly one reason, the motion. The parameter space of
motion models is low. Hence, the estimation of the model parameters is feasable. Indeed, we
will estimate them when we will deal with the ego-motion (chapter 4). In the next section two
motion models are discussed. The entire set of image displacements computed by a motion
model is calledmotion field.

In the second section we estimate the image displacements given two consecutive frames.
The issues coming with the estimation are discussed as well as the estimation algorithm used in
this thesis.

31
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3.1 Motion Field

3.1.1 Discrete Motion Field

The discrete motion field describes the image displacementsof projected 3D points caused by a
moving camera. The projected motion of a 3D point between twoframes is computed utilizing
the projection matrices of the last cameraPl and the current cameraPc. The latter one depends
on the time interval∆t between the two frames. The choice of the world coordinate frame does
not matter since it does not affect the image positions of theprojected 3D points. For simplicity
the world coordinate frame is set such that it coincides withthe last camera. The last projection
matrix then just contains the calibration matrixK : Pl = K [I |0]. The current projection matrix
arises from the transformation of the world coordinate frame into the current camera coordinate
frame plus the projection onto the image plane:Pc = KR [I |− t] (see also section 2.2.1).

The projected motion of a 3D pointxw then computes to:

∆x = x̃c− x̃l with Pcxw → x̃c , Plxw → x̃l (3.1)

The tilde accent denotes inhomogeneous vectors.
The drawback of this discrete motion are the complex dependencies on the motion parame-

ters. To see this we consider a simple example where the camera just rotates about the y-axis,
i.e. R = R(0,∆ψ,0) andt = 0. In order to get a simpler formula for∆x we normalize the image
coordinates by applyingK−1 to the image points. By doing thisK becomes the identity matrix.
The projected motion in normalized coordinates then reads:

∆x =
1

cos∆ψ+(xl)1sin∆ψ
·

(

−
(

(xl)
2
1+1

)

sin∆ψ
−(xl)2(cos∆ψ+(xl)1sin∆ψ−1)

)

(3.2)

This example shows that the discrete motion is non-linear inthe motion parameter∆ψ, and
further trigonometric functions are involved. However, equation 3.2 holds for arbitrarily large
∆ψ’s. If the camera motion is small due to a small time interval∆t the motion field can be
computed much simpler, which is described next.

3.1.2 Instantaneous Motion Field

The discrete motion field describes image displacements caused by an arbitrarily large time in-
terval. In contrary the instantaneous1 counterpart is only valid for infinitesimal time intervals.In
practice infinitesimal time intervals are not possible but,nevertheless, the instantaneous motion
field is a good approximation if the time interval is small.

The instantaneous motion field arises from differentiationof ∆x (equation 3.1) with respect
to ∆t and setting∆t = 0:

ẋ =
∂∆x
∂∆t

∣
∣
∣
∣
∆t=0

(3.3)

1In the literature the terms continuous and differential motion field are also found meaning one and the same.
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With normalized image coordinates and given thatR(∆t = 0) = I andt(∆t = 0) = 0 we get:

ẋ =
1
z
A · ṫ +B · ω̇ (3.4)

with

A =

[
1 0 −(xl)1
0 1 −(xl)2

]

B =

[
−(xl)1(xl)2 1+(xl)

2
1 −(xl)2

−(1+(xl)
2
2) (xl)1(xl)2 (xl)1

]

(3.5)

andz= (xw)3 the depth of the 3D point. SinceA andB only contain image coordinates equa-

tion 3.4 is linear in the motion parametersṫ = ∂t
∂∆t

∣
∣
∣
∆t=0

andω̇ = ∂ω
∂∆t

∣
∣
∣
∆t=0

, whereω covers the

three rotation angles. Also, the trigonometric functions have vanished making the computation of
ẋ much simpler compared to that of∆x. Note that the instantaneous motion field is characterized
by thetranslational velocitẏt and therotational velocityω̇ which is different from the discrete
case. The instantaneous image displacementẋ is calledimage velocity. It is the projection of the
3D velocity.

Figure 3.1 shows some exemplary motion fields caused by different camera motions and
compares the discrete and the instantaneous motion field to each other. In the figure∆t is set
to a high value(∆t = 1) to point out the difference between the discrete and the instantaneous
motion field. In case of a translation along the optical axis (fig. 3.1a) the instantaneous motion
vectors are too short. In case of a horizontal translation (fig. 3.1b) the instantaneous motion field
is equivalent to the discrete one. Figure 3.1c and 3.1d show rotations about the optical axis and
the vertical axis, respectively. Here, the directions of the motion vectors change continuously
over time causing an error in the instantaneous motion vectors.

3.1.3 Focus of Expansion

The motion field induced by a camera moving along the optical axis (fig. 3.1a) has a form like
a star. The motion vectors seem to have a common origin. All extensions of the motion vectors
intersect in the origin, thefocus of expansion(FoE). When the camera moves backwards the
origin is called focus of contraction.

The star-like motion field is preserved as long as the camera undergoes a pure translation.
The FoE, in this case, points in the direction of travel, meaning that the viewing ray defined by
the FoE and the camera translationt are parallel. In turn, it means that the FoE and the epipole
in the last frame coincide.

If the camera rotates in addition, the focus of expansion does not exist. The motion vec-
tors do not intersect in a common point, see figure 3.2. Note that there may be still points
having zero motion, calledfixed points. The set of 3D points inducing fixed points in the im-
age is calledhoropter. In general the horopter is a twisted cubic (a curve of degreethree in
P

3). [Verri et al. 89] characterizes fixed points as center, spiral, focus, node, saddle, or improper
node. It also shows how the motion field looks like in the vicinity of such points. In figure 3.2
the fixed point is a spiral.
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(a) (b)

(c) (d)

Figure 3.1: Discrete (black) vs. instantaneous (red) motion field. (a) Translation along the z-axis.
(b) Translation along the x-axis. (c) Rotation about the z-axis with 10◦. (d) Rotation about the
y-axis with 10◦.

3.2 Optical Flow

Last section we have seen how the motion field is computed caused by a moving camera. In prac-
tice, the motion parameters of the camera as well as the 3D structure of the scene are unknown.
Thus, the motion field cannot be computed. Instead, it has to be determined directly from the
images. In particular, the task is to find corresponding point pairs based on the similarity of local
grey-value structures. This is not easy to accomplish sincethere are several hurdles to take:

• Illumination change. Physical illumination changes from frame to frame occur when
the light source changes its output, or when diffuse or specular reflections change due to
a rotation of 3D surfaces. Illumination changes also encounter when the camera adapts
its exposure settings. In these cases the grey-value structures do not just "flow" over the
image, but change their brightness, too. This spoils the similarity between them, which
makes it hard to find corresponding point pairs.
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Figure 3.2: Non-existent focus of expansion. Motion field induced by a camera moving along
and rotating about the optical axis. The dotted lines show that there is no common intersection
point of the motion vectors.

• Aperture problem. If the local grey-value structure occurs multiple times in the image
there are also multiple matching candidates. The correct one cannot be found. This prob-
lem arises especially at long grey-value edges induced by lane markings for example. Also
low textured image regions, i.e. regions with low grey-value variations, suffer from this
problem.

• Occlusion. A 3D point in the background seen in one frame is not seen in theother
frame if the foreground occludes the background. Consequently, a corresponding point
pair associated with that 3D point does not exist. The problem is that occlusions are not
known a priori. An algorithm still tries to find matching grey-value structures and may
give wrong results.

Figure 3.3 shows an example of thiscorrespondence problem. The grey-value structure
inside the green image patch is unique in the image. It is no problem to find the matching patch
in the other image. In contrast to this, the red patch containing the curb occurs multiple times.
There is no unique matching patch. The blue patch is just seenin one image. The oncoming
vehicle occludes it in the other image.

Due to the problems mentioned above the apparent displacements of grey-value structures
may be different from the actual displacements defined by themotion field. It means we deter-
mine the former one, which is calledoptical flow field, and hope that it is sufficiently close to the
latter one.

Unfortunately, the term "optical flow" is not used consistently in the literature. Some authors,
e.g. [Vidal 05], link it to the instantaneous motion field. They speak of optical flow if the dis-
placements are infinitesimal or very small at least. If the discrete motion field is applied due to
large displacements they speak of correspondences. But what does small and large mean? There
is no strict threshold separating these terms.

In [Haussecker & Spies 99] the differentiation is made upon the way the displacements are
estimated. Optical flow-based techniques "try to minimize an objective function pooling con-
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Figure 3.3: Correspondence problem. Two images taken at distinct time instances are shown.
The green image patch matches uniquely. The red patch has multiple matches. The blue patch
has no match.

straints over a small finite area". These techniques fail if the temporal sampling theorem is
violated. "Correspondence-based techniques try to estimate a best match of features ...". "They
are also capable of estimating long-range displacements ...".

In this thesis, the terms optical flow and correspondence have identical meanings. They
both denote a corresponding point pair, regardless of the magnitude of the displacement between
them.

The next section describes the optical flow algorithm used inthis thesis. The literature ex-
plains plenty of other flow algorithms. They are not discussed further since the establishment
of correspondences is beyond the scope of this thesis. The reader is referred to [Jähne 05,
Haussecker & Spies 99] which give a good overview.

3.2.1 Census Transform based Estimation

The requirements to an optical flow algorithm depend heavilyon the application. In the field of
driver assistance the requirements are:

• real-time capability

• ability to handle large image displacements

• robustness to illumination changes

The flow algorithm developed by [Stein 04] meets these requirements. It uses the census trans-
form as the representation of local image patches. The search for correspondences is done using
a table based indexing scheme. In detail the method works as follows:
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The census transform as applied in [Stein 04] compares the center pixelx of an image patch
to the other pixelsx′ inside the patch:

ξ(I ,x,x′) =







0 , I(x)− I(x′) > ε
1 , |I(x)− I(x′)| ≤ ε
2 , I(x)− I(x′) < ε

(3.6)

with I(x) the grey-value (intensity) atx. The census digitξ just measures the similarity between
the grey-values atx andx′. Typically, ε = 12. . .16. This representation is very robust to noise
and is insensitive to a wide range of illumination changes.

All census digits of the image patch are clockwise unrolled building thesignature vector.
Figure 3.4 illustrates this. The signature vector is used tosearch for corresponding point pairs.

x

2 1 0

2 0

2 2 2

124 3274

124 64 18

157 116 84

210002222

grey values census digits signature vector

Figure 3.4: Census transform of 3×3 image patch.

To this end, all signature vectors of the first image are stored in a hash-table together with their
pixel position. Then, all signature vectors of the second image are compared to the hash-table
entries. This gives a list of putative correspondences (hypotheses) for each signature. The list is
empty if a signature in the second image does not exist in the first image. In the event of multiple
entries, the list is reduced by applying some photometric and geometric constraints. If there are
still multiple entries, the one with the shortest displacement is taken. Thanks to the indexing
scheme, arbitrary large displacements are allowed. Even when an image patch moves from the
top left image corner to the buttom right corner it is matched.

The method is summarized in algorithm 3.1, with an example ofits use shown in figure 3.5.

Comparison to Ground-Truth

The flow field retrieved by this algorithm is compared to ground-truth in order to measure its
accuracy. An artifical scene rendered with OpenGL serves as asource for the ground-truth data.
Since the 3D structure of the scene as well as the camera motion are known the motion field can
be computed. Illumination changes are not present, so the optical flow field is identical to the
motion field. Figure 3.6 shows an image of this artifical scenetogether with the measured and the
ground-truth optical flow field. Some measured flow vectors are of unexpected large magnitude
for instance at the street-lamp. They are obviously mismatched. The error histograms are shown
in figure 3.7. The peaks at the margins collect all errors lessthan -2 pixels and greater than +2
pixels, respectively. Flow vectors having these errors areprobably mismatched and treated as
outliers. From the histograms we compute:
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Algorithm 3.1 Optical Flow
1. Scan first image.Compute signature vector for each pixelx:

s1(x) =
O

x′∈D

ξ(I1,x,x′)

with
N

the concatanation operator andD the image patch centered atx.
2. Filter out useless signatures.Patches containing no grey-value corners are vulnerable to
the aperture problem. They are not processed further.
3. Store signature in hash-table.Signature vectors(x) is interpreted as a decimal number
and serves as the key to the hash-table in which the center pixel x is stored.
4. Filter out useless signatures.If one and the same signature occurs too frequently it is
deleted from the table. It is very likely that this signatureoccurs also frequently in the second
image, so a unique correspondence will not be found.
5. Scan second image.Compute signature vector for each pixelx:

s2(x) =
O

x′∈D

ξ(I2,x,x′)

6. Compare signature vectors.Look for eachs2(x) in the hash-table whether there are one
or more entries with the same signature vector.
7. Establish correspondence hypotheses.All point pairs x1, x2 with s1(x1) = s2(x2) are
correspondence hypotheses.
8. Reduce the number of hypotheses.There may be several point pairs with identical sig-
natures. Filter out the hypotheses where the illumination change is too high (e.g. > 20%) or
where the displacement‖x1−x2‖ is too high (e.g. > 70px). From the remaining hypotheses
take the one with the shortest displacement.
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Figure 3.5: Optical flow field. The length of the flow vectors iscolor coded from blue (0px) to
red (> 20px). There are 27639 vectors in total. The images were taken by a VGA camera with
12bit resolution.

horizontal dir. vertical dir.
mean -0.0013px -0.0004px

std. dev. 0.538px 0.483px
outliers 6.3% 4.8%

A standard deviation of about half a pixel is not surprising,because the flow algorithm is
"only" pixel precise. Other flow algorithms achieve sub-pixel precision (typical accuracy 0.1px),
however, they are computationally more expensive. An example is KLT, which stands for the
inventors Kanade, Lucas, and Tomasi [Tomasi & Kanade 91, Shi& Tomasi 94]. The pixel pre-
cision property prevents the ability to track features, i.e. to establish correspondences (with high
accuracy) over more than two frames.
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(a) (b)

Figure 3.6: Comparison of the measured optical flow field to ground-truth data. (a) The flow
algorithm applied to an artifical scene. (b) The ground-truth optical flow field.
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Figure 3.7: Error in the measured optical flow field. (a) Errorhistogram in horizontal direction.
(b) Error histogram in vertical direction.



Chapter 4

Ego-Motion Estimation

A reconstruction of the 3D scene seen by two cameras is required in order to detect moving ob-
jects. The scene can be reconstructed only if the relative orientation of the two cameras to each
other is known (section 2.3.2). In stereo vision, the cameras are rigidly mounted enabling the pos-
sibility to determine the relative orientation through offline calibration. However, in monocular
vision, the camera relative orientation changes continueously due to the ego-motion. Conse-
quently, the relative orientation (ego-motion) has to be determined in each frame.

This desirable information could be obtained from accurateinertial measurement units(IMU).
Fully featured IMU’s are equipped with 3 linear acceleration and 3 gyroscopic acceleration sen-
sors. They measure all 6 degrees of freedom. In practice one is faced to two issues related
to the use of IMU’s. The first is that the IMU has to be coupled rigidly to the camera, oth-
erwise the IMU will not reproduce the camera ego-motion adequately. The second is that the
IMU and the camera have to be calibrated to each other. The literature addresses both issues.
In [Chalimbaudet al. 05] a visuo-inertial sensor is presented which brings a CMOSimager
(camera) close to a 6 DoF IMU. This compact design guaranteesthe rigidity. The calibration
issue is addressed in the works [Lobo & Dias 05] and [Lang & Pinz 05].

Alternatively to IMU’s the ego-motion may also be estimatedutilizing the images directly.
The disadvantage of vision is that the ego-motion estimation does not work well in all situations
(e.g. at night, or during bad wheather where the optical flow field is sparse and noisy). The IMU’s
on the other side are expensive. An additional question is whether they provide accurate results
within the entire velocity range. Another advantage of vision is that the estimated ego-motion is
inherently synchronous to the acquired images. No timestamp battle!

In this chapter the vision based estimation of the ego-motion is considered. Next section
the ego-motion is explained in detail. A comprehensive study on existing ego-motion estima-
tion schemes follows. Based on it an appropriate scheme is selected (section 4.3) and explained
(sections 4.4 and 4.5). In section 4.6 this scheme is extended by a motion model. It includes
the iterative minimization of a non-linear function. Section 4.7 is dedicated to that issue. The
advantages of the motion model are pointed out in section 4.8. The sensitivity analysis in sec-
tion 4.9 shows that the image regions contribute differently to the estimate. The chapter ends
with experimental results (section 4.10).

41
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4.1 Ego-Motion in Detail

The camera undergoes an Euclidean transformation from frame to frame, consisting of three
rotations and three translations along the coordinate axes. Given nothing else than the optical
flow five out of these six degrees of freedom can be estimated. The length of the baseline (driven
distance) between the two frames stays undetermined. The reason for this is found in the equation
of the instantaneous motion field 3.4: One can simultaneously multiply the depthz and the
translational velocitẏt by an arbitrary scale factorλ without changing the image velocitẏx:

ẋ =
1
z
A · ṫ +B · ω̇ =

1
λz

A ·
(
λṫ
)
+B · ω̇ (4.1)

Fixing the scale factor requires the knowledge about eitherthe depthz of at least one point or
the magnitude of the velocity‖ṫ‖ or the distance in 3D of at least two points (e.g. the height
of a house). Thisscale ambiguitycan be explained intuitively: Looking out of a locomotive
while driving through the landscape one does not know whether the "universe" is real or a model
railway. The observed scene as well as the motion are identical in both cases.

If image points are tracked over time and the initial driven distance (distance between the first
two views) is known the distances between the upcoming viewsare determinable
[vdHengelet al. 07].

4.2 Ego-Motion Estimation Schemes in the Literature

The problem of the reconstruction of the 3D scene seen by two cameras has attracted researchers
for more than 100 years. The physicist and physiologist Herrmann von Helmholtz was the first
who investigated the human ability to see three dimensional. He published his work "Handbuch
der physiologischen Optik" in 1867. It was translated into english in 1925 [vHelmholtz 25]. Also
the psychologist James J. Gibson [Gibson 50] has dealt with the visual perception of animals and
humans. The term "optical flow" traces back to him.

Longuet-Higgins and Prazdny [LonguetHiggins & Prazdny 80]first published a method for
estimating the full ego-motion, meaning translation and rotation. They show that the instanta-
neous optical flow (2D velocities) is composed by the sum of the rotational velocities and the
translational velocities. The rotational velocities are smooth over the entire image and indepen-
dent from the scene structure whereas the translational velocities are only smooth if the depth
variations in the scene are continuous (compare to equation3.4). This fact can be exploited to
separate the translation from the rotation: Optical flow vectors in a local neighbourhood have an
almost equal rotation part. Taking the difference of adjacent optical flow vectors cancels out the
rotation. The difference between the translations, calledmotion parallax, remains. This vector
points towards or away from the focus of expansion (FoE). If there is no depth discontinuity in
the scene the motion parallax vector is zero, i.e. the translation part also cancels out, which is
fatal. This is the drawback: A depth discontinuity is required but the measurement of optical
flow at discontinuities is difficult.
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During the years the literature has produced a wealth on ego-motion estimation schemes
driven by the photogrammetry and robotics. Next, five properties are discussed on which the
schemes are characterized:

• Direct vs. Optical Flow: Direct methods warp image patches according to the estimated
ego-motion and compare the grey-values of the original patch in the last frame with the
warped patch in the current frame. This avoids the computation of the optical flow. Low
textured regions can also be taken into account. Direct methods need knowledge about the
scene structure (e.g. the homography when looking at a sceneplane) otherwise a warping
would not be feasible. When there is noa priori knowledge the scene depth of every
single point can be included as a parameter in the estimationprocess. However, this would
increase the computional effort considerably (see [Mandelbaumet al. 98]). Sometimes
direct methods are calledcorrespondencelessmethods.

• Discrete vs. Instantaneous:Instantaneous approaches employ the instantaneous motion
field (section 3.1.2). They are applicable when the image displacements are small. The
equations involved when using the instantaneous epipolar constraint or the instantaneous
motion parallax are more tractable than the discrete counterparts (no trigonometric func-
tions are required). There is no work known to the author which investigates the break
down point of the instantaneous methods. So it is not clear what "small displacement"
really means.

• All Parameters together vs. Splitting of the Parameters:Splitting the parameters (com-
monly into the translational and the rotational parameters) reduces first the search space
and second resolves the ambiguity between translation and rotation [Tianet al. 96].

• Two-View vs. Multiple View: Two-view approaches just consider two consecutive im-
ages. They avoid tracking points over time. This is advantageous in siutations where
tracking is infeasible. Rainy scenes with the windscreen wiper activated or scenes at
night having a low image contrast are examples where tracking is problematic. Multiple
view approaches are more powerful in the motion segmentation. Furthermore the multiple
measurements lead to more accurate estimates. A good overview of the work on ego-
motion estimation in "long" image sequences can be found in [Shariat & Price 90] and
[Wu et al. 95].

• Motion parameters only vs. Additional nuisance parameters: Some approaches es-
timate not only the ego-motion parameters but also scene structure parameters (e.g. lo-
cations of individual 3D points), though we are not interested in such parameters. Their
incorporation improves the estimates but also increases the computational complexity.

The literature on ego-motion estimation is so rich that one can combine the above proper-
ties almost arbitrarily and one will find at least one method with these properties. Hence it is
quite hard to put the crowd of methods into a relational ordermaking comparisons even more
cumbersome. Indeed, there is a very limited number of paperscomparing the different methods
([Tian et al. 96], [Armanguéet al. 02], [Zhang & Tomasi 02]).

In the following sections some representative methods are discussed briefly.
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4.2.1 Direct Methods

Grey-value domain. Direct methods define an error metric based on the grey-values which
they minimize over the ego-motion and scene structure parameters. The sum of squared differ-
ences (SSD):

ssd= ∑
xl

[Il (xl)− Ic( f (xl))]
2 (4.2)

is a common error metric. The grey-values (intensities) aredenoted byIl andIc. The function
f transforms a point in the last frame into the current frame. It depends on the ego-motion and
scene structure parameters. In the most general case each point xl has its own depth. All the
depth values have to be estimated together with the ego-motion parameters which would be an
overkill. The solution is to model the scene. A 3D plane, for example, has only three parameters
(normal vectorn plus distanced to origin). So, if the camera looks at a plane only these three
scene structure parameters have to be estimated.

The methods [Steinet al. 00] and [Ke & Kanade 03] model the road as a plane and consider
only the image region where the road is present. The SSD inside this region is minimized. The
general idea behind this is illustrated in figure 4.1. The warping function f depending on

(a) (b) (c)

Figure 4.1: Direct method for estimating the ego-motion. The last image (a) is subtracted from
the warped current image (b) yielding the difference image (c). The grey-value differences on
the road are minimal.

the parameters:t,ω,n,d virtually transforms the current camera to a new location. If the new
location is equal to the last camera’s location the warped current image is the same as the last
image. Hence, the grey-value difference (fig. 4.1c) is zero.One says that the image regions
(containing the road plane) are registrated.

Frequency domain. It is also possible to estimate the ego-motion in the frequency domain.
Strictly speaking methods doing so are neither direct methods nor optical flow methods. Nev-
ertheless, they are treated as direct methods because they share the idea of using the complete
information included in the images. Frequency based methods manage cluttered 3D scenes (a
scene containing, for example, bushes and trees). Such scenes are the natural enemy of optical
flow algorithms due to the high number of occlusions.
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One representative is [Langer & Mann 04] which estimates thetranslational direction of the cam-
era. It is assumed that there is no rotation. In local image patches the image velocities (instanta-
neous motion field) all lie on a line. The position within the line depends on the image position
and scene depth. The spatio-temporal image cube is transformed into the 3D frequency domain.
In that domain the motions lie on planes all intersecting in acommon line, depending on the
translational direction. The proposed algorithm searchesfor that line. In [Mann & Langer 05]
the method was extended to motions containing rotations.

In [Makadiaet al. 05] the Radon transform is employed to estimate the ego-motion. A corre-
lation integral is formulated measuring how well the epipolar constraint is met given particular
ego-motion parameters (R andt):

G(R, t) =

Z

xl

Z

xc

g(xl,xc) ·∆(Rxl,xc, t)dxl dxc

g(xl,xc) measures the similarity between the two image positionsxl andxc. The authors uses
the Euclidean distance of SIFT1 features computed at the positionsxl andxc. The∆ function
measures how close the image positionsxl andxc comes to satisfying the epipolar constraint.
The maximum value ofG(R, t) gives the ego-motion which is searched for. However sampling
G(R, t) would result in a combinatorial explosion. The authors avoid this sampling by the appli-
cation of the spherical Fourier transform. The computationof G(R, t) in the Fourier domain is
much easier. The approach is very robust against outliers. However, the computational burden
prevents the algorithm of being real-time capable.

The method developed by Domke and Aloimonos [Domke & Aloimonos 06] is a hybrid
methd. It computes correspondence candidates based on the phase of tuned Gabor filters. The
more similar the responses between two image patches are thehigher the correspondence proba-
bility is. The ego-motion then is estimated maximizing the joint probability. Repetitive patterns
in the image inducing ambiguities in the optical flow are managed by this method.

4.2.2 Optical Flow Methods

Instantaneous motion. Ego-motion estimation methods based on the instantaneous motion
field as described in section 3.1.2 typically minimize some sort of:

N

∑
i=1

‖ẋm,i −
1
zi

A i · ṫ−Bi · ω̇‖2 (4.3)

with ẋm,i thei-th measured image velocity. This error metric requires to minimize over the depth
valueszi (nuisance parameters), too. Methods have been developed reducing these parameters or
even eliminating them completely. [Bruss & Horn 81] imposesa constraint on the depth:

z=
‖Aṫ‖2

(ẋm −Bω̇)T Aṫ
(4.4)

1Scale Invariant Feature Transform [Lowe 99]
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This effectively chooses the depth minimizing the distanceof ẋm to the instantaneous epipolar
line. For computational ease the authors drop the term‖Aṫ‖2 in equation 4.4. Putting this into
equation 4.3 yields:

N

∑
i=1

|(ẋm,i −Biω̇)1

(
A i ṫ
)

2− (ẋm,i −Biω̇)2

(
A i ṫ
)

1 |
2 (4.5)

This error metric imposes abilinear constrainton the ego-motion parameters which is equivalent
to theinstantaneous epipolar constraint. It is minimized easily, however, the estimate is biased.
The reason is the improper scaling of the residuals caused bydropping of‖Aṫ‖2. In the end an al-
gebraic error is minimized instead of a geometric error. TheRM-L1.2 method [Zhang & Tomasi 02]
takes‖Aṫ‖2 into account leading to unbiased and consistent estimtates. For robustness the square
function in expression 4.5 is substituted by| · |1.2:

N

∑
i=1

∣
∣
∣
∣
∣

(ẋm,i −Biω̇)1

(
A i ṫ
)

2− (ẋm,i −Biω̇)2

(
A i ṫ
)

1

‖Aṫ‖

∣
∣
∣
∣
∣

1.2

(4.6)

The error metric 4.6 is appropriate if the noise in the measured optical flow is homoscedastic,
i.e. independent from the length‖ẋ‖. For heteroscedastic noise different scalings are required.
The appropriate scaling for noise proportional to the translational component of the optical flow
is presented in [Zhuet al. 05].

In contrast to [Bruss & Horn 81], which completely eliminates the depth values in expression 4.3,
[Zucchelliet al. 02] reduces the number of depth values by incorporating 3D lines and planes.
For all points on a plane with the normal vectorn and the distanced it holds:

z=
d

xl
Tn

(4.7)

There are only three scene structure parameters to estimate(n, d) in addition to the ego-motion
parameters.

[Jepson & Heeger 90] split the ego-motion parameters by an algebraic manipulation of the in-
stantaneous motion field. The resulting constraints dependonly on the translatioṅt. This allows
the estimation oḟt seperately fromω̇. Their method, which they called thesubspace method,
should attract a lot of researchers later on. The authors themselves developed a version which is
linear onṫ and found out that the outcoming estimates are biased [Heeger & Jepson 92].

[Lawn & Cipolla 96] introduced the linearised subspace method, which is applicable if small
image patches are considered. Here, only four image points are needed to extract a constraint on
ṫ instead of seven as needed in [Heeger & Jepson 92]. This has advantages for outlier rejection
and may also improve the stability of the solution with respect to noise on the optical flow
measurements.

The multiple view method in [Soatto & Perona 97] takes the subspace method as a basis to
formulate a recursive estimation of the ego-motion using two Kalman filters.
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Another method [Iraniet al. 97] splitting ṫ andω̇ first searches for an image region looking at
a planar surface and then estimates the instantaneous homography registrating the last and the
current region. This cancels out the rotational velocityω̇. The translational velocitẏt is estimated
from the residual motion parallax.

[Pauwels & Hulle 04] addresses the issue ofimage stabilization, which is closely related to
ego-motion estimation. The objective here is to get rid of the vibrations in the images caused
by camera rotations. To this end, the rotational component of the ego-motion has to be esti-
mated. [Pauwels & Hulle 04] employs a phase based optical flowalgorithm and minimizes the
vibrations of the optical flow in the phase realm.

[Baumelaet al. 00] uses the instantaneous epipolar constraint to estimatethe ego-motion.
The results, when compared to the discrete counterpart, fare no better. The authors doubt whether
there are practical advantages of the instantaneous methods. In [Armanguéet al. 02] the method
is compared to other linear methods based on the instantaneous epipolar constraint. All methods
provide biased estimates due to the linearization.

Discrete motion. In this paragraph the focus is on two-view discrete motion methods. The
multiple view methods are the topic of the next paragraph. Two view methods are mostly based
on the epipolar geometry. Longuet-Higgins was one of the first who proposed a method for the
estimation of the fundamental matrix [LonguetHiggins 81].His lineareight-point algorithmis
the basis for many other algorithms.

With the camera calibration matrixK known the fundamental matrixF can be upgraded
to the essential matrixE (see sec. 2.3.1). Then,E can be decomposed to solve for the ego-
motion parameters [Hartley & Zisserman 03]. Alternatively, one may estimateE directly using
the five-point algorithm presented in [Nistér 04] or the newer version [Stewéniuset al. 06] which
is numerically more stable. The advantage over the eight-point algorithm is that it works even if
the scene is planar which is acritical surfacefor the eight-point algorithm [Maybank 92]. Both
algorithms have got their names from the minimal number of points required to solve for the
unknowns. They can process more points getting more accurate estimates. However, they do not
constitute maximum likelihood estimates due to the minimization of an algebraic error.

Thegold standardmethod [Hartley & Zisserman 03] minimizes a geometric error. This requires
the estimation of nuisance parameters in form of corrected correspondences̄xl ↔ x̄c, which
satisfy the epipolar constraint exactly, i.e.̄xT

c Fx̄l = 0. The sum of all squaredreprojection
errors:

N

∑
i=1

d(xl,i, x̄l,i)
2+d(xc,i , x̄c,i)

2 (4.8)

is minimized. Each perfect correspondencex̄l ↔ x̄c has three degrees of freedom, namely the
3D point to which it triangulates. Thus, there are 3N + 5 parameters in total to estimate. The
effort pays off as the result is a maximum likelihood estimate, provided that the measured image
positionsxl andxc areN(0,σ) distributed.
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Multiple views. Correspondences over more than two frames, if available, impose more con-
straints on the ego-motion parameters leading to more accurate estimates. Usually, multiple
views are considered instructure from motion(SfM) methods where the aim is to reconstruct
the scene. In this case one is mainly interested in the reconstructed 3D points rather than in the
ego-motion. The reconstruction quality benefits if the 3D points are seen from several different
points of view. The typical error metric which is minimized is the reprojection error as in the
gold standard method but this time applied toF views:

F

∑
j=1

N

∑
i=1

d(P j x̄w,i , xi, j)
2 (4.9)

The unknowns are the 3D points̄xw,i and the projection matricesP j = KR j [I |t j ] (whereP1 =
K [I |0]) covering the ego-motion of each frame. There are 3N + 6(F − 1)− 1 parameters in
total to estimate. The−1 accounts for the free overall scale factor. It may be fixed bysetting
the driven distance of the second camera to unity:‖t2‖ = 1. Then, the other driven distances
‖t j‖ j ∈ [3,F] are normal paramters and must be estimated. Hence, we have zero parameters for
the first camera, five parameters for the second and six parameters for every additional camera.
The algorithm minimizing the cost function 4.9 is known to asbundle adjustment. Due to the high
number of parameters and the intrinsic non-linearity the algorithm is computationally expensive.
Many endeavors have been made to develop efficient implementations.

Bundle adjustment involves the formulation of a large scale, yet sparse, minimization prob-
lem. [Engelset al. 06] exploits the block diagonal (sparse) form of the Jacobian matrix of the
error metric. The Jacobian matrix is used within the Levenberg-Marquardt (LM) minimization.
On a 3.4GHz Xeon processor one iteration of LM requires just 0.5ms (F = 7,N = 260).

Lourakis and Argyros [Lourakis & Argyros 05] compare the Levenberg-Marquardt mini-
mization to Powell’s dog leg minimization. The main advantage of the latter one is that it re-
quires less computations of the Gauss-Newton update:δ = (JTJ)−1g whereJ is the Jacobian
andg the gradient of the error metric. The solution of this linearequation system is costly if it is
high dimensional, which is the case for the bundle-adjustment problem. The dog leg algorithm
is 2.0 to 7.0 times faster than LM depending on the number of parameters.

The mobile robotics community is faced with a problem related to SfM: One of the tasks of a
mobile robot is to localize itself within its working environment. This requires the knowledge
about the environment (scene structure or landmarks2). However, the environment might be
unknown to the robot. Another task of the robot is to explore the environment while moving
trough it. Once, the environment is learned the robot shouldkeep it in mind, so that the robot
can immediately re-localize itself after it has been kidnapped or switched off and on. Typically,
the working environment is too large to have it entirely in the robots’s field of view. Hence, it
must store everything it has seen so far in a map and it must be able to associate the data in the
map with the data currently present in the field of view. The map building and localization are
continuous processes. In contrast to SfM the images cannot be processed as a whole. They must

2Landmarks are distinctive objects in the physical world, for example corners of buildings or traffic signs.
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be processed recursively. Algorithms solving these tasks are referred to asonline simultaneous
localization and mapping(online SLAM) [Thrunet al. 05].

SLAM is a probabilistic framework abstracting from specificsensor technologies. The online
version of SLAM estimates the a posteriori probability of the current posext = (x,y,z,α,ψ,ϕ)T,
relative to a fixed coordinate frame, along with the mapm, wherem is either a list of landmarks
(feature-based), or a discretized grid of the 3D world (location-based). The a posteriori proba-
bility is a function of all sensor measurementsz1:t and all controlsu1:t . The subscript 1:t denotes
the complete history from time instant 1 up tot. In summary, the task is to estimate:

p(xt ,m|z1:t,u1:t) (4.10)

Where is the ego-motion hidden in this probability? The mostlikely current pose is the one
which maximizes the a posteriori probability:

x̂t = arg max
xt ,m

p(xt ,m|z1:t ,u1:t) (4.11)

The very recent posêxt−1 is computed in the same way. The ego-motion directly followsfrom
both poses. The mapm comprising estimated 3D points is a nuisance parameter. Although a lot
of algorithms estimatingp have been proposed - examples are Extended Kalman filter SLAMand
FastSLAM 2.0 (see [Thrunet al. 05] for details) - SLAM is still a highly active field of research,
as the recent conferences on robotics (www.iros2006.org , www.icra07.org ) indicate.

When the SLAM problem is tackled utilizing a camera, the devised algorithms are referred
to asvisual SLAM. One representative is [Silveiraet al. 07]. This direct method assumes the
imaged scene to be locally planar. The structure parameters(normal vector plus distance of the
plane) of each image patch (feature) are estimated along with the ego-motion parameters utilizing
the SSD error metric. Additonally, affine illumination changes are modelled for each patch. The
estimates are fed into a Kalman filter fulfilling the needs of online SLAM.

While [Silveiraet al. 07] only compares the image patches (more precisely their grey value
structures) over the last three frames, [Moltonet al. 04] compares the image patch in the first
frame to that in the current frame exploiting larger driven distances. An Extended Kalman filter
predicts the appearance of an image patch in the current frame based on the observations in the
past. The template patch (= patch in the first frame) is pre-warped according to that prediction.
It is then matched with the actual observed patch in the current frame. This approach provides
more accurate results, especially reducing the drift of thepatch’s position.

4.3 Motivation

In the last section we have seen that a lot of ego-motion estimation methods exist in the literature.
The question is: which method is the most suitable for our needs? What are our needs?

• The camera displacement between consecutive frames may be large, due to a high speed
of the ego-vehicle and / or a low frame rate. This causes optical flow vectors of a high
magnitude. Hence the instantaneous motion field does not apply.
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• The algorithm used for the computation of the optical flow (section 3.2.1) does not track
features over time, so multiple view methods are ruled out.

• The algorithm must run in real-time. Methods estimating nuisance parameters are therefore
problematic.

As a consequence of these needs we concentrate on two-view discrete motion methods which
forbear from the estimation of nuisance parameters. Looking at the literature we find out that the
methods based on the epipolar geometry meet our needs.

4.4 Parameterization

Due to the fact that only the translational direction is determinable, a representation of the trans-
lation in polar coordinates makes sense. Figure 4.2 illustrates the camera coordinate frame and
the Euclidean transformation between two views. We assign specific names to the entities

sc

θv

θh

x

y

z

∆α

∆ψ

∆ϕ

Figure 4.2: Euclidean transformation of the camera (ego-motion) between two frames.

involved:

• rotation about the x-axis: pitch rate3 ∆α

• rotation about the y-axis: yaw rate∆ψ
3Although the termrate is commonly used to express a temporal derivative, we use it here to express differences

from frame to frame.
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• rotation about the z-axis: roll rate∆ϕ

• horizontal translational directionθh

• vertical translational directionθv

• driven distancesc

The translations along the coordinate axes(tx, ty, tz) are related to the polar coordinate represen-
tation as follows: 



tx
ty
tz



= R(−θv,−θh,0)





0
0
sc



 (4.12)

with R(αx,αy,αz) being a rotation matrix with Euler angles in the orderz,y,x, see also ap-
pendix A. The five ego-motion parameters we can estimate are summarized in the parameter
vectorpe = (∆α,∆ψ,∆ϕ,θh,θv).

4.5 Error Metric

The ego-motion parameters are estimated utilizing the epipolar geometry. In section 2.3.1 we
have seen that a correspondencexl ↔ xc satisfies the epipolar constraint:xc

TFxl = 0. The
fundamental matrixF depends on the ego-motion parameters:

F(pe) = K−T [−Rt]×RK−1 (4.13)

with R = R(∆α,∆ψ,∆ϕ) andt = R(−θv,−θh,0)(0,0,1)T. Note, that int the driven distancesc

is implicitly set to one. The incorporation ofsc would not influenceF, sinceF is a homogeneous
entity. Given at least five correspondences one may minimizethe deviations from the epipolar
constraint to find an estimatêpe:

p̂e = argmin
pe

N

∑
i=1

J(F , xl,i , xc,i) (4.14)

with J(F,xl,xc) = xc
TFxl . However,J is an algebraic error providing biased estimates. An error

metric representing a geometric error is thesymmetric epipolar distance(SED):

JSED=

(
xc

TFxl
)2

(Fxl)
2
1+(Fxl)

2
2

+

(
xc

TFxl
)2

(FTxc)
2
1 +(FTxc)

2
2

(4.15)

JSED measures the squared distances of the image points to their corresponding epipolar lines:
d2(xc,Fxl) + d2(xl,FTxc). It provides estimates close to the optimal gold standard method
[Faugeras & Luong 01, Hartley & Zisserman 03].

We use this error metric for the estimation but it is not robust yet. In case of ego-motion
estimation we are faced with two types of outliers. First, mismatched correspondences and
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second, correspondences on independently moving objects (IMO). In section 2.4 we have dealt
with robust estimation. When a robust estimation method is to be selected the expected amount
of outliers have to be guessed.

The fraction of mismatched correspondences have been investigated in section 3.2.1. It was
about 6%. The outlier fraction due to an IMO depend mainly on its size in the image, which is
large when the IMO is close to the camera. There is one fact which helps reducing this fraction:
In traffic scenes IMO’s do not suddenly appear direct in frontof the ego-vehicle. Instead they
are only seen partially when they enter the field of view. Or they start small and get larger when
the ego-vehicle is approaching them. Once the IMO’s are detected they should be tracked. This
allows the exclusion of these image regions from the ego-motion estimation. Thus, IMO’s are
only outliers as long as they are not detected.

The expected amount of outliers is minor, so the M-estimation is the method of choice. We
employ the Huber cost function (equation 2.41) in its "rooted" form sinceJSED is already squared:

C(r) =

{
r , |r| < T2
√

2T|r|−T2 , |r| ≥ T2 (4.16)

Finally, the robust estimate is given by:

p̂e = argmin
pe

N

∑
i=1

C(JSED) (4.17)

The efficient iterative minimization of this error metric isaddressed in section 4.7. The estimated
parameters are used as an initial guess for the next frame.

4.6 Motion Model of the Camera

Since we know that the camera is mounted in a vehicle the camera undergoes a restricted motion.
We model this motion which reduces the degrees of freedom andmakes the estimated ego-motion
more stable and accurate. The motion model has also been published in [Klappsteinet al. 06a].

4.6.1 Horizontal Translational Direction and the Circular Motion Con-
straint

In this section we consider the steering of the ego-vehicle.Within a small time period (the time
between two frames, typically 40 ms) the yaw angle can be approximated as constant. During that
time the ego-vehicle on the road drives along a circular arc,i.e. it fulfills a planar circular motion.
If the camera is mounted at the rear axle of the ego-vehicle the horizontal translational direction
is independent of the driven distance (see figure 4.3). However, it is influenced by the driven
angle (yaw rate). Figure 4.4 illustrates this. The yaw rate rotates the horizontal translational
direction away from the z-axis. It rotates by an angle which is half the yaw rate angle. This is
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computed via the isosceles trianglec1 c2 m and the sum of the inner angles of a triangle:

θ′h = 90◦−θh (4.18)

θ′h+θ′h +∆ψ = 180◦ (4.19)

θh =
1
2

∆ψ (4.20)

θh

x

z

c1

c2

c’2

θh

x

z

c1

c’2

c2

(a) (b)

Figure 4.3: Planar circular movement. (a) The camera moves once fromc1 to c2 and once
to c′2 while rotating around 90◦ each time. The horizontal translational direction (red line)
parametrized with the angleθh is identical in both cases. (b) The same consideration with a
rotation angle of 60◦.

θh θh’
c1

c2

rr

rr m x

a

∆ψ

z

Figure 4.4: Geometric relations of the horizontal translational direction (red line) and the yaw
rate∆ψ of the camera.θh = ∆ψ

2

Now we consider the more common case where the camera is mounted somewhere in front
of the car. Hereθh = 1

2∆ψ + β whereβ is thekinematic side slip angle4. It depends on the
distance of the camera to the rear axle and on the radius of thecurvature. For simplicity the
Ackermann model [Zomotor 91] is used here (center of gravitylies on the road, no longitudinal
forces). The model allows to combine the two wheels into one wheel in the middle of the axle.
Further we consider the stationary steering with no side slip. The latter one only holds for small
lateral accelerations. Under all these conditions the vehicle dynamic is modelled as illustrated in
figure 4.5a.

4Following the definition of the term "side slip angle", it applies only at the center of gravity of the vehicle. Here
it is used also at the location of the camera.
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Figure 4.5: Ackermann model and the driven distance of the camera. (a) The camera’s velocityvc

and the velocity of the rear axlevr are different. The angle between these two isβ. (b) The driven
distance of the camerasc can be computed if the yaw rate∆ψ and the angleβ were measured
(see text for details).

The velocity of the rear axlevr is parallel to the vehicle’s longitudinal axis (dashed line) and
the velocity of the front axlevf shows to the same direction as the front wheel. The intersection
point of the lines orthogonal tovr andvf forms the centermof the circle. The radius of curvature
at the rear axle isrr . The camera is mounted at the distancedc,r w.r.t. the rear axle. This
arrangement lets the camera’s velocityvc rotate by the angleβ:

β = arctan
dc,r

rr
(4.21)

4.6.2 Determining the Scale Factor

In this section an interesting idea is presented how to determine the driven distance (scale factor)
utilizing the knowledge about the distancedc,r of the camera to the rear axle.

The fact thatβ depends onsc can be exploited to determinesc, meaning to resolve the scale
ambiguity. The relevant geometry is depicted in figure 4.5b.While the rear axle’s circular motion
has a radius ofrr the camera’s radiusrc is slightly larger:

rc =
√

d2
c,r + r2

r (4.22)

The driven distance of the camera is given by:

sc = 2rc sin
∆ψ
2

(4.23)

Substitutingrr in equation 4.22 with the equation 4.21 and puttingrc into equation 4.23 results
in:

sc = 2dc,r

√

1+
1

tan2β
sin

∆ψ
2

(4.24)
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In order to get an imagination of the required accuracy ofβ the driven distance is plotted against
β as shown in figure 4.6. Thereby, realistic values for the camera displacement to the rear axle
and for the yaw angle between two consecutive frames are chosen. For smallerβ’s (larger radii
of curvature) the gradient becomes larger, which means thatsmall errors inβ have a more and
more severe influence onsc.
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Figure 4.6: The driven distance of the camerasc againstβ. The distance was set todc,r = 2mand
the yaw rate to∆ψ = 0.5◦.

Next the relative error ofβ in dependence on the relative error ofsc is computed in order to
derive the required relative accuracy ofβ. A measurement error∆β at a specific true valuēβ
causes an error insc: ∆sc = sc(β̄+∆β)−sc(β̄). The relative error ofsc is:

es =
∆sc

sc(β̄)
=

sc(β̄+∆β)−sc(β̄)

sc(β̄)
(4.25)

Applying the Taylor series expansion up to first order:sc(β̄+∆β)≈ sc(β̄)+s′c(β̄) ·∆β along with
the relative erroreβ = ∆β/β̄ yields:

es =
s′c(β̄) · β̄
sc(β̄)

·eβ (4.26)

Substituting equation 4.24 into 4.26 we get:

es = −
β̄

tanβ̄
·eβ (4.27)

From tanβ ≈ β for β ≪ 1 it follows: eβ = −es.
We now give a little example to point out a realistic requiredaccuracy: Let’s assume that the

desired relative accuracy of the driven distance is 5 %(es = 0.05). Then, the required relative
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accuracy ofβ is about 5 % too. Let’s say the largest radius of curvature isrr = 230m. This
corresponds toβ = 0.5◦ whendc,r = 2m. Then the required accuracy ofβ is 0.025◦! Note, that
we cannot estimateβ directly, but the horizontal translational directionθh. In section 4.8 we will
find out that the accuracy ofθh is much less than the required one.

It is a rather freaky idea to determine the driven distance this way. It works only in curves and
the required accuracies are very high. We will strike another more promising path: the estimation
of the road homography.

4.6.3 Vertical Translational Direction

The horizontal translational direction is linked to the yawrate as seen in the last section. Can we
also find a link between the vertical translational angle andthe pitch rate?

Strictly speaking, no! The reason is that, in contrary to thehorizontal direction, the pole of
rotation is not constant. This is illustrated in figure 4.7. Two examples of pitch motion are

tz ty

tz

t’y

∆α

−∆α

Figure 4.7: Geometric relations of the vertical translation ty and the pitch rate∆α of the camera.
Two motion examples are shown demonstrating thatty is not directly linked to∆α. Althoughtz
and∆α are constantty 6= t ′y. Note, that the situation is exaggerated for better visualization.

shown. In the first one the ego-vehicle drives up a hill (bumpyroad). It pitches about the angle
∆α whereas the pitching pole is the rear axle. This causes a vertical translationty of the camera.
In the second example the ego-vehicle drives down a hill. Thepitch angle is the same but the
pitching pole is now the front axle. This causes a vertical translationt ′y which is different fromty.
Consequently, there is no direct link between the vertical translational directionθv and the pitch
rate∆α. Without knowing the pitching pole a correct modelling ofθv is infeasible.

We, nevertheless, modelθv. We just pretend that the height of the camera above the road does
not change, i.e.ty is clamped to zero and the pitching pole is assumed to coincide with the camera
center. Under these assumptions the vertical translational direction is equal the pitch angle of the
road w.r.t. the camera:θv = α. Due to pitch motions of the ego-vehicle the pitch angle changes
continuously. However, the current pitch angle cannot be estimated from the optical flow alone.
Only rotations from frame to frame, i.e. the pitch rate∆α, can be estimated. If the road has a
constant vertical slope as in figure 4.8a the pitch rate is identical to the temporal derivative of the
absolute pitch angleα. Consequently,α may be retrieved through integration:
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c0 c1
c2 c3 c4
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∆α 0 ∆α1 ∆α2 ∆α 3
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0 ∆α1 ∆α2 ∆α3 ∆α4

∆α 5

αsum

(a) (b)

Figure 4.8: Absolute pitch angle in relation to the pitch rates. (a) The road has a constant vertical
slope. The pitch angleα is the sum of the pitch rates∆αi. (b) The vertical slope of the road is
changing. The actual pitch angle is totally different from the summed pitch rates.

αi = α0+
N

∑
i=0

∆αi (4.28)

whereα0 is the initial pitch angle. It can be determined through offline calibration. Alternatively,
one can exploit the fact that the long term average of the pitch rate must be zero, otherwise the
ego-vehicle would loop the loop (see section 4.8 accuracy ofego-motion).

One drawback of this pitch integration approach is that it isinvalid if the vertical slope of the
road changes as illustrated in figure 4.8b. The integrated pitch rates do not reflect the absolute
pitch angle. Another severe drawback is the feedback introduced by settingθv = α, depicted in
figure 4.9. The current pitch rate estimation depends on the recent estimated pitch rates. If the

image
corresp.

θv

∆α α

ego−motion
estimation Σ

α0

∆ψ ∆ϕ

Figure 4.9: Feedback within in the motion model based ego-motion estimation.

initial angleα0 is set too high (or too low) the pitch rate estimates are too high (or too low) as
well. This is an amplifying effect. The estimation error increases (or decreases) in each frame.
Thus, the entire estimation process is a labile equilibrium.

To confirm this experimentally we estimate the ego-motion using a highway sequence shown
in figure 4.10. Figure 4.11a shows the results of the pitch angle for the highway sequence where
α0 was slightly too low. In figure 4.11bα0 was too high. Note, that the difference for theα0’s in
both figures is just 0.01◦. The instability becomes apparent. The feedback in this waydoes
not work. In chapter 5 we will estimate the road homography which will give us an estimate of
the absolute pitch angle. We will use it to refine the feedback.
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(a) (b)

Figure 4.10: The sequence used to investigate the estimation of the pitch angle. A highway
was chosen which has a constant vertical slope. The installation pitch angle was obtained by
calibration which wasα0 = −4.66◦. (a) First frame of the sequence. (b) Frame 100 of the
sequence.
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Figure 4.11: Integrated pitch angleα of the highway sequence. (a) The initial angleα0 was set
to−5.15◦ which was too low. (b)α0 was set to−5.14◦ which was too high.

4.6.4 Rolling

One might think that the rolling of the vehicle is negligible. But experiments have shown that
a considerable roll rate exists in the real world. Notice that the ego-motion parameters describe
the motion of the ego-vehicle with respect to the world, not to the road. So, the roll rate will be
different from zero, if the road itself rolls. An example is shown in figure 4.12.

If the roll rate is not estimated (set to zero) the other rotational parameters are influenced by
the effects of the roll rate which leads to wrong estimates. Therefore the rolling must be included
in the estimation.
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(a) (b)

Figure 4.12: Highway sequence with present roll rate. (a) Frame 240 (b) Frame 270. The vehicle
has driven approximately 35 meters and it rolled around 3◦.

4.6.5 Summary

The motion of the camera is modelled as planar and circular. The horizontal translational di-
rectionθh is a function of the pitch rate∆α and the driven distancesc. The latter one is either
retrieved by odometry or by the estimated road homography. The vertical translational direc-
tion θv is clamped to the pitch installation angleα0 obtained by calibration. The motion model
reduces the ego-motion parameters to the rotational ones:pe = (∆α,∆ψ,∆ϕ).

4.7 Efficient Minimization

As discussed in section 4.5 the solution of the ego-motion problem is given by:

p̂e = argmin
pe

N

∑
i=1

C(JSED) (4.29)

Due to the non-linearity ofC(JSED) the solutionp̂e must be found by an iterative minimization.
The time spent for this minimization is the crucial point forthe real-time capability. In this
section we study three minimization schemes of different types. The first uses only the func-
tion itself. The second takes advantage of the gradient, andthe last uses the Hessian matrix in
addition.

The Powell algorithm [Presset al. 02], a gradient free descent approach, efficiently mini-
mizes quadratic functions. Note that near a minimum any function is approximately quadratic
(Taylor series expansion up to second order).

C(JSED) is quadratic in a relative large area around the minimum. Figure 4.13 shows the
graph ofC(JSED) when varying the yaw rate. The other two parameters (pitch and roll rate) are
kept constant in the minimum. The cuts ofC(JSED) through the other parameters are similar.
They are not shown here.

Given an N-dimensional quadratic function Powell needs at leastN · (N + 1) · 3 function
calls to find the minimum.N iterations are required to establish the optimal (conjugate) search
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Figure 4.13: Cut ofC(JSED) through the yaw rate. The Taylor series expansion up to second
order of(JSED) (blue line) shows thatC(JSED) is almost quadratic in a wide range around the
minimum.

directions. In each iteration the function is minimized along N + 1 one-dimensional directions
(lines). Every line minimization is performed by a parabolic fit requiring 3 function calls.

When the gradient and the Hessian matrix of the function are available, the minimum is
found in a single step, called Newton step. The complexity indoing so is 1+ N + N · (N−1).
This is 1 function call, N calls of the first partial derivatives, andN · (N−1) calls of the second
partial derivatives. It is assumed that computing the derivatives is as expensive as computing the
function itself.

The error metricC(JSED) depends on the rotational parameters, thus we have a
three-dimensional minimization task. In such a space Powell needs 36 function calls while the
usage of the gradient + Hessian matrix needs only 10 "function calls"5 to find the minimum of a
quadratic function.

Thus computing the first and second derivatives saves a lot oftime. By doing this another
fact shortens the computation time: Every single function call requires the CPU to load the
correspondences into its registers. This is very expensiveif the correspondences are not cached.
Less function calls reduce the amount of cache misses.

The usage of the gradient and Hessian matrix requires a minimization scheme which handles
this information. HUMSL (Hessian provided Unconstrained Minimization SoLver) [Gay 83] is
such a scheme. It is available underwww.netlib.org/port .

The Powell and the HUMSL algorithm are designed to minimize an arbitrary function. When
the function is based on least squares, i.e.:

χ(p) = ∑
i

r(p)2
i (4.30)

with r(p)i the individual residuals andp the parameter vector, special minimization schemes can
be applied to find the minimum overp. A very famous one is the Levenberg-Marquardt (LM)
minimization [Presset al. 02]. One key idea of LM is an abbreviation in the computation of
the Hessian matrix. To see this we compute the first derivative of 4.30 with respect to the k-th

5The term "function call" here subsumes the actual function call and the call of the derivatives.
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parameter:
∂χ

∂(p)k
= 2∑

i
r i

∂r
∂(p)k

(4.31)

The second derivative with respect to the k-th and l-th parameter then reads:

∂2χ
∂(p)k ∂(p)l

= 2∑
i

∂r i

∂(p)l

∂r i

∂(p)k
+ r i

∂2r i

∂(p)k ∂(p)l
(4.32)

The Levenberg-Marquardt algorithm cancels out the second term r i
∂2r i

∂(p)k∂(p)l
in 4.32. By doing

so one assumes that the residualsr i are zero-mean and uncorrelated. The zero-mean property
can only hold in the minimum ofχ(p). Near the minimum the residuals are approximately zero-
mean. Beside the assumption of zero-mean and uncorrelatedr i ’s it is assumed that they are
uncorrelated with their second derivatives. When the second derivatives are zero or nearly zero
also the second term cancels out. Iterative minimization schemes using these assumptions are
known as Gauss-Newton schemes. The minimization ofχ(p) requires just 1+N function calls
if the assumptions are true. In our three-dimensional space(three rotational DoF) 4 calls are
enough.

In most LM implementations the user is requested to put in theresidualsr i . Is it a good idea
to useC(JSED) as residualr? No,C(JSED) represents the squared symmetric epipolar distance,
thus is always positive. Further, the second derivatives are far from zero. In order to apply the
LM algorithm we have to modifyC(JSED) slightly. The "rooted" version ofJSED:

JRSED= xc
TFxl ·

√

1

(Fxl)
2
1+(Fxl)

2
2

+
1

(FTxc)
2
1 +(FTxc)

2
2

(4.33)

along with the point-symmetric "rooted" Huber cost function:

Cp(r) =

{
r , |r| < T2

√

2T|r|−T2 ·sgnr , |r| ≥ T2 (4.34)

makes the epipolar distance positive or negative dependingon which side of the epipolar line the
corresponding point lies. The necessary condition for zero-mean residuals is now fulfilled. The
consideration of the sufficient condition is postponed until section 5.6.2 where we will prove that
under isotropic noise the residuals are actually zero-mean.

Are the second derivatives of 4.33 zero? No, they depend on the ego-motion parameters and
the image position. Figure 4.14 shows the second derivatives in the minimum ofJRSED for an
ego-motion along the optical axis. Some of the second derivatives are unbounded in the epipole.
Image regions near the epipolesel andec are therefore excluded:

JRSED= 0|‖xl −el‖∞ ≤ 3px∪‖xc−ec‖∞ ≤ 3px (4.35)

Figure 4.14 shows three out of six second derivatives. The derivatives not shown look similar to

the ones shown. Rotating 4.14(a) around 90◦ yields ∂2JRSED
∂∆ψ2 and 4.14(c) rotated around 90◦ yields

∂2JRSED
∂∆ψ∂∆ϕ . The second derivative w.r.t. the roll rate∂2JRSED

∂∆ϕ2 is zero in the minimum.
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Figure 4.14: Second derivatives ofJRSEDin dependence of the image position for an ego-motion

along the optical axis. (a)∂
2JRSED
∂∆α2 (b) ∂2JRSED

∂∆α∂∆ψ (c) ∂2JRSED
∂∆α∂∆ϕ

Near the minimum all second derivatives only change slightly. The figure shows that the
second derivatives are not zero in all image regions. However, it points out that the second
derivatives are symmetric or point-symmetric relative to the epipole. If the correspondences are
uniformly distributed over the image the second derivatives are zero-mean satisfying the LM
assumption. Thus, we expect the LM algorithm to be superior over the other two algorithms. In
the following this is confirmed experimentally.

Up to now we assumed that computing the first and second derivatives is as expensive as
computing the function which makes LM considerably faster (LM: 4 calls, HUMSL: 10, Powell:
36). However, computing the derivatives ofCp(JRSED) is cumbersome since the rotation matrixR
included in the Fundamental matrixF comprises products of sine and cosine functions. Luckily
for us, the expected rotations are small, thus we can employ the linearized rotation matrix:

Rlin = I +









∆α
∆ψ
∆ϕ









×

=





1 ∆ϕ −∆ψ
−∆ϕ 1 ∆α
∆ψ −∆α 1



 (4.36)

making the derivatives much easier to compute. The mathematical effort for computingCp(JRSED),
measured in terms of multiplications, is 22 per correspondence. Each first derivative costs 29
multiplications and each second derivative costs 40 multiplications. There is an additonal cost
for the preparation required once per call: composition of the F-matrix and computation of the
epipoles: 138 multiplications, and computation of the derivatives of the F-matrix: 301 multipli-
cations.

The average number of function calls required to find the minimum was obtained by exper-
imental tests. They are 102 (Powell), 6.5 (LM6), and 5 (HUMSL). The overall mathematical
effort is summarized in table 4.1. Compared to Powell, LM is three times faster. But looking at
the actual computation times, which were measured on a Pentium IV 2.4 GHz, LM is even four

6The implementation is due to Lourakis:www.ics.forth.gr/˜ lourakis/levmar



4.8. ACCURACY OF THE EGO-MOTION ESTIMATION 63

Powell LM HUMSL

usage of function function function
gradient gradient

Hessian
multipl. per preparation 138 439 439

multipl. per corresp. 22 22 22
+3 ·29 +3 ·29

+6 ·40
avg. number of calls 102 6.5 5

overall effort for 300 corresp. 687276 215404 525695
relative to Powell 100% 31% 76%

computation time 4.5ms 1.1ms 2.1ms
relative to Powell 100% 24% 47%

Table 4.1: Comparison of different minimization schemes.

times faster. This is due to less cache misses. By the way, computing the derivatives numerically
using forward differences is not faster than the analyticalderivatives.

4.8 Accuracy of the Ego-Motion Estimation

In this section we address the following questions:

• How many correspondences are required to get a good estimate?

• To which extent does the motion model improve the estimate?

• Does a wrong camera installation angle spoil the estimationwhen using the motion model?

• Does the noise in the optical flow have a high influence on the accuracy?

To answer these questions we carry out the following simulation: A certain number of world
points is generated and imaged onto the last and current frame according to some random but
known ego-motion. The image points in the last frame are uniformly distributed over the image.
The depthz of the world points is distributed asz∼ zmin

G(0,1) wherezmin is the minimal depth and

G(0,1) is the uniform distribution. This allows world points to lievery far away. The image
points in the current frame get an additive noise according to N(0,σ). A certain fraction of the
points become outliers. To this end the image point in the current frame is set randomly around
the image point in the last frame, whereas the distance between the two image points is normal
distributed withN(µ= 0px,σ = 30px).

The ego-motion is estimated 250 times while varying the world points and the ground truth
ego-motion each time. The estimated parameters are then compared to the ground-truth param-
eters. The ranges of the ego-motion parameters in traffic scenes are typically -0.5 .. 0.5deg

frame for
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parameter sign value

number of correspondences 100
focal length fx = fy 1000px

minimal depth zmin 10m
distance between last and current frame sc 1m

noise in the correspondences σ 0.55px
outlier fraction 0%

Table 4.2: Parameter values used in the simulation.

the rotational and -20 .. 20deg for the translational parameters. The ground truth ego-motion is
uniformly distributed within these ranges.

The upcoming figures depict the accuracy of the ego-motion estimation in dependence on
single parameters. All other parameters are fixed to values shown in table 4.2.

4.8.1 Number of Correspondences

Figure 4.15 shows the standard deviations of the rotationalparameters against the number of cor-
respondences. In figure 4.15a all five parameters are estimated. In figure 4.15b the translational
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Figure 4.15: Accuracy of ego-motion estimation depending on the number of correspondences.
(a) All five parameters (rotation and translation) are estimated. (b) Only rotations are estimated.
The translations are fixed at their actual value.

parameters are known (set to the actual values) and only the rotational parameters are estimated.
This is equal to applying the motion model. The usage of the motion model almost doubles the
precision of the pitch and the yaw rate. The precision of the roll rate, however, does not benefit
from the motion model.

The standard deviation of the estimated parameters increases heavily when less than 50 cor-
respondences are supplied7. This is mainly the case if all five parameters are estimated.Fig-
ure 4.15a is zoomed out in figure 4.16.

7We observe this empirically but we cannot explain the “50”.
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Figure 4.16: Accuracy of ego-motion estimation depending on the number of correspondences.
All five parameters are estimated. Using less than 50 correspondences provides poor results.

4.8.2 Minimal Depth

The estimation of the translational parameters is not only more inaccurate than the one of the
rotational parameters but also the estimation requires 3D points which are close to the camera.
What happens if close 3D points are missing is illustrated infigure 4.17. In traffic scenes it can
not be guaranteed that close 3D points are present. Thus, thetranslational parameters can not be
estimated reliably. And when some parameters cannot be estimated reliably why should they be
estimated at all? This is another reason to apply the motion model.
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Figure 4.17: Accuracy of ego-motion estimation in dependence on the minimal depth of the 3D-
scene. The standard deviation of the translational parameters increases when near 3D-points are
missing (a), whereas the rotational parameters are hardly influenced (b).

4.8.3 Deviation from the Motion Model

When the motion model is used, the knowledge about the camerainstallation angles is required.
Commonly this knowledge is obtained by calibration. If the actual angles deviate from the cali-
bration, for example due to a lack of long term stability or pitch motions, the estimated rotational
parameters are biased. In figure 4.18 the bias in the pitch rate is shown when the vertical transla-
tional direction deviates from the actual one. This bias is equal to the average of the pitch rates,
since pitch rotations are zero mean. Otherwise we would loopthe loop.
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The pitch installation angleα0 may be calibrated online by observing the average of the pitch
rates. However, the bias depends on the scene structure, butthe average scene structure is not
known. One cannot deduce directly the error of the installation angle from the bias. The true
installation angle must be found iteratively. The yaw installation angle is found in the same way
as the pitch installation angle, because the yaw motion averaged over a long time period is zero,
too. It means in average the ego-vehicle drives straight ahead. The roll installation angle cannot
be determined this way.
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Figure 4.18: Bias in the pitch rate estimation when the assumed vertical translationθv is wrong.

4.8.4 Outliers

In the simulations discussed so far the correspondences were free from outliers. In real life
outliers occur when the optical flow algorithm produces mismatched correspondences or when
independently moving objects (IMO’s) are present. Mismatched correspondences are uncorre-
lated whereas correspondences on IMO’s are highly correlated. Here we care about uncorrelated
outliers. The generation of outliers is explained at the beginning of this section.
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Figure 4.19: Accuracy of ego-motion estimation depending on the outlier fraction. All five
parameters are estimated (rotation and translation).

Figure 4.19 shows the accuracy of the ego-motion estimationwhile the fraction of outliers
is varied. As expected, the accuracy becomes worse for higher outlier fractions, especially the
translational parameters are influenced heavily by outliers. The application of the motion model
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Figure 4.20: Accuracy of ego-motion estimation depending on the outlier fraction. (a) All five
parameters are estimated (rotation and translation). The figure is a close-up of figure 4.19 to
point out the rotational parameters. (b) Only rotations areestimated. The translations are fixed
to their actual value.

stabilizes the ego-motion estimation to a surprising extent (figure 4.20): The accuracy of the
roll rate doubles when the outlier fraction is high (≥30%). The pitch and the yaw rate are
already more accurate (factor of 2) when the motion model is applied. If outliers are present in
addition the headstart of the accuracy increases further. For example having an outlier fraction
of 30% the pitch and the yaw rate are 10 times (!) more accuratecompared to the full five
DoF estimation. This observation confirms the high correlation between the translational and
the rotational parameters. Trying to estimate the translational parameters will result in an overall
poor performance.

Ego-motion estimation methods that split the translational parameters from the rotational
ones, for instance the series of linear subspace methods originally introduced by
[Jepson & Heeger 90], may provide better results than our minimization of the symmetric epipo-
lar distance (SED). However, in the literature there is no extensive study on the achievable accu-
racy.

The accuracy of the ego-motion parameters is also influencedby the focal length of the
camera and by the noise in the optical flow. The graphs are shown in figure 4.21.
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Figure 4.21: Accuracy of ego-motion estimation depending on (a) the focal length and (b) the
noise level.
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4.8.5 Summary

A reasonable estimate involves at least 50 correspondences. The translational parameters are
inaccurate, especially when close 3D points are missing or when outliers are present. Due to
the correlation between translation and rotation the rotational parameters suffer from the poor
accuracy of the translational parameters. The motion modelbreaks the correlation and improves
the accuracy of the rotational parameters considerably.

4.9 Sensitivity of the Ego-Motion Parameters

In the last section, we have seen the different accuracies ofthe ego-motion parameters. We now
ask for the reason of these differences.

In general, parameter estimation means minimization of some cost function. The higher the
curvature of the error metric in the minimum, the more accurate the estimation will be. If a slight
change in the parameter causes a high change in the error metric, due to a high curvature, we
say the parameter is sensitive. To get the sensitivities of the ego-motion parameters we compute
the second partial derivatives (curvature) of the SED function in the minimump̂e obtained by
equation 4.17:

s∆α =
∂2JSED

∂∆α2

∣
∣
∣
∣
p=p̂e

(4.37)

s∆ψ =
∂2JSED

∂∆ψ2

∣
∣
∣
∣
p=p̂e

(4.38)

s∆ϕ =
∂2JSED

∂∆ϕ2

∣
∣
∣
∣
p=p̂e

(4.39)

s∆θh =
∂2JSED

∂∆θ2
h

∣
∣
∣
∣
p=p̂e

(4.40)

s∆θv =
∂2JSED

∂∆θ2
v

∣
∣
∣
∣
p=p̂e

(4.41)

The sensitivities depend on the image positionxc and the camera calibration. Further-
more s∆θh and s∆θv also depend on the depth of the 3D point. Figure 4.22 shows thesen-
sitivities depending on the image positionxc for a camera motion along the optical axis, i.e.
p̂e = (0,0,0,0,0)T. The driven distance is one meter and the focal length isfx = fy = 1000px.
The principal point is set to the center of the image. The depth of the 3D point isz = 20m.
One clearly sees that not all image regions provide an equal contribution to the accuracy of the
ego-motion parameters.

The reason for this is explained in figure 4.23. It shows what happens if the ego-motion
parameters move slightly away from their true values. Let’sconsider a point correspondence
xl ↔ xc in the image. A slight change of a rotation parameter (figure 4.23a to 4.23c) shifts the
original pointxc to xα, xψ, andxϕ respectively. The new epipolar linel l goes through the shifted



4.9. SENSITIVITY OF THE EGO-MOTION PARAMETERS 69

point and the epipoleel . The wrong value of the parameter induces an epipolar distanced of the
pointxl to the epipolar linel l . In the case of the translational parameters (figure 4.23d and 4.23e)
a slight change shifts the epipole toeθh andeθv respectively. The new epipolar line goes through
the shifted epipole andxl , since a 3D point at infinity is always imaged to the same location,
namelyxl , regardless of the translation of the camera.

All figures, 4.23a to 4.23e, contain two correspondences,xl ↔ xc andx′l ↔ x′c, at different
image positions to demonstrate the dependence of the sensitivity (distance) on the image position.
The primed positionx′c has a higher distanced′ than the non-primedxc.

The sensitivity analysis shows that the translational parameters are more insensitive than the
rotational ones. The poor results regarding the accuracy weobtained last section (sec. 4.8) are
the consequence of this insensitivity.

There is another important point revealed by this analysis:pitch and yaw rotations shift the
epipole out of its central position. The sensitive areas (marked white in figure 4.22) go hand in
hand with the epipole. Hence, the sensitivity decreases themore the camera pitches or yaws.
This is especially the case if the epipole goes outside the image. Strong yaw movements occur at
intersections when the car turns into another road. We expect a reduced accuracy in such a case.

The translational parameters, which are linked to the pitchand to the yaw installation angles,
have a quite similar impact on the epipole.

Commonly, the camera looks straight ahead. But when the taskis to observe crossing traffic
at an intersection the camera must look sidewards. The yaw installation angle then may be 90◦.
This implies thatθh = 90◦ provided that the yaw rate is zero (∆ψ = 0). It means the camera
moves sidewards. The epipole in that case is at infinity and soare the sensitive areas of the yaw
rate. Figure 4.24a shows this. The yaw rate’s maximum sensitivity is reduced by a factor of 130
compared toθh = 0◦. The effect on the accuracy is shown in figure 4.24b.

A last point shall be mentioned in this section: we have seen that the sensitivities in some
image regions are higher than in others. As a consequence, the accuracy of the estimates is
affected by the selection of the correspondences. If correspondences are selected only in low-
sensitive regions the estimate will be poor. In order to prevent this, they should be uniformly
distributed over the image.
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Figure 4.22: Sensitivities of the ego-motion parameters depending on the image position. Dark
regions are regions with low sensitivity. White regions have the maximum sensitivity for that
parameter. (a) pitch rate.s∆α,max = 4.43∗ 106 (b) yaw rate.s∆ψ,max= 4.43∗ 106 (c) roll rate.
s∆ϕ,max= 6.4∗105 (d) horizontal direction.s∆θh,max= 1.1∗104 (e) vertical direction.s∆θv,max=
1.1∗104
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Figure 4.23: Epipolar distances (d andd′) depend on the positionxc andx′c. For detailed expla-
nation see the text. (a) pitch rate. (b) yaw rate. (c) roll rate. (d) horizontal direction. (e) vertical
direction.
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Figure 4.24: Sideward motion of the camera. (a) Sensitivityof the yaw rate whenθh = 90◦.
Dark regions are regions with low sensitivity. White regions have the highest sensitivity of
s∆ψ,max= 3.15∗104. (b) Accuracy of the rotational parameters for increasing values ofθh.
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4.10 Experimental Results

In order to investigate the accuracy of the ego-motion estimation not only simulated data can
be used but also real images. This is advantageous since the entire processing from the image
aquisition up to the ego-motion estimation is considered. The drawback is that getting ground
truth data is cumbersome. A highly accurate IMU could deliver the ground truth. Such a device,
however, was not available to the author. Instead standard ESP (Electronic Stability Program)
sensors were utilized. The comparison to them is discussed in the next section. An examination
of the ego-motion results purely based on the images is discussed in section 4.10.2.

4.10.1 Comparison to Inertial Sensors

Modern vehicles are equipped with ESP, a system engineered for improved vehicle stability.
Primarily they are used during severe cornering and on low-friction road surfaces, by helping to
reduce over-steering and under-steering. The system intervenes by providing braking forces to
the appropriate wheels to correct the path of the vehicle. A yaw rate sensor (beside some others)
is required to implement this functionality. When three such sensors are orthogonally aligned we
not only measure the yaw rate but also the pitch and the roll rate.

A vehicle equipped with three standard ESP sensors and a camera is used for the data aqui-
sition. An image of an inner-city sequence taken by this vehicle is shown in figure 4.25 along
with the optical flow vectors selected for the ego-motion estimation. The ego-motion estimate is

(a) (b)

Figure 4.25: An image of an inner-city sequence along with the optical flow vectors selected for
the ego-motion estimation. (a) Inliers withJSED< (1.7px)2. (b) Outliers withJSED≥ (1.7px)2.

given by equation 4.17 incorporating the motion model (section 4.6). The thresholdT involved
in the Huber function which itself is involved in equation 4.17 is set toT = 1.7px. It separates
the inliers (fig. 4.25a) from the outliers (fig. 4.25b). The obvious mismatched correspondences
(long flow vectors in the sky) and the correspondences on IMO’s (flow vectors on the (moving)
Mercedes star) are correctly detected as outliers.

The estimation result for the entire sequence is shown in figure 4.26. It turns out that in the
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Figure 4.26: Comparison of the estimated ego-motion to inertial sensors. (a) Pitch rate∆α. (b)
Yaw rate∆ψ.

case of the pitch rate the data obtained by vision is much smoother compared to that obtained by
the inertial sensor. Therefore one can freely assert that the vision based ego-motion is less noisy.

4.10.2 Visual Inspection

The visual inspection method exploits the fact that imaged 3D points located far away are consid-
ered invariant against a translation of the camera. Examples for such points are clouds or objects
in the background.

The investigation is carried out as follows. The ego-motionof two consecutive frames is
estimated. Based on that ego-motion the second image is warped in such a way that the camera
rotation vanishes, i.e. the image is stabilized. This is done by applying the infinite homography:
H∞ = KRK −1. A (virtual) pure translational camera motion remains between the two frames. By
using visual inspection, it is examined whether points in the distance have identical positions in
both images. Furthermore, the obtained ego-motion is integrated over several frames. In addition
this reveals small errors in the ego-motion estimation. Only if the estimates are accurate objects
in the distance stay at fixed positions over several frames.

An image sequence recorded out of a truck is used to perform the visual inspection. Fig-
ure 4.27a shows one frame of this sequence. The outlined objects in the background (the house
and the bridge) are depicted in figure 4.27b. Figure 4.27c shows the outlined image region 30
frames later. During this time period of 1.2 seconds the camera undergoes considerable rotations.
Figure 4.27d and 4.27e show the rotation compensated images. The image positions of the house
and the bridge in the two images differ about 3 pixels, which is equal to an offset of 0.007 degree
per frame.
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(b) (c)

(d) (e)(a)
Figure 4.27: Visual inspection of the ego-motion estimation results. (a) Frame 183 of the truck
sequence. The installation height of the camera is 2.5m, the speed is 50km/h. The region marked
white is enlarged in (b). Figure (c) shows the same image region 30 frames later. The camera
undergoes considerable rotations. (d) and (e) show the rotation compensated images. The image
positions of the house and the bridge differ about 3 pixels.
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Chapter 5

Road Homography Estimation

The ego-motion gives us the relative orientation of the camera. This information is not sufficient
for a fully featured object detection. We have to know the absolute orientation, too, which is
comprised of the absolute angles and the height of the road w.r.t. the camera. The estimation of
the road homography gives us this information, except the yaw angle. The estimation relies on
the measured optical flow on the road. Only the part of the image containing the road should be
considered. In section 5.1, this part, called thedriving corridor, is computed.

Two types of error metrics are discussed in section 5.2. The recommended geometric error
metric is non-linear. Its efficient minimization is addressed in section 5.3. The achievable accu-
racy of the estimate is investigated in section 5.4. As in theego-motion case the image regions
contribute differently to the estimate. This is shown in section 5.5. The novel Kalman filtering
of the road homography is introduced in section 5.6.

5.1 Computation of the Driving Corridor

Using the ego-motion information retrieved by the estimation, the driving corridor is deployed
by the extrapolation of the ego-motion. This assumes that the ego-motion is constant over time.
Figure 5.1 shows an example of the driving corridor. The lines in the figure show where the
camera will be in 1, 2, 3, ... frames.

The marginal points of the driving corridor are now computed. At first the width of the
corridor has to be defined. Experiments have shown that in most cases the driver keeps a distance
of 0.5m to the roadside. Assuming a vehicle width of 2m the driving corridor sums up to 3m.
Inside the driving corridor we expect to see nothing else than the road.

The beginning of the driving corridor is deployed by the world points on the road which are
seen by the camera and which are lying as close as possible to the camera. These points are
found by mapping the lower image corners to the road using theinverse projection matrix. The
projection matrixPc maps a world pointxw ∈ P

3 to the image poiincludentxc in the current
frame:

xc = Pcxw (5.1)

If the world coordinate frame is chosen such that the road plane coincides with the X-Z plane,

77
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Figure 5.1: Marginal points of the driving corridor. The points of the same time instant are
joined by a line. Each line, starting at the lowest and counting upwards, predicts the projected
ego-motion one more frame to the future. The ego-motion is predicted 30 frames, which are
1.2 seconds. The width of the corridor is 3m.

the Y-coordinate of a point on the road is zero and equation 5.1 becomes:

xc = Pc







X
0
Z
W







(5.2)

The second column ofPc vanishes and we get a 3x3 invertable matrixP′
c. The point on the road

is then computed as follows:




X
Z
W



= P′
c
−1xc (5.3)

Mapping now the lower image corners (assuming VGA resolution) onto the road yields:

xw1 = P′
c
−1





0
479
1



 xw2 = P′
c
−1





639
479
1



 (5.4)

Using the larger depth of these two pointsZmax= max
(

(xw1)2
(xw1)3

,
(xw2)2
(xw2)3

)

we define two points on

the road as the beginning of the driving corridor:

xcor1
(0) =







−w/2
0

Zmax

1







xcor2
(0) =







w/2
0

Zmax

1







(5.5)
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wherew is the width of the corridor. The entire corridor is deployedby predicting the vehicle’s
motion based on the estimated ego-motion. Pitch and roll motions are changing rapidly thus they
are hard to predict. However we know they are zero on average.Setting them to zero is a good
prediction. The yaw motion changes slowly and is predictable. We just say the current yaw rate
will be the same in near future. The term yaw rate here measures the rotation of the vehicle’s
longitudinal axis within the road plane. It is different from the yaw rate∆ψ we got from the
ego-motion estimation, due to the rotation sequenceR = R(∆α,0,0) ·R(0,∆ψ,0) ·R(0,0,∆ϕ)
we used internally in the ego-motion estimation. In order toget the desired yaw rate∆ψp the
Z-axis of the camera is projected onto the road plane (= XZ-plane). This is depicted in figure 5.2.
The angle between the last projected Z-axis and the current projected Z-axis gives∆ψp:
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Zp

Zp
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Figure 5.2: Projection of the camera’s Z-axis onto the road plane (=XZ-plane). The camera
moves fromcl to cc. The Z-axes are projected onto the plane yieldingZp. The angle between the
last projected Z-axis and the current projected Z-axis is∆ψp.
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RT
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1
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(R)31
0

(R)33



 (5.6)

∆ψp = cos−1 zpl
T zpc

‖zpc‖
(5.7)

The translation of the camera is also projected onto the roadplane. This is done by setting the
second component to zero:

tp = [t](·)2=0 (5.8)

The camera motion projected onto the road plane (Rp = R(0,∆ψp,0), tp) is now used to move
the marginal pointsxcor1

(0) andxcor2
(0):

xcor1
(n) =

(
Rp tp

0 0 0 1

)−1

xcor1
(n−1) xcor2

(n) =

(
Rp tp

0 0 0 1

)−1

xcor2
(n−1) (5.9)
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These recursively formulated equations apply the projected camera motion n-times. Thus the
marginal pointsxcor1

(n) andxcor2
(n) are the predictions n-frames in the future. Finally all these

points are projected onto the current frame using the projection matrixPc. The closed polygon
joining the projected points defines the driving corridor. LetΩ denote the set of all image points
inside the driving corridor.

5.2 Error Metric

In section 5.1 the driving corridor was computed. It is assumed that there is only the road inside
this corridor. The optical flow measured inside the corridorserves as input data for the road
homography estimation. As in the case of ego-motion estimation there are two types of error
metrics which can be used for the estimation, algebraic and geometric. The algebraic error
metric constitutes a closed form solution but is more vulnerable to noise as we will see in the
next section. Furthermore it is difficult to integratea priori knowledge. The geometric error
metric considers the distances of measured image points to their true (expected) image points.

In general, image points corresponding to a plane in the world are mapped between two
images via homography. A general homography has eight DoF. Here we search for a homography
which is compatible with the estimated ego-motionR, t. This reduces the DoF to three, namely
the pitch angle, the roll angle, and the height. With the internal calibration of the cameraK the
(road) homography is composed according to [Hartley & Zisserman 03]:

Hr = K(R−ecvT)K−1 (5.10)

whereec = −Rt is the current epipole expressed in normalized coordinates. The three dimen-
sional vectorv encodes the plane normaln = v

‖v‖ and the distance (height) of the camera to the

plane:h= 1
‖v‖ . The plane normal itself is defined by the pitch angleα and the roll angleϕ of the

road w.r.t. the camera:
n = R(α,0,ϕ)(0,−1,0)T (5.11)

With the homographyHr , an image pointxl in the last frame is mapped to the corresponding
pointxc in the current frame according to:

xc = Hr xl (5.12)

In the next section the homography estimation method considering the algebraic error metric
is described. The geometric counterpart which is recommended is described in section 5.2.2.

5.2.1 Algebraic Error Metric

The algebraic error metric which is presented now stems from[Hartley & Zisserman 03]. The
aim is to solve linearly for thev vector given a set of correspondences. To this end we first
eliminate theK matrix by a normalization of the image coordinates:x′l = K−1xl andx′c = K−1xc.
Each correspondence generates a linear constraint onv as

x′c = (R−ecvT)x′l = Rx′l −ec(vTx′l) (5.13)
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However equation 5.13 cannot be used directly, sincex′c is a homogeneous point with the third
component fixed by the right-hand side. We are only able to measure inhomogeneous image
points. Homogeneous points represent the same inhomogeneous points iff they are parallel (=
cross product is zero). When taking the cross product:

x′c× [Rx′l −ec(vTx′l)] = (x′c×Rx′l)− (x′c×ec)(vTx′l) = 0 (5.14)

we can put in our inhomogeneous measurements intox′c andx′l. Forming the scalar product with
the vector(x′c×ec) gives:

x′l
Tv =

(x′c×Rx′l)
T(x′c×ec)

(x′c×ec)T(x′c×ec)
= b (5.15)

Each correspondence generates an instance of the equation above. Having several correspon-
dences one stacks all equations together yielding the linear equation system:Mv = b. The rows
of the matrixM are the single pointsx′c. v is found by the least squares solution:

v = (MTM)−1MTb (5.16)

This method works well if no outliers are present in the optical flow. However, in real life
we expect outliers. In order to be robust the method is augmented with the iteratively reweighted
least squares (IRLS) approach. It incorporates the conceptof M-estimation that we already
applied to the ego-motion estimation. The higher the residual of a correspondence, the lower its
weight. Thus the influence of "bad" correspondences is attenuated. The residual vector is given
by δ = Mv −b. We apply the Huber cost functionC(δ) again to compute the single weights:

(w)i =

√

C((δ)i)

|(δ)i|
(5.17)

The linear equation systemMv = b is extended by the diagonal weight matrix
W = diag((w)1 ,(w)2 , ...) and then solved forv:

WMv = Wb (5.18)

Defining the weights, as in equation 5.17, the least squares solution of 5.18 effectively minimizes
the sum of the Huber evaluated residuals∑i C((δ)i). The equation system 5.18 is solved multiple
times until convergence. Each time the weights are updated using the solution ofv from the last
time. The weights are initially set to 1.

5.2.2 Geometric Error Metric

The geometric error metric represent a geometric meaningful residual, namely the parallax vector
µ:

µ=




(xc)1−

(Hr xl)1
(Hr xl)3

(xc)2−
(Hr xl)2
(Hr xl)3



 (5.19)
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The v vector capturing the road normal and the camera height is found by minimization of
the sum of all parallax vectors:

v̂ = argmin
v

Nn

∑
i=1

Cp((µ(v,xl,i,xc,i))1)
2+Cp((µ(v,xl,i,xc,i))2)

2 with xl,i ∈ Ω (5.20)

with Cp being the point-symmetric rooted Huber cost function introduced in the ego-motion
chapter (eq. 4.34, p. 61). We apply Levenberg-Marquardt (LM) to perform the minimization.
The termsCp((µ(v,xl,i,xc,i))1) andCp((µ(v,xl,i,xc,i))2) serve as residuals. In section 5.3 we
will see that the assumptions made by the LM algorithm are notfulfilled exactly but nevertheless
LM performs well.

The iterative minimization allows easily the incorporation of a priori knowledge, such as
the heighth of the camera. Doing this reduces the DoF to two, pitch angleα and roll angle
ϕ. However, we do not minimize overα andϕ directly but over the first and the third compo-
nent of the normal vector, i.e.(n)1 and(n)3 respectively. The second component is enforced

such that‖n‖= 1: (n)2 =−
√

1− (n)2
1− (n)2

3. This parameterization circumvents trigonometric
functions.

5.3 Efficient Minimization

The geometric error metric (eq. 5.20) is non-linear and hence must be minimized iteratively.
When we dealt with the ego-motion estimation, we already discussed minimization schemes and
found out that the Levenberg-Marquardt (LM) method is very efficient. The LM minimization
works well only if the assumptions made by this algorithm arefulfilled. Fulfilled assumptions
legitimate to shorten the computation of the Hessian matrix. We recapitulate equation 4.32 on
page 61:

∂2χ
∂(p)k ∂(p)l

= 2∑
i

∂r i

∂(p)l

∂r i

∂(p)k
+ r i

∂2r i

∂(p)k ∂(p)l
(5.21)

LM assumes that the termr i
∂2r i

∂(p)k∂(p)l
is small compared to∂r i

∂(p)l

∂r i
∂(p)k

and thus is neglected. In
the minimum the residuals are zero-mean, and the assumptionis fulfilled. However, the task is
to find the minimum given a close starting point. The zero-mean property of the residuals does

not hold outside the minimum. It follows that the second derivatives ∂2r i
∂(p)k∂(p)l

itself have to be
small compared to the product of the first derivatives. But this is not the case for the derivatives

containing the roll angleϕ. Figure 5.3 shows examples of∂r i
∂α

∂r i
∂ϕ and ∂2r i

∂α∂ϕ . Thereby, the camera

moves rotation free along the optical axis, i.e.pe = (0,0,0,0,0)T. The optical axis is parallel to
the road and the camera height is 1m, i.e. v = (0,−1,0)T. The derivatives depend on the image
position. Only in some regions the assumption is fulfilled.

The error functionχ incorporates a set of (equally distributed) correspondences, i.e. the

actual question is∑i
∂r i
∂α

∂r i
∂ϕ ≫ ∑i

∂2r i
∂α∂ϕ ? A good approximation of the sum is to consider the
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Figure 5.3: The first and the second derivatives of the residual r = (µ)1 +(µ)2 w.r.t. the pitch
angleα and roll angleϕ. The derivatives depend on the image position. (a)∂r

∂α
∂r
∂ϕ . (b) ∂2r

∂α∂ϕ .

integral over the entire lower image half:

Z 480

240

Z 640

0

∂r i

∂α
∂r i

∂ϕ

∣
∣
∣
∣ pe = (0,0,0,0,0)T

v = (0,−1,0)T

dudv = 0 (5.22)

Z 480

240

Z 640

0

∂2r i

∂α∂ϕ

∣
∣
∣
∣ pe = (0,0,0,0,0)T

v = (0,−1,0)T

dudv = 1.7 ·107 (5.23)

Oops! The assumption is not fulfilled. A similar result is obtained when∂r i
∂ϕ

∂r i
∂h is considered. By

the way, all other derivatives behave inconspicuously.
Does this violation spoil the minimization speed? Not really. The LM method is still very

efficient. On average, 4.2 calls of the function plus derivatives are enough to find the minimum.
The entire minimization is performed in 0.7 ms on a Pentium IV2.4 GHz when 300 correspon-
dences are utilized.

5.4 Accuracy of Road Homography Estimation

In this section, we investigate the accuracy of the road homography estimation based on synthetic
data. We compare the algebraic to the geometric error metric, and to the geometric metric with
given camera height. It is not necessary to estimate the height, since it can be determined by a
calibration.

The synthetic data consists of 100 world points lying on the road. They are equally distributed
in the last image frame. The points are mapped into the current frame using the ground-truth road
homography. There the points get an additive noise according toN(0,σ). Some of the points are
not mapped by the homography. Instead, their position in thecurrent frame is the position in the
last frame plus an additive noise according toN(0,30px). These points represent outliers.
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The road homography is estimated 100 times while varying theworld points and the ground-
truth road homography each time. Concretely, the pitch and the roll angle of the road are uni-
formly distributed in the range−20..20◦. The height of the camera is within 1..2m. The ego-
motion is constant: the camera moves 1m along the optical axis and does not rotate. In all
simulations the focal length of the camera isfx = fy = 1000px.

The mean of the estimation error is nearly zero in all simulations. It seems that both error
metrics produce unbiased estimates. More interesting thanthe mean is the standard deviation of
the estimation error, shown in figure 5.4. The geometric metric produces more accurate results
than the algebraic metric. Especially the accuracy of the pitch angle is better. Using the camera
height asa priori knowledge (figure 5.5) increases the pitch angle’s accuracyconsiderably (factor
of 3). This is not surprising since certain combinations of camera height and pitch angle produce
a similar flow field for the road, i.e. these two entities are correlated. An example is depicted in
figure 5.6.
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Figure 5.4: Accuracy of the road homography estimation in dependence of the noise level. (a)
algebraic metric (equation 5.18). (b) geometric metric (equation 5.20).
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Figure 5.5: Accuracy of the road homography estimation in dependence of the noise level. The
geometric metric is minimized using the camera height asa priori knowledge.

Beside the noise influence we investigate the robustness of the road homography estimation.
Figure 5.7 shows how the accuracy evolves when the outlier fraction increases. Up to 60% out-
liers the estimate is influenced hardly. Higher outlier fractions degrade the estimate drastically.
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(a) (b)

Figure 5.6: Different combinations of camera heighth and pitch angleα produce a similar flow
field for the road. (a)h = 2m,α = 0◦. (b) h = 1.5m,α = −1.7◦

In this simulation the noise level is set toσ = 0.55px and the geometric metric is used. The
algebraic metric behaves similar to the geometric one.
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Figure 5.7: Accuracy of the road homography estimation depending on the outlier fraction. The
geometric metric is minimized. The estimation is robust up to 60% outliers.

We have seen that the road homography estimation is much moreaccurate if the camera
height is not estimated but given. Thereby we assumed the height is error free, which does not
hold in practice. Therefore, we ask: To which extent does an uncertain height spoil the estimate?
When is it better to forbear from the given height and estimate it, instead? To answer these
questions we carry out another simulation. This time the noise in the height is varied. The noise
in the optical flow is constant withσ = 0.55px. There are no outliers. Figure 5.8 shows the
resulting accuracy. For an uncertainty (standard deviation) of 0.015m the pitch angle’s standard
deviation is 0.06◦. This value is also obtained if the height is estimated (compare to fig. 5.4b),
i.e. up to an uncertainty of 0.015m it makes sense to trust the given height.

Until now, we have discussed the effect of an uncertain camera height. What is if the driven
distanced between the frames (retrieved by odometry) is uncertain? The answer is: The effect is
nearly the same. To see this the homography matrix is composed using vectors of length one:

Hr = K(R+
d
h

Rt l1nT)K−1 (5.24)
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The camera translationt is split intod = ‖t‖ andt l1 = t
d . The homography depends only on the

relationd
h. This means that small uncertainties inh have the same effect as small uncertainties in

d. Also we can estimate the relationd
h rather than the heighth. In other words, if the heighth is

given, for example via offline calibration, we can estimate the driven distanced which makes us
independent from the odometry.
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Figure 5.8: Accuracy of the road homography estimation in case of an uncertain camera height.

5.5 Sensitivity of the Road Homography Parameters

The estimation of the road homography is performed by minimization of the geometric error
metric (eq. 5.20). The accuracy of the estimated parametersdepends on the curvature (2nd partial
derivatives) of the error metric in the minimum̂v. The higher the curvature, the more sensitive
the parameter. In the following we investigate the sensitivities of the parameters pitch angleα,
roll angleϕ, and camera heighth. We prefer these parameters tov, due to their better physical
representation. They are directly related tov and thus do not effect the estimation result. Their
sensitivities are given by:

sα =
∂2
[
(µ)2

1+(µ)2
2

]

∂α2

∣
∣
∣
∣
∣
v=v̂

(5.25)

sϕ =
∂2
[
(µ)2

1+(µ)2
2

]

∂ϕ2

∣
∣
∣
∣
∣
v=v̂

(5.26)

sh =
∂2
[
(µ)2

1+(µ)2
2

]

∂h2

∣
∣
∣
∣
∣
v=v̂

(5.27)

As for the ego-motion case, the parameters have different sensitivities. Furthermore, the sen-
sitivity depend on the image position. Figure 5.9 shows thisfor the standard ego-motion case
(translation along the optical axis, no rotation) and standard road homography case (α = 0◦,
ϕ = 0◦, andh = 1m). All three parameters have their maximum sensitivity at the lower left and
lower right image corner. In theory, taking correspondences out of these regions lead to the most
accurate estimate. However, in these regions the motion blur also reaches its maximum value
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causing more noise in the correspondences. In practice we choose an equally distributed subset
from the available correspondences.
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Figure 5.9: Sensitivities of the road homography parameters depending on the image position.
Dark regions are regions with low sensitivity. White regions have the maximum sensitivity for
that parameter. (a) pitch angle.sα,max = 9.59∗105 (b) roll angle.sϕ,max = 9.82∗104 (c) height.
sh,max = 5.52∗104

5.6 Road Homography Filtering

The estimation of the road homography relies on the availability of a well textured road. How-
ever, sometimes the road is low-textured or even homogeneously textured. In that case the ho-
mography estimation performs poorly and measurements of the absolute pitch and roll angles
fail. Only the ego-motion estimate is reliable, i.e. we are only able to estimate rotations from
frame to frame. Under the assumption that the road has a constant vertical slope, the rotations
from frame to frame are identical to the temporal derivatives of the absolute angles. Figure 5.10
illustrates this for the pitch angleα. In times whereα is estimated badly, it can be updated
through an integration of the pitch rates∆α. In this section, we develop a Kalman filter based
approach, which uses the ego-motion to stabilise the homography estimation in this way. It has
been published in [Klappsteinet al. 07a].

α 1 α 2 α 3 α 4

c5c4c3c2c1c0

∆α 3∆α 2∆α1∆α0

Figure 5.10: The camera moves fromc0 to c4 while pitching. The absolute pitch angleαi of
the road w.r.t. the camera is the sum of the pitch rates∆αi . This assumes a road with constant
vertical slope and known initial pitch angleα0: αi = α0 +∑i

0 ∆αi

A block diagram of the approach is shown in figure 5.11. At firstthe ego-motion is estimated
utilizing the current pitch angleα as the vertical translational directionθv. This feedback we had
already built in in section 4.6.3, where we had discussed themotion model of the vehicle. There
the estimated pitch rates were only integrated and fed back,which led to unstable behavior. Now,
with the additional measurement of the absolute pitch angle, the behavior becomes stable as the
experimental results will show.
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Figure 5.11: Block diagram of the homography filtering approach. At first the ego-motion is
estimated utilizing the current pitch angleα as the vertical translational directionθv. The result
is used to estimate the normal vector of the road. In the last step both results are combined in a
Kalman filter.

In the second step, the result of the ego-motion estimation is used to estimate the road ho-
mography. Following the outcome of the accuracy investigation, section 5.4, we forbear from
the estimation of the camera height and the driven distance.Instead, we assume that the camera
height is given and that an accurate odometer is in use. This increases the estimation accuracy of
the remaining parameters, the absolute pitch and the absolute roll angle. These two parameters
define the normal vector of the road. In the last step the ego-motion estimate and the road normal
estimate are combined in a Kalman filter.

The quality of the estimated homography varies with the "texturedness" of the road. A low-
textured road makes it hard to establish image correspondences. In such a case, we cannot trust
the estimate, so we put our confidence into the ego-motion estimate. To this end the Kalman filter
requires a statement about the (un)certainties of the estimated ego-motion and homography. This
statement is developed in the following sections.

5.6.1 Uncertainty of an Estimate

In general, an estimate results from uncertain (inaccurate) input data. For example, the estimated
road homography results from uncertain image correspondences. Commonly, the uncertainty is
expressed with the covariance matrix. If the relation between the estimate and the input data is
explicit, a first order approximation of the uncertainty of the estimate is computed by the well-
known covariance propagation: Letp̂ be the estimate,x the input data, andf an explicit function
such that̂p = f(x). The covariance matrixCov[p̂] of the estimate is then:

Cov[p̂] = J ·Cov[x] ·JT (5.28)

whereJ = ∂f
∂x

∣
∣
∣
x̄

is the Jacobian matrix evaluated at the meanx̄ of x. In practice one evaluatesJ

at the concrete measured value ofx, assuming that the value is sufficiently close to the mean.
However, if the relation is implicit, i.e.f(x, p̂) = 0, things become more complicated. This

is the case when̂p is obtained as the minimum of some error functionχ, since the gradient
f = ∂χ

∂p has to be zero. Faugeras and Luong [Faugeras & Luong 01] applied the implicit functions

theorem to derive the covariance propagation for this case.The theorem says: if the Jacobian∂f
∂p

is invertable at̂p the implicit function can be locally transformed into an explicit one fexp, and its
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Jacobian is given by:
∂fexp

∂x
= −

(
∂f
∂p

)−1

·
∂f
∂x

(5.29)

To get the explicit Jacobian of the implicit error functionχ its gradient is put into equation 5.29
yielding:

∂fexp

∂x
= −

(
∂2χ
∂p2

)−1

·
∂χ

∂p∂x
(5.30)

This Jacobian evaluated atp̂ can be used asJ in the covariance propagation, equation 5.28.
Thus we have a first order approximation of the estimate’s covariance matrix, even if the relation
between the estimate and the input data is implicit.

Faugeras and Luong [Faugeras & Luong 01] adapted the covariance propagation for the case
thatχ is a least-squares error function:χ = ∑N

i r(p,xi)
2. Under the following assumptions:

1. The termsr i
∂2r i
∂p2 are negligible with respect to the terms

(
∂r i
∂p

)T ∂r i
∂p . The same assumption

is made by the Levenberg-Marquardt minimization.

2. Thexi ’s are independent.

3. The residualsr i are independent and identically distributed.

4. The mean of ther i ’s at the minimum is zero.

the covariance propagation can be simplified:

Cov[p̂] =
2χmin

N−dim(p)
H−T (5.31)

with χmin = ∑N
i=1 r i andH = 2∑N

i=1

(
∂r i
∂p

)T ∂r i
∂p

∣
∣
∣
∣
p=p̂

the approximate Hessian matrix in the mini-

mump̂.

5.6.2 Uncertainty of the Ego-Motion Estimate

We now use the general formulation, discussed in the last section, to compute the uncertainty of
the ego-motion. To this end we recapitulate the error metricwhich is minimized:

p̂e = argmin
pe

Ne

∑
i=1

Cp(JRSED,i)
︸ ︷︷ ︸

2 (5.32)
r i

The vectorpe = (∆α,∆ψ,∆ϕ)T contains the ego-motion parameters. The assumptions made
in conjunction with equation 5.31 are (nearly) fulfilled. Insection 4.7, we had shown that the
second derivatives ofr i with respect tope are negligible (1st assumption). Of course the image
correspondences (=xi ’s) are independent (2nd assumption) as well as the residuals r i ’s, since
every individual correspondence is made from its own image region.
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The residuals depend on the image correspondences, which themselves depend on the tex-
ture’s "cornerness" in the image. The lower the cornerness the more inaccurate the correspon-
dences. Thus, the correspondences as well as the residuals are not identically distributed (3rd
assumption). However, the optical flow algorithm used in this thesis excludes image regions of
low cornerness, so the correspondences have a comparable accuracy. Furthermore, we model
their covariance matrices as a multiple of the identity matrix.

Next, we show that the residualsr i ’s are zero-mean at the minimum (4th assumption). In fact,
we show that every individual residual is zero-mean, ratherthan the set of all residuals. To this
end, we consider the true ego-motion and the noise in the correspondences. It is assumed that
the minimum coincides with the true ego-motion. The noise inthe correspondences is modeled
as follows. The point̄xl in the last frame is measured error-free. Its correspondingpoint xc in
the current frame is measured with an errorn = ((n)1 ,(n)2 ,0)T : xc = x̄c + n wherex̄c is the
(homogenized) true point.n is modeled as a zero-mean normal distribution:n ∼ N(0,Cov[n])

with the propability distribution function pdf(n) = 1
(2π)3/2|Cov[n]|1/2e−

1
2nTCov[n]−1n.

Formally, the zero-mean property of the residualr = r(F, x̄l,xc) = Cp(JRSED(F, x̄l,xc)) is
verified by showing that the following equation holds:

ZZ ∞

−∞
r ·pdf(n)dn = 0 ∀ F, x̄l ↔ x̄c (5.33)

The double integral means that the first and the second component ofn is integrated. Instead of
solving this unaesthetic integral1, we will show geometrically that the residual is zero-mean.The
rooted symmetric epipolar distanceJRSEDconsists of two parts: the distance ofx̄l to its epipolar
line l l = F · xc measured in the last frame, and the distance ofxc to its epipolar linēlc = F · x̄l
measured in the current frame. The noise acts differently onthese distances. In the current frame
it shifts xc around the true point, whereas in the last frame it varies theepipolar linel l . This
results in different statistical behaviors of the two epipolar distances.

Figure 5.12 shows the current frame with its epipolar distance. The uncertain pointxc
is characterized by its covariance ellipse, representing positions of xc of constant propabil-
ity. It can be seen that the epipolar distancedc is point-symmetric regarding the noisen, i.e.:
dc(n) = −dc(−n). Please note thatdc is positive or negative depending on whetherxc lies on
the "left" or on the "right" side of̄lc. Although, the terms "left" and "right" are wacky unless
a mathematical meaning is given to them, it is hoped that the reader understand what is meant.
Any point-symmetric function maintains the zero-mean property if the argument of the function
is symmetrically distributed. Withn ∼ N(0,Cov[n]), this is the case anddc is zero-mean.

What about the epipolar distancedl in the last frame? Is it also zero-mean? Figure 5.13
shows how the noise acts on the epipolar linel l . For better visualization a rotation-free ego-
motion is chosen, producing points̄xc lying on l̄ l . This comes without loss of generality. Again
the uncertainty ofxc is represented by its covariance ellipse.xc together with the epipoleec form
the epipolar linel l . A point x′c is defined as the result from reflectingxc over the true epipolar
line l̄ l . In the same way the reflected epipolar linel′l is defined. The epipolar distancesdl andd′

l
are identical except the sign:dl = −d′

l . If the covariance ellipse is a circle, as in figure 5.13a,

1A closed-form solution does not exist.
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Figure 5.12: The epipolar distancedc in the current frame is point-symmetric regarding the noise
n in the measured pointxc = x̄c + n. dc is the distance ofxc to its epipolar linēlc which goes
through the epipoleec and the true point̄xc. The pointx′c results from reflectingxc through
x̄c. The "reflected" distanced′

c anddc differ only in the sign, i.e.d′
c = −dc. Furthermore,x′c

andxc have identical propabilities, regardless whether the covariance ellipse is (a) circular or (b)
elliptic.

the reflected pointx′c has the same propability as the original pointxc. Thus, the propability of
dl being positive is the same as being negative, in other wordsdl is zero-mean. By the way, the
functiondl is not point-symmetric:dl (n) 6= −dl (−n).

Where the covariance ellipse is actually elliptic, as in figure 5.13b, the zero-mean property
of dl is lost. Only in the special case where one of the ellipse’s half axes is parallel tōl l , dl is still
zero-mean. This is because the propability ofdl is not symmetric anymore.

We have just shown that the epipolar distancedc in the current frame is zero-mean (regardless
of the shape of the covariance ellipse), and that the epipolar distancedl in the last frame is zero-
mean ifCov[n] = diag(σ2

(n)1
,σ2

(n)2
,0). From experiments with simulated traffic scenes, we know

that the correspondences produced by the optical flow algorithm approximately obey a zero-
mean normal distribution withCov[n] = diag(0.552,0.552,0), i.e. the condition is fulfilled. The
rooted symmetric epipolar distanceJRSEDthus is zero-mean. The residualr = Cp(JRSED) is also
zero-mean, sinceCp is the point-symmetric rooted Huber cost function.

All assumptions made in conjunction with equation 5.31 are fulfilled. Thus, equation 5.31 is
used to compute the covariance matrix of the estimated ego-motion:

Cov[p̂e] =
2χmin

Ne−3
H−T (5.34)
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Figure 5.13: The epipolar distancedl in the last frame is symmetric regarding the true epipolar
line l̄ l . This line is defined by the epipoleel and the true point̄xc. For better visualization̄l l goes
throughx̄c (rotation-free ego-motion). The noisen in the measured pointxc = x̄c + n changes
l̄ l to l l producing the epipolar distancedl . The pointx′c resulting from the reflection over̄l l
produces the epipolar distanced′

l . Both distancesd′
l anddl are equal except for the sign. In (a)

the covariance ellipse is circular inducing identical propabilities forxc andx′c. This does not hold
if the ellipse is elliptic (b).

5.6.3 Uncertainty of the Road Homography Estimate

In section 5.4, we recommended to employ the geometric errormetric together with the known
height of the camera when the road homography needs to be estimated. This approach led to the
following estimate:

p̂n = argmin
pn

Nn

∑
i=1

Cp((µi)1)
2+Cp((µi)2)

2 (5.35)

with pn = (α,ϕ)T the parameter vector capturing the pitch angleα and the roll angleϕ. Here the
residuals arer i = Cp((µi)1)+Cp((µi)2) with µ the parallax vector.

In order to apply equation 5.31, we have to show that the assumptions made in conjunction

with this equation are fulfilled. The termsr i
∂2r i

∂α∂ϕ are negligible w.r.t. the terms∂r i
∂α

∂r i
∂ϕ (1st as-

sumption) since ther i ’s are zero-mean in the minimum (see 4th assumption for the reason). The
correspondences (=xi ’s) produced by the optical flow algorithm are independent (2nd assump-
tion). The parallax vectorµ is equal to the noisen: µ= ((n)1 ,(n)2)

T . Due ton ∼ N(0,Cov[n]),
andCp point-symmetric ther i ’s are identically distributed (3rd assumption) and zero-mean (4th
assumption).

The assumptions are fulfilled thus equation 5.31 is applicable:

Cov[p̂n] =
2χmin

2Nn−2
H−T (5.36)
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5.6.4 Kalman Filtering

The road homography estimation gives us the normal vector ofthe road w.r.t. the camera. How-
ever, this vector may be inaccurate due to a low-textured road.

We take the ego-motion into account to improve the estimatedroad normal. Assuming a road
of constant vertical slope, as shown in figure 5.10, the ego-motion expressed with the rotation
matrixR = R(∆α,∆ψ,∆ϕ) represents the temporal derivative of the road normal, i.e.the normal
vector at time instantk is the previous one atk−1 rotated byRk−1:

nk = Rk−1 ·nk−1 (5.37)

We now have two measurements of the road normal, first the estimaten̂ (built from p̂n), and
second, the update rule (equation 5.37). Before we will combine them within a Kalman filter,
we pay attention to the update rule. Due to the uncertainty inthe estimated rotation̂R (built
from p̂e), the normal will drift away, if only this rule is applied. The update rule in conjunction
with the estimated road normaln̂ prevents a drift. In situations wheren̂ is poorly estimated, we
need an alternative measurement: the average normal vectorñ. It is learned online, employing a
recursive low-pass:̃nk = λñk−1 +(1−λ)nk−1 with λ ∈ (0,1).

The thoughts above lead to the following Kalman filter design, combining the estimates
R̂, n̂ together with their corresponding covariance matricesCov[p̂e] andCov[p̂n] computed with
the equations 5.34 and 5.36 respectively. The notation regarding the Kalman filter is taken
from [Welch & Bishop 01].

• The process model reads:xk = Ak−1 ·xk−1 +wk−1 where the state vectorx represents the
filtered normal vector. The state transition matrix is equalto the rotation matrix provided
by the ego-motion estimation:A = R̂.

• The process noisew ∼ N(0,Q) reflects the uncertainty of the rotation and is characterized
by the process covariance matrixQ = JeCov[p̂e]Je

T with Je = ∂x
∂pe

the Jacobian matrix.

• The measurement model is

zk =

(
ñk

n̂k

)

=

(
xk

xk

)

+vk (5.38)

We have two "measurements" for the statexk. There is the average normal vectorñk and
the estimated road normaln̂k. The uncertainties of̃nk andn̂k decide which measurement
can be more trusted.

• The measurement noisev ∼ N(0,R) characterized with the measurement covariance ma-
trix2 R consists of the variance ofñk:

σ2(ñ)k = λσ2(ñ)k−1+(1−λ)(nk− ñk)
2 (5.39)

2Sorry that the letter R is assigned to two distinctive entities.



94 CHAPTER 5. ROAD HOMOGRAPHY ESTIMATION

and of the covariance of̂nk:

Cov[n̂k] =
∂n
∂pn

Cov[p̂n]

(
∂n
∂pn

)T

(5.40)

The measurement covariance matrix is:

R =

[
diag

(
σ2(ñ)k

)
0

0 Cov[n̂k]

]

(5.41)

When the Kalman filter performs the update step the state vector x will change its length. How-
ever,x represents a normal vector which should have a length of one.For this reasonx is nor-
malized to‖x‖ = 1 after each update. The complete approach is summarized in algorithm 5.1.

5.6.5 Experimental Results

In this section, the Kalman filtering is tested on real trafficscenes. Three experiments are carried
out.

Experiment 1

In order to visually compare the estimated road plane with the actual one, a straight road with
a constant vertical slope is required. The vanishing point of the (parallel) road boundaries gives
us one point on the horizon. The horizon of the estimated roadplane should pass through that
point. Figure 5.14 shows such a road. The image correspondences used for ego-motion and road
normal estimation are shown in figure 5.14a. There are many correspondences on the road -
thanks to a well textured road - allowing a good estimation ofthe road plane (yellow horizon line
in 5.14b).

667 frames later the vehicle drives under a bridge causing a reduced illumination and there-
fore a low-textured road. Only a few correspondences are found on the road (figure 5.15a). This
leads to a poor estimate of the road plane which can be seen in figure 5.15b. This situation cor-
responds to a high variance of the estimate depicted in figure5.16. Around the frame 667 the
variance is higher than normal indicating a poor estimate. In such a situation the Kalman filter
updates the road normal incorporating mainly the ego-motion estimate. As a consequence the
filtered road plane (red horizon line in fig.5.15b) compares well to the actual one. Beside the
estimated and the filtered horizon, the integrated horizon is shown in figure 5.15b. It is the result
of the integration of the estimated ego-motion from frame 0 to frame 667 using equation 5.37
together with an appropriate initial road normal. One can clearly see that the integral has drifted
away.

The Kalman filtering effectively prevents a drift in the roadnormal and is able to cope with
temporary lacks of texture on the road.
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Algorithm 5.1 Road Homography Estimation and Filtering
Task: Estimate and filter the road homographygiven the ego-motion estimatêpe and cor-
respondencesxl ↔ xc

1. Compute the driving corridor. Compute recursively the marginal pointsxcor1
(n) and

xcor2
(n) for n = 0..30 (see section 5.1 for details). Apply the projection matrix Pc to get the

images of these points. The closed polygon joining the points defines the driving corridor.Ω
is the set of all image points inside the driving corridor.

2. Parameterize the road homography.The road homographyHr = K(R−ec
nT

h )K−1 com-
patible with the ego-motion is parameterized by the normal vectorn = R(α,0,ϕ)(0,−1,0)T

depending on the parameter vectorpn = (α,ϕ)T .

3. Estimate the road homography. Use the parallax vector:

µ=




(xc)1−

(Hr xl)1
(Hr xl)3

(xc)2−
(Hr xl)2
(Hr xl)3





to find the best estimatêpn:

p̂n = argmin
pn

Nn

∑
i=1

Cp((µ(pn,xl,i,xc,i))1)
2+Cp((µ(pn,xl,i,xc,i))2)

2 with xl ∈ Ω

with Cp the point-symmetric rooted Huber cost function. The functional is minimized by LM.

4. Compute the covariance matricesof the ego-motion estimateCov[p̂e] and the road normal
estimateCov[p̂n] according to

2χmin

N−3
H−T

See section 5.6.1 for details.

5. Compute the average road normal and its variance.
average road normal:ñk = λñk−1 +(1−λ)nk−1

variance: σ2(ñ)k = λσ2(ñ)k−1+(1−λ)(nk− ñk)
2

with λ ∈ (0,1) andk the current time step.

6. Filter the road homography.
Feed the Kalman filter with the estimates:p̂e, p̂n, ñ and their uncertainties:Cov[p̂e], Cov[p̂n],
σ2(ñ).
Update the Kalman filter. Then normalize the state vectorx to ‖x‖ = 1. It represents the
filtered road normal.
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(a) (b)

Figure 5.14: Frame 20 of an image sequence containing a straight road with a constant vertical
slope. The road is well textured. (a) The image correspondences outside the driving corridor
(yellow area) are used to estimate the ego-motion. The correspondences inside the driving corri-
dor are used to estimate the road normal. (b) The road normal represented by its yellow horizon
line lies close to the vanishing point (black dot), i.e. it iswell estimated. Also the integrated
(green) and the filtered (red) horizons lie close to it.

Experiment 2

In the second experiment, we generate a series of poor estimates of the road plane in order to
investigate the filtering power. To this end, we take the last100 frames of the straight road
sequence and vary the number of correspondencesNn used for the road normal estimation. In
each frameNn correspondences are selected randomly from the set of measured correspondences.
The lowerNn, the worse the estimate will be. We compare the estimated andfiltered road normal
to the ground truth. The cloud in the middle of the image serves as ground truth (fig. 5.17a).
This object is immune to camera translations, since it is faraway. Yaw and roll rotations shift
the cloud horizontally and pitch rotations shift it vertically. Since the cloud’s structure is mainly
horizontal, horizontal shifts cannot be tracked very well.Thus, we concentrate only on vertical
(pitch) motions. The vertical shift of the cloud is tracked using [Hager & Belhumeur 98].

Figure 5.17b shows the resulting standard deviations for error of the estimated and filtered
pitch angle. The stabilising effect of the Kalman filter is evident. The error of the estimated pitch
angle increases rapidly forNn < 10 correspondences, whereas the error of the filtered pitch angle
increases moderately.

Experiment 3

The proposed approach also works well if the ego-vehicle drives a curve. In figure 5.18 the
vehicle just turned left at an intersection. In this situation, the lane markings are not straight
which makes it unfeasible to extract the vanishing point. Here another special point is used as
ground-truth information: the camera is mounted near the rearview mirror in the ego-vehicle.
The rearview mirror of the car seen by the camera (fig. 5.18) has the same height above the road
as the "ego-mirror". Any world point having the same height as the camera lies on the roads
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(a) (b)

Figure 5.15: Frame 667 of the straight road sequence. The vehicle drives under a bridge causing a
reduced illumination and therefore a low-textured road. (a) There are only some correspondences
inside the driving corridor resulting in a poor estimate of the road normal (yellow horizon line
in figure (b)), whereas the filtered road normal (red line) is still near the vanishing point (black
dot). The integrated road normal (green line) has drifted away.
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Figure 5.16: Standard deviation
√

(Cov[p̂n])11 of the estimated pitch angleα computed with
equation 5.36. Around frame 667 the road is low-textured causing higher values.

horizon line regardless of its depth. Furthermore, it does not matter whether the point is moving
or not. This means that the horizon line should pass through the rearview mirror of the car. The
filtered as well as the estimated horizon line lie very close to it. To see that the filtered horizon
is correct whereas the estimated is not, we have to look at theC pillars. The filtered horizon line
intersects both (c-säulen) at a same height, which does not hold for the estimated horizon line.

The entire approach - consisting of the ego-motion estimation, the road normal estimation,
and the Kalman filtering - is very fast, since the computational expensive iterative minimizations
are limited to a 3+2 parameter space. When 300 correspondences are used, the algorithm runs in
about 2ms (Pentium IV 2.4GHz), excluding the computation ofthe correspondences.
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Figure 5.17: (a) The cloud in the background is tracked over 100 frames and serves as ground
truth for the pitch angle. (b) Standard deviation for error of the estimated and filtered pitch angle
depending on the number of correspondences used for the roadnormal estimation.
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Figure 5.18: Frame 201 of the intersection sequence. The ego-vehicle turns left inducing a
curved driving corridor (a). The correspondences inside the driving corridor are used for the
road normal estimation. They are limited to 10 simulating a low-textured road. Figure (b) shows
the resulting poor estimate of the road normal (yellow horizon line). The filtered road normal
(red line) is in sane whereas the integrated road normal (green line) has drifted away.



Chapter 6

Detection of Independently Moving Objects

In the last chapters we had dealt with the estimation of the ego-motion and road homography.
Why this effort? Well, we are now able to reconstruct the static part of the 3D scene, and we can
put reconstructed 3D points into relation to the road. The reconstruction is the access point to
the detection of moving objects: For 3D points which are actually static the reconstruction will
be fine, but for 3D points which are moving the reconstructionwill fail (in general). What does
this mean?

A reconstructed 3D point has to fulfill certain constraints in order to be a valid static 3D
point. If it violates any of them the 3D point is not static, hence it must move. These constraints
play the essential role in the detection of moving objects.

In the following section the constraints for static 3D points are discussed. These constraints
are well known to the computer vision community, but there isno algorithm which exploits them
all. An algorithm doing so is introduced in section 6.3. It evaluates the constraints quantitatively
in a unified manner. Experimental results in section 6.4 showits effectiveness. The points
detected as moving must be grouped together to form broad objects. This clustering issue is
pointed out in section 6.5. Although a lot of constraints forstatic 3D points exist there are some
kinds of motion which (nearly) fulfill all constraints and thus are not detectable. These detection
limits are investigated in section 6.6.

6.1 Constraints for Static 3D Points

In traffic scenes a static 3D point fulfills four constraints.The first three constraints apply for
correspondences over two views. The fourth constraint is applicable if correspondences over
three views are available. Each individual constraint raises the quality of detection.

• Epipolar Constraint
The epipolar constraint expresses that the viewing rays of astatic 3D point (the lines join-
ing the projection centers and the 3D point) must meet. A moving 3D point in general
induces skew viewing rays violating the constraint. Figure6.1 illustrates it. This con-
straint we had already used when we estimated the ego-motion. The knowledge about the
fundamental matrix is sufficient to evaluate this constraint.

99
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Figure 6.1: Epipolar constraint. The image of the second view is shown. The camera moves
along its optical axis. An object moves lateral w.r.t. the camera inducing a horizontal optical
flow shown by the correspondencesx1 ↔ x2 andx′1 ↔ x′2. The subscripts 1 and 2 denote entities
in the first and the second view, respectively.x2 does not lie on the epipolar linel2 inducing the
epipolar errorde. x′1 moves along its epipolar linel′2 and thus fulfills the epipolar constraint.e2
is the epipole.

• Positive Depth Constraint
The fact that all points seen by the camera must lie in front ofit, is known as the positive
depth constraint. It is also called cheirality constraint.If viewing rays intersect behind
the camera, as in figure 6.2a, the actual 3D point must be moving. This constraint is
independent of the scene structure. In order to evaluate it,the translation direction (forward
or backward) of the camera has to be known, in addition to the Essential matrix.

• Positive Height Constraint
All 3D points must lie above the road. If viewing rays intersect underneath the road, as in
figure 6.2b, the actual 3D point must be moving. This constraint is not as powerful as the
positive depth constraint since it applies only for image points under the horizon. Further-
more the geometry of the road has to be known. Commonly the road is approximated as
a plane which is accurate enough in most cases. The driven distance between consecutive
frames is also required, which is either retrieved with an odometer, or is extracted from the
images directly using the measured optical flow of the road.

• Trifocal Constraint
A triangulated 3D point utilizing the first two views, must triangulate to the same 3D
point when the third view comes into consideration. This constraint is also called trilinear
constraint. In figure 6.3 it is violated.

In traffic scenes no more constraints for static 3D points exist. In other applications there may
be further constraints. In the field of robot indoor navigation, for example, the valid height is
restricted due to the ceil. With the known height of the roomsa "maximum height constraint" is
applicable.
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Figure 6.2: Side view: Positive depth (a) and positive height (b) constraint. The camera is moving
from c1 to c2. A 3D point on the road is moving fromZ1 to Z2. In (a) the travelled distance of the
point is greater than the distance of the camera (overtakingobject). The triangulated 3D point
Zt lies behind the camera, violating the positive depth constraint. In (b) the travelled distance of
the point is smaller (preceding object). The triangulated 3D point Yt lies underneath the road,
violating the positive height constraint.
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Figure 6.3: Trifocal Constraint. The camera observes a lateral moving 3D point (X1 to X3)
while moving itself fromc1 to c3. The triangulated point of the first two views isXt12. The
triangulation of the last two views yieldsXt23 which does not coincide withXt12 violating the
trifocal constraint.

6.2 Motion Detection Schemes in the Literature

The existing motion detection schemes exploit a subset of the constraints we have discussed
in section 6.1 either directly or indirectly. In the following paragraphs three error metrics are
described measuring the deviation from the constraints forstatic 3D points:

Cone criterion In [Wagneret al. 99] an error function for the ego-motion estimation utilizing
the epipolar and the positive depth constraint is presented. Based on the "half-perspective" view,
a conic error model is developed. An error cone is associatedto a viewing ray. The apex of this
cone coincides with the projection center of the camera, while the central vector is the viewing
ray. The aperture angleψ of the cone reflects the errorε of two corresponding viewing rays.
ψ is the minimal angle where the intersection of corresponding error cones is not empty. If
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the the viewing rays intersect each other in front of both cameras,ψ is zero. However, if they
intersect behind one camera,ψ is greater zero. In comparison, the epipolar geometry as a "full-
perspective" approach would yield an error equal to zero.

Angle criterion The angle criterion uses the direction of the optical flow vectors. When mov-
ing purely translational towards the scene, all flow vectorsare parallel to the corresponding
epipolar lines and point away from the epipole (focus of expansion). This holds true for the
entire static scene. We call this theexpected flowdirection. If this expectation is violated due
to an independently moving object, the measured flow will deviate from the expected flow. Any
camera rotations are removed in advance by applying the infinite homography.

(a) (b)

Figure 6.4: Angle criterion. (a) The image point of a static 3D point moves fromx1 to x2 due
to the camera motion towards the scene. The (expected) flow isparallel to the epipolar line and
points away from the epipolee1. (b) The image point of a moving 3D point moves fromx1 to
x2. The measured flow has an angleα relative to the expected flow. In comparison, the epipolar
errorε1 is also depicted.

Figure 6.4(a) shows an example of the expected flow while figure 6.4(b) exemplifies a mea-
sured flow and the relation between the epipolar error and theangle error. A flow vector is
classified as moving if the angle is greater than a certain threshold. This criterion requires a flow
vector of sufficient length, since the angle is unstable for small flow vectors. In the event of zero
flow an angle does not exist.

The angle criterion indirectly exploit the epipolar and thepositive depth constraint. The in-
corporation of this criterion into a statistical frameworkis cumbersome due to its unfavourable
properties: The angle does not fully correlate with the probability that a correspondence is ac-
tually moving. For example, if the correspondence obeys theepipolar constraint but not the
positive depth constraint, the angle is always 180◦ regardless of the flow length. The work
of [Woelk & Koch 04] employing the angle criterion in a Bayesian framework pays attention to
that issue.

The angle criterion is also employed in [Pauwels & Hulle 04],and [Clausset al. 05].

Planar motion parallax The parallax vectorµ, defined as the deviation of the measured optical
flow from the expected flow on the road plane (see equation 5.19), can be used to detect moving
points. For correspondences violating the positive heightconstraint, the parallax vector points
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towards the epipole since the measured flow is shorter than expected. In [Giachettiet al. 98]
and [Baehringet al. 05] the planar motion parallax is evaluated.

In section 6.5 we will discuss cluster algorithms exploiting the epipolar, the trifocal, or the
multifocal constraint. They assign the correspondences tothe distinct motions they find. The
detection of the moving objects follows directly once the ego-motion is identified among the
found motions. Commonly, the dominant motion, i.e. the motion with the highest number of
correspondences, is supposed to be the ego-motion.

6.3 Error Metric Combining the Constraints

With the constraints in mind, the objective now is to measurequantitatively to which extent
these constraints are violated. The resulting measurementfunction, called error metric, shall
be correlated to the likelihood that the point is moving, i.e. higher values indicate a higher
probability.

The error metric is developed in two steps. First, the two-view constraints are evaluated
taking view one and two into account. Afterwards, the trifocal constraint is evaluated including
the third view.

6.3.1 Two-view Constraints

The algorithm which is being developed combines the two-view constraints (epipolar, positive
height, and positive depth constraint). An early version ofit was published in
[Klappsteinet al. 06b]. The result of the algorithm is an error metric measuring the distance
of the end point of a measured optical flow vector, to the nearest point which fulfills all con-
straints. The confidence of being a moving point is proportional to the error. In detail, the error
increases with the skewness of the viewing rays and with the negative height of the triangulated
3D point. The error is also high for viewing rays meeting directly behind the camera.

The error is measured in units of pixel (no angles or other entities involved) allowing an
easy incorporation into statistical evaluations. The geometric relations of the involved entities
is depicted in figure 6.5. In the next section, when we work with three views, the notions "last
frame" and "current frame" usually used in this thesis are not appropriate any more. For this
reason we change the notions: the last frame becomes frame number one (x1) = xl , and the
current frame becomes frame number two (x2 = xc).

The measured flow vector starts inx1 (last frame) and ends inx2 (current frame). The start
point x1 defines the epipolar linele going through the epipolee2. In the example shown in fig-
ure 6.5x1 lies under the horizon linelh. Thus, the positive height constraint is applied: Assuming
a forward moving camera, the point in the second frame matching perfectly withx1 and lying on
the road isxr . The pointxr lies on the epipolar line and has zero height. Points on the epipolar
line farther thanxr are above the road. They fulfill all constraints. Points closer to the epipole
thanxr are under the road (violate the positive height constraint). The linelb perpendicular tole
defines the border line. In figure 6.5a the positive height constraint is violated. In this case the
nearest pointxf2 fulfilling all constraints is equal to the point on the road:xf2 = xr . In figure 6.5b
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Figure 6.5: Two-view error. The second view is shown. The correspondencex1 ↔ x2 violates
the epipolar constraint. Additionally, in (a) the positiveheight constraint is violated. The point
xf2 is the nearest point fulfilling all constraints. The two-view errord2 measures the distance of
x2 to that point. For detailed explanation see the text.

the positive height constraint is fulfilled. Here,xf2 lies at the foot of the perpendicular from the
pointx2. Thetwo-view error d2 is the distance fromx2 to xf2.

For pointsx1 above the horizon line, the positive depth constraint applies. In that case the
point on the roadxr is substituted by the point at infinityx∞. This point perfectly matches with
x1, whenx1 is the image of an infinite 3D point.x∞ also lies on the epipolar line. Points on the
epipolar line farther thanx∞ are in front of the camera. The others lie behind it. The border line
and the pointxf2 are constructed analogue to the positive height constraint.

After this geometrical consideration we compute the two-view error. At first we need the
horizon linelh. Its computation requires the rotation of the camera w.r.t.the road. This rotation
we had estimated in chapter 5. The matrixRr = R(α,0,ϕ) rotates points from the road coordinate
frame into the camera frame, whereα andϕ are the pitch angle and the roll angle of the road,
respectively. With this information the vanishing points of the road’s x-axis and z-axis can be
computed:

vx = KR r





1
0
0



 vz = KR r





0
0
1



 (6.1)

The line joining these two vanishing points results in the horizon line:

lh = vx×vz (6.2)

lh :=
lh

(lh)3
(6.3)

Equation 6.3 homogenizes the horizon line. This makes the next computation easier. The position
of x1 decides which spatial constraint is applied. Ifx1 lies under the horizon, the positive height
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constraint is applied requiring the point on the roadxr , otherwise the positive depth constraint is
applied requiring the infinite pointx∞:

xb =

{
xr ,x1

T lh < 0
x∞ ,x1

T lh ≥ 0
(6.4)

wherexb describes the generalized border point. The scalar productx1
T lh is positive whenx1

lies on the same side as the origin of the image (upper left corner: (0,0,1)T). This is easily
verified since((0,0,1) · lh = 1). It is assumed that the origin itself lies above the horizon.

The infinite point in equation 6.4 is computed via the infinitehomographyH∞ = KRK −1

mapping a point in the second frame onto the plane at infinity and back onto the image plane of
the first frame:

x∞ = H−1
∞ x1 (6.5)

The road point also present in equation 6.4 is computed via the road homographyHr . The
estimation ofHr was the topic of chapter 5.

xr = H−1
r x1 (6.6)

Next we compute the border linelb. To this end we need the knowledge about the ego-motion we
had obtained in chapter 4. The ego-motion reflects in the fundamental matrix:
F = K−T [−Rt]×RK−1 whereK was the calibration matrix,t the translation vector of the cam-
era from the first frame to the second andR the rotation matrix of the second camera w.r.t to the
first. The border line is perpendicular to the epipolar linele and goes through the border point
xb:

lb =





0 (xb)3 0
−(xb)3 0 0
(xb)2 −(xb)1 0



Fx1 (6.7)

The pointxf2 fulfilling all constraints depends on the location ofx2. If x2 lies on the same side
of lb as the epipolee2, thenxf2 is equal to the border point, otherwise it lies at the foot of the
perpendicular fromx2:

xf2 =

{
xb ,x2

T lb ·e2
T lb > 0

d×x2× le ,else
(6.8)

with d = ((le)1 ,(le)2 ,0)T . Remember thatlb is a homogeneous entity. Hence a single scalar
productx2

T lb is insufficient to check on which sidex2 lies. Only together with the check for the
epipole:e2

T lb yields the desired result.
The final two-view error metric1 is the distance fromx2 to xf2:

d2 = d(x2,xf2) (6.9)

1To be honest,d2 is a pseudometric since we may haved (x2,xf2) = 0 for distinct pointsx2 6= xf2.
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6.3.2 Three-view Constraint

We now add the third view and consider the correspondencex1 ↔ x2 ↔ x3. As the pointxf2 is
defined such that it fulfills the two-view constraints, the reconstructed 3D point arising from the
triangulation of the pointsx1 andxf2 constitute a valid 3D point. This 3D point is projected into
the third view yieldingxf3. The measured image pointx3 will coincide with xf3 if the observed
3D point is actually static. Otherwise there is a distanced3 (figure 6.6) between them which
we call thetrifocal error. xf3 is computed via the point-point-point transfer using the trifocal
tensor [Hartley & Zisserman 03]. This fast approach avoids the explicit triangulation of the 3D
point.

The overall error, combining the two-view constraints and the three-view constraint, isd =
d2 + d3. It measures the minimal required displacement in pixels necessary to change a given
correspondence into a correspondence belonging to a valid static 3D point. The higherd is the
higher the likelihood is that the observed point is moving. The computation ofd is summarized
in algorihm 6.1.

d2

d3

x1x2x3

e2

l2

xf2

xf3

Figure 6.6: Trifocal error. The image of the second view is shown. The camera moves along its
optical axis observing a lateral moving pointx1 ↔ x2 ↔ x3. The closest point tox2 fulfilling the
two-view constraints isxf2. The error arising from two-views is the distanced2. Transfering the
pointsx1 andxf2 into the third view yieldsxf3. If the observed 3D point was actually static its
imagex3 would coincide withxf3. However, the 3D point is moving which causes the trifocal
error d3. The overall error isd = d2 + d3. Note, that in generalx1 andxf3 do not lie on the
epipolar linel2.

The error metric relies on the optical flow which itself is uncertain in its measurement. To
take this into account the error can be weighted by some entity representing the certainty of
the measured optical flow. The weight function depends on theused optical flow algorithm.
A simple weight function for example is thecorner response functiondefined by Harris and
Stevens [Harris & Stevens 88] measuring the "cornerness" ofan image patch. A corner-like
grey value structure is localized more accurately than a homogeneous structure resulting in a
higher certainty of the optical flow. The flow algorithm used in this thesis (chapter 3) filters
out non-corner-like structures. The resulting optical flowvectors have nearly the same accuracy.
A weighting of the error would not have a significant benefit. There are other flow algorithms
dealing not only with corner-like structures, but also withedge-like structures. An example is
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Algorithm 6.1 Motion Detection
Task: Computation of the combined error of a correspondencegiven:

• a correspondencex1 ↔ x2 ↔ x3

• fundamental matrixF of the first and second view, defined by the ego-motion

• trifocal tensorT , defined by the ego-motion

• road homographyHr

1. Compute the horizon line.The vanishing points of the roads x-axis and z-axis are:

vx = KR r





1
0
0



 vz = KR r





0
0
1





The horizon line then is:

lh = vx×vz

lh :=
lh

(lh)3

2. Choose the border point.If x1 lies under the horizon the point on the roadxr = H−1
r x1 is

taken otherwise the infinite pointx∞ = H−1
∞ x1:

xb =

{
xr ,x1

T lh < 0
x∞ ,x1

T lh ≥ 0

3. Compute the border line.

lb =





0 (xb)3 0
−(xb)3 0 0
(xb)2 −(xb)1 0



Fx1

4. Compute the point fulfilling the two-view constraints.

xf2 =

{
xb ,x2

T lb ·e2
T lb > 0

d×x2× le ,else

with d = ((le)1 ,(le)2 ,0)T .
5. Compute the point fulfilling the three-view constraint. This is done using the trifocal
tensor based point-point-point transfer. For details see [Hartley & Zisserman 03].

xf3 = xf3 (x1,xf2,T )

6. Compute the combined error.

d = d(x2,xf2)+d(x3,xf3)
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KLT [Tomasi & Kanade 91, Shi & Tomasi 94]. When using such an algorithm the weighting is
highly beneficial.

6.4 Experimental Results

The motion detection algorithm developed last section is now applied to real imagery. To this
end, all three algorithms 3.1, 5.1, and 6.1 are applied. The flow vectors are classified as the
static environment or as a moving object according to their combined errord. A value ofT =
1.7px is used as the threshold, according to the precision of the measured optical flow plus an
additive safety margin. Figure 6.7 shows two traffic situations. Thanks to the exploitation of all
constraints, almost all parts of the objects are detected asmoving.

(a) (b)

Figure 6.7: Detection of moving points. (a) Crossing truck.(b) Preceding vehicles. The optical
flow vectors shown are classified as moving. Few mismatched vectors occur in the sky and on
the road. Due to visual clearness the number of vectors is reduced to one eighth.

6.5 Clustering

At this time we are able to detect moving 3D points based on theoptical flow. But single moving
points are insufficient to implement a robust driver assistence system. If one relies on single
points, one misclassified point may cause a faulty reaction.For this reason the 3D points must
be clustered to obtain broad objects. The task is to find the 3Dpoints which belong to one and
the same physical (moving) object (a vehicle, a pedestrian,...). This is not easy to accomplish
since an algorithm does not know how physical objects look. The only information an algorithm
has are the 3D points.

In general a cluster algorithm searches for "common fates" among the input data. In our case
3D points, which are close together and which have a similar combined error, share the same
fate. The likelihood that such points belong to one physicalobject is very high.
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At this point a simple algorithm shall be discussed, although the clustering issue is beyond
the scope of this thesis. The algorithm is based on theconnected component analysis(CCA).
The CCA clusters a binary image which is generated as follows.

We consider correspondencesxl ↔ xc over two views and their two-view errord2. If the
correspondence was classified as moving, i.e.d2 > T = 1.7, a one in the binary image is set at
xc. Zeros are set where no correspondences were measured or where the correspondences were
classified as static. An example is shown in figure 6.8. Once the binary image is made up,

(a) (b) (c)

Figure 6.8: Clustering using CCA. (a) Blue flow vectors are classified as static, the magenta ones
as moving. Due to visual clearness the number of vectors is reduced to one eighth. (b) Binary
image. (c) Bounding boxes of the clusters.

the CCA goes through it pixel by pixel. If a one is found it looks whether there is a cluster in
the neighbourhood of the current position. If yes, the current position is attached to this cluster,
otherwise a new cluster is spawned. This approach is very efficient since one pass is enough to
cluster to the image. The outcome of the algorithm is shown infigure 6.9.

Note, that this algorithm does not take all the available information into account. Beside
the check for spatial vicinity, one could additionally check for similarities in the optical flow.
Correspondences having a similar displacementxc− xl (inhomogeneous points here) probably
belong to one object. Sincexl remains unused in the CCA algorithm its performance is limited.

The literature has two-view cluster algorithms utilizingxl andxc. However, these algorithms
only rely on a subset of the available constraints. There is no algorithm taking full advantage of
all constraints. This remains as future research. The existing cluster algorithms not only estimate
the ego-motion, but also the motions of the moving objects. In this multibody motion estimation
concept it is not differentiated between the ego-motion andthe motions of the objects. Indeed,
for clustering purposes it is not necessary to know which motion is the motion caused by the
ego-vehicle. The task of finding the different motions givena set of correspondences is tackled
mainly in three ways:

Multibody epipolar constraint The epipolar constraint for multiple objects is made up by
multiplying the single epipolar constraints:

N

∏
i=1

xc
TFixl = 0 (6.10)
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(a) (b)

(c) (d)

Figure 6.9: Results of motion detection + clustering. The shown flow vectors were classified
as moving. The rectangles denote the bounding boxes of the clusters. (a) cut-in vehicle. (b)
running child. (c) cyclist within the blind spot. The flow vectors on the ego-vehicle are moving,
too. They were not incorporated into the clustering. (d) follower just before rear crash.

Each fundamental matrixFi encodes one motion. Suppose we have two motions in the image,
for example the ego-motion and the motion caused by an independently moving object (IMO). In
particular, we have two fundamental matrices (F1 andF2) we are searching for, not knowing to
which fundamental matrix the correspondences belong. The multibody epipolar constraint 6.10
is fulfilled regardless of the motion the correspondencexl ↔ xc belongs to. If it belongs to
the first motion, thenxc

TF1xl
︸ ︷︷ ︸

=0

· xc
TF2xl

︸ ︷︷ ︸

6=0

= 0. Otherwise, if it belongs to the second motion, the

second factor would be zero.
Each correspondence gives rise to one instance of constraint 6.10. Having a sufficient num-

ber of correspondences the constraint 6.10 is decomposableinto the distinct fundamental matri-
ces [Maet al. 04]. Once theFi ’s are identified, the individual correspondences are assigned to
the fundamental matrix which mostly fulfills the epipolar constraint. This approach was extended
to three views, resulting in the multibody trifocal constraint [Hartley & Vidal 04].



6.5. CLUSTERING 111

Multibody factorization The multibody factorization is a multiple view approach aiming at
the decomposition of a huge matrixW containing the correspondences.W is decomposed into
a product of two matricesW = MS separating the motion parameters contained in the motion
matrixM from the 3D points contained in the shape matrixS.

Suppose we have an orthographic camera and a 3D pointxw moving relative to it. The
projection of this 3D point at time instant k is given by:

xk =

(
(xk)1

(xk)2

)

=

[
1 0 0 0
0 1 0 0

][
Rk tk

0T 1

]

xw (6.11)

Note, thatxk is an inhomogeneous point.Rk and tk denote the rotation and translation of the
3D point at time instant k. Suppose that we have N correspondences over F frames, and that we
collect all the measurements into a single matrix:

W =












(x1,1)1 · · · (x1,N)1
...

...
(xF,1)1 · · · (xF,N)1

(x1,1)2 · · · (x1,N)2
...

...
(xF,1)2 · · · (xF,N)2












=












iT1 (t1)1
...

...
iTF (tF)1

jT
1 (t1)2
...

...
jT
F (tF)2












·
[

xw1 · · · xwN
]
= MS (6.12)

with iTk andjT
k the first and second row of the k-th rotation matrix. The factorization is done using

the singular value decomposition and exploiting the fact that the vectorsiTk andjT
k are orthogonal.

When two motions are present and when the correspondences are sorted, the shape matrixS
takes on a block diagonal form:

W⋆ = [M1|M2] ·

[
S1 0
0 S2

]

(6.13)

The task is to find a column permutation ofW determining the canonical formW⋆. OnceW⋆

is known the segmentation is done. All 3D points contained inS1 move according toM1 and
belong to the first object. The other 3D points inS2 belong to the second object. For details
on the column permutation ofW refer to [Costeira & Kanade 98]. The multibody factorization
method was recently extended to perspective cameras [Vidal05].

Expectation Maximization Expectation Maximization (EM) alternates between motion esti-
mation and clustering. Given an initial set of clusters the motion of each cluster is estimated.
The results are used to refine the clusters. With refined clusters the motions are estimated again,
and so on, until the solutions converge. [Torr 98] employs this approach and further selects the
appropriate motion model out of four models: fundamental matrix, affine fundamental matrix,
homography, and affinity.
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6.6 Detection Limit

The experimental results we have seen last section are promising. Each moving object was
detected. But when we look at figure 6.10 we get disappointed.The car in front of the ego-

Figure 6.10: Detection of preceding objects. Only the very bottom part of the car in front of the
ego-vehicle is detected. The cars on the right hand side are detected to a higher extent.

vehicle is hardly detected. This raises the question, utilizing the different constraints for static
3D points, which kinds of motion are detectable and to which extent?

The answers we give here were also published in [Klappsteinet al. 07b]. In order to detect
a moving object reliably, the error metric developed in section 6.3 must be greater than a certain
thresholdT, whereas the threshold should reflect the noise in the correspondences (optical flow).
A reasonable choise isT = 3σ with σ the standard deviation of the correspondences.

In the following we consider the three most frequent kinds ofmotion in traffic: parallel,
lateral and circular motion. We model the motion of the camera and the object as shown in
figure 6.11. It is not necessary to investigate camera rotations about its projection center, since
they do not influence the detection limit. One can always compensate these rotations by a virtual
inverse rotation.

6.6.1 Linear Motion

The detection limits for the linear motions (parallel and lateral motion) are illustrated by means
of three examples:

1. Overtaking object: The object moves parallel to the camera but faster.
vcz = 30km/h,voz = 40km/h,vox = 0km/h

2. Preceding object: The object moves parallel to the camerabut slower.
vcz = 30km/h,voz = 20km/h,vox = 0km/h

3. Crossing object: The object moves lateral to the camera.
vcz = 30km/h,voz = 0km/h,vox = −5km/h



6.6. DETECTION LIMIT 113

vox
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voz

object plane
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c1

road plane
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(a) (b)

Figure 6.11: Motion model utilized for the investigation ofthe detection limit. The cameras
projection center in the first view isc1. The moving object is modelled as a plane. (a) Linear
motion: The (object)plane moves parallel (w.r.t. the camera) with speedvoz and lateral with
speedvox. The distance of the camera to the object isz, to the road it ish. The camera moves
along its optical axis with speedvcz. (b) Circular motion: Both, camera and object, move along
a circle with radiusr. The tangential speed of the camera isvc, that of the object isvo.

The subscripts stand for:c = camera,o = object,z = longitudinal direction,x = lateral direction.
Anti-parallel motion (vcz > 0km/h, voz < 0km/h, vox = 0km/h) is not detectable. This issue is
addressed in subsection 6.6.4. In the examples, other important parameters are: focal length
f = 1000px, principal point(x0,y0) = (320,240), height of camera above the roadh = 1m,
distance to objectz= 20m, time between consecutive frames∆t = 40ms.

The detection limits of the linear motions are shown in figure6.12. Each image shows the
first view. Inside the black regions the error metric is lowerthanT = 0.5px (assuming a std. dev.
in the correspondences ofσ = 0.167px). Parts of the object seen in these regions are not detected
as moving. There is one important point in the image: thepoint of collision. This is the point
where the camera will collide with the object, provided thatthe object is slower than the camera.
We will see that this dangerous point is not detectable in many cases.

The first row of figure 6.12 considers the epipolar constraintonly. As can be seen, parallel
motion is not detected at all. Lateral motion is detected to ahigh extent. The black region is
shaped like a bow tie.

In the second row of figure 6.12, the positive depth constraint is added. Overtaking objects
are now detected. The error metric in this case is identical to the motion parallax induced by the
plane at infinity. The optical flow of points at infinity is zero(camera does not rotate). Thus,
the motion parallax is equal to the length of the measured optical flow. The contour lines (lines
where the error metric takes on a constant value) are circular around the epipole. Preceding
objects are still not detected. In the case of lateral motionthe bow tie is cracked. The motion is
also detected between the epipole and the point of collisiondue to the violation of the positive
depth constraint.

The use of the positive height constraint (third row of figure6.12) gains the power of detection
for the image part below the horizon. In the case of parallel motion (overtaking and preceding
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1. Overtaking object 2. Preceding object 3. Crossing object
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Figure 6.12: Detection limits for different kinds of linearmotion and constraints. The images
show the first view (compare to fig. 6.11). They are truncated at row 290, since below this row
there is no object but the road. Inside the black regions the motion is not detected. The contour
lines 2T and 4T are shown, too. The red point marks the epipole, the red crossis the point of
collision. Further explanation is given in the text.

objects) the error metric below the horizon is identical to the motion parallax induced by the road
plane. It is possible to detect preceding objects but it is a challenging task. Lateral motion only
benefits from the positive height constraint only on the right-hand side of the epipole.

Adding the trifocal constraint yields the best achievable results. The parallel motion profits
mainly from the larger driven distance of the camera, since the camera moves fromc1 to c3 (not
just toc2). This just increases the signal to noise ratio. Similar results would be obtained if only
the first and the third view would be evaluated. This does not hold for the lateral motion. The
trifocal constraint also allows detection to the left of theepipole.

The reason for that is given in figure 6.3 on page 101. There thecamera moves fromc1 to
c3 observing a point moving fromX1 to X3. A situation is chosen such that the trajectories of
the camera and the point are co-planar. They move within the epipolar plane. Considering the
first two views, the two-view constraints are fulfilled. The viewing rays meet perfectly at the
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point Xt12. This point lies in front of the cameras and above the road. Consequently, this kind
of motion is not detected over two views alone. Taking the third view into account reveals the
motion, since the triangulated pointXt23 of the second and third view is different fromXt12.

We have seen that in case of the linear motion the strength of the trifocal constraint is not very
high. The trifocal constraint shows its strength if the cameras translational direction changes over
time, as is the case with circular motion.

6.6.2 Circular Motion

The circular motion is modelled as shown in figure 6.11b. To demonstrate the detection limit
for this case we consider an example similar to the "preceding object" example:vc = 30km/h,
vo = 20km/h,z= 20m, andr = 100m.
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Figure 6.13: Detection limit in the case of circular motion.The images show the first view
(compare to fig. 6.11b). They are truncated at row 274, since below there is no object but the road.
Inside the black regions the motion is not detected. The contour lines 2T and 4T are also shown.
The red point marks the epipole, the red cross is the point of collision. (a) Epipolar constraint.
(b) + positive depth constraint. (c) + positive height constraint. (d) + trifocal constraint.
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Figure 6.14: Detection limit in the case of circular motion with tripled time period∆t compared
to figure 6.13. (a) Epipolar + positive depth + positive height constraint. (b) + trifocal constraint.

Figure 6.13 shows the detection limit. Although the object is slower than the camera, which
was a problem for the parallel motion case, the circular motion is detected to a high extent
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(fig. 6.13a). With the positive depth constraint taken into account, the entire region to the left
of the epipole is detected. It seems that the trifocal constraint (fig. 6.13d) just shrinks the black
region, meaning that it only improves the signal to noise ratio. However, this is not true. If we
triple the time period∆t = 120ms the black region vanishes (figure 6.14b). Consequently, the
entire object is detected as moving and so is the point of collision. The power of the two-view
constraints is insufficient to detect that point.

Taking more than three views into account just increases thesignal to noise ratio and hence
shrinks the black regions but does not change the shapes of the contour lines (unless camera and
object accelerate differently).

6.6.3 Experimental Verification

In this section we apply the study on the detection limit to real imagery. Furthermore, we detect
the moving objects based on the measured optical flow and the proposed error metricd2. The
detection result is compared to the theoretical detection limit.

(a) (b)

Figure 6.15: Experimental verification. (a) Original imagewith two moving vehicles in front.
(b) The semi-transparent yellow region shows the image region where the motion is not de-
tectable. The measured optical flow vectors are classified asstatic (blue / dark) and moving
(magenta / bright).

Figure 6.15a shows two vehicles driving in front of the camera (ego-vehicle). They are
faster than the camera and move parallel to it. First, the detection limit is computed. To this
end, the distance to the objects and the speed of them are required. The on-board radar sensor
provides this information:z= 16.5m andvoz = 62.9km/h. The speed of the camera, retrieved
by odometry, isvcz = 53.5km/h. With this information, together with the camera calibration, the
non-detectable region computes to that shown in figure 6.15b. Thereby the two-view constraints
are considered.

The actual detection of the vehicles is carried out by the evaluation of the two-view error
metric d2 utilizing the measured optical flow. Radar data is ignored. Flow vectors withd2 >
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T = 1.7px are classified as moving. The result is shown in figure 6.15b. One can see that the
theoretical detection limit matches well to the practical one.

The vehicle on the right side is completely detected whereasonly the lower part of the vehicle
in the middle of the image is detected.

6.6.4 Issue of Anti-Parallel Motion

Oncoming objects on a straight road constitute an anti-parallel motion. There is no way to detect
this motion by means of the constraints for static 3D points.An inherent ambiguity prevents this.
The moving object also could be a static object with smaller size and shorter depth. We call such
a static pendant a phantom object (see figure 6.16(a)).

Only a heuristic approach enables the detection of such motion [Klappsteinet al. 06a]. We
can assume that any object in the world is opaque and stands onthe ground. The latter one is
violated for traffic signs, since in most situations it is difficult to measure any optical flow on
the pole. Hence, the traffic sign seems to hover over the ground. Vehicles, however, are almost
completely present in the optical flow, due to their cuboidalform.

With this heuristic we are able to distinguish between the seeming static object and the mov-
ing one: The assumptions create a zone behind the phantom object in which no other object is
allowed to be present. If there is a triangulated point within that zone the phantom object is
revealed (see figure 6.16(b)).

Z2 Z1

object
phantom

c1 c2

Z2 Z1forbidden
zone

object
phantom

c2c1c0

(a) (b)

Figure 6.16: Anti-parallel motion. (a) The camera moves from c1 to c2 observing the pole
moving fromZ1 to Z2. The triangulation provides a hovering phantom object which is closer
than the orignal one. (b) The green zone is prohibited. If there is a measured point within this
zone, such as the green point, the phantom object is revealedas a moving object.

The algorithm evaluating the region under the object (forbidden zone) is now developed.
Figure 6.17a shows an oncoming vehicle. After the ego-motion and the road homography were
estimated and moving objects were detected we look for static objects. An efficient method
detecting them is the evaluation of the planar motion parallax which we had already met when
we estimated the road homography, see equation 5.19. Staticobjects do not belong to the road,
hence their parallax is significantly higher than zero. Figure 6.17b shows this. In the next step,
the flow vectors are clustered using the CCA from section 6.5.The cluster shown in figure 6.17b
forms the phantom object.

We now need the depth of the phantom object in order to computethe forbidden zone. Here
the direct linear transform (DLT) triangulation method [Hartley & Zisserman 03] is employed
getting the depth of one correpondence. Although this method does not constitute a MLE it
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(a) (b) (c)

Figure 6.17: Detection of anti-parallel moving objects. (a) An oncoming vehicle. (b) Clustered
vehicle. The parallax of the shown correspondences is higher than 2 pixels. (c) The forbidden
zone under the vehicle contains a piece of the road. The correspondences are color-coded by
their parallaxes. The color goes from blue to red representing a parallax of 0 and 2 pixels,
respectively. The zone contains 364 correspondences with amedian parallax of 0.52 pixels. The
object is revealed as a moving object.

is accurate enough and easy to compute. The median depth of all correspondences inside the
phantom object is a robust estimate of its depth.

Using the depth, the bottom line of the object is now projected onto the road, forming the
forbidden zone. If this zone contains a piece of the road the object is revealed as a moving object.
Whether there is road or not is found out by evaluating the parallax again. If the median parallax
falls below a certain threshold (e.g. 1 pixel) the zone is considered as road. In figure 6.17c this
is the case.

This approach requires a well-textured road. When no correspondences are available inside
the forbidden zone the ambiguity cannot be resolved.

6.6.5 Summary

The investigation of detection limits for independently moving objects revealed that:

• Objects which are faster than the camera are detected to a higher extent than those which
are slower. That is a pity because slower objects are the dangerous ones. We will not
collide with a faster object.

• In the event of linear motion, the dangerous point of collision is not detected at all, what
an irony of fate!

• The trifocal constraint exhibits its potential if the motion of the camera is circular (non-
linear). Then the point of collision is detectable (in principle).

• Anti-parallel moving objects are not detected at all by means of the constraints for static
3D points. A heuristic approach helps to detect such motion.



Chapter 7

Summary and Outlook

Summary

In this thesis the detection of moving objects in traffic scenes based on the optical flow has been
investigated. To this end, the flow vectors belonging to the static scene must be separated from
the flow vectors on the moving objects. This separation relies on the four constraints a valid static
3D point obeys. In this thesis these constraints were named.Further constraints supplying the
detection of single moving points do not exist. A novel algorithm was developed combining the
constraints in a unified manner. The resulting error metric measures the minimal displacement
required to change a given correspondence into a correspondence representing a valid static 3D
point. The formulation of the error metric in the image domain allows an easy incorporation into
a statistical framework, i.e. when the uncertainty in the measured optical flow is considered.

The detectability of moving objects was investigated and itwas found out that in the event of
linear motion the dangerous point of collision is not detected. In practice, this means the smaller
the image of an object being on a collision course, the more difficult its detection. Crossing
objects as occuring at intersections and objects driving parallel to and faster than the ego-vehicle
(overtaking objects) are detected to a high extent. In contrast, objects driving parallel to and
slower than the ego-vehicle (objects which are overtaken) are hardly detected.

In case of non-linear motion, e.g. circular, the point of collision is detectable provided that the
time period of observation is sufficiently long. This means when cornering objects are detectable
even if they are slower than the ego-vehicle. Oncoming objects on a straight road (anti-parallel
motion) are only detectable if the heuristic, which was introduced in this thesis, is applied.

In order to compute the error metric measuring the deviationfrom the constraints for static
3D points, the knowledge about the ego-motion and the location of the camera relative to the
road plane is required. A known approach estimating the ego-motion was extended by a motion
model. It was shown that the estimation became considerablymore robust. The known error
metric JSED as well as the Huber cost function were changed slightly so that the assumptions
made by the Levenberg-Marquardt minimization are fulfilled. This helped saving time needed for
the minimization. It was found out that not all image regionscontribute similarly to the estimate.
In particular, it was hinted that the yaw rate is estimated poorly if the camera is mounted at 90◦
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angle w.r.t. the vehicle’s longitudinal axis.
The location of the camera relative to the road plane consists of the normal vector of the road

plane, and the height of the camera above the road. An algorithm was developed estimating the
road normal using the planar motion parallax. In contrast tothe ego-motion estimation, here one
is faced with poorly localized correspondences in cases of alow-textured road. For this reason,
a Kalman filter was designed which is able to cope with temporary drop outs of the estimation.

Outlook

Clustering

The algorithms developed in this thesis constitute a robustsystem for the detection of moving
points. The clustering of the detected moving points to objects was addressed briefly. In par-
ticular, the CCA algorithm was discussed. There are more sophisticated cluster algorithms in
the literature, for examplegraph cut[Boykov & Veksler 05] or thelevel set method[Sethian 99,
Aubert & Kornprobst 02], which perform the clustering by minimization of an energy functional.
All cluster algorithms are recipes describing the food preparation but not the ingredients. The
latter ones, meaning the input data, are problem specific. Incase of level set the question is how
to formulate the energy functional. In case of graph cut the question is how to deploy the graph.
These questions have a severe impact on the performance of the clustering and are not trivial to
answer. A first work using graph cut to cluster the detected moving points exists [Gruber 08].

Optical Flow

In this thesis an optical flow algorithm was used computing the optical flow over two consecu-
tive frames. An optical flow algorithm which is able to track local image features over several
frames is advantageous, as the time of observation is increased. An increased time of observation
involves an increased driven distance of the ego-vehicle. Higher driven distances benefits the de-
tectability of moving objects. If an optical flow algorithm with tracking capability is applied the
question raises how to evaluate the constraints for static 3D points in a recursive fashion.

The ego-motion estimation benefits from higher driven distances, too. How can be the ego-
motion estimated recursively? Online SLAM methods do so (page 48). However, they involve
the estimation of nuisance parameters, namely 3D points. Isthere a way to avoid this in favour
of a reduced computational burden?



Appendix A

Rotation Matrices in R
3

A rotation matrix rotates the coordinate system. The matrixR(x,0,0) for example rotates the
coordinate system about the x-axis through an anglex measured in rad. The rotation sequence:

R(x,y,z) = R(x,0,0) ·R(0,y,0) ·R(0,0,z)

first rotates the coordinate system about the z-axis. Then itis rotated about the rotated y-axis.
Finally it is rotated about the twice rotated x-axis. Such a sequence is also calledEuler sequence.

Alternatively, the same sequence can be treated as a rotation about fixed axes. In that case
the coordinate system is first rotated about the x-axis, thenrotated about the original y-axis, and
finally about the original z-axis.

If one wants to rotate points instead of the coordinate system one has to apply the inverse
rotationR−1. Since rotation matrices are ortho-normal the inverse is equal to the transposed
matrix: R−1 = RT .

The rows of the rotation matrix show how the unit vectors are rotated. For example, the
third row indicates the new z-axis. Reason: The point(0,0,1)T representing the z-unit-vector is
rotated according toRT(0,0,1)T = ((r)31,(r)32,(r)33)

T .

• R(x,0,0) =





1 0 0
0 cosx sinx
0 −sinx cosx





• R(0,y,0) =





cosy 0 −siny
0 1 0

siny 0 cosy





• R(0,0,z) =





cosz sinz 0
−sinz cosz 0

0 0 1




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3

• R(x,y,z) =





cosycosz cosysinz −siny
coszsinxsiny−cosxsinz cosxcosz+sinxsinysinz cosysinx
cosxcoszsiny+sinxsinz −coszsinx+cosxsinysinz cosxcosy





• R(0,0,z) ·R(0,y,0) ·R(x,0,0)=





cosycosz coszsinxsiny+cosxsinz −cosxcoszsiny+sinxsinz
−cosysinz cosxcosz−sinxsinysinz coszsinx+cosxsinysinz

siny −cosysinx cosxcosy





• R(0,y,0) ·R(x,0,0) ·R(0,0,z)=





cosycosz−sinxsinysinz coszsinxsiny+cosysinz −cosxsiny
−cosxsinz cosxcosz sinx

coszsiny+cosysinxsinz −cosycoszsinx+sinysinz cosxcosy





In case of very small rotation angles the trigonometric functions can be approximated by
the first order term of their Taylor series: cosx ≈ 1 and sinx ≈ x. Applying this and setting
the bilinear and trilinear monomials zero (xy= xz= yz= xyz= 0) yields the linearized rotation
matrix:

Rlin = I +









x
y
z









×

=





1 z −y
−z 1 x
y −x 1





The rotation order does not matter here. The multiplicationof linearized rotation matrices is
commutative.
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Miscellaneous

B.1 Calibration Matrix and its Inverse

The calibration matrix captures the intrinsic camera parameters:

• focal length in horizontal direction:fx

• focal length in vertical direction:fy

• horizontal component of the principal point:x0

• vertical component of the principal point:y0

K =





fx 0 x0

0 fy y0

0 0 1





Often the inverse of the calibration matrix is needed. It is easily computed:

K−1 =






1
fx

0 −x0
fx

0 1
fy

−y0
fy

0 0 1






B.2 Projection Matrix and its Inverse

The projection matrix of a finite perspective camera is composed by the calibration matrixK , the
rotation matrixR, and the translationt:

P = KR [I |− t] (B.1)

P is a 3×4 matrix and thus not invertable. However, the (Moore-Penrose) pseudo-inverseP+

can be applied.P+ is defined such thatPP+ = I . For quadratic matrices the pseudo-inverse is
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equal the common inverse. In general(AB)+ 6= B+A+. Nevertheless, it holds in the case of the
projection matrix. Thus the pseudo-inverse is given by:

P+ = [I |− t]+RTK−1 (B.2)

with

[I |− t]+ =
1

1+ tT t







1+(t)2
2 +(t)2

3 −(t)1(t)2 −(t)1(t)3
−(t)1(t)2 1+(t)2

1 +(t)2
3 −(t)2(t)3

−(t)1(t)3 −(t)2(t)3 1+(t)2
1 +(t)2

2
−(t)1 −(t)2 −(t)3







(B.3)

B.3 Cross Product Matrix

The cross product of two three-dimensional vectorsa andb may be expressed in terms of a 3×3
skew-symmetric matrix:

[a]× =





0 −(a)3 (a)2
(a)3 0 −(a)1
−(a)2 (a)1 0



 (B.4)

The cross product then reads:

a×b = [a]×b =
(
aT [b]×

)T
(B.5)
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baseline, 23
bilinear constraint, 23
bundle adjustment, 48

calibration matrix, 19, 123
CCA, 108
central projection, 17
clustering, 108
correspondence, 22
correspondence problem, 35
corrupted Gaussian, 27
cross ratio, 13

direct linear transform, 118
direct linear transform, 24
discrete motion field, 32
driving corridor, 77
duality between points and lines, 9
duality between points and planes, 15

eight-point algorithm, 47
epipolar line, 22
epipolar constraint, 22, 99
epipolar plane, 22
epipole, 22
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Euclidean transformation, 12
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finite projective camera, 19
fixed points, 33
focal length, 17

focus of expansion, 33
fundamental matrix, 23

Gauss-Newton scheme, 61
gold standard, 47

homogeneous coordinates, 8
homography, 13
horizon line, 104
horopter, 33
Huber function, 28
HUMSL, 60

image stabilization, 47
image velocity, 33
inertial measurement unit, 41
inhomogeneous coordinates, 8
instantaneous motion field, 32
intersection of lines, 9
intersection of planes, 15
IRLS, 81
isometry, 12

least squares, 26
Levenberg-Marquardt, 60
line at infinity, 9
LMedS, 29

M-estimation, 27
maximum likelihood estimate, 26
motion detection, 99
multibody epipolar constraint, 109
multibody factorization, 110

Newton step, 59
normalized image coordinates, 19

optical flow field, 35
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orthographic projection, 20
outlier, 25

para-perspective projection, 21
parallax, 81, 102
pixel, 16
plane at infinity, 15
point at infinity, 8
point of collision, 113
positive depth constraint, 100
positive height constraint, 100
Powell, 59
principal point, 18
projection matrix, 17, 123

RANSAC, 28
rectification, 16
reprojection error, 47
rotation, 12

scale ambiguity, 42
similarity, 12
SLAM, 48
structure from motion, 47
subspace method, 46
symmetric epipolar distance, 51

trajectory triangulation, 24
translation, 11
triangulation, 24
trifocal error, 106
trifocal tensor, 106
trifocal constraint, 100
Tukey function, 27
two-view error, 104

weak-perspective projection, 20


