# **Inaugural-Dissertation**

zur Erlangung der Doktorwürde der naturwissenschaftlich-mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg

> vorgelegt von Dipl. Biol. Robert Alexander Mättner aus Darmstadt

> > Tag der mündlichen Prüfung:

Thema

# Etablierung von Transfektionstechniken zur funktionellen Genanalyse im Süßwasserpolyp Hydra

Erstgutachter: Zweitgutachter: Prof. Dr. Thomas W. Holstein PD Dr. Suat Özbek

Ich versichere, dass die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Hilfsmittel und Quellen vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen und Abbildungen – die anderen Werken dem Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt.

Heidelberg, den 07.07.2008

Robert Alexander Mättner

für meine Eltern

Die Neugier steht immer an erster Stelle eines Problems, das gelöst werden will.

Galileo Galilei (1564-1642)

## Zusammenfassung

Ziel der vorliegenden Arbeit war es transgene Hydren sowie transgene Strammzelllinien zu erzeugen. Hierfür wurden drei biotechnologische Ansätze untersucht.

Im ersten Ansatz konnten durch embryonale Mikroinjektion eines Reporterkonstrukts, das GFP ("green fluorescent protein") unter Kontrolle eines konstitutiv aktiven Hydra Aktin Promotors enthielt, transgene Polypen erzeugt werden, das zu drei transgenen Stammzelllinien führte: GFP<sup>+</sup> I-Zellen, GFP<sup>+</sup>-Endoderm und GFP<sup>+</sup>-Ektoderm. Mit Hilfe der GFP<sup>+</sup> I-Zelllinie konnten durch Transplantationsexperimente Proliferations- und Differenzierungsprozesse der Stammzellen studiert werden. Hierbei zeigte sich, dass hauptsächlich bereits differenzierende I-Zellen eine Motilität im Polypen aufweisen, welche überwiegend in Nervenzellen differenzierten. Mit erzeugten transgenen epithelialen Polypen konnten frühe Zellsortierungsprozesse in Hydra-Reaggregaten analysiert werden. Hierbei konnten Endodermzellen als treibende Kraft bei der Ausbildung homotypischer Gewebe determiniert werden, wobei die Zellclusterbildung eine exponentielle Dynamik aufwies.

Ein zweiter Ansatz basierte auf dem Transposonsystem "Sleeping Beauty" und einem Meganuklease-assistierten Ansatz. Im Vergleich mit Kontrollen war ein positiver Effekt dieser Ansätze nicht erkennbar.

In einem dritten Ansatz beschäftigte sich diese Arbeit mit der Etablierung einer neuen Transfektionstechnik für Hydra Polypen. Durch intraepitheliale Mikroinjektion und Elektroporation konnte diese erfolgreich etabliert werden. Über den Ort der Mikroinjektionsstelle am Polypen können dadurch transient Zellen in einem frei wählbaren lokal begrenzten Gewebebereich transfiziert werden. Es konnten Protokolle etabliert werden, die entweder zu ektodermalen Epithelzell-Clustern mit mehr als 10 Zellen führen können oder alternativ I-Zellen und deren Derivate transfizieren.

Mithilfe dieser Transfektionstechnik konnte die Differenzierung individuell transfizierter I-Zellen verfolgt werden. Hierbei ergaben sich Hinweise, die eine frühe Festlegung der I-Zellen, vermutlich im Ein-Zellstadium, auf einen Differenzierungsweg bestätigen. Weiterhin bestätigte sich, dass Positionsinformationen im Polyp einen Einfluss auf die Differenzierung der I-Zellen haben. So differenzierten nach lokaler Transfektion am Kopfbereich alle I-Zellen zu Nervenzellen, während sie im Rumpf auch zu Desmonemen differenzierten.

Weiterhin eröffnet diese Transfektionstechnik neue Möglichkeiten um funktionelle Studien mit transienter Überexpression am Polypen durchzuführen. In dieser Arbeit wurden zur funktionellen Analyse des Hydra-Kopforganisators Vektoren vorbereitet, welche Komponenten des Wnt-Signalwegs (HyWnt3, dominant-negatives TCF und beta-Catenin) unter die Kontrolle eines konstitutiven Promotors, den Hydra Aktin Promotor, gesetzt.

## Summary

My thesis focuses on the generation of transgenic hydra and transgenic i-cell lineage. To reach this aim, three different biotechnological approaches have been studied.

The first approach was to generate transgenic hydra using the embryonic microinjection technique. The application of a reporter plasmid containing GFP (green fluorescent protein) under control of a constitutive active Hydra actin promoter led to three transgenic stem cell lineages: GFP<sup>+</sup> i-cell lineage, GFP<sup>+</sup>-endoderm and GFP<sup>+</sup>-ectoderm. Proliferation and differentiation processes of i-cells could be studied by grafting experiments with the i-cell lineage. These experiments revealed that, in the main, already comm itted cells show a higher mobility and differentiate mostly into neurons. Furthermore, early cell-sorting processes in hydra reaggregates have been observed and analyzed by using transgenic epithelial cell lineages. The conclusion of these experiments is that endodermal cells have a higher affinity to homotypic cell-cell contacts than to ecto-ecto cell contacts. However, endodermal cells seem to be the driving force in the cell sorting process because they start to cluster to each other with exponential dynamics.

The second approach was based on the optimization of transfection by the use of the transposon "Sleeping Beauty" and a meganuclease-based transfection. The application of these techniques showed no detectable influence when compared to controls.

In a third approach, a new transfection technique for Hydra polyps was successfully established via a combination of intraepithelial microinjection and electroporation. It allows for the transient cell-type-specific transfection in a localized area of the polyp. Electroporation protocols could be established for both epithelial and i-cell transfection.

The application of this technique revealed that transfected i-cells differentiate according to their position, e.g. transfected i-cells close to the head differentiated only into neurons. Furthermore, the analysis of single i-cells showed evidence that commitment to a certain fate happens early, most probably as single cells.

In addition, the established transfection technique for polyps offers new opportunities to study genes of interest with gain-of-function experiments. Several candidates of the Wnt-signalling pathway (HyWnt3, beta-catenin, dominant-negative Tcf) were cloned under the control of a Hydra actin promoter which can be used in future experiments.

# Inhaltsverzeichnis

| 1. Einleitung                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1.1 Der Modellorganismus Hydra                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                |
| <ul><li>1.1.1 Regeneration und Reaggregation</li><li>1.1.2 Das interstitielle Stammzellsystem</li><li>1.1.3 Gametogenese und sexuelle Vermehrung</li></ul>                                                                                                                                                                                                                                                                                      | 1<br>3<br>4                      |
| 1.2 Transfektion in Hydra                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                |
| 1.2.1 Transposon vermittelte Transfektionen<br><i>1.2.1.1 Das Transposon "Sleeping Beauty"</i><br>1.2.2 Meganuklease vermittelte Transfektionen                                                                                                                                                                                                                                                                                                 | 8<br>8<br>9                      |
| 1.3 Ziel dieser Arbeit                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                               |
| 2. Ergebnisse                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                               |
| 2.1 Optimierung der Elektroporation von Hydra Polypen                                                                                                                                                                                                                                                                                                                                                                                           | 11                               |
| 2.2 Klonierung von Vektoren                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                               |
| 2.3 Effekt des Transposons "Sleeping Beauty" und der<br>Meganukleasen auf die Transfektion von Hydra Polypen                                                                                                                                                                                                                                                                                                                                    | 16                               |
| 2.4 Transgene Hydren durch embryonale Mikroinjektion                                                                                                                                                                                                                                                                                                                                                                                            | 18                               |
| <ul> <li>2.4.1 Analyse der frühen Embryogenese zur Bestimmung<br/>der Mikroinjektion</li> <li>2.4.2 Optimierung der DNA-Konzentration</li> <li>2.4.3 Generierung vollständiger transgener Polypen</li> <li>2.4.4 Embryonale Mikroinjektion mit dem Transposon<br/>"Sleeping Beauty"</li> <li>2.4.5 Embryonale Mikroinjektion der Meganuklease <i>I-Scel</i></li> <li>2.4.6. Embryonale Mikroinjektion der Meganuklease <i>I-Ceu</i>l</li> </ul> | 18<br>19<br>19<br>20<br>22<br>24 |
| 2.5 Zellbiologische Studien an Hydra                                                                                                                                                                                                                                                                                                                                                                                                            | 24                               |
| 2.5.1 I-Zelldifferenzierung in Abhängigkeit vom Positionswert<br>2.5.2 I-Zellverhalten in Transplantationsexperimenten<br>2.5.3 Charakterisierung früher Zellsortierungsprozesse                                                                                                                                                                                                                                                                | 24<br>27                         |
| im Aggregat<br>2.5.4 Analyse der F <sub>1</sub> -Generation ektodermal transgener Polypen                                                                                                                                                                                                                                                                                                                                                       | 28<br>34                         |
| 3. Diskussion                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36                               |
| 3.1 Durch embryonale Mikroinjektion konnten transgene<br>Polypen für jede Stammzelllinie generiert werden                                                                                                                                                                                                                                                                                                                                       | 36                               |
| 3.2 Die Anwendung des Transposons "Sleeping beauty"<br>und der Meganukleasen I-Scel bzw. I-Ceul führten nicht zu<br>höheren Raten transgener Hydren durch embryonale<br>Mikroinjektion                                                                                                                                                                                                                                                          | 37                               |
| 3.2.1 Embryonale Mikroinjektion des Transposons<br>"Sleeping beauty"                                                                                                                                                                                                                                                                                                                                                                            | <b>3</b> 8                       |
| 3.2.2 Embryonale Mikroinjektion der Meganukleasen<br><i>I-Scel</i> und <i>I-Ceu</i> l                                                                                                                                                                                                                                                                                                                                                           | 39                               |

|              | 3.3 Durch intraepitheliale Mikroinjektion und Elektroporation<br>können in Hydra Polypen Zellen transient in einem frei wähl-<br>baren, lokal begrenzten Gewebebereich transfiziert werden                                                                                                                                                                                                                                                                                                               | 40                                                 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|              | 3.3.1 Die Anwendung des Transposons "Sleeping beauty" und<br>der Meganukleasen I-Scel bzw. I-Ceul führte nicht zur<br>stabilen Transfektion am Polypen                                                                                                                                                                                                                                                                                                                                                   | 42                                                 |
|              | 3.4 Die I-Zell-Differenzierung wird früh determiniert und ist abhängig vom Positionswert im Tier                                                                                                                                                                                                                                                                                                                                                                                                         | 44                                                 |
|              | 3.5 Determinierte I-Zellen weisen höhere Motilität auf und differ-<br>enzieren in Transplantaten überwiegend zu Nervenzellen                                                                                                                                                                                                                                                                                                                                                                             | 45                                                 |
|              | 3.6. Polypen mit einer transgenen entodermalen Zelllinie<br>können diese Eigenschaften in die F <sub>1</sub> -Generation übertragen                                                                                                                                                                                                                                                                                                                                                                      | 46                                                 |
|              | 3.7. Ausblick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47                                                 |
| <b>4.</b> Ma | terial und Methoden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48                                                 |
|              | 4.1 Organismen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48                                                 |
|              | 4.1.1 Bakterien<br>4.1.2 Hydrakultur                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48<br>48                                           |
|              | 4.2 Vektorklonierung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48                                                 |
|              | 4.2.1 Klonierung von <i>pJet-IScelAktEGFP</i><br>4.2.2 Klonierung von <i>pJet-ICeuIAktEGFP</i><br>4.2.3 Klonierung von <i>pBS-IScelAktEGFP</i><br>4.2.4 Klonierung von <i>pGEM-ICeuIAktEGFP</i><br>4.2.5 Klonierung von <i>pGEM-AktPromKpnI</i><br>4.2.6 Klonierung von <i>pGEM-AktWnt3a</i><br>4.2.7 Klonierung von <i>pGEM-AktBetaCatenin</i><br>4.2.8 Klonierung von <i>pGEM-AktBetaCatenin</i><br>4.2.9 Klonierung von <i>pGEM-AktBetaCateninEGFP</i><br>4.2.10 Klonierung von <i>pCS-\DigCatGFP</i> | 49<br>49<br>50<br>50<br>50<br>51<br>51<br>51<br>52 |
|              | 4.3 Optimierung der Elektroporation von Hydra Polypen                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52                                                 |
|              | <ul><li>4.3.1 Elektroporation</li><li>4.3.2 Mikroinjektion</li><li>4.3.3 Mikroinjektion und Elektroporation mit Platin-Elektroden</li><li>4.3.4 "Particle gun"</li></ul>                                                                                                                                                                                                                                                                                                                                 | 52<br>52<br>52<br>52                               |
|              | 4.4 Transposon unterstützte Transfektion                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53                                                 |
|              | 4.4.1 Elektroporation<br>4.4.2 Transposon unterstützte Transfektion in Embryonen                                                                                                                                                                                                                                                                                                                                                                                                                         | 53<br>53                                           |
|              | 4.5 Meganuklease unterstützte Transfektion                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53                                                 |
|              | 4.5.1 Meganuklease unterstützte Transfektion an Polypen 4.5.2 Meganuklease unterstüzte Transfektion in Embryonen                                                                                                                                                                                                                                                                                                                                                                                         | 53<br>54                                           |
|              | 4.6 Dissoziation und Reaggregation von Hydra Polypen                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54                                                 |
|              | 4.6.1 Seperation ektodermaler und endodermaler<br>Gewebeschichten                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54                                                 |
|              | 4.7 Transplantationsexperimente                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55                                                 |
|              | 4.8 Dokumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55                                                 |

| 5. Anhang                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 5.1 Bakterienstämme                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                               |
| 5.1.1 Genotyp von <i>E.coli</i> XL1blue<br>5.1.2 Genotyp von <i>E. coli</i> DH5α                                                                                                                                                                                                                                                                                                                                                                                         | 56<br>56                         |
| 5.2 Lösungen                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56                               |
| 5.2.1 Vektorklonierung<br>5.2.2 Hydra Kultur und Experimente<br>5.2.3 CaCl <sub>2</sub> -Transfektion<br>5.2.4 Sonstige Lösungen                                                                                                                                                                                                                                                                                                                                         | 56<br>56<br>57<br>57             |
| 5.3 Chemikalien                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57                               |
| 5.4 Abbildungen                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58                               |
| 5.4.1 Zu Abschnitt 2.1<br>5.4.2 Zu Abschnitt 2.4.3.<br>5.4.3 Zu Abschnitt 2.5.4                                                                                                                                                                                                                                                                                                                                                                                          | 58<br>59<br>59                   |
| 5.5 Sequenzen                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                               |
| 5.5.1 AktGFP (Abschnitt 4.2.1 – 4.2.4)<br>(Hydra Aktin Promotor + GFP aus pHotG)<br>5.5.2 $pGEM$ -AktHyWnt3a (Abschnitt 4.2.6).<br>5.5.3 $pGEM$ -AktBetaCatenin (Abschnitt 4.2.7)<br>5.5.4 $pGEM$ -AktdnTCF (Abschnitt 4.2.8)<br>5.5.5 $pGEM$ -Akt $\Delta$ BetaCatenin (Abschnitt 4.2.9)<br>( $\Delta$ N90BetaCatenin)<br>5.5.6 $pGEM$ -AktBetaCatGFP (Abschnitt 4.2.10)<br>5.5.7 $pCS$ - $\Delta\beta$ CatGFP (Abschnitt 4.2.11),<br>( $\Delta$ N90Peta Octowin 0.5.1) | 60<br>61<br>63<br>66<br>68<br>70 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72                               |
| 5.6 1 Zu Abschnitt 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>/ 3</b><br>73                 |
| 5.4.2 Zu Abschnitt 4.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73                               |
| 6. Literaturverzeichnis                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74                               |
| 7. Danksagung                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                               |

# Abbildungsverzeichnis

## <u>A Einleitung</u>

| Abbildung A 1: Schematische Übersicht von Hydra Querschnitten (aus Bode, 1996).     | 2 |
|-------------------------------------------------------------------------------------|---|
| Abbildung A 2: Vereinfachte Form des Wnt-Signalweges.                               | 3 |
| Abbildung A 3: Schematische Darstellung der Desmonemen-Differenzierung.             | 4 |
| Abbildung A 4: Oogenese in Hydra (modifiziert nach Miller und Technau, 2000).       | 5 |
| Abbildung A 5: Schematische Darstellung des Tansposon-Mechanismus zur Transfektion. | 7 |
| Abbildung A 6: Meganuklease-Prinzip.                                                | 7 |

## <u>B Ergebnisse</u>

| Abbildung B 1: <i>Aufbau der Platin Elektroden.</i>                                                                                          | 14 |
|----------------------------------------------------------------------------------------------------------------------------------------------|----|
| Abbildung B 2: Transfektion von Hydra Polypen mit Platin-Elektroden.                                                                         | 14 |
| Abbildung B 3: Schematische Zeichnung der Meganukleasen-Vektoren.                                                                            | 15 |
| Abbildung B 4: DAPI-Färbung früher Embryonalstadien von Hydra.<br>Abbildung B 5: Transgene Polypen, die GFP ausschließlich in einer der drei | 18 |
| Stammzelllinien exprimieren.                                                                                                                 | 21 |
| Abbildung B 6: Transfizierte I-Zellpaare im Rumpf eines Polypen.                                                                             | 25 |
| Abbildung B 7: Lokale Transfektion von I-Zellen im Polypen.                                                                                  | 25 |
| Abbildung B 8: Lokal transfizierte I-Zellen im Polypen.                                                                                      | 25 |
| Abbildung B 9: Schiksal transfizierter I-Zellen im Polypen.                                                                                  | 26 |
| Abbildung B10: Vorgehensschema bei Transplantationsexperimenten zum Wander-<br>und Differenzierungsverhalten von I-Zellen                    | 27 |
| Abbildung B11: Wanderungs- und Differenzierungsverhalten von I-Zellen<br>nach Transplantation.                                               | 28 |
| Abbildung B12: Rotationskultur ektodermaler Zellen.                                                                                          | 29 |
| Abbildung B13: Ektodermale Zellcluster nach einer Rotationskultur.                                                                           | 29 |
| Abbildung B14: Rotationskultur endodermaler Zellen.                                                                                          | 30 |
| Abbildung B15: Endodermale Zellcluster nach einer Rotationskultur.                                                                           | 30 |
| Abbildung B16: Aggregate mit transgenen ektodermalen Epithelzellen.                                                                          | 31 |
| Abbildung B17: Durchschnittliche Zellclustergröße ektodermaler Epithelzellen                                                                 |    |
| im Aggregat.                                                                                                                                 | 31 |
| Abbildung B18: Aggregate mit transgenen endodermalen Epithelzellen.                                                                          | 33 |
| Abbildung B19: Durchschnittliche Zellclustergröße endodermaler Epithelzellen                                                                 |    |
| im Aggregat.                                                                                                                                 | 33 |
| Abbildung B20: F <sub>1</sub> -Generation einer GFP <sup>+</sup> transgenen ektodermalen Parental-                                           |    |
| gerneration ( $P_{\mu}$ ).                                                                                                                   | 35 |
| <u>C Anhang</u>                                                                                                                              |    |
| Abbildung C1: Rhodamin-Dextran im Zytoplasma nach intra-epithelialer                                                                         |    |
| Mikroinjektion und Elektroporation.                                                                                                          | 59 |

| ······································                                          |    |
|---------------------------------------------------------------------------------|----|
| Abbildung C2: Lokale Transfektion an Hydra Polypen durch Elektroporation.       | 59 |
| Abbildung C3: Polyp mit GFP <sup>+</sup> Zellen in Testis.                      | 60 |
| Abbildung C4: Parentalgenereation und F, und Endoderm-GFP <sup>+</sup> Polypen. | 60 |

# Tabellenverzeichnis

## <u>B Ergebnisse</u>

| Tabelle B1: Effekt verschiedener Medien auf die Transfektion durch Elektroporation.                                 | 12 |
|---------------------------------------------------------------------------------------------------------------------|----|
| Tabelle B2: Optimierung der Elektroporationsparameter zur Transfektion von Hydra Polypen.                           | 13 |
| Tabelle B3: Effekt von Meganukleasen und dem Transposon "Sleeping Beauty" auf die         Transfektion von Polypen. | 17 |
| Tabelle B4: Messung der Transfektionseffizienz im DNA-Konzentrationsgradienten.                                     | 19 |
| Tabelle B5: Embryonale Mikroinjektion des Transposons "Sleeping Beauty".                                            | 22 |
| Tabelle B6: Embryonale Mikroinjektion der Meganuklease I-Scel.                                                      | 23 |
| Tabelle B7: Embryonale Mikroinjektion der Meganuklease I-Ceul.                                                      | 23 |
| Tabelle B8: $F_1$ -Generation ektodermal transgener Polypen.                                                        | 35 |
|                                                                                                                     |    |

## <u>C Anhang</u>

| Tabelle C1: Einfluss der Salzkonzentration bei der Elektroporation.                     | 73 |
|-----------------------------------------------------------------------------------------|----|
| Tabelle C2: Einfluss der DNA-Konzentration bei der Elektroporation                      |    |
| (Epithelzell-Bedingungen).                                                              | 73 |
| Tabelle C3: Einfluss der DNA-Konzentration bei der Elektroporation (I-Zell-Bedingungen) | 74 |
| Tabelle C4: Transfektion von Polypen mit Meganuklease                                   | 74 |
| Tabelle C5: Transfektion von Polypen mit Meganuklease in 1x PBS                         | 74 |

# 1. Einleitung

## 1.1 Der Modellorganismus Hydra

Der Süßwasserpolyp Hydra (Abb. A1a) ist ein Mitglied des diploblastischen Phylums Cnidaria, befindet sich an der evolutionären Basis der Metazoen und zeigt den grundlegensten Typ von Gewebeorganisation bei mehrzelligen Organismen (Hobmayer, 2002). Der Organismus besteht durchschnittlicher aus  $3 \times 10^4 - 2 \times 10^5$  Zellen und wird von drei Hauptzelllinien aufgebaut (Abb. A1b): den äußeren ektodermalen Epithelzellen, den inneren endodermalen Epithelzellen und den, im Ektoderm eingebetteten, interstitiellen Zellen mit ihren verschiedenen Differenzierungsprodukten (vgl. Abschnitt 3.1.2). Weiterhin zeigt der Körperbauplan eine orale/ aborale Hauptkörperachse, entlang derer drei Körperbereiche unterschieden werden können: (1) der Kopfbereich mit Hypostom und Tentakelkranz, (2) der Rumpf, welcher den Gastralraum und die Knospungszone umfasst und (3) den Fuß mit einer basalen Haftscheibe, mit Hilfe derer sich der Polyp an das Substrat heften kann.

Eine Besonderheit des Organismus ist die ständige Gewebeerneuerung, die mit hohem Re-generarionsvermögen des Tieres verbunden ist und durch anhaltende Proliferation und Differenzierung aller drei Zelllinien im Bereich der Körpersäule erfolgt (Campell, 1967a). Neben dieser Proliferations- und Differenzierungszone stellen Tentakelkranz und Stiel ("peduncle") Übergangsregionen zu Bereichen mit ausdifferenzierten Zellen dar. Diese Regionen werden von Tentakeln und Fußscheibe verkörpert, in denen keine Proliferation statt findet (Heimfeld et al., 1985; Hoffmeister und Schaller, 1985; Dübel, 1989; Holstein et al., 1991; Technau und Holstein, 1995). Trotz des ständigen Gewebeschubes aus dem Rumpf in Richtung Körperenden behält Hydra ihre Größe von bis zu 2 cm bei, da 80 - 85 % der neu gebildeten Zellen dem Tier durch Knospung entzogen werden (asexuelle Reproduktion) (Steele, 2002). Die verbleibenden 15 – 20 % werden an den distalen Enden der Tentakel und des Fußes abgegeben (Otto und Campell, 1977). Die in diesem Zusammenhang notwendigen Regulationsmechanismen von Musterbildung, Differenzierung und Proliferation machen Hydra zu einem hoch interessanten Modellorganismus innerhalb der Metazoa.

## 1.1.1. Regeneration und Reaggregation

Hydra ist es möglich entferntes Gewebe und sogar fehlende Körperbereiche, wie Kopf oder Fuß, in nur wenigen Tagen zu regenerieren. Diese regenerativen Eigenschaften sind auch dann noch vorhanden, wenn der Organismus durch mechanische Dissoziation in Einzelzellen zerlegt wird. Obwohl während dieses Prozesses sämtliche Positionsinformationen innerhalb des Gewebes verloren gehen, können sich die Zellen nach Reaggregation in wenigen Tagen wieder zu komplett intakten Polypen organisieren (Noda, 1971; Gierer et al., 1972).

Ähnlich wie bei der Regeneration laufen bei Hydra auch während der Reaggregation eine Reihe definierter morphogenetischer Prozesse ab, die zur Polarität des Gewebes und zur Zelldifferenzierung beitragen. Nach der initialen Zelladhäsion finden die Zellsortierungsprozesse statt bei dem sich Zellen gleichen Typs aneinanderlagern (Technau und Holstein, 1992) und später zu den beiden Epithelien formieren (Hobmayer et al., 2001). Parallel kommt es zur Ausbildung von Kopfstrukturen, die als Organisationszentren für die Etablierung der oral/ aboralen Körperachse dienen. In diesem Zusammenhang konnte der Wnt-Signalweg als frühes Zeichen der Achsenbildung in Hydra beobachtet werden (Hobmayer et al.2000).



Abbildung A1: Schematische Übersicht von Hydra Querschnitten (aus Bode, 1996)

a) Ein Polyp besteht aus zwei Epithelschichten, dem Ektoderm und dem Endoderm. Beide Schichten werden von einer zellfreien Basallamina (Mesogloea) voneinander getrennt. Im Bereich der Körpersäule wird durch ständige Zellteilung der drei Hauptzelllinien (ekto- und endodermale Epithelzellen und interstitielle Stammzellen) ein Gewebeschub erzeugt, der Gewebe in Richtung Körperenden und Knospungszone verfrachtet (durch Pfeile angedeutet). Dabei findet Proliferation ausschließlich im Bereich der Körpersäule statt, während Fuß, Hypostom und Tentakel durch nichtteilende, ausdifferenzierte Zellen gekennzeichnet sind. (aus: Bode, 1996)

**b)** Detailzeichnung eines Gewebelängsschnittes. Neben den beiden epithelialen Zelllinien sind in weiß interstitielle-Stammzellen (I-Zellen) und deren Differenzierungsprodukte in unterschiedlichen Grautönen dargestellt. 1 = Nervenzelle, 2 = 4er Nest, 3 = I Zelle, 4 = ektodermale Epithelzelle, 5 = 2er Nest, 6 = entodermale Epithelzelle, 7 = Drüsenzelle (aus: Bode, 1996)

Beim Wnt-Signalweg interagiert das sekretierte Signalmolekül Wnt mit dem Rezeptor Frizzeld (Fz) und dem Korezeptor LRP 5/6. Durch diese Interaktion wird eine intrazelluläre Signalkaskade über Dishevelled aktiviert, die letztendlich dazu führt, dass die Konzentration des intrazellulären Mediators β-Catenin im Cytoplasma erhöht wird und zusammen mit Tcf/Lef als Transkriptionsfaktorkomplex die Expression von Zielgenen reguliert (Abb. A2).

Dieser hochkonservierte Signalweg spielt bei Invertebraten und Vertebraten eine wichtige Rolle bei der Etablierung der Dorsoventral Achse (Wnt7a in Huhn; Kengaku et al., 1998), der Segmentpolarität (wnt1 in Drosophila, FlyBase), Neuronalewegfindung (wnt 3/5 in Drosophila; Yoshikawa, et al.2003) und Zelldifferenzierung (wnt5a und wnt5b, Zebrafisch; Yang et al.; 2003), wobei mehrere Wnt-Familien zusammen mit Wnt-Antagonisten wie z.B. Dickkopf/2/4 (Dkk) beteiligt sind. Auch in Cnidariern konnten essentielle Komponenten des Wnt-Signalweges isoliert und mehrere Wnt-Homologe aus unterschiedlichen Familien identifiziert werden (Kusserow et al., 2005; Guder et al., 2005; Lengfeld et al., unveröffentlicht). Speziell in Hydra zeigte sich, dass eine Expression von HyWnt3a in Epithelzellen das Gewebe zur Kopfbildung induziert, allerdings sind hierfür Zellcluster von mindestens 10-15 Zellen (60 μm im Durchmesser) notwendig. Kleinere Zellcluster (30 μm im Durchmesser) induzierten keine Kopfbildung (Technau et al., 2000). Weiterhin wird angenommen, dass die Wnt-abhängige Aktivierung und Stabilisierung der Signalzentren auf einen autokatalytischen "Feedbackloop" zurückzuführen ist. Ein solcher Prozess könnte ähnlich zum vorausgesagtem Reaktions-Diffusions Modell von Gierer und Meinhardt ablaufen (Gierer & Meinhardt, 1972; Meinhardt, 1993) und passt sehr gut zu den Beobachtungen aus in situ Hybridisierungsexperimenten mit Hywnt3a, beta-Catenin (B-Cat) und Tcf.



#### Abbildung A2: Vereinfachte Form des Wnt-Signalweges

Das sekretierte Wnt-Signalmolekül aktiviert durch seine Interaktion mit dem 7-Transmembran Rezeptor Frizzled und dem Korezeptor LRP 5/6 eine intrazelluläre Signalkaskade. Diese Kaskade führt dazu, dass cytoplasmatische beta-Catenin (ß-Cat) nicht durch einen Multiproteinkomplex aus GSK-3 und Axin ubiquitiniert wird und so für eine Interaktion mit Tcf/Lef zur Verfügung steht. Zusammen mit Tcf/Lef bildet ß-Cat einen Transkriptionsfaktorkompex, der die Genexpression beeinflußt.

#### 1.1.2. Das interstitielle Stammzellsystem

Die interstitiellen Zellen (I-Zellen) befinden sich in den Zwischenräumen beider Epithelien (Abb. A1b). Sie sind multipotente Stammzellen, die sich in drei Klassen somatischer Zellen und in geschlechtlichen Stämmen auch zu männlichen und weiblichen Gameten differenzieren können (Bode, 1996). Zu den somatischen Zellen zählen verschiedene Nervenzelltypen (Ganglionzellen und mehreren Typen sensorischer Zellen), vier Typen von Nematocyten (Stenothelen, Desmonemen, atriche und holotriche Isorhizen), sowie die sekretorischen Drüsenzellen.

Proliferierende und differenzierende I-Zellen befinden sich in der gesamten Köpersäule des Polypen, während sie im Kopf- und Fußgewebe nur noch vereinzelt vorhanden sind. Innerhalb der Körpersäule können sie sich selbst räumlich orientieren und ihre Position bestimmen (David und Plotnick, 1980). I-Zellen haben eine Selbsterneuerungseigenschaft und können diese durch negative Rückkopplung über ein "Feedback"-Signal ihrer Derivate steuern (Sproull und David, 1979, Bosch 1991). Man vermutet, dass die I-Zelldifferenzierung auch durch sezernierte Peptide von umgebenden Epithelzellen beeinflusst wird. So hemmt beispielsweise Hym-33H die Wanderung von Vorläufern der Nervenzellen (Takahashi et al., 1997; Takahashi, 2000).

Der typische Differenzierungsweg interstitieller Zellen schließt eine Proliferationsphase ein, der eine Differenzierungsphase ohne weitere Zellteilung folgt. Wie in Abbildung A3 am Beispiel von Nesselzellen (Nematocyten) gezeigt, folgt eine Determinierung von I-Zellen zu Nematoblasten eine charakteristische Anzahl synchroner Proliferation im Rumpf. Als eine Besonderheit des interstitiellen Stammzellsystems bleiben die Zellen während der Proliferationsphase und bis in die späten Differenzierungsstadien über zytoplasmatische Brücken miteinander verbunden und bilden I-Zellcluster (Nester) von 2, 4, 8 bis 64 Zellen. Diese I-Zellnester differen-zieren ebenfalls synchron zu einem bestimmten Zelltyp. Im Falle der Nesselzellen wird die letzte Phase der Differenzierung mit dem Zerfallen der ausdifferenzierten Nematocyten in Richtung ihres Bestimmungsortes zu wandern. Zuletzt werden die ausdifferenzierten Nematocyten in spezialisierte Epithelzellen in den Tentakeln, den Batteriezellen, aufgenommen und integriert (David und Gierer, 1974).



Abbildung A3: Schematische Darstellung der Desmonemen-Differenzierung.

Der exakte Zeitpunkt an denen sich die I-Zellen für einen Kapseltyp festlegen ist noch nicht geklärt. Es wurden zwei Zeitpunkte postuliert wonach dies in der frühen Proliferationsphase von I-Zellen geschieht bzw. erst spät, kurz vor der Ausdifferenzierung stattfindet. Im = multipotente Stammzelle. (Shimizu und Bode, 1995)

Beispielsweise proliferiert bei der Bildung von Desmonemen eine große I-Zelle in der frühen Phase in ein I-Zellpaar (2er Nest), anschließend in ein Cluster aus 4 I-Zellen (4er Nest). In der darauf folgenden späten Phase werden Cluster von 8 kleinen I-Zellen (8er Nest) und schließlich 16 Zellcluster (16er Nest) gebildet. Von diesem Zellcluster ausgehend beginnt die Nematoblasten-Differenzierung, welche mit dem Zerfallen des Zellclusters in einzelne, reife Desmonemen führt (Shimizu und Bode, 1995) (Abb. A3).

Shimizu und Bode konnten beobachten, dass sich I-Zellen bereits in den frühen Proliferationsstadien auf einen Differenzierungsweg festlegen (Shimizu und Bode, 1995). Zuvor wurden zwei mögliche Zeitpunkte postuliert, in welchen das Ereignis entweder früh während der I-Zellproliferation stattfindet oder später, kurz vor der Ausdifferenzierung (siehe auch Abb. A3). Dabei konnte für jeden Kapseltyp ein bestimmtes Verhältnis an kleinen I-Zellclustern/ Nestern (8:16:32) beobachtet werden kann. Die Stenothelen-Differenzierung in *Hydra vulgaris* weist ein Verhältnis von 6:4:0 auf, während das Verhältnis bei Desmonemen 0:9:1 aufweist und somit hauptsächlich aus 16-Zellclustern hervorgehen (Rich und Tardent, 1969; David und Challoner, 1974).

#### 1.1.3 Gametogenese und sexuelle Vermehrung

Hydra kann sich unter ungünstigen Umweltbedingungen auch sexuell reproduzieren. Hierbei kapseln sich die Embryonen noch vor der Gastrulation in eine dicke Cuticula ein und können in diesem Zustand 2 bis 52 Wochen überdauern bevor der Polyp schlüpft (Martin et al. 1997). Zur Ausbildung der Gameten ist eine bestimmte Subpopulation an I-Zellen vorhanden. Diese produzieren im weiblichen Polypen eine Oozyte und sogenannte "nurse" Zellen. Die Akkumulation der I-Zell-Subpopulation im Ektoderm ist das erste sichtbare Zeichen der Oogenese (Abb. A4). Im weiteren Verlauf bilden diese I-Zellen das sogenannte Eifeld, welches sich deutlich von der Körpersäule abhebt. Innerhalb dieses Eifelds wird eine I-Zelle zur Oocyte determiniert, während die übrige Masse an I-Zellen zu sogenannte "nurse"-Zellen phagozytiert. Dieser Prozess setzt sich noch bis in die frühen Embryogenese fort. Ab einer bestimmten Masse durchbricht die Oozyte das Ektoderm und kommt mit dem äußeren Medium in Kontakt. Zu diesem Zeitpunkt wird die Oozyte befruchtet. Kommt es in den ersten 2 Stunden nach der Exposition mit dem äußeren Medium nicht zur Befruchtung stirbt die Oozyte ab (Mar-



#### Abbildung A4: Oogenese in Hydra (modifiziert nach Miller und Technau, 2000)

Gameten determiniert I-Zellen akkumulieren. Eine der I-Zellen wird zur Oozyte, benachbarte I-Zellen differenzieren zu Nährzellen ("nurse cells"). Die Oozyte beginnt durch Phagozytose der "nurse cells" in ihrer Zellmasse zu wachsen, so dass ein zunehmend wachsender Eifleck beobachtet werden kann. Zwischen Stadium 6 & 7 durchbricht sie das Ektoderm und kommt mit dem äußeren Medium in Kontakt. Ab diesem Moment kann die Oozyte befruchtet werden.

tin et al., 1997). Nach dem Ausstülpen der Oozyte befinden sich noch durchschnittlich 4500 "nurse"-Zellen im Ei. Dort erscheinen sie als rundliche Zellen und verbleiben in Epithelzellen bis zum Schlüpfen des Embryos (Zihler, 1972, Honegger, 1981; Honegger et al., 1989; Litt-lefield, 1994).

Der Embryo teilt sich daraufhin holoblastisch und unipolar, wobei jede Zellteilung etwa eine Stunde benötigt. Nach 5 Teilungen (6 - 8 h) hat der Embryo das Blastula-Stadium erreicht und besteht aus 64 - 128 Zellen, wobei jede mit etwa 40 "nurse"-Zellen gefüllt ist. Die Gastrulation findet durch Ingression einzelner Zellen in das Blastocoel statt. Nach etwa 4 h endet dieser Prozess in einem kompakten Embryo mit einer äußeren Schicht an säulenförmigen Zellen und einer inneren unorganisierten Zellmasse. In den folgenden 2 Tagen bildet der Embryo eine Cuticula aus, die als äußere Schutzschicht dient. In diesem Stadium überdauert der Embryo mehrere Wochen bis der fertige Polyp schlüpft. Diese Periode dient unter natürlichen Bedingungen vermutlich der Überwinterung.

## 1.2 Transfektion in Hydra

Obwohl sich Hydra aufgrund der oben beschriebenen Eigenschaften als Modellorganismus überaus eignet, hat sich der Organismus bis vor wenigen Jahren modernen entwicklungsbiologischen Methoden wie "gain-of-function" oder "loss-of-function" Experimente weitestgehend wiedersetzt. Erfolgreiche transiente Transfektionen am Polypen wurden erstmals durch die Verwendung der "Particle gun" beschrieben (Böttger, 2002). Hierbei konnte GFP ("green fluorescent protein") als Reportergen in einigen transfizierten Zellen bis zu 10 Tagen nachgewiesen werden. Im selben Jahr wurde auch eine Transfektionsmöglichkeit mittels Elektroporation beschrieben (Miljkovic, 2002). Nach Elektroporation von Polypen mit NLS-GFP Vektorkontrukten ("nuclear localization sequence") zeigte sich eine Expression von GFP in den Nuklei mehrerer Zellen. Beide publizierten Methoden stellten allerdings nur Möglichkeiten zur transienten Expression von Vektorkonstrukten dar. Erst später konnte gezeigt werden, daß eine embryonale Mikroinjektion von Vektorkonstrukten zur stabilen Transfektion führt (Wittlieb, 2006). Hier führte eine Mikroinjektion des Vektorkonstrukts pHotG (Böttger, 2002), das GFP unter der Kontrolle des Hydra Aktin Promotors enthielt, zu den ersten transgenen Polypen.

Die Technik der embryonalen Mikroinjektion wurde in anderen Organismen mit verschiedenen Ansätzen versucht zu verbessern. So zeigte die REMI-Technik ("restriction endonuclease mediated integration") an Dictyostelium (Kuspa und Loomis, 1992) Erfolg. REMI kombiniert mit Mikroinjektion führte an Xenopus (Kroll und Amaya, 1996; Kroll und Gerhart, 1994) und auch an Zebrafisch (Jesuthasan und Subburaju, 2002) zur erhöhten Effizienz an transgener Expression in den injizierten Embryonen. Bei der REMI-Technik wird DNA aus Spermien isoliert, mit Restriktionsendonukleasen geschnitten und mit der zu integrierender, zuvor liniearisierter, DNA preinkubiert. Dieser Ansatz wird anschließend in frühe Embryonen injiziert. Darüber hinaus führte in einem weiteren Ansatz die Verwendung von Meganukleasen zum verbesserten Transfektionserfolg bei embryonaler Mikroinjektion. Dieser Technik liegt ein Enzym, die Meganuklease, zugrunde. Sie erkennt, wie andere Restriktionsendonukleasen, spezifische Sequenzmotive der DNA, allerdings sind diese Motive im Vergleich viel größer (18 bp oder > 18 bp). Eine Meganuklease bindet an ihrem spezifischen Sequenzmotiv, schneidet diese dort, wobei das Motiv in zwei ungleiche Hälften gespalten wird. Die Meganuklease verbleibt an der größeren Hälfte gebunden und kann anschließend die gebundene DNA in den Nukleus dirigieren (Thermes et al., 2002). In einem weiteren Ansatz werden Transposons verwendet, die Effizienz zur Generierung transgener Expression in Medaka und Zebrafisch erhöht (Davidson et al., 2003; Fadool et al., 1998; Grabher et al., 2003; Kawakami et al., 2000;



Abbildung A5: Schematische Darstellung des Tansposon-Mechanismus zur Transfektion

Ein Transposonsystem zur Transfektion besteht aus zwei funktionellen Einheiten, (1) der Transposase, welche durch einen "cut & paste"-Mechanismus die Transposition katalysiert und (2) ihrer spezifischen Erkennungssequenzen (ITR). Nach einer Ko-Transfektion schneidet die exprimierte Transposase das DNA-Konstrukt im "Donor"-Plasmid aus und katalysiert die Integration ins Wirtsgenom.



Abbildung A6: Meganuklease-Prinzip

Meganukleasen sind Endonukleasen, welche über besonders große und damit spezifische Erkennungssequenzen verfügen. Diese Stellen werden ungleich geschnitten, wobei sie am größeren Fragment assoziiert bleiben. Sie sind fähig das gebundene DNA-Fragment an eine neue Restriktionsstelle zu integrieren (2a-c). Diese Charakteristika macht man sich bei Meganuklease-basierten Ansätzen zu nutze. (Graphik entnommen- von Cellestics; http://www.cellectis.com)

Raz et al., 1998). In dieser Arbeit sollen die zuletzt aufgeführten Techniken, die Meganuklease und das Transposon, auf Hydra übertragen werden. Diese "molekularen Helfer" sollen bei der Integration des Transgens in das Wirtsgenom assistieren um den Anteil transgener Embryonen durch embryonale Mikroinjektion zu erhöhen.

#### 1.2.1 Transposon vermittelte Transfektionen

Transposons können in vielen Modellorganismen eine stabile Transfektion unterstützen. Einige Transposonssysteme, die als Werkzeug zur stabilen Transfektion dienen, konnten auf Basis der mariner-Familie bereits geschaffen werden. So z.B. auf Basis des Transposons Mos1 aus *D. mauritania* (Medora et al., 1991; Horn, 2000).

#### 1.2.1.1 Das Transposon "Sleeping Beauty"

Das Transposon "Sleeping beauty" gehört zur mariner-Familie, einer Familie DNA-vermittelter Transposons. Die mariner-Familie ist Teil einer Superfamilie, der Tc1-Familie. (Jacobson and Hartl, 1985; Haymer and Marsh, 1986; Robertson, 1995). In Hydra wurden auch Transposons der mariner-Familie entdeckt (Jakobson and Hartl, 1985; Haymar and Marsh, 1986, Robertson, 1995; Robertson, 1997). Transposons der mariner-Familie sind relativ klein und bestehen aus etwa 1300 bp. Ein offener Leserahmen (ORF) für die etwa 350 Aminosäuren umfassende Transposase wird dabei von 30 bp großen invertierten Sequenzen flankiert, den sogenannten "inverted terminal repeats" (ITR) (Hartl, 1989; Robertson, 1995). Die ITR des "Sleeping beauty" Transposons bestehen aus indirekten (IR) und direkten (DR) Nukleotidsequenzen. Der dem Transposas esine spezifischen ITR's erkennt, bindet und anschließend das gesamte transposable Element, inklusive der eigenen Transposase kodierenden Sequenz, ausschneidet und an einer Zielsequenz, ein TA-Dinukleotid, im Genom wieder integriert (Lampe et al., 1996; Plasterk, 1996) (siehe Abb. A5).

"Sleeping Beauty" ist phylogenetisch sehr alt und wurde bisher in keinem Organismus in seiner aktiven Form entdeckt. Erst durch den Vergleich mehrerer phylogenetischer Daten aus Fischen konnte über gezielte Mutationen die Aktivität wieder hergestellt werden (Ivics, 1997). Der Name "Sleeping Beauty" stammt von der Tatsache, das die Aktivität des Transposons aus einem langen "evolutionärem Schlaf" wiedererweckt wurde (Ivics, 1997). Der Vorteil dieses Transposonsystems liegt darin, das es offenbar ausschließlich in seiner heutigen rekombinanten Form aktiv ist. Eine Beeinflussung des Transposonsystems aufgrund vorhandener endogen aktiver Transposons kann dadurch ausgeschlossen werden. Andere Transposonsysteme können diese unspezifischen Aktivität von "Sleeping beauty" wurde bereits überprüft und ist sowohl *in vitro* als auch in einigen Organismen funktionell (Horie, 2001; Lampe et al., 1996; Plasterk, 1996; Vos et al., 1994). Diese Eigenschaften lassen erwarten, dass die Aktivität von "Sleeping Beauty" weitestgehend unabhängig vom Organismus ist und auch in Hydra eine Transposition katalysieren könnte.

Ein Transposonsystem, als molekularer Helfer zur stabilen Transfektion eines Gens, nutzt die Eigenschaften des autonomen Transports innerhalb des Genoms. Jedoch anstatt das Transposon sich selbst über seine ITR's erkennen zu lassen werden die zwei funktionellen Einheiten des Systems auf zwei Vektoren verteilt, die spezifischen Erkennungssequenzen (ITR) und der Transposase kodierende Bereich. Die beiden Vektoren werden ihrer Funkion nach als "Helfer-Plasmid" und "Donor-Plasmid" bezeichnet (Abb. A5). Das "Helfer-Plasmid" trägt das Transposasegen und hat somit eine assistierende Eigenschaft, das "Donor-Plasmid" enthält das zu transfizierende Gen, welches von den ITR flankiert wird. Wird das Transposonsystem kotransfiziert, so exprimiert das "Helfer-Plasmid" die Transposase, welches das Ausschneiden und Einfügen der Gensequenz vom "Donor-Plasmid" in das Wirtsgenom katalysiert (vgl. Abb. A5). Eine Variante dieses Ansatzes ist, statt des "Helfer-Plasmids", die Transposase in mRNA kodierter Form zu verwenden, welche eine zu hohe Aktivität der Transposase vermeidet.

### 1.2.2 Meganukleasen vermittelte Transfektionen

Meganukleasen sind Endonukleasen, welche eine ungewöhnlich große Erkennungssequenz besitzen. Dabei tolerieren sie jedoch bis zu einem gewissen Grad Abweichungen in dieser Erkennungsequenz. Trotzdem repräsentieren sie aufgrund der Erkennungssequenzlänge, hoch spezifische Endonukleasen, welche mit einer Sequenzspezifität (für die LAGLIDADG Meganukleasen) von 1 in 109 Basen auftritt (Argast et al., 1998; Chevalier et al., 2003; Gimble et al., 2003). Meganukleasen sind in Introns und Inteinen kodiert, sie begünstigen das sogenannte "Homing", einen lateralen Transfer ihrer eigenen kodierenden Sequenzbereiche in ein homologes Intron- bzw. Intein-freies Allel. Die Meganuklease ist fähig ihren eigenen kodierenden Bereiche auszuschneiden und an den neuen Integrationsort an der Erkennungssequenz, dem Intron-freien Allel zu integrieren (Colleaux et al., 1988; Jacquier und Dujon, 1985; Macreadie et al., 1985). Diese Eigenschaft kann auch biotechnologisch genutzt werden und zur Effizienzsteigerung bei der Generierung transgener Organismen beitragen (z.B. durch embryonale Mikroinjektion). Hierfür wird die Meganuklease zusammen mit dem zu transferierenden Gen, welches von den Erkennungssequenzen flankiert ist (Abb. A6), in Embryonen ko-injiziert. Meganukleasen werden abhängig eines Aminosäure Sequenzmotifs in vier Hauptgruppen eingeteilt ("LAGLIDADG", "GIY-YIG", "H-N-H" und "His-Cys") (Belfort und Roberts, 1997; Chevalier und Stoddard, 2001). In dieser Arbeit werden die Meganukleasen I-Scel und I-Ceul verwendet. Beide enthalten das Aminosäure Sequenzmotif "LAGLIDADG" und gehören damit zu dieser Gruppe. Diese Enzyme erkennen lange DNA-Zielsequenzen und schneiden die DNA in der kleinen Furche, wobei cohesive 4 Basenüberhänge am 3' Ende entstehen.

Die Meganuklease *I-Sce*I wurde in einem Gruppe I Intron des großen rRNA Gens im Mitochondrium aus *S. cerevisiae* isoliert. Sie ist ein monomeres globuläres Protein mit 235 Aminosäuren. Zur Endonukleaseaktivität benötigt sie Mg<sup>2+</sup> bzw. Mn<sup>2+</sup> und schneidet die DNA asymmetrisch. Sie besitzt eine hohe Affinität zur größeren Hälfte des geschnittenen Fragments und bleibt dort einige Zeit gebunden, wodurch sie einen geringen enzymatischen Umsatz hat (Perrin et al., 1993). Die Erkennungssequenz ist 18 bp lang, wobei nur eine geringe Toleranz gegenüber Basenpaar Abweichungen innerhalb dieser akzeptiert wird. Dadurch ist die *I-Sce*I eine der spezifischsten Meganukleasen (Colleaux et al., 1988). Stochastisch erwartet man nur eine Erkennungsequenz in 7 x 1010 Basen einer zufälligen Sequenz.

Bei Anwendung von Meganukleasen zur Generierung transgener Organismen besteht keine Gefahr einer Fraktionierung des Genoms, da die Aktivität der Meganuklease nur auf die eingeführten und die wenigen im Genom vorhandenen Erkennungssequenzen wirkt. In Vertebraten konnte gezeigt werden, daß eine Ko-Injektion der Meganuklease *I-SceI* mit einem Reporterplasmid, das von den Erkennungsequenzen flankiert ist, zu effizienten, stabil transfizierten Zelllinien führt (Thermes et al., 2002). Im Genom von Vertebraten hat man bis jetzt noch keine *I-SceI* Erkennungssequenz entdeckt. Die Anwendung der *I-SceI* Meganuklease wird inzwischen erfolgreich zur Erzeugung transgener Organismen in Fischen (Medaka, Zebrafisch, Stichling), in Amphibien (*Xenopus*, Axolotl) und Ascidien (*Ciona*) angewendet. In dieser Arbeit wird auch eine weitere Meganuklease, die *I-CeuI*, als "molekularer Helfer" verwendet. Im Gegensatz zur I-SceI konnten Erkennungssequenzen der *I-CeuI* im Hydra Genom gefunden werden. Die Meganuklease *I-CeuI* ist ein Heterodimer und wurde im 5. Gruppe I Intron des Gens der großen Unterheinheit rRNA des Chloroplasten in *Chlamydomonas eugametos* entdeckt. *I-CeuI* erkennt eine 29 bp Sequenz (Abb. A5), wobei einzelne Basenveränderungen durchaus noch zur Restriktion führen können, aber die Effizienz verringern.

## 1.3 Ziel dieser Arbeit

Ziel dieser Arbeit ist es Techniken zu entwickeln, die zu transgenen Tieren sowie zu stabil transfizierten Stammzelllinien führen. Hierbei werden verschiedene Verfahren analysiert, welche die embryonale Mikroinjektion, die Elektroporation sowie zwei biotechnologisch unterstützte Ansätze umfassen. In letzteren werden die Meganukleasen *I-Sce*I und *I-Ceu*I, sowie das Transposonsystem "Sleeping Beauty" untersucht.

Durch embryonale Mikroinjektion sollen zudem transgene Hydren erzeugt werden, die in jeweils einer Stammzelllinie das Reportergen GFP exprimieren. Anhand dieser werden zellbiologische Studien durchführbar sein, welche vor allem auf die Ereignisse der frühe Zellsortierungsprozesse in Reaggregaten und Proliferations- und Differenzierungsprozesse der I-Zelllinie fokussiert sein sollen.

Durch die etablierte Technik embryonaler Mikroinjektion lassen sich transgene Hydren erzeugen. Bislang führen Mikroinjektionen ausschließlich zu partiell exprimierenden transgenen Polypen. Qualitativ ist diese Technik verbesserungsfähig, da unter derzeitigen Bedingungen nicht alle drei Stammzelllinien zugleich transfiziert werden können. Ein Ziel dieser Arbeit ist es, diesen technischen Nachteil durch zwei biotechnologische Ansätze zu überwinden. Ein Ansatz basiert auf dem Transposonsystem "Sleeping Beauty", ein weiterer ist Meganukleasenbasiert, wobei die Meganukleasen *I-Sce*I und *I-Ceu*I untersucht werden.

Zusätzlich soll in dieser Arbeit eine Transfektionsmöglichkeit für Hydra etabliert werden, die zukünftig lokal begrenzte und zelltypspezifisch Transfektionen an frei wählbaren Gewebebereichen im Polypen erlauben. Eine solche Technik würde beispielsweise neue Untersuchungen an den zugrunde liegenden Mechanismen der I-Zelldifferenzierung ermöglichen. Hier könnte eine lokale Transfektion an unterschiedlichen Bereichen eines Polypen Aufschluss über eine Positionsabhängigkeit in der I-Zelldifferenzierung geben. Weiterhin wäre eine lokale Transfektion von Epithelzellclustern nützlich für "Gain-of-function" (GOF)-Experimente. So würde diese Technik neue Möglichkeiten in der funktionellen Analyse des Wnt-Signalwegs in Hydra und neue Erkenntnisse über den zugrunde liegenden Mechanismus in der Achsende-terminierung erbringen. Neben der Etablierung der Transfektionstechnik sollen erste Vorbereitungen für GOF-Experimente getroffen werden, indem Komponenten des Wnt-Signalwegs unter die Kontrolle eines konstitutiv aktiven Promotors, den Hydra Aktin Promotor, kloniert werden.

# 2. Ergebnisse

## 2.1 Optimierung der Elektroporation von Hydra Polypen

Vorversuche haben gezeigt, dass es möglich ist Polypen mit Plasmid-DNA durch Elektroporation ein einer Küvette zu transfizieren (Diplomarbeit Mättner, 2004). Eine Elektropration von *pHotG* führte zu transient transfizierten Epithelzellen. Das Plasmid *pHotG* enthält ein Reporterkostrukt, welches aus GFP unter Kontrolle eines konstitutiv aktiven Hydra Aktin Promotors besteht. Durch weiterführende Experimente mit vorangehender intraepithelialer Mikroinjektion des Plasmids konnten transfizierte Zellen auf einen Bereich eingeschränkt werden. Hierfür konnten auch die Elektroporationsparameter optimiert werden, so dass bei einem Puls von 12 V, 80 ms die besten Transfektionsergebnisse (2-3 Epithelzellen) erzielt werden konnten (Diplomarbeit Christ, 2006)

Zur weiteren Optimierung wurde der Effekt des Elektroporationsmediums auf die Transfektionseffizienz analysiert. Hierbei wurden die beiden Elektroporationsansätze, Plasmid-DNA in umgebender Lösung in der Küvette bzw. zuvor intraepthielal mikroinjizierte Plasmid-DNA, untersucht. Tabelle B1 fasst die Ergebnisse zusammen. Desweiteren wurde der Effekt von Elektroporationsmedien geprüft, die in anderen Systemen erfolgreich eingesetzt werden. Ein Medium, welches bei Säugerzellen eingesetzt wurde hatte keinen positiven Einfluss auf die Transfektionseffizienz (Mussauer et al., 2001). Eine spezifische Elektroporationslösung für das MP-100 Kit (PeQlab) führte zur Transfektionseffizienz 4 % mit durchschnittlich 2 Epithelzellen.

Es stellte sich heraus, dass eine Elektroporation in 70 % Dissoziationsmedium (DM) zur höchsten Anzahl transfizierter Zellen führt. Befand sich die DNA im Medium gelöst in der Küvette konnten durchschnittlich 2,7 Epithelzellen pro Polyp transfiziert werden. Nach vorangegangener Mikroinjektion wurden durchschnittlich 2,5 Epithelzellen im Polypen transfiziert. Die Mikroinjektionstechnik führte mit 12 % zu einer geringeren Transfektionseffizienz gegenüber 30 % in der Küvette. Allerdings erwies sie sich dennoch als vorteilhafter, da sich die transfizierte Zellen am Injektionsort befanden. Bei alleiniger Elektroporation in der Küvette waren transfizierte Zellen vereinzelt über die Körpersäule des Polypen verteilt. Im Folgenden wurde an der weiteren Optimierung der Elektroporation mit Mikroinjektion gearbeitet, da man sehr daran interessiert ist zusammenhängende Zellcluster am Polypen transfizieren zu können.

Eine naheliegende Möglichkeit zur weiteren Optimierung bezog sich auf die Reduktion des relativ großen zeitlichen Abstands zwischen der Mikroinjektion und der Elektroporation in der Küvette. Die Gefahr bestand, dass zuvor injizierte DNA-Lösung wieder austrat bevor die Elektroporation erfolgen konnte. Um das zu umgehen wurden Platin-Elektroden direkt an den Injektionstisch platziert. Somit konnte eine Elektroporation zeitnah zur Mikoinjektion erfolgen. Eine schematische Zeichnung des Aufbaus ist in Abbildung B1 dargestellt. Dieser Aufbau ermöglichte eine zeitnahe Elektroporation zur Mikroinjektion. In ersten Experimenten konnte bereits eine deutliche Transfektionsverbesserung festgestellt werden. Zur weiteren Optimierung der Transfektionseffizienz wurden systematisch folgende Parameter auf ihren Einfluss zur Effizienzsteigerung überprüft: Pulsdauer und Spannung, das den Polyp umgebende Medium, die enthaltende Salzkonzentration der injizierten DNA-Lösung, die DNA-Konzentration und die Ausrichtung des elektrischen Feldes durch die Position der Anode und Kathode zur Injektionsstelle.

| Medium                                               | Transfizierte Polypen |                       | Zellen <sup>max</sup> / Polyp |                |
|------------------------------------------------------|-----------------------|-----------------------|-------------------------------|----------------|
|                                                      | Küvette<br>[%]        | Mikroinjiziert<br>[%] | Küvette                       | Mikroinjiziert |
| 70 % DM                                              | 30                    | 12                    | 2,7                           | 2,5            |
| 20 mM KCl                                            | 10                    |                       | 1,0                           |                |
| 30 mM KCl                                            | 10                    | 20                    | 1,5                           | 2,0            |
| 40 mM KCl                                            | 35                    |                       | 1,7                           |                |
| 50 mM KCl                                            |                       | 4                     |                               | 1,0            |
| 10 mM Trehalose                                      | 40                    | 8                     | 1,7                           | 1,0            |
| 30 mM Trehalose                                      | 15                    | 12                    | 2,0                           | 2,0            |
| 50 mM Trehalose                                      |                       | 0                     |                               | 0              |
| EP-Medium<br>(Mussauer et al.,<br>2001) <sup>*</sup> |                       | 8                     |                               | 2,0            |
| EP-Medium<br>(PeQlab)*                               |                       | 4                     |                               | 2,0            |

Tabelle B1: Effekt verschiedener Medien auf die Transfektion durch Elektroporation.

\*) Das Medium enthält 0,85 mM K<sub>2</sub>HPO<sub>4</sub>, 10 mM KCl, 50 mM Trehalose. +) Puffer "R" und "E" aus dem Elektroporations-Kit MP-100 (PeQlab)

Der Vektor pTHB [150 ng/  $\mu$ l] wurde intraepithelial injiziert (Mikroinjiziert) bzw. befand sich in Lösung im Medium (Küvette). Die Elektroporation erfolgte bei 1x 25 V, 80 ms (Küvette) bzw. 1x 12 V, 80 ms (mikroinjiziert+Küvette). Die Auswertung erfolgte nach 72 h. [n=20]

Es konnte festgestellt werden, dass die Polarität der Elektrode an der Injektionsstelle einen qualitativen Einfluss auf die transfizierten Zelltypen hatte: Befand sich die Anode in der Nähe der Injektionsstelle wurden ausschließlich ektodermale Epithelzellen transfiziert. War hingegen die Kathode an der Injektionsstelle, konnten I-Zellen und deren Derivate am Polypen transfiziert werden. Eine Elektroporation in Hydramedium als äußeres Elektoporationsmedium führte bei 1x 12 V, 80 ms bei 50 % der Tiere zu durchschnittlich 3,3 Epithelzellen. Hingegen führte eine Elektroporation unter sonst gleichen Bedingungen in 52 % der Tiere zu durchschnittlich 1,15 Epithelzellen.

Bei erhöhter Spannung von 1x 25 V, 80 ms konnten in HM 28 % der Tiere transfiziert werden, in DM hingegen 24 %. Das umgebende Medium hatte daher keinen großen Einfluss auf die Transfektionseffizienz. Die enthaltene Salzkonzentration der injizierten DNA-Lösung beeinflusste die Transfektionseffizienz. Hier konnte in einer salzfreien DNA-Lösung lediglich 20 % der Tiere transfiziert werden. Die höchste Transfektionsrate von 50 % konnte erzielt werden, wenn die injizierte DNA-Lösung mit 1x PBS in der Endkonzentration versetzt war. Eine weitere Steigerung der Salzkonzentration auf 2x PBS und 4x PBS verringerte die Transfektionseffizienz kontinuierlich. Als günstigste DNA-Konzentration konnte 500 ng/ µl festgesetzt werden. Eine Transfektion mit 1000 ng/ µl *pHotG* halbierte die Transfektionseffizienzen auf 24 %, bei sonst gleichen Parametern. Alle Injektionsexperimente hierzu sind im Anhang dargestellt.

| Medium | Polarität<br>an<br>Injektions-<br>stelle | Puls        | Behandelte<br>Polypen | Transfizierte<br>Polypen [%] | Zelle<br>Poly | n/<br>p | Zelle<br>Poly | n <sup>max</sup> / |
|--------|------------------------------------------|-------------|-----------------------|------------------------------|---------------|---------|---------------|--------------------|
|        | •                                        | •           | •                     |                              | Ері           | I-Zelle | Ері           | I-Zelle            |
| НМ     | Kathode                                  | 1x 5V 80ms  | 11                    | 27,3                         | 1,3           |         | 2,0           |                    |
|        | Kathode                                  | 1x 12V 80ms | 72                    | 50                           | 3,3           |         | 13,<br>0      |                    |
|        | Kathode                                  | 1x 20V 80ms | 25                    | 28                           | 3,9           |         | 8,0           |                    |
|        | Kathode                                  | 3x 20V 20ms | 25                    | 20                           | 2,0           |         | 2,0           |                    |
|        | Kathode                                  | 1x 25V 80ms | 25                    | 28                           | 1,4           |         | 4,0           |                    |
| DM     | Kathode                                  | 1x 12V 80ms | 25                    | 52                           | 1,2           |         | 2,0           |                    |
|        | Kathode                                  | 1x 25V 80ms | 25                    | 24                           | 3,7           |         | 7,0           |                    |
| НМ     | Anode                                    | 1x 12V 80ms | 25                    | 44                           | 2,5           | 1,2     |               | 10,0               |
|        | Anode                                    | 1x 20V 80ms | 25                    | 36                           | 2,6           | 1,2     |               | 10,0               |
|        | Anode                                    | 1x 25V 80ms | 25                    | 20                           | 1,0           | 0,6     |               | 1,0                |
|        | Anode                                    | 1x 20V 80ms | 25                    | 16                           | 2,1           | 0,9     |               | 4,0                |
|        | Anode                                    | 1x 25V 80ms | 25                    | 40                           | 2,3           | 1,0     |               | 4,0                |

Tabelle B2: Optimierung der Elektroporationsparameter zur Transfektion von Hydra

Die Hydren wurden mit 500 ng/ $\mu$ l pHotG gelöst in 1x PBS intraepithelial mikroinjiziert. Im Anschluss erfolgte eine Elektroporation zu den angegebenen Bedingungen mit L-förmigen Platin-Elektroden. Die Auswertung erfolgte 72 h nach Elektroporation.

Vergleicht man die verschiedenen applizierten Spannungen, so konnten bei 1x 12 V, 80 ms die besten Transfektionsergebnisse erzielt werden. Abschließend wurden die besten Elektroporationsparameter näher charakterisiert (Tab. B2).

Die vorangegangenen Experimente haben gezeigt, dass ektodermale Epithelzellen (Epithelzell-Bedingungen) am besten bei 1x 12 V, 80 ms transfiziert werden konnten. Die DNA-Konzentration betrug hierbei 500 ng/ µl und war in 1 x PBS gelöst. Die Kathode musste sich hierbei an der Injektiosstelle befinden, die Anode befand sich auf der gegenüberliegenden Seite des Polypen. Diese Parameter führten in 58,3 % aller behandelten Polypen zu durchschnittlich 3,1 Epithelzellen. In 4 % der transfizierten Polypen konnten Zellcluster von mindestens 4 Zellen detektiert werden, welche durch Proliferation in den darauffolgenden Tagen größere Zellcluster ausbilden konnten. Maximal konnten 14 Epithelzellen in einem Polyp transfiziert werden, wobei in insgesamt 8 % aller transfizierten Polypen eine größere Anzahl ( $\geq$  10) transfizierter Epithelzellen enthielt. Diese Elektroporationsparameter (1x 12 V, 80ms + 500 ng/µl Vektor in 1x PBS) stellten sich auch als die günstigsten zur Transfektion von I-Zellen im Polypen heraus. Hierbei musste sich allerdings die Anode an der Injektionsstelle befinden (I-Zell-Bedingungen). Unter diesen Bedingungen konnten in 19 % der behandelten Polypen transfiziert (Abb. B2).



Abbildung B1: Aufbau der Platin-Elektroden.

Polypen wurden zwischen zwei parallel angeordneten L-förmigen Elektroden mit 4 mm Abstand platziert. Nach intraepithelialer Mikroinjektion der DNA-Lösung über eine Kapillare konnte ohne Zeitverlust elektroporiert werden. Die Elektroden wurden mit Deckgläschen durch Klebstoff an einem Objektträger fixiert. Diese boten gleichzeitig eine Kante zur komfortableren Injektion der Polypen.



Abbildung B2: Transfektion von Hydra Polypen mit Platin-Elektroden.

A) Transfektionseffizienzen für I-Zellen nach Mikroinjektion an der Kathode (dunkelgrau) und für Epithelzellen (hellgrau) nach Mikroinjektion an der Anode. B) Verteilung transfizierter Zelltypen nach Mikroinjektion an der Kathode (Epithelzell-Bedingungen) und nach Mikroinjektion an der Anode (I-Zell-Bedingungen). Bei der Transfektion von I-Zellen ergab sich eine Varianz Var(x)= +10/-1, für Epithelzellen war Var(x)= +11/-1. C) Epithelzelle D) I-Zellpaar E) Transfizierte Epithelzellen am Polyp nach Mikroinjektion an der Kathode (Epithelzell-Bedingungen).



Abbildung B3: Schematische Zeichnung der Meganukleasen-Vektoren.

Im Ansatz (A) sind die Restriktionsstellen zum Reporterkonstrukt invers orientiert Die Meganuklease kann an beiden Enden assoziiert bleiben. (Vektoren *pBS-IScelAktGFP* & *pGEM-ICeuIAktGFP*) Im Ansatz (B) sind die Restriktionsstellen gleichgerichtet orientiert (Vektoren *pJet-IScelHotG* & *pJet-ICeuIHotG*). Hier kann die Meganuklease nur am 3<sup>c</sup> Ende des Reporterkonstrukts assoziiert bleiben. Beide Ansätze enthalten das gleiche Reporterkonstrukt, welches aus Hydra Aktin Promotor und GFP besteht.

## 2.2 Klonierung von Vektoren

Ein Ziel dieser Arbeit war die Untersuchung des Effekts von Meganukleasen auf die Transfektionseffizienz von Hydra. Zur Analyse einer Meganuklease-basierten Transfektionstechnik wurden zwei verschiedene Strategien verfolgt, welche sich in der Orientierung der Restriktionstellen zum Reporterkonstrukt unterschieden. Im ersten Ansatz (A) wurden die Restriktionsstellen invers zum Reporterkonstrukt orientiert. Hier kann an beiden Enden des Reporterkonstrukts eine Meganuklease assoziiert bleiben, so dass die Wahrscheinlichkeit einer Meganukleasen-assistierten genomischen Integration erhöht wird. Hierfür konnten zwei Vektoren kloniert werden, die diesem Ansatz folgen; der Vektor *pBS-ISceIAktGFP* für die Meganuklease *I-SceI*, sowie *pGEM-ICeuIAktGFP* für die Meganuklease *I-CeuI*. Beide enthalten das Reportergen GFP, welches sich unter der Kontrolle eines konstitutiv aktiven Promotors, den Hydra Aktin Promotor, befindet (vgl. Methoden und Anhang).

In einem zweiten Ansatz (B) sind die Restriktionsstellen der Meganukleasen in gleichgerichteter Orientierung zum Reporterkonstrukt. Nach dieser Strategie kann die Meganuklease zwar nur an einem Ende des Reporterkonstrukts assoziiert bleiben, dafür können sich die ungleich geschnittenen Enden exakt in die Zeilsequenz des Wirtsgenoms einfügen. Diesem Ansatz folgen der Vektor *pJet-IScelHotG* für die Meganuklease *I-Scel* und der Vektor *pJet-ICeuIHotG* für *I-CeuI*. Diese Vektoren enthalten das gleiche Reporterkonstrukt bestehend aus Hydra Aktin Promotor und GFP (vgl. Methoden und Anhang) (siehe auch Abbildung B3).

Zusätzlich konnten in dieser Arbeit weitere Vektoren kloniert werden, welche der späteren funktionellen Analyse des Wnt-Signalwegs in Hydra dienen sollen. Hierfür wurden Komponenten des Wnt-Signalwegs aus Hydra unter die Kontrolle des konstitutiv aktiven Hydra Aktin Promotors gesetzt. Zu den Komponenten gehören (1) das Signalmolekül Wnt3 (*pGEM-Ak-tHyWnt3a*), (2) der zytoplasmatische Mediator beta-Catenin in einer wildtyp (*pGEM-AktBe-taCatenin*) und aktivierten Variante (*pGEM-AβCat*), sowie als GFP-Fusionsproteine (*pGEM-AktBetaCateninGFP & pCS-ΔN90βCatGFP*), (3) der Transkriptionsfaktor TCF in einer domiant-negativen Form (*pGEM-AktdnTCF*) (vgl. Methoden und Anhang).

# 2.3 Effekt des Transposons "Sleeping Beauty" und der Meganukleasen auf die Transfektion von Hydra Polypen

Eine Zielsetzung der Arbeit war die Transfektion an Hydra durch molekulare Techniken auf intrazellulärer Ebene zu verbessern. Hierfür kam das Transposon "Sleeping Beauty" und die Meganukleasen *I-SceI* sowie *I-CeuI* zum Einsatz.

Es ist bekannt, dass eine intraepitheliale Mikroinjektion von GFP-Proteinlösung zur Aufnahme des Proteins in das Zytoplasma der Epithelzellen am Injektionsort führt (Diplomarbeit Christ, 2006). Aus diesen Beobachtungen erschien eine effiziente Ko-Transfektion von Meganukleasen mit den Donorplasmiden möglich. Hierfür wurden die Meganukleasen *I-SceI* bzw. *I-CeuI* verwendet. Für jede Meganuklease kamen zwei verschiedene Vektoren zum Einsatz, die sich in der Orientierung der Schnittstellen unterschieden. Im Vektor *pBS-ISceIAktGFP* bzw. *pGEM-ICeuIAktGFP* waren die Restriktionsstellen der Meganuklease kann in diesem Fall an beiden Enden des Reporterkonstrukts assoziiert bleiben und dieses in den Nukleus dirigieren. In den Vektoren *pJet-ISceIHotG* und *pJet-ICeuIHotG* sind die Restriktionsstellen in die gleiche Richtung orientiert. Hier kann die Meganuklease nur an einem Ende des Reporterkonstrukts assoziiert bleiben, dafür kann sich das Fragment optimal in eine Restriktionsstelle im Wirtsgenom einfügen.

Die Ko-Transfektionen der Meganuklease-Vektoren mit invertierten Restriktionsstellen führten bei 150 ng/ µl Plasmidkonzentration zu einer Verbesserung der Transfektionsrate. Tabelle 3 zeigt, dass im Kontrollexperiment eine Transfektion von *pBS-ISceIAktGFP* in 4 % der elektroporierten Polypen durchschnittlich eine Epithelzelle transfiziert war. Bei einer Ko-Injektion mit 0,25 u/ µl *I-SceI* konnten in 19,6 % der Polypen durchschnittlich zwei Epithelzellen transfiziert werden. Ein ähnliches Ergebnis zeigte der Vergleich bei einer Transfektion mit *pGEM-ICeuIAktGFP*. Hier führte die Kontrolle in 12 % der Polypen zu durchschnittlich 1,3 Epithelzellen. Eine Ko-Transfektion mit 0,25 u/ µl führte bei 20,8 % der Polypen zu durchschnittlich 1,8 transfizierten Epithelzellen. Transfektionen mit 600 ng/ µl Plasmid und 1 u/µl Enzym erzielten schlechtere Transfektionsraten. Im Gegensatz dazu führten Ko-Transfektionen mit den Vektoren *pJet-ISceIHotG* bzw. *pJet-ICeuIHotG* zu einer Reduzierung der Transfektionseffizienz. Bei einer Ko-Injektion konnte in beiden Fällen keine Transfektion erzielt werden.

In einem weiteren Ansatz wurde der Effekt der Transposase "Sleeping Beauty" auf die Transfektionseigenschaft untersucht. Die Transposase wurde in Form ihrer kodierenden mRNA mit dem Donorplasmid *pTHB*, das ein Reporterkonstrukt mit GFP enthielt, ko-injiziert und elektroporiert. Tabelle 3 fasst die Versuche zusammen. Bei der Analyse des Effekts des Transposons "Sleeping Beauty" zeigte sich im Kontrollexperiment, dass eine Transfektion des Donorplasmids *pTHB* in 5 % aller behandelten Polypen zu einer Transfektion führt. Hierbei wurde durchschnittlich eine Epithelzelle transfiziert. Eine Ko-Injektion mit 75 ng/ µl TransposasemRNA führte zu einem identischen Transfektionsergebnis. Eine Ko-Trasfektion mit 75 ng/ µl Transposase-mRNA ohne CAP-Struktur führte bei 45 % aller behandelten Polypen zum Transfektionserfolg. Hier waren durchschnittlich 1,4 Epithelzellen transfiziert.

Zusammenfassend lässt sich feststellen, dass bei den Vektoren mit invertierten Restriktionsstellen eine erhöhte Transfektionsrate gemessen werden konnte. Allerdings führten diese nicht zur gewünschten Qualität. Es wurden unwesentlich mehr Epithelzellen transfiziert, welche zudem auch keinen Hinweis auf ein stabiles Transfektionsereignis zeigten. Mit der Proliferation schwächte sich das GFP-Signal ab.

| Tabelle B3: Effekt von Meganukleasen | und dem | Transposon | "Sleeping | Beauty" | auf | die |
|--------------------------------------|---------|------------|-----------|---------|-----|-----|
| Transfektion von Polypen.            |         |            |           |         |     |     |

| Vektorname           | Konzentration<br>[ng/ μl] | Enzym<br>[u/ µl] | Behandelte<br>Polypen | Transfizierte<br>Polypen [%] | Zellen <sup>max</sup> /<br>Polyp |
|----------------------|---------------------------|------------------|-----------------------|------------------------------|----------------------------------|
|                      | •                         |                  |                       |                              |                                  |
| pBS-IScelAktGFP      | 150                       |                  | 25                    | 4                            | 1                                |
|                      | 150                       | 0,25             | 46                    | 19,6                         | 2                                |
|                      | 600                       |                  | 25                    | 0                            | 0                                |
|                      | 600                       | 1                | 27                    | 7,4                          | 1,5                              |
| pJet-IScelHotG       | 150                       |                  | 25                    | 4                            | 2                                |
|                      | 150                       | 0,25             | 25                    | 0                            | 0                                |
|                      | 600                       |                  | 25                    | 4                            | 2                                |
|                      | 600                       | 1                | 25                    | 0                            | 0                                |
| pGEM-<br>ICeulAktGFP | 150                       |                  | 25                    | 12                           | 1,3                              |
|                      | 150                       | 0,25             | 24                    | 20,8                         | 1,8                              |
|                      | 600                       |                  | 25                    | 4                            | 1                                |
|                      | 600                       | 1                | 35                    | 0                            | 0                                |
| pJet-ICeulHotG       | 150                       |                  | 25                    | 4                            | 2                                |
|                      | 150                       | 0,25             | 25                    | 0                            | 0                                |
|                      | 600                       |                  | 25                    | 4                            | 1                                |
|                      | 600                       | 1                | 25                    | 0                            | 0                                |
| рТНВ                 | 150                       |                  | 20                    | 5                            | 1                                |
|                      | 150                       | 75 <sup>*</sup>  | 20                    | 5                            | 1                                |
|                      | 150                       | 75*+             | 20                    | 45                           | 1,4                              |

\*) Die Transposase wurde als mRNA [ng/ μl] ko-injiziert. +) Die mRNA besaß keine5'CAP-Struktur,

Der Vektor wurde mit dem Enzym intraepithelial ko-injiziert und anschließend elektroporiert. Die Elektroporation erfolgte mit 1x 12 V, 80 ms in 70 % DM. Die Auswertung erfolgte nach 72 h.

Diese Experimente wurden nochmals mit der optimierten Elektroporationsmethode wiederholt. Auch hier wurde ein ähnliches Ergebnis festgestellt. Die dazugehörigen Experimente sind im Anhang aufgeführt.



Abbildung B4: DAPI-Färbung früher Embryonalstadien von Hydra.

A) Befruchtetes Ei, B) Fortgeschrittene erste Teilung (unipolar & holoblastisch), C) Vier Blastomeren, D) Fortgeschrittenes Furchungsstadium. In allen Stadien sind eine Vielzahl an "nurse"-Zellen gefärbt. Diese werden im Verlauf der Embryogenese phagozytiert.

# 2.4 Transgene Hydren durch embryonale Mikroinjektion

#### 2.4.1 Analyse der frühen Embryogenese zur Bestimmung der Mikroinjektionsstelle

Es konnte gezeigt werden, dass eine Mikroinjektion von Plasmid-DNA in frühe embryonale Stadien von Hydra zur stabilen Integration der injizierten DNA in das Hydra-Genom führen kann (Wittlieb et al., 2006).

In anderen Modellorganismen (z.B. Medaka) wird hierbei Plasmid- DNA möglichst in die Nähe des Nukleus des Embryos mikroinjiziert. In Hydra kann dies durch ihre Besonderheiten in der Embryogenese nicht nachvollzogen werden. Eine Vielzahl von mehreren Tausend "nurse"-Zellen, welche sich in der Oozyte und in den Blastomeren früher Embryonalstadien befinden, erschwert die Bestimmung von der Lage des Nukleus der Eizelle. Zur genaueren Eingrenzung des Injektionsfeldes sollte eine DNA-Färbung mit DAPI (Hoechst) weiterhelfen. Diese sollte die ungefähre Lage der gerade phagozytierten "nurse"-Zellen im Embryo darstellen. Es wurde angenommen, dass an diesen Stellen die Aufnahme der mikroinjizierten Plasmid-DNA in die Zygote erleichtert wird. Wie in Abbildung B4 ersichtlich, zeigen im befruchteten Ei zwei Stellen in der Nähe der ektodermalen Ausstülpung des Muttertieres phagozytierte "nurse"-Zellen. Mit Beginn der ersten Furchung befinden sich diese in der Mitte des Embryos. Im 4-Zellstadium werden die "nurse"-Zellen an den Zellgrenzen der Blastomeren phagozytiert und in späteren Furchungsstadien finden sich diese eher im Zentrum des Embryos. Alle Mikroinjektionen wurden daraufhin möglichst in die Nähe dieser Stellen platziert.

| Vektor | Konzentration<br>[ng/ μl] | Injizierte<br>Embryonen | Überlebensrate<br>[%] | Transgene<br>Polypen [%] |
|--------|---------------------------|-------------------------|-----------------------|--------------------------|
| pHotG  | 25                        | 63                      | 88,9                  | 3,6                      |
| pHotG  | 75                        | 55                      | 85,5                  | 6,4                      |
| pHotG  | 150                       | 46                      | 82,6                  | 18,4                     |
| pHotG  | 200                       | 108                     | 96,3                  | 6,7                      |
| pHotG  | 300                       | 85                      | 95,3                  | 4,9                      |
| pHotG  | 600                       | 57                      | 89,5                  | 5,9                      |
| pHotG  | 1000                      | 62                      | 83,9                  | 0                        |

Tabelle B4: Messung der Transfektionseffizienz im DNA-Konzentrationsgradient.

Der Vektor pHotG wurde in den angegebenen Konzentrationen embryonal mikroinjiziert. Die Auswertung erfolgte ab 72 h nach Injektion bis zum 30. Tag.

#### 2.4.2 Optimierung der DNA-Konzentration

Wittlieb et al. (2006) konnte durch Injektion von *pHotG*, welcher ein Reporterkonstrukt aus GFP und Hydra Aktin Promotor enthielt, mit einer Konzentration von 600 ng/  $\mu$ l transgene Hydren erzeugen. 10 % aller injizierten Embryonen zeigten daraufhin eine transgene Expression des Reportergens *GFP* in Bereichen der Polypen. Darauf aufbauend wurde zunächst der Einfluss verschiedener DNA-Konzentrationen auf die Transfektionsrate überprüft. Es stellte sich heraus, dass DNA-Konzentrationen einen erheblichen Einfluss auf die Transfektionseffizienz hatten.

In einer Konzentrationsreihe konnte die optimale DNA-Konzentration definiert werden. Nach Injektionen verschiedener Konzentrationen von 25 ng/  $\mu$ l, 75 ng/  $\mu$ l, 150 ng/  $\mu$ l, 200 ng/  $\mu$ l, 300 ng/  $\mu$ l, 600 ng/  $\mu$ l und 1000 ng/  $\mu$ l des Vektors *pHotG* stellte sich eine Konzentration von 150 ng/  $\mu$ l als die günstigste heraus, welche mit einer Rate von 18,4 % transgene Tiere erzeugte. Injektionen von 25 ng/  $\mu$ l *pHotG* führten in 3,6 % aller injizierten Embryonen zu transgenen Tieren. Bei 75 ng/  $\mu$ l *pHotG* war ein Anteil von 6,4 % transgen. Mit höheren DNA-Konzentration (> 150 ng/  $\mu$ l) fiel der Anteil transgener Tiere wieder ab. So waren bei 200 ng/  $\mu$ l 6,7 %, bei 300 ng/  $\mu$ l 4,9 % und bei 600 ng/  $\mu$ l 5,9 % der injizierten Embryonen transgen. Injektionen mit 1000 ng/  $\mu$ l führte zu keiner Transfektion. Weiterhin war zu beobachten, dass die DNA-Konzentration keinen erkennbaren Einfluss auf die Überlebensrate hatte. In allen Injektionen lag diese über 80 %. Tabelle B4 fasst die Ergebnisse der Konzentrationsreihe zusammen

#### 2.4.3 Generierung vollständig transgener Polypen.

Alle durch embryonale Mikroinjektion des Vektors *pHotG* entstandenen transgenen Polypen hatten partielle Expressionsmuster, d.h. die Expression des Reportergens in geschlüpften Polypen war weder in alle Zelllinien vertreten noch betraf sie das gesamte Gewebe. Vielmehr zeigten diese Polypen eine hohe Variabilität sowohl was das Verhältnis des transgenen Gewebes zum nicht-transgenen Gewebe anging als auch in den markierten Zelltypen. Polypen waren meist nur für eine der drei Stammzelllinien, in selteneren Fällen für zwei Stammzelllinien transgen. Transgenes Gewebe war an wenigen Stellen des Körpers verteilt, so dass die Polypen ein geflecktes Expressionsmuster aufwiesen. In dieser Arbeit entstanden nach embryonaler Mikroinjektion von *pHotG* maßgeblich 4 unterschiedliche Typen transgener Hydren, welche wie folgt unterteilt werden können: (1) nur Bereiche des Ektoderms, (2) nur Bereiche des Endoderms, (3) nur die interstitielle Zelllinie, (4) die interstitielle Zelllinie in Kombination mit Bereichen einer epithelialen Zelllinie oder (5) Polypen mit transgenen Bereichen beider epithelialer Zelllinien. Nach Mikroinjektion entstanden in etwa 90 % der Fälle transgene Polypen, die das Reportergen im Epithel exprimierten. Etwa 70 % davon zeigten endodermale Reportergenexpression. Bei den übrigen 10 % handelte es sich um transgene Polypen, die das Reportergen ausschließlich in der interstitiellen Zelllinie exprimierten oder zusätzliche Expression in Teilen einer epithelialen Zelllinie aufwiesen.

Durch Proliferation und gezielter Selektion durch wegschneiden von Wildtypgewebe konnten transgene Tiere in Massenkulturen herangezogen werden, welche ausschließlich GFP im gesamten Endoderm bzw. Ektoderm exprimierten. Weiterhin konnte auch eine Massenkultur von einem Tier, welches GFP in I-Zellen exprimierte, herangezogen werden. Die transgenen I-Zellen konnten hierbei angereichert werden, indem Polypen mit besonders reichhaltiger I-Zellpopulation isoliert wurden (Abb. B5).

## 2.4.4 Embryonale Mikroinjektion mit dem Transposon "Sleeping Beauty"

Das Transposon "Sleeping Beauty" wurde bereits erfolgreich in einer Reihe von Modellorganismen als molekularer Helfer zur Generierung von transgenen Organismen eingesetzt. In dieser Arbeit wurde der Einfluss einer Ko-Injektion des Transposons auf die Transfektionseffizienz untersucht, um eine Übertragbarkeit des Systems auf Hydra zu prüfen. Hierzu wurden frühe embryonale Stadien (1 bis 8 -Zellstadien) mit DNA-kodierter Transposase über das Plasmid *pASBT* gemeinsam mit dem Donorplasmid *pTHB*, welches ein Reporterkonstrukt bestehend aus GFP und dem Hydra Aktin Promotor enthielt, ko-injiziert. In einem weiteren Ansatz wurde die Transposase zur transienten Expression in Form von mRNA ko-injiziert.

In einem Kotrollexperiment konnten bei alleiniger Injektion von 150 ng/  $\mu$ l des Plasmids *pTHB* 23,5 % transgene Tiere und bei weitere 5,8 % zeigten eine transienten Expression des Reportergens. Hierbei wurden zwei verschiedene mRNA, mit 5'CAP-Struktur und ohne 5'CAP, verwendet. Nach einer Ko-Injektion mit 5 ng/  $\mu$ l des Helferplasmids *pASBT* bei gleicher Reporterplasmid-Konzentration reduzierte sich der Anteil transgener Tiere auf 11,3 %. Ko-Injektionen von *pTHB* und *pASBT* mit jeweils 80 ng  $\mu$ l führten in 12 % der Tiere zur transgenen Expression.

Da die Plasmid-kodierte Transposase eventuell zu viel Enzym im transfizierten Embryo produzierte und hierbei einen bereits beschriebenen Überexpressions-Inhibitions Effekt hervorgerufen könnte, folgten Injektionen mit Transposase-mRNA. In diesem Fall führten Ko-Injektionen von 150 ng/  $\mu$ l pTHB mit 5 ng/  $\mu$ l 5'CAPmRNA zu 12,7 % transgener Tiere und zu 5,5 % zu transienter Expression. Injektionen mit gleicher Reporterplasmid-Konzentration und 75 ng/  $\mu$ l mRNA ohne 5'CAP-Strukur führten zu einem Anteil von 21,9 % transgenen Tiere. Tabelle B5 fasst die Transfektionseffizienzen der verschiedenen Injektionen zusammen. Zusammenfassend hatten Injektionen des Transposonsystems keinen erkennbaren Einfluss auf die Transfektionseffizienz.



Abbildung B5: Transgene Polypen, die GFP ausschließlich in einer der drei Stammzelllinien exprimieren.

A) GFP<sup>+</sup>-Ektoderm B) GFP<sup>+</sup>-Endoderm, C) GFP<sup>+</sup> I-Zellen. Die transgenen Linien wurden durch embryonale Mikroinjektion hergestellt. A & B = 40 x vergrößert, C = 100 x vergrößert.

| Zusammensetzung des Ansatzes<br>[ng/ μl] |                   |                     | Injizierte<br>Embryonen | Überlebensrate<br>[%] | Transgene<br>Polypen | Transiente<br>Expression |
|------------------------------------------|-------------------|---------------------|-------------------------|-----------------------|----------------------|--------------------------|
| pTHB [Donor]                             | pASBT<br>[Helfer] | Transposase<br>mRNA |                         |                       |                      |                          |
| 150                                      |                   |                     | 87                      | 78,2                  | 23,5                 | 5,8                      |
| 150                                      | 5                 |                     | 91                      | 87,9                  | 11,3                 | 0                        |
| 80                                       | 80                |                     | 57                      | 87,7                  | 12,0                 | 0                        |
| 150                                      |                   | 5                   | 128                     | 85,9                  | 12,7                 | 5,5                      |
| 150                                      |                   | 75 <sup>*</sup>     | 86                      | 84,9                  | 21,9                 | 0                        |

Tabelle B5: Embryonale Mikroinjektion des Transposons "Sleeping Beauty".

\*) Die mRNA besaß keine 5'CAP-Struktur

Das Reporterplasmid pTHB (Donor) wurde mit der Transposase ko-injiziert. "Sleeping beauty" wurde entweder als DNA im *pASBT* (Helferplasmid) oder als mRNA ko-injiziert. Die Auswertung erfolgte ab 72 h nach Injektion bis zum 30. Tag.

#### 2.4.5 Embryonale Mikroinjektion der Meganuklease I-Scel

Die Ko-Injektion der Meganuklease *I-Sce*I mit einem Reporterplasmid in frühe embryonale Stadien, führte bereits in einigen Modellorganismen wie z.B. *Xenopus* und Zebrafisch zu einer höheren Transfektionsrate und transgenen Tieren. Im Rahmen dieser Arbeit wurde versucht, die Technik auf Hydra zu übertragen. Dazu wurde die Meganuklease *I-Sce*I in Konzentrationen von 0,25 u/  $\mu$ l, 1 u/  $\mu$ l und 2 u/  $\mu$ l mit dem Plasmid *pBS-ISceIAktGFP* bzw. *pJet-ISceIHotG* in frühe embryonale Stadien von Hydra ko-injiziert.

Tabelle B6 fasst alle Injektionen mit der Meganuklease *I-Sce*I zusammen. Injektionen mit dem Vektor *pJet-ISceIHotG* bei 150 ng/  $\mu$ l mit 1 u/  $\mu$ l *I-Sce*I führten in 3,2 % zu transgenen Expression. Wurde der Vektor mit 20 ng/  $\mu$ l zusammen mit 0,25 u/  $\mu$ l *I-Sce*I injiziert konnten 10,5 % der Embryonen eine stabile Expression aufweisen. Injektionen des Vektors *pBS-ISceI-AktGFP* mit 150 ng/  $\mu$ l und ansteigender *I-Sce*I Konzentration von 0,25 u/  $\mu$ l, 1 u/  $\mu$ l bzw. 2 u/  $\mu$ l führten zu transgener Expression in Embryonen mit einem leicht fallendem Anteil von 16,2 %, 14,3 % bzw. 10,7 %. In der Kontrolle waren hingegen bei gleicher DNA-Konzentration 22 % transgen. Eine Injektion von 600 ng/  $\mu$ l des Vektors *pBS-ISceIAktGFP* mit 1 u/  $\mu$ l *I-Sce*I führte zu einem Anteil von 10,4 % transgener Polypen. Ohne *I-SceI* konnte mit 9,4 % ein ähnlich hoher Anteil transgener Tiere erzeugt werden. Eine Zunahme an ko-injizierter *I-SceI* Meganuklease verringerte tendenziell den Anteil transgener Hydren.

|                 | Vektor<br>[ng/ μl] | Enzym<br>[u/ μl] | Injizierte<br>Embryonen | Überlebensrate<br>[%] | Transgene<br>Polypen | Transiente<br>Expression |
|-----------------|--------------------|------------------|-------------------------|-----------------------|----------------------|--------------------------|
| pBS-IScelAktGFP | 150                | •                | 67                      | 88,1                  | 22,0                 | 0                        |
|                 | 600                |                  | 69                      | 92,8                  | 9,4                  | 0                        |
|                 | 150                | 0,25             | 50                      | 86,0                  | 16,2                 | 0                        |
|                 | 150                | 1                | 67                      | 83,6                  | 14,3                 | 8,9                      |
|                 | 150                | 2                | 37                      | 75,7                  | 10,7                 | 0                        |
|                 | 600                | 1                | 56                      | 85,7                  | 10,4                 | 0                        |
| pJet-IScelHotG  | 20                 |                  | 77                      | 93,5                  | 2,8                  | 0                        |
|                 | 150                |                  | 74                      | 91,9                  | 14,7                 | 0                        |
|                 | 20                 | 0,25             | 26                      | 73,1                  | 10,5                 | 0                        |
|                 | 150                | 1                | 38                      | 81,6                  | 3,2                  | 0                        |

#### Tabelle B6: Embryonale Mikroinjektion der Meganuklease I-Scel.

Die Meganuklease wurde in unterschiedlichen Konzentrationen mit den angegebenen Vektoren ko-injiziert. Die Auswertung erfolgte ab 72 h nach Injektion bis zum 30. Tag.

|                      | Vektor<br>[ng/ μl] | Enzym<br>[u/ µl] | Injizierte<br>Embryonen | Überlebensrate<br>[%] | Transgene<br>Polypen | Transiente<br>Expression |
|----------------------|--------------------|------------------|-------------------------|-----------------------|----------------------|--------------------------|
| pGEM-<br>ICeulAktGFP | 150                |                  | 77                      | 88,3                  | 10,3                 | 0                        |
|                      | 600                |                  | 92                      | 85,9                  | 11,4                 | 0                        |
|                      | 150                | 0,25             | 47                      | 76,6                  | 5,6                  | 0                        |
|                      | 150                | 1                | 56                      | 73,2                  | 0                    | 0                        |
|                      | 150                | 2                | 41                      | 78,0                  | 6,3                  | 0                        |
|                      | 600                | 1                | 52                      | 92,3                  | 12,5                 | 8,3                      |
| pJet-ICeulHotG       | 150                |                  | 42                      | 88,1                  | 13,5                 | 0                        |
|                      | 600                |                  | 57                      | 86,0                  | 6,1                  | 0                        |
|                      | 20                 | 0,25             | 92                      | 90,2                  | 2,4                  | 0                        |
|                      | 150                | 1                | 181                     | 86,2                  | 10,9                 | 0                        |
|                      | 600                | 1                | 59                      | 76,3                  | 17,8                 | 0                        |

Tabelle B7: Embryonale Mikroinjektion der Meganuklease I-Ceul.

Die Meganuklease wurde in unterschiedlichen Konzentrationen mit den angegebenen Vektoren ko-injiziert. Die Auswertung erfolgte ab 72 h nach Injektion bis zum 30. Tag.

## 2.4.6 Embryonale Mikroinjektion der Meganuklease I-Ceul

In weiteren Experimenten wurde der Effekt einer Ko-Injektion der Meganuklease *I-Ceu*I mit den Vektoren *pJet-ICeuIHotG* bzw. *pGEM-ICeuIAktGFP* untersucht. Alle Injektionen mit der Meganuklease *I-Ceu*I wurden in Tabelle 7 zusammengefasst. *I-Ceu*I wurde in Konzentrationen von 0,25 u/  $\mu$ l und 1 u/ $\mu$ l gemeinsam mit unterschiedlichen Konzentrationen des Vektors *pJet-ICeuIHotG* in frühe embryonale Stadien von Hydra ko-injiziert. Es zeigte sich, dass eine Ko-Injektion von 600 ng/  $\mu$ l des Vektors mit 1 u/  $\mu$ l *I-Ceu*I zu 17,8 % transgenen Polypen führt.

In der Kontrolle , ohne Meganuklease, waren 6,1 % transgen. Eine Reduktion der DNA-Konzentration auf 150 ng/ µl bei gleicher Enzymkonzentration führte zu 10,9 % transgenen Tieren, wohingegen in der Kontrolle 13,5 % erzielt werden konnten. Bei einer Verringerung des Enzyms auf 0,25 u/ µl und gleichzeitiger Reduzierung der DNA-Konzentration auf 20 ng/ µl waren 2,4 % transgen. Injektionen von 150 ng/ µl des Vektors *pGEM-ICeuIAktGFP* mit ansteigender *I-CeuI* Konzentration von 0,25 u/ µl, 1 u/ µl bzw. 2 u/ µl führten zu 5,6 %, 0,0 % bzw. 6,3 % Anteil transgener Tiere, welche verglichen zur Kontrolle (10,3 %) zu einer insgesamt geringeren Transfektionseffizienz führten. Eine Injektion von 600 ng/ µl des Plasmids mit 1 u/ µl *I-CeuI* führte in 12,5 % aller injizierten Embryonen zu transgenen Tieren. In der Meganuklease-freien Lösung konnte bei 600 ng/ µl mit 11,4 % eine ähnliche Transfektionseffizienz erzielt werden. Insgesamt konnte kein positiver Einfluss durch die Meganuklease *I-CeuI* auf die Transfektionseffizienz nachgewiesen werden (Tab. B7).

# 2.5 Zellbiologische Studien an Hydra

## 2.5.1 I-Zelldifferenzierung in Abhängigkeit vom Positionswert

Shimizu und Bode (1995) fanden durch "Nearest-Neighbour"-Analysen Hinweise, dass sich I-Zellen bereits in einer frühen Phase auf einen Differenzierungsweg festlegen. Zusätzlich fanden Yaross und Bode (1978) das die Determinierung von I-Zellen im Zusammenhang mit Positionsinformationen steht: z.B. differenzieren I-Zellen in Kopfregeneraten im neu entstehenden Kopf hauptsächlich zu Nervenzellen. Erst durch die Etablierung von Transfektionstechniken ("Particle Gun", Mikroinjektion, Elektroporation) mit GFP war es möglich die Differenzierung von Zellen zu verfolgen (Böttger, 2002; Wittlieb et al., 2006; Mättner et al., unveröffentlicht). Durch die Optimierung der Elektroporation gelang es in hoher Auflösung, d.h. einzelne transfizierte I-Zellen *in vivo* zu verfolgen. Eine Transfektion an ausgewählten Orten (Kopfbereich und Rumpf) kann Aufschluss über ortsabhängige Differenzierungsschicksale von I-Zellen im Polypen geben. Weiterhin bietet sich eine genaue Analyse individuell transfizierter I-Zellen an, welche auf eine frühe Determinierung auf einen Differenzierungsweg hinweisen könnte.

Die Experimente ergaben, dass I-Zellen unterhalb des Kopfes ausschließlich in Neurone differenzierten (n = 68). Diese I-Zellen lagen immer paarweise vor und waren über eine zytoplasmatische Brücke miteinander verbunden (Abbildung B6). Dahingegen führten Transfektionen von I-Zellen an der Körpersäulenmitte, kurz oberhalb der Knospungszone, auch zur Ausbildung von proliferierenden I-Zellnestern, welche später zu Desmonemen ausdifferenzierten. Transfizierte I-Zellen in der Körpersäulenmitte differenzierten somit in Neurone oder proliferierende I-Zellnester (8er Nester), wobei das Transfektionsverhältnis von I-Zellen die sich später in Neurone bzw. zu Nematoblasten differenzierten bei 8:1 lag (Abb. B7).


Abbildung B6: Transfizierte I-Zellpaare in der Rump eines Polypen.

Transfektionen der I-Zellen durch Platin-Elektroden zeigten, dass diese immer paarweise GFP exprimierten. Die transfizierten I-Zellen waren über eine zytoplasmatische Brücke miteinander verbunden.



Abbildung B7: Lokale Transfektion von I-Zellen im Polypen.

I-Zellen wurden wahlweise unterhalb des Kopfes (Kopf) [n=68] bzw. oberhalb der Knospungszone transfiziert (Rumpf) [n=54]. Die Auszählung der I-Zellen bzw. Nester erfolgte 72 h nach Elektroporation.



Abbildung B8: Lokal transfizierte I-Zellen im Polypen.

I-Zellen, die an der Körpersäule transfiziert wurden differenzierten auch in Desmonemen. A) Zwei transfizierte I-Zellpaare, B) 8er Nest, C) Ein aufbrechendes 16er Nest, in dem sich die Nematoblasten gerade vereinzeln. D) Ausdifferenzierte Desmonemen im Tentakel



Abbildung B9: Schicksal transfizierter I-Zellen in Polypen.

Durch lokale Transfektion einiger I-Zellen in jeweils einem Polypen war die individuelle Verfolgung der differenzierenden Zellen möglich. So konnte das Schicksal jeder transfizierten I-Zelle eindeutig einem bestimmten Zelltyp zugeordnet werden. Jeder Graph repräsentiert absolute Zellzahlen in einem Polypen. Die Transfektion erfolgte am Tag 1, die Expression des Reportergens GFP konnte mit Verzögerung ab dem 3.Tag detektiert werden. Zu diesem Zeitpunkt lagen die I-Zellen immer paarweise vor. I-Zellpaare differenzierten immer zeitgleich

Elektroporationen mit *pHotG*, welches GFP unter Kontrolle eines konstitutiv aktiven Hydra Aktin Promotors enthält, hatten gezeigt, dass die Fluoreszenz in transfizierten I-Zellen erst verzögert nach 72 h detektiert wurde. In den Experimenten zeigte sich, dass I-Zellen zu diesem Zeitpunkt entweder paarweise und undifferenziert, oder als 8er Nester vorlagen, welche im Beobachtungszeitraum von 3 - 8 Tagen nach Elektroporation über 16er Nester zu Desmonemen differenzierten. Dabei wanderten die transfizierten I-Zellnester aus der Mitte des Rumpfes in die Tentakel ein und wurden dort in Batteriezellen integriert.

In Abbildung B8 sind typische transfizierte I-Zellpaare, sowie Stadien der Desmonemendifferenzierung abgebildet. Abbildung B9 zeigt exemplarisch das Schicksal einzelner transfizierter I-Zellen im Polypen. Dargestellt ist ein typischer Differenzierungsverlauf von I-Zellen im oberen Körpersäulenbereich (Kopf) und in der Körpersäulenmitte (Rumpf). Alle transfizierten I-Zellen waren im Begriff sich in den nächsten Tagen auszudifferenzieren und veränderten dabei täglich deutlich ihre Position innerhalb des Polypen. Es konnten keine weiteren Proliferationsteilungen beobachtet werden, die zum Selbsterhalt der I-Zellpopulation beitragen.



Abbildung B10: Vorgehensschema bei Transplantationsexperimenten zum Wander- und Differenzierungsverhalten von I-Zellen

Details siehe Text.

#### 2.5.2 I-Zellverhalten in Transplantationsexperimenten

Die I-Zellinie wurde bereits in früheren Experimenten durch Polypen mit [<sup>3</sup>H]Thymidin-markierten Gewebe studiert. Hierbei konnte gezeigt werden, dass eine Transplantation die Einwanderung von I-Zellen in das neue Gewebe stimuliert, jedoch insgesamt nur wenige markierte I-Zellen in das Transplantat einwanderten. Einen Tag nach diesem Transplantationsstimulus wanderten keine weiteren I-Zellen mehr ein. Die eingewanderten I-Zellen differenzierten hauptsächlich in Neurone (Fujisawa, 1990). Teragawa und Bode (1995) konnten später zeigen, dass wandernde I-Zellpopulationen hauptsächlich auf neuronale Vorläufer beschränkt ist. In dieser Arbeit konnte mit Hilfe der transgenen GFP<sup>+</sup> I-Zell-Polypen das Proliferations- und Differenzierungsverhalten eingewanderter I-Zellen genau studiert werden. Hierbei stellte sich die Frage wieviele I-Zellen einwandern und ob diese hauptsächlich in Neurone differenzieren.

Die Transplantationsexperimente (Abb.B10) haben gezeigt, dass in 25 % aller Transplantate (n=100) durchschnittlich 6,16 I-Zellen in das Wildtypgewebe einwanderten (Abb. B11). Anhand der eingewanderten I-Zellen konnte das Proliferations- und Differenzierungsverhalten der eingewanderten I-Zellen untersucht werden. In den ersten vier Tagen nach Transplantation proliferierten diese auf durchschnittlich 8 I-Zellen. Anschließend reduzierte sich ihre Anzahl im Beobachtungszeitraum kontinuierlich, so dass nach 10 Tagen durchschnittlich noch eine transgene I-Zelle vorhanden war.

Im gleichen Beobachtungszeitraum konnten Differenzierungsprodukte der I-Zellen detektiert werden, welche sowohl Neurone, Stenothelen, Desmonemen und Isorhizen, sowie die proliferierenden Zwischenstadien, die verschiedenen I-Zellnester umfassten. In den ersten 8 Tagen nach Transplantation konnte eine kontinuierliche Zunahme an Neuronen von durchschnittlich 1,76 auf 12,72 beobachtet werden. Anschließend reduzierte sich die Zahl auf durchschnittlich 9 Neurone.

Die Zahl der Stenothelen verblieb im Zeitraum der ersten vier Tage nach Transplantation relativ konstant. Erst mit einer fünf-tägigen Verzögerung vervierfachte sich die Zahl der Stenothelen in einem Zeitraum von 2 Tagen. In den darauf folgenden 3 Tagen halbierte sich deren Anzahl wieder auf durchschnittlich 4 Stenothelen. Isorhizen und Desmonemen wiesen



Abbildung B11: Wanderungs- und Differenzierungsverhalten von I-Zellen nach Tranplantation

Transgenes Gewebe (untere Körperhälfte) wurde an Wildtyp-Gewebe (obere Körperhälfte) transplantiert und nach 24 h wieder entfernt. Dargestellt sind die eingewanderten I Zellen, sowie Stenothelen und Neurone. Differenzierungsprodukte eingewanderter I-Zellen. [n = 154 I-Zellen aus 25 Transplantaten].

im Beobachtungszeitraum zwei Maxima auf. Das erste Maximum erreichten diese Kapseltypen 3 Tage nach Transplantation. Das zweite Maximum war 6 Tage nach Transplantation zu beobachten (siehe Anhang). Weiterhin konnten auch proliferierende I-Zellcluster (Nester) detektiert werdem. 2 Tage nach Transplantation konnte man ein Maximum an 2er Nestern, nach 5 Tagen ein Maximum von 4er Nestern und nach 6 Tagen ein Maximum an 8er Nestern erkennen. Einige wenige 16er Nester konnten 4 Tage und 7 Tage nach Transplantation detektiert werden (siehe Anhang).

#### 2.5.3 Charakterisierung früher Zellsortierungsprozesse im Aggregat

In Hydra-Aggregaten aus Zellsuspension finden Zellsortierungsprozesse statt, die letztlich dazu führen, dass ursprünglich ektodermale Epithelzellen das spätere Ektoderm bilden und ursprünglich endodermale Epithelzellen das Endoderm ausbilden. Um die frühen Zellsortierungsereignisse zu studieren wurden zunächst Rotationskulturen mit Zellsuspensionen durchgeführt. Diese enthielten entweder transgene ektodermale Epithelzellen für RFP ("red fluorescent protein") (Y. Nakamura, unveröffentlicht) oder transgene endodermale Epithelzellen für GFP ("green fluorenscent protein"). Die Zelldichte der Suspension betrug für die RFP+ektodermale Zellsuspension  $2,23 \times 10^8$  Zellen/ml (A<sub>600</sub> = 0,439). Die GFP<sup>+</sup>-endodermale Zellsuspension enthielt  $1,32 \times 10^8$  Zellen/ ml (A<sub>600</sub> = 0,265). Abbildung B12 gibt die Ergebnisse der Zellclustergrößen ektodermaler Epithelzellen in einer Rotationskultur zu den Zeitwerten t<sub>1</sub> (20 min) und t<sub>2</sub> (90 min) in Bezug auf die gemessenen t<sub>0</sub>-Werte wider. Man erkennt, dass bereits nach 20 min die Zahl einzelner ektodermaler Epithelzellen im Vergleich zur t<sub>o</sub>-Probe deutlich geringer ist. Dies trifft auch für Zellcluster von 2 - 3 ektodermalen Epithelzellen zu. Nach 20 min sind gegenüber t<sub>0</sub> etwa 3 bis 4-mal mehr Zellcluster von 5 bis 6 ektodermalen Epithelzellen zu erkennen. Nach 90 min  $(t_2)$  ist die Anzahl von 1 bis 3 ektodermalen Zellclustern gegenüber to nochmals verringert. Hier werden 1,5- bis 3 mal mehr Zellcluster von 5 bis 6 ektodermalen Epithelzellen gegenüber to beobachtet. In der to Probe konnten weiterhin 1,5 mal mehr Zellcluster von 7 bis 8 Zellen gezählt werden. Zellcluster mit mehr als 10 ektodermalen Epithelzellen wurden in t, und t, 2,5 mal bzw. 1,5 mal häufiger beobachtet. Abbildung B13 zeigt exemplarisch Zellcluster RFP+-ektodermaler Zellen.



Abbildung B12: Rotationskultur ektodermaler Zellen.

Eine Zellsuspension mit ektodermal transgenen Epithelzellen für RFP wurde bei 75 rpm kultiviert. Zu den angegebenen Zeitpunkten wurden 50  $\mu$ l zur Auszählung der Zellcluster entnommen. Jeder Zeitpunkt stellt den Wert aus 3 unterschiedlichen Ansätzen dar. Der t<sub>0</sub>-Wert diente zur Normalisierung, t<sub>1</sub> und t<sub>2</sub> beziehen sich darauf.



Abbildung B13: Ektodermale Zellcluster nach einer Rotationskultur.

Transgene Ektodermzellen für RFP in verschiedenen Clustergrößen. A) Einzelzelle, B-E)2-, 3-, 4- und 5-Zellcluster. Aufnahme: 20 min bei 75 rpm. Maßstabsbalken =  $20 \ \mu m$ 



Abbildung B14: Rotationskultur endodermaler Zellen.

Eine Zellsuspension mit endodermal transgenen Epithelzellen für GFP wurde bei 75 rpm kultiviert. Zu den angegebenen Zeitpunkten wurden 50  $\mu$ l zur Auszählung der Zellcluster entnommen. Jeder Zeitpunkt stellt die Daten aus 3 verschiedenen Ansätzen dar. Der t<sub>0</sub>-Wert diente zur Normalisierung, t<sub>1</sub> und t<sub>2</sub> wurden darauf bezogen.



Abbildung B15: Endodermale Zellcluster nach einer Rotationskultur.

Transgene Endodermzellen für GFP in verschiedenen Clustergrößen. A) Einzelzelle, B) Zellpaar, C) 5 Zellen, D) >10 Zellcluster. Aufnahme: 20 min bei 75 rpm. Maßstabsbalken =  $20 \ \mu m$ 



Abbildung B16: Aggregate mit transgenen ektodermalen Epithelzellen.

Transgene Ekto-RFP<sup>+</sup> Polypen wurden dissoziiert und reaggregiert. Aus 3 Aggregaten wurden zum jeweiligen Zeitwert die ektodermalen Clustergrößen vermessen. A) 0 h, B) 1 h, C) 1,5 h, D) 2 h, E) 4 h. Maßstabsbalken =  $20 \,\mu$ m



Abbildung B17: Durchschnittliche Zellclustergröße ektodermaler Epithelzellen im Aggregat.

(Links) Die Clustergrößen wurden zu den Zeitwerten 0 h, 1 h, 1,5 h, 2 h und 4 h bestimmt. (Rechts) Entwicklung der Clustergrößen in den ersten 4 h. Zur Verdeutlichung der Dynamik der Clusterbildung wurden die Daten nochmals logarithmisch aufgetragen.

Analog zur Rotationskultur transgener ektodermaler Epithelzellen wurde auch eine Rotationskultur von Endo-GFP<sup>+</sup>-Zellen untersucht. In Abbildung B14 sind die Ergebnisse dargestellt. Nach 20 min ( $t_1$ ) konnten etwa 60 % weniger einzelne endodermale Epithelzellen beobachtet werden. Zellpaare waren etwa 2 mal häufiger gegenüber der  $t_0$ -Probe. Zellcluster von 3 bis 6 endodermalen Epithelzellen waren 3- bis 4 mal häufiger gegenüber  $t_0$ . Die Endo-GFP<sup>+</sup> Clustergrößen zwischen 7 und 10 Zellen waren im  $t_1$  und  $t_2$ -Wert etwa 6 mal häufiger als zum Zeitpunkt  $t_0$ . Abbildung B15 zeigt exemplarisch GFP<sup>+</sup>-Endo Zellcluster.

Zur weiteren Charakterisierung der frühen Zellsortierungsprozesse wurden die Zellclustergrößen transgener ektodermaler Epithelzellen in Aggregaten vermessen. Hierfür wurde der horizontale und vertikale Querschnitt aller ektodermalen Zellcluster, die sich an der Oberfläche des Aggregats befanden, vermessen. Aus diesen Daten konnte die ungefähre Zellzahl jedes Clusters errechnet werden. Hierfür wurde für eine Epithelzelle ( $20 \ \mu m \times 15 \ \mu m$ ) ein durchschnittlicher Wert von  $300 \ \mu m^2$  angesetzt. Abbildung B17 zeigt die durchschnittliche Größe ektodermaler Zellcluster im Aggregat bei 0 h, 1 h, 1,5 h, 2 h bzw. 4 h. In den ersten 1,5 Stunden nach Reaggregation ist nur ein leichter Anstieg der durchschnittlichen Zellclustergröße von etwa 5 auf 9 Zellen zu beobachten. Nach 1,5 Stunden vergrößern sich die durchschnittlichen Zellcluster deutlich. So waren die Zellcluster 2 Stunden nach Transfektion durchschnittlich auf 16 Zellen gewachsen. Vier Stunden nach Reaggregation hatten die Zellcluster eine durchschnittliche Größe von 59 Zellen. In einer logarithmischen Auftragung kann die Dynamik der Zellclusterbildung verdeutlicht werden.

Abbildung B16 gibt exemplarisch Ausschnitte der Aggregate zu den jeweiligen Zeitwerten wider. In Abbildung B16 C sind nach 1,5 h, bereits erste Cluster zu erkennen. Nach 4 h bestehen bereits große Bereiche der Oberfläche aus ektodermalen Zellen (Abb. B16 E).

Analog zur Untersuchung ektodermaler Clusterbildung im Aggregat wurde auch die Clusterbildung von GFP<sup>+</sup>-Endodermzellen im Aggregat untersucht.

Abbildung B19 zeigt die durchschnittliche Größe endodermaler Zellcluster im Aggregat bei 0 h, 1 h, 1,5 h, 2 h bzw. 4 h. Hier lag direkt nach Aggregation die durchschnittliche Clustergröße endodermaler Zellen bei 1,4. Nach einer Stunde verdoppelten sich die Cluster auf etwa 3 Zellen. Nach 2 Stunden hatten sich diese Cluster auf durchschnittlich fast 12 Zellen vervierfacht. Vier Stunden nach Aggregation waren durchschnittlich endodermale Zellcluster von 56 Zellen ausgebildet. Eine logarithmische Auftragung der Zellclustergrößen-Bildung verdeutlicht die exponentielle Dynamik. In Abbildung B18 sind exemplarisch GFP<sup>+</sup>-Endodermzellen im Aggregat zu den gemessenen Zeitwerten dargestellt. Eine erste sichtbare Akkumulation von Endodermzellen war nach 1,5 Stunden zu beobachten. Nach 4 Stunden waren bereits große zusammenhängende endodermale Gewebe im Aggregat aufzufinden.

Zusammenfassend konnten durch die Rotationskulturen unterschiedliche Affinitäten in den Zell-Zell-Kontakten von Endo-Endo und Ekto-Ekto-Verbindungen festgestellt werden. Die Rotationskulturen ektodermaler Epithelzellen bildeten Zellcluster mit Maxima bei 5-6 Zellen aus, während endodermale Zellcluster Maxima bei 7-10 Zellen hatten. Die Affinitäten von homotypischen Endo-Endo-Zellverbindungen waren somit größer als die von Ekto-Ekto-Zellverbindungen.

In Aggregaten transgener Epithelzellen konnte eine exponentielle Dynamik in der Zellclusterbildung festgestellt werden, wobei die Zellclusterbildung bei Endodermzellen vom Zeitpunkt der Reaggreagation exponentiell ansteigt. Die Zellclusterbildung ektodermaler Zellen weist anfangs eine geringere Dynamik auf.



Abbildung B18: Aggregate mit transgenen endodermalen Epithelzellen.

Transgene Ento-GFP<sup>+</sup> Polypen wurden dissoziiert und reaggregiert. Aus 3 Aggregaten wurden zum jeweiligen Zeitwert die endodermalen Clustergrößen vermessen. A) 0 h, B) 1 h, C) 1,5 h, D) 2 h, E) 4 h. Maßstabsbalken =  $20 \,\mu$ m



Abbildung B19: Durchschnittliche Zellclustergröße endodermaler Epithelzellen im Aggregat.

Die Clustergrößen wurden zu den Zeitwerten 0 h, 1 h, 1,5 h, 2 h, 4 h bestimmt. (Rechts) Entwicklung der Clustergrößen in den ersten 4 h. Zur Verdeutlichung der Dynamik der Clusterbildung wurden die Daten nochmals logarithmisch aufgetragen.

#### 2.5.4 Analyse der F<sub>1</sub>-Generation ektodermal transgener Polypen

In vorangegangenen Experimenten konnte durch embryonale Mikroinjektion von Plasmid-DNA transgene Hydren erzeugt werden. Der zugrunde liegende Mechanismus, welcher zur stabilen Integration des Transgens führt, konnte bisher noch nicht aufgeklärt werden.

Der Integrationszeitpunkt kann für die Qualität der transgenen Expression entscheidend sein. Daher stellt sich die Frage, ob ein geflecktes Expressionsmuster in einem transgenen Tier aufgrund früher bzw. später Integration des Transgens entsteht. Zur Klärung des Integrationszeitpunkts wurden die Vererbungsmuster einer transgenen ektodermalen Zelllinie untersucht. Im Falle eines frühen Integrationszeitpunkts (1- bis 2-Zellstadium) sollte jede bzw. jede zweite Tochterzelle das Transgen enthalten. Ein geflecktes Expressionsmuster würde dann aufgrund epigenetischer Suppression, abhängig vom Genlokus des Integrationsortes, entstanden sein. Fände die Integration des Transgens in einem späteren Stadium der Embryogenese statt, wäre nur der Anteil der Zellpopulation transgen, in welcher die Integration stattfand. Falls tatsächlich transgene F<sub>1</sub>-Polypen aus einer epithelialen Linie (hier Ekto-GFP<sup>+</sup>) hervorgehen, so ist das ein Hinweis auf eine epigenetische Suppression des Transgens in der I-Zelllinie, da nur diese Gameten ausbilden können.

Im folgenden Experiment wurde ein geschlüpfter transgener Ekto-GFP<sup>+</sup> Polyp asexuell vermehrt und Knospen mit einem Maximum von transgenen Ektodermzellen isoliert. Dieses Selektionskriterium führte zu einer Massenkultur vollständig transgener Ekto-GFP<sup>+</sup> Polypen. Durch Induktion dieser Ekto-GFP<sup>+</sup> Massenkultur konnten sowohl männliche als auch weibliche Polypen gewonnen werden. Die daraus hervorgegangenen Embryonen wurden isoliert, so dass später die transgenen Eigenschaften der F<sub>1</sub>-Generation analysiert werden konnte. Durch die Analyse war es möglich zur Aufklärung des Integrationszeitpunkts beizutragen.

Insgesamt konnten drei unterschiedliche Phänotypen charakterisiert werden. Tabelle B8 gibt die prozentualen Anteile der Phänotypen wider. Hierbei waren 54,5 % der  $F_1$ -Polypen vollständig transgen im Ektoderm. 27,3 % wiesen eine partielle Expression des Reportergens auf, wobei sich diese unterschiedlich darstellte. Einige Polypen zeigten über die Körpersäule verteilt transgene ektodermale Zellen, andere entsprachen mehr dem gefleckten Phänotyp des ursprünglichen Muttertiers ( $P_1$ ). 18,2 % der  $F_1$ -Generation entsprachen Wildtyp-Polypen. Abbildung B20 zeigt den  $P_1$ -Polypen und exemplarisch die drei verschiedenen Phänotypen der  $F_1$ -Generation.

Das Experiment ergab, dass die GFP-Expression im Ektoderm im Verhältnis 1:2:1 auf die  $F_1$ -Generation übertragen wurde.

Zusätzlich konnte in Experimenten mit Endo- $GFP^+$  Polypen unter gleichen Bedingungen in der  $F_1$ -Generation ein Polyp mit vollständig transgener GFP-Expression im Endoderm beobachtet werden (siehe Anhang).

| Tabelle B8: F <sub>1</sub> -Generation ektodermal | transgener Polypen. |
|---------------------------------------------------|---------------------|
|---------------------------------------------------|---------------------|

| Anteil transgener Polypen in der F1-Generation |             |          |        |  |
|------------------------------------------------|-------------|----------|--------|--|
| F <sub>1</sub> -Generation                     | vollständig | partiell | ohne   |  |
| ektodermales                                   | 54,5 %      | 27,3 %   | 18,2 % |  |
| transgenes Gewebe                              |             |          |        |  |

Dargestellt ist der prozentuale Anteil geschlüpfter Polypen [n=22].



Abbildung B20:  $F_1$ -Generation einer GFP<sup>+</sup> transgenen ektodermalen Parentalgeneration ( $P_1$ ).

Aus einem P<sub>1</sub>-Polyp mit partieller Expression (A) wurden vollständig transgene Polypen herangezogen (B) und zur Gametogenese induziert. Die F<sub>1</sub>-Polypen zeigten 3 unterschiedliche Phänotypen, partiell ektodermal transgene (C), vollständig ektodermal transgene (D) und Wildtyp (D). Bei allen F<sub>1</sub>-Polypen beschränkte sich die transgene Expression auf ektodermale Epithelzellen. A) 100x vergrößert, B-D) 40 x vergrößert.

#### 3. Diskussion

Seit dem 18. Jahrhundert nimmt Hydra in der Biologie einen Platz als Modellorganismus ein und hat bis heute seinen Stellenwert für die Forschung nicht verloren. Dazu trägt seine Position an der Basis der Metazoen (Gewebetiere) bei, durch die er bei phylogentischen Fragestellungen herangezogen werden kann. Weiterhin sind seine hohen regenerativen Eigenschaften von Interesse und sein einfacher Körperbauplan diente bereits ausgiebig entwicklungsbiologischen Studien. Beispielsweise kann untersucht werden wie eine Körperachse organisiert und aufrecht erhalten wird (Musterbildung und Achsenformation), wenn alle Zellen des adulten Organismus einer ständigen Positionsveränderung unterworfen sind. Zusätzlich verfügt Hydra über eines der evolutionär ältesten Nervensysteme und bietet somit auch einen Einblick in die phylogenetische Entwicklung der komplexen Nervensysteme höherer Metazoen.

Außer klassischen Methoden wie der radioaktiven Markierung von Zellen mit [<sup>3</sup>H]-Thymidin und anschließender Verfolgung der Differenzierungsprozesse, Gewebetransplantationsexperimente, Dissoziation der Polypen in Einzelzellsuspension und anschließender Reaggregation, etablierten sich auch mit der Zeit moderne Methoden, die der Genanalyse dienen, und konnten am Polypen durchgeführt werden. So machten in situ Hybridisierungen die Expression einzelner Genen am ganzen Polypen sichtbar. Für entwicklungsbiologische Fragestellungen wurden in anderen Modellorganismen "loss of function" (LOF) und "gain of function" (GOF)-Experimente sehr bedeutsam, da hier die Funktion einzelner Gene spezifisch untersucht werden kann. Hydra als Modellorganismus war für diese Art von Experimenten längere Zeit schwer zugänglich. Einzelne Publikationen berichten von erfolgreichen RNAi Anwendungen (LOF) an Hydra Polypen. Diese wurden über Elektroporation transfiziert (Lohmann et al., 1999; Lohmann & Bosch, 2000; Amimoto et al., 2006), aber auch durch Verfütterung von Bakterien-Agarose-Stückchen, die nach Transformation eines entsprechenden Konstrukts doppelsträngige RNA herstellten (Miljkovic-Licina et al., 2007). Später konnten auch erste Erfolge bei Transfektionstechniken für Plasmide demonstriert werden, die GOF-Experimente ermöglichen. Hier zeigten vor allem die physikalischen Verfahren erste Erfolge. So wurde die erfolgreiche Transfektion einzelner Zellen im Polypen durch die "Gene gun" demonstriert (Böttger et al., 2002). Im gleichen Jahr wurde auch von einer Transfektionsmöglichkeit durch Elektroporation berichtet (Galliot et al., 2002). Die Anwendung eines dritten physikalischen Transfektionsansatzes, embryonale Mikroinjektion von DNA-Lösungen, führte sogar zu transgenen Tieren. Es konnte gezeigt werden, dass eine Mikroinjektion von DNA-Lösungen in frühe embryonale Stadien in etwa 6 % der Fälle zu einer stabilen genomischen Integration der injizierten DNA führt (Wittlieb et al., 2006).

Diese Arbeit beschäftigte sich mit der Verbesserung der bestehenden Transfektionsmöglichkeiten an Hydra. So wurde an einer qualitativen und quantitativen Optimierung der embryonalen Mikroinjektion gearbeitet. Gleichzeitig wurde auch an einer verbesserten und standardisierbaren Transfektionsmöglichkeit für Plasmid-DNA an Polypen gearbeitet, so dass auch GOF-Experimente von Genen möglich sind, die durch ihr verstärktes Signal während der Embryogenese lethal wirken würden. Hierfür wurde auch an einer zielgerichteten, lokal eingrenzbaren Transfektionsmöglichkeit am Polypen gearbeitet, so dass Überexpressionen ausschließlich im gewünschten Bereich des Tieres stattfinden. Ein interessanter Bereich wäre hier beispielsweise das Hypostom, der Sitz des Kopf-Organisators in Hydra.

# 3.1 Durch embryonale Mikroinjektion konnten transgene Polypen für jede Stammzelllinie generiert werden

Ein Ziel der Arbeit war es transgene Hydren sowie transgene Strammzelllinien zu erzeugen. Durch embryonale Mikroinjektion eines Reporterkonstrukts, das GFP unter Kontrolle eines konstitutiv aktiven Hydra Aktin Promotors enthielt gelang es transgene Polypen zu erzeugen, woraus drei transgene Stammzelllinien hervorgingen: GFP<sup>+</sup> I-Zellen, GFP<sup>+</sup>-Endoderm und GFP<sup>+</sup>-Ektoderm.

Weiterhin führte eine DNA-Konzentrationsreihe zu einer optimierten Konzentration von 150 ng/  $\mu$ l, durch die in 18,4 % der Fälle transgene Tiere erzeugt werden konnten. Damit konnte in diesen Experimenten durch reduzieren der injizierten DNA-Menge eine Verdopplung der Transfektionsrate erreicht werden. Im Vergleich dazu führten Injektionen mit 600 ng/  $\mu$ l in dieser Arbeit zu 9,2 %, was mit geringer Abweichung den publizierten Daten entspricht. Wittlieb et al. (2006) zeigte, dass bei einer Konzentration von 600 ng/  $\mu$ l in 5,9 % der Fälle transgene Tiere entstehen. Wahrscheinlich kamen solche Abweichungen durch individuelle Unterschiede bei der Durchführung der Mikroinjektion zustande. Die DNA-Konzentrationsreihe zeigte zudem, dass sich zu hohe Mengen injizierter DNA nachteilig auf die Transfektionsrate auswirken. Injektionen mit 1000 ng/  $\mu$ l führten nicht zu transgenen Tieren. Das kann erklären, warum eine Konzentration vom 150 ng/  $\mu$ l effizienter war als 600 ng/  $\mu$ l.

Qualitativ konnten bei Injektionen verschiedener Konzentrationen mit *pHotG* keine Unterschiede festgestellt werden. In allen Fällen exprimierten höchstens 2 der 3 Stammzelllinien das Reportergen gleichzeitig. Auch war in allen Fällen lediglich ein Teil des Polypen transgen und beschränkte sich auf einige Bereiche des Polypen. Trotz dieser Nachteile konnten transgene Tiere geschaffen werden, die in jeweils einer Stammzelllinie das Reportergen GFP exprimierten. Diese transgene Tiere boten sich für eine Reihe von Untersuchungen an. Polypen mit GFP<sup>+</sup>-markierten I-Zellen konnten in Transplantationsexperimenten zur Analyse ihrer Proliferations- und Differenzierungsprozesse verwendet werden. Weiterhin konnten mit Hilfe von Polypen, die jeweils transgen für eine Epithelzelllinie waren, frühe Zellsortierungsprozesse in Reaggregaten studiert werden. Zur näheren Untersuchung des Integrationszeitpunkts des mikroinjizierten Transgens diente die phänotypische Bestimmung der Nachkommen transgener Epithelzelllinien.

# 3.2 Die Anwendung des Transposons "Sleeping beauty" und der Meganukleasen *I-Sce*l bzw. *I-Ceu*l führten nicht zu höheren Raten transgener Hydren durch embryonale Mikroinjektion

Ein Ziel in dieser Arbeit war es die embryonale Mikroinjektion zur Generierung transgener Polypen qualitativ und quantitativ durch gentechnisch unterstützte Ansätze zu verbessern. Eine qualitative Verbesserung dieser Methode sollte möglichst zur vollständigen Expression des Transgens in allen drei Stammzelllinien führen. Zusätzlich war eine Effizienzsteigerung bei embryonaler Mikroinjektion angestrebt um hierdurch einen höheren Anteil transgener Polypen erzeugen zu können.

In dieser Arbeit wurden zwei gentechnische Ansätze überprüft, die bereits in anderen Modellorganismen erfolgreich zur qualitativen und quantitativen Transfektionssteigerung verwendet werden. Der erste Ansatz beruhte auf einem Transposon der TC1/ mariner-Familie, dem "Sleeping beauty". Alternativ wurde auch ein auf Meganukleasen basierter Ansatz getestet. Hierbei kamen zwei Meganukleasen zum Einsatz, *I-Sce*I und *I-Ceu*I, welche auf Funktionalität in Hydra überprüft wurden.

#### 3.2.1 Embryonale Mikroinjektion des Transposons "Sleeping beauty"

In anderen Modellorganismen wird das DNA-Transposon "Sleeping Beauty" (SB) bereits erfolgreich eingesetzt. Im Zebrafisch führten Ko-Injektionen von 100 ng/  $\mu$ l "Sleeping Beauty" mRNA (SB10) mit 8,3- 16,7 ng/  $\mu$ l Plasmid-DNA zu 6-mal mehr transgenen Tieren (31 %) gegenüber der Kontrolle (Davidson et al., 2003). In immortalisierten Hühner- und Truthahnzellen führte eine SB Ko-Injektion sogar bis zu einer 35-fachen Steigerung gegenüber der Kontrolle (Kong et al., 2008). Auch in Maus wird SB bereits erfolgreich zu Chromosomen-Transposition und Keimzellen-Mutagenese eingesetzt (Horie et al., 2001; Takeda et al., 2007).

In dieser Arbeit wurde versucht die Technik der Transposon-vermittelteten Transfektion auf Hydra zu übertragen. Hierfür wurde das Transposon SB sowohl Plasmid-kodiert, als auch in Form als "messenger RNA" (mRNA) transfiziert. In Kontrollexperimenten, durch eine Transposase-freie Mikroinjektion des Donorplasmids *pTHB* wurde eine Rate transgener Tiere von 23,5 % erzielt. Das Reporterplasmid *pTHB* enthält das gleiche Konstrukt wie *pHotG*, bestehend aus GFP unter der Kontrolle des konstitutiv aktiven Hydra Aktin Promotors. Der einzige Unterschied zwischen den beiden Plasmiden bezog sich auf die "inverted terminal repeats" (ITR) des Transposons, welche in *pTHB* das GFP-Reporterkonstrukt einrahmte. Eine Injektion mit Plasmid-kodierter Transposase im gleichen Verhältnis reduzierte die Rate transgener Polypen auf 12 %. Offenbar konnte hier ein Überexpressions-Inhibitionseffekt beobachtet werden. Ein solcher Effekt ist bereits bekannt und führt dazu, dass größere Mengen an Transposase die eigene katalytische Aktivität wieder hemmt (Geurts et al., 2003). In diesem Modell können an jeder ITR-Stelle zwei Transposasen binden (Izsvák et al., 2000). Die Transpositionsrate steigt hierbei bis zu einem Verhältnis der Transposase zum Donorplasmid von 4:1. Darüber hinaus gehende freie Transposase-Proteine würden die Komplexbildung stören und die Transpositionsfähigkeit einschränken.

Die Transposase wurde in dem vorangegangenen Ansatz zu gleichen Teilen ko-injiziert. Zudem stand die Expression unter einen konstitutiv aktiven Promotor. Eine deutliche Überexpression des Enzyms konnte daher nicht ausgeschlossen werden, weshalb auch ein Überexpressions-Inhibitions Effekt möglich wäre. Um diesen möglichen Effekt zu umgehen wurde eine deutlich reduzierte Menge des Helferplasmids *pASBT* auf 5 ng/  $\mu$ l mit 150 ng/  $\mu$ l *pTHB* ko-injiziert. Im Ergebnis führte jedoch die drastische Reduktion um 75 ng/  $\mu$ l (-93,75 %) des Helferplasmids immer noch zu einem ähnlichen Anteil (11,3 %) transgener Polypen. Im Vergleich zum Kontrollexperiment führte somit die Ko-Injektion einer DNA-kodierten Transposase zu einer Reduktion des transgenen Anteils um etwa 10 %.

Um der Expression der Transposase nur ein kurzes Zeitfenster zu gewähren, so dass ein Überexpressions-Inhibitions Effekt ausgeschlossen werden kann, wurde mRNA der Transposase transfiziert. Eine Ko-Injektion von 5 ng/  $\mu$ l "Sleeping Beauty" mRNA mit 150 ng/  $\mu$ l des Donorplasmids *pTHB* führte zu 12,7 % transgener Tiere. Hierbei bewegte sich der Anteil immer noch auf den zuvor erzielten Effizienzen. Eine Ko-Injektion der Transposase in Form einer mRNA ohne 5°CAP-Struktur führte zu einem Anteil transgener Polypen von 21,9 % und war damit auf dem Niveau der Kontrolle. Insgesamt zeigten alle Ko-Injektionen, in deren die Transposase ausreichend exprimiert werden sollte, eine verringerte Transfektionseffizienz um etwa 10 %. Qualitativ konnte an den geschlüpften Polypen ebenfalls kein Unterschied festgestellt werden. Transgene Polypen aus SB-Mikroinjektionen zeigten, ähnlich wie *pHotG*, gefleckte Expressionsmuster auf. Weiterhin waren maximal zwei der drei Stammzelllinien transgen.

#### 3.2.2 Embryonale Mikroinjektion der Meganukleasen I-Scel und I-Ceul

In dieser Arbeit wurde die Möglichkeit untersucht durch Meganukleasen eine Verbesserung der embryonalen Mikroinjektion zu erzielen. Hierbei wurden für jede Meganuklease (*I-SceI* und *I-CeuI*) zwei unterschiedliche Reporterkonstrukte hergestellt, die sich in der Orientierung der Restriktionsstellen unterschieden (vgl. Abb. B3).

Im ersten Fall waren die Schnittstellen der Meganuklease gleich orientiert, so dass eine Restriktion durch die Meganuklease zu zwei ungleichen Enden der Meganukleasen-Schnittstelle am Reporterkonstrukt führt. In diesem Konstrukt verbleibt die Meganuklease nur an dem verbleibenden größeren Ende der Schnittstelle am Reporterkonstrukt haften. In diesem Konstrukt kann die Meganuklease zwar nur an einer Stelle am Konstrukt haften bleiben und es in den Nukleus dirigieren, dafür sind die Restriktionsstellen-Fragmente am Reporterkonstrukt so angeordnet, dass es sich an einer Zielsequenz im Genom problemlos integrieren kann. Die Plasmide *pJet-ISceIHotG* und *pJet-ICeuIHotG* verfolgten diese Strategie.

Im alternativen Ansatz sind die flankierenden Restriktionsstellen der Meganukleasen so angeordnet, dass beide größeren Schnittstellenfragmente am Reporterkonstrukt verbleiben. In diesem Fall ist die Wahrscheinlichkeit größer, dass das Konstrukt in den Nukleus dirigiert wird. Am Integrationsort müssen dann Zellreparaturmechanismen die entstandenen Lücken füllen. Die Plasmide *pBS-ISceIAktGFP* und *pGEM-ICeuIAktGFP* verfolgen diese Strategie. Das Plasmid *pBS-ISceIAktGFP* basiert hierbei auf einem Vektor (*pBS-ISceISK+*), welcher bereits erfolgreich in Medaka und Zebrafisch eingesetzt wurde (Thermes et al., 2002, Grabher et al., 2004, Grabher und Wittbrodt 2007).

Durch embryonale Mikroinjektion verschiedener Konzentrationen des Reporterplasmids *pHotG* konnte die höchste Transfektionseffizienz von 18,4 % bei 150 ng/  $\mu$ l erzielt werden. Die verwendete Plasmid-Konzentration wurde somit auch zur Überprüfung der Meganukleasen unterstützten Transfektion beibehalten. In den Kontrollexperimenten der Meganuklease-Vektoren schwankten die Transfektionsraten zwischen 13 % und 22 %.

Eine Mikroinjektion von 1 u/ µl I-SceI mit 150 ng/ µl *pJet-ISceIHotG* führte zu einer deutlichen Reduktion der Transfektionseffizienz auf 3,2 % im Vergleich zur Kontrolle (14,7 %). Wurde 1 u/ µl *I-SceI* mit 150 ng/ µl *pBS-ISceIAktGFP* ko-injiziert konnte eine Effizienz von 14,3 % erzielt werden. Da sich in diesem Vergleich nur die Orientierung beider *I-SceI* Restriktionsstellen unterscheiden, kann die letztere Variante als die günstigere betrachtet werden. Allerdings konnte auch hier eher ein inhibitorischer Effekt auf die Transfektionsrate festgestellt werden. Mit zunehmender *I-SceI* Konzentration nahm die Transfektionsrate ab. So führte eine Ko-Injektion mit 0,25 u/ µl zu 16,2 %, bei 1 u/ µl zu 14,3 % und bei 2 u/ µl zu 10,7 % transgener Tiere. Der größte Anteil transgener Hydren konnte im Kontrollexperiment erzielt werden (22 %). Die Ko-Injektion mit 1 u/ µl *I-SceI* mit *pBS-ISceIAktGFP* (10,4 %) führte zur ähnlichen Rate transgener Tiere wie in der Kontrolle (9,4 %). Möglicherweise lag hier die DNA im Überschuss vor, so dass ein inhibtorischer Effekt des Enzyms aufgefangen werden konnte.

Ein ähnliches Bild ergaben die Mikroinjektionen mit *I-Ceu*I. Während in der Kontroll-Injektion von 150 ng/  $\mu$ l *pGEM-ICeuIAktGFP* 10,3 % transgene Tiere entstanden, so reduzierte sich die Rate auf 5,6 % bei einer Ko-Injektion von 0,25 u/  $\mu$ l und wurde bei 1 u/  $\mu$ l vollständig blockiert. Interessanterweise konnten bei 2 u/ $\mu$ l wieder 6,3 % transgene Tiere erzeugt werden. Hier war eventuell die enzymatische Aktivität von *I-Ceu*I gehemmt, ähnlich wie im beschriebenen Überexpressions-Inhibitions Effekt beim SB-Transposon (Geurts et al., 2003). Diese

eingeschränkte *I-Ceu*I Aktivität könnte sich dann wieder positiv auf die Transfektion ausgewirkt haben. Eine Injektion von 150 ng/  $\mu$ l *pJet-ICeuIHotG* führte zu einem Anteil transgener Polypen von 13,5%. Bei einer anschließenden Ko-Injektion von 1 u/  $\mu$ l *I-Ceu*I bei gleich bleibender Plasmid-Konzentration verringerte sich der Anteil transgener Polypen leicht auf 10,9 %. Eine Erhöhung der Plasmid-Konzentration auf 600 ng/  $\mu$ l und gleich bleibender Enzym-Konzentrationen führte zu einer auf 17,8 %. Somit wichen die Werte nicht erheblich von der Kontrolle ab, wodurch kein Einfluss der Meganuklease bestimmt werden konnte.

Insgesamt weichen die Transfektionseffizienzen bei ko-injizierten Meganukleasen nicht deutlich von den Kontroll-Injektionen ab. Es ist zwar eine Tendenz zur reduzierten Transfektionseffizienz zu beobachten, wenn Meganukleasen ko-injiziert wurden. Allerdings schankten die Transfektionsraten innerhalb der Kontrollexperimente um 10 %. Es ist anzunehmen, dass die ko-injizierten Enzyme nicht ihre katalytischen Fähigkeiten zur Transfektionsunterstützung einsetzen konnten. Hierfür muss nicht unbedingt der Ansatz selbst funktionslos in Hydra sein. Einige Besonderheiten in der Embryogenese von Hydra könnten einen erfolgreichen Einsatz der Meganukleasen verhindert haben. Tausende "nurse"-Zellen befinden sich in der frühen Embryogenese in der Oozyte und in den Blastomeren. Die beschriebene optimale Injektionsstelle in die Nähe der Pronuklei in der frühen Zygote konnte somit nicht nachvollzogen werden (Pan et al., 2006). Zudem findet eine fortwährende Phagozytose dieser "nurse"-Zellen statt. Hier könnten freigesetzte Proteasen die injizierten Meganukleasen vorzeitig abgebaut haben.

# 3.3 Durch intraepitheliale Mikroinjektion und Elektroporation können in Hydra Polypen Zellen transient in einem frei wählbaren, lokal begrenzten Gewebebereich transfiziert werden

Durch Elektroporation von adulten Polypen in 4 mm Elektroporationsküvetten, konnten erste Epithelzellen am Polypen transfiziert werden. Die Küvetten, in ihrer Funktion als Plattenkondensator, konnten hierbei die nötige Kraft zur Transfektion beisteuern. Eine Transfektion der Polypen konnte allerdings nicht gerichtet stattfinden, da die räumliche Position der Polypen zu den Elektroden variierte. Im Vergleich zu anderen Transfektionstechniken, wie die "Gene gun" herrschten allerdings im Medium während der Elektroporation konstante Bedingungen. Die Transfektionsparameter Spannung und Pulsdauer, applizierte DNA-Konzentration und Elektroporationsmedium konnten konstant eingestellt werden. Alle sich in der Elektroporationsküvette befindlichen Polypen waren diesen Parametern gleichermaßen exponiert. Bei der "Gene gun" kann die zu transfizierende DNA-Menge eingestellt werden, so dass nach Fällung etwa alle Goldpartikel den gleichen Betrag an Plasmiden transportieren. Die Polypen befinden sich allerdings nicht im ständigen Kontakt mit dem Transfektionsmedium (Goldpartikel). Daher werden Zellen im Polypen bei einem "Gene gun"-Beschuss in unterschiedlichster Anzahl und hoher örtlicher Variation transfiziert.

In späteren Experimenten konnte die Elektroporationstechnik weiter verbessert werden. Hierfür wurde die DNA nicht wie zuvor dem Elektroporationsmedium beigefügt, sondern mittels Mikroinjektion intraepithelial injiziert. Die Transfektion erfolgte dann nach Überführung der injizierten Polypen wie zuvor in Elektroporationsküvetten. Für diese Anwendung konnten die Elektroporationsparameter Pulslänge und Spannung optimiert werden (Diplomarbeit Christ, 2006). Der große Vorteil dieser Methode lag darin, dass nun die räumliche Orientierung der Polypen in der Küvette keine Rolle bei der Transfektion bestimmter Regionen im Polypen spielte. Es konnte gezeigt werden, dass nur Epithelzellen in der näheren Umgebung der Injektionsstelle transfiziert werden konnten. Damit war erstmals eine lokale definierte Transfektion an adulten Polypen möglich. Weiterhin konnten sich in manchen Polypen an den transfizierten Stellen durch darauf folgende Proliferation Zellcluster von bis zu 10 Zellen ausbilden. Eine Transfektion von Polypen mit anschließender Ausbildung von Zellclustern mit mindestens 10 Zellen ist eine wichtige Voraussetzung um funktionelle Studien mit Organisationszentren ("Organizern") in Hydra durchzuführen. So wird angenommen, dass sich ein Kopforganisatorgewebe in Hydra Reaggregaten erst dann stabilisiert und aktiv wird, wenn es eine Clustergröße von mindestens 10 Epithelzellen angenommen hat. In dieser Methode wurden durchschnittlich 2 - 3 Epithelzellen im Polypen transfiziert. Die Wahrscheinlichkeit transfizierte Zellclustergrößen von mehr als 10 Zellen zu bekommen war somit immer noch zu gering.

Daher wurde an einer weiteren Optimierung dieser Transfektionstechnik gearbeitet, um eine erhöhte Transfektionseffizienz zu erreichen. Nach den optimierten Parametern Spannung, Pulszahl und Pulslänge (Diplomarbeit Christ, 2006) war das umgebende Elektroporationsmedium, insbesondere die enthaltene Salzkonzentration, ein naheliegendes Kriterium, welches die Transfektion beeinflussen könnte. Es stellte sich jedoch heraus, dass ein Elektroporationsmedium von 70 % Dissoziationsmedium/ 30 % ddH2O zu den besten Transfektionseffizienzen führte. Durch nähere Analyse der Transfektionsmethode konnte die Zeitspanne zwischen vollzogener intraepithelialer Mikroinjektion und Elektroporation als kritisch angesehen werden. Durch Farbstoff markierte DNA-Lösung mit Rhodamin/ Dextran konnte bereits kurz nach der Mikroinjektion ein Rückfluss des injizierten Mediums aus dem Polypengewebe beobachtet werden. Bis zur eigentlichen Transfektion durch Elektroporation war somit ein hoher Verlust an injizierter DNA-Lösung möglich. In einem veränderten Ansatz konnte durch einen selbst zusammengestellten Elektroporationsausfbau mit Platin-Elektroden das Problem des zeitlichen Abstands zwischen Mikroinjektion und Elektroporation vollständig umgangen werden. Die Anordnung der Elektroden wurde von Aufbauten für in ovo Elektroporationen abgeleitet. In der in ovo Elektroporation kommen zwei frei bewegliche L-förmige Elektroden zum Einsatz, welche unter bzw. über der Injektionsstelle am Embryo positioniert werden. Beispielsweise wird bei einer Transfektion des Neuralrohrs im Hühnerembryo die DNA-Lösung in das Neuralrohr injiziert und anschließend durch 3 Pulse mit 20 V für 20 ms mit Elektroden transfiziert. In der für Hydra Polypen adaptierten Variante wurden die Elektroden jedoch direkt an den Injektionstisch präpariert. Dieser Aufbau bot durch fixierten Elektrodenabstand von 4 mm konstante Elektroporationsbedingungen. Damit ergab sich während der Elektroporation ein ähnliches elektrisches Feld, bestehend aus parallel verlaufenden Feldlinien, wie zuvor in den Elektroporationsküvetten. Der Polyp befindet sich hierbei bereits während der Mikroinjektion in einer räumlich definierten Position zu den Elektroden und kann während bzw. direkt nach der Injektion elektroporiert werden. Die applizierte elektrische Kraft ist somit über den gesamten Polypen gleich. Die zwei großen Vorteile dieses Elektroporationsaufbaus liegen nun zum einen in der definierbaren räumlichen Position der Injektionsstelle zur Polarität der Elektroden und zum anderen in der zeitnahen Elektroporation zur Mikroinjektion.

Durch die Mikroinjektion und Elektroporation konnten daraufhin bis zu 13 Epithelzellen an einem Polypen nahe der Injektionsstelle transfiziert werden. Über eine Veränderung der Polarität zur Anode an der Injektionsstelle konnten überwiegend I-Zellen am Polypen transfiziert werden. In beiden Fällen konnte 72 h nach Elektroporation eine starke Fluoreszenz des transfizierten Reportergens GFP in Zellen an der Injektionsstelle beobachtet werden. Hierbei zeigte sich, dass das ko-injizierte Rhodamin-Dextran in wesentlich höherer Effizienz im Zytoplasma der Zellen um die Injektionsstelle gelangte (siehe Anhang zum Abschitt 2.1). Die Aufnahme der transfizierten Plasmide hingegen wurde offenbar aufgrund ihrer Größe limitiert. Das verwendete Rhodamin-Dextran hatte ein Molekulargewicht (MW) von 10000 Da. Das Molekulargewicht eines DNA-Basenpaars entspricht 650 Da. Somit entsprach das MW der verwendeten Plasmide (6000 bp – 7500 bp) etwa 3900 kDa – 4875 kDa. Dieser erhebliche Größenunterschied kann die enormen Effizienzunterschiede in der Transfektion erklären.

41

Die hocheffiziente Aufnahme von Rhodamin-Dextran in Epithelzellen an der Injektionsstelle deutet jedoch auf eine weitere Anwendungsmöglichkeit dieser Methode hin. Zu transienten LOF-Experimenten ("loss-of-function") an Hydra Polypen könnten siRNA's (22 bp) hoch effizient an lokal definierten Stellen am Polypen transfiziert werden. Das MW der siRNA's entspricht mit 14500 Da in etwa dem des Rhodamin-Dextrans.

Die effiziente Aufnahme von Fluoreszenzfarbstoffen am Polypen durch Elektroporation konnte bereits demonstriert werden (Bosch, 2002). Hier führten Elektroporationen von Polypen in 2 mm Küvetten mit FITC-Dextran (MW 70000 Da) zur effizienten Aufnahme des Fluoreszenzfarbstoffs in Epithelzellen. Eine Plasmid-Transfektion mit Luciferase-Reportergen unter Kontrolle eines Hitzeschockpromotors (Hsp70) konnte nicht mit konventionellen Methoden nachgewiesen werden. Die Expression von Plasmiden wurde über RT-PCR nachgewiesen. Zur Anwendung von LOF-Experimenten am Kopf-Organisator von Hydra wäre eine lokal begrenzte Transfektion vorteilhafter. Diese ist durch die hier vorgestellte Methode möglich.

# 3.3.1 Die Anwendung des Transposons "Sleeping beauty" und der Meganukleasen *I-Scel bzw. I-Ceul führte nicht zur stabilen Transfektion am* Polypen

In dieser Arbeit konnte eine Methode zur Transfektion von Polypen etabliert werden. In diesem Zusammenhang wurde auch überprüft, ob die Anwendung des Transposons "Sleeping beauty" zu einer erhöhten Transfektionsrate führen kann. In der Kontrolle zeigte sich, dass eine alleinige Verwendung von 150 ng/  $\mu$ l des Donorplasmids *pTHB* zu einer Transfektionsrate von 5 % führt, wobei durchschnittlich eine Epithelzelle transfiziert war. Eine Ko-Injektion mit 75 ng/  $\mu$ l Transposase-kodierender mRNA bei gleicher Donorplasmid-Konzentration führte zur gleichen Transfektionseffizienz. Wurde hingegen eine mRNA verwendet, der die stabilisierende 5'CAP-Struktur fehlte, wiesen 45 % der elektroporierten Polypen durchschnittlich 1,44 Epithelzellen auf. Möglicherweise konnte eine geringere Expressionsrate der Transposase zur höheren Transfektionseffizienz beitragen. Allerdings konnten hier nicht wesentlich mehr Epithelzellen transfiziert werden als zuvor. Weiterhin verloren die transfizierten Zellen ihr GFP-Signal, so dass keine stabile Transfektion festgestellt werden konnte.

Analog zur embryonalen Mikroinjektion wurde die Anwendbarkeit der Meganukleasen zur Steigerung der Transfektionseffizienz an Polypen getestet. Zur erfolgreichen Anwendung des Meganukleasen-Ansatzes mussten die ko-transfizierten Komponenten, das DNA-Plasmid und das Enzym, in die gleichen Zellen gelangen. Die intraepitheliale Mikroinjektion an Polypen gewährleistete die lokale Begrenzung des injizierten Ansatzes aus DNA und Enzym. Durch eine Präinkubation des Restriktionsansatzes sollte die Meganuklease bereits als Komplex mit dem Reporterkonstrukt verbunden sein.

In den Transfektionsexperimenten wurden zwei verschiedene Meganuklease-Ansätze überprüft. Ein niedrig konzentrierter Ansatz bestand aus 150 ng/  $\mu$ l Plasmid und 0,25 u/  $\mu$ l Enzym. Ein weiterer Ansatz mit höheren Konzentrationen bestand aus 600 ng/  $\mu$ l und 1 u/  $\mu$ l Enzym. Diese Konzentrationen wurden gewählt, da der niedrig konzentrierte Ansatz bereits in embryonalen Mikroinjektionen einen positiven Effekt andeutete. Der höher konzentrierte Ansatz richtete sich nach den optimalen Konzentrations-Bedingungen zur lokalen Elektroporation, die bei 500 ng/  $\mu$ l lag. Für die *I-Sce*I Ansätze zeigte sich, dass in der Kontrolle 150 ng/  $\mu$ l *pBS-ISceIAktGFP* zu 4 % transfizierten Polypen mit durchschnittlich einer Epithelzelle führten, wenn diese in der Küvette elektroporiert wurden. Wenn allerdings bei gleicher Plasmidkonzentration 0,25 u/  $\mu$ l *I-Sce*I ko-transfiziert wurden, konnten in 26,1 % aller Polypen durchschnittlich 2 Epithelzellen detektiert werden. Einen ähnlich positiven Einfluss des Enzyms kann man auch beim höher konzentrierten Ansatz beobachten. Hier konnte bei einer Transfektion von 600 ng/  $\mu$ l *pBS-ISceIAktGFP* kein Polype zu durchschnittlich 1,5 transfizierten Zellen. Somit scheint eine Kombination von 150 ng/  $\mu$ l des Vektors *pBS-ISceIAktGFP* mit 0,25 u/  $\mu$ l die Transfektionsrate positiv zu beeinflussen.

Wurde jedoch *pJet-ISceIHotG* verwendet, so hatte die Ko-Injektion mit *I-SceI* einen negativen Einfluss. Hier konnten in den Kontrollen, ohne Meganuklease, jeweils 4 % aller Polypen mit durchschnittlich zwei transfizierten Zellen beobachtet werden. Bei Anwesenheit der Meganuklease konnten keine Polypen transfiziert werden. Im Vektor *pJet-ISceIHotG* flankieren die *I-SceI* Restriktionsstellen das Reporterkonstrukt gerichtet, d. h. nach der Restriktion existiert nur ein größeres Ende. Die Chance, dass das Enzym das Reporterkonstrukt in den Nukleus dirigiert ist somit gegenüber dem Plasmid *pBS-ISceIAktGFP* geringer. Hier sind die Restriktionsstellen invers orientiert, so dass sich beide verbleibenden größeren Hälften der Restriktionsstelle am Reporterkonstrukt befinden.

Im Vergleich dazu führte eine Ko-Injektion von 150 ng/  $\mu$ l des Plasmids *pGEM-ICeuIAktGFP* zu einer ähnlich hohen Transfektionsrate von 20,8 % mit durchschnittlich 1,8 Zellen. Auch in diesem Vektor sind die Restriktionsstellen invertiert, so dass *I-CeuI* an beiden Enden des Reporterkonstrukts assoziiert sein kann. Der Ansatz mit höheren Konzentrationen schien jedoch eine Transfektion zu verhindern. Bei Verwendung des *pJet-ICeuIHotG* Vektors, in dem die Restriktionsstellen gerichtet orientiert vorlagen konnte kein Polyp transfiziert werden.

Zusammenfassend scheinen die *pJet-Vektoren* für *I-Sce*I und *I-Ceu*I, deren Reporterkonstrukt von zwei gleichgerichtet orientierten Restriktionsstellen flankiert wird, bei Ko-Injektionen mit dem Enzym eine Transfektion zu stören. Dahingegen hat eine Ko-Injektion der Vektoren mit invertiert orientierten Restriktionsstellen einen positiven Einfluss auf die Transfektionseffizienz. Eine Ko-Injektion der Enzyme mit *pBS-ISceIAktGFP* bzw. *pGEM-ICeuIAktGFP* zeigte eine deutliche Verbesserung der Transfektionseffizienz. Die Transfektionsqualität befand sich jedoch trotz dieses positiven Einflusses auf einem unbefriedigend niedrigen Niveau. In jedem fünften Polypen konnte eine durchschnittliche transfizierte Zellzahl von 2 Epithelzellen gemessen werden. Alle transfizierten Zellen exprimierten das Reportergen GFP transient für eine Dauer von 8 - 10 Tagen.

Nach einer Weiterentwicklung der lokalen Transfektionstechnik durch Platin-Elektroden bot sich die erneute Überprüfung des Meganukleasen-unterstützten Ansatzes zur stabilen Transfektion an. Da mit der neuen Elektroporationstechnik mehr Zellen am Polypen transfizierbar waren, konnten mit einer höheren Wahrscheinlichkeit die Meganukleasen ko-transfiziert werden. Die Experimente beschränkten sich auf die Plasmide *pBS-ISceIAktGFP* und *pGEM-ICeuIAktGFP*, da diese in den vorangegangenen Elektroporationen einen positiven Effekt auf die Transfektionseffizienz aufwiesen. Die durchgeführten Ko-Injektionen mit 450 ng/ µl des Plasmids mit 1 u/ µl der entsprechenden Meganuklease führten jedoch zur drastischen Reduktion der transfizierten Zellzahl. In der Kontrolle führte eine Transfektion von 450 ng/ µl *pBS-ISceIAktGFP* in 36 % aller transfizierten Polypen zu durchschnittlich 2,78 Zellen. Eine Ko-Injektion des Plasmids mit 1 u/ µl *I-SceI* führte zu keiner Transfektion. Einen ähnlichen Effekt hatte auch eine Ko-Injektion der Meganuklease *I-CeuI* mit *pGEM-ICeuIAktGFP*. Hier

reduzierte sich die Zahl transfizierter Polypen von 8 % auf 4 %, sowie die durchschnittlich transfizierte Zellzahl von zwei Epithelzellen auf eine Zelle. Zunächst wurde die geringere Effizienz auf eine veränderte Salzkonzentration der Injektionslösung zurückgeführt. Da jedoch eine Angleichung der Salzkonzentration auf die zuvor optimierten Bedingungen zu einem ähnlichen Ergebnis führte ist dies offenbar nicht die Ursache. Eine mögliche Erklärung für diese drastische Reduktion der Transfektionseffizienz ist die Bildung der Protein/ DNA-Komplexe. Da die Meganuklease am Reporterkonstrukt assoziiert bleibt könnte dieser Komplex zu groß sein, um während der Elektroporation in die Zellen zu gelangen. Dass die Größe des zu transfizierenden Konstrukts maßgeblich die Transfektionseffizienz beeinflusst zeigen auch die hohen Transfektionsraten von Rhodamin/ Dextran an der Injektionsstelle im Polypen (siehe Anhang). Kleinere Moleküle werden effizienter transfiziert. Ein Meganukleasen-basierter Ansatz zur stabilen Transfektion kann somit immer noch möglich sein, wenn die Transfektionsfektionselle inter transfektion sein, wenn die Transfektionshelter die Seingungen für größere Komplexe optimiert werden kann.

#### 3.4 Die I-Zell-Differenzierung wird früh determiniert und ist abhängig vom Positionswert im Tier

Durch eine in dieser Arbeit entwickelten Methode war es möglich einzelne I-Zellen im Polypen transient zu transfizieren. Damit konnte das Schicksal einzelner I-Zellen verfolgt werden. Abhängig vom Injektionsort am Polypen konnten I-Zellen an verschiedenen Positionen innerhalb der Körpersäule transfiziert werden. Nach lokaler Transfektion der I-Zellen am Kopfbereich und am Rumpf konnten Unterschiede in der I-Zelldeterminierung aufgrund der Position im Tier festgestellt werden. I-Zellen differenzierten in der Nähe des Kopfes ausschließlich in Neurone. Diese neuronal determinierten I-Zellen lagen 72 h nach Transfektion paarweise vor und waren über eine cytoplasmatische Brücke miteinander verbunden. Man kann daraus schließen, dass eine Nervenzell-determinierte I-Zelle vor der eigentlichen Differenzierung sich noch einer Amplifikationsteilung unterzieht. Unterstützt wird diese Annahme mit den Beobachtungen transfizierter I-Zellen im Polypen, welche immer paarweise und zweitgleich zu Neuronen differenzierten (vgl. Abb. B9)

Transfektionen von I-Zellen im Rumpf führten dagegen auch zu I-Zellcluster, 16er Nester, die später zu Desmonemen differenzierten. Im frühesten detektierbaren Stadium nach Elektroporation befanden sich die zur Desmonemen-determinierten I-Zellen bereits im Stadium von 8er Nestern. Aus vorangegangenen Versuchen war bekannt, dass die Expression des Reportergens (GFP) in I-Zellen frühestens 72 h später detektiert werden konnte. Kombiniert man diese Verzögerung mit den Proliferationszeiten aus Campbell & David (1974) so sind die fehlenden Zwischenstadien, 2er und 4er Nest, noch nicht detektierbar gewesen. Transfiziert wurden in diesem Fall ebenso einzelne I-Zellen. Diese prolifertieren demnach zu einem 8er Nest innerhalb von 72 h, was bedeutet das bei der Elektroporation einzelne I-Zellen bzw. I-Zellpaare transfiziert wurden. Damit deuten diese Ergebnisse auf eine frühe Determinierung der I-Zellen auf einen bestimmten Differenzierungsweg hin. Durch die Unterschiede transfizierter I-Zellen am Kopf und am Rumpf lassen sich zudem Rückschlüsse auf eine Positionsabhängigkeit im Tier ziehen. Während I-Zellen am Kopfbereich ausschließlich in Neurone differenzierten, konnten im Rumpf sowohl Nervenzell-determinierte I-Zellen transfiziert werden.

Bereits zuvor konnten Shimizu & Bode (1995) mit Hydroxyurea (HU) behandelten Polypen die Festlegung der Differenzierung von I-Zellen auf ein frühes Stadium eingrenzen. HU-behandelte Polypen verlieren dramatisch an I-Zellen und deren Derivaten (Bode et al., 1976). Nach der Behandlung untergehen die verbleibenden I-Zellen oft Amplifikations-Zellteilungen, um die I-Zellzahl wieder zu vergrößern (Heimfeld und Bode, 1986a,b). Hier konnte gezeigt werden, dass direkt benachbarte Nester in den gleichen Kapseltyp differenzieren. Daraus konnte man schließen, dass I-Zellen bereits früh auf einen Differenzierungsweg festgelegt waren (Shimizu und Bode, 1995). Weiterhin konnte in der Desmonemen-Differenzierung ein linearer Anstieg innerhalb von 24 h gemessen werden. Ein linearer Verlauf der Desmonemen-Bildung wurde auch bereits durch Messung der Kinetiken von [<sup>3</sup>H]-Thymidin-markierten I-Zellen beschrieben (David und Gierer, 1974). Zudem konnte auf molekularer Ebene gezeigt werden, dass die  $\gamma$ -Secretase bei der Determinierung von I-Zellen eine entscheidende Rolle spielt. Khalturin et al. (2007) zeigte, dass GFP<sup>+</sup> I-Zellen nach einer Behandlung mit DAPT die Differenzierung in Nematocyten blockierte. DAPT blockiert die  $\gamma$ -Sekretase, welche die Abspaltung von Typ-I Transmembrandomänen katalysiert. Dieser Mechanismus spielt im Notch-Signalweg eine Rolle, in dem durch Freisetzung der intrazellulären Domäne von Notch katalysiert wird. Es wurde angenommen, dass der Notch-Signalweg bei der Differenzierung von Nematocyten eine wichtige Rolle spielt. Die  $\gamma$ -Sekretase katalysiert auch die Abspaltung der intrazellulären Cadherin-Domäne und ist somit auch in andere Signalwege involviert (Marambaud et al., 2002).

#### 3.5 Determinierte I-Zellen weisen höhere Motilität auf und differenzieren in Transplantaten überwiegend zu Nervenzellen

Mit Hilfe transgener Polypen, die GFP ausschließlich in der I-Zelllinie exprimierten, konnte durch Transplantationsexperimente das Proliferations- und Differenzierungsverhalten bestimmt werden. Die Ergebnisse zeigen, dass I-Zellen, welche sich noch nicht auf einen Differenzierungsweg festgelegt haben, kaum Motilität aufwiesen. So konnten nach Transplantation von transgenem Gewebe nach 24 h nur in 25 % aller Transplantate eingewanderte I-Zellen im Wildtypgewebe detektiert werden. Hier wurden durchschnittlich lediglich 6,16 transgene GFP+ I-Zellen detektiert. Diese proliferierten in den ersten 4 Tagen auf durchschnittlich 8 I-Zellen. D.h. Etwa 30 % (1,84 proliferierende I-Zellen/ 6,16 eingewanderte I-Zellen) der eingewanderten I-Zellen proliferierten weiter ohne sich für einen Differenzierungsweg festzulegen. Die übrigen 70 % der eingewanderten I-Zellen waren bereits auf ein Schicksal festgelegt. Deren Differenzierung konnte im Beobachtungszeitraum von 10 Tagen bestimmt werden. Diese Zahlen widersprechen im ersten Augenschein den Daten aus der Literatur. Hier wurde durch puls-markierte I-Zellen mit radioaktiven [3H]-Thymidin die Proliferations- und Differenzierungsrate bestimmt. Hieraus ergab sich ein Verhältnis von 60 : 40. 60 % der Stammzellen verblieben im proliferierenden Zustand, während 40 % der hervorgegangenen I-Zellen zu Nerven und Nematozyten differenzierten (David und Gierer, 1974). Die Literaturdaten konnten allerdings am intakten Polypen gewonnen werden. Dadurch waren die Messungen unabhängig vom Wanderungsverhalten der I-Zellen. In den Transplantationsexperimenten dieser Arbeit war die Einwanderung der transgenen I-Zellen in das Wildtypgewebe zu weiteren Beobachtung essentiell. Da I-Zellen, die sich noch nicht zur Differenzierung festgelegt haben, kaum Motilität aufweisen, sind sehr wahrscheinlich im höheren Anteil bereits differenzierende I-Zellen eingewandert (Bosch und David, 1990; Fujisawa et al., 1990). Diese weisen dann im Wildtypgewebe keine selbsterhaltende Proliferation auf, sondern differenzieren in die festgelegte Bahn. Die gemessenen Daten unterstützen diesen Verdacht. Generell konnte die geringe Motilität der I-Zellen bestätigt werden. In nur 25 % aller Transplantate konnten durchschnittlich lediglich etwa 6 I-Zellen detektiert werden. Von diesen 6 I-Zellen proliferierten nur etwa 30 % innerhalb der ersten 4 Tage weiter. Nach diesen 4 Tagen war eine kontinuierliche Reduktion der GFP+ I-Zellen zu beobachten, so dass letztlich kaum noch proliferierende markierte I-Zellen verblieben. Am Ende des Beobachtungszeitraums war durchschnittlich noch eine transgene I-Zelle detektierbar.

Das bedeutet andererseits, dass 70 % aller eingewanderten I-Zellen sich bereits auf einen Differenzierungsweg festgelegt hatten. Diese scheinen eine erhöhte Motilität aufzuweisen und waren demnach häufiger innerhalb von 24 h in das Wildtypgewebe eingewandert. Während die I-Zellzahl nach 4 Tagen kontinuierlich weniger wurde konnte gleichzeitig eine Zunahme an differenzierten Derivaten der I-Zellen festgestellt werden. So stieg die Zahl der Neurone anfangs kontinuierlich stark an. Mit der Abnahme vorhandener I-Zellen konnte auch eine Stabilisierung der Anzahl markierter Neurone festgestellt werden. Während des Beobachtungszeitraums konnten bei Nematozyten zwei Maxima gemessen werden. Einmal erreichten markierte Desmonemen und Isorhizen nach 3 - 4 Tagen ein Maximum. Das zweite Maximum konnte zwischen 6 - 7 Tagen beobachtet werden. Markierte Stenothelen wiesen 7 - 8 Tage nach Transplantation ein Maximum auf. Das erste Maximum 3 - 4 Tage nach Transplantation entstand sehr wahrscheinlich aus eingewanderten I-Zell-Nestern vom transgenen Gewebe. Das zweite Maximum zwischen 5 - 7 Tagen hat seinen Ursprung in der Proliferation und Differenzierung der eingewanderten I-Zellen. Der gemessene Zeitraum entspricht auch den Literaturdaten aus [<sup>3</sup>H]-Thymidin puls-markierten I-Zellen. Hier konnte für die Nematozytendifferenzierung ein Zeitraum von 5 - 7 Tagen bestimmt werden, der die Proliferationszeiten der verschiedenen I-Zellcluster und die terminale Differenzierung zur fertigen Kapsel mit einschließt (David und Gierer, 1974).

Auffallend ist, dass sowohl markierte Neurone als auch Stenothelen ein Maximum nach etwa 7 Tagen aufweisen. Während für Neurone das Fehlen weiterer markierter einzelner I-Zellen die Ursache ist, kann man für Stenothelen das Maximum an 8-Zell Nestern 6 Tage nach Transplantation heranziehen. Es wurde beobachtet, dass verschiedene Kapseltypen in *Hydra vulgaris* von einer veränderten Nestgrößen-Ratio (8:16:32) hervorgingen. Die I Zell-Nester, welche in Stenothelen differenzieren, laufen demnach weniger Zellteilungen durch und entstehen mit einer Ratio von 6:4:0 hauptsächlich aus 8 Zell-Nestern (Rich und Tardent, 1969; David und Challoner, 1974). Zusammenfassend lässt sich feststellen, dass hauptsächlich bereits differenzierende I-Zellen eine Motilität im Polypen aufweisen und dadurch in Transplantaten ins wildtyp-Gewebe einwanderten. Diese differenzieren überwiegend in Nervenzellen.

# 3.6 Polypen mit einer transgenen entodermalen Zelllinie können diese Eigenschaften in die F,-Generation übertragen

Anhand einer transgenen Zelllinie, die ausschließlich im Ektoderm das Reportergen exprimiert, sollten Hinweise auf den Integrationszeitpunkt des injizierten DNA-Konstrukts geschlossen werden. Hierbei stellte sich die Frage, ob die injizierte DNA in einem frühen embryonalen Stadium integriert wird und nur aufgrund epigenetischer Suppression, abhängig vom Genlokus, nicht in allen drei Stammzelllinien zur Expression gelangt. Eine Alternative wäre, dass die Integration der injizierten DNA zu einem späteren Zeitpunkt stattfindet, so dass lediglich Abkömmlinge einer transfizierten Blastomere in einem späteren Embryonalstadium davon betroffen wären. Dies könnte auch dazu führen, dass nur noch Zellen einer Zelllinie und von dieser eventuell auch nur einige Anteile der Stammzellen betroffen sind. Zur Klärung dieser Frage sollte die F1-Generation einer in der Parentalgeneration transgenen ektodermalen Zelllinie beitragen. Fände die Integration in einem frühen embryonalen Stadium statt und würde das Konstrukt somit in allen Zellinien enthalten sein, wäre die partielle Expression dann abhängig vom Genlokus. Im Ergebnis würden dann die Tiere der F1-Generation eine ektodermale Expression aufzeigen. Die interstitiellen Zellen (I-Zellen), die allein in beide Geschlechtszellen ausdifferenzieren können, wären dann Träger des Reportergens in die nächste Generation ohne es selbst zu exprimieren. Im alternativen Erklärungsansatz sollten die in der F1-Generation geschlüpften Polypen keine Expression zeigen, da hier die I-Zellen nicht das Reportergen enthalten und somit auch nicht deren Abkömmlinge, die Geschlechtszellen.

Die phänotypische Auswertung der F1-Generation zeigte, dass 54,5 % aller geschlüpften Embryonen komplett transgen für GFP im Ektoderm waren. Dies deutet auf ein frühes Integrationsereignis nach der Injektion hin. 27,3 % zeigten eine partielle Expression des Reportergens im Ektoderm.

Hydra besitzt einen diploiden Chromosomensatz (2n) mit 30 Chromosomen. Es ist möglich, dass das Reporterkonstrukt nur auf einem Chromosom integriert worden ist. Der Phänotyp mit partieller GFP-Expression wies verstreut vereinzelte GFP+ Ektodermzellen auf. Diesen Phänotyp könnte man mit einem inaktivierten zweiten Chomosomen erklären, ähnlich wie bei den Barr-Körperchen. 18,2 % der F1-Generation zeigte keine Expression des Reportergens. Nach der Meiose enstanden somit auch Gameten mit einem haploiden wildtyp-Chromosomensatz. Dieser Anteil der F1-Generation enstand aus einer wildtyp-Oocyte und einer wildtyp-Spermatozoe. Damit lässt sich auch das Verhältnis von 1:2:1 als intermediären Erbgang einer heterozygoten Vererbung erklären.

Zusammenfassend können zwei Schlussfolgerungen aus diesem Experiment gezogen werden. Zum einen integrierte sich das injizierte Reporterkonstrukt früh, wodurch alle Stammzelllinien betroffen waren. In der I-Zelllinie und endodermalen Zelllinie fand vermutlich epigenetische Suppresion abhängig vom Genlokus

statt. Zum anderen wurde das injizierte Reporterkonstrukt nur auf einem Chromosom integriert, so dass heterozygote transgene Tiere enstanden.

#### 3.7 Ausblick

Der Modellorganismus Hydra ist ein interessantes System mit langer Forschungstradition. Er bietet sich für Forschungen auf dem Gebiet der Musterbildung, Evolution, Regeneration und Signalwegen an. Hydra kann einfach in Massenkulturen gehalten werden und ist leicht zugänglich für die Mikroskopie, da seine beiden Epithelien für optische Verfahren ähnlich gut zugänglich sind wie "Monolayer"-Zellkulturen. Bislang war Hydra allerdings für "gain-offunction" (GOF)-Experimente und "loss-of-function" (LOF)-Experimente schwer zugänglich. Daher war es wichtig Transfektionstechniken für diesen Organismus zu etablieren. Dank der embryonalen Mikroinjektion ist die stabile Transfektion möglich geworden. In der embryonalen Mikroinjektionstechnik ist noch Potential zu höheren Transfektionsraten enthalten. Diese Arbeit untersuchte über Transposon-vermittelte Transfektion und Meganukleasen-basierter Technik diese Methode zu optimieren, führten jedoch nicht zum gewünschten Effekt. Andere Techniken müssen zur Optimierung näher untersucht werden. So könnte beispielsweise eine virale Infektion mit Adenovirus zum gewünschten Erfolg führen.

Gerade für GOF- und LOF-Experimente an kritischen Signalmolekülen kann ein Umweg über die Embryogenese nicht immer die günstigste Lösung darstellen. Eingriffe in die Signalwege, welche an grundlegenden Musterbildungsprozessen beteiligt sind könnten zum Absterben der Embryonen führen. Aus diesem Grund setzte sich diese Arbeit zum Ziel eine Transfektionsmöglichkeit für adulte Polypen zu etablieren. Durch intraepitheliale Mikroinjektion und Elektroporation konnte dieses Ziel erreicht werden. Über den Ort der Mikroinjektionsstelle am Polypen können jetzt Zellen transient in einem frei wählbaren lokal begrenzten Gewebebereich transfiziert werden. In dieser Arbeit konnten Protokolle etabliert werden, die zu ektodermalen Epithelzell-Clustern mit mehr als 10 Zellen führen (Abb. C2). Diese Methode sollte sich in zukünftigen Studien als sehr nützlich erweisen, da GOF-Experimente mit Signalmolekülen (z.B. Wnt) neue Signalzentren am Polypen etablieren könnten. Weiterhin könnten auch LOF-Experimente mit siRNA's durchgeführt werden. Eine effiziente Aufnahme von ähnlich großen Molekülen konnte in dieser Arbeit demonstriert werden (Abb. C1) Alternativ können jetzt erstmals I-Zellen und deren Derivate am Polypen transfiziert werden. Diese Technik bietet damit neue Untersuchungsmöglichkeiten an Stammzell-Differenzierungsprozessen. Erste Einblicke konnten bereits gewonnen werden, wie z.B. die positionsabhängige Differenzierung der I-Zellen. Weiterhin kann die Technik auch für Studien an der Nematocyten-Differenzierung und Reifung verwendet werden. Zudem bietet diese Methode eine schnellere Untersuchung der Effekte am Polypen an. Eine Expression nach Elektroporation kann am Polypen nach 48 h detektiert werden. Transgene Polypen durch embryonale Mikroinjektion können frühestens in der Regel erst nach 14 Tagen gewonnen werden. Zusammenfassend konnte in dieser Arbeit eine Transfektionstechnik etabliert werden, durch die das moderene Methodenspektrum der Forschung am Modellsystem Hydra erweitert wurde.

## 4. Material und Methoden

#### 4.1 Organismen

#### 4.1.1 Bakterien

Alle Vektorklonierungen wurden mit den *E.coli* Stämmen DH5 $\alpha^{TM}$  bzw. XL1-Blue durchgeführt. DH5 $\alpha^{TM}$  waren elektrokompetent, die Transformation erfolgte durch Elektroporation bei 2,5 kV (Gene Pulser II<sup>(R)</sup>, Biorad). XL1-Blue waren chemokompetent und wurden durch einen Hitzeschock (45 s) bei 42 °C transformiert.

#### 4.1.2 Hydrakultur

Die Tiere wurden in Massenkulturen bei 18 °C in Hydramedium (HM) gehalten. Vor Experimenten wurden die Tiere mindestens eine Woche mit *Artemia salina* durchgefüttert und blieben dann 24 h vor dem Experiment ungefüttert. Transfektionsexperimente an Polypen und dissoziierter Zellsuspension wurden mit Stämmen *H. magnipapillata* (Zürich) und AEP durchgeführt. Mikroinjektionen erfolgten ausschließlich an frühen embryonalen Stadien (I-Zell bis 8-Zellstadium) des Stamms AEP. Die Induktion des Stamms AEP zur Geschlechtsreife erfolgte durch eine werktägliche Futterperiode von mindestens zwei Wochen mit anschließender Reduktion der Fütterung auf zwei Tage in der Woche. Testis konnten bereits zwei Wochen nach Induktion detektiert werden. Eier entwickelten sich ab vier Wochen nach Induktion. Die induzierten Polypen wurden über einen Zeitraum von 6 Monaten konstant an zwei Tagen in der Woche gefüttert und blieben in dieser Periode geschlechtlich.

#### 4.2 Vektorklonierung

"Polymerase Chain Reactions" (PCR's) wurden in drei verschiedenen Reaktionsvolumina durchgeführt. 15 µl Ansätze wurden für Nachweisreaktionen für erfolgreiche Klonierung mittels "Colony-PCR" verwendet. 25 µl Ansätze wurden zur Kontrolle eines Vektors verwendet und 50  $\mu$ l Ansätze dienten für präparative Reaktionen. Ein 15  $\mu$ l Ansätz setzte sich aus 9,4  $\mu$ l  $H_2O$  (MilliQ), 1,5 µl 10x Taq-Puffer, 1 µl dNTP's (je 10mM), 1 µl MgCl<sub>2</sub> (50 mM), je 1 µl 5' Primer und 3' Primer (5 µM), 0,1 µl Taq-Polymerase (0,5 u) und einer Probe der Bakterienkolonie als "template". Ein 25 µl Ansatz setzte sich aus 17,3 µl H<sub>2</sub>O (MilliQ), 2,5 µl 10x Taq-Puffer, je 1  $\mu$ l 5' Pr-imer und 3' Primer (5  $\mu$ M) 1  $\mu$ l dNTP's (je 10 mM), 2  $\mu$ l MgCl<sub>2</sub> (50 mM), 0,2 µl TaqPolymerase (1 u) und 1 µl DNA-Probe (2 - 5 ng). Ein 50 µl Ansatz bestand aus 34 µl H<sub>2</sub>O (MilliQ), 10 µl 5x Phusion-Puffer (HighFidelity), 1 µl dNTP's (je 10 mM), 1,5 µl MgCl<sub>2</sub> (50 mM), je 1  $\mu$ l 5' Primer und 3' Primer (5  $\mu$ M), 0,5  $\mu$ l Phusion<sup>TM</sup>-Polymerase (2  $u/\mu$ l, Finnzymes) und 1 µl DNA-Probe (2 - 5 ng). Die PCR-Bedingungen richteten sich nach den spezifischen "Annealing"-Temperaturen der Primer und die Elongationszeit nach der Größe des zu amplifizierenden Produkts und der Geschwindigkeit der verwendeten Polymerase. Für je 1000 Basenpaare (bp) wurden bei Verwendung der Taq-Polymerase 1 Minute, für die Phusion<sup>1M</sup>-Polymerase 30 Sekunden Elongationszeit veranschlagt.

Zur Kontrolle wurden die PCR Produkte auf 1 % Agarose-Gelen bei 95 V für 30 min aufgetrennt, anschließend in Ethidiumbromid (1 µg/ ml) angefärbt und mit INTAS<sup>®</sup> UV-Systeme dokumentiert. Bei präparativen PCR's wurden Produktbanden erwarteter Größe ausgeschnitten, mit dem Wizard<sup>®</sup>-"SV Gel and PCR Clean-up System" (Promega) aufgereinigt und in 30 µl H<sub>2</sub>O (MilliQ) eluiert. Die DNA-Konzentration wurde photometrisch bestimmt (Nano Drop<sup>®</sup> ND-1000 Spectrophotometer, PeQLab). Dephosphorylierungen erfolgten mit der alkalischen Phosphatase (Invitrogen<sup>TM</sup>) für 20 min bei 37 °C und anschließender Denaturierung des Enzyms für 20 min bei 65 °C. Phosphorylierungen wurden mit der Polynukleotidkinase (PNK) (Invitrogen<sup>TM</sup>) für 20 min bei 37 °C und anschließender Denaturierung des Enzyms für 20 min bei 75 °C durchgeführt.

Ligationen fanden entweder über TA-Klonierung in *pGEM-T*<sup>®</sup> (pGEMT-Kit, Promega) statt oder mit T4-Ligase (Invitrogen<sup>TM</sup>) und 5 x Ligationspuffer. Produkte der Phusion<sup>TM</sup>-Polymerase wurden vor der Ligation in den *pGEM-T*<sup>®</sup>-Vektor mit der Taq-Polymerase für 20 min bei 72 °C adenyliert. Eine Adenylierung ("Tailing"-PCR) wurde in 25 µl Volumen angesetzt und bestand aus 20 µl Agarose-Gel extrahierter DNA-Lösung, 2,5 µl 10 x Taq-Puffer, 1 µl dNTP's (10 mM), 1 µl MgCl<sub>2</sub> (50 mM), 0,3 µl H<sub>2</sub>O (MilliQ) und 0,2 µl Taq-Polymerase (1 u). Alle Ligationsansätze wurden bei Raumtemperatur (RT) über Nacht inkubiert.

Die Plasmide wurden anschließend entweder über Elektroporation in DH5 $\alpha^{TM}$  *E.coli* oder über Hitzeschock in XL1-Blue *E.coli* transformiert (Hanahan, 1991). Kolonien, die positive *pGEM-T*<sup>®</sup>-Klone enthielten, wurden durch Blau-Weiß-Selektion auf AXI-Platten isoliert. Klone der übrigen Ligationen wurden auf LB<sub>amp</sub>-Platten (c<sub>amp</sub> = 0,05 mg/ ml) selektioniert. Die Plasmide wurden nach dem Prinzip der alkalischen Detergenzlyse aufgereinigt. Für Plasmid-Präparationen bis zu 20 µg DNA wurde das Wizard<sup>®</sup> Plus SV Miniprep-Kit (Promega) verwendet. Die erhaltene DNA wurde in 50 µl H<sub>2</sub>O (MilliQ) eluiert. Für Präparationen bis zu 100 µg DNA wurde das Highspeed<sup>®</sup>-Plasmid Midikit (Qiagen<sup>®</sup>) verwendet und in 500 µl H<sub>2</sub>O (MilliQ) eluiert. Für Präparationen bis zu 500 µg DNA wurde das Highspeed<sup>®</sup>-Plasmid Maxi-Kit (Qiagen<sup>®</sup>) verwendet und in 1 ml H<sub>2</sub>O (MilliQ) eluiert.

Für eventuelle Umpufferungen der DNA wurde eine Ethanol-Fällung mit Natriumacetat durchgeführt (Molecular Cloning, Sambrook et al., 1989). Die Klonierung wurde über analytische Restriktion, PCR und Sequenzierungen verifiziert. In der Regel wurden Restriktionen in einem 10 µl Ansatz bestehend aus 1,5 µl Probe (~ 200 ng DNA), 0,25 µl Restriktionsenzym (1 u), 1 µl 10x Restriktionspuffer, 1 µl 10x BSA und 6,25 µl (bzw. 7,25 µl ohne BSA) H<sub>2</sub>O (MilliQ) durchgeführt. Doppelrestriktionen wurden im gleichen Volumen mit entsprechend weniger H<sub>2</sub>O angesetzt. Falls nicht anders angegeben wurden alle Restriktionsansätze für 1 Stunde bei 37 °C inkubiert. Sequenzierungen wurden bis zu einer Länge von 450 Nukleotiden (nt) an einem ABI-310 durchgeführt. Sequenzierungen wurden bis zu einer Länge von 750 nt nach der ABI-Methode von der Firma GATC durchgeführt (www.gatc.de).

#### 4.2.1 Klonierung von pJet-IScelAktEGFP

Der Vektor *pJet-ISceIAktGFP* wurde im Rahmen einer Diplomarbeit (Christ, 2006) kloniert. Hierfür wurde das Reporterkonstrukt, bestehend aus Hydra Aktin Promotor und EGFP vom Vektor *pHotG* (Böttger, 2001), mit den Primern *ISceIHyAk* {TAGGGATAACAGGG-TAATCCCATCGATCTGACTAACCTAACCAGTGC} und *ISceIEGFP* {ATTACCCTGT-TATCCCTACCGTCATCACCGAAACGCGCGAGACG} amplifiziert. Die Restriktionsstelle *I-SceI* wurde hierbei über die Primer an den Enden des Fragments eingefügt. Abschließend wurde das Fragment in den Vektor *pJet1* ("blunt cloning vector") (Fermentas) ligiert.

#### 4.2.2 Klonierung von pJet-ICeuIAktEGFP

Der Vektor *pJet-ICeuIAktGFP* wurde im Rahmen einer Diplomarbeit (Christ, 2006) kloniert. Hierfür wurde das Reporterkonstrukt, bestehend aus Hydra Aktin Promotor und EGFP vom Vektor *pHotG* (Böttger, 2001), mit den Primern *ICeuIHyAk* {TAACTATAACGGTCCTAAGGT-TAGCGACCCATCGATCTGACTAACCTAACCAGTGC} und *ICeuIEGFP* {TCGCTACCT-TAGGACCGTTATAGTTACCGTCATCACCGAAACGCGCGAGACG} amplifiziert. Die Restriktionsstelle *I-CeuI* wurde hierbei über die verwendenten Primer an den Enden des Fragments eingefügt. Abschließend wurde das Fragment in den Vektor *pJet1* ("blunt cloning vector") (Fermentas) ligiert.

#### 4.2.3 Klonierung von pBS-IScelAktEGFP

Das Fragment *AktEGFP* wurde aus dem Vektor *pBS-AktEGFP* (Y. Nakamura, unveröffentlicht) mit den Enzymen *Spe*I und *Sal*I geschnitten und die Fragmente zwischen 2900 bp und 3000 bp isoliert. In einer zweiten Restriktion mit *Xmn*I wurde das pBS-Vektorfragment (3003 bp) geteilt, wodurch das Fragment *AktEGFP* (2900 bp) in einer darauf folgenden Auftrennung im Agarose-Gel vom Vektorfragment getrennt aufgereinigt werden konnte. Der Vektor *pBS-SK(+)ISceI* (Grabher et al, 2006) wurde mit *SpeI* und *Sal*I geschnitten und das lineare Fragment aus dem Gel aufgereinigt. Abschließend wurde der linearisierte Vektor *pBS-SK(+)ISceI* mit dem Fragment *AktEGFP* ligiert. Der korrekte Vektor wurde mittels Größenvergleich im Agarose-Gel, PCR-Nachweis von EGFP und abschließender Sequenzierung bestätigt.

#### 4.2.4 Klonierung von pGEM-ICeulAktEGFP

Das Fragment AktEGFP (2900 bp) wurde mit den Primern 5CeuantisenseHyAkt {AGC-GATGGAATCCTGGCAATATCAATCCCATCGATCTGACTAACCTAACCAGTGC} und 3ICeuIEGFP {TCGCTACCTTAGGACCGTTATAGTTACCGTCATCACCGAAACGCGC-GAGACG} vom Vektor pHotG (Böttger, 2001) amplifiziert. Durch die Primer wurden an den Enden des Fragments *I-CeuI* Restriktionsstellen angefügt. Das Fragment wurde über ein Agarose-Gel aufgetrennt, aufgereinigt und anschließend in einer weiteren PCR adenyliert. Abschließend wurde das Fragment in den  $pGEM-T^{\text{®}}$  Vektor ligiert. Der korrekte Vektor wurde über Größenvergleich und analytischer Restriktion mit *I-CeuI* kontrolliert.

#### 4.2.5 Klonierung von pGEM-AktPromKpnI

Vom Vektor *pGEM-AktEGFP(NotI/SalI)* wurde mit den Primern *KpnIEnde5UTR* und *KpnI-Beginn3UTR* ein Fragment von 5148 bp amplifiziert. Das Fragment enthielt die Sequenz des Hydra Aktin Promotors inklusive 3'UTR und den *pGEM-T*<sup>®</sup>-Vektor. Durch die Primer wurde an den Enden des Fragments je eine *Kpn*I-Restriktionsstelle angehängt. In dem darauf folgenden Schritt wurde das Fragment mit *Kpn*I geschnitten und religiert.

#### 4.2.6 Klonierung von pGEM-AktWnt3a

Der Vektor *pGEMAktPromKpn*I wurde in einer Restriktion mit *Kpn*I linearisiert, in einem Agarose-Gel aufgetrennt und aufgereinigt. Anschließend wurde der lineare Vektor dephosphoryliert. HyWnt3a wurde vom Vektor *pGEM-HyWnt3a* mit den Primern *5KpnIWnt3a* {GGTAC-CATGGGCACGACGCG} und *3KpnIWnt3a* {GGTACCCTATTTACAGGTGTATTCAGG} amplifiziert. Durch die Primer wurde an den Enden des Fragments je eine *KpnI*-Restriktionsstelle eingefügt. Das Fragment wurde in einem Agarose-Gel aufgetrennt und extrahiert. Anschließend wurde es in einer "Tailing"-PCR adenyliert und in den *pGEM-T*®-Vektor ligiert, so dass der Vektor *pGEM-HyWnt3aKpnI* entstand. Das Fragment wurde in einer Restriktion mit *KpnI* aus *pGEM-HyWnt3aKpnI* geschnitten, in einem Agarose-Gel aufgetrennt und extrahiert. Abschließend wurde das Fragment HyWnt3a mit dem linearisierten Vektor *pGEMAktProm-KpnI* ligiert. Die korrekte Orientierung des Fragments wurde durch eine PCR mit den Primern *5KpnIWnt3a* und *3UTRM* {CGCGCAAAACCTGATTTG} überprüft.

#### 4.2.7 Klonierung von pGEM-AktBetaCatenin

Der Vektor *pGEMAktPromKpnI* wurde in einer Restriktion mit *Kpn*I linearisiert, in einem Agarose-Gel aufgetrennt und aufgereinigt. Anschließend wurde der lineare Vektor dephosphoryliert. *HydnTCF* wurde vom Vektor *pCS-dnTCF* (Ritthaler, unveröffentlicht) mit den Primern *5KpnITCF* {CCCGGTACCATGGCTGGGAGATCTACAAAGAAATG} und *3KpnITCF* {CCCGGTACCTTATCTAGTTTCAATTGCCTGAAGCGTTGG} amplifiziert. Durch die Primer wurde an den Enden des Fragments je eine *Kpn*I-Restriktionsstelle eingefügt. Das Fragment wurde in einem Agarose-Gel aufgetrennt und extrahiert. Anschließend wurde es in einer "Tailing"-PCR adenyliert und in den *pGEM-T*®-Vektor ligiert, so dass der Vektor *pGEM-dnTCF* entstand. Das Fragment wurde mit *KpnI* aus *pGEM-dnTCF* geschnitten, in einem Agarose-Gel aufgetrennt und extrahiert. Die korrekte Orientierung des Fragments wurde durch eine PCR mit den Primern *5KpnITCF* und *3UTRM* {CGCGCAAAACCTGATT-TG} überprüft.

#### 4.2.8 Klonierung von pGEM-AktΔBetaCatenin

Vom Vektor pGEMAktBetaCatenin wurde das Fragment  $\Delta$ BetaCatenin mit den Primern 5Kpn-deltaBetaCat {CCCGGTACCATGAGTCAGCGTGCTAGAACAGG} und KpnI3BetaCate-nin {CCCGGTACCCTACAAGTCAGGGTCAAACCAAC} in einer präparativen PCR amplifiziert. Das Produkt wurde in einem Agarose-Gel aufgetrennt und extrahiert. Anschließend wurde das Fragment mit der Taq-Polymerase für 20 min bei 72 °C adenyliert und abschließend in den  $pGEM-T^{\text{®}}$ -Vektor ligiert. Das Fragment  $\Delta$ BetaCatenin wurde anschließend im präparativen Maßstab mit KpnI ausgeschnitten, in einem Agarose-Gel aufgetrennt und extrahiert. Der Vektor pGEMAktPromKpnI wurde mit KpnI linearisiert und dephosphoryliert. In einem abschließenden Schritt wurde das Fragment  $\Delta$ BetaCatenin mit dem linearen Vektor pGEMAkt-PromKpnI ligiert. Die korrekte Orientierung des Fragments wurde durch eine PCR mit den Primern 5KpnIdeltaBetaCat und 3UTRM {CGCGCAAAACCTGATTTG} überprüft.

#### 4.2.9 Klonierung von pGEM-AktBetaCateninEGFP

Vom Vektor pGEMAktBetaCatenin wurden in einer präparativen PCR zwei Fragmente amplifiziert. Das erste Fragment von 3822 bp wurde mit den Primern 5NotHyAkt {CCCAG-CGGCCGCCCCATCGATCTGACTAACCTAACCAGTGC} und 3SmalBetaCat {GAATT-amplifiziert. Das zweite Fragment von 763 bp wurde mit den Primern 5SmalBetaCat {GGGTTGGTT-TGACCCTGACTTGCCCGGGCATTCGTAGAATTCACAATTC} und 3SalIEGFP {CCCAGTCGACCCGTCATCACCGAAACGCGCGAGACG} amplifiziert. Die PCR erfolgte mit 1 x [98 °C, 30 sec], 30 x [98 °C 10 sec, 64 °C 30 sec, 72 °C 2 min 30 sec], 1 x [4 °C]. Die Fragmente wurden in einer weiteren PCR als "template" und Primer zugleich eingesetzt, so dass die Fragmente am 3' Ende hybridisierten und die fehlenden komplementären Bereiche in der Reaktion ergänzt wurden. Die PCR erfolgte mit 1 x [98 °C, 30 sec], 30 x [98 °C 10 sec, 65 °C 30 sec, 72 °C 3 min], 1 x [4 °C]. Das daraus resultierende Fragment AktBetaCateninSmaI wurde in einem präparativen PCR-Ansatz mit den Primern 5NotHyAkt und 3SalIEGFP unter den Bedingungen 1 x [98 °C, 30 sec], 30 x [98 °C 10 sec, 65 °C 30 sec, 72 °C 3 min], 1 x [4 °C] amplifiziert. Das Produkt wurde über ein Agarose-Gel aufgetrennt und extrahiert. Anschließend wurde das Fragment AktBetaCateninSmaI adenyliert, nochmals aufgereinigt und abschließend in den  $pGEM-T^{\text{B}}$ -Vektor ligiert. Der daraus resultierende Vektor pGEMAktBetaCateninSmaI wurde mit SmaI linearisiert und über ein Agarose-Gel aufgereinigt. Der lineare Vektor wurde in einem weiteren Schritt dephosphoryliert und aufgereinigt. EGFP wurde in einer präparativen PCR mit den Primern 5EGFP {ATGAGTAAAGGAG-

AAGAACTTTTCACTGG} und *3EGFP* {CTATTTGTATAGTTCATCCATGCCAT} aus *pHotEGFP* (Böttger, 2001) amplifiziert und über ein Agarose-Gel aufgetrennt, extrahiert und phosphoryliert. Abschließend erfolgte die Ligation vom phosphorylierten EGFP-Fragment mit dem linearen *pGEMAktBetaCateninSmaI*. Durch analytische Restriktion mit *Hinc*II wurde die korrekte Orientierung des EGFP überprüft und abschließend durch Sequenzierung bestätigt.

#### 4.2.10 Klonierung von pCS-ΔβCatGFP

In einer präparativen PCR wurde vom Vektor *pGEM-AktBetaCateninEGFP* mit den Primern *5BamHI-5* '*deltaBCat* {cccGGATCCatgagtcagcgtgctagaacagg} und *XbaI-3-EGFP* {cccTC-TAGActatttgtatagttcatccatgccat} ein Fragment von 2690 bp amplifiziert. Die PCR erfolgte mit 1 x [98 °C, 30 sec], 30 x [98 °C 10 sec, 58 °C 30 sec, 72 °C 2 min], 1 x [4 °C]. Das Produkt,  $\Delta\beta$ CatGFP, wurde über ein Agarose-Gel aufgetrennt und extrahiert. Im Anschluss wurden 6,4 µg des Fragments in einem Restriktionssansatz mit den Enzymen *BamH*I (5 u) und *XbaI* (5 u) in 40 µl Gesamtvolumen über Nacht bei 37 °C geschnitten und nochmals über ein Agarose-Gel aufgetrennt und aufgereinigt. 5,03 µg des Vektors *pCS2*+ (4,095 kb) wurden in 20 µl Gesamtvolumen mit den Enzymen *BamH*I (5 u) und *XbaI* (5 u) über Nacht bei 37 °Cgeschnitten, über ein Agarose-Gel aufgetrennt und aufgereinigt. Abschließend wurden 75 ng des Fragments  $\Delta\beta$ CatGFP mit 60,6 ng des geschnittenen Vektors *pCS2*+ ligiert. Durch eine analytische Restriktion mit *BamH*I und *XbaI* und abschließender Sequenzierung wurde die Korrektheit des Vektors *pCSAβCatGFP* (6,785 kb) bestätigt.

# 4.3 Transfektionstechniken an Hydra

#### 4.3.1 Elektroporation

Elektroporationen erfolgten am Modell Gene Pulser<sup>®</sup> II (Biorad), bestehend aus den Modulen "Gene Pulser II", "RFModule" und "Pulse Controller Plus".

#### 4.3.2 Mikroinjektion

Zur Transfektion von Polypen wurde DNA-Lösung zwischen die Epithelien, genauer zwischen Ektoderm und Mesogloea, injiziert. Direkt darauf erfolgte eine Elektroporation mit einem Puls von 12 V für 40 ms bzw. 80 ms Pulsdauer (Diplomarbeit Christ, 2006). Zur Elektroporation wurden Polypen nach der Mikroinjektion in eine 4 mm Elektroporationsküvette (Equibio) überführt und elektroporiert. Die Küvette enthielt 500  $\mu$ l eisgekühltes Medium bestehend aus 70 % DM/ 30 % H<sub>2</sub>O (MilliQ). Nach dem Puls wurden die Polypen in Hydramedium überführt, bei 18 °C kultiviert und nach 48 h Stunden mikroskopisch ausgewertet.

#### 4.3.3 Mikroinjektion und Elektroporation mit Platin-Elektroden

Abweichend von der zuvor beschriebenen Methode "Mikroinjektion und Elektroporation" wurden die Polypen beim Injektionsvorgang zwischen zwei L-förmigen Platin-Elektroden platziert. In diesen Experimenten war DNA-Lösung zusätzlich mit einem Farbstoff "Fast Green FCF" (E 143) versetzt, so dass eine intraepitheliale Injektion sichtbar war. Direkt im Anschluss der Injektion wurde der Polyp mit einem Puls von 12 V für 80 ms elektroporiert.

#### 4.3.4 "Particle gun"

Transfektionen mit der "Particle gun" wurden am Modell Biolistic<sup>®</sup> PDS 1000/ He (Biorad) durchgeführt. Zur Transfektion dienten Goldpartikel ( $\emptyset = 1 \ \mu m$ ), die nach Anleitung der Firma (Biorad) vorbereitet und in 50 % Glycerol/ 50 % H<sub>2</sub>O bei - 20 °C gelagert wurden. Für ein

Transfektionsansatz wurden 20  $\mu$ g DNA auf 3 mg Gold über Ethanol-Fällung mit Natriumacetat (Molecular Cloning, Sambrock et al., 1989) präzipitiert. Anschließend wurde der Ansatz mit 500  $\mu$ l 70 % Ethanol gewaschen und zuletzt in 200  $\mu$ l 100 % Ethanol aufgenommen. Die Transfektion erfolgte bei 40 bar und -0,7 bar Vakuum (Bertulat, unveröffentlicht) in Aliquoten von etwa 30  $\mu$ l DNA/ Goldpartikel-Lösung bei einem Abstand von 3 cm zwischen der "Particle gun"-Öffnung und den Tieren.

# 4.4 Transposon unterstützte Transfektionen

Zur Analyse von Transposon unterstützter Transfektion an Polypen wurde das Enzym "Sleeping Beauty" als mRNA angewendet. Die mRNA wurde vom Plasmid *pSBRNAX* mit Hilfe des mMESSAGE mMACHINE<sup>TM</sup> T7-Kit (Ambion<sup>®</sup>, Inc.) bzw. T7 MEGAscript<sup>TM</sup>-Kit (Ambion<sup>®</sup>, Inc.) nach Anleitung der Firma transkribiert. Weiterhin wurde "Sleeping Beauty" in DNA kodierter Form auf einem Helfer-Plasmid, *pASBT*, unter Kotrolle des Hydra Aktin Promotors, verwendet (Steele, R., unveröffentlicht).

#### 4.4.1 Transposon unterstützte Transfektion an Polypen

5 ng/  $\mu$ l "Sleeping Beauty"-mRNA wurde mit 150 ng/  $\mu$ l des Donorplasmids *pTHB* zwischen die Epithelien von Polypen ko-injiziert und anschließend mit einem Puls bei 12 V für 80 ms elektroporiert. In einem weiteren Ansatz wurden 75 ng/  $\mu$ l "Sleeping Beauty"-mRNA gemeinsam mit 150 ng/  $\mu$ l *pTHB* transfiziert.

#### 4.4.2 Transposon unterstützte Transfektion in Embryonen

Zur Analyse von Transposon unterstützter Transfektion durch embryonale Mikroinjektion wurde das Enzym "Sleeping Beauty" sowohl als mRNA als auch DNA-kodiert angewendet. In allen Ansätzen wurden die Konstrukte direkt vor der Injektion als Lösungsgemisch angesetzt und anschließend ko-injiziert.

### 4.5 Meganukleasen unterstützte Transfektionen

Die zur Mikroinjektion verwendenten Meganukleasen *I-Ceu*I und *I-Sce*I wurden bis zur Verwendung aliquotiert bei -80 °C gelagert.

#### 4.5.1 Meganukleasen unterstützte Transfektion an Polypen

Eine Transfektion an Polypen wurde analog zur oben genannten Mikroinjektion und Elektroporationsmethode durchgeführt. Für jede Meganuklease, *I-CeuI* und *I-SceI*, wurden zwei Ansätze getestet. Polypen wurden mit einer Enzymkonzentration von 0,25 u/ µl und einer Plasmidkonzentration von 150 ng/ µl bzw. einer Enzymkonzentration von 1 u/ µl und 600 ng/ µl transfiziert. Ein Ansatz bestand im Falle der Meganuklease *I-CeuI* in der Endkonzentration aus 1 x NEB Puffer 4, 1 x BSA und den entsprechenden Konzentrationen des Enzyms, des Plasmids *pJetICeuI-AktGFP* bzw. *pGEMICeuI-AktGFP* und H<sub>2</sub>O (MilliQ) in einem Gesamtvolumen von 5 µl. Ein Ansatz mit der Meganuklease *I-SceI* bestand in der Endkonzentration aus 1 x *I-SceI*-Puffer, dem Enzym *I-SceI*, des Plasmids *pJetISceI-AktGFP* bzw. *pBSISceI-AktGFP* und H<sub>2</sub>O (MilliQ) in einem Gesamtvolumen von 5 µl. In den Kontrollen wurde das Enzym durch entsprechendes Volumen an H<sub>2</sub>O (MilliQ) ersetzt. Der Ansatz wurde zeitnah direkt von der Mikroinjektion angesetzt und bis zur Kapillarenfüllung auf Eis gelagert. Mikroinjizierte Polypen wurden direkt im Anschluss elektroporiert.

#### 4.5.2 Meganukleasen unterstützte Transfektion in Embryonen

Für embryonale Mikroinjektionen wurden Ansätze verschiedener Enzymkonzentrationen von 0,25 u/ µl, 1 u/ µl und 2 u/ µl mit verschiedenen DNA-Konzentrationen von 20 ng µl und 150 ng/ µl kombiniert. Ein Ansatz zur embryonalen Mikroinjektion bestand im Falle der Meganuklease *I-CeuI* in der Endkonzentration aus 1 x NEB Puffer 4, 1 x BSA und den entsprechenden Konzentrationen des Enzyms, des Plasmids *pJetICeuI-AktGFP* bzw. *pGE-MICeuI-AktGFP* und H<sub>2</sub>O (MilliQ) in einem Gesamtvolumen von 5 µl. Ein Ansatz mit der Meganuklease *I-SceI* bestand in der Endkonzentration aus 1 x *I-SceI*-Puffer, dem Enzym *I-SceI*, des Plasmids *pJetISceI-AktGFP* bzw. *pBSISceI-AktGFP* und H<sub>2</sub>O (MilliQ) in einem Gesamtvolumen von 5 µl. In den Kontrollen wurde das Enzym durch entsprechendes Volumen an H<sub>2</sub>O (MilliQ) ersetzt. Der Ansatz wurde zeitnah direkt von der Mikroinjektion angesetzt und bis zur Kapillarenfüllung auf Eis gelagert. Die embryonale Mikroinjektion erfolgte wie oben beschrieben.

### 4.6 Dissoziation und Reaggregation von Hydra Polypen

200 Polypen wurden mechanisch mit einer Dissoziationspipette ( $\emptyset = 1,18 \text{ mm}$  bzw. 1,36 mm) in Dissoziationsmedium (DM) dissoziiert (Hobmayer, 2000). Die Zellsuspension im Überstand wurde nach 1 min 1x g auf Eis gesammelt, bis ein Gesamtvolumen von 40 ml erreicht wurde. Die Zellsuspension wurde in vier 10 ml Aliquots aufgeteilt und 5 min mit 150 g bei 4 °C zentrifugiert. Die entstandenen Zellpellets wurden anschließend in 3 ml DM resuspendiert. Die Aggregation der Zellen erfolgte daraufhin in 0,4 ml Zentrifugenröhrchen bei 4 °C mit 150 g für 5 min in einem Ausschwingrotor Modell "GS6-KR" (Beckmann), so dass etwa 7 Aggregate aus 10 ml Zellsuspension entstanden. Die Rückführung von 100 % DM in 100 % Hydramedium (HM) erfolgte in drei Schritten innerhalb von 16 Stunden: 1 h nach Aggregation erfolgte ein Mediumwechsel in 75 % DM/ 25 % HM, nach einer weiteren Stunde wurden die Aggregate in 50 % DM/ 50 % HM überführt. Nach 16 h erfolgte ein Mediumwechsel in 100 % HM. Die Aggregate wurden anschließend täglich in frisches 100 % HM überführt.

#### 4.6.1 Separation ektodermaler und endodermaler Gewebeschichten

Die Separation von Ektoderm und Endoderm wurde über eine Procain-Behandlung (Bode, 1987) durchgeführt. Hierfür wurden zwei Lösungen vorbereitet, die beide 1 % Procain-HCl/ ddH<sub>2</sub>O und Dissoziationsmedium (DM) zu gleichen Teilen enthielten. Lösung A wurde auf pH 4,5 eingestellt, Lösung B auf pH 2,5. Zur Separation wurden 20 Polypen am Kopf und oberhalb der Knospungszone amputiert. Die verbleibenden oberen Körpersäulen wurden zur weiteren Behandlung gesammelt.

Die Isolierung des Ektoderms erfolgte in 3 Schritten. Zuerst wurden die Körpersäulen in Lösung A für 5 min bei 4 °C inkubiert. Im Anschluss erfolgte eine Behandlung in Lösung B für 1,5 min bei 4 °C. Direkt danach wurden die Körpersäulen in DM (18 °C) überführt. Nach einigen Minuten wurde das kontrahierte, ringförmige Ektoderm vom kontrahierten, stabförmigen Endoderm mit Pinzetten separiert.

Die Isolierung des Endoderms erfolgte durch eine erste Behandlung in Lösung A für 5 min bei 4 °C. Im Anschluss wurden die Körpersäulen in Lösung B für 6 min bei 4 °C inkubiert und danach in DM (18 °C) überführt. Das Endoderm wurde durch Ausströmen von DM aus einer Pasteur-Pipette separiert.

## 4.7 Transplantationsexperimente

Transgene Polypen der I-Zelllinie wurden für mindestens eine Woche täglich gefüttert. Anschließend wurden die Polypen in ihrer Körperhälfte im Rumpf geschnitten. Mit Hilfe einer Angelschnur wurde der untere Teil eines transgenen Polypen, bestehend aus unterer Rumpfhälfte und Fuß, mit einem Kopfbereich eines wildtyp Polypen, bestehend aus Hypostom, Tentakeln und oberen Rumpf, fusioniert. Nach 24 h wurden die zusammengewachsenen Körperteile an ihrer Schnittstelle voneinander getrennt. Eingewanderte transgene Zellen in der verbleibenden oberen Körperhälfte wurden täglich beobachtet und ausgezählt. Die Transplantate blieben während des gesamten Experiments ungefüttert.

# 4.8 Dokumentation

Licht- und fluoreszenzmikroskopische Dokumentationen erfolgten an den Modellen "Eclipse 80i" (Nikon) bzw. am inversen Mikroskop "Eclipse TE 2000-S" (Nikon). Aufnahmen wurden am Modell "Eclipse 80i" mit einer Digitalkamera (Farbe) Modell "Digital Sight DS-U1" bzw. mit einer Digitalkamera (schwarz/weiß) Modell "Digital Sight DS-1QM" angefertigt. Dabei wurden Plan Fluor Objektive 4 x, 10 x, 20 x und 40 x (Nikon) verwendet. Zur Excitiation des Fluorophors diente eine Quecksilberlampe Modell "C-SHG1" (Nikon) mit den Filtern für GFP, Rhodamin und DAPI. Am Miroskop Modell "TE 2000-S" wurde zur Excitation eine Quecksilberlampe Modell "X-Cite® Series 120 (EXFO) mit einem Filter für GFP verwendet.

Weiterhin wurde ein "Ultra-View Spinning Disc Confocal" (PerkinElmner) an einem inversen Mikroskop Modell "Eclipse TE 2000-E" (Nikon) für "time-laps" sowie Z-Stapel Aufnahmen im Nikon Imaging Center Heidelberg (NIC@UNI-HD) verwendet. Zur Excitation von GFP diente ein Argon-Laser mit 488 nm Wellenlänge. Aufnahmen erfolgten mit einer Digitalkamera (schwarz/weiß) Modell "Orca-ER" (Hamamatsu) in Verbindung mit Objektiven (Wasserimersion) 20 x bzw. 60 x (Nikon).

# 5. Anhang

# 5.1 Bakterienstämme

#### 5.1.1 Genotyp von *E. coli* XL1 blue:

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F' proAB lacIqZAM15 Tn10 (Tetr)]

#### 5.1.2 Genotyp von *E. coli* DH5α:

F' Phi80dlacZ DeltaM15 Delta(lacZYA-argF)U169 deoR recA1 endA1 hsdR17(rK-mK+)phoA supE44 lambda- thi-1

## 5.2 Lösungen

#### 5.2.1 Vektroklonierung

| LB-Miller:                | 0,5 % (w/v) He                               | efeextrakt; 1 % (w/v) NaCl ;1 % (w/v) Trypton; pH 7                                                                                                                                                  |  |  |
|---------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| LB-AXI:                   | 1 ml Ampicillin<br>200 μl IPTG 2             | icillin 50mg/ ml; 2 ml X-Gal 20mg/ ml (gelöst in Dimethylformami<br>TG 200 mg/ ml; ad 1 L LB-Miller                                                                                                  |  |  |
| LB-Amp:                   | 0,5 ml Ampicil                               | llin (50 mg/ ml) ad 0,5 L LB-Miller                                                                                                                                                                  |  |  |
| LB-Kan:                   | 0,5 ml Kanam                                 | cin (25 mg/ ml) ad 0,5 L LB-Miller                                                                                                                                                                   |  |  |
| LB-Agar:                  | 0,5 L LB-Mille                               | r, 7,5 g Agar Agar                                                                                                                                                                                   |  |  |
| SOB:                      | Trypton 10 g, I<br>5 ml MgCL <sub>2</sub> (2 | Hefeextrakt 5 g, NaCl 0,5 g, 10 ml KCl (250 mM),<br>2 M), pH 7                                                                                                                                       |  |  |
| <b>TE-Puffer</b> (1 x)    | : 10 mN                                      | 1 Tris/ HCl pH 8,0; 1 mM EDTA pH 8,0                                                                                                                                                                 |  |  |
| TAE-Puffer (5)            | 0 x): 242 g <sup>-7</sup><br>adj. 1 1        | Tris/ HCl, 57,1 ml Essigsäure, 100 ml EDTA (0,5 M)<br>L ddH <sub>2</sub> O pH 8,5                                                                                                                    |  |  |
| <b>TBE-Puffer</b> (1      | x): 90 mM                                    | 1 Tris/HCl; 90 mM Borsäure; 2 mM Na <sub>2</sub> EDTA, pH 8,3                                                                                                                                        |  |  |
| Auftragspuffe             | r (1 x): 50 mM                               | Tris/ HCl, pH 8; 2mM EDTA, 10 % Saccharose (w/v)                                                                                                                                                     |  |  |
| <u>5.2.2 Hydra I</u>      | Kultur und Ex                                | perimente                                                                                                                                                                                            |  |  |
| Hydra Medium (HM):        |                                              | Tris pH 7,6; NaCl 1 mM; CaCl <sub>2</sub> 1 mM; KCl 0,1 mM;<br>MgSO <sub>4</sub> 0,1 mM                                                                                                              |  |  |
| Dissoziationsmedium (DM): |                                              | KCl 3,6 mM; CaCl <sub>2</sub> 6 mM; MgSO <sub>4</sub> 1,2 mM;<br>Pyruvat 6 mM; Glukose 6 mM; TES 12,5 mM;<br>NaCitrat 6 mM; Rifampicin 0.05 g/l; Streptomycin 0.1 g/l;<br>Kanamycin 0.05 g/l; pH 6,9 |  |  |

DAPI-Färbung: DAPI (Roche) 1 µg/ ml Gebrauchslösung

#### 5.2.3 CaCl<sub>2</sub>-Transfektion

#### 2,5 M CaCl<sub>2</sub>

HBS-Puffer (2 x): 280 mM NaCl, 50 mM HEPES, 1,5 mM Na<sub>2</sub>HPO<sub>4</sub> (pH 7,1) (steril)

Chloroquin: 8 mg/ ml in 1 x PBS (steril)

#### 5.2.4 Sonstige Lösungen

**Denhardt`s** (50 x): 1 % Polyvinylpyrrolidon, 1 % Ficoll, 1 % BSA Fraktion V in DEPC-ddH<sub>2</sub>O

| Diethylpyrocarbonat (DEPC)-ddH <sub>2</sub> O: | 1 ml DEPC ad 1 L $H_2O$ ,          |
|------------------------------------------------|------------------------------------|
| -                                              | gelöst über Nacht und autoklaviert |
|                                                |                                    |

**PBS** (10 x, 1 L): NaCl 80 g, KCl 2 g, Na<sub>2</sub>HPO<sub>4</sub> 14,4g, KH<sub>2</sub>PO<sub>4</sub> 2,4 g, adj. 800 ml ddH<sub>2</sub>O, pH 7,4

#### 5.3 Chemikalien

Agar Applichem, Agarose Roth, Ampicillin Na-Salz Roth, Bovine serum albumin Fraktion V (BSA) Roth, DAPI (5 mg/ ml) Roche, DAPT (N-(N-(3,5-difluorophenacetyl-L-alanyl)-S-phenylglycine-t-butyl) ester) Dimethylsulfoxid (DMSO) Serva, Ethidiumbromid (fest) Serva, Ethidiumbromid-Lösung Roth, Evans blue Serva, Fast Green FCF (Triarylmethan) Merck, Kanamycin Applichem, ONPG Applichem, Paraformaldehyd Merck, Procainhydrochlorid Sigma, Rhodamin-Dextran (10 mg/ ml, MW 10000 Da) Invitrogen, Trehalose-Dihydrat Applichem, Trypton Applichem,

#### 5.4 Abbildungen

#### 5.4.1 Zu Abschnitt 2.1



Abbildung C1 Rhodamin-Dextran im Zytoplasma nach intra-epithelialer Mikroinjektion und Elektroporation.

Nach Elektorporation konnte eine hohe Aufnahme von Rhodamin-Dextran in Epithelzellen an der Injektionsstelle festgestellt werden. ( $A = 40 \times vergrößert$ ,  $B = 100 \times vergrößert$ )



Abbildung C2: Lokale Transfektion an Hydra Polypen durch Elektroporation

Optimierte Protokolle führen zu Zelltyp spezifischen Transfektionen. Links: Epithelzellcluster; Rechts: nach Transfektion unter "I-Zell-Bedingungen" differenzierte Neurone

#### 5.4.2 Zu Abschnitt 2.4.3



Abbildung C3: Polyp mit GFP+ Zellen in Testis.

Transgene I-Zellen haben sich in Spermatozyten differenziert (C) und sind in die Testis eingewandert (A bzw. B vergrößert).



#### 5.4.3 Zu Abschnitt 2.5.2

Abbildung C4: Studien zum Wanderungs-und Differenzierungsverhalten von I-Zellen nach Transplantation.

Transgenes Gewebe (untere Körperhälfte) wurde an Wildtyp-Gewebe (obere Körperhälfte) transplantiert und nach 24h wieder entfernt. Dargestellt sind die eingewandereten I-Zellen, sowie Stenothelen und Neurone. Differenzierungsprodukte eingewanderter I-Zellen. [n= 154 I-Zellen aus 25 Transplantaten]



#### 5.4.3 Zu Abschnitt 2.5.4

Abbildung C4: Parentalgenereation und F, von Endoderm-GFP<sup>+</sup> Polypen. (40 x vergrößert)

A = Männlicher Polyp, die Pfeile markieren Testis, welche kein GFP exprimierten. B = Weiblicher Polyp, der Pfeil markiert ein Eifeld. C =  $F_1$  Endoderm-GFP<sup>+</sup> Polyp

# 5.5 Sequenzen

Kursiv = *Promotorbereich*, Fett = **ORF** (open reading frame), Unterstrichen = Restriktionsstelle, Fett + Unterstrichen = Startcodon im Fusionsprotein

#### 5.5.1 AktGFP (Abschnitt 4.2.1 – 4.2.4) (Hydra Aktin Promotor + GFP aus pHotG)

| 1                                                                                                                                                                                                                    | GGCCGCCCCA                                                                                                                                                                                                                                                                                                                                                                           | TCGATCTGAC                                                                                                                                                                                                                                                                                                                                                                                                                | TAACCTAACC                                                                                                                                                                                                                                                                                                                                                           | AGTGCAAAAA                                                                                                                                                                                                                                                                                                                                                                                                          | AATTTAAAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51                                                                                                                                                                                                                   | ATTTGCATTG                                                                                                                                                                                                                                                                                                                                                                           | TGAAAGTTAG                                                                                                                                                                                                                                                                                                                                                                                                                | AATATTATAA                                                                                                                                                                                                                                                                                                                                                           | ААААТСТААА                                                                                                                                                                                                                                                                                                                                                                                                          | ACGAGTATTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 101                                                                                                                                                                                                                  | CTCGAGTAAA                                                                                                                                                                                                                                                                                                                                                                           | <i>TGTTATACGA</i>                                                                                                                                                                                                                                                                                                                                                                                                         | TCTATAGATT                                                                                                                                                                                                                                                                                                                                                           | AAATATATTA                                                                                                                                                                                                                                                                                                                                                                                                          | AAAATGTATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 151                                                                                                                                                                                                                  | GCGAATGTTA                                                                                                                                                                                                                                                                                                                                                                           | AACTAAATAT                                                                                                                                                                                                                                                                                                                                                                                                                | ΑΤΑΑΤΑΤΑΑΑ                                                                                                                                                                                                                                                                                                                                                           | CTTGAAAACT                                                                                                                                                                                                                                                                                                                                                                                                          | TACTAAATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 201                                                                                                                                                                                                                  | САААААСТСА                                                                                                                                                                                                                                                                                                                                                                           | AAACCGACTG                                                                                                                                                                                                                                                                                                                                                                                                                | TATCATTTTT                                                                                                                                                                                                                                                                                                                                                           | ACAGGAAACC                                                                                                                                                                                                                                                                                                                                                                                                          | GTTATTCAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 251                                                                                                                                                                                                                  | ATACTTAAGT                                                                                                                                                                                                                                                                                                                                                                           | TGTTTACTAC                                                                                                                                                                                                                                                                                                                                                                                                                | ATTATTATAA                                                                                                                                                                                                                                                                                                                                                           | CATCTTGCAA                                                                                                                                                                                                                                                                                                                                                                                                          | TTAGCAAGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 301                                                                                                                                                                                                                  | AATCGTTATT                                                                                                                                                                                                                                                                                                                                                                           | TTAACATCAC                                                                                                                                                                                                                                                                                                                                                                                                                | GGTATCGAAA                                                                                                                                                                                                                                                                                                                                                           | GGATTTTGAG                                                                                                                                                                                                                                                                                                                                                                                                          | AAATTTTATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 351                                                                                                                                                                                                                  | GAAACATTTT                                                                                                                                                                                                                                                                                                                                                                           | АААСАААААА                                                                                                                                                                                                                                                                                                                                                                                                                | TATCATATTT                                                                                                                                                                                                                                                                                                                                                           | AGATGCATTT                                                                                                                                                                                                                                                                                                                                                                                                          | TAAGCCGAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 401                                                                                                                                                                                                                  | TGCAGGATTC                                                                                                                                                                                                                                                                                                                                                                           | TGAATGAAAA                                                                                                                                                                                                                                                                                                                                                                                                                | AGAAAAAAAG                                                                                                                                                                                                                                                                                                                                                           | AAGTCTCGGT                                                                                                                                                                                                                                                                                                                                                                                                          | AGAGTAAAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.51                                                                                                                                                                                                                 | TGATCGGTTT                                                                                                                                                                                                                                                                                                                                                                           | GCAACTGTAA                                                                                                                                                                                                                                                                                                                                                                                                                | AATTTATTGA                                                                                                                                                                                                                                                                                                                                                           | AGTACCAATA                                                                                                                                                                                                                                                                                                                                                                                                          | ΑΤΤΤΤΑΤΤΤΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 501                                                                                                                                                                                                                  | AAATAAAACT                                                                                                                                                                                                                                                                                                                                                                           | GAAATATAAA                                                                                                                                                                                                                                                                                                                                                                                                                | GTTAAAGTTG                                                                                                                                                                                                                                                                                                                                                           | CTGTTCTATA                                                                                                                                                                                                                                                                                                                                                                                                          | AGTTTACCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .5.51                                                                                                                                                                                                                | ATTTTAAAAC                                                                                                                                                                                                                                                                                                                                                                           | CATTGTAACG                                                                                                                                                                                                                                                                                                                                                                                                                | CTAGAGTAAT                                                                                                                                                                                                                                                                                                                                                           | ATTTGAGTCT                                                                                                                                                                                                                                                                                                                                                                                                          | ACTAAGTTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 601                                                                                                                                                                                                                  | TCCCCGCACT                                                                                                                                                                                                                                                                                                                                                                           | TTTTAATCAA                                                                                                                                                                                                                                                                                                                                                                                                                | GCAATAAATA                                                                                                                                                                                                                                                                                                                                                           | CCCAAACTTT                                                                                                                                                                                                                                                                                                                                                                                                          | GCTTATTCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 651                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                      | CAATATATCT                                                                                                                                                                                                                                                                                                                                                                                                                | Сттадаатаа                                                                                                                                                                                                                                                                                                                                                           | AGTAAAAACT                                                                                                                                                                                                                                                                                                                                                                                                          | TCTGAAATTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 701                                                                                                                                                                                                                  | Татададада                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           | CCALATATCA                                                                                                                                                                                                                                                                                                                                                           | AGIAAAACI                                                                                                                                                                                                                                                                                                                                                                                                           | CAACACCCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 751                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                      | TTAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                   | CATATACTAA                                                                                                                                                                                                                                                                                                                                                           | TTACTTCTCA                                                                                                                                                                                                                                                                                                                                                                                                          | AAAACCCUGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 801                                                                                                                                                                                                                  | CTCAACCTTT                                                                                                                                                                                                                                                                                                                                                                           | CTCATCTACT                                                                                                                                                                                                                                                                                                                                                                                                                | TAAAACCACT                                                                                                                                                                                                                                                                                                                                                           | CCTATTTTC                                                                                                                                                                                                                                                                                                                                                                                                           | TACCCCTTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 001                                                                                                                                                                                                                  | AAAAACCAAA                                                                                                                                                                                                                                                                                                                                                                           | CATAACTTCC                                                                                                                                                                                                                                                                                                                                                                                                                | TATAACCACI                                                                                                                                                                                                                                                                                                                                                           | TCAATCACAA                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001                                                                                                                                                                                                                  | TTA A CTTA A                                                                                                                                                                                                                                                                                                                                                                         | CATAAGIIGG                                                                                                                                                                                                                                                                                                                                                                                                                | CTCCTTTCAC                                                                                                                                                                                                                                                                                                                                                           | TGAAIGAGAA                                                                                                                                                                                                                                                                                                                                                                                                          | CATAIIICAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 901                                                                                                                                                                                                                  | IIAAAGIIAA                                                                                                                                                                                                                                                                                                                                                                           | AAICCIACCA                                                                                                                                                                                                                                                                                                                                                                                                                | GIGGIIICAC                                                                                                                                                                                                                                                                                                                                                           | TGIACGIAAA                                                                                                                                                                                                                                                                                                                                                                                                          | ACCGICAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 951                                                                                                                                                                                                                  | AAAACAGGAA                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           | GATTAATAAT                                                                                                                                                                                                                                                                                                                                                           | TGAAGTAAAA                                                                                                                                                                                                                                                                                                                                                                                                          | AAAATTTAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1001                                                                                                                                                                                                                 | ACCGGGGGGTT                                                                                                                                                                                                                                                                                                                                                                          | AAAAAAAATCT                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     | ATATATTAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1051                                                                                                                                                                                                                 | ATTTATAAAT                                                                                                                                                                                                                                                                                                                                                                           | TTTTAAACAC                                                                                                                                                                                                                                                                                                                                                                                                                | ATTTAAAATA                                                                                                                                                                                                                                                                                                                                                           | TATATTAAGT                                                                                                                                                                                                                                                                                                                                                                                                          | ATAATAAAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1101                                                                                                                                                                                                                 | TAATATTATA                                                                                                                                                                                                                                                                                                                                                                           | AAAAAAAATT                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                      | ATTATTTTA                                                                                                                                                                                                                                                                                                                                                                                                           | TTAAATTTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1151                                                                                                                                                                                                                 | AAATAATAGG                                                                                                                                                                                                                                                                                                                                                                           | TAAAACTTAC                                                                                                                                                                                                                                                                                                                                                                                                                | ATATCCGTTT                                                                                                                                                                                                                                                                                                                                                           | TATTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                           | TAATAAAATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1201                                                                                                                                                                                                                 | ACGCGTGCAA                                                                                                                                                                                                                                                                                                                                                                           | ATTTTTGTCC                                                                                                                                                                                                                                                                                                                                                                                                                | ATATAAAGAC                                                                                                                                                                                                                                                                                                                                                           | CTTTTCGAAC                                                                                                                                                                                                                                                                                                                                                                                                          | AATAACTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1251                                                                                                                                                                                                                 | TIGCITAGCC                                                                                                                                                                                                                                                                                                                                                                           | GITTITTTC                                                                                                                                                                                                                                                                                                                                                                                                                 | TTATATGGTC                                                                                                                                                                                                                                                                                                                                                           | AAAAAAGCGC                                                                                                                                                                                                                                                                                                                                                                                                          | TCAAGCGATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1301                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                      | AGCGCAATTA                                                                                                                                                                                                                                                                                                                                                                                                                | GIICAGCGII                                                                                                                                                                                                                                                                                                                                                           | CGITAIICAG                                                                                                                                                                                                                                                                                                                                                                                                          | AAGCTTCAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1351                                                                                                                                                                                                                 | TTTGCTTGAT                                                                                                                                                                                                                                                                                                                                                                           | ACTCAGCTCT                                                                                                                                                                                                                                                                                                                                                                                                                | TCTCTTTTTA                                                                                                                                                                                                                                                                                                                                                           | AACAAAACAC                                                                                                                                                                                                                                                                                                                                                                                                          | TTAATCAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1401                                                                                                                                                                                                                 | TGGCCGATGA                                                                                                                                                                                                                                                                                                                                                                           | TGAAGTTGCC                                                                                                                                                                                                                                                                                                                                                                                                                | GCCCTCGCTG                                                                                                                                                                                                                                                                                                                                                           | CAGCCCCGGT                                                                                                                                                                                                                                                                                                                                                                                                          | AGAAAAAATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7 4 5 7                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1451                                                                                                                                                                                                                 | AGTAAAGGAG                                                                                                                                                                                                                                                                                                                                                                           | AAGAACTTTT                                                                                                                                                                                                                                                                                                                                                                                                                | CACTGGAGTT                                                                                                                                                                                                                                                                                                                                                           | GTCCCAATTC                                                                                                                                                                                                                                                                                                                                                                                                          | TTGTTGAATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1451<br>1501                                                                                                                                                                                                         | AGTAAAGGAG<br>AGATGGTGAT                                                                                                                                                                                                                                                                                                                                                             | AAGAACTTTT<br>GTTAATGGGC                                                                                                                                                                                                                                                                                                                                                                                                  | CACTGGAGTT<br>ACAAATTTTC                                                                                                                                                                                                                                                                                                                                             | GTCCCAATTC<br>TGTCAGTGGA                                                                                                                                                                                                                                                                                                                                                                                            | TTGTTGAATT<br>GAGGGTGAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1451<br>1501<br>1551                                                                                                                                                                                                 | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCAAC                                                                                                                                                                                                                                                                                                                                               | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA                                                                                                                                                                                                                                                                                                                                                                                    | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA                                                                                                                                                                                                                                                                                                                               | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG                                                                                                                                                                                                                                                                                                                                                                              | TTGTTGAATT<br>GAGGGTGAAG<br>CACTACTGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1451<br>1501<br>1551<br>1601                                                                                                                                                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCAAC<br>AAACTACCTG                                                                                                                                                                                                                                                                                                                                 | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC                                                                                                                                                                                                                                                                                                                                                                      | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC                                                                                                                                                                                                                                                                                                                 | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT                                                                                                                                                                                                                                                                                                                                                                | TTGTTGAATT<br>GAGGGTGAAG<br>CACTACTGGA<br>GTTATGGTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1451<br>1501<br>1551<br>1601<br>1651                                                                                                                                                                                 | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCAAC<br>AAACTACCTG<br>TCAATGCTTT                                                                                                                                                                                                                                                                                                                   | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC                                                                                                                                                                                                                                                                                                                                                        | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT                                                                                                                                                                                                                                                                                                   | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT                                                                                                                                                                                                                                                                                                                                                  | TTGTTGAATT<br>GAGGGTGAAG<br>CACTACTGGA<br>GTTATGGTGT<br>GACTTTTTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701                                                                                                                                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCAAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT                                                                                                                                                                                                                                                                                                     | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT                                                                                                                                                                                                                                                                                                                                          | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG                                                                                                                                                                                                                                                                                     | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT                                                                                                                                                                                                                                                                                                                                    | TTGTTGAATT<br>GAGGGTGAAG<br>CACTACTGGA<br>GTTATGGTGT<br>GACTTTTTCA<br>ATTTTTCAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751                                                                                                                                                                 | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCAAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA                                                                                                                                                                                                                                                                                       | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC                                                                                                                                                                                                                                                                                                                            | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA                                                                                                                                                                                                                                                                       | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG                                                                                                                                                                                                                                                                                                                      | TTGTTGAATT<br>GAGGGTGAAG<br>CACTACTGGA<br>GTTATGGTGT<br>GACTTTTTCA<br>ATTTTTCAAA<br>AAGGTGATAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801                                                                                                                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCAAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT                                                                                                                                                                                                                                                                         | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT                                                                                                                                                                                                                                                                                                              | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT                                                                                                                                                                                                                                                         | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA                                                                                                                                                                                                                                                                                                        | TTGTTGAATT<br>GAGGGTGAAG<br>CACTACTGGA<br>GTTATGGTGT<br>GACTTTTTCA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851                                                                                                                                                 | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCAAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG                                                                                                                                                                                                                                                           | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG                                                                                                                                                                                                                                                                                                | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT                                                                                                                                                                                                                                           | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA                                                                                                                                                                                                                                                                                          | TTGTTGAATT<br>GAGGGTGAAG<br>CACTACTGGA<br>GTTATGGTGT<br>GACTTTTTCAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901                                                                                                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCAAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG                                                                                                                                                                                                                                             | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACAAACAAAA                                                                                                                                                                                                                                                                                  | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC                                                                                                                                                                                                                             | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT                                                                                                                                                                                                                                                                            | TTGTTGAATT<br>GAGGGTGAAG<br>CACTACTGGA<br>GTTATGGTGT<br>GACTTTTTCA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951                                                                                                                                 | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCAAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACCAACAAT                                                                                                                                                                                                                                | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACAAACAAAA<br>GAAGATGGAA                                                                                                                                                                                                                                                                                  | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>GCGTTCAACT                                                                                                                                                                                                               | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AGCAGACCAT                                                                                                                                                                                                                                                              | TTGTTGAATT<br>GAGGGTGAAG<br>CACTACTGGA<br>GTTATGGTGT<br>GACTTTTTCA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>TACAACAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001                                                                                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCAAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>ATACTCCAAT                                                                                                                                                                                                                 | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACAAACAAAA<br>GAAGATGGAA<br>TGGCGATGGC                                                                                                                                                                                                                                                                    | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>CCTGTCCTTT                                                                                                                                                                                                               | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AGCAGACCAT<br>TACCAGACAA                                                                                                                                                                                                                                                | TTGTTGAATT<br>GAGGGTGAAG<br>CACTACTGGA<br>GTTATGGTGT<br>GACTTTTTCAA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>TATCAACAAA<br>CCATTACCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001<br>2051                                                                                                                 | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCAAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>TCCACACAAT                                                                                                                                                                                                   | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACAAACAAAA<br>GAAGATGGAA<br>TGGCGATGGC<br>CTGCCCTTTC                                                                                                                                                                                                                                        | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>GCGTTCAACT<br>CCTGTCCTTT<br>GAAAGATCCC                                                                                                                                                                                   | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AGCAGACCAT<br>TACCAGACAA<br>AACGAAAAGA                                                                                                                                                                                                                                  | TTGTTGAATT<br>GAGGGTGAAG<br>CACTACTGGA<br>GTTATGGTGT<br>GACTTTTTCAA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>TATCAACAAA<br>CCATTACCTG<br>GAGACCACAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001<br>2051<br>2101                                                                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCAAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>TCCACACAAT<br>GGTCCTTCT                                                                                                                                                                                      | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACAAACAAAA<br>GAAGATGGAA<br>TGGCGATGGC<br>CTGCCTTTC<br>GCGTTTGTAA                                                                                                                                                                                                                           | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>GCGTTCAACT<br>CCTGTCCTTT<br>GAAGATCCC<br>CAGCTGCTGG                                                                                                                                                                      | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AGCAGACCAT<br>TACCAGACAA<br>AACGAAAAGA<br>GATTACACA                                                                                                                                                                                                                     | TTGTTGAATT<br>GAGGGTGAAG<br>GACTACTGGA<br>GACTTTTTCAA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>TATCAACAAA<br>CCATTACCTG<br>GAGACCACAT<br>GGGACGATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001<br>2051<br>2151                                                                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>TCCACACAAT<br>GGTCCTTCTT<br>AACTATACAA                                                                                                                                                                       | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACAAACAAAA<br>GAAGATGGAA<br>TGGCGATGGC<br>CTGCCCTTTC<br>GCGTTTGTAA<br>ATAGCATTCG                                                                                                                                                                                                            | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GCATTCAACT<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCTGG<br>TAGAATTCAC                                                                                                                                                                     | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AGCAGACCAT<br>TACCAGACAA<br>AACGAAAAGA<br>GATTACACAT<br>AACTCGATTA                                                                                                                                                                                                      | TTGTTGAATT<br>GAGGGTGAAG<br>GACTACTGGA<br>GACTTTTTCAA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>TATCAACAAA<br>CCATTACCTG<br>GAGACCACAT<br>GGCATGGATG<br>TATTTATACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>2001<br>2051<br>2151<br>2201                                                                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>TCCACACAAT<br>GGTCCTTCT<br>AACTATACAA<br>GGACTATTT                                                                                                                                                           | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACAAAATTG<br>ACAAAATTG<br>ACAAAATGGAA<br>TGGCGATGGC<br>CTGCCCTTTC<br>GCGTTTGTAA<br>ATAGCATTCG<br>TACATCTGT                                                                                                                                                                                                | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCTGG<br>TAGAATTCAC<br>CGGTTATTT                                                                                                                                                        | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AGCAGACCAT<br>TACCAGACAA<br>AACGAAAAGA<br>GATTACACAT<br>AATTCGATTA<br>CACATTTATT                                                                                                                                                                                        | TTGTTGAATT<br>GAGGGTGAAG<br>GACTACTGGA<br>GACTTTTTCAA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>TATCAACAAA<br>CCATTACCTG<br>GAGACCACAT<br>GGCATGGATG<br>TATTTATACT<br>TTTCTATATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>2001<br>2051<br>2101<br>2201<br>2201<br>2201                                                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>GGTCCTTCTT<br>AACTATACAA<br>GGACTATTTT<br>TATCTTATAA                                                                                                                                                         | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACAAAATTG<br>ACAAACAAAA<br>GAAGATGGAA<br>TGGCGATGGC<br>CTGCCCTTC<br>GCGTTTGTAA<br>ATAGCATTCG<br>TACATCTGTT<br>ACGTTTTAAA                                                                                                                                                                    | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCTGG<br>TAGAATTCAC<br>CGGTTATTTT<br>ACCCATGTAA                                                                                                                                         | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AGCAGACCAT<br>TACCAGACAA<br>AACGAAAAGA<br>GATTACACAT<br>AATTCGATTA<br>TTTTTGTTAA                                                                                                                                                                                        | TTGTTGAATT<br>GAGGGTGAAG<br>GACTACTGGA<br>GACTTTTTCAA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>TATCAACAAA<br>CCATTACCTG<br>GAGACCACAT<br>GGCATGGATG<br>TATTTATACT<br>TTTCTATATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>2051<br>2051<br>2151<br>2201<br>2251<br>2301                                                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>GGTCCTTCTT<br>AACTATACAA<br>GGACTATTT<br>TATCTTATAA<br>AAAAGACGTC                                                                                                                                            | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACAAACAAAA<br>GAAGATGGAA<br>TGGCGATGGC<br>CTGCCCTTC<br>GCGTTTGTAA<br>ATAGCATTCG<br>TACATCTGTT<br>ACGTTTTAAA<br>CTAACAAACT                                                                                                                                                                   | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>GCGTTCAACT<br>CAGCTGCCGG<br>TAGAATTCAC<br>CGGTTATTTT<br>ACCCATGTAA<br>TCTTTTATTA                                                                                                                                         | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AGCAGACCAT<br>TACCAGACAA<br>AACGAAAAGA<br>GATTACACAT<br>AACTCGATTA<br>CACATTTATT<br>TTTTTGTTAA<br>CTGAATTCC                                                                                                                                                             | TTGTTGAATT<br>GAGGGTGAAG<br>GACTACTGGA<br>GACTTTTTCAA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>CAATGTATAC<br>GAGACCACAT<br>GGCATGGATG<br>TATTTATACT<br>TTTCTATATA<br>GCTGTAATAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>2001<br>2051<br>2101<br>2251<br>2301<br>2351                                                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>GGTCCTTCTT<br>AACTATACAA<br>GGACTATTT<br>TATCTTATAA<br>AAAAGACGTC<br>ATAAATAACA                                                                                                                              | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACACAAATTG<br>ACAAACAAAA<br>TGGCGATGGCA<br>CTGCCCTTTC<br>GCGTTTGTAA<br>ATAGCATTCG<br>TACATCTGTT<br>ACGTTTTAAAA                                                                                                                                                                              | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCTGG<br>TAGAATTCAC<br>CGGTTATTT<br>ACCCATGTAA<br>TCTTTTATTA                                                                                                                            | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AGCAGACCAT<br>TACCAGACAA<br>AACGAAAAGA<br>GATTACACAT<br>AATTCGATTA<br>CACATTTATT<br>TTTTTGTTAA<br>CTGAATTCC<br>CAATTAAGCC                                                                                                                                               | TTGTTGAATT<br>GAGGGTGAAG<br>GACTACTGGA<br>GACTTTTCAA<br>ATTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>TATCAACAAA<br>CCATTACCTG<br>GAGACCACAT<br>GGCATGGATG<br>TATTTATACT<br>TTTCTATATA<br>GCTGTAATAA<br>GCTCCTGAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>2001<br>2051<br>2101<br>2251<br>2301<br>2351<br>2401                                                                                 | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>GGTCCTTCTT<br>AACTATACAA<br>AAAAGACGTC<br>ATAAATAACA<br>TACTAAAATA                                                                                                                                           | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACACAAATTG<br>ACAAACAAAA<br>TGGCGATGGCA<br>TGGCGTTGTAA<br>ATAGCATTCG<br>TACATCTGTT<br>ACGTTTTAAAA<br>AATGTAAACA                                                                                                                                                                             | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCTGG<br>TAGAATTCAC<br>CGGTTATTT<br>ACCCATGTAA<br>TCTTTTATTA                                                                                                                            | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAGAGTTAACT<br>AGCAGACCAT<br>TACCAGACAA<br>AACTCAGACAA<br>AACTCGATAA<br>CACATTTATT<br>TTTTTGTTAA<br>CTGAATTTCC<br>CAATTAAGGC<br>ACTTGGATG                                                                                                                                             | TTGTTGAATT<br>GAGGGTGAAG<br>CACTACTGGA<br>GACTTTTCAA<br>ATTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>GAGACCACAT<br>GGCATGGATG<br>GAGACCACAT<br>TTTCTATATA<br>GCTGTAATAT<br>TTTAATTATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001<br>2051<br>2251<br>2301<br>2351<br>2401<br>2451                                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>GGTCCTTCTT<br>AACTATACAA<br>GGACTATTT<br>TATCTTATAA<br>AAAAGACGTC<br>ATAAATAACA<br>TACTAAAATT<br>TGTACTCGG                                                                                                   | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACACAAATTG<br>ACAAACAAAA<br>TGGCGATGGC<br>CTGCCCTTTC<br>GCGTTTGTAA<br>ATAGCATTCG<br>TACATCTGTT<br>ACGTTTTAAAA<br>CTAACAAACT<br>AGTTTTAAAA<br>AATGTAAACA                                                                                                                                     | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCTGG<br>TAGAATTCAC<br>CGGTTATTT<br>ACCCATGTAA<br>TCATTTATAT                                                                                                                            | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AGCAGACCAT<br>TACCAGACAA<br>AACGAAAAGA<br>GATTACACAT<br>AATTCGATTA<br>CACATTTATT<br>TTTTTGTTAA<br>CTGAATTCC<br>CAATTAAGGC<br>ACTTGGATGG<br>TAGAAAAGC                                                                                                                    | TTGTTGAATT<br>GAGGGTGAAG<br>GACTATGGTGT<br>GACTTTTTCAA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>CAATGTATAC<br>GAGACCACAT<br>GGCATGGATG<br>ATTTAATCA<br>CTTTAATTATA<br>GCTCTGAAG<br>CTCCTGAGG<br>CTCTAAGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001<br>2051<br>2101<br>2251<br>2301<br>2351<br>2401<br>2451<br>2501                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ACCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>GGTCCTTCTT<br>AACTATACAA<br>GGACTATTT<br>TATCTTATAA<br>AAAAGACGTC<br>ATAAATAACA<br>TACTAAAATT<br>TGTACTCCGG<br>TTTTGTTCC                                                                                     | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACACAAATTG<br>ACAAACAAAA<br>GAAGATGGAA<br>TGGCGATGGC<br>CTGCCCTTTC<br>GCGTTTGTAA<br>ATAGCATTCG<br>TACATCTGTT<br>ACGTTTTAAAA<br>AATGTAAACA<br>ATTTTGTTAT<br>TTAATTTACT                                                                                                                       | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCTGG<br>TAGAATTCAC<br>CGGTTATTT<br>ACCCATGTAA<br>TCTTTATTA<br>TAAATTCAGG<br>TTTAAAATT<br>ACTTTATTAT                                                                                    | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AGCAGACCAT<br>TACCAGACAA<br>AACGAAAAGA<br>GATTACACAT<br>AATTCGATTA<br>CACATTTATT<br>TTTTTGTTAA<br>CTGAATTTCC<br>CAATTAAGGC<br>ACTTGGATGG<br>TAGCACAAA                                                                                                                   | TTGTTGAATT<br>GAGGGTGAAG<br>GACTATGGTGT<br>GACTTTTTCAA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>CAATGTATAC<br>GAGACCACAT<br>GGCATGGATG<br>GAGACCACAT<br>TTTCTATATA<br>GCTGTAATATA<br>GCTGTAATATA<br>GCTCCTGAGG<br>TCTTAAGTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001<br>2051<br>2251<br>2351<br>2351<br>2401<br>2451<br>2501<br>2551                                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>GGTCCTTCTT<br>AACTATACAA<br>GGACTATTT<br>TATCTTATAA<br>AAAAGACGTC<br>ATAAATAACA<br>TACTAAAATT<br>TGTACTCGTG<br>TTTTGTCC<br>AGGTTTTGCC                                                                        | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACACAAATTG<br>ACAAACAAAA<br>TGGCGATGGC<br>CTGCCCTTTC<br>GCGTTTGTAA<br>ATAGCATTCG<br>TACATCTGTT<br>ACGTTTTAAAA<br>AATGTAAACA<br>AATGTAAACA<br>ATTTGTTAT<br>TTAATTTACT<br>CGTTATTTA                                                                                                           | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCTGG<br>TAGAATTCAC<br>CGGTTATTT<br>ACCCATGTAA<br>TCTTTTATTA<br>TAAATTCAGG<br>TTTAAAATTA<br>ACTTTATTT<br>GAGAAAACT                                                                      | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>ACCAGACAA<br>AACGAAAAGA<br>GATTACCACAT<br>AATTCGATTA<br>CACATTTAGTTAA<br>CTGAATTCC<br>CAATTAAGGC<br>ACTTGGATGG<br>TAGAAAAGTC<br>GTCGCTTAAA                                                                                                                              | TTGTTGAATT<br>GAGGGTGAAG<br>GACTACTGGA<br>GACTTTTCAA<br>ATTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>TATCAACAA<br>GAGACCACAT<br>GGCATGGATG<br>GAGACCACAT<br>TTTCTATATA<br>GCTGTAATAT<br>GCTGTAATAT<br>GCTCTGAGG<br>TCTTAAGTAC<br>GTCATAACC<br>GTCATAACC<br>CACATAACC                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001<br>2051<br>2251<br>2351<br>2351<br>2401<br>2451<br>2551<br>2551<br>2601                                                 | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>GGTCCTTCTT<br>AACTATACAA<br>GGACTATTT<br>TATCTTATAA<br>AAAAGACGTC<br>ATAAATAACA<br>TACTAAAATT<br>TGTACTCGTG<br>TTTTGTTCC<br>AGGTTTTAGG<br>AAAGTTTAGG                                                         | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACAAACAAAA<br>GAAGATGGAA<br>GCGCTTGCC<br>CTGCCCTTTC<br>GCGTTTGTAA<br>ATAGCATCCG<br>TACATCTGTT<br>ACGTTTTAAAA<br>AATGTAAACA<br>ATTTTGTTAT<br>TTAATTTACT<br>CGTTATTTA                                                                                                                         | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATAGAATC<br>GCATTCAACT<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCTGG<br>TAGAATTCAC<br>CGGTTATTT<br>ACCCATGTAA<br>TCTTTTATTA<br>ACTTTATAT<br>GAGAAAACT<br>TGATAAATT                                                                       | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>ACCAGACAA<br>AACGAAAAGA<br>GATTACCACAT<br>AATTCGATTA<br>CACATTTATT<br>TTTTTGTTAA<br>CTGAATTCC<br>CAATTAAGGC<br>ACTTGGATGG<br>TAGAAAAGTC<br>GTCGCTTAAT<br>TATTAGAAAA<br>TTTAAATAG                                                                                        | TTGTTGAATT<br>GAGGGTGAAG<br>GACTACTGGA<br>GACTTTTCAA<br>ATTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>TCAAAATTAG<br>GAGACCACAT<br>GGCATGGATG<br>GAGACCACAT<br>TTTCTATATA<br>GCTGTAATAAC<br>GCTGTAATAAC<br>GCTCCTGAGG<br>TCTTAAGTAC<br>GTCATAACTA<br>GTCAAGTCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001<br>2051<br>2251<br>2351<br>2401<br>2351<br>2401<br>2551<br>2551<br>2601<br>2651                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ACCATGGCAG<br>ACACAACATT<br>ATACTCCAAT<br>GGTCCTTCTT<br>AACTATACAA<br>GGACTATTT<br>TATCTTATAA<br>AAAAGACGTC<br>ATAAATAACA<br>TACTAAAATT<br>TGTACTCGG<br>AAAGTTTAGG<br>GACGTATAAA                                                                       | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACAACAAATTG<br>ACAACAAAATG<br>CTGCCCTTTC<br>GCGTTTGTAA<br>ATAGCATTCG<br>TACATCTGTT<br>ACGTTTTAAAA<br>AATGTAAACA<br>ATTTTGTTAT<br>TTAATTTACT<br>CGTTATTTACT<br>CGTATTTGT<br>ACGTTTTACT                                                                                                                     | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATAGAATC<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCTGG<br>TAGAATTCAC<br>CGGTTATTT<br>ACCCATGTAA<br>TCTTTTATTA<br>ACTTTATTA<br>ACTTTATTA<br>GAGAAAACT<br>TTTTTATTAT                                                                       | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AAAGTAACCA<br>AAAGTTAACT<br>AACCAGACAA<br>AACGAAAAGA<br>GATTACGATTA<br>CACATTTATT<br>TTTTTGTTAA<br>CTGAATTCC<br>CAATTAGGATGG<br>TAGAAAAGTC<br>GTCGCTTAAT<br>TATTAGAAAA<br>TTTAAATAGT<br>AAGTAACCCT                                                                      | TTGTTGAATT<br>GAGGGTGAAG<br>GACTACTGGA<br>GACTTTTCAA<br>ATTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>TCAAAATTAG<br>GAGACCACAT<br>GGCATGGATG<br>GAGACCACAT<br>TTTCAATAAC<br>GCTGTAATAAC<br>GCTCCTGAGG<br>TCTTAAGTAC<br>GTCCTAAGTAC<br>GTCAAATCAATC<br>ATGAATAAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001<br>2051<br>2001<br>2251<br>2351<br>2401<br>2451<br>2551<br>2601<br>2651<br>2701                                         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAAT<br>GTGATGCTAAT<br>GTGATGCTAT<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ACCATAGCAG<br>ACACAACAAT<br>GGTCCTTCTT<br>AACTATACAA<br>GGACTATTTT<br>TATCTTATAA<br>AAAAGACGTC<br>ATAAATAACA<br>TACTAAAATT<br>TGTACTCGTG<br>TTTTGTTCC<br>AGGTTTTAGG<br>GACGTATAAA<br>CAATAGTAGA                          | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACAACAAATTG<br>ACAACAAAATG<br>ACAACAAAATG<br>GCGTTTGTAA<br>ATAGCATTCG<br>TACATCTGTT<br>ACGTTTTAAAA<br>ATTTTGTTAT<br>TTAATTTACT<br>CGTTATTTACT<br>CGTTATTTACT<br>CGTATTTACT<br>ATGCATTGC<br>TACCATCTG                                                                                                      | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCTGG<br>TAGAATTCAC<br>CGGTTATTT<br>ACCCATGTAA<br>TCTTTTATTA<br>ACTTTATTA<br>ACTTATTAT<br>GAGAAAACT<br>TGATAAATTC<br>GAGAAAACT<br>TTTTTATTAT<br>AAAAATTCAG                              | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AAAGTTAACT<br>AAAGTTAACT<br>AACGAAAAGA<br>GATTACACAT<br>AATTCGATTA<br>CACATTTATT<br>TTTTTGTTAA<br>CTGAATTTCC<br>CAATTAAGCC<br>ACTTGGAAGC<br>TAGAAAAGTC<br>GTCGCTTAAT<br>TATTAGAAAA<br>TTTAAATAGT<br>AAGTAACCCT<br>TAGCAGCATT                                            | TTGTTGAATT<br>GAGGGTGAAG<br>GACTATGGTGT<br>GACTTTTTCAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>CCATTACCTG<br>GAGACCACAT<br>TTTCTATACT<br>TTTCTATATA<br>GCTGTAATAC<br>GCTCTGAAGG<br>TCTTAAGTAC<br>GTCCTGAAGC<br>TTATCAAATC<br>GTCAAATAGC<br>TCAAGTCAAT<br>ATGAATAAGC<br>CACATCTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001<br>2051<br>2101<br>2251<br>2301<br>2351<br>2401<br>2551<br>2401<br>2551<br>2601<br>2551<br>2601<br>2551<br>2601<br>2751 | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAAT<br>GTGATGCTAAT<br>GTGATGCTAAT<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACAAT<br>GGTCCTTCTT<br>AACTATACAA<br>GGACTATTTT<br>TATCTTATAA<br>AAAAGACGTC<br>ATAAATAACA<br>TACTAAAATT<br>TGTACTCGTG<br>AGGTTTTGGTCC<br>AGGTTTAGG<br>GACGTATAAA<br>CAATAGTAGA<br>TGTCTTTACG         | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACAACAAAATG<br>ACAAACAAAA<br>GAAGATGGAA<br>GAAGATGGAA<br>TGGCGATGGC<br>CTGCCCTTTC<br>GCGTTTGTAA<br>ATAGCATTCG<br>TACATCTGTT<br>ACGTTTTAAAA<br>AATGTAAACA<br>ATTTGTTAT<br>TTAATTTACT<br>CGTATTTAC<br>CGTATTTA<br>CTAACATGT<br>ATGCATTGC<br>TACCATCGC<br>TACCATCGC<br>TACCACATCG<br>TACCACATCG<br>CTACCACAC | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATACAACT<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCCTG<br>TAGAATTCAG<br>TAGAATTCAG<br>TTTAAAATTC<br>ACCCATGTAA<br>TCTTTTATTA<br>ACCTTATTA<br>TGATAAATTC<br>GAGAAAACT<br>TTTTTATTAT<br>AAAAAATTT<br>AAAAAATTCA<br>CAGCATACAG<br>AGCAAAAAG | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>ACCAGACAA<br>AACGAAAAGA<br>GATTACACAT<br>AATTCGATTA<br>CACATTTATT<br>TTTTTGTTAA<br>CTGAATTCC<br>CAATTAAGCC<br>ACTTGGATGG<br>TAGAAAAGTC<br>GTCGCTTAAT<br>TATTAGAAAA<br>TTTAAATAGT<br>AAGTAACCCT<br>TAGCAGCATT<br>GACCTTTATT                                              | TTGTTGAATT<br>GAGGGTGAAG<br>GACTACTGGA<br>GACTTTTCAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>GAGACCACAT<br>GAGACCACAT<br>CCATTACCTG<br>GGCATGGATG<br>TTTCAATAAC<br>CTGTAATAAC<br>GCTCCTGAAG<br>GCCCTGAAGC<br>CTCAAGTACC<br>GTCAATAAC<br>ATGAATAAGC<br>CAAGTCAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001<br>2051<br>2251<br>2301<br>2351<br>2401<br>2551<br>2401<br>2551<br>2601<br>2651<br>2751<br>2601<br>2751<br>2801         | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAAT<br>GTGATGCTAAT<br>GTGATGCTAT<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ATCATGGCAG<br>ACACAACATT<br>TCCACACAAT<br>GGTCCTTCTT<br>AACTATACAA<br>GGACTATTTT<br>TATCTTATAA<br>AAAAGACGTC<br>ATAAATAACA<br>TACTAAAATT<br>TGTACTCGTG<br>AAGTTTACG<br>GACGTATAAA<br>CAATAGTAGA<br>CAATAGTAGA            | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACAACAAAATG<br>ACAACAAAATG<br>ACAACAAAAA<br>GAAGATGGAA<br>GCGTTTGTAA<br>ATAGCATTCG<br>TACATCTGTT<br>ACGTTTTAAAA<br>AATGTAAACA<br>ATTTTGTTAT<br>TTAATTTACT<br>CGTTATTTAC<br>CGTATTTAA<br>ATGCATTGC<br>TACACATGT<br>ATGCATTGC<br>TACAGAGTGC<br>TACAGAGAGC<br>TACAGAGATAC                                    | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATAGAATC<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CAGCTGCTGG<br>TAGAATTCAG<br>TAGAATTCAGG<br>TTTAAAATT<br>ACCCATGTAA<br>TCTTTTATTA<br>TGATTAAATT<br>GAGAAAACT<br>TTTTTATTAT<br>AAAAAATTTA<br>AAGCATTCAG<br>AGCAAAAAG<br>TGGACTGCC              | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>ACCAGACAA<br>AACGAAAAGA<br>GATTACACAT<br>AATTCGATTA<br>CACATTTATT<br>TTTTTGTTAA<br>CTGAATTCC<br>CAATTAGGATG<br>TAGAAAAGTC<br>GTCGCTTAAT<br>TATTAGAAAA<br>TTTAAAAAGT<br>AAGTAACCCT<br>TAGCAGCATT<br>AACGAATTC                                                            | TTGTTGAATTGAGGGTGAAGGATATGGTGTGACTTTTTCAAAAGGTGATACGAAGATGGAACAATGTATACGAGACACATACAATGTATACTATCAACAAGAGACCACATTTTCAATAACGGCATGGATGTTTCAATAACGCTCTAAGTACGTCTAAAATCAGCTCTAAGTACTTTAATTAACTTTTAATTAACGCTCCTGAGGTCTAAAATCAAGAATAAGCATAAACTTAGGCATATCACCATAAACTTAGCAAAATCTGCGCATATCACACAAAACTTAGCATAACTTAGCATAACTTAGCATAACTTAGCATAACTTACCAAATACTGCCAAATACTACCAAATACTACCAAATACTACCAAATACTACCAAATACTACCAAATACTACCAAATACTACCAAATACTACCAAACTAACCAAATACTACCAAACTACACAAACTACACAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACACCAAACTACAC |
| 1451<br>1501<br>1551<br>1601<br>1651<br>1701<br>1751<br>1801<br>1851<br>1901<br>1951<br>2001<br>2051<br>2251<br>2301<br>2351<br>2401<br>2551<br>2601<br>2551<br>2601<br>2651<br>2751<br>2801<br>2851                 | AGTAAAGGAG<br>AGATGGTGAT<br>GTGATGCTAC<br>GTGATGCTAC<br>AAACTACCTG<br>TCAATGCTTT<br>AGAGTGCCAT<br>GATGACGGGA<br>CCTTGTTAAT<br>ACATTCTTGG<br>ACCATGGCAG<br>ACACAACATT<br>TCCACACAAT<br>GGTCCTTCTT<br>AACTATACAA<br>GGACTATTT<br>TATCTTATAA<br>AAAAGACGTC<br>ATAAATAACA<br>TACTAAAATT<br>TGTACTCGTG<br>AAAGTTTAGG<br>GACGTATAAA<br>CAATAGTAGA<br>CAATAGTAGA<br>GACGTAAAA<br>CAATAGTAGC | AAGAACTTTT<br>GTTAATGGGC<br>ATACGGAAAA<br>TTCCATGGCC<br>TCAAGATACC<br>GCCCGAAGGT<br>ACTACAAGAC<br>AGAATCGAGT<br>ACACAAATTG<br>ACACAAATTG<br>ACACAAATTG<br>CTGCCCTTTC<br>GCGTTTGTAA<br>ATAGCATTCG<br>TACATCTGTT<br>ACGTTTTAAAA<br>AATGTAAACA<br>ATTTTGTTAT<br>CGTTATTTACT<br>CGTTATTTACT<br>CGTTATTTACT<br>CGTTATTTAC<br>ATGCCATGC<br>TACCACATGTC<br>TACAACATGTC<br>TACAAATAAC<br>CAACTGGATGC<br>TACAAATAAC                | CACTGGAGTT<br>ACAAATTTTC<br>CTTACCCTTA<br>AACACTTGTC<br>CAGATCATAT<br>TATGTACAGG<br>ACGTGCTGAA<br>TAAAAGGTAT<br>GAATAGAATC<br>GAATGGAATC<br>CCTGTCCTTT<br>GAAAGATCCC<br>CGGTTATTT<br>ACCCATGTAA<br>TCTTTTATTA<br>TAAATTCAGG<br>TTTAAAATT<br>GAGAAAACT<br>TTTTATTAT<br>AAGCATTCAG<br>AGCAAAAATG<br>GGACTTGC<br>GGACTTGC<br>GACTCACTAG                                 | GTCCCAATTC<br>TGTCAGTGGA<br>AATTTATTTG<br>ACTACTTTCT<br>GAAACGGCAT<br>AAAGAACTAT<br>GTCAAGTTTG<br>TGATTTTAAA<br>ATAACTCACA<br>AAAGTTAACT<br>AGCAGACCAT<br>TACCAGACAA<br>AACGAAAAGA<br>GATTACGATA<br>CACATTTATT<br>TTTTGTTAA<br>CACATTTAC<br>CACATTTACC<br>CAATTAGAAAA<br>CTGGAATGCC<br>TAGAAAAGTC<br>GTCGCTTAAT<br>AAGTAACCCT<br>TAGCAGCATT<br>CACATTAATAGT<br>AACTAACTGT<br>CACCTTTATT<br>AACAAATGTGT<br>CACATACCC | TTGTTGAATT<br>GAGGGTGAAG<br>GACTACTGGA<br>GACTTTTTCA<br>ATTTTTCAAA<br>AAGGTGATAC<br>GAAGATGGAA<br>CAATGTATAC<br>TCAAAATTAG<br>TCAAAATTAG<br>GAGACCACAT<br>GGCATGGATG<br>GAGACCACAT<br>TTTCAATAAC<br>GCTCTAAGTAC<br>GCCCTGAAG<br>CTCTAAGTAC<br>ATGAATAAGC<br>ATGAATAAGC<br>GCATACTAG<br>GCATACTAG<br>GCATACTAG<br>GCATACTAG<br>GCATACTAG<br>GCATACTAG<br>GCATACTAG<br>GCATACTAG<br>GCATACTAG<br>GCATACTAG<br>GCATACTAG<br>GCATACTAG                                                                                                                                                                                                                                                                                                                         |
## 5.5.2 pGEM-AktHyWnt3a (Abschnitt 4.2.6)



| 1    | GGGCGAATTG | GGCCCGACGT        | CGCATGCTCC  | CGGCCGCCAT | GGCCGCGGGA        |
|------|------------|-------------------|-------------|------------|-------------------|
| 51   | TCCCAGCGGC | CGCCCCATCG        | ATCTGACTAA  | CCTAACCAGT | GCAAAAAAAT        |
| 101  | TTAAAAGATT | <i>TGCATTGTGA</i> | AAGTTAGAAT  | ΑΤΤΑΤΑΑΑΑΑ | ATCTAAAACG        |
| 151  | AGTATTACTC | GAGTAAATGT        | TATACGATCT  | ATAGATTAAA | TATATTAAAA        |
| 201  | ATGTATAGCG | AATGTTAAAC        | TAAATATATA  | ATATAAACTT | GAAAACTTAC        |
| 251  | TAAATTGCAA | АААСТСАААА        | CCGACTGTAT  | CATTTTTACA | GGAAACCGTT        |
| 301  | ATTCAAGATA | CTTAAGTTGT        | TTACTACATT  | ATTATAACAT | CTTGCAATTA        |
| 351  | GCAAGACAAT | CGTTATTTTA        | ACATCACGGT  | ATCGAAAGGA | <i>TTTTGAGAAA</i> |
| 401  | TTTTATTGAA | ACATTTTAAA        | CAAAAAATAT  | CATATTTAGA | <i>TGCATTTTAA</i> |
| 451  | GCCGAGATGC | AGGATTCTGA        | ATGAAAAAGA  | AAAAAAGAAG | TCTCGGTAGA        |
| 501  | GTAAAAGTGA | TCGGTTTGCA        | ACTGTAAAAT  | TTATTGAAGT | ACCAATAATT        |
| 551  | TTATTTAAAA | TAAAACTGAA        | ATATAAAGTT  | AAAGTTGCTG | TTCTATAAGT        |
| 601  | TTACTCGAAT | TTTAAAACCA        | TTGTAACGCT  | AGAGTAATAT | TTGAGTCTAC        |
| 651  | TAAGTTAGTC | CCCGCACTTT        | TTAATCAAGC  | AATAAATACC | CAAACTTTGC        |
| 701  | TTATTCAAAT | CAATAAACCA        | ATATATCTCT  | TAAAATAAAG | TAAAAACTTC        |
| 751  | TGAAATTCTA | ТААААААААА        | TTTAATTTCG  | AAATATCAAA | TGTAACTTCA        |
| 801  | ACACCGCACT | ATTTTCTTTT        | AAACAACTGA  | TATAGTAATT | ACTTCTCAAA        |
| 851  | AACGTTATCT | CAAGGTTTGT        | GATGTACTTA  | AAACCACTCC | TATTTTGTTA        |
| 901  | CGCGTTTAAA | AAAGCAAACA        | TAAGTTGGTT  | TCTATTGATG | AATGAGAACA        |
| 951  | TATTTCATTT | AAAGTTAAAA        | TCCTACCAGT  | GGTTTCACTG | TACGTAAACA        |
| 1001 | CCGTCAAAAA | AACAGGAACG        | TTTTTAAAGA  | TTAATAATTG | AAGTAAAAAA        |
| 1051 | AATTTAATAC | CGGGGGTTAA        | AAAAATCTTT  | TAAAATAATT | ATAAATATAT        |
| 1101 | ATATTAAAAT | TTATAAATTT        | TTAAACACAT  | TTAAAATATA | TATTAAGTAT        |
| 1151 | AATAAAAGTA | ATATTATAAA        | AAAAAATTTA  | ATTTTATAAT | TATTTTTTATT       |
| 1201 | AAATTTATAA | ATAATAGGTA        | AAACTTACAT  | ATCCGTTTTA | TTTTTTTCTTA       |
| 1251 | ATAAAATAAC | GCGTGCAAAT        | TTTTGTCCAT  | ATAAAGACCT | TTTCGAACAA        |
| 1301 | TAACTTTTTT | GCTTAGCCGT        | TTTTTTTTCTT | ATATGGTCAA | AAAAGCGCTC        |
| 1351 | AAGCGATTCA | CCATAAAAAG        | CGCAATTAGT  | TCAGCGTTCG | TTATTCAGAA        |
| 1401 | GCTTCAGCTT | <i>TGCTTGATAC</i> | TCAGCTCTTC  | TCTTTTTAAA | CAAAACACTT        |
| 1451 | AATCAAAGGT | ACCATGGGCA        | CGACGCGTTA  | TAAAGAAACT | TTGTTGTGTT        |
| 1501 | TTTTATTAAT | TTTTATGGAA        | ACTCAAGCAC  | AACTCTGGAT | GGCGCTTGGG        |
| 1551 | ACGCAAACGT | CAGCAATTGA        | ATCCAGGCCA  | CGTTCATCAA | TCAATAAAAA        |
| 1601 | TTTATGTCGA | GCGCTTTATC        | TTCATCACTA  | CCAAAGAACG | GTATGTTTAA        |
| 1651 | ATTACACTGA | TCTAATGTTA        | AGCGTTGCAG  | AAGGAATACG | ACTGGGAATT        |
| 1701 | GACGAATGTC | AAGTTCAATT        | TAAGCACCGT  | AAATGGAATT | GTACGATAAA        |
| 1751 | CGAACATGGA | ACATCCGTTT        | TTGGCCCAAT  | TATTACAACA | GCCAGCAGAG        |
| 1801 | AAAGTGCATT | TATTAGTGGA        | ATTATATCTG  | CGGGAGTTGC | GTTTTCAGTG        |
| 1851 | ACTGAGTCAT | GTGCAGAAGG        | AAAATCTGTC  | CACTGTCGTT | GCGATAATAG        |
| 1901 | TGTACGAGGT | CAAACGGACG        | AAGGTTGGCG  | CTGGGGAGGT | TGTAACAGGC        |
| 1951 | CAATCACATA | TGGTATATGG        | TTTTCGCAGT  | TATTTATTGA | TCAAGTAGAA        |
| 2001 | AAAATTGTAA | ААААААGAAA        | AGATCCACGA  | AAAATAATGA | ATCTTCATAA        |
| 2051 | CAACAAGGCT | GGACGAGAGG        | ТААТААААА   | CCTTTTACAG | ACTGAATGTA        |
| 2101 | AATGCCACGG | AACATCAGGA        | AACTGCAACT  | TAAAAACATG | CTGGCGTTCA        |
| 2151 | CAGCCCCATT | TCAGTGAGAT        | TGGAAAAATA  | CTTAAAGAAA | AGTACGATTC        |
| 2201 | AGCTCATGAA | ATGGAGTTTC        | TATACAAAGT  | TAAAGCTAAC | GGTGAAAGAA        |
| 2251 | AAATAAAAGA | CCTTATTCCA        | AAATATAAAG  | AATATCTTCC | CCCCTCTTCA        |
| 2301 | CTGGACTTTA | TTTACTATGA        | GGAATCTCCA  | AACTACTGCG | TAAAAAACGA        |

| 2351         | AACGTTGGGA         | ATAGCAGGAA         | CCAAAGGTCG       | TTCATGTAAC        | ATAACTTCTT |
|--------------|--------------------|--------------------|------------------|-------------------|------------|
| 2401         | CCGGAGTTGA         | CGGTTGCGAA         | CTTATGTGTT       | GCCAAAGAGG        | CTATAACGTT |
| 2451         | AATATTGTAC         | ААААААСАСА         | TTCTTGTGAA       | TGTAAATTTG        | TATGGTGTTG |
| 2501         | CAAGGTTTCA         | TGTAATAGCT         | GCATTAAAAT       | GACGCCTGAA        | TACACCTGTA |
| 2551         | <b>AATAG</b> GGTAC | CCATTCGTAG         | AATTCACAAT       | TCGATTATAT        | TTATACTGGA |
| 2601         | CTATTTTTAC         | ATCTGTTCGG         | TTATTTTCAC       | ATTTATTTTT        | CTATATATAT |
| 2651         | CTTATAAACG         | TTTTAAAACC         | CATGTAATTT       | <i>TTGTTAAGCT</i> | GTAATATAAA |
| 2701         | AGACGTCCTA         | ACAAACTTCT         | TTTATTACTG       | AATTTCCTTT        | AATTATAATA |
| 2751         | AATAA <u>CAAGT</u> | <u>T</u> TTAAAATAA | ATTCAGGCAA       | TTAAGGCGCT        | CCTGAGGTAC |
| 2801         |                    | GTAAACATTT         | AAAA'I''I'AAC'I' | TGGATGGTCT        | TAAGTACTGT |
| 2851         | ACTCGTGATT         | ATTENATACI         |                  | AAAAGICGIC        | TATTAACITT |
| 2901         | TIGIICCIIA         | AIIIACIIGA         | 1 I AAAI I GI C  | GCIIAAIIIA        | ICAAAICAGG |
| 3001         | GTTTAGGCTA         | ACATGTTTT          | <i>TTATTATTT</i> | AAAAAAIG          | AGTCAATGAC |
| 3051         | GTATAAAATG         | CATTTGCAAA         | AAATTTTAAG       | TAACCCTATA        | AACTTAGCAA |
| 3101         | TAGTAGATAC         | TGGATGCAAG         | CATTCAGTAG       | CAGCATTGCA        | TATCTGCTGT |
| 3151         | CTTTACGTAC         | AAATAACAGC         | AAAAATGGAC       | CTTTATTGGC        | TTCACATCGT |
| 3201         | CGTAAAACAT         | <i>GTGTTATTGG</i>  | ACTTGTCACA       | AATGTGTTAA        | GTATACAGAA |
| 3251         | GCTTAGCTCT         | <i>TGATGTTGAT</i>  | CACTAGTCGG       | CCGTACGGGC        | CCTTTCGTCT |
| 3301         | CGCGCGTTTC         | GGTGATGACG         | GGGATCACTA       | GTGCGGCCGC        | CTGCAGGTCG |
| 3351         | ACCATATGGG         | AGAGCTCCCA         | ACGCGTTGGA       | TGCATAGCTT        | GAGTATTCTA |
| 3401         | TAGTGTCACC         | TAAATAGCTT         | GGCGTAATCA       | TGGTCATAGC        | TGTTTCCTGT |
| 3451         | GTGAAATTGT         | TATCCGCTCA         | CAATTCCACA       | CAACATACGA        | GCCGGAAGCA |
| 3501         | TAAAGTGTAA         | AGCCTGGGGT         | GCCTAATGAG       | TGAGCTAACT        | CACATTAATT |
| 3551         | GCGTTGCGCT         | CACTGCCCGC         | TTTCCAGTCG       | GGAAACCTGT        | CGTGCCAGCT |
| 3601         | GCATTAATGA         | ATCGGCCAAC         | GCGCGGGGGAG      | AGGCGGTTTG        | CGTATTGGGC |
| 3651         | GCTCTTCCGC         | TTCCTCGCTC         | ACTGACTCGC       | TGCGCTCGGT        | CGTTCGGCTG |
| 3701<br>2751 |                    | TATCAGCTCA         |                  | GTAATACGGT        | CACCAACAGA |
| 3801         | CCACCAACCC         | TAACGCAGGAA        | AGAACAIGIG       | CCTTTTTCCA        | TACCOTCCCC |
| 3851         | CCCCCCTGACG        | ACCATCACAA         | AATCGACGC        | TCAACTCAGA        | CGTCCCCAAA |
| 3901         | CCCGACAGGA         | CTATAAAGAT         | ACCAGGCGTT       | TCCCCCTGGA        | AGCTCCCTCG |
| 3951         | TGCGCTCTCC         | TGTTCCGACC         | CTGCCGCTTA       | CCGGATACCT        | GTCCGCCTTT |
| 4001         | CTCCCTTCGG         | GAAGCGTGGC         | GCTTTCTCAT       | AGCTCACGCT        | GTAGGTATCT |
| 4051         | CAGTTCGGTG         | TAGGTCGTTC         | GCTCCAAGCT       | GGGCTGTGTG        | CACGAACCCC |
| 4101         | CCGTTCAGCC         | CGACCGCTGC         | GCCTTATCCG       | GTAACTATCG        | TCTTGAGTCC |
| 4151         | AACCCGGTAA         | GACACGACTT         | ATCGCCACTG       | GCAGCAGCCA        | CTGGTAACAG |
| 4201         | GATTAGCAGA         | GCGAGGTATG         | TAGGCGGTGC       | TACAGAGTTC        | TTGAAGTGGT |
| 4251         | GGCCTAACTA         | CGGCTACACT         | AGAAGAACAG       | TATTTGGTAT        | CTGCGCTCTG |
| 4301         | CTGAAGCCAG         | TTACCTTCGG         | AAAAAGAGTT       | GGTAGCTCTT        | GATCCGGCAA |
| 4351         | ACAAACCACC         | GCTGGTAGCG         | GTGGTTTTTT       | TGTTTGCAAG        | CAGCAGATTA |
| 4401         | CGCGCAGAAA         | AAAAGGATCT         | CAAGAAGATC       | CTTTGATCTT        | TTCTACGGGG |
| 4451         | TCTGACGCTC         | AGTGGAACGA         | AAACTCACGT       | TAAGGGATTT        | TGGTCATGAG |
| 4501         |                    | AGGATCTTCA         |                  |                   |            |
| 4551         |                    | CTAAAGIAIA         | TAIGAGIAAA       | ATCTCTCTAT        | TTCCTTCATC |
| 4651         | CATACTTOCC         | TGACTCCCCC         | TCCTCTACAT       | AICIGICIAI        | CCCCACCCT  |
| 4701         | TACCATCTGG         | CCCCAGTGCT         | GCAATGATAC       | CGCGAGACCC        | ACGCTCACCG |
| 4751         | GCTCCAGATT         | TATCAGCAAT         | AAACCAGCCA       | GCCGGAAGGG        | CCGAGCGCAG |
| 4801         | AAGTGGTCCT         | GCAACTTTAT         | CCGCCTCCAT       | CCAGTCTATT        | AATTGTTGCC |
| 4851         | GGGAAGCTAG         | AGTAAGTAGT         | TCGCCAGTTA       | ATAGTTTGCG        | CAACGTTGTT |
| 4901         | GCCATTGCTA         | CAGGCATCGT         | GGTGTCACGC       | TCGTCGTTTG        | GTATGGCTTC |
| 4951         | ATTCAGCTCC         | GGTTCCCAAC         | GATCAAGGCG       | AGTTACATGA        | TCCCCCATGT |
| 5001         | TGTGCAAAAA         | AGCGGTTAGC         | TCCTTCGGTC       | CTCCGATCGT        | TGTCAGAAGT |
| 5051         | AAGTTGGCCG         | CAGTGTTATC         | ACTCATGGTT       | ATGGCAGCAC        | TGCATAATTC |
| 5101         | TCTTACTGTC         | ATGCCATCCG         | TAAGATGCTT       | TTCTGTGACT        | GGTGAGTACT |
| 5151         | CAACCAAGTC         | ATTCTGAGAA         | TAGTGTATGC       | GGCGACCGAG        | TTGCTCTTGC |
| 5201         | CCGGCGTCAA         | 'I'ACGGGATAA       | TACCGCGCCA       | CATAGCAGAA        | CTTTAAAAGT |
| 5251         | GCTCATCATT         | GGAAAACGTT         | CTTCGGGGGCG      | AAAACTCTCA        | AGGATCTTAC |
| 5301<br>5351 | CGCTGTTGAG         | ATCCAGTTCG         | ATGTAACCCA       | CTCGTGCACC        | CAACTGATCT |
| 5201         | CCABARCCC          | CCARANACC          | CAGUGITTUT       | GACACCCAAA        |            |
| 5451         | TCATACTCTT         | ССФФФФФСал         |                  | GCAUTTATCA        | CCCTTATAC  |
| 5501         | CTCATGAGCG         | GATACATATT         | TGAATGTATT       | ТАДААААТА         | AACAAATAGG |
| 5551         | GGTTCCGCGC         | ACATTTCCCC         | GAAAAGTGCC       | ACCTGATGCG        | GTGTGAAATA |
| 5601         | CCGCACAGAT         | GCGTAAGGAG         | AAAATACCGC       | ATCAGGAAAT        | TGTAAGCGTT |

| 5651 | AATATTTTGT | TAAAATTCGC | GTTAAATTTT | TGTTAAATCA | GCTCATTTTT |
|------|------------|------------|------------|------------|------------|
| 5701 | TAACCAATAG | GCCGAAATCG | GCAAAATCCC | TTATAAATCA | AAAGAATAGA |
| 5751 | CCGAGATAGG | GTTGAGTGTT | GTTCCAGTTT | GGAACAAGAG | TCCACTATTA |
| 5801 | AAGAACGTGG | ACTCCAACGT | CAAAGGGCGA | AAAACCGTCT | ATCAGGGCGA |
| 5851 | TGGCCCACTA | CGTGAACCAT | CACCCTAATC | AAGTTTTTTG | GGGTCGAGGT |
| 5901 | GCCGTAAAGC | ACTAAATCGG | AACCCTAAAG | GGAGCCCCCG | ATTTAGAGCT |
| 5951 | TGACGGGGAA | AGCCGGCGAA | CGTGGCGAGA | AAGGAAGGGA | AGAAAGCGAA |
| 6001 | AGGAGCGGGC | GCTAGGGCGC | TGGCAAGTGT | AGCGGTCACG | CTGCGCGTAA |
| 6051 | CCACCACACC | CGCCGCGCTT | AATGCGCCGC | TACAGGGCGC | GTCCATTCGC |
| 6101 | CATTCAGGCT | GCGCAACTGT | TGGGAAGGGC | GATCGGTGCG | GGCCTCTTCG |
| 6151 | CTATTACGCC | AGCTGGCGAA | AGGGGGATGT | GCTGCAAGGC | GATTAAGTTG |
| 6201 | GGTAACGCCA | GGGTTTTCCC | AGTCACGACG | TTGTAAAACG | ACGGCCAGTG |
| 6251 | AATTGTAATA | CGACTCACTA | TA         |            |            |
|      |            |            |            |            |            |

## 5.5.3 pGEM-AktBetaCatenin (Abschnitt 4.2.7)



| 1601 | GACAACAAAT | TCAGATGGAA | ATTCGTTCTG  | TTGAAACACA | ATTACAACAA  |
|------|------------|------------|-------------|------------|-------------|
| 1551 | AGATCGTCGG | AATAAATTAA | TGATGATGCT  | CGAGAGCAAT | CAACCTAACA  |
| 1501 | TACCAACATC | AACAATCTTA | TGATCAGGGA  | AGAGATGTAA | GAATGCTTGA  |
| 1451 | AATCAAAGGG | TACCATGATG | GAGGATTCAA  | CTGCTCAAAT | GAGGTATCAA  |
| 1401 | GCTTCAGCTT | TGCTTGATAC | TCAGCTCTTC  | ТСТТТТТААА | CAAAACACTT  |
| 1351 | AAGCGATTCA | CCATAAAAAG | CGCAATTAGT  | TCAGCGTTCG | TTATTCAGAA  |
| 1301 | TAACTTTTTT | GCTTAGCCGT | TTTTTTTTCTT | ATATGGTCAA | AAAAGCGCTC  |
| 1251 | АТААААТААС | GCGTGCAAAT | TTTTGTCCAT  | ATAAAGACCT | TTTCGAACAA  |
| 1201 | AAATTTATAA | ATAATAGGTA | AAACTTACAT  | ATCCGTTTTA | TTTTTTTCTTA |
| 1151 | AATAAAAGTA | ΑΤΑΤΤΑΤΑΑΑ | AAAAAATTTA  | ATTTTATAAT | TATTTTTATT  |
| 1101 | ATATTAAAAT | TTATAAATTT | TTAAACACAT  | TTAAAATATA | TATTAAGTAT  |
| 1051 | AATTTAATAC | CGGGGGTTAA | AAAAATCTTT  | TAAAATAATT | ATAAATATAT  |
| 1001 | CCGTCAAAAA | AACAGGAACG | TTTTTAAAGA  | TTAATAATTG | AAGTAAAAAA  |
| 951  | TATTTCATTT | AAAGTTAAAA | TCCTACCAGT  | GGTTTCACTG | TACGTAAACA  |
| 901  | CGCGTTTAAA | AAAGCAAACA | TAAGTTGGTT  | TCTATTGATG | AATGAGAACA  |
| 851  | AACGTTATCT | CAAGGTTTGT | GATGTACTTA  | AAACCACTCC | TATTTTGTTA  |
| 801  | ACACCGCACT | ATTTTCTTTT | AAACAACTGA  | TATAGTAATT | ACTTCTCAAA  |
| 751  | TGAAATTCTA | ТАААААААА  | TTTAATTTCG  | AAATATCAAA | TGTAACTTCA  |
| 701  | TTATTCAAAT | CAATAAACCA | ATATATCTCT  | TAAAATAAAG | TAAAAACTTC  |
| 651  | TAAGTTAGTC | CCCGCACTTT | TTAATCAAGC  | AATAAATACC | CAAACTTTGC  |
| 601  | TTACTCGAAT | TTTAAAACCA | TTGTAACGCT  | AGAGTAATAT | TTGAGTCTAC  |
| 551  | TTATTTAAAA | TAAAACTGAA | ATATAAAGTT  | AAAGTTGCTG | TTCTATAAGT  |
| 501  | GTAAAAGTGA | TCGGTTTGCA | ACTGTAAAAT  | TTATTGAAGT | ACCAATAATT  |
| 451  | GCCGAGATGC | AGGATTCTGA | ATGAAAAAGA  | AAAAAAGAAG | TCTCGGTAGA  |
| 401  | TTTTATTGAA | ACATTTTAAA | CAAAAAATAT  | CATATTTAGA | TGCATTTTAA  |
| 351  | GCAAGACAAT | CGTTATTTTA | ACATCACGGT  | ATCGAAAGGA | TTTTGAGAAA  |
| 301  | ATTCAAGATA | CTTAAGTTGT | TTACTACATT  | ATTATAACAT | CTTGCAATTA  |
| 251  | TAAATTGCAA | AAACTCAAAA | CCGACTGTAT  | CATTTTTACA | GGAAACCGTT  |
| 201  | ATGTATAGCG | AATGTTAAAC | TAAATATATA  | ATATAAACTT | GAAAACTTAC  |
| 151  | AGTATTACTC | GAGTAAATGT | TATACGATCT  | ATAGATTAAA | TATATTAAAA  |
| 101  | TTAAAAGATT | TGCATTGTGA | AAGTTAGAAT  | ATTATAAAAA | ATCTAAAACG  |
| 51   | TCCCAGCGGC | CGCCCCATCG | ATCTGACTAA  | CCTAACCAGT | GCAAAAAAAT  |
| 1    | GGGCGAATTG | GGCCCGACGT | CGCATGCTCC  | CGGCCGCCAT | GGCCGCGGGA  |
|      |            |            |             |            |             |

| 1651                                                                                                                                                                                                                                 | ATGCGAATGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAAAACAAGG                                                                                                                                                                                                                                                                                                                                                                                                                  | AATGGTTGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TTTAATATGC                                                                                                                                                                                                                                                                                                                                                                                                                          | ATCATCAGCA                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1701                                                                                                                                                                                                                                 | AATGCATCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GCAATGAACA                                                                                                                                                                                                                                                                                                                                                                                                                  | AAATGAACCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AACTGCAGTC                                                                                                                                                                                                                                                                                                                                                                                                                          | TGGAATCAAG                                                                                                                                                                                                                                                                                                                                                         |
| 1751                                                                                                                                                                                                                                 | GTTACAACAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AGATTCAGGT                                                                                                                                                                                                                                                                                                                                                                                                                  | ATTCAAACAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CTGCTCCTTC                                                                                                                                                                                                                                                                                                                                                                                                                          | TGTCAAAGGT                                                                                                                                                                                                                                                                                                                                                         |
| 1801                                                                                                                                                                                                                                 | TATGATGACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATGAAGTTGC                                                                                                                                                                                                                                                                                                                                                                                                                  | ATCCCATCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TCTTATCAGC                                                                                                                                                                                                                                                                                                                                                                                                                          | AGATTGAATG                                                                                                                                                                                                                                                                                                                                                         |
| 1851                                                                                                                                                                                                                                 | GGACCAATTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TCTGGTGAAC                                                                                                                                                                                                                                                                                                                                                                                                                  | CAATGGATAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TGCAATAAAT                                                                                                                                                                                                                                                                                                                                                                                                                          | GATCAGTTTA                                                                                                                                                                                                                                                                                                                                                         |
| 1901                                                                                                                                                                                                                                 | ATAACAATAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAGTCAGCGT                                                                                                                                                                                                                                                                                                                                                                                                                  | GCTAGAACAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GAATGTTTCC                                                                                                                                                                                                                                                                                                                                                                                                                          | TGAGGCTATG                                                                                                                                                                                                                                                                                                                                                         |
| 1951                                                                                                                                                                                                                                 | CATGAAAATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TGGAACTCTC                                                                                                                                                                                                                                                                                                                                                                                                                  | TCATGCACAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATTCATAATA                                                                                                                                                                                                                                                                                                                                                                                                                          | ACAACTCTGC                                                                                                                                                                                                                                                                                                                                                         |
| 2001                                                                                                                                                                                                                                 | TGTACCTCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CGTCTTGCTG                                                                                                                                                                                                                                                                                                                                                                                                                  | AACCAACTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AATGCTTAAG                                                                                                                                                                                                                                                                                                                                                                                                                          | AACAATGTAA                                                                                                                                                                                                                                                                                                                                                         |
| 2051                                                                                                                                                                                                                                 | TTCACCTTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Сааттатсаа                                                                                                                                                                                                                                                                                                                                                                                                                  | GATGAGACAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATCTACCACT                                                                                                                                                                                                                                                                                                                                                                                                                          | ТАСАССТСТА                                                                                                                                                                                                                                                                                                                                                         |
| 2101                                                                                                                                                                                                                                 | ССАСАССТТС                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTCCTTTATT                                                                                                                                                                                                                                                                                                                                                                                                                  | ATCTAATACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CATCCTCAAA                                                                                                                                                                                                                                                                                                                                                                                                                          | Статтсатса                                                                                                                                                                                                                                                                                                                                                         |
| 2101                                                                                                                                                                                                                                 | CCCUTCUATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATCCTCAACC                                                                                                                                                                                                                                                                                                                                                                                                                  | ACCUAACAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CARCCARCO                                                                                                                                                                                                                                                                                                                                                                                                                           | ACTICATICA                                                                                                                                                                                                                                                                                                                                                         |
| 2101                                                                                                                                                                                                                                 | GGCIICIAII                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIGGICAACC                                                                                                                                                                                                                                                                                                                                                                                                                  | AGCIAACAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GAAGGAAGCI                                                                                                                                                                                                                                                                                                                                                                                                                          | AGIIGIIAIG                                                                                                                                                                                                                                                                                                                                                         |
| 2201                                                                                                                                                                                                                                 | CAGTTATGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAACACAAAAC                                                                                                                                                                                                                                                                                                                                                                                                                 | ATTGTTGCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CATTGGTTGG                                                                                                                                                                                                                                                                                                                                                                                                                          | TGTGACTGCA                                                                                                                                                                                                                                                                                                                                                         |
| 2251                                                                                                                                                                                                                                 | ACTTCAAATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATGGAGAAAC                                                                                                                                                                                                                                                                                                                                                                                                                  | TATACGCAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GTTGTTGGTG                                                                                                                                                                                                                                                                                                                                                                                                                          | CTTTACATAA                                                                                                                                                                                                                                                                                                                                                         |
| 2301                                                                                                                                                                                                                                 | TATGAGCCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CACAGACAAG                                                                                                                                                                                                                                                                                                                                                                                                                  | GTTTAATGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TATTTCAAA                                                                                                                                                                                                                                                                                                                                                                                                                           | TGTAGTGGAA                                                                                                                                                                                                                                                                                                                                                         |
| 2351                                                                                                                                                                                                                                 | TTCCAGCTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AGTAAAATTG                                                                                                                                                                                                                                                                                                                                                                                                                  | TTAGGCCATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GAATTGAAGC                                                                                                                                                                                                                                                                                                                                                                                                                          | TGTTGTTTTT                                                                                                                                                                                                                                                                                                                                                         |
| 2401                                                                                                                                                                                                                                 | TATGCAATTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAACTTTGCA                                                                                                                                                                                                                                                                                                                                                                                                                  | CAATCTTCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CTCCATCAAG                                                                                                                                                                                                                                                                                                                                                                                                                          | AAGGTGCAAA                                                                                                                                                                                                                                                                                                                                                         |
| 2451                                                                                                                                                                                                                                 | GATGGCTGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CGTTTAGCTT                                                                                                                                                                                                                                                                                                                                                                                                                  | TAGGTTTGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GAAGATGGTC                                                                                                                                                                                                                                                                                                                                                                                                                          | TCTCTTTTGC                                                                                                                                                                                                                                                                                                                                                         |
| 2501                                                                                                                                                                                                                                 | AGAGGCCAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TGTAAAATTT                                                                                                                                                                                                                                                                                                                                                                                                                  | CTTGCAATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TAACAGATTG                                                                                                                                                                                                                                                                                                                                                                                                                          | TTTACAAATT                                                                                                                                                                                                                                                                                                                                                         |
| 2551                                                                                                                                                                                                                                 | TTGGCATATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GTAACCAAGA                                                                                                                                                                                                                                                                                                                                                                                                                  | ATCTAAGCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATTATTTTAT                                                                                                                                                                                                                                                                                                                                                                                                                          | CTTCTGGTGG                                                                                                                                                                                                                                                                                                                                                         |
| 2601                                                                                                                                                                                                                                 | ACCTGCTGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTTGTTCGCA                                                                                                                                                                                                                                                                                                                                                                                                                  | TAATGAGAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CTATACTTAT                                                                                                                                                                                                                                                                                                                                                                                                                          | GAAAAATTGT                                                                                                                                                                                                                                                                                                                                                         |
| 2651                                                                                                                                                                                                                                 | TATATACAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TTGTCGAGTT                                                                                                                                                                                                                                                                                                                                                                                                                  | TTAAAAGTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TTTCTGTATG                                                                                                                                                                                                                                                                                                                                                                                                                          | TTCCAGCAAT                                                                                                                                                                                                                                                                                                                                                         |
| 2701                                                                                                                                                                                                                                 | AAACCTGCTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TTGTTGAGGC                                                                                                                                                                                                                                                                                                                                                                                                                  | TGGAGGTATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CAAGCATTGG                                                                                                                                                                                                                                                                                                                                                                                                                          | CACATTATTT                                                                                                                                                                                                                                                                                                                                                         |
| 2751                                                                                                                                                                                                                                 | GTCTCATCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AGCACGCGTC                                                                                                                                                                                                                                                                                                                                                                                                                  | TTGTACAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TTGTTTATGG                                                                                                                                                                                                                                                                                                                                                                                                                          | ACCTTGAGAA                                                                                                                                                                                                                                                                                                                                                         |
| 2801                                                                                                                                                                                                                                 | ATCTTTCTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TGTAGCTACT                                                                                                                                                                                                                                                                                                                                                                                                                  | AAACAAGATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GTTTAGAAGG                                                                                                                                                                                                                                                                                                                                                                                                                          | ACTCTTGCAG                                                                                                                                                                                                                                                                                                                                                         |
| 2851                                                                                                                                                                                                                                 | ATGCTTGTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AACTTTTATC                                                                                                                                                                                                                                                                                                                                                                                                                  | TTCAAATGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATCAATGTTG                                                                                                                                                                                                                                                                                                                                                                                                                          | TTACATGTGT                                                                                                                                                                                                                                                                                                                                                         |
| 2901                                                                                                                                                                                                                                 | TTCTGGCATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATATCAAATT                                                                                                                                                                                                                                                                                                                                                                                                                  | TAACTTGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CAATCCTCGG                                                                                                                                                                                                                                                                                                                                                                                                                          | AATAAGCAAG                                                                                                                                                                                                                                                                                                                                                         |
| 2951                                                                                                                                                                                                                                 | TTGTATTTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AGTGGGTGGA                                                                                                                                                                                                                                                                                                                                                                                                                  | ATTGAAGCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TAGTTCGAAC                                                                                                                                                                                                                                                                                                                                                                                                                          | AATCATAAAT                                                                                                                                                                                                                                                                                                                                                         |
| 3001                                                                                                                                                                                                                                 | GCTGGTGACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GTGAGGAAAT                                                                                                                                                                                                                                                                                                                                                                                                                  | AACTGAACCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGTATGTG                                                                                                                                                                                                                                                                                                                                                                                                                          | CGTTGCGCCA                                                                                                                                                                                                                                                                                                                                                         |
| 3051                                                                                                                                                                                                                                 | TCTTACAAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AGACATCCAG                                                                                                                                                                                                                                                                                                                                                                                                                  | ATGCAGAGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TGCAGAAAAT                                                                                                                                                                                                                                                                                                                                                                                                                          | GGTGTAAGAT                                                                                                                                                                                                                                                                                                                                                         |
| 3101                                                                                                                                                                                                                                 | TACATTATCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                             | Сттстаааст                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOTTANTCC                                                                                                                                                                                                                                                                                                                                                                                                                           | TCCTTCTCCC                                                                                                                                                                                                                                                                                                                                                         |
| 3151                                                                                                                                                                                                                                 | TCCCCTTTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TTAAACCTCT                                                                                                                                                                                                                                                                                                                                                                                                                  | TCTTCCCTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATTACCAACC                                                                                                                                                                                                                                                                                                                                                                                                                          | TTCCTTCTCTC                                                                                                                                                                                                                                                                                                                                                        |
| 3201                                                                                                                                                                                                                                 | TCCTACCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CATACTCCTA                                                                                                                                                                                                                                                                                                                                                                                                                  | TUTIGGCIIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACCTCCTCTT                                                                                                                                                                                                                                                                                                                                                                                                                          | CCTAACCTTC                                                                                                                                                                                                                                                                                                                                                         |
| 2201                                                                                                                                                                                                                                 | TCCIAGCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AMCAAMCA                                                                                                                                                                                                                                                                                                                                                                                                                    | TICGIGAICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AGGIGGICII                                                                                                                                                                                                                                                                                                                                                                                                                          | CCIAAGCIIG                                                                                                                                                                                                                                                                                                                                                         |
| 3231                                                                                                                                                                                                                                 | IGCAGIIGII                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAIGAAAICA                                                                                                                                                                                                                                                                                                                                                                                                                  | IAICAAGAIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TICAGAGACG                                                                                                                                                                                                                                                                                                                                                                                                                          | IGGICCAGGA                                                                                                                                                                                                                                                                                                                                                         |
| 2201                                                                                                                                                                                                                                 | CCCCACAAMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TCCAACACCC                                                                                                                                                                                                                                                                                                                                                                                                                  | mcmmacaamc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CACCAAAmme                                                                                                                                                                                                                                                                                                                                                                                                                          | THEACCCCAC                                                                                                                                                                                                                                                                                                                                                         |
| 3301                                                                                                                                                                                                                                 | GCCCAGAATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TGCAAGACGG                                                                                                                                                                                                                                                                                                                                                                                                                  | TGTTAGAATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GAGGAAATTG                                                                                                                                                                                                                                                                                                                                                                                                                          | TTGAGGGGAC                                                                                                                                                                                                                                                                                                                                                         |
| 3301<br>3351                                                                                                                                                                                                                         | GCCCAGAATA<br>TGTTGGCGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TGCAAGACGG<br>CTTCACATTT                                                                                                                                                                                                                                                                                                                                                                                                    | TGTTAGAATG<br>TAGCTCGAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GAGGAAATTG<br>AGCTCTAAAT                                                                                                                                                                                                                                                                                                                                                                                                            | TTGAGGGGAC<br>CGTTCAATTA                                                                                                                                                                                                                                                                                                                                           |
| 3301<br>3351<br>3401                                                                                                                                                                                                                 | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT                                                                                                                                                                                                                                                                                                                                                                                                                                        | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT                                                                                                                                                                                                                                                                                                                                                                                      | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT                                                                                                                                                                                                                                                                                                                                                                                              | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA                                                                                                                                                                                                                                                                                                                             |
| 3301<br>3351<br>3401<br>3451                                                                                                                                                                                                         | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA                                                                                                                                                                                                                                                                                                                                                                                                                          | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT                                                                                                                                                                                                                                                                                                                                                                        | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG                                                                                                                                                                                                                                                                                                                                                                                | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA                                                                                                                                                                                                                                                                                                               |
| 3301<br>3351<br>3401<br>3451<br>3501                                                                                                                                                                                                 | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA                                                                                                                                                                                                                                                                                                                                                                                                            | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG                                                                                                                                                                                                                                                                                                                                                          | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA                                                                                                                                                                                                                                                                                                                                                                  | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT                                                                                                                                                                                                                                                                                                 |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551                                                                                                                                                                                         | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT                                                                                                                                                                                                                                                                                                                                                                                             | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT                                                                                                                                                                                                                                                                                                                                            | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG                                                                                                                                                                                                                                                                                                                                                                                                                                             | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC                                                                                                                                                                                                                                                                                                                                                    | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT                                                                                                                                                                                                                                                                                   |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601                                                                                                                                                                                 | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT                                                                                                                                                                                                                                                                                                                                                                               | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC                                                                                                                                                                                                                                                                                                                              | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA                                                                                                                                                                                                                                                                                                                                                                                                                               | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT                                                                                                                                                                                                                                                                                                                                      | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAACG                                                                                                                                                                                                                                                                      |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651                                                                                                                                                                         | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGT                                                                                                                                                                                                                                                                                                                                                                  | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA                                                                                                                                                                                                                                                                                                                | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTAT                                                                                                                                                                                                                                                                                                                                                                                                                  | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC                                                                                                                                                                                                                                                                                                                        | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTTCCTTGGG                                                                                                                                                                                                                                                       |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701                                                                                                                                                                 | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACCCTGGTAA                                                                                                                                                                                                                                                                                                                                                                 | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG                                                                                                                                                                                                                                                                                                  | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC                                                                                                                                                                                                                                                                                                                                                                                                   | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA                                                                                                                                                                                                                                                                                                          | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTTCCTTGGG<br>GTCCTTATGCT                                                                                                                                                                                                                                        |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751                                                                                                                                                         | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACCCTGGTAA<br>GATGAAATAT                                                                                                                                                                                                                                                                                                                                                   | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA                                                                                                                                                                                                                                                                                    | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA                                                                                                                                                                                                                                                                                                                                                                                     | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT                                                                                                                                                                                                                                                                                            | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTTCCTTGGG<br>GTCTTATGCT<br><u>C</u> TTATAATCC                                                                                                                                                                                                                   |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801                                                                                                                                                 | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAT                                                                                                                                                                                                                                                                                                                       | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CAACATCAGC                                                                                                                                                                                                                                                                      | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT                                                                                                                                                                                                                                                                                                                                                                       | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAA <u>CTTAT</u><br>GTTTCCGCAA                                                                                                                                                                                                                                                                      | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTTCCTTGGG<br>GTCTTATGCT<br><u>C</u> TTATAATCC<br>ATGCAAAATA                                                                                                                                                                                                     |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3851                                                                                                                                         | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAT<br>ATGTGACGCA                                                                                                                                                                                                                                                                                                         | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT                                                                                                                                                                                                                                                        | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>GACCCTGACT                                                                                                                                                                                                                                                                                                                                                         | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAA <u>CTTAT</u><br>GTTTCCGCAA<br>TGTAGGGTAC                                                                                                                                                                                                                                                        | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTTCCTTGGG<br>GTCTTATGCT<br>CTTATAATCC<br>ATGCAAAATA<br>CCATTCGTAG                                                                                                                                                                                               |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3851<br>3901                                                                                                                                 | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAT<br>ATGTGACGCA<br>AATTCACAAT                                                                                                                                                                                                                                                                                           | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCCGATTATAT                                                                                                                                                                                                                                                       | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA                                                                                                                                                                                                                                                                                                                                                         | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTATTTTTAC                                                                                                                                                                                                                                                  | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTCCTTGGG<br>GTCCTTATGCT<br>CTTATAATCC<br>ATGCAAAATA<br>CCATTCGTAG<br>ATCTGTTCGG                                                                                                                                                                                 |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3751<br>3801<br>3851<br>3901<br>3951                                                                                                                                         | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAT<br>AAGTGACGCA<br>AATTCACAAT<br>TTATTTTCAC                                                                                                                                                                                                                                                                             | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATAT<br>ATTTATTTT                                                                                                                                                                                                                                           | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAT                                                                                                                                                                                                                                                                                                                                           | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTATTTTTAC                                                                                                                                                                                                                                                  | TTGAGGGGAC<br>GGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTTCTTGGG<br>GTCTTATGCT<br>ATGCAAAATA<br>CCATTCGTAG<br>ATCTGTTCGG<br>TTTTAAAACC                                                                                                                                                                                  |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3751<br>3801<br>3851<br>3901<br>3951<br>4001                                                                                                                                 | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAT<br>AAATAGCCAA<br>AATTCACAAT<br>TTATTTTCAC<br>CATGTAATTT                                                                                                                                                                                                                                                               | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATAT<br>ATTTATTTT<br>TTGTTAAGCT                                                                                                                                                                                                                             | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAT<br>GTAATATAAA                                                                                                                                                                                                                                                                                                                             | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTATTTTAC<br>CTTATAAACG<br>AGACGTCCTA                                                                                                                                                                                                                       | TTGAGGGGAC<br>GGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTTCTTGGG<br>GTCTTATGCT<br>ATGCAAAATA<br>CCATTCGTAG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>ACAACTTCT                                                                                                                                                                     |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3751<br>3801<br>3901<br>3951<br>4001<br>4051                                                                                                                                 | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAA<br>AATTCACAAT<br>TTATTTCAC<br>CATGTAATTT<br>TTATTACTG                                                                                                                                                                                                                                                                 | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATAT<br>ATTTATTTT<br>TTGTTAAGCT<br>AATTTCCTTT                                                                                                                                                                                                               | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAT<br>GTAATATAAA<br>AATTATAATA                                                                                                                                                                                                                                                                                                               | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTTATAAACG<br>AGACGTCCTA<br>AATAACAAGT                                                                                                                                                                                                                      | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTCCTTGGG<br>GTCTTATGCT<br>ATGCAAAATA<br>CCATTCGTAG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>ACAAACTTCT<br>TTTAAAATAA                                                                                                                                                      |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3901<br>3951<br>4001<br>4051<br>4101                                                                                                         | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAA<br>AATTCACAAT<br>TTATTTTCAC<br>CATGTAATTT<br>TTTATTTCAC<br>ATTCAGGCAA                                                                                                                                                                                                                                                 | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATTT<br>TTGTTAAGCT<br>AATTTCTTT<br>TTAAGGCGCT                                                                                                                                                                                                               | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>GGTAATGATG<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAT<br>GTAATATAATA                                                                                                                                                                                                                                                                                                                            | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTATTTTAC<br>CTTATAAACG<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT                                                                                                                                                                                           | TTGAGGGGAC<br>GGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTCCTTGGG<br>GTCTTATGCT<br>ATGCAAAATA<br>CCATTCGTAG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>ACAAACTTCT<br>TTTAAAATAA<br>GTAAACATT                                                                                                                                         |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3851<br>3901<br>3951<br>4001<br>4051<br>4101<br>4151                                                                                                 | GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAT<br>AAATAGCCAA<br>AATTCACAAT<br>TTATTTCAC<br>CATGTAATTT<br>TTTATTACTG<br>ATTCAGGCAA<br>AAAATTAACT                                                                                                                                                                                                                      | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATTATTT<br>TTGTTAAGCT<br>AATTTCTTT<br>TTAAGGCGCT<br>TGGATGGTCT                                                                                                                                                                                   | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAT<br>AATTATAATA<br>AATTATAATA<br>CCTGAGGTAC<br>TAAGTACTGT                                                                                                                                                                                                                                                                                   | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTATTTTAC<br>CTTATAAACG<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT                                                                                                                                                                             | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTCCTTGGG<br>GTCTTATAGCT<br>CTTATAATCC<br>ACCATTCGTAG<br>ACCAACTTCT<br>ACAAACTTCT<br>TTTAAAATAA<br>GTAAACATTC                                                                                                                                                    |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3851<br>3901<br>3951<br>4001<br>4051<br>4101<br>4151<br>4201                                                                                         | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAA<br>TTATTTCAC<br>CATGTAATTT<br>TTTATTACTG<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATAG                                                                                                                                                                                                                        | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATAT<br>TTGTTAAGCT<br>AATTTCCTTT<br>TTAAGGCGCT<br>TGGATGGTCT<br>AAAAGTCGTC                                                                                                                                                                                  | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAT<br>AATTATAATA<br>AATTATAATA<br>CCTGAGGTAC<br>TAAGTACTGT                                                                                                                                                                                                                                                                                   | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA                                                                                                                                                                                                        | TTGAGGGGAC<br>GGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTCCTTGGG<br>GTCTTATGCT<br>CTTATAATCC<br>ATCCGTCG<br>ACCAACTTCC<br>ACAAACTTCC<br>TTTAAAAACA<br>GTAAACATTC<br>ATCGTATACT<br>ATTTACTTGA                                                                                                                            |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3851<br>3901<br>3951<br>4001<br>4051<br>4101<br>4151<br>4201<br>4251                                                                                 | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAA<br>TTATTTCAC<br>CATGTAATTT<br>TTTATTACTG<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATAG<br>TTAATTGTC                                                                                                                                                                                                           | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATATT<br>TTGTTAAGCT<br>AATTTCCTTT<br>TTAAGGCGCT<br>AAAAGTCGTC<br>GCTTAATTA                                                                                                                                                                                  | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>GTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAT<br>AATTATAATA<br>AATTATAATA<br>CCTGAGGTAC<br>TAAGTACTGT<br>TATTAACTTT<br>TCAAATCAGG                                                                                                                                                                                                                                                                      | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTTGCGCGT                                                                                                                                                                                           | TTGAGGGGAC<br>GTTCAATTA<br>AGTATCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTCCTTGGG<br>GTCTTATGCT<br>ATGCAAAATA<br>CCATTCGTAG<br>ATCTGTTCGG<br>ACAAACTTCT<br>TTTAAAAACA<br>GTAAACATTC<br>TTGTTATACT                                                                                                                                         |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3851<br>3901<br>3951<br>4001<br>4051<br>4101<br>4151<br>4201<br>4251<br>4301                                                                         | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAGTGAAGTAT<br>AAATAGCTAATT<br>TTATTTCAC<br>CATGTAATTT<br>TTTATTACTG<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAAATTGTC<br>AAAAACTTAT                                                                                                                                                                                        | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATATT<br>TTGTTAAGCT<br>AATTTCCTTT<br>TTAAGGCGCT<br>AAAAGTCGTC<br>GCTTAATTA<br>TAGAAAAATG                                                                                                                                                                    | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>GTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAT<br>AATTATAATA<br>CCTGAGGTAC<br>TAAGTACTGT<br>TATTAACTTT<br>TCAAATCAGG<br>AATAAGCAAA                                                                                                                                                                                                                                                                      | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>GTTTACGCG<br>GTTTAGGCTA                                                                                                                                                                             | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>ACTAACTATTT<br>ACAACTATTT<br>ACAACAACTAC<br>ACAACAAAAACG<br>GTCCTTGGG<br>GTCTTATGAC<br>CCATTCGTAG<br>ACCAACTTCC<br>ACAAACTTCC<br>ACAAACTTCC<br>ACAAACATTC<br>TTTAAAAACA<br>GTAAACATTC<br>ATTTACTTGA<br>ACATCTTAGAG<br>ACATCTTTAGAG                                                                                       |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3851<br>3901<br>3951<br>4001<br>4051<br>4101<br>4151<br>4201<br>4251<br>4301<br>4351                                                                 | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAA<br>TTATTTCACA<br>CATGTAACTT<br>TTTATTACTG<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAAATTGTC<br>AAAAACTTAT                                                                                                                                                                                          | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATATT<br>TTGTTAAGCT<br>AATTTCCTTT<br>TTAAGGCGCT<br>AAAAGTCGTC<br>GCTTAATTA<br>TAGAAAAATG<br>AAATAGTCCA                                                                                                                                                      | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAT<br>CTAATATAATA                                                                                                                                                                                                                                                                                                                            | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>CTTATGCGCGT<br>GTTTAGGCTA<br>GTATAAAAG<br>GTATAAAAG                                                                                                                                                               | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>ACTAACTATTT<br>ACAACTATTT<br>ACAACAACTATTT<br>ACAAAAAACG<br>GTCCTTGGG<br>GTCTTATGCT<br>ATGCAAAATA<br>CCATTCGTAG<br>ACCAACTTCT<br>TTTAAAACC<br>ACAAACATTC<br>TTGTATACTGAA<br>ATTTACTTGA<br>ACATGTTTAGAG<br>ACATGTTTTA                                                                                                     |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3851<br>3901<br>3951<br>4001<br>4051<br>4101<br>4151<br>4201<br>4251<br>4301<br>4351                                                                 | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAGTGAAATAT<br>TTATTTCACA<br>CATGTAATTT<br>TTATTATCAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATAG<br>TTAAATTGTC<br>AAAAACTTAT<br>TTATTATTAG                                                                                                                                                                            | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATATT<br>TTGTTAAGCT<br>AATTTCCTTT<br>TTAAGGCGCT<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGAAAAATG<br>AAATAGTCA<br>AAAAGTCCA                                                                                                                                         | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAA<br>AATTATAATA<br>CCTGAGGTAC<br>TAAGTACTGT<br>TATAACTGT<br>TATAACTGG<br>AATAAGCAAA<br>AGTCAAGCAA                                                                                                                                                                                                                                           | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTATTTTAC<br>CTAAAATTAAC<br>AACAACTCAT<br>AACAACTCAT<br>AACACTCAT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>GTTTAGGCTA<br>GTTTAGGCTA<br>GTATAAAATG<br>TAGTAGATAC                                                                                                       | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>ACTAACTATTT<br>ACAACTATTT<br>ACAACAACTATTT<br>ACAAAAAACG<br>GTCCTTGGG<br>GTCTTATACTC<br>ACAACATTC<br>ACCAACTTCC<br>ACAAACTTCT<br>TTTAAAAACA<br>GTAAACATTC<br>TTTAAAATAA<br>GTAAACATTC<br>ATTTACTTGA<br>ACTTTACTTGAA<br>ACATGTTTTAGAG<br>ACATGTTTTA                                                                       |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3951<br>4001<br>4051<br>4101<br>4151<br>4201<br>4251<br>4301<br>4351<br>4301<br>4451                                                         | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAGTGAAATAT<br>TTATTTCACA<br>AATTCACAAT<br>TTATTTCACG<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATAG<br>TTAATTGTC<br>AAAACTTAT<br>TTATTATTGC<br>AAAACTTAT<br>TTATTATAG<br>CATTCAGTAG                                                                                                                                      | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATAT<br>TTGTTAAGCC<br>CTTAATTCT<br>TGGATGGTCT<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGAAAAATG<br>AAATAGTCA<br>AAAAGTCCA<br>TAACCCTATA<br>CAGCATTGCA                                                                                                               | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>GTCACTATT<br>GCTGATATTC<br>CGTGTCACTAT<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAA<br>AATTATAATA<br>CCTGAGGTAC<br>TAAGTACTGT<br>TATAACTGG<br>AATAAGCAAA<br>AGTCAATGAC<br>AACTTAGCAA<br>TATCTGCTGT                                                                                                                                                                                                                                          | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTATTTTAC<br>CTTATAAACG<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>GTTTAGGCTA<br>GTTTAGGCTA<br>GTATAAAATG<br>TAGTAGATAC<br>CTTTACGTAC                                                                                                       | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>ACTAACTATTT<br>ACAACTATTT<br>ACAACAAAAACG<br>GTCCTTGGG<br>GTCTTATGCT<br>CTTATAATCC<br>ACAACATCC<br>ACCAACTTCC<br>ACAAACTTCC<br>ACAAACTTCC<br>ACAAACTTCC<br>ATTTAAAACC<br>CTTAAAACC<br>ATTTACTTGCAAA<br>ACATGTTTCGCAAA<br>ACATGTTCCCACA                                                                                   |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3951<br>4001<br>4051<br>4001<br>4151<br>4201<br>4251<br>4301<br>4351<br>4301<br>4451                                                         | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AATAGCTAT<br>TAATAGCTAT<br>TTATTTCAC<br>AATCACAAT<br>TTATTTCAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAAATTGTC<br>AAAAACTTAT<br>TTATTATAG<br>CATTCAGTAG<br>AAAATGGAC                                                                                                                                        | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATAT<br>TTGTTAAGCC<br>GGTTGGTCT<br>AAATTCCTTT<br>TGGATGGTCT<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGAAAAATG<br>AAATAGTCA<br>AAATAGTCA<br>AAATAGTCA<br>CACCCTATA                                                                                                   | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAACCGGGAA<br>CTATATATAA<br>AATTATAATA<br>CCTGAGGTAC<br>TAAGTACTGT<br>TATAACTGT<br>TCAAATCAGG<br>AATAAGCAAA<br>AGTCAATGAC                                                                                                                                                                                                                                                        | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GGATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTTTGCGCGT<br>GTTTAGGCTA<br>GTATAAAATG<br>TAGTAGATAC<br>CTTTACGTAC                                                                                                                                                | TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>ACTAACTATTT<br>ACAACTATTT<br>ACAACAAAACG<br>GTCCTTGGG<br>GTCTTATGCT<br>CTTATAATCC<br>ACCAATCGTTCGG<br>ATCTGTTCGGA<br>GTAAACATTC<br>TTTAAAAACA<br>CTATTACTTGA<br>ATTTACTTGAA<br>ACATGTTTTA                                                                                                                                |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3951<br>4001<br>4051<br>4001<br>4151<br>4201<br>4251<br>4301<br>4351<br>4401<br>4551                                                         | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AATAGCTAT<br>AATAGCTAT<br>TTATTTCACA<br>AATTCACAAT<br>TTATTTTCAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAATTGTC<br>AAAAATGAC<br>CATTCAGTAA<br>AAAATGAC<br>AAAAATGAC<br>AAAAATGAC<br>ACTTGTCACA                                                                                                                            | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATAT<br>TTGTTAAGCCGT<br>AAATTCCTTT<br>TGGATGGTCT<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGAAAAATG<br>AAATAGTCCA<br>AAATAGTCCA<br>CAGCATTGCA                                                                                                                        | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>GTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAA<br>AATTATAATA<br>CCTGAGGTAC<br>TAAGTACTGT<br>TATAACTGT<br>TATAACTGG<br>AATAAGCAAA<br>AGTCAATGACA<br>AACTTAGCAA<br>AACTTAGCAA                                                                                                                                                                                                                             | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GGATGAGGG<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTACGCAA<br>TGTAGGGTAC<br>CTATTTTAACG<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTGTTCCTTA<br>GTTTAGGCTA<br>GTATAAAATG<br>TAGTAGATAC<br>CTTTACGTAC                                                                                                                     | TTGAAGGGGACCGTTCAATTAGTATTCTGAAAGTTAGCTCAACAACTATTTACAACAAAACGGTCCTTGGGGTCTTATGATCACAACAAAAACGCCATTCGTAGGATCTGTTCGGATCTGTTCGGGTAAACATTCTTTAAAACCACAAACATTCTTTAAAACCGACAAACATTCTTTAAAACCGACAAACTTCTATTAACTGAAAAAGTAAACATTCATTTACTTGAAACATGTTTAAAACGACATGTTTCAGAAACATGTTCACAAACATGTTCCAAAACATGTCCAAAACATGTCCAACACATGTCCAACAAATAACAGCGTGTTATGCAATGATGTCAAT            |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3951<br>4001<br>4051<br>4001<br>4151<br>4201<br>4251<br>4301<br>4351<br>4401<br>4551<br>4551                                                 | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AATAGCTAT<br>AATAGCTAT<br>TTATTTCACA<br>AATTCACAAT<br>TTATTTTCAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAAATTGTC<br>AAAAACTTAT<br>TTATTATTAG<br>CATTCAGGCA<br>AAAATGGAC<br>AAAAATGGAC<br>ACTTGTCACAC                                                                                                        | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATATT<br>TTGTTAAGCCGCT<br>AAATTCCTTT<br>TGGATGGTCT<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGAAAAATG<br>AAATAGTCCA<br>AAATGTGTAA<br>CAGCATTGCA<br>AATGTGTTAA                                                                                                        | TGTTAGAATGTAGCTCGAGACCTACATTTGGGCTGCCGGTCTATTGAGCGCGAAATGATGAGAAGACAAAGTTCACTATTGCTGATATTCCGTGTCACAAAAACCGGGATTATAACTGGACTATATATAACCTGAGGTACTATAACTGTTCAAATCAGGAATTATAACTTTTCAAATCAGGAATTATAACTTTTCAAATCAGGAATAAGCAAAAGTCAATGACAATCAGCAAAAGTCAATGACAATCTGCTGTTTCACATCGTTTCACATCGTTTCACATCGTTTCACATCGTCTATACAGAACCTTTCGCTCT                                                                                                                                                                                                   | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GGATGAGGG<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTACGCAA<br>TGTAGGGTAC<br>CTATTTTAACG<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTTTGCGCGT<br>GTTTAGGCTA<br>GTATAAAATG<br>CAGTAGATAC<br>CGTAAAACAT<br>CCTTAGCTCT                                                                                                       | TTGAAGGGGACCGTTCAATTAGTATTCTGAAAGTTAGCTCAACAACTATTTACAACAAAACGGTTCCTTGGGGTCTTATGCTACAACAAAACCCATTCGTAGACCAACATTCTTTTAAAACCACAAACATTCTTTTAAAACCGTAAACATTCTTTTAAAACCACAAACATTCTATTAACTTGAAGTAAACATTCTATTTACTTGAAACAAACTTCTATTTACATGACACAAACATTCTATTTACACTGAAACATGTTTAAAACCACATGTTTAAAACAGCAAATAACAGCGTGATGTGATGGTGATGCACC                                            |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3951<br>4001<br>4051<br>4001<br>4151<br>4201<br>4251<br>4301<br>4351<br>4401<br>4551<br>4601<br>4651                                         | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AATAGCTAT<br>AAATAGCTAT<br>TTATTTCACA<br>AATTCACAAT<br>TTATTTTCAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAAATTGTC<br>AAAAATTAACT<br>TTATTATTAG<br>CATTCAGTAG<br>CATTGTCACA<br>ACACTAGTCGC<br>ACACTAGTCACA<br>CACTAGTCCAC                                                                                    | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGGTTGGTTT<br>TCGATTATAT<br>TTGTTAAGCGCT<br>AAATTCCTTT<br>TGGATGGTCT<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGAAAAATG<br>AAATAGTCCA<br>AAATGTCTAA<br>CAGCATTGCA<br>CATCACGCC<br>CTCACGGCCCC                                                                                            | TGTTAGAATGTAGCTCGAGACCTACATTTGGGCTGCCGGTCTATTGAGCGCGAAATGATGAGAAGACAAAGTTCACTATTGCTGATATTCCGTGTCACAAAAAGCGGGATTATAACTGGACTATATATAATACCTGAGGTACTTATAACTGTTATAACTGGAAATCATAGCAAAGTCAATGACAATTATAATACCTGAGGTACTAATAACTTTTCAAATCAGGAATAAGCAAAAGTCAATGACAATCTGCTAGTTTCACATCGTTTCACATCGTGTATACAGAACCTTCGTCTCTATACAGAACCTTCGTCTCTACACGTCCTCCCCCCC                                                                                                                                                                                   | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GGATGGAGG<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTACGCAA<br>TGTAGGGTAC<br>CTATTTTAC<br>CTTATAAACG<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTGTTCCTTA<br>GTTTAGGCTA<br>GTATAAAATG<br>CATTAGCTCT<br>CGCGCGTTTC<br>CGCGCGTTCC                                                                                           | TTGAAGGGGACCGTTCAATTAGTATTCTGAAAGTTAGCTCAACAACTATTTACAACAAAACGGTTCCTTGGGGTCTTATGATCACAAAAAACGCCATTCGTAGACCAACATTCTTTTAAAACCACAAACATTCTTTTAAAACCGTAAACATTCTTTAAAACCACAAACATTCTATTAACTTGAAATTAACTTGAAACAAACTTCTATTAACTAACCAAACATTTACAAACATTCATTAACTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                                         |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3601<br>3651<br>3701<br>3751<br>3801<br>3951<br>4001<br>4051<br>4101<br>4151<br>4201<br>4251<br>4301<br>4351<br>4401<br>4551<br>4601<br>4651<br>4651                 | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AATAGCTAT<br>AAATAGCTAT<br>TTATTTCACA<br>AATTCACAAT<br>TTATTTTCAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAAATTGTC<br>AAAAATTAACT<br>TTATTATTAG<br>CATTCAGGAC<br>AAAAATGGAC<br>AAAAATGGAC<br>ACATAGTCAG<br>GGGATCACTA                                                                                                      | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGTTGGTT<br>TCGATTATAT<br>TTGTTAAGCGCT<br>TGGATGGTCT<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGAAAAATG<br>AAATAGTCGA<br>CAGCATTGCA<br>CAGCATTGCA<br>CCGTACGGCC<br>GTGCGGCCGC<br>TGCCTCCTT                                                                                               | TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>GTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATAA<br>CCTGAGGTAC<br>TATATATAA<br>CCTGAGGTAC<br>TATAACTTT<br>TCAAATCAGG<br>AATAAGCAAA<br>AGTCAATGAC<br>AACTTAGCAA<br>CACTTAGCTGT<br>CTACCAGGTCG<br>CACCTATCCTC                                                                                                                                                                                               | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GGATGAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCGGCAA<br>CTATTTTTAC<br>CTTATAAACG<br>AGACGTCCTA<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTGTTCCTTA<br>TTTGGCGCGT<br>GTTTAGGCTA<br>GTATAAAATG<br>GTATAAAATG<br>CTTTACGTAC<br>CGTAAAACA<br>CCTTAGCTCT<br>CGCGCGTTTC<br>ACCATATGGC                                                           | TTGAAGGGGACCGTTCAATTAGTATTCTGAAAGTAAGCTCAACAACTATTTACAACAATAGCGTCCTTGGGGTCTTATGACCCATTCGTAGCCATTCGTAGCCATCGTCGGATCTGTTCGGGTAAACATTCTTTAAAACCCCATGTCGAAGTAACATTCTATTAACTGAAAAAGTAAACATTCATTTAAAACCCAAACTTCTATTAACTGAAGTAAACATTCACAAACATTCCATTACTGAAACAAACATTCACAAACATTCCATTACTGAAAACAAGCTCCAAGGTGATGACGAGAGCTCCCATATACCTCA                                          |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3951<br>4001<br>4051<br>4001<br>4101<br>4251<br>4301<br>4251<br>4301<br>4351<br>4401<br>4551<br>4601<br>4651<br>4701                         | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAT<br>AAATAGCTAT<br>TTATTTCAC<br>AATTCACAAT<br>TTATTTCAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAATTATTG<br>AAAAATTAACT<br>TTATTATTAG<br>CATTCAGGCA<br>AAAATTAACT<br>AAAATTAACT<br>AAAATTAACT<br>AAAATTAACT<br>AAAAATTAAC<br>CATTCAGGCA<br>AAAAATGGAC<br>ACATAGTCGG<br>GGGATCACTA<br>ACGCGTTGGA                   | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGTTGGTT<br>TCGATTATAT<br>TTGTTAAGCG<br>GGTTGGTCT<br>AAAAGTCGTC<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGAAAAATG<br>AAATAGTCATA<br>CAGCATTGCA<br>CAGCATGCGC<br>GTGCGGCCGC<br>TGCATAGCTC                                                                                                | TGTTAGAATGTAGCTCGAGACCTACATTTGGGCTGCCGGTCTATTGAGCGCGAAATGATGAGAAGACAAAGTTCACTATTGCTGATATTCCGTGTCACAAAAACCGGGATTATACTGGACTATATATAACCTGAGGTACTATAACTGTTCAAATCAGGAATTATAACTTTTCAAATCAGGAATTATAACTTTTCAAATCAGGAATAAGCAAAAGTCAATGACAATAAGCAAACCTGGCAGGTACTATAACTGGTTCACATCGCAATAACAGCAAAGTCACAGCACCTTCGCAGTCGCTATACAGAACCTTCGTCTCTGCAGGTCGGAGTATTCAC                                                                                                                                                                              | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GGATGAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCGGCAA<br>CTATTTTAACG<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTTGGCCGT<br>GTTTAGGCTA<br>GTTTAGGCTA<br>CGTAAAACA<br>CCTTACGTAC<br>CGTAAAACA<br>CCTTAGCTCT<br>CGCCGTTTC<br>ACCATATGG<br>TAGGTGCACC                                                | TTGAAGGGGACCGTTCAATTAGTATTCTGAAAGTTAGCTCAACAACTATTTACAACAATAGCGTCCTTGGGGTCTTATGACCCATTCGTAGCCATTCGTAGCCATCGTCGGATCTGTTCGGATCTGTTCGGGTAAACATTCTTTAAAACCCCATTCGTAGACAAACTTCTATTAACCACCAAACATTCATTAACTGAAATTACTGAAGACAAACATTCCATTACCAGAACAAACATTCCATTACTGAAACAGATGCAAGACATGTTCGCAAGAAATAACAGCGGTGATGAACGAGAGCTCCCATAATAACCTTAATAACCC                                  |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3951<br>4001<br>4051<br>4101<br>4151<br>4201<br>4251<br>4301<br>4351<br>4401<br>4551<br>4601<br>4551<br>4601<br>4751<br>4701                 | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AATAGCTAT<br>AATAGCTAT<br>ATGTGACGCA<br>AATTCACAAT<br>TTATTTTCAC<br>CATGTAATTT<br>TTATTATCAC<br>AAAATTAACT<br>TTATTATTAG<br>TTAATTATTAG<br>TTAATTATTT<br>AAAATTAACT<br>TTATTATTAG<br>CATTCAGGAC<br>AAAAATGAC<br>AAAAATGAC<br>AAAAATGAC<br>AAAAATGAC<br>ACTTGTCACA<br>ACCTAGTCGG<br>GGGATCACTA<br>ACGCGTTGGA<br>GGCGTAATCA                       | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>GGTTGGTTT<br>TCGATTATAT<br>TTGTTAAGCG<br>GGTTGGTCT<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGAAAAATG<br>AATAGTCATA<br>CAGCATTGCA<br>CAGCATAGCC<br>GTGCGGCCGC<br>TGCATAGCT<br>CGCATAGCT                                                                                                  | TGTTAGAATGTAGCTCGAGACCTACATTTGGGCTGCCGGTCTATTGAGCGCGAAATGATGAGAAGACAAAGTTCACTATTGCTGATATTCCGTGTCACAAAAAGCGGGATTTATACTGGACTATATATATACCTGAGGTACTATAACTGTTCAAATCAGGAATAACCGGAATAACAGGAAACTCAGAGTACTATAACTGTTCAAATCAGGAATAAGCAAAAGTCAATGACAATCAGCAAAAGTCAATGACAATAACAGCAAACCTTCGCAGTCGGTATACAGAACCTTCGTCTCTGCAGGTCGGAGTATTCTACCAGTATCTGCTGTCTGCAGGTCGGAGTATTCTGCTGT                                                                                                                                                              | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GGATGAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCGGCAA<br>CTATTTTTAC<br>CTTATAAACG<br>AGACGTCCTA<br>ATAACAAGT<br>TTGTCCTTA<br>TTGTCCTTA<br>TTGTCCTTA<br>GTTTAGGCCA<br>GTATAGAATG<br>GCTTAAGATAC<br>CGTAAAACA<br>CCTTACGTAC<br>CGTAAACAT<br>GCTTAGCTCT<br>CGCGCGTTTC<br>ACCATATGG<br>TAGGTCACC<br>GTGAAATTGT                       | TTGAAGGGGACCGTTCAATTAGTATTCTGAAAGTAAGCTCAACAACTATTTACAACTATTTACAACAAAACGGTCCTTGGGGTCTTATGATCCACACACATATCGCCATTCGTAGCCATTCGTAGCCATCGTCGGATCTGTTCGGGTAAACATTCTTTAAAACCCCATTCGTAGACAAACTTCTATCTGTAACACCATAACAATAGTAAACATTCCATTTACTGAAACAAACTTCTACAAACATTCCATTACTGAAGACATGTTTAAAACGCGTGATGCAAGAAATAACAGCGGTGATGAAGAGGGAGCTCCCATAATAGCTTAAATAACCTCA                     |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3951<br>4001<br>4051<br>4101<br>4251<br>4201<br>4251<br>4301<br>4351<br>4401<br>4551<br>4601<br>4551<br>4601<br>4751<br>4801                 | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>AGCCTGGTAT<br>AGCTGGGTAA<br>GATGAAATAT<br>AATAGCTAT<br>ATGTGACGCA<br>AATTCACAAT<br>TTATTTTCAC<br>CATGTAATTT<br>TTATTATCAC<br>AAAATTAACT<br>TTATTATTACTG<br>AAAAATTAACT<br>TTATTATTAT<br>AAAATTAACT<br>TTATTATTAT<br>AAAATTAACT<br>AAAAATTAAC<br>CATTCAGTAG<br>CATTCAGTAG<br>CACTAGTCGG<br>GGGATCACTA<br>ACGCGTTGGA<br>CAATTCCACA                                            | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CACATCAGC<br>GGTTGGTT<br>TCGATTATTT<br>TTGTTAAGCGCT<br>AAAAGTCGTC<br>AAAAGTCGTC<br>AAAAGTCGTC<br>AAAAGTCGTC<br>AAAAGTCGTC<br>AAAAGTCGTC<br>AAAAGTCCTATA<br>CAGCATTGCA<br>TAACCTATA<br>CAGCATTGCA<br>CTTTATTGGC<br>GTGCGGCCGC<br>TGCATAGCT<br>TGGCATAGCT                         | TGTTAGAATGTAGCTCGAGACCTACATTTGGGCTGCCGGTCTATTGAGCGCGAAATGATGAGAAGACAAAGTTCACTATTGCTGATATTCCGTGTCACAAAAAGCGGGATTTATACTGGACTATATATATACCTGAGGTACTATAACTGTTATAACTGTTATAACTGGAATAAGCAAAAGTCAATGACAATTATAATACCTGAGGTACTATAACTGTTCAAATCAGGAATAAGCAAAAGTCAATGACAATAAGCAAACCTTTCGCTGTCTGCAGGTCGGAGTATTCTGCTGCAGGTCGGAGTATTCTGCTGTCCGGAAGCACACATTAATCTGT                                                                                                                                                                               | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GGATGAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTATTTTAACG<br>AGACGTCCTA<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTTGGCCGT<br>GTTTAGGCTA<br>GTTTAGGCTA<br>GTTTAGGCTA<br>CGTAAAATG<br>CGTAAAACA<br>CCTTACGTG<br>CGTGAAATTGT<br>TAAAGTGTCACC<br>GTGAAATTGT<br>TAAAGTGTAAC                                           | TTGAAGGGGACCGTTCAATTAGTATTCTGAAAGTAAGCTCAACAACTATTTACAACTATTTACAACAAAACGGTCCTTGGGGTCTTATGATCCACACAACTTCGCCATTCGTAGCCATTCGTAGCCATCGTCGGATCTGTTCGGGTAAACATTCTTTAAAACCCAAACATTCTTTTAAAACAGCACAAACTTCTACAAACATTCCATTACCAGAGACAAACATTCGTAAACAATAGTAAACATTCCATTTACTGAGACATGTTCGCAAGACATGTCGCAGCGGGATGACGCGGTGATAACGCTTAATAGCTCATACCGCTCAAGCCTGGGGT                       |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3951<br>4001<br>4051<br>4101<br>4251<br>4301<br>4251<br>4301<br>4351<br>4401<br>4551<br>4601<br>4551<br>4601<br>4751<br>4801<br>4851         | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAT<br>AAATAGCTAT<br>TTATTTCAC<br>AATTCACAAT<br>TTATTATCAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAT<br>TTATTATTAT<br>AAAATTAACT<br>TTATTATTAT<br>AAAATTAACT<br>AAAAATTAACT<br>AAAAATTAACT<br>AAAAATTAACT<br>AAAAATTAACT<br>AAAAATTAAC<br>CATTCAGTAG<br>AAAAATGGAC<br>ACTTGTCACA<br>ACGCGTTGGA<br>GGCGTAATCA<br>CAATTCCACA | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGTTGGTTT<br>TCGATTATAT<br>TTGTTAAGCGCT<br>AAAAGTCGTC<br>AAAAGTCGTC<br>AAAAGTCGTC<br>GCTTAATTA<br>TAGAAAAATG<br>AAATAGTCCA<br>CACCTATA<br>CAGCATACGA<br>CCGTACGGGC<br>GCGCATAGCT<br>TGGCATAGCT<br>TGGCATAGCA<br>TGGCATACGA<br>CACATACGA<br>CACATACGA<br>CACATACGA | TGTTAGAATGTAGCTCGAGACCTACATTTGGGCTGCCGGTCTATTGAGCGCGAAATGATGAGAAGACAAAGTTCACTATTGCTGATATTCCGTGTCACAAAAAGCGGGATTTATACTGGACTATATATATACCTGAGGTACTATAACTGTTATAACTGTTATAACTGGAATAAGCAAAAGTCAATGACAATTATAATACCTGAGGTACTATAACTGTTCAAATCAGGAATAAGCAAAAGTCAATGACAATAAGCAAACCTTTCGCTGTCTGCAGGTCGGAGTATTCTGCTGCAGGTCGGAGTATTCTGGCCGGAAGCACACATTAATATA                                                                                                                                                                                   | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GGATGAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCGGCAA<br>CTATTTTTAC<br>CTTATAAACG<br>AGACGTCCTA<br>ATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>GTTTAGGCCA<br>GTATAGAAATG<br>CATTAGCTCC<br>CGTCAAAACA<br>CCTTACGTAC<br>CGTAAAACA<br>TAGTGTCACC<br>GTGAAATTGT<br>TAAAGTGTAA<br>GCGTTGCGCCT                              | TTGAAGGGGACCGTTCAATTAGTATTCTGAAAGTTAGCTCAACAACTATTTACAACTATTTACAACAAAACGGTCCTTGGGGTCCTATGCTCTTATAATCCACAACATTCTGGCCATTCGTAGCACCAACTTCTTTTAAAACCCCATACGTCGGATCTGTAACTCACAAACATTCTTTAAAACAGCACTATTACTGAAGTAACATTTCATTACCTGAAACAGACATTTCATTACCACAGACATATTACTGAAGAGATGCAAGAAATAACAGCGTGATATGGAAGAAGAGCTCCCATAATAACAGCTTATCCGCTCAAGCCTGGGGTCACTGCCCCCATCCCCCCCCC        |
| 3301<br>3351<br>3401<br>3451<br>3501<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3951<br>4001<br>4051<br>4101<br>4251<br>4201<br>4251<br>4301<br>4251<br>4301<br>4451<br>4551<br>4601<br>4551<br>4601<br>4751<br>4851<br>4901 | GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AATAGCTAT<br>ATGTGACGCA<br>AATTCACAAT<br>TTATTTTCAC<br>CATGTAATTT<br>TTATTATCAC<br>AAAAATTAACT<br>TTATTATTACTG<br>AAAAATTAACT<br>TTATTATTAT<br>AAAATTAACT<br>TTATTATTAT<br>AAAATTAACT<br>AAAAATTAAC<br>CATTCAGTAG<br>CATTCAGTAG<br>CACTAGTCAG<br>GGGATCACTA<br>ACGCGTTGGA<br>GGCGTAATCA<br>GCCTAATGAG<br>TTTCCAGTGG<br>GCCTAATGAG | TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGTTGGTTT<br>TCGATTATATT<br>TTGTTAAGCCT<br>AAAAGTCGTC<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGAAAAATG<br>AAATGTCTAA<br>TAGCATAGCA                                                                                                                                       | TGTTAGAATGTAGCTCGAGACCTACATTTGGGCTGCCGGTCTATTGAGCGCGAAATGATGAGAAGACAAAGTTCACTATTGCTGATATTCCGTGTCACAAAAAGCGGGATTTATACTGGACTATATATATACCTGAGGTACTATAACTGTTATAACTGTTATAACTGGAAATCAAGCAAAAGTCAATGACAATTATAATACCTGAGGTACTATAACTGTTCACATGACAATAAGCAAAAGTCAATGACAATCTGCTGTCTGCAGGTCGGAGTATTCTACTGCAGGTCGGAGTATTCTAGCCGGAAGCACACATTAATTCGTGCCAGCTCGTGCCAGCTCGTGCCAGCTCGTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCTCCTGCCAGCT | GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GGATGAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>CTATTTTTAC<br>CTTATAAACG<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>GTTTAGGCCA<br>GTATAAAATG<br>GTTTAGGCTA<br>CCTTACGTAC<br>CGTAAAACA<br>CGTCACATC<br>GTGAAATTGC<br>CGTGAAATGG<br>TAGAGTGTAC<br>GCATTAAGGTAA<br>GCATTGCGCCT<br>GCATTAATGA | TTGAAGGGGACCGTTCAATTAGTATTCTGAAAGTAAGCTCAACAACTATTTACAACTATTTACAACAAAACGGTCCTTGGGGTCCTATGCTCTTATAATCCACAACATTCTGGCCATTCGTCGGATCTGTCGTCACAAACATTCTTTTAAAACCCTATACACTTTTAAAACAGCACTATCTGAGAACAACATTCTATTTACTTGAAGTAACACATTCCATTTACTGAAACAACATTCTACAACACTTCTCATTACCACAGACATGTCAAGACATGTCCAAGAAATAACAGCGTGATGTGACGAGAGCTCCCATATCCGCTCAAGCTGGGGGTCACTGCCCACCCACTGCCCACC |

| 5001         | ACTCACTCC   | TCCCCTCCCT   | CCTTCCCCTC  | CCCCCACCCC  | <b>₩</b> ₩₩₩₩₩₩₩₩₩ |
|--------------|-------------|--------------|-------------|-------------|--------------------|
| 5051         | ACIGACICGC  |              |             | AMCACCCAM   | AACCCACCAA         |
| 5051<br>5101 | ACAACAMC    | GIAAIACGGI   | CACCADAAGA  | AICAGGGGGAI | AACGCAGGAA         |
| SIUI<br>E1E1 | AGAACAIGIG  | AGCAAAAGGC   |             | CCAGGAACCG  | IAAAAAGGUU         |
| 5151         | GCGTTGCTGG  | CGITITICCA   | TAGGUTUUGU  | CUCUTGAUG   | AGCATCACAA         |
| 5201         | AAATCGACGC  | TCAAGTCAGA   | GGTGGCGAAA  | CCCGACAGGA  | CTATAAAGAT         |
| 5251         | ACCAGGCGTT  | TCCCCCTGGA   | AGCTCCCTCG  | TGCGCTCTCC  | TGTTCCGACC         |
| 5301         | CTGCCGCTTA  | CCGGATACCT   | GTCCGCCTTT  | CTCCCTTCGG  | GAAGCGTGGC         |
| 5351         | GCTTTCTCAT  | AGCTCACGCT   | GTAGGTATCT  | CAGTTCGGTG  | TAGGTCGTTC         |
| 5401         | GCTCCAAGCT  | GGGCTGTGTG   | CACGAACCCC  | CCGTTCAGCC  | CGACCGCTGC         |
| 5451         | GCCTTATCCG  | GTAACTATCG   | TCTTGAGTCC  | AACCCGGTAA  | GACACGACTT         |
| 5501         | ATCGCCACTG  | GCAGCAGCCA   | CTGGTAACAG  | GATTAGCAGA  | GCGAGGTATG         |
| 5551         | TAGGCGGTGC  | TACAGAGTTC   | TTGAAGTGGT  | GGCCTAACTA  | CGGCTACACT         |
| 5601         | AGAAGAACAG  | TATTTGGTAT   | CTGCGCTCTG  | CTGAAGCCAG  | TTACCTTCGG         |
| 5651         | AAAAAGAGTT  | GGTAGCTCTT   | GATCCGGCAA  | ACAAACCACC  | GCTGGTAGCG         |
| 5701         | GTGGTTTTTT  | TGTTTGCAAG   | CAGCAGATTA  | CGCGCAGAAA  | AAAAGGATCT         |
| 5751         | CAAGAAGATC  | CTTTGATCTT   | TTCTACGGGG  | TCTGACGCTC  | AGTGGAACGA         |
| 5801         | AAACTCACGT  | TAAGGGATTT   | TGGTCATGAG  | ATTATCAAAA  | AGGATCTTCA         |
| 5851         | CCTAGATCCT  | TTTAAATTAA   | AAATGAAGTT  | TTAAATCAAT  | CTAAAGTATA         |
| 5901         | TATGAGTAAA  | CTTGGTCTGA   | CAGTTACCAA  | TGCTTAATCA  | GTGAGGCACC         |
| 5951         | TATCTCAGCG  | ATCTGTCTAT   | TTCGTTCATC  | CATAGTTGCC  | TGACTCCCCG         |
| 6001         | TCGTGTAGAT  | AACTACGATA   | CGGGAGGGCT  | TACCATCTGG  | CCCCAGTGCT         |
| 6051         | GCAATGATAC  | CGCGAGACCC   | ACGCTCACCG  | GCTCCAGATT  | TATCAGCAAT         |
| 6101         | AAACCAGCCA  | GCCGGAAGGG   | CCGAGCGCAG  | AAGTGGTCCT  | GCAACTTTAT         |
| 6151         | CCGCCTCCAT  | CCAGTCTATT   | AATTGTTGCC  | GGGAAGCTAG  | AGTAAGTAGT         |
| 6201         | TCGCCAGTTA  | ATAGTTTGCG   | CAACGTTGTT  | GCCATTGCTA  | CAGGCATCGT         |
| 6251         | CCTCTCACCC  | TCCTCCTTTC   | CTATCCCTTC  | ATTCACCTCC  | CCTTCCCAAC         |
| 6301         | CATCAACCCC  |              | TCCCCCATCT  | TCTCCAAAAA  | ACCCCTTACC         |
| 6251         | UAICAAGGCG  | CTCCCATCCT   | TCTCACAIGI  | A CERCCCCC  | CACTCTTATC         |
| 0331<br>(401 | ACTICGGIC   | AMCCGAICGI   | IGICAGAAGI  | AAGIIGGCCG  | AGIGITATC          |
| 6401<br>6451 | ACICAIGGII  | AIGGCAGCAC   | IGCATAATIC  | CARCCARC    | AIGCCAICCG         |
| 0451         | TAAGAIGCII  | CCCCACCACC   | GGIGAGIACI  | CAACCAAGIC  | ATICIGAGAA         |
| 6501         | TAGTGTATGC  | GGCGACCGAG   | TTGCTCTTGC  | CUGGUGTUAA  | TACGGGATAA         |
| 6551         | TACCGCGCCA  | CATAGCAGAA   | CTTTTAAAAGT | GCTCATCATT  | GGAAAACGTT         |
| 660I         | CTTCGGGGGCG | AAAACTCTCA   | AGGATCTTAC  | CGCTGTTGAG  | ATCCAGTTCG         |
| 6651         | ATGTAACCCA  | CTCGTGCACC   | CAACTGATCT  | TCAGCATCTT  | TTACTTTCAC         |
| 6/01         | CAGCGTTTCT  | GGG'I'GAGCAA | AAACAGGAAG  | GCAAAATGCC  | GCAAAAAAGG         |
| 6751         | GAATAAGGGC  | GACACGGAAA   | TGTTGAATAC  | TCATACTCTT  | CCTTTTTCAA         |
| 6801         | TATTATTGAA  | GCATTTATCA   | GGGTTATTGT  | CTCATGAGCG  | GATACATATT         |
| 6851         | TGAATGTATT  | TAGAAAAATA   | AACAAATAGG  | GGTTCCGCGC  | ACATTTCCCC         |
| 6901         | GAAAAGTGCC  | ACCTGATGCG   | GTGTGAAATA  | CCGCACAGAT  | GCGTAAGGAG         |
| 6951         | AAAATACCGC  | ATCAGGAAAT   | TGTAAGCGTT  | AATATTTTGT  | TAAAATTCGC         |
| 7001         | GTTAAATTTT  | TGTTAAATCA   | GCTCATTTTT  | TAACCAATAG  | GCCGAAATCG         |
| 7051         | GCAAAATCCC  | TTATAAATCA   | AAAGAATAGA  | CCGAGATAGG  | GTTGAGTGTT         |
| 7101         | GTTCCAGTTT  | GGAACAAGAG   | TCCACTATTA  | AAGAACGTGG  | ACTCCAACGT         |
| 7151         | CAAAGGGCGA  | AAAACCGTCT   | ATCAGGGCGA  | TGGCCCACTA  | CGTGAACCAT         |
| 7201         | CACCCTAATC  | AAGTTTTTTG   | GGGTCGAGGT  | GCCGTAAAGC  | ACTAAATCGG         |
| 7251         | AACCCTAAAG  | GGAGCCCCCG   | ATTTAGAGCT  | TGACGGGGAA  | AGCCGGCGAA         |
| 7301         | CGTGGCGAGA  | AAGGAAGGGA   | AGAAAGCGAA  | AGGAGCGGGC  | GCTAGGGCGC         |
| 7351         | TGGCAAGTGT  | AGCGGTCACG   | CTGCGCGTAA  | CCACCACACC  | CGCCGCGCTT         |
| 7401         | AATGCGCCGC  | TACAGGGCGC   | GTCCATTCGC  | CATTCAGGCT  | GCGCAACTGT         |
| 7451         | TGGGAAGGGC  | GATCGGTGCG   | GGCCTCTTCG  | CTATTACGCC  | AGCTGGCGAA         |
| 7501         | AGGGGGATGT  | GCTGCAAGGC   | GATTAAGTTG  | GGTAACGCCA  | GGGTTTTCCC         |
| 7551         | AGTCACGACG  | TTGTAAAACG   | ACGGCCAGTG  | AATTGTAATA  | CGACTCACTA         |
| 7601         | ТА          |              |             |             |                    |
|              |             |              |             |             |                    |

# 5.5.4 pGEM-AktdnTCF (Abschnitt 4.2.8)



| 1    | GGGCGAATTG | GGCCCGACGT         | CGCATGCTCC        | CGGCCGCCAT | GGCCGCGGGA         |
|------|------------|--------------------|-------------------|------------|--------------------|
| 51   | TCCCAGCGGC | CGCCCCATCG         | ATCTGACTAA        | CCTAACCAGT | GCAAAAAAAT         |
| 101  | TTAAAAGATT | <i>TGCATTGTGA</i>  | AAGTTAGAAT        | ΑΤΤΑΤΑΑΑΑΑ | ATCTAAAACG         |
| 151  | AGTATTACTC | GAGTAAATGT         | TATACGATCT        | ATAGATTAAA | TATATTAAAA         |
| 201  | ATGTATAGCG | AATGTTAAAC         | TAAATATATA        | ATATAAACTT | GAAAACTTAC         |
| 251  | TAAATTGCAA | AAACTCAAAA         | CCGACTGTAT        | CATTTTTACA | GGAAACCGTT         |
| 301  | ATTCAAGATA | CTTAAGTTGT         | TTACTACATT        | ATTATAACAT | CTTGCAATTA         |
| 351  | GCAAGACAAT | CGTTATTTTA         | ACATCACGGT        | ATCGAAAGGA | TTTTGAGAAA         |
| 401  | TTTTATTGAA | ACATTTTAAA         | CAAAAAATAT        | CATATTTAGA | TGCATTTTAA         |
| 451  | GCCGAGATGC | AGGATTCTGA         | ATGAAAAAGA        | AAAAAAGAAG | TCTCGGTAGA         |
| 501  | GTAAAAGTGA | TCGGTTTGCA         | ACTGTAAAAT        | TTATTGAAGT | ACCAATAATT         |
| 551  | TTATTTAAAA | TAAAACTGAA         | ATATAAAGTT        | AAAGTTGCTG | TTCTATAAGT         |
| 601  | TTACCGAATT | TTAAAACCAT         | <i>TGTAACGCTA</i> | GAGTAATATT | TGAGTCTACT         |
| 651  | AAGTTAGTCC | CCGCACTTTT         | TAATCAAGCA        | ATAAATACCC | AAACTTTGCT         |
| 701  | TATTCAAATC | AATAAACCAA         | TATATCTCTT        | AAAATAAAGT | AAAAACTTCT         |
| 751  | GAAATTCTAT | AAAAAAAAT          | TTAATTTCGA        | AATATCAAAT | GTAACTTCAA         |
| 801  | CACCGCACTA | TTTTTCTTTTA        | AACAACTGAT        | ATAGTAATTA | CTTCTCAAAA         |
| 851  | ACGTTATCTC | AAGGTTTGTG         | ATGTACTTAA        | AACCACTCCT | ATTTTGTTAC         |
| 901  | GCGTTTAAAA | AAGCAAACAT         | AAGTTGGTTT        | CTATTGATGA | ATGAGAACAT         |
| 951  | ATTTCATTTA | AAGTTAAAAT         | CCTACCAGTG        | GTTTCACTGT | ACGTAAACAC         |
| 1001 | CGTCAAAAAA | ACAGGAACGT         | <i>TTTTAAAGAT</i> | TAATAATTGA | AGTAAAAAAA         |
| 1051 | ATTTAATACC | <i>GGGGGTTAAA</i>  | AAAATCTTTT        | AAAATAATTA | TAAATATATA         |
| 1101 | TATTAAAATT | TATAAATTTT         | TAAACACATT        | TAAAATATAT | ATTAAGTATA         |
| 1151 | ATAAAAGTAA | TATTATAAAA         | AAAAATTTAA        | TTTTATAATT | ATTTTTATTA         |
| 1201 | AATTTATAAA | TAATAGGTAA         | AACTTACATA        | TCCGTTTTAT | TTTTTTCTTAA        |
| 1251 | TAAAATAACG | CGTGCAAATT         | TTTGTCCATA        | TAAAGACCTT | <i>TTCGAACAAT</i>  |
| 1301 | AACTTTTTTG | CTTAGCCGTT         | TTTTTTTCTTA       | TATGGTCAAA | AAAGCGCTCA         |
| 1351 | AGCGATTCAC | CATAAAAAGC         | GCAATTAGTT        | CAGCGTTCGT | TATTCAGAAG         |
| 1401 | CTTCAGCTTT | GCTTGATACT         | CAGCTCTTCT        | CTTTTTAAAC | AAAACACTTA         |
| 1451 | ATCAAAGGTA | <u>CC</u> ATGGCTGG | GAGATCTACA        | AAAGAAATGA | AAAGACCACA         |
| 1501 | TGTTAAAAAA | CCATTAAATG         | CATTTATGCT        | TTATATGAAG | GAACAAAGAC         |
| 1551 | CAAAAATTGC | TGCAGAATTT         | ACATTGAAAG        | AAAGTGCAGC | TATAAACCAA         |
| 1601 | ATACTTGGAA | AGCGATGGCA         | TGCTTTAGAG        | AAGACCGAGC | AAGCTAAATA         |
| 1651 | CTATGAAATG | GCACGCAAGG         | AACGCGCCAT        | TCATATGCAG | TTATACCCGG         |
| 1701 | GTTGGAGTGC | TCGAGACAAT         | TACGCTCAAA        | TAGGAAGGAA | AAAAAAACGC         |
| 1751 | CCAAGAGATA | AAAATGAAGA         | AATGAATCCA        | AAAAATGTC  | GTGCACGTTA         |
| 1801 | TGGATTAGAT | CGACAAGAAC         | AATGGTGTAA        | GCCGTGTAGG | AGAAAGAAAA         |
| 1851 | AGTGTATACG | ATTTATTATC         | GGAGCCGACG        | GCGAAGCTAC | AGAAGTTCCG         |
| 1901 | GAAAAGGATC | AGCGTGATTC         | AGACTCCGAT        | GATAACCAAG | ATAAAAGTGA         |
| 1951 | TGAAAGCTTT | TCTAAGGAAC         | ATTTACACGG        | CTTAGCTAAT | ATAACTACAC         |
| 2001 | TATCATCAGA | CAATCATGTA         | AATAATAACA        | ATACAATACT | AATAGATGAA         |
| 2051 | AATATAAAAG | ACGAAAGGCA         | CTCGACGCCG        | CCTACTTCAA | AATCTTCATC         |
| 2101 | TTTGGTAACG | AACTCAAATA         | GAGATTTACC        | TCAAGTATGT | TCTTACTCTG         |
| 2151 | AACGTACTTT | ACCAACGCTT         | CAGGCAATTG        | AAACTAGATG | <u>GTACC</u> TTCGA |
| 2201 | TTATATTTAT | ACTGGACTAT         | TTTTACATCT        | GTTCGGTTAT | TTTCACATTT         |
| 2251 | ATTTTTCTAT | ATATATCTTA         | TAAACGTTTT        | AAAACCCATG | TAATTTTTGT         |
| 2301 | TAAGCTGTAA | TATAAAAGAC         | GTCCTAACAA        | ACTTCTTTTA | TTACTGAATT         |
| 2351 | TCCTTTAATT | ΑΊΑΑΊΑΑΑΤΑ         | ACAAGTTTTA        | AAATTC     | AGGCAATTAA         |

| 2401 | GGCGCTCCTG        | AGGTACTAAA     | ATTAATGTAA  | ACATTTAAAA         | TTAACTTGGA   |
|------|-------------------|----------------|-------------|--------------------|--------------|
| 2451 | <i>TGGTCTTAAG</i> | TACTGTACTC     | GTGATTTTGT  | TATACTTTAT         | TATTAGAAAA   |
| 2501 | GTCGTCTATT        | AACTTTTTGT     | TCCTTAATTT  | ACTTGATTAA         | ATTGTCGCTT   |
| 2551 | AATTTATCAA        | ATCAGGTTTT     | GCGCGTTATT  | TTAGAGAAAA         | ACTTATTAGA   |
| 2601 | AAAATGAATA        | AGCAAAGTTT     | AGGCTAACAT  | GTTTTTTTAT         | TATTTTAAAT   |
| 2651 | AGTTCAAGTC        | AATGACGTAT     | AAAATGCATT  | TGCAAAAAAT         | TTTAAGTAAC   |
| 2701 | CCTATAAACT        | TACCAATACT     | ACATACTCCA  | TCCAACCATT         | CAGTAGCAGC   |
| 2701 | ATTCCATATC        | TAGCAAIAGI     | AGAIACIGGA  | 1 GCAAGCAII        | ATCCACCTTT   |
| 2751 | ATTGCATATC        |                | ACGIACAAAI  | AACAGCAAAA         | AIGGACCIII   |
| 2801 | ATTGGCTTCA        | CATCGICGIA     | AAACATGIGI  | TATTGGACTT         | GICACAAAIG   |
| 2851 | TGTTAAGTAT        | ACAGAAGC'I''I' | AGCTCTTGAT  | GTTGATCACT         | AGTCGGCCGT   |
| 2901 | ACGGGCCCTT        | TCGTCTCGCG     | CGTTTCGGTG  | <i>ATGAC</i> GGGAG | TGCGGCCGCC   |
| 2951 | TGCAGGTCGA        | CCATATGGGA     | GAGCTCCCAA  | CGCGTTGGAT         | GCATAGCTTG   |
| 3001 | AGTATTCTAT        | AGTGTCACCT     | AAATAGCTTG  | GCGTAATCAT         | GGTCATAGCT   |
| 3051 | GTTTCCTGTG        | TGAAATTGTT     | ATCCGCTCAC  | AATTCCACAC         | AACATACGAG   |
| 3101 | CCGGAAGCAT        | AAAGTGTAAA     | GCCTGGGGTG  | CCTAATGAGT         | GAGCTAACTC   |
| 3151 | ACATTAATTG        | CGTTGCGCTC     | ACTGCCCGCT  | TTCCAGTCGG         | GAAACCTGTC   |
| 3201 | GTGCCAGCTG        | CATTAATGAA     | TCGGCCAACG  | CGCGGGGAGA         | GGCGGTTTGC   |
| 3251 | GTATTGGGCG        | CTCTTCCGCT     | TCCTCGCTCA  | CTGACTCGCT         | GCGCTCGGTC   |
| 3301 | GTTCGGCTGC        | GGCGAGCGGT     | ATCAGCTCAC  | TCAAAGGCGG         | TAATACGGTT   |
| 3351 | ATCCACAGAA        | TCAGGGGATA     | ACGCAGGAAA  | GAACATGTGA         | GCAAAAGGCC   |
| 3401 | AGCAAAAGGC        | CAGGAACCGT     | AAAAAGGCCG  | CGTTGCTGGC         | GTTTTTCCAT   |
| 3451 | AGGCTCCGCC        | CCCCTGACGA     | GCATCACAAA  | AATCGACGCT         | CAAGTCAGAG   |
| 3501 | GTGGCGAAAC        | CCGACAGGAC     |             | CCAGGCGTTT         | CCCCCTGGAA   |
| 3551 | GCTCCCTCGT        | GCGCTCTCCT     | GTTCCGACCC  | TGCCGCTTAC         | CGGATACCTG   |
| 3601 | TCCCCCTTTC        | TCCCTTCCCC     | AACCCTCCCC  |                    | CCTCACCCTC   |
| 2651 | TACCENTER         | ACTICCCTCTCT   | AAGCGIGGCG  | CTCCAACCTC         | CCCTCTCTCC   |
| 2701 | IAGGIAICIC        | AGIICGGIGI     | AGGICGIICG  | CICCAAGCIG         | GGCIGIGIGC   |
| 3701 | ALGAALUUU         | CGTTCAGCCC     | GACCGCTGCG  | CUTTATCCGG         | TAACTATCGT   |
| 3/51 | CTTGAGTCCA        | ACCCGGTAAG     | ACACGACTTA  | TCGCCACTGG         | CAGCAGCCAC   |
| 3801 | TGGTAACAGG        | ATTAGCAGAG     | CGAGGTATGT  | AGGCGGTGCT         | ACAGAGTTCT   |
| 3851 | TGAAGTGGTG        | GCCTAACTAC     | GGCTACACTA  | GAAGAACAG'I'       | ATTTGGTATC   |
| 3901 | TGCGCTCTGC        | TGAAGCCAGT     | TACCTTCGGA  | AAAAGAGTTG         | GTAGCTCTTG   |
| 3951 | ATCCGGCAAA        | CAAACCACCG     | CTGGTAGCGG  | TGGTTTTTTT         | GTTTGCAAGC   |
| 4001 | AGCAGATTAC        | GCGCAGAAAA     | AAAGGATCTC  | AAGAAGATCC         | TTTGATCTTT   |
| 4051 | TCTACGGGGT        | CTGACGCTCA     | GTGGAACGAA  | AACTCACGTT         | AAGGGATTTT   |
| 4101 | GGTCATGAGA        | TTATCAAAAA     | GGATCTTCAC  | CTAGATCCTT         | TTAAATTAAA   |
| 4151 | AATGAAGTTT        | TAAATCAATC     | TAAAGTATAT  | ATGAGTAAAC         | TTGGTCTGAC   |
| 4201 | AGTTACCAAT        | GCTTAATCAG     | TGAGGCACCT  | ATCTCAGCGA         | TCTGTCTATT   |
| 4251 | TCGTTCATCC        | ATAGTTGCCT     | GACTCCCCGT  | CGTGTAGATA         | ACTACGATAC   |
| 4301 | GGGAGGGCTT        | ACCATCTGGC     | CCCAGTGCTG  | CAATGATACC         | GCGAGACCCA   |
| 4351 | CGCTCACCGG        | CTCCAGATTT     | ATCAGCAATA  | AACCAGCCAG         | CCGGAAGGGC   |
| 4401 | CGAGCGCAGA        | AGTGGTCCTG     | CAACTTTATC  | CGCCTCCATC         | CAGTCTATTA   |
| 4451 | ATTGTTGCCG        | GGAAGCTAGA     | GTAAGTAGTT  | CGCCAGTTAA         | TAGTTTGCGC   |
| 4501 | AACGTTGTTG        | CCATTGCTAC     | AGGCATCGTG  | GTGTCACGCT         | CGTCGTTTGG   |
| 4551 | TATGGCTTCA        | TTCAGCTCCG     | GTTCCCAACG  | ATCAAGGCGA         | GTTACATGAT   |
| 4601 | CCCCCATGTT        | GTGCAAAAAA     | GCGGTTAGCT  | CCTTCGGTCC         | TCCGATCGTT   |
| 4651 | CTCACAACTA        | ACTTCCCCCC     | ACTCTTATCA  | CTCATCCTTA         | TCCCACCACT   |
| 4701 | CCATAATTCT        |                | TCCCATCCCT  | AACATCOTTA         | TOGCAGCACI   |
| 4701 | GUAIAAIICI        | AACCAACTCA     | TUCCAICCUT  | AAGAIGCIII         | CCCACCCACT   |
| 1001 | TCCTCTTCCC        | CCCCCCTCN NT   | ACCCCAMAAM  | VCCCCCCC           | ATACCACAAGI  |
| 4001 | IGCICIIGCC        | CGGCGICAAI     | ACGGGAIAAI  | ACCGCGCCAC         | AIAGCAGAAC   |
| 4851 | TTTAAAAGTG        | CTCATCATTG     | GAAAACGIIIC | TTCGGGGCGA         |              |
| 4901 | GGATCTTACC        | GCTGTTGAGA     | TCCAGTTCGA  | TGTAACCCAC         | TCGTGCACCC   |
| 4951 | AACTGATCTT        | CAGCATCTTT     | TACTITICACC | AGCGTTTCTG         | GG'I'GAGCAAA |
| 5001 | AACAGGAAGG        | CAAAATGCCG     | CAAAAAAGGG  | AATAAGGGCG         | ACACGGAAAT   |
| 5051 | GTTGAATACT        | CATACTCTTC     | CTTTTTCAAT  | ATTATTGAAG         | CATTTATCAG   |
| 5101 | GGTTATTGTC        | TCATGAGCGG     | ATACATATTT  | GAATGTATTT         | AGAAAAATAA   |
| 5151 | ACAAATAGGG        | GTTCCGCGCA     | CATTTCCCCG  | AAAAGTGCCA         | CCTGATGCGG   |
| 5201 | TGTGAAATAC        | CGCACAGATG     | CGTAAGGAGA  | AAATACCGCA         | TCAGGAAATT   |
| 5251 | GTAAGCGTTA        | ATATTTTGTT     | AAAATTCGCG  | TTAAATTTTT         | GTTAAATCAG   |
| 5301 | CTCATTTTTT        | AACCAATAGG     | CCGAAATCGG  | CAAAATCCCT         | TATAAATCAA   |
| 5351 | AAGAATAGAC        | CGAGATAGGG     | TTGAGTGTTG  | TTCCAGTTTG         | GAACAAGAGT   |
| 5401 | CCACTATTAA        | AGAACGTGGA     | CTCCAACGTC  | AAAGGGCGAA         | AAACCGTCTA   |
| 5451 | TCAGGGCGAT        | GGCCCACTAC     | GTGAACCATC  | ACCCTAATCA         | AGTTTTTTGG   |
| 5501 | GGTCGAGGTG        | CCGTAAAGCA     | CTAAATCGGA  | ACCCTAAAGG         | GAGCCCCCGA   |
| 5551 | TTTAGAGCTT        | GACGGGGAAA     | GCCGGCGAAC  | GTGGCGAGAA         | AGGAAGGGAA   |
| 5601 | GAAAGCGAAA        | GGAGCGGGCG     | CTAGGGCGCT  | GGCAAGTGTA         | GCGGTCACGC   |
| 5651 | TGCGCGTAAC        | CACCACACCC     | GCCGCGCTTA  | ATGCGCCGCT         | ACAGGGCGCG   |
| 5701 | TCCATTCGCC        | ATTCAGGCTG     | CGCAACTGTT  | GGGAAGGGCG         | ATCGGTGCGG   |
|      |                   |                |             |                    |              |

5751 GCCTCTTCGC TATTACGCCA GCTGGCGAAA GGGGGATGTG CTGCAAGGCG 5801 ATTAAGTTGG GTAACGCCAG GGTTTTCCCA GTCACGACGT TGTAAAACGA 5851 CGGCCAGTGA ATTGTAATAC GACTCACTAT A



|            |                              | Apal - 14<br>SacII - 46<br>BandII - 45<br>Notl - 57<br>XiteI - 158 |                               |                          |             |
|------------|------------------------------|--------------------------------------------------------------------|-------------------------------|--------------------------|-------------|
|            | XmmI - 6152                  | SURA                                                               |                               |                          |             |
|            | 15                           | Sto But                                                            |                               |                          |             |
|            | A Mary                       |                                                                    | HindIII - 1399<br>KpnI - 1463 |                          |             |
|            | PGEM-4                       | AktdeltaBetaCatenin                                                |                               |                          |             |
|            |                              | 7158 bp                                                            | -ug                           |                          |             |
|            |                              | 10                                                                 | Xmm1 - 2168                   |                          |             |
|            | SacI - 4252                  | an and                                                             | XmmI - 2358                   |                          |             |
|            | HincH - 4235<br>Saft - 4233  | Hydra Aktin                                                        | PacI - 2717                   |                          |             |
|            | NotI - 4220<br>SpeI - 4213   | SpeI - 322                                                         | - 2930<br>3                   |                          |             |
|            | ApaI - 4177 /<br>SpeI - 4158 | hpu1 - 3440                                                        |                               |                          |             |
| 1          | GGGCGAATTG                   | GGCCCGACGT                                                         | CGCATGCTCC                    | CGGCCGCCAT               | GGCCGCGGGA  |
| 51         | TCCCAGC <i>GGC</i>           | CGCCCCATCG                                                         | ATCTGACTAA                    | CCTAACCAGT               | GCAAAAAAAT  |
| 101        | TTAAAAGATT                   | TGCATTGTGA                                                         | AAGTTAGAAT                    | ΑΤΤΑΤΑΑΑΑΑ               | ATCTAAAACG  |
| 151        | AGTATTACTC                   | GAGTAAATGT                                                         | TATACGATCT                    | ATAGATTAAA               | TATATTAAAA  |
| 201        | ATGTATAGCG                   | AATGTTAAAC                                                         | TAAATATATA                    | ATATAAACTT               | GAAAACTTAC  |
| 251        | TAAATTGCAA                   | AAACTCAAAA                                                         | CCGACTGTAT                    | CATTTTTACA               | GGAAACCGTT  |
| 301        | ATTCAAGATA                   | CTTAAGTTGT                                                         | TTACTACATT                    | ATTATAACAT               | CTTGCAATTA  |
| 351        | GCAAGACAAT                   | CGTTATTTTA                                                         | ACATCACGGT                    | ATCGAAAGGA               | TTTTGAGAAA  |
| 401        | TTTTTATTGAA                  | ACATTTTAAA                                                         | CAAAAAATAT                    | CATATTTAGA               | TGCATTTTAA  |
| 451<br>501 | GCCGAGATGC                   | AGGATTCTGA                                                         | ATGAAAAAGA                    | AAAAAAGAAG               | TCTCGGTAGA  |
| 551        | GIAAAAGIGA<br>TTTATTTAAAA    | TAAAACTCAA                                                         | ACIGIAAAAI                    | A A CTTCCTC              | TTCTATAATI  |
| 601        | TTACTCGAAT                   | TTTAAAACCA                                                         | TTGTAACGCT                    | AGAGTAATAT               | TTGAGTCTAC  |
| 651        | TAAGTTAGTC                   | CCCGCACTTT                                                         | TTAATCAAGC                    | AATAAATACC               | CAAACTTTGC  |
| 701        | TTATTCAAAT                   | CAATAAACCA                                                         | ATATATCTCT                    | ТААААТАААG               | TAAAAACTTC  |
| 751        | TGAAATTCTA                   | ТААААААААА                                                         | TTTAATTTCG                    | АААТАТСААА               | TGTAACTTCA  |
| 801        | ACACCGCACT                   | ATTTTCTTTT                                                         | AAACAACTGA                    | TATAGTAATT               | ACTTCTCAAA  |
| 851        | AACGTTATCT                   | CAAGGTTTGT                                                         | GATGTACTTA                    | AAACCACTCC               | TATTTTGTTA  |
| 901        | CGCGTTTAAA                   | AAAGCAAACA                                                         | TAAGTTGGTT                    | TCTATTGATG               | AATGAGAACA  |
| 951        | TATTTCATTT                   | AAAGTTAAAA                                                         | TCCTACCAGT                    | GGTTTCACTG               | TACGTAAACA  |
| 1001       | CCGTCAAAAA                   | AACAGGAACG                                                         | 1111111AAAGA                  | TTAATAATTG               | AAGTAAAAAA  |
| 1101       | AATTTAATAC                   | CGGGGGGTTAA                                                        | AAAAATCTTT                    |                          | ATAAATATAT  |
| 1151       | AIAIIAAAAI                   | ΔΤΔΤΤΔΤΔΔΔ                                                         | ΔΔΔΔΔΔΤΤΤΤΔ                   | ΙΙΑΑΑΑΙΑΙΑ<br>ΔΤΤΤΤΔΤΔΔΤ | TATIAAGIAI  |
| 1201       | AAATTTATAA                   | ATAATAGGTA                                                         | AAACTTACAT                    | ATCCGTTTTA               | TTTTTTTCTTA |
| 1251       | АТААААТААС                   | GCGTGCAAAT                                                         | TTTTGTCCAT                    | ATAAAGACCT               | TTTCGAACAA  |
| 1301       | TAACTTTTTT                   | GCTTAGCCGT                                                         | TTTTTTTTCTT                   | ATATGGTCAA               | AAAAGCGCTC  |
| 1351       | AAGCGATTCA                   | CCATAAAAAG                                                         | CGCAATTAGT                    | TCAGCGTTCG               | TTATTCAGAA  |
| 1401       | GCTTCAGCTT                   | TGCTTGATAC                                                         | TCAGCTCTTC                    | TCTTTTTAAA               | CAAAACACTT  |
| 1451       | AATCAAAG <u>GG</u>           | TACCATGAGT                                                         | CAGCGTGCTA                    | GAACAGGAAT               | GTTTCCTGAG  |
| 1501       | GCTATGCATG                   | AAAATATGGA                                                         | ACTCTCTCAT                    | GCACAAATTC               | АТААТААСАА  |
| 1551       | CTCTGCTGTA                   | CCTCAACGTC                                                         | TTGCTGAACC                    | AACTCAAATG               | CTTAAGAACA  |
| 1601       | ATGTAATTGA                   | CCTTATCAAT                                                         | TATCAAGATG                    | AGACAGATGT               | AGCACTTAGA  |
| 1701       | TCATCACCCT                   | TCTATTATCC                                                         | TTATTATGT                     | AACAGIGAIG               | CICAAACIAI  |
| 1751       | GTTATGCAGT                   | TATGAATAAC                                                         | ACAAACATTG                    | TTGCTGCATT               | GGTTGGTGTG  |
| 1801       | ACTGCAACTT                   | CAAATGATGG                                                         | AGAAACTATA                    | CGCAATGTTG               | TTGGTGCTTT  |
| 1851       | ACATAATATG                   | AGCCATCACA                                                         | GACAAGGTTT                    | AATGGCTATT               | TTCAAATGTA  |
| 1901       | GTGGAATTCC                   | AGCTTTAGTA                                                         | AAATTGTTAG                    | GCCATCGAAT               | TGAAGCTGTT  |
| 1951       | GTTTTTTATG                   | CAATTACAAC                                                         | TTTGCACAAT                    | CTTCTCCTCC               | ATCAAGAAGG  |
| 2001       | TGCAAAGATG                   | GCTGTCCGTT                                                         | TAGCTTTAGG                    | TTTGCAGAAG               | ATGGTCTCTC  |
| 2051       | TTTTGCAGAG                   | GCCAAAAGTA                                                         | AAATTTCTTG                    | CAATTGTAAC               | AGATTGTTTA  |
| 2101       | CAAATTTTGG                   | CATATGGTAA                                                         | CCAAGAATCT                    | AAGCTGATTA               | TTTTATCTTC  |
| 2151       | TGGTGGACCT                   | GCTGAACTTG                                                         | TTCGCATAAT                    | GAGAAGCTAT               | ACTTATGAAA  |
| 2251       | AGCAATAAAC                   | CTGCTATTGT                                                         | TGAGGCTGGA                    | GGTATGCAAC               | CATTGGCACA  |
|            |                              |                                                                    |                               |                          |             |

| 2301          | TTATTTGTCT               | CATCAGAGCA               | CGCGTCTTGT               | ACAAAATTGT               | TTATGGACCT               |
|---------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 2351          | TGAGAAATCT               | TTCTGATGTA               | GCTACTAAAC               | AAGATGGTTT               | AGAAGGACTC               |
| 2401          | TTGCAGATGC               | TTGTACAACT               | TTTATCTTCA               | AATGATATCA               | ATGTTGTGAC               |
| 2451          | ATGTGTTTCT               | GGCATTATAT               | CAAATTTAAC               | TTGCAACAAT               | CCTCGGAATA               |
| 2501          | AGCAAGTTGT               | ATTTCAAGTG               | GGTGGAATTG               | AAGCATTAGT               | TCGAACAATC               |
| 2551          | ATAAATGCTG               | GTGACCGTGA               | GGAAATAACT               | GAACCAGCTG               | TATGCGCCTT               |
| 2601          | GCGACACCTT               | ACAAGTAGAC               | ATCCAGATGC               | AGAGCATGCA               | GAAAATGGTG               |
| 2651          | TAAGATTACA               | ТТАТССААТА               | CCAATTCTTG               | TAAAGTTGTT               | AAATCCTCCT               |
| 2701          | TOTOCOTOCO               | Стттааттаа               | ACCTCTTCTT               | CCCTTAATTA               | CGAACCTTCC               |
| 2701          |                          |                          | CTCCTATTCC               | TCATCAACCT               | CCTCTTCCTA               |
| 2751          | ACCUMCUCCI               | CURCHACCAIA              | AAAMCAMAMC               | 1GAICAAGGI               | GGICIICCIA               |
| 2001          | AGCIIGIGCA               | GIIGIIAAIG               | AGACCOCO                 | AAGAIAIICA               | GAGACGIGGI               |
| 2001          | CCAGGAGCCC               | AGAATATGCA               | AGACGGIGII               | AGAAIGGAGG               | ARAIIGIIGA               |
| 2901          | GGGGACTGTT               | GGCGCTCTTC               | ACATTTTAGC               | TCGAGAAGCT               | ACEE                     |
| 2951          | CAATTATTCG               | CGACCTAAAT               | TGTATTCCTA               | CATTIGTICA               | ACTITIGTAT               |
| 3001          | TCTGAAGTTG               | AAAATATTGT               | TCGTGTGGGCT              | GCCGGTGTAT               | TATGTGAGTT               |
| 3051          | AGCTCAAGAT               | AAAGAAGGGGG              | CTGACGCTAT               | TGAGCGTGAA               | GGTGCAACAA               |
| 3101          | CTATTTTAAC               | TGAACTTTTA               | CATTCTCGAA               | ATGATGGCAT               | TGCAGCATAT               |
| 3151          | GCTCGTGCTG               | TGCTTTTCCG               | CATGTCAGAA               | GACAAAAGTC               | AAGATTACAA               |
| 3201          | AAAACGACTC               | TCTGTTGAAT               | TAACTAGTTC               | ACTATTTCGT               | GATGACGTTC               |
| 3251          | CTTGGGAGCC               | TGGTAATACG               | GAAATGGCTG               | ATATTCTTAC               | TTCACAGTCT               |
| 3301          | TATGCTGATG               | AAATATATTC               | GCCTCACGTG               | TCACAAAACA               | ACTTATCTTA               |
| 3351          | TAATCCAAAT               | AGCTATCAAC               | ATCAGCAAAG               | CGGGATGTTT               | CCGCAAATGC               |
| 3401          | AAAATAATGT               | GACGCAGGGT               | TGGTTTGACC               | CTGACTTGTA               | <b>G</b> GGTACCCAT       |
| 3451          | <i>TCGTAGAATT</i>        | CACAATTCGA               | TTATATTTAT               | ACTGGACTAT               | TTTTACATCT               |
| 3501          | <i>GTTCGGTTAT</i>        | TTTCACATTT               | ATTTTTCTAT               | ATATATCTTA               | TAAACGTTTT               |
| 3551          | AAAACCCATG               | TAATTTTTGT               | TAAGCTGTAA               | TATAAAAGAC               | GTCCTAACAA               |
| 3601          | ACTTCTTTTA               | TTACTGAATT               | TCCTTTAATT               | ATAATAAATA               | ACAAGTTTTA               |
| 3651          | AAATAAATTC               | AGGCAATTAA               | GGCGCTCCTG               | AGGTACTAAA               | ATTAATGTAA               |
| 3701          | ACATTTAAAA               | TTAACTTGGA               | <i>TGGTCTTAAG</i>        | TACTGTACTC               | GTGATTTTGT               |
| 3751          | TATACTTTAT               | TATTAGAAAA               | GTCGTCTATT               | AACTTTTTGT               | TCCTTAATTT               |
| 3801          | ACTTGATTAA               | ATTGTCGCTT               | AATTTATCAA               | ATCAGGTTTT               | GCGCGTTATT               |
| 3851          | TTAGAGAAAA               | ACTTATTAGA               | AAAATGAATA               | AGCAAAGTTT               | AGGCTAACAT               |
| 3901          | GTTTTTTTAT               | TATTTTAAAT               | AGTTCAAGTC               | AATGACGTAT               | AAAATGCATT               |
| 3951          | <i>TGCAAAAAAT</i>        | TTTAAGTAAC               | CCTATAAACT               | TAGCAATAGT               | AGATACTGGA               |
| 4001          | <i>TGCAAGCATT</i>        | CAGTAGCAGC               | ATTGCATATC               | TGCTGTCTTT               | ACGTACAAAT               |
| 4051          | AACAGCAAAA               | ATGGACCTTT               | ATTGGCTTCA               | CATCGTCGTA               | AAACATGTGT               |
| 4101          | TATTGGACTT               | GTCACAAATG               | <i>TGTTAAGTAT</i>        | ACAGAAGCTT               | AGCTCTTGAT               |
| 4151          | GTTGATCACT               | AGTCGGCCGT               | ACGGGCCCTT               | TCGTCTCGCG               | CGTTTCGGTG               |
| 4201          | <i>ATGAC</i> GGGGA       | TCACTAGTGC               | GGCCGCCTGC               | AGGTCGACCA               | TATGGGAGAG               |
| 4251          | CTCCCAACGC               | GTTGGATGCA               | TAGCTTGAGT               | ATTCTATAGT               | GTCACCTAAA               |
| 4301          | TAGCTTGGCG               | TAATCATGGT               | CATAGCTGTT               | TCCTGTGTGA               | AATTGTTATC               |
| 4351          | CGCTCACAAT               | TCCACACAAC               | ATACGAGCCG               | GAAGCATAAA               | GTGTAAAGCC               |
| 4401          | TGGGGTGCCT               | AATGAGTGAG               | CTAACTCACA               | TTAATTGCGT               | TGCGCTCACT               |
| 4451          | GCCCGCTTTC               | CAGTCGGGAA               | ACCTGTCGTG               | CCAGCTGCAT               | TAATGAATCG               |
| 4501          | GCCAACGCGC               | GGGGAGAGGC               | GGTTTGCGTA               | TTGGGCGCTC               | TTCCGCTTCC               |
| 4551          | TCGCTCACTG               | ACTCGCTGCG               | CTCGGTCGTT               | CGGCTGCGGC               | GAGCGGTATC               |
| 4601          | AGCTCACTCA               | AAGGCGGTAA               | TACGGTTATC               | CACAGAATCA               | GGGGATAACG               |
| 4651          | CAGGAAAGAA               | CATGTGAGCA               | AAAGGCCAGC               | AAAAGGCCAG               | GAACCGTAAA               |
| 4701          | AAGGCCGCGT               | TGCTGGCGTT               | TTTCCATAGG               | CTCCGCCCCC               | CTGACGAGCA               |
| 4751          | тсасааааат               | CGACGCTCAA               | GTCAGAGGTG               | GCGAAACCCG               | ACAGGACTAT               |
| 4801          |                          | CCCCTTTCCC               | CCTCCAACCT               | CCCTCCTCCC               |                          |
| 4851          | CCGACCCTCC               | CCCTTACCCC               | ATACCTGTCC               | CCCTTTCTCC               | CTTCCCCAAC               |
| 1001          | CCTCCCCCTT               | TCTCATACCT               | CACCETTERAC              | CTATCTCACT               | TCCCTCTACC               |
| 4901          | TCCTTCCCTC               | CAACCTCCCC               | TCTCTCCACC               | AACCCCCCCT               | TCACCCCCAC               |
| 5001          | CCCTCCCCCT               | TATCCCCTAA               | CTATCCTCTT               | CACTCCAACC               | CCCTAACACA               |
| 5051          | CCACTERATICS             | CCACTCCCAC               | CACCCACTCC               | TAACACCATT               | ACCACACCCA               |
| 5101          | CGACITAICG               | CCACIGGCAG               | CAGCCACIGG               | ACTECTE                  | AGCAGAGCGA               |
| JIUI<br>5151  | GGIAIGIAGG               | CAACACMAM                | GAGIICITGA               |                          |                          |
| 5201          |                          | GAACAGTATT               | COMONNO                  | GCICIGCIGA               | AGULAGITAC               |
| JZUI<br>50E1  |                          | AGAGIIGGTA               | GCICIIGATC               |                          | CACAAAAAAA               |
| SZSI<br>E 201 | GIAGUGGTGG               | ANCARCORRE               |                          | AGATTACGCG               |                          |
| JJUL<br>FDF1  | GGATCTCAAG               | AAGATCCTTT               | GATCTTTTCT               | ACGGGGTCTG               | ACGUTCAGTG               |
| 5351<br>6401  |                          | CAUGTTAAG                | GGATTTTGGT               | CATGAGATTA               |                          |
| 54UL          | TCTTCACCTA               | GATCCTTTTA               | AATTAAAAAT               | GAAGTTTTTAA              | ATCAATCTAA               |
| 5451<br>5501  | agtatatat                | agtaaac'i''i'G           | GTCTGACAGT               | TACCAATGCT               | TAATCAGTGA               |
|               | adda doma to             | TO A COCT TOT            |                          | mmanmaarm                | ammaaamaa ~              |
| 5501          | GGCACCTATC               | TCAGCGATCT               | GTCTATTTCG               | TTCATCCATA               | GTTGCCTGAC               |
| 5551          | GGCACCTATC<br>TCCCCGTCGT | TCAGCGATCT<br>GTAGATAACT | GTCTATTTCG<br>ACGATACGGG | TTCATCCATA<br>AGGGCTTACC | GTTGCCTGAC<br>ATCTGGCCCC |

| 5651 | AGCAATAAAC | CAGCCAGCCG | GAAGGGCCGA | GCGCAGAAGT | GGTCCTGCAA |
|------|------------|------------|------------|------------|------------|
| 5701 | CTTTATCCGC | CTCCATCCAG | TCTATTAATT | GTTGCCGGGA | AGCTAGAGTA |
| 5751 | AGTAGTTCGC | CAGTTAATAG | TTTGCGCAAC | GTTGTTGCCA | TTGCTACAGG |
| 5801 | CATCGTGGTG | TCACGCTCGT | CGTTTGGTAT | GGCTTCATTC | AGCTCCGGTT |
| 5851 | CCCAACGATC | AAGGCGAGTT | ACATGATCCC | CCATGTTGTG | CAAAAAAGCG |
| 5901 | GTTAGCTCCT | TCGGTCCTCC | GATCGTTGTC | AGAAGTAAGT | TGGCCGCAGT |
| 5951 | GTTATCACTC | ATGGTTATGG | CAGCACTGCA | TAATTCTCTT | ACTGTCATGC |
| 6001 | CATCCGTAAG | ATGCTTTTCT | GTGACTGGTG | AGTACTCAAC | CAAGTCATTC |
| 6051 | TGAGAATAGT | GTATGCGGCG | ACCGAGTTGC | TCTTGCCCGG | CGTCAATACG |
| 6101 | GGATAATACC | GCGCCACATA | GCAGAACTTT | AAAAGTGCTC | ATCATTGGAA |
| 6151 | AACGTTCTTC | GGGGCGAAAA | CTCTCAAGGA | TCTTACCGCT | GTTGAGATCC |
| 6201 | AGTTCGATGT | AACCCACTCG | TGCACCCAAC | TGATCTTCAG | CATCTTTTAC |
| 6251 | TTTCACCAGC | GTTTCTGGGT | GAGCAAAAAC | AGGAAGGCAA | AATGCCGCAA |
| 6301 | AAAAGGGAAT | AAGGGCGACA | CGGAAATGTT | GAATACTCAT | ACTCTTCCTT |
| 6351 | TTTCAATATT | ATTGAAGCAT | TTATCAGGGT | TATTGTCTCA | TGAGCGGATA |
| 6401 | CATATTTGAA | TGTATTTAGA | ААААТАААСА | AATAGGGGTT | CCGCGCACAT |
| 6451 | TTCCCCGAAA | AGTGCCACCT | GATGCGGTGT | GAAATACCGC | ACAGATGCGT |
| 6501 | AAGGAGAAAA | TACCGCATCA | GGAAATTGTA | AGCGTTAATA | TTTTGTTAAA |
| 6551 | ATTCGCGTTA | AATTTTTGTT | AAATCAGCTC | ATTTTTTAAC | CAATAGGCCG |
| 6601 | AAATCGGCAA | AATCCCTTAT | AAATCAAAAG | AATAGACCGA | GATAGGGTTG |
| 6651 | AGTGTTGTTC | CAGTTTGGAA | CAAGAGTCCA | CTATTAAAGA | ACGTGGACTC |
| 6701 | CAACGTCAAA | GGGCGAAAAA | CCGTCTATCA | GGGCGATGGC | CCACTACGTG |
| 6751 | AACCATCACC | CTAATCAAGT | TTTTTGGGGT | CGAGGTGCCG | TAAAGCACTA |
| 6801 | AATCGGAACC | CTAAAGGGAG | CCCCCGATTT | AGAGCTTGAC | GGGGAAAGCC |
| 6851 | GGCGAACGTG | GCGAGAAAGG | AAGGGAAGAA | AGCGAAAGGA | GCGGGCGCTA |
| 6901 | GGGCGCTGGC | AAGTGTAGCG | GTCACGCTGC | GCGTAACCAC | CACACCCGCC |
| 6951 | GCGCTTAATG | CGCCGCTACA | GGGCGCGTCC | ATTCGCCATT | CAGGCTGCGC |
| 7001 | AACTGTTGGG | AAGGGCGATC | GGTGCGGGCC | TCTTCGCTAT | TACGCCAGCT |
| 7051 | GGCGAAAGGG | GGATGTGCTG | CAAGGCGATT | AAGTTGGGTA | ACGCCAGGGT |
| 7101 | TTTCCCAGTC | ACGACGTTGT | AAAACGACGG | CCAGTGAATT | GTAATACGAC |
| 7151 | TCACTATA   |            |            |            |            |

## 5.5.6 pGEM-AktBetaCatGFP (Abschnitt 4.2.10)



| 1    | GGGCGAATTG        | GGCCCGACGT        | CGCATGCTCC        | CGGCCGCCAT        | GGCCGCGGGA        |
|------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 51   | TCCCAGCGGC        | CGCCCCATCG        | ATCTGACTAA        | CCTAACCAGT        | GCAAAAAAAT        |
| 101  | TTAAAAGATT        | <i>TGCATTGTGA</i> | AAGTTAGAAT        | ATTATAAAAA        | ATCTAAAACG        |
| 151  | AGTATTACTC        | GAGTAAATGT        | TATACGATCT        | ATAGATTAAA        | TATATTAAAA        |
| 201  | ATGTATAGCG        | AATGTTAAAC        | TAAATATATA        | ATATAAACTT        | GAAAACTTAC        |
| 251  | TAAATTGCAA        | AAACTCAAAA        | CCGACTGTAT        | CATTTTTACA        | GGAAACCGTT        |
| 301  | ATTCAAGATA        | CTTAAGTTGT        | TTACTACATT        | ATTATAACAT        | CTTGCAATTA        |
| 351  | GCAAGACAAT        | CGTTATTTTA        | ACATCACGGT        | ATCGAAAGGA        | TTTTGAGAAA        |
| 401  | TTTTATTGAA        | ACATTTTAAA        | CAAAAAATAT        | CATATTTAGA        | <i>TGCATTTTAA</i> |
| 451  | GCCGAGATGC        | AGGATTCTGA        | ATGAAAAAGA        | AAAAAAGAAG        | TCTCGGTAGA        |
| 501  | GTAAAAGTGA        | TCGGTTTGCA        | ACTGTAAAAT        | TTATTGAAGT        | ACCAATAATT        |
| 551  | TTATTTAAAA        | TAAAACTGAA        | ATATAAAGTT        | AAAGTTGCTG        | TTCTATAAGT        |
| 601  | TTACTCGAAT        | TTTAAAACCA        | <i>TTGTAACGCT</i> | AGAGTAATAT        | TTGAGTCTAC        |
| 651  | TAAGTTAGTC        | CCCGCACTTT        | TTAATCAAGC        | AATAAATACC        | CAAACTTTGC        |
| 701  | TTATTCAAAT        | CAATAAACCA        | ATATATCTCT        | TAAAATAAAG        | TAAAAACTTC        |
| 751  | <i>TGAAATTCTA</i> | TAAAAAAAAA        | <i>TTTAATTTCG</i> | AAATATCAAA        | <i>TGTAACTTCA</i> |
| 801  | ACACCGCACT        | ATTTTCTTTT        | AAACAACTGA        | <i>TATAGTAATT</i> | ACTTCTCAAA        |
| 851  | AACGTTATCT        | CAAGGTTTGT        | <i>GATGTACTTA</i> | AAACCACTCC        | <i>TATTTTGTTA</i> |
| 901  | <i>CGCGTTTAAA</i> | AAAGCAAACA        | <i>TAAGTTGGTT</i> | <i>TCTATTGATG</i> | AATGAGAACA        |
| 951  | TATTTCATTT        | AAAGTTAAAA        | TCCTACCAGT        | GGTTTCACTG        | TACGTAAACA        |
| 1001 | CCGTCAAAAA        | AACAGGAACG        | <i>TTTTTAAAGA</i> | TTAATAATTG        | AAGTAAAAAA        |

| 1051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AATTTAATAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>CGGGGGTTAA</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AAAAATCTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAAAATAATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATAAATATAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATATTAAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TTATAAATTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TTAAACACAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TTAAAATATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>TATTAAGTAT</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AATAAAAGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ΑΤΑΤΤΑΤΑΑΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AAAAAATTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATTTTATAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TATTTTTATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AAATTTATAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATAATAGGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AAACTTACAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATCCGTTTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TTTTTTCTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | АТААААТААС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GCGTGCAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TTTTGTCCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATAAAGACCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TTTCGAACAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTTAGCCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>TTTTTTTTCTT</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATATGGTCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AAAAGCGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCATAAAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TCACCCTTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TTATTCACAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COURCICOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCATAAAAAG<br>TCCTTCITIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TCACCTCTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TCAGCGIICG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CARACACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCIICAGCII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IGCIIGAIAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AATCAAAG <u>GG</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TACCATGATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GAGGATTCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CTGCTCAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GAGGTATCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TACCAACATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AACAATCTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TGATCAGGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AGAGATGTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GAATGCTTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGATCGTCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AATAAATTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TGATGATGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CGAGAGCAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GACAACAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TCAGATGGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATTCGTTCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TTGAAACACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATTACAACAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATGCGAATGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AAAAACAAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AATGGTTGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TTTAATATGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATCATCAGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AATGCATCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GCAATGAACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AAATGAACCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AACTGCAGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TGGAATCAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1/51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GTTACAACAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGATTCAGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATTCAAACAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CTGCTCCTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TGTCAAAGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TATGATGACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATGAAGTTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATCCCATCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TCTTATCAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AGATTGAATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GGACCAATTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TCTGGTGAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAATGGATAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TGCAATAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GATCAGTTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATAACAATAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AAGTCAGCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GCTAGAACAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GAATGTTTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TGAGGCTATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CATGAAAATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TGGAACTCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TCATGCACAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATTCATAATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ACAACTCTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TGTACCTCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CGTCTTGCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AACCAACTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AATGCTTAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AACAATGTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTGACCTTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAATTATCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GATGAGACAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATGTAGCACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAGAGCTGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCAGAGCTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CTCGTTTATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATGTAATAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GATGCTCAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GGCTTCTATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATGGTCAACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AGCTAACAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GAAGGAAGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AGTTGTTATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAGTTATGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TAACACAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATTGTTGCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CATTGGTTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TGTGACTGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACTTCAAATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATGGAGAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TATACGCAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GTTGTTGGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CTTTACATAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TATGAGCCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CACAGACAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GTTTAATGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TATTTTCAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TGTAGTGGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTCCAGCTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGTAAAATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TTAGGCCATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GAATTGAAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TGTTGTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TATGCAATTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAACTTTGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAATCTTCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CTCCATCAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AAGGTGCAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GATGGCTGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CGTTTAGCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TAGGTTTGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GAAGATGGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TCTCTTTTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGAGGCCAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TGTAAAATTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CTTGCAATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAACAGATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TTTACAAATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTGGCATATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GTAACCAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATCTAAGCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATTATTTTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CTTCTGGTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACCTGCTGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CTTGTTCGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TAATGAGAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CTATACTTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GAAAAATTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TATATACAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TTGTCGAGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TTAAAAGTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TTTCTGTATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TTCCAGCAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AAACCTGCTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TTGTTGAGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TGGAGGTATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CAAGCATTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CACATTATTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GTCTCATCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGCACGCGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TTGTACAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TTGTTTATGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ACCTTGAGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATCTTTCTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TGTAGCTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AAACAAGATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GTTTAGAAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ACTCTTGCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATGCTTGTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AACTTTTATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TTCAAATGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATCAATGTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TTACATGTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTCTGGCATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATATCAAATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TAACTTGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CAATCCTCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AATAAGCAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTGTATTTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGTGGGTGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATTGAAGCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAGTTCGAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AATCATAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GTGAGGAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AACTGAACCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GCTGTATGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CGTTGCGCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3001<br>3051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTTACAAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GTGAGGAAAT<br>AGACATCCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AACTGAACCA<br>ATGCAGAGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GCTGTATGTG<br>TGCAGAAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CGTTGCGCCA<br>GGTGTAAGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3001<br>3051<br>3101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3001<br>3051<br>3101<br>3151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTTGTG                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3001<br>3051<br>3101<br>3151<br>3201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTTGTG<br>CCTAAGCTTG                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3001<br>3051<br>3101<br>3151<br>3201<br>3251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3001<br>3051<br>3101<br>3151<br>3201<br>3251<br>3301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGGAC                                                                                                                                                                                                                                                                                                                                                                                               |
| 3001<br>3051<br>3101<br>3151<br>3201<br>3251<br>3301<br>3351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA                                                                                                                                                                                                                                                                                                                                                                                                                     | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA                                                                                                                                                                                                                                                                                                                                                                                  |
| 3001<br>3051<br>3101<br>3201<br>3251<br>3301<br>3351<br>3401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT                                                                                                                                                                                                                                                                                                                                                                                                                                       | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG                                                                                                                                                                                                                                                                                                                                                                                                       | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA                                                                                                                                                                                                                                                                                                                                                                    |
| 3001<br>3051<br>3101<br>3251<br>3201<br>3251<br>3301<br>3351<br>3401<br>3451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA                                                                                                                                                                                                                                                                                                                                                                                                                         | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT                                                                                                                                                                                                                                                                                                                                                                                         | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA                                                                                                                                                                                                                                                                                                                                         |
| 3001<br>3051<br>3101<br>3251<br>3201<br>3251<br>3301<br>3351<br>3401<br>3451<br>3501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGCTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA                                                                                                                                                                                                                                                                                                                                                                                                            | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG                                                                                                                                                                                                                                                                                                                                                                           | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT                                                                                                                                                                                                                                                                                                                                         |
| 3001<br>3051<br>3101<br>3201<br>3251<br>3301<br>3401<br>3451<br>3501<br>3551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGGTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT                                                                                                                                                                                                                                                                                                                                                                                               | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT                                                                                                                                                                                                                                                                                                                                                                                                                                               | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCCTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG                                                                                                                                                                                                                                                                                                                                                             | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT                                                                                                                                                                                                                                                                                                                          |
| 3001<br>3051<br>3101<br>3251<br>3201<br>3251<br>3301<br>3451<br>3551<br>3551<br>3601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT                                                                                                                                                                                                                                                                                                                                                                                | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>CACCATGTC                                                                                                                                                                                                                                                                                                                                                                                                                    | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA                                                                                                                                                                                                                                                                                                                                              | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG                                                                                                                                                                                                                                                                                                            |
| 3001<br>3051<br>3101<br>3201<br>3251<br>3301<br>3351<br>3401<br>3551<br>3501<br>3551<br>3601<br>3651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCCAGATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGT                                                                                                                                                                                                                                                                                                                                                                                  | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA                                                                                                                                                                                                                                                                                                                                                                                                                   | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TATCAAGATA<br>TATCAAGATA<br>TAGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT                                                                                                                                                                                                                                                                                                                                | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TGGACGAGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTTCCTTGGG<br>GTTCCTTGGG                                                                                                                                                                                                                                                                               |
| 3001<br>3051<br>3101<br>3201<br>3251<br>3301<br>3451<br>3551<br>3601<br>3651<br>3701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA                                                                                                                                                                                                                                                                                                                                                                                              | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG                                                                                                                                                                                                                                                                                                                                                                                                     | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TATCATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGGATATTC                                                                                                                                                                                                                                                                                                                    | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTTCCTTGGG<br>GTCCTTATGCT                                                                                                                                                                                                                                                                               |
| 3001<br>3051<br>3101<br>3201<br>3251<br>3301<br>3451<br>3551<br>3601<br>3551<br>3601<br>3701<br>3771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT                                                                                                                                                                                                                                                                                                                                     | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA                                                                                                                                                                                                                                                                                                                                                                                       | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TATCATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CCGTGTCACAA                                                                                                                                                                                                                                                                                                      | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTTCCTTGGG<br>GTCCTTAGGCT<br>CTTATAATCC                                                                                                                                                                                                                                                                 |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3301<br>3401<br>3551<br>3601<br>3651<br>3601<br>3751<br>3801<br>3851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGGACCT<br>AGCCTGGTAA<br>GATGAAATAT<br>AATAGCCCC                                                                                                                                                                                                                                                                                                                                                   | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTACTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CACATCAGC                                                                                                                                                                                                                                                                                                                                                                                      | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTG<br>GGCTGCCGGG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>GACCCTCCCCC                                                                                                                                                                                                                                                                                       | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTGCG<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGATTAGCTCA<br>ACAACTATTT<br>ACAAAAAAACG<br>GTTCCTTGGG<br>GTCTTATGCT<br>CTTATAATCC<br>ACGCAAAAAAC                                                                                                                                                                                                                                                               |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3301<br>3451<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>GATGAAATAT<br>AACTCGTGGTAA<br>GATGAAATAT<br>AACTGGACCA<br>ACTCTCACAAC                                                                                                                                                                                                                                                                                                                                   | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGACG<br>TTTACATTCT<br>GGGGCTGACG<br>TTTACATTCC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCCGATTATT                                                                                                                                                                                                                                                                                                                                            | AACTGAACCA<br>ATGCAGACCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>GACCCTGACT                                                                                                                                                                                                                                                                         | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGCA<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTACGGTACC                                                                                                                                                                                                                                                                                                                                                                                                                                 | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTATCTGAA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTTCCTTGGG<br>GTCCTTATGCT<br>CTTATAATCC<br>ATGCAAAATA<br>CCATTCGTAG<br>ATCCTTCGTAG                                                                                                                                                                                                                       |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3251<br>3301<br>3451<br>3551<br>3601<br>3651<br>3701<br>3751<br>3801<br>3901<br>3901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAT<br>ATTCTTCCA                                                                                                                                                                                                                                                                                                            | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CGACTTGGTTT<br>TCGATTATAT                                                                                                                                                                                                                                                                                                                                                          | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTACTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>GACCTGACT                                                                                                                                                                                                                                                                          | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGCA<br>AGTCAAGATT<br>TTCGGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTATTTTTAC                                                                                                                                                                                                                                                                                                                                                                                                                    | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTATCTGAA<br>ACTAACTATTT<br>ATATGCTGCT<br>GTTCTATAAACC<br>ATGCAAAATA<br>CCATTCGTAG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>TTTTAAAACC                                                                                                                                                                                                                                    |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3301<br>3451<br>3551<br>3651<br>3651<br>3651<br>3701<br>3751<br>3801<br>3851<br>3901<br>3951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGGTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAT<br>ATGTGACGCA<br>AATTCACAAT<br>TTATTTTCAC                                                                                                                                                                                                                                                                                            | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>ATTCGGTTGGTTT<br>TCGGTTGGTTT<br>TCGGTTATAT<br>ATTTATTTT                                                                                                                                                                                                                                                                                                                                                        | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>GACCCTGACT<br>TTATACTGGA<br>CTATATATAT                                                                                                                                                                                                                                             | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGCA<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTATTTTAC<br>CTATTATAACG                                                                                                                                                                                                                                                                                                                                                                                                      | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAACG<br>GTTCTTTGGG<br>GTCTTATAATCC<br>ATGCAAAATA<br>CCATTCGTAG<br>ATCTGTTCGG<br>TTTTAAAACC                                                                                                                                                                                                                       |
| 3001<br>3051<br>3101<br>3251<br>3201<br>3251<br>3301<br>3401<br>3551<br>3651<br>3651<br>3701<br>3751<br>3801<br>3901<br>3951<br>4001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAATAGCTAT<br>ATGTGACGCA<br>AATTCACAAT<br>TTATTTTCAC                                                                                                                                                                                                                                                                              | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CGACATCAGC<br>GGGTTGGTTT<br>TCGATTATAT<br>TTGTTAAGCT<br>AATTCOTTT                                                                                                                                                                                                                                                                                                                  | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGGTCACAA<br>AAAGCGGGAT<br>GACCCTGACT<br>TTATACTGGA<br>CTATATATAT<br>AAATATATA                                                                                                                                                                                                                                             | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGCA<br>AGTCAAGATT<br>TCGTGATGACA<br>AACAACTTAT<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTATTTTAC<br>CTTATAAACG<br>AGACGTCCTA                                                                                                                                                                                                                                                                                                                                                                                                      | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ACAACTAGTT<br>ACAACAAAACG<br>GTCCTTGGG<br>GTCTTATAACC<br>ACGTTCGTGG<br>ATCTGTTCGG<br>TTTTAAAACC<br>ACAACTTCT                                                                                                                                                                                                                         |
| 3001<br>3051<br>3101<br>3201<br>3201<br>3301<br>3351<br>3401<br>3551<br>3651<br>3701<br>3751<br>3801<br>3951<br>4001<br>4051<br>40051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GCTGGTGACC<br>TCTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGCTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAAATA<br>AGCTGGTGT<br>ACTCTCTGTT<br>AGCTGGGTAA<br>AATTGACACAAT<br>TTATTTCAC<br>CATGTAACTG<br>TTTATTACTG<br>ATTCACACG                                                                                                                                                                                                                                                                               | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATTATAT<br>ATTTATTTT<br>TTGTTAAGCT<br>AATTTCCTTT                                                                                                                                                                                                                                                                                                                  | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>GACCCTGAC<br>TTATACTGGA<br>CTATATATA<br>GTAATATAA<br>AATTATAATA                                                                                                                                                                                                                    | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGCACAGATT<br>TCGTGATGAC<br>CTATCTCACA<br>GTTTCCGCAA<br>TGTAGGGTAC<br>CTATATAACG<br>AGACGTCCTA<br>AATAACAAGT                                                                                                                                                                                                                                                                                                                                                                                                       | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAAACG<br>GTTCCTTGGG<br>GTCTTATGGT<br>CTTATAATCC<br>ATGCAAAATA<br>CCATTCGTAG<br>TTTTAAAACC<br>TTTAAAATAA                                                                                                                                                                                                          |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3301<br>3401<br>3551<br>3551<br>3601<br>3551<br>3601<br>3751<br>3851<br>3901<br>3951<br>4001<br>4051<br>4101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTA<br>AGAGAAATAT<br>AAATAGCAAT<br>TTATTTCACC<br>CATGTAATTT<br>TTATTACTG<br>ATTCACGCA                                                                                                                                                                                                                                                                  | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>GTTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATTATAT<br>TTGTTAAGCT<br>AATTTCCTTT<br>TTAAGGCGCT                                                                                                                                                                                                                                                                                                  | AACTGAACCA<br>ATGCAGACCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGGTACAA<br>AAAGCGGGAT<br>GACCCTGACT<br>TTATACTGGA<br>AAATATAAAA<br>AATTATAATA<br>CCTGAGGTAC                                                                                                                                                                                                                                | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTATGGGTAC<br>CTATATAACG<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT                                                                                                                                                                                                                                                                                                                                                                                         | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTGCG<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAAACG<br>GTCCTTGGG<br>GTCTTATAATCC<br>ATCCGTTCG<br>ATCTGTTCGG<br>TTTTAAAACC<br>ACAACTTCT<br>TTTAAAATAA<br>GTAACCATTC                                                                                                                                                                                           |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3301<br>3401<br>3551<br>3601<br>3551<br>3601<br>3751<br>3851<br>3901<br>3951<br>4001<br>4051<br>4101<br>4151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAGTGAACGCA<br>AATTCACCAAT<br>TTATTTCAC<br>CATGTAATTT<br>TTATTACTG<br>ATCAGGCAA<br>AAATTAACT                                                                                                                                                                                                                                                    | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATTATTT<br>TTGTTAAGCT<br>AATTTCCTTT<br>TTAAGGCGCT<br>CGATGGTCT                                                                                                                                                                                                                                                                                       | AACTGAACCA<br>ATGCAGACCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTG<br>GGCTGCCGAGA<br>CCTACATTG<br>GGCTGCCGGT<br>CGAAATGATG<br>GGTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>GACCCTGACT<br>TTATACTGGA<br>CTATATAATA<br>AATTATAATA<br>CCTGAGGTAC<br>TAATACTGT                                                                                                                                                                                                     | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTATCTCACA<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATGAT                                                                                                                                                                                                                                                                                                                                                                                        | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTGCG<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGATTAGCTGA<br>ACAACTATTT<br>ACAAACAATA<br>CCATTGTTAGCT<br>CTTATAAACC<br>ATCTGTTCG<br>ATCTGTTCG<br>ACAAACATTT<br>TTTAAAATAA<br>GTAAACATTT<br>TTGTTATACC                                                                                                                                                                                                        |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3301<br>3451<br>3551<br>3551<br>3601<br>3551<br>3601<br>3651<br>3701<br>3881<br>3901<br>3951<br>4001<br>4051<br>4101<br>4151<br>4201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>GATGAAATT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAGTGAAATAT<br>AAGTGAAATAT<br>ATTCTCACAAT<br>TTATTACTG<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATAG<br>TTAATAACT                                                                                                                                                                                                                                      | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGACG<br>GGGCTGGACG<br>TTTACATTCT<br>GGGGCTGGACG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATGATTT<br>ATTTATTTT<br>TTGTTAAGCC<br>AATTTCCTTT<br>TAAGGCGCT<br>CGATGGTCT<br>AAAGTCCTC                                                                                                                                                                                                                                                                                       | AACTGAACCA<br>ATGCAGACCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAATGATG<br>GGTGACATAT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>GACCCTGACT<br>TTATACTGGA<br>CTATATATAA<br>AATTATAATA<br>CCTGAGGTAC<br>TAAGTACTGT<br>TAATCACTT                                                                                                                                                                                                     | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA                                                                                                                                                                                                                                                                                                                                                                            | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTGCG<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTATCTGAA<br>ACAACTATTT<br>ATATGCTGGCT<br>GTCCTTGGG<br>GTCCTTAGGG<br>GTCCTTATGCT<br>CTTATAAACC<br>ATCCGTTCGG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>CAAACATTCT<br>TTTAAAATAA<br>GTAAACATTT<br>TTGTTATACT<br>ATTTACTGA                                                                                                                                     |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3251<br>3301<br>3451<br>3551<br>3601<br>3651<br>3651<br>3701<br>3751<br>3801<br>3951<br>3901<br>3951<br>4001<br>4051<br>4101<br>4151<br>4201<br>4251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>GATGAAATA<br>GATGAAATAT<br>AAGTGACGCA<br>AATTCACCAAT<br>TTATTACTG<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATAG<br>TTAATTAGC<br>TAAATTGC                                                                                                                                                                                                                                                                      | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGATG<br>GGGGCTGACG<br>TTTACATTCT<br>GGGGCTGGATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATGATCA<br>ATTTCCTTT<br>TTGATGACCT<br>AAATTTCCTTT<br>TAAGGCGCT<br>AAAAGTCGTC<br>GCTTAATTTA<br>TTCGTCAACTCA<br>CACATCAACTCA<br>TACAACATCA                                                                                                                                                                                                                                      | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>GGTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATATA<br>CTTGAGGTAC<br>TAAGTACTGT<br>TAATTAACTTT<br>TCAAATCAGG<br>AATTAACAGG                                                                                                                                                                                                 | GCTGTATGTG<br>GCCGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>AATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTAATGAGCA<br>GCATTGCAGCA<br>AGCACACATAT<br>GTTCCGCAA<br>AGACGTCCTA<br>AGTAACAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTGTTCCTTA                                                                                                                                                                                                                                                                                                                                                                                                      | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTATCTGAA<br>ACAACTATTT<br>ATATGCTGGCT<br>ACAAAAAACG<br>GTTCCTTGGG<br>GTCTTATAATCC<br>ATGCAAAATA<br>CCATTCGTAGG<br>ATCTGTTCGGG<br>TTTTAAAACC<br>TTTAAAATAA<br>GTAACATTT<br>TTGTTATACT<br>ATTTACTGA<br>AATTTTACGAG<br>ACTGTTTGA                                                                                                                                   |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3251<br>3301<br>3451<br>3551<br>3601<br>3651<br>3701<br>3651<br>3701<br>3881<br>39951<br>4001<br>4051<br>4101<br>4151<br>4201<br>4251<br>4301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GCTGGTGACC<br>TCTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTA<br>AATAGCAAT<br>TAATAGCAAT<br>TTATTACTG<br>ATTCACGACA<br>AAAATTAACT<br>TTATTATTAG<br>TTAATTATTA<br>TAAAACTTAT                                                                                                                                                                                                                                       | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGAT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATTATAT<br>ATTTATTTT<br>TTGTTAAGCT<br>TCGATGGTCT<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGGAAAATG<br>AAAAGTCGTC                                                                                                                                                                                                                                                          | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTACTGAGCG<br>CGAAATGATG<br>GGCTGCCGGT<br>CGAAATGAGC<br>CGAAATGACAA<br>AGTCACTATT<br>GCTGATCACAAT<br>CACACTGAGCAAA<br>AATTATAATA<br>CCTGAGGTAC<br>TAATATAACTTT<br>TCACAATCAGG<br>AATAAGCAAAA<br>AGTCCAATCAGA                                                                                                                                                                         | GCTGTATGTG<br>GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>AAGTGGACCC<br>AGGTGGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GCATTGCAGGA<br>AGCACTCTA<br>AGCACCTCAA<br>AGCACCTCAA<br>AGCACCTCAA<br>AGTACGGGTAC<br>CTATTATAACG<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTTTGCGCGT<br>GTTTAGGCTA                                                                                                                                                                                                                                                                                                                              | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>CGTAAGCTTG<br>TGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTATCTGAA<br>AGTATCTGAA<br>ACAACTATTT<br>ATATGCTGCT<br>GTCCTTGGG<br>GTCCTTATGCT<br>ATGCAAAATA<br>ACATCTGTTCGG<br>ATCCGTTCGG<br>TTTTAAAATAA<br>GTAAACATTT<br>TTGTTATACT<br>ATTTACTTGA<br>ACATGTTTGA<br>ACATGTTTTCAAA                                                                                                                                              |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3301<br>3451<br>3551<br>3601<br>3651<br>3701<br>3651<br>3701<br>3851<br>3901<br>3951<br>4001<br>4151<br>4201<br>4251<br>4301<br>4251<br>4301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGGTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTA<br>AATGGACGCA<br>AAATTCACAAT<br>TTATTATCAC<br>ATTCAGGCAA<br>AAATTAACT<br>TTATTATTAG<br>TTAAATGTC<br>AAAACTTAT<br>TTATTATTA<br>TTATTATTT<br>AAATGTCACAC                                                                                                                                                                                             | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATTATAT<br>ATTTATTTT<br>TTGTTAAGCT<br>AATTTCCTTT<br>TTAAGGCGCT<br>AAAAGTCGTC<br>GCTTAATTA<br>TAGAAAAATG<br>AAATAGTTCA                                                                                                                                                                                                                                 | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>GGCTGCCGGT<br>CTATTGAGCA<br>AGACCACAA<br>AAAGCGGGAT<br>GACCTGACTATT<br>GTAATATAAA<br>CTTGAGGTAC<br>TAATATAAAA<br>AATTAACTGT<br>TATTAACTGT<br>TATTAACTGT<br>TATTAACTGT<br>TATTAACTGT<br>TATTAACTGG<br>AATAAGCAAA<br>AGTCCAATGAC                                                                                                                           | GCTGTATGTG<br>GCCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GCATTGCAGGCA<br>GCATTGCAGACA<br>AGCACTTAT<br>GTTTCCGCAA<br>AGCACTTAT<br>GTTTCCGCAA<br>AGTACACTTAT<br>AGTACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTTTGCGCGT<br>GTATAAAATG<br>GTATAAAATG<br>GTATAACAAGT                                                                                                                                                                                                                                                                                                              | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTAACTATTT<br>ATATGCTGGT<br>GTCCTTGGG<br>GTCTTATAATCC<br>ATGCAAAATA<br>CCATTCGTAG<br>ACTATCTGTCG<br>TTTTAAAATAA<br>GTAAACATTT<br>TTGTTATACT<br>ATTTACTTGA<br>ACATGTTTT<br>ACATGCAAA                                                                                                                                                               |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3301<br>3451<br>3551<br>3651<br>3751<br>3651<br>3751<br>3801<br>3901<br>3951<br>4001<br>4151<br>4201<br>4251<br>4301<br>4251<br>4301<br>4401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTA<br>AATAGCAAT<br>TAATTCACAAT<br>TTATTATCAC<br>ATTCAAGCAA<br>AAAATTAACT<br>TTATTATTAT<br>TTATTATTT<br>AAATTGTCA<br>AAAACTTAT<br>TTATTATTT<br>AAATTTAAG<br>CATTCACTAC                                                                                                                                                                   | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TTAAGCCG<br>GGTTGGTCT<br>AAAAGTCGTC<br>ACATCACA<br>AATAGTCA<br>TAGAAAAATG<br>AAATAGTCA<br>AAATAGTCA<br>AAATAGCTATA<br>CAGCCTATA                                                                                                                                                                                                                          | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>AGTCCACTATT<br>GCTGGTCACAAA<br>AAAGCGGGAT<br>GACCCTGACT<br>TTATACTGGA<br>CTATATATAT<br>CTAATATAAA<br>AATTATAATA<br>CCTGAGGTAC<br>TAATATACTG<br>TATTAACTGT<br>TATTAACTG<br>AATAAGCAAA<br>AGTCAATGACA<br>AACTTAGCAA<br>TATCTCCTC                                                                                                             | GCTGTATGTG<br>GCCGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>AAGGTGGTCTT<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GCATTGCAGGCA<br>GCATTGCAGAC<br>AGCACTTATA<br>GTTCCGCAA<br>AGCACTCTA<br>AGCACTCTA<br>AGCACTCTA<br>AGCACTCCTA<br>TATAAAATTAAT<br>ACTCGTGATT<br>GTTTAGGCCA<br>GTATAAAAG<br>AGTAGATAC<br>CTTTACCTCA                                                                                                                                                                                                                                                                                                                                 | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTAACTATT<br>ATATGCTGGT<br>ACAACATATT<br>ACAACAAAAACG<br>GTCCTTGGG<br>GTCTTATAATCC<br>ATGCAAAATA<br>CCATTCGTAG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>ATCTGTTAAACC<br>ACAACATTT<br>TTTAAAATAA<br>GTAAACATTT<br>TTGTTATACT<br>ATTTACTTGA<br>ACATGTTTT<br>CATTTGCAAA<br>GAACCAAC                                                                            |
| 3001<br>3051<br>3101<br>3251<br>3201<br>3251<br>3301<br>3451<br>3551<br>3651<br>3651<br>3651<br>3651<br>3751<br>3801<br>3951<br>4001<br>4051<br>4101<br>4251<br>4301<br>4251<br>4301<br>4451<br>451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGGCTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>AATAGCTAT<br>TATTATTT<br>TTATTACTG<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAATTGTC<br>AAAACTTAT<br>TTATTATTA<br>TTATTATTT<br>AAATTTAAG<br>CATTCAGTAG<br>AAAACTTAA                                                                                                                                                          | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATTATAT<br>TTGTTAAGCC<br>GGGTTGGTCT<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGAAAAATG<br>AAATAGTCA<br>AAATAGTCA<br>CAGCATTGCA<br>CATCTATTCCC                                                                                                                                                                                                                 | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TGTTGGCTTA<br>TACCAGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTCCACTATT<br>GCTGGATATTC<br>CGTGTCACAAA<br>AAAGCGGGAT<br>GACCCTGACT<br>TTATACTGGA<br>CTATATATAT<br>GTAATATAAA<br>AATTATAAAA<br>CTGAGGTACT<br>TATTAACTGG<br>AATAAGCAAA<br>AGTCAATGAC<br>AACTTAGCAA<br>TATCTGCTGT                                                                                                             | GCTGTATGTG<br>GCCGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>AGGTGGTCTT<br>TTCAGAGAACC<br>AGGTGGTCTT<br>TTCAACATTT<br>GAGCACTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GCATTGCAGCA<br>GCATTGCAGA<br>AGCACCTCACA<br>AGCACCTCACA<br>AGCACCTCACA<br>AGCACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTTTGCGCGT<br>GTTTAGGCTA<br>GTATAAAATG<br>TAATAACAAGT<br>CTTACGTCATA                                                                                                                                                                                                                                                                                                          | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTAACTATT<br>ACAACTATTT<br>ACAACAACTGCT<br>CTTATAAACG<br>GTCCTTGGG<br>GTCTTATGCTGG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>ACATCTCT<br>TTTAAAATAA<br>GTAACATTT<br>TTGTTATACT<br>ATTTACTTGA<br>ACATGTTTT<br>CATTTGCAAA<br>GGATGCAAG<br>AAATAACAGC<br>CTGTTATTCC                                                                                             |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3301<br>3451<br>3551<br>3551<br>3601<br>3551<br>3601<br>3751<br>3851<br>3901<br>3951<br>4001<br>4051<br>4101<br>4151<br>4251<br>4301<br>4251<br>4301<br>4251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTA<br>ACTCTCTGTA<br>ACTCACCAA<br>AAATCACAAT<br>TTATTTCAC<br>AAAATCACAA<br>AAAATCACAA<br>TTATTATTAT<br>TTATTATTAG<br>CATTCAGGCA<br>AAAATCACTA<br>TTATTATTAT<br>TTATTATTAG<br>CATTCAGTAG<br>AAAATCGACA                                                                                                                                     | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTT<br>TCGATTGACT<br>AATTTCCTTT<br>TTGTTAAGCCT<br>AAAGTCGTC<br>AAAAGTCCTA<br>AATAGTTCA<br>TAACCCTATA<br>CACCTATAA<br>CATTTCGCT                                                                                                                                                                                                                                                             | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TGTTGGCTTA<br>TACCAGATCA<br>TACCAGATA<br>GCTCCAGAA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACCAAA<br>GTCCACTATT<br>GCTGATATTC<br>CGTGTCACAAA<br>AAAGCGGGAT<br>GACCCTGAC<br>TTATACTGGA<br>CTATATATAA<br>AATTATAAAA<br>CCTGAGGTAC<br>TATTAACTTT<br>TCAAATCAGG<br>AATAAGCAAA<br>AGTCAATGAC<br>AACTTAGCAA<br>AACTTAGCAA<br>CTACACTGT<br>TTCCACATCGT                                                                                                  | GCTGTATGTG<br>GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGCA<br>GCATTGCAGCA<br>GCATTGCAGCA<br>AGCACGTCCTA<br>AGACGTCCTA<br>ATTACCGTGAT<br>TTGTGCCTTA<br>TTTTGCGCGT<br>GTTTAGGCTA<br>GTATAAATG<br>GTATAAATG<br>GTATAGATAC<br>CGTAAAACTAC<br>CGTAAAACTAC                                                                                                                                                                                                                                                                                                               | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTGCG<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGGAC<br>CGTTCAATTA<br>AGTATCTGAA<br>AGTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAAACG<br>GTCCTTGGG<br>GTCCTTGGG<br>GTCTTATAATCC<br>ATGCAAAATA<br>CCATTCGTAGG<br>ATCTGTTCGG<br>TTTTAAAATAA<br>GTAAACATTT<br>TTGTAATACT<br>ATATACAGA<br>ACATGTTTTT<br>CATTTGCAAA<br>TGGATGCAAG<br>AAATAACAGC<br>GTGTTATTGGT                                                                                       |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3301<br>3351<br>3401<br>3551<br>3601<br>3551<br>3601<br>3751<br>3851<br>3901<br>3951<br>4001<br>4051<br>4101<br>4151<br>4251<br>4301<br>4351<br>4351<br>4401<br>4551<br>4551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>ATGTGACGCA<br>AATTCACAATT<br>TTATTATCAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAAATTGTC<br>CAAAAACTTAT<br>TTATTATTAT<br>AAATTTAAG<br>CATTCAGGAC<br>AAAATGGAC<br>AAAATGGAC<br>ACATCCAGTAG<br>AAAATGGAC                                                                                                       | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATGATCA<br>TAAGGCGCT<br>AAATTCCTTT<br>TTAAGGCGCT<br>AAAAGTCCT<br>AAAAGTCCT<br>AAAAGTCCA<br>CAGCATTGCA<br>CAGCATTGCA<br>AATGTGTTAA<br>CAGCATTGCA                                                                                                                                                                                                      | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTG<br>GGCTGCCGAGA<br>CCTACATTG<br>GGCTGCCGGT<br>CGAAATGATG<br>GGCACGGGAT<br>GACCATGACT<br>GACCATGACA<br>CTATACTGGA<br>CTATACTGGA<br>CTATACAGGA<br>AATTATAATA<br>AATTATAATA<br>CCTGAGGTAC<br>TAATAAGCAAA<br>AGTCAATGAC<br>AACTTAGCAA<br>TATCTGCTGT<br>GTATACAGAA<br>CCTTACCAGA                                                                                                                             | GCTGTATGTG<br>GCCGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>AGCACAGACA<br>TTCCGTGATGAC<br>TTACTTCACA<br>AACAACTTAT<br>GTTACGGGTAC<br>CTATTTTACC<br>CTATTTTACC<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTCCTTA<br>GTTTAGGCTA<br>GTATAAAATG<br>TAGTAGATAC<br>CTTACGTAC<br>CGTAAAACAT<br>CCTTACGTAC<br>CGTAAACAT                                                                                                                                                                                                                                              | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTGCG<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ACAAACTATTT<br>ACAAAAAAACG<br>GTCCTTGGG<br>GTCCTTGGG<br>GTCTTATACC<br>ACCATCGTTCG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>TTTTAAAATAA<br>GTAAACATTT<br>TTGTTATACT<br>ATTTACTGAA<br>GCATGCCAGG<br>AAATAACAGC<br>GTGTTATTGG<br>TGATGTGAC<br>CGTGTTGCT                                                                           |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3301<br>3251<br>3301<br>3451<br>3551<br>3601<br>3551<br>3601<br>3751<br>3851<br>3901<br>4001<br>4051<br>4101<br>4151<br>4251<br>4351<br>4351<br>4401<br>4451<br>4551<br>4651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AGATGAAATAT<br>AAGTGACGCA<br>AATTCACAATT<br>TTATTATCAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAAATTGC<br>AAAAACTTAT<br>TTATTATTAT<br>AAATTTTAAG<br>CATTCAGTAG<br>AAAAATGACC<br>ACTGGTCACTAG<br>CACTAGTCCG<br>CACTAGTCCG                                                                                                                 | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGGTG<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATTATATT<br>TTGTTAAGCC<br>AATTTCCTTT<br>TAAGGCGCT<br>AAAAGTCGTC<br>GCTTAATTA<br>TAGGAAAATG<br>AAATAGTTCA<br>TAACCCTATA<br>CAGCATTGCA<br>CTTTATTGCC<br>AATTGGCCACCC                                                                                                                                                                                   | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTAATGAGCG<br>CGAAATGATG<br>GGTGCCGGT<br>CGAAATGATG<br>GCTGATATTC<br>CGTGTCACAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAACCGGGAT<br>CTAATATAAAA<br>AATTATAATA<br>CCTGAGGTAC<br>TAAGTACTGT<br>TAATAAGCAAA<br>AGTCAATGAC<br>AACTTAGCAA<br>AACTTACCAG<br>CAATACCAT<br>CACATCGCTC<br>CTCCCACCTC<br>CTCCCACCTC                                                                    | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AGACATCTA<br>ATTACGGAT<br>AGACGTCCTA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTCCTTA<br>TTTTGCGCGT<br>TTAAGATAC<br>GTATAAAATG<br>TAATAACAAGT<br>CTTTACGTAC<br>GTATAAAATG<br>TAGTAGATAC<br>CTTTACGTAC<br>CGTAAAACAT<br>GCTTAGCTCT<br>CGCCGCTTC                                                                                                                                                                                                                     | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTGCG<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTATCTGAA<br>AGTAACTATTT<br>ATATGCTGCT<br>GTCCTTGGG<br>GTCTTATAACC<br>ACAAAAAACG<br>ATCCGTTCGG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>TTTTAAAATAA<br>GTAAACATTT<br>TTGTTATACT<br>ATATACTGA<br>ACATGTTTAT<br>ATATTACTGA<br>ACATGTTTATACT<br>ATATTACAGG<br>ACATGTTTATACC<br>ACAATGTTTTT<br>ATTTACAGG<br>ACATGTTCGG<br>TGATGCAAG<br>AAATAACAGC<br>GTGATGCACG |
| 3001<br>3051<br>3101<br>3251<br>3251<br>3301<br>3251<br>3301<br>3551<br>3401<br>3551<br>3601<br>3551<br>3601<br>3751<br>3801<br>3751<br>3801<br>3951<br>3901<br>3951<br>4001<br>4051<br>4101<br>4251<br>4301<br>4351<br>4401<br>4351<br>4401<br>4551<br>4601<br>4651<br>4701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTGGTGACC<br>TCTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>AAGTGAAATAT<br>TTATTACTG<br>ATTCACGACAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAAATTGTC<br>AAAAATTAACT<br>TTATTATTAG<br>TTAAATTGTC<br>AAAAACTAAT<br>TTATTATTAT<br>AAATTGTCACA<br>AAAATTGACA<br>AAAATTGACA<br>AAAATTGACA<br>AAAATTGACA<br>AAAATTGACA<br>AAAATTGACA<br>AAAATTGACA<br>AACTTGTCACA<br>ACTTGTCACA<br>GGGATCACTA | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGACG<br>TTTACATTCT<br>GGGGCTGACG<br>TTTACATTCT<br>GGGGCTGGATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATGATATA<br>ATTTCCTTT<br>TTGTTAAGCC<br>AATTTCCTTT<br>TAAGGCGCT<br>GCTTAATTG<br>CACATGGC<br>AAATGTCCA<br>AAAAGTCCTA<br>CAGCATTGCA<br>CATTCCTATA<br>CAGCATTGCC<br>AATGTGTTAA<br>CAGCATTGCC                                                                                                                                                                        | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTAATGAGCG<br>CGAAATGATG<br>GGTGACATAT<br>GCTGATATTC<br>CGTGATCACTAA<br>AAACCGGGAT<br>TTATACTGGA<br>CTATATATATA<br>CTGAGGTAC<br>TAAGTACTGT<br>TAAATATAAA<br>AATTATAATA<br>CCTGAGGTAC<br>TAAGTACTGT<br>TAAAGCAAA<br>AGTCAATGAC<br>AACTTAGCAA<br>AACTTAGCAA<br>TATCTGCTGT<br>GTATACAGAA<br>CCTTCCGCTGC<br>GAGTATCCGC<br>GAGTATCCGC                                                    | GCTGTATGTG<br>GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTAATGTGCAGC<br>GCATGGAGGTGCA<br>GCATGCGGCA<br>TGTCCGCAA<br>AGCACGTCCTA<br>AGTACGTCACA<br>CTTACGTGATT<br>TTGTTCCTTA<br>TTGTTCCTTA<br>TTGTTCCTTA<br>TTGTTCCTTA<br>TTGTTCCTTA<br>TTGTTCCTTA<br>GTTAGGCTA<br>GTTAGGCTA<br>GCTTAGGTCT<br>CGCAAAACAT<br>GCTTAGCTCT<br>ACCACATTGC                                                                                                                                                                                                                                                                     | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTGCG<br>TTGGTTTGTG<br>CCTAAGCTTG<br>CCTAAGCTTG<br>CGTCCAGGA<br>TTGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTATCTGAA<br>ACAACTATTT<br>ATATGCTGGCT<br>GTCCTTGGG<br>GTCCTTATGGC<br>GTCCTATGCG<br>ACCATTCGTTCGG<br>ATCTGTTCGG<br>ATCTGTTCGG<br>TTTTAAAACA<br>CCATTCGTTCGG<br>TTTTAAAATAA<br>GTAAACATTC<br>TTGATAACTT<br>TTGTTATACT<br>ATTTACTGAA<br>ACAAGCTTTT<br>CATTGCAAA<br>ACAACAGC<br>GTGTTATGG<br>ACAAGCTCCA<br>GGGATGCCAG<br>AGAGCTCCCA                  |
| $\begin{array}{r} 3001\\ 3051\\ 3051\\ 3101\\ 3151\\ 3201\\ 3251\\ 3301\\ 3251\\ 3301\\ 3451\\ 3551\\ 3601\\ 3651\\ 3751\\ 3601\\ 3651\\ 3701\\ 3651\\ 3701\\ 3651\\ 3701\\ 4051\\ 4001\\ 4151\\ 4201\\ 4151\\ 4201\\ 4251\\ 4301\\ 4451\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4751\\ 4651\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4701\\ 4751\\ 4751\\ 4701\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\ 4751\\$ | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTAA<br>GATGAAATAT<br>AAATGGACGCA<br>AAATTCACAAT<br>TTATTATCAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATAG<br>TTAATTTTAG<br>CATGTCACAA<br>CACTAGTCAG<br>GGGATCACTA<br>ACGCGTTGGA                                                                                                                                                                          | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGATG<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATGATCA<br>TAAGGCGCT<br>AAAAGTCGT<br>AAAAGTCGT<br>AAAAGTCCA<br>TAACCCTATA<br>CAGCATTGCA<br>CATGTGTTAA<br>CAGCATTGCA<br>CATGTGTTAA<br>CCGTACGGCC<br>GTGCGGCCGC<br>TGCATAGCT                                                                                                                                                                         | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTAATGAGCG<br>CGAAATGACG<br>CGAAATGACG<br>CGAAATGACA<br>AGTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAAGCGGGAT<br>TTATACTGGA<br>CTATATATATA<br>CCTGAGGTAC<br>TAAGTACTGT<br>TATTAACTTT<br>TCACAATGACA<br>AAGTCAATGACA<br>AAGTCAATGACA<br>AAGTCAATGACA<br>AAGTCAATGACA<br>AAGTCAATGACA<br>CTTTCGCTGT<br>CTGCAGGTCG<br>GAGTATTCA                                                          | GCTGTATGTG<br>GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>AATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GCATGCAGCA<br>GCATTGCAGCA<br>AGCACACTTAT<br>GTTCCGCAA<br>AACAACTTAT<br>GTTCCGCAA<br>AATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATT<br>TTGTTCCTTA<br>TTTTGCGCGT<br>GTATAAACA<br>GTATAGATAC<br>CTTAAGCTCT<br>GCTAAGCTCT<br>CGCGCGTTTC<br>ACGTGACCCC                                                                                                                                                                                                                                                                                       | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>CCTAAGCTTG<br>TGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTATCTGAA<br>AGTAACTATTT<br>ATATGCTGCT<br>GTCCTTGGG<br>GTCCTTATGCT<br>CTTATAAACC<br>ACAACTATT<br>TTAAAATAA<br>GTAAACATTC<br>TTTAAAATAA<br>GTAAACATTC<br>TTTAAAATAA<br>GTAAACATTC<br>TTTAAAATAA<br>GTAAACATTC<br>ATTTACTTGA<br>ACATGTTTT<br>CATTTGCAAA<br>TATTTTGCAAA<br>GTGATGCAAG<br>AAATAACAGC<br>GTGTTATGG<br>GGGATGCCAC<br>AGAGCTCCCA<br>TAAATAGCTT          |
| $\begin{array}{r} 3001\\ 3051\\ 3051\\ 3101\\ 3151\\ 3201\\ 3251\\ 3301\\ 3251\\ 3301\\ 3351\\ 3401\\ 3551\\ 3601\\ 3751\\ 3651\\ 3701\\ 3651\\ 3701\\ 3651\\ 3701\\ 3651\\ 3701\\ 4051\\ 4001\\ 4151\\ 4201\\ 4251\\ 4301\\ 4251\\ 4301\\ 4251\\ 4301\\ 4451\\ 4451\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4751\\ 4651\\ 4701\\ 4751\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\$ | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>GCTGTGCTTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTAA<br>GATGAAATAT<br>AAATAGCTAT<br>TTATTATCAC<br>AATCACAAT<br>TTATTATCAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAG<br>TTAAATGTC<br>AAAACTTAT<br>TAATTTAAG<br>CATTCAGTAG<br>AAAAATGAC<br>ACATGTCACA<br>ACCTGGTCACA<br>ACCTGTCACA<br>CACTAGTCGG<br>GGGATCACTA                                                                             | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGACG<br>GGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATTATAT<br>TTGTTAAGCT<br>TCGATGGTCT<br>AAAAGTCGTC<br>GCTTAATTA<br>TAGAAAAATG<br>AAATAGTCCA<br>CACCTATA<br>CAGCATTGCA<br>CATGTGTTAA<br>CGGCACGGCC<br>GTGCGGCCGC<br>TGCATAGCTT<br>TGGCATAGCC                                                                                                                                                             | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TGTTGGCTTA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTACTGGCGGT<br>CGAAATGATG<br>AGAAGACAAA<br>GTTCACTACT<br>GCTGATATTC<br>CGTGTCACTAAT<br>GCTGATCACTAAT<br>GTAATATAAA<br>CTTGAGGTAC<br>TATTAACTGT<br>TATTAACTGT<br>TATTAACTGT<br>TATTAACTGC<br>AACTTAGCAA<br>AGTCAATGACA<br>AACTTAGCAA<br>AGTCAATGACA<br>AACTTAGCAA<br>AGTCAATGACA<br>AACTTAGCAA<br>CATTACGCGT<br>TTCACATCGT<br>GTATACAGAA<br>CCTTCGCTGT<br>CTGCAGGTCG<br>GAGTATTCTA    | GCTGTATGTG<br>GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>AATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GCATTGCAGGC<br>AGTCAAGATC<br>TACTTCACA<br>AACAACTTAT<br>GTTTCCGCAA<br>AGCACGTCCTA<br>AGTACGTCATA<br>TTTTGCGCGT<br>GTTTAGGCTA<br>GTATAACAAG<br>GTATAACAAG<br>GTATAACAAG<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAAC<br>GTATAACAC<br>GTAAACAC<br>GCTTAGCTCT<br>CGCGCGTTTC<br>ACCATATGG<br>TAGTGTCACC<br>GTGAAATTGT<br>TAAACTCAC | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTATCTGAA<br>AGTAACTATTT<br>ATATGCTGGT<br>GTCTTATAGCT<br>CTTATAAACC<br>ACATCCTTGGG<br>GTCTTATAATCC<br>ACATCCTCGG<br>TTTTAAAATAA<br>GTAACATTT<br>TTGTTATACT<br>ATTTACTTGA<br>ACATGTTTT<br>CATTGCAAA<br>TGATGCAAG<br>ACATGTTGT<br>CATTGCAAA<br>TGATGCAAG<br>CAAACACC<br>GTGTTATAGC<br>GGGATGCAAG<br>AGAGCTCCCA<br>TAAATAGCTT<br>TATCCGCTCA                         |
| $\begin{array}{r} 3001\\ 3051\\ 3101\\ 3151\\ 3201\\ 3251\\ 3301\\ 3351\\ 3401\\ 3551\\ 3551\\ 3651\\ 3751\\ 3651\\ 3751\\ 3801\\ 3751\\ 3801\\ 3951\\ 4001\\ 4151\\ 4201\\ 4251\\ 4301\\ 4251\\ 4301\\ 4251\\ 4301\\ 4551\\ 4501\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4651\\ 4651\\ 4651\\ 4601\\ 4651\\ 4651\\ 4651\\ 4651\\ 4651\\ 4651\\ 4651\\ 4651\\ 4651\\ 4651\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\ 4851\\$ | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTA<br>AATATAACTA<br>TAATAGCAAT<br>TAATTCACAAT<br>TTATTATTAC<br>ATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAT<br>TTATTATTAT<br>AAATTCAGGCAA<br>AAAATTAACT<br>TTATTATTAT<br>AAATTCAGTAG<br>CATTCAGTAG<br>CACTAGTCGG<br>GGGATCACTA<br>CACTAGTCGA<br>GCGTAATCA<br>CACTACTCACA                                                                      | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTACTAT<br>TACGGAAATG<br>ATTCGCTCA<br>CAACATCAGC<br>GGGTTGGTTT<br>TCGATTATAT<br>TTGTTAAGCT<br>AATTTCCTTT<br>TTAAGGCGCT<br>AAAAGTCGTC<br>GCTTAATTTA<br>TAGAAAAATG<br>AAATAGTCCATA<br>CAGCATTGCA<br>AATGTGTTAA<br>CCGTACGGGC<br>GCGCACGGCCGC<br>TGCATAGCT                                                                                                                                                                    | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGGATCA<br>TATCAAGAATG<br>TGTTAGAATG<br>TGTTAGAATG<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTCCACTATT<br>GCTGATATTC<br>CGTGTCACTAAT<br>GCTGATCACTAAT<br>GACCCTGAGTAC<br>TATATATAAA<br>AATTATAAAA<br>AATTATAAAA<br>CCTGAGGTAC<br>TATAAACAGCAA<br>AACTCAGCAAA<br>AACTAGCAAA<br>AACTAGCAAA<br>AACTAGCAAA<br>AACTAGCAAA<br>AACTAGCAAA<br>CACATCACGT<br>GTATACAGCAA<br>CACATCACGT<br>GTATACAGCAA<br>CCTTCCTCT<br>CTGCAGGTCG<br>GAGTATTCA | GCTGTATGTG<br>GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAAATCC<br>AGGTGGACCT<br>AGGTGGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GCATTGCAGCA<br>GCATTGCAGCA<br>AGCACTTAT<br>GTTTCCGCAA<br>AGCACTCCTA<br>AGCACTCCTA<br>AGTAGGGTAC<br>CTATAAACAG<br>AGTAGACATC<br>GTTTACGTCA<br>GTTTACGTCA<br>GTTTACGTCA<br>GTTTACGTCA<br>CGTAAACT<br>CGTTAGCTCT<br>CGCGCGTTTC<br>ACCATATGG<br>TAAGTGTAA                                                                                                                                                                                                                                                                           | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTCGC<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TGAGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTAACTATT<br>ATATGCTGGT<br>ACAAAAAACG<br>GTTCCTTGGG<br>GTCTTATAATCC<br>ACAACTATT<br>CTTATAAACC<br>ACAACTTCT<br>TTTAAAATAA<br>CCATCGTCG<br>ACCAACTTCT<br>TTTAAAATAA<br>GTAAACATTT<br>TTGTTATACT<br>ATTTACTTGA<br>ACATGTTTT<br>CATTGCAAA<br>GAAGCTCCCA<br>GGGATGCACG<br>AGAGCTCCCA<br>TAAATAGCTT<br>TACCGCTCA<br>AGCCTGCGCCCC                                     |
| $\begin{array}{r} 3001\\ 3051\\ 3051\\ 3101\\ 3251\\ 3201\\ 3251\\ 3301\\ 3251\\ 3301\\ 3351\\ 3401\\ 3551\\ 3601\\ 3551\\ 3601\\ 3551\\ 3601\\ 3751\\ 3601\\ 3751\\ 3801\\ 3901\\ 3951\\ 4001\\ 4051\\ 4001\\ 4051\\ 4201\\ 4351\\ 4401\\ 4451\\ 4501\\ 4451\\ 4501\\ 4551\\ 4601\\ 4751\\ 4801\\ 4851\\ 4801\\ 4851\\ 4801\\ 4851\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\ 4801\\$ | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTA<br>ACTCTCAGTA<br>AAATGACCAA<br>AAATTAACT<br>TTATTATTAC<br>TTATTATTAC<br>TTATTATTAC<br>TTATTATTAC<br>TTATTATTAC<br>AAAATGACA<br>AAAATGACA<br>AAAATGACA<br>ACATCCACTA<br>CACTGGTCACA<br>CACTAGTCGG<br>GCGTAATCA<br>CACTCACACA<br>CCCTAATCACACA                                 | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TTGTTCGTGT<br>GGGGCTGACG<br>GTTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTA<br>TCGATTATAT<br>TTGTTAAGCCT<br>AAATTCCTTT<br>TTAAGGCGCT<br>GGATGGTTA<br>TAAGAAAATG<br>AATAGTCCA<br>CACCTATA<br>CAGCATACC<br>GTGCGGCCGC<br>GCGCATAGCTT<br>TGGTCATAGC<br>CAACATCAGC                                                                                                                                                                                                    | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TGTTGGCTTA<br>TACCAGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTTG<br>GGCTGCCGGT<br>CTATTGAGCG<br>CGAAATGATG<br>AGAAGACAAA<br>GTCCACTATT<br>GCTGGTCACAAA<br>AAAGCGGGAT<br>GACCCTGACT<br>TTATACTGGA<br>CTATATATATA<br>CTTAACTGT<br>TATTAACTGT<br>TATTAACTGT<br>TATAACTTT<br>TCAAATCAGG<br>AATAAGCAAA<br>AGTCAATGAC<br>AACTTAGCAA<br>CACTTACCAG<br>GAGTATTCT<br>CTGCAGGTCG<br>GAGTATTCTA<br>CTGCAGGCACC                                                      | GCTGTATGTG<br>GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>TTACTTCACA<br>AGCACTCCACA<br>AGCACTCCTA<br>AGACGTCCTA<br>ATTACGCGTA<br>CTTATAACAAGT<br>TAAAATTAAT<br>ACTCGTGACAT<br>GTATAACAAGT<br>GTATAACAAG<br>GTATAACAAG<br>GTATAACAAG<br>GTATAACAAG<br>CTTATGCGCCA<br>GTATAACACA<br>GTATAACAAG<br>CTTACCTCA<br>GTATAACAAG<br>CCTTACGTCC<br>CGCACATCC<br>CGCGCTTCC<br>CGCGCTCC<br>GTGAAATTGA<br>GCTTCACCC<br>GTGAAATTGA<br>GCGTTCACC                                                                                                                 | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTGCG<br>TTGGTTTGTG<br>CCTAAGCTTG<br>GCCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGGAC<br>CGTTCAATTA<br>AGTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>ACAAAAAAACG<br>GTCCTTGGG<br>GTCCTTGGG<br>GTCTTATACC<br>ACGAAACTACT<br>TTTAAAACC<br>ACCATCGTCG<br>ATCTGTCGGG<br>ATCTGTCTGA<br>ACTAACTTCT<br>TTTAAAACA<br>CAAACTTCT<br>TTTACTGGA<br>ACATGTTTT<br>CATTTGCAAA<br>TGGATGCAAG<br>ACATGTTCT<br>GGTGATGACG<br>AGAGCTCCCA<br>TAAATAGCTT<br>TATCCGCCA                          |
| $\begin{array}{r} 3001\\ 3051\\ 3101\\ 3151\\ 3201\\ 3251\\ 3301\\ 3251\\ 3301\\ 3351\\ 3401\\ 3551\\ 3601\\ 3551\\ 3601\\ 3751\\ 3601\\ 3751\\ 3601\\ 3751\\ 3801\\ 3901\\ 4051\\ 4001\\ 4051\\ 4201\\ 4251\\ 4301\\ 4451\\ 4501\\ 4551\\ 4601\\ 4551\\ 4601\\ 4751\\ 4801\\ 4651\\ 4701\\ 4851\\ 4901\\ 4951\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTA<br>AAATACCAA<br>TTATTTTCAC<br>AAATCACAA<br>AAATTAACTG<br>TTATTATTAC<br>TTATTATTAC<br>TTATTATTAC<br>TTATTATTAC<br>TTATTATTAC<br>TTATTATTAC<br>TTATTATTAT<br>AAAATTGAC<br>AAAATCACAA<br>CATTCAGGAC<br>ACATCCACAG<br>GGGATCACTA<br>CACTGGCACA<br>GCCTAATCAG<br>CATTCCACACA<br>CACTCACCACA                   | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGT<br>GGGGCTGACG<br>ATTACATTCT<br>TCCGCATGTC<br>GAATTACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CACATCAGC<br>GGTTGGTTT<br>TCGATTATTT<br>TTGTTAAGCT<br>AATTTCCTTT<br>TTAAGGCGCT<br>AAAAGTCGT<br>AAAAGTCGT<br>AAAAGTCGC<br>AATAGTTCA<br>TAACCCTATA<br>CAGCATTGC<br>AATGTGTAAAC<br>CGTACGGCCG<br>GTGCATAGCT<br>TGGTCATAGC<br>CAACATCAG<br>CACATACG<br>CACATACG<br>CAACATCAG<br>CGAAACCTGT                                                                                               | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TGTTGGCTTA<br>TTCGTGATCA<br>TATCAAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTG<br>GGCGCGCGC<br>CGAATGACG<br>AGAAGACAAA<br>GTTCACTATT<br>GCTGATATTC<br>CGTGTCACAA<br>AAGCGGGAAC<br>CTATATATAA<br>AATTATAATA<br>CCTGAGGTAC<br>TAATAACTGT<br>TATAACTGT<br>TATAACTGCA<br>AATTACAGCAA<br>AGTCAATGAC<br>AATTACCAG<br>AATAAGCAAA<br>AGTCAATGAC<br>AACTTAGCAA<br>CATTACCTG<br>GAGTATTCA<br>CTGCAGGTCG<br>GAGTATTCA<br>CCGGAAGCA<br>CACTTACTGT                                   | GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>AGTCAAGATAT<br>GTATCTCACA<br>AACAACTTAT<br>GTACTCACA<br>AGACGTCCTA<br>ATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATAT<br>TTTTGCGCGT<br>CTTTAGGCTA<br>GTATAAAATG<br>TAGTAGATAC<br>CTTACGTCACC<br>CGTAAAACATG<br>CACATATGGT<br>CCTTACGTCACC<br>GTGAAATTGT<br>TAAAGTGTAA<br>GCGTTGCGCT                                                                                                                                                                                                                            | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTGCG<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>GTCCTTGGG<br>GTCCTTAGGG<br>GTCCTATGCT<br>CTTATAAACC<br>ACAACATTCT<br>TTTAAAATAA<br>GTAAACATCT<br>TTTACTGGA<br>ACATGTTTTT<br>ATTTACTGG<br>ACAAGTTCTT<br>ATTTACTGG<br>ACAAGTTCTT<br>CATTTGCAAA<br>TGGATGCAAG<br>AAATAACAGC<br>GTGATGACG<br>AGAGCTCCCA<br>AGCCTGGGCTAC<br>ATCCGCCACC                                    |
| $\begin{array}{r} 3001\\ 3051\\ 3101\\ 3151\\ 3201\\ 3251\\ 3301\\ 3251\\ 3301\\ 3351\\ 3401\\ 3351\\ 3601\\ 3551\\ 3601\\ 3751\\ 3601\\ 3751\\ 3601\\ 3751\\ 3801\\ 3951\\ 4001\\ 4051\\ 4001\\ 4051\\ 4251\\ 4301\\ 4451\\ 4501\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4601\\ 4551\\ 4001\\ 4551\\ 4001\\ 4551\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 50001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001\\ 5001$  | GCTGGTGACC<br>TCTTACAAGT<br>TACATTATGG<br>TGGCCTTTAA<br>TCCTAGCAAC<br>TGCAGTTGTT<br>GCCCAGAATA<br>TGTTGGCGCT<br>TTCGCGACCT<br>GTTGAAAATA<br>AGATAAAGAA<br>TAACTGAACT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>ACTCTCTGTT<br>AGCCTGGTAA<br>GATGAAATAT<br>ATGTGACGCA<br>AATTCACAAT<br>TTATTTCAC<br>ATTCAGGCAA<br>AAATTACTG<br>ATTCAGGCAA<br>AAATTACTG<br>ATTCAGGCAA<br>AAATTATTT<br>AAAATTATTT<br>AAAATTATTT<br>AAAATTATT                                                                                                                                       | GTGAGGAAAT<br>AGACATCCAG<br>AATACCAATT<br>TTAAAGCTGT<br>CATACTCCTA<br>AATGAAATCA<br>TGCAAGACGG<br>CTTCACATTT<br>AAATTGTATT<br>TGGTCGTGT<br>GGGGCTGACG<br>TTTACATTCT<br>TCCGCATGTC<br>GAATTAACTA<br>TACGGAAATG<br>ATTCGCCTCA<br>CACATCAGC<br>GGGTTGGTTT<br>TCGATGGTCT<br>AAATTCCTTT<br>TTAAGGCGCT<br>AAATTCCTTT<br>TTAAGGCGCT<br>AAAAGTCCT<br>AAAAGTCCT<br>AAAAGTCCT<br>AAAAGTCCT<br>AAAAGTCCT<br>AAAAGTCCT<br>AAAAGTCCT<br>AAAAGTCCT<br>AAAAGTCCT<br>AAAAGTCCT<br>CGCTAACTTA<br>CAGCATGCC<br>CTGCATAGCC<br>TGCATAGCT<br>TGGTCATAGC<br>CAACATACG<br>TGAGCTAACT<br>GGAAACTG<br>AAGCCTACT<br>AGGCTAACTG<br>AGGCTAACTG | AACTGAACCA<br>ATGCAGAGCA<br>CTTGTAAAGT<br>TGTTGGCTTA<br>TTCGTGGCTA<br>TACCAGATA<br>TGTTAGAATG<br>TAGCTCGAGA<br>CCTACATTG<br>GGCTGCCGGG<br>CGAAATGATG<br>CGAAATGATG<br>GCTGATATTC<br>CGTGTCACAA<br>AAGCCGGGTAC<br>CAAATAAAA<br>CTTAACTGGA<br>CTATAACTGG<br>CTAATATAAA<br>AATTATAATA<br>CCTGAGGTAC<br>TAATAACAG<br>AATAAGCAAA<br>AGTCAATGAC<br>AACTTAGCAA<br>CACTTACGTGT<br>TTCACATCGT<br>CTGCAGGTCG<br>GAGTATTCA<br>CACGTCAGCT<br>CGCGGAAGCA<br>CACATTAATT                                                                        | GCTGTATGTG<br>GCTGTATGTG<br>TGCAGAAAAT<br>TGTTAAATCC<br>ATTAGGAACC<br>AGGTGGTCTT<br>TTCAGAGACG<br>GAGGAAATTG<br>AGCTCTAAAT<br>TTCAACTTTT<br>GTATTATGTG<br>TGAAGGTGCA<br>GCATTGCAGC<br>AGTCAAGATT<br>TCGTGATGAC<br>AGACACTTAT<br>GTTACCTCA<br>AACAACTTAT<br>GTATATAACAAGT<br>TAAAATTAAT<br>ACTCGTGATAT<br>TTGTCCTTA<br>GTATAACAAGT<br>TATAACAAGT<br>CTTAGGCAC<br>GTAAAAATG<br>TAGTAGATAC<br>CTTAGGCAC<br>CGTAAACAAGT<br>TAAAGTGTAA<br>GCGTTGCGCT<br>GCATTAAGA<br>GCGTTCCCCC<br>CGCCGACCCC                                                                                                                                                                                                    | CGTTGCGCCA<br>GGTGTAAGAT<br>TCCTTCTGCG<br>TTGGTTTGTG<br>CCTAAGCTTG<br>TGGTCCAGGA<br>TTGAGGGGGAC<br>CGTTCAATTA<br>GTATTCTGAA<br>AGTTAGCTCA<br>ACAACTATTT<br>ATATGCTGCT<br>GTCCTTGGG<br>GTCCTTAGGG<br>GTCCTATGGC<br>GTCCTATGGC<br>ACAAACTTCT<br>TTTAAAACC<br>CCATTCGTCAG<br>ATCTGTCAG<br>ATCTGTCAG<br>ATCTGTCAG<br>ACAACATTT<br>TTGTATATC<br>ATTTACTTGA<br>ACAACATTT<br>TTGTATACA<br>ACATGTTTT<br>ATTTACAGC<br>GTGATGTGAT                                                                       |

| 5051 | CTCAAAGGCG   | GTAATACGGT  | TATCCACAGA   | ATCAGGGGAT    | AACGCAGGAA   |
|------|--------------|-------------|--------------|---------------|--------------|
| 5101 | AGAACATGTG   | AGCAAAAGGC  | CAGCAAAAGG   | CCAGGAACCG    | TAAAAAGGCC   |
| 5151 | GCGTTGCTGG   | CGTTTTTCCA  | TAGGCTCCGC   | CCCCCTGACG    | AGCATCACAA   |
| 5201 | AAATCCACCC   | TCAACTCACA  | CCTCCCCAAA   | CCCCACAGA     | CTATAAACAT   |
| 5251 | AAAICGACGC   | TCAAGICAGA  | ACCECCECC    | TCCCGACAGGA   |              |
| 5251 | ACCAGGCGII   | ICCCCCIGGA  | AGCICCCICG   | IGCGCICICC    | IGIICCGACC   |
| 530I | CTGCCGCTTA   | CCGGATACCT  | GTCCGCCTTT   | CTCCCTTCGG    | GAAGCG'I'GGC |
| 5351 | GCTTTCTCAT   | AGCTCACGCT  | GTAGGTATCT   | CAGTTCGGTG    | TAGGTCGTTC   |
| 5401 | GCTCCAAGCT   | GGGCTGTGTG  | CACGAACCCC   | CCGTTCAGCC    | CGACCGCTGC   |
| 5451 | GCCTTATCCG   | GTAACTATCG  | TCTTGAGTCC   | AACCCGGTAA    | GACACGACTT   |
| 5501 | ATCGCCACTG   | GCAGCAGCCA  | CTGGTAACAG   | GATTAGCAGA    | GCGAGGTATG   |
| 5551 | TAGGCGGTGC   | TACAGAGTTC  | TTGAAGTGGT   | GGCCTAACTA    | CGGCTACACT   |
| 5601 | AGAAGAACAG   | TATTTGGTAT  | CTGCGCTCTG   | CTGAAGCCAG    | TTACCTTCGG   |
| 5651 |              | CCTACCTCTT  | CATCCCCCAA   | ACAAACCACC    | CCTCCTACCC   |
| 5701 |              | TCTTTCCAAC  | CACCACATTA   | CCCCCACAAA    | AAAACCATCT   |
| 5751 | GIGGIIIIII   |             | THE          |               | AAAAGGAICI   |
| 5751 | CAAGAAGAIC   | CITIGATCIT  | TICIACGGGG   | ICIGACGCIC    | AGIGGAACGA   |
| 2801 | AAACTCACGT   | TAAGGGATTTT | TGGTCATGAG   | ATTATCAAAA    | AGGATCTTCA   |
| 5851 | CCTAGATCCT   | TTTAAATTAA  | AAATGAAGTT   | TTAAATCAAT    | CTAAAGTATA   |
| 5901 | TATGAGTAAA   | CTTGGTCTGA  | CAGTTACCAA   | TGCTTAATCA    | GTGAGGCACC   |
| 5951 | TATCTCAGCG   | ATCTGTCTAT  | TTCGTTCATC   | CATAGTTGCC    | TGACTCCCCG   |
| 6001 | TCGTGTAGAT   | AACTACGATA  | CGGGAGGGCT   | TACCATCTGG    | CCCCAGTGCT   |
| 6051 | GCAATGATAC   | CGCGAGACCC  | ACGCTCACCG   | GCTCCAGATT    | TATCAGCAAT   |
| 6101 | AAACCAGCCA   | GCCGGAAGGG  | CCGAGCGCAG   | AAGTGGTCCT    | GCAACTTTAT   |
| 6151 | CCGCCTCCAT   | CCAGTCTATT  | AATTGTTGCC   | GGGAAGCTAG    | AGTAAGTAGT   |
| 6201 | TCGCCAGTTA   | ATAGTTTGCG  | CAACGTTGTT   | GCCATTGCTA    | CAGGCATCGT   |
| 6251 | CCTCTCACCC   |             | CTATCOLICIT  |               | CCUTCCCAAC   |
| 6201 | CATCACCC     | ACUMACAUCA  | UCCCCCAMC    | MIICAGCICC    | ACCCCUTAC    |
| 63UI | GATCAAGGCG   | AGTTACATGA  | TUCUUCATGT   | TGTGCAAAAA    | AGCGGTTAGC   |
| 6351 | TCCTTCGGTC   | CTCCGATCGT  | TGTCAGAAGT   | AAGTTGGCCG    | CAGTGTTATC   |
| 6401 | ACTCATGGTT   | ATGGCAGCAC  | TGCATAATTC   | TCTTACTGTC    | ATGCCATCCG   |
| 6451 | TAAGATGCTT   | TTCTGTGACT  | GGTGAGTACT   | CAACCAAGTC    | ATTCTGAGAA   |
| 6501 | TAGTGTATGC   | GGCGACCGAG  | TTGCTCTTGC   | CCGGCGTCAA    | TACGGGATAA   |
| 6551 | TACCGCGCCA   | CATAGCAGAA  | CTTTAAAAGT   | GCTCATCATT    | GGAAAACGTT   |
| 6601 | CTTCGGGGGCG  | AAAACTCTCA  | AGGATCTTAC   | CGCTGTTGAG    | ATCCAGTTCG   |
| 6651 | ATGTAACCCA   | CTCGTGCACC  | CAACTGATCT   | TCAGCATCTT    | TTACTTTCAC   |
| 6701 | CAGCGTTTCT   | GGGTGAGCAA  | AAACAGGAAG   | GCAAAATGCC    | GCAAAAAAGG   |
| 6751 | GAATAAGGGC   | GACACGGAAA  | TGTTGAATAC   | TCATACTCTT    | CCTTTTTCAA   |
| 6801 | TATTATTGAA   | GCATTTATCA  | GGGTTATTGT   | CTCATGAGCG    | GATACATATT   |
| 6851 | TGAATGTATT   | ТАСАААААТА  | AACAAATAGG   | GGTTCCGCGC    | ACATTTCCCC   |
| 6901 | CAAAACTCCC   | ACCTCATCCC  | CTCTCAAATA   | CCCCACACAT    | CCCTAACCAC   |
| 6051 | A A A TACCCC | AUCIGAIOCO  | TCTA ACCCTT  | ANDAUTTOCT    | TAAAATTCCC   |
| 7001 | CULTURE      | AICAGGAAAI  |              | AAIAIIIIGI    |              |
| 7001 | GITAAATTTT   | TGTTAAATCA  | GUTCATTITT   | TAACCAATAG    | GUUGAAATUG   |
| 7051 | GCAAAATCCCC  | TTATAAATCA  | AAAGAA'I'AGA | CCGAGATAGG    | GTTGAGTGTT   |
| 7101 | GTTCCAGTTT   | GGAACAAGAG  | TCCACTATTA   | AAGAACGTGG    | ACTCCAACGT   |
| 7151 | CAAAGGGCGA   | AAAACCGTCT  | ATCAGGGCGA   | TGGCCCACTA    | CGTGAACCAT   |
| 7201 | CACCCTAATC   | AAGTTTTTTG  | GGGTCGAGGT   | GCCGTAAAGC    | ACTAAATCGG   |
| 7251 | AACCCTAAAG   | GGAGCCCCCG  | ATTTAGAGCT   | TGACGGGGAA    | AGCCGGCGAA   |
| 7301 | CGTGGCGAGA   | AAGGAAGGGA  | AGAAAGCGAA   | AGGAGCGGGC    | GCTAGGGCGC   |
| 7351 | TGGCAAGTGT   | AGCGGTCACG  | CTGCGCGTAA   | CCACCACACC    | CGCCGCGCTT   |
| 7401 | AATGCGCCGC   | TACAGGGCGC  | GTCCATTCGC   | CATTCAGGCT    | GCGCAACTGT   |
| 7451 | TGGGAAGGGC   | GATCGGTGCG  | GGCCTCTTCG   | CTATTACGCC    | AGCTGGCGAA   |
| 7501 | ACCCCCATCT   | GCTGCAACCC  | CATTAACTTC   | GGTAACCCCA    | CCCTTTTTCCC  |
| 7551 | ACTCACCACC   |             | ACCCCCACTC   | A A TTCTA ATA | CCACTCACTA   |
| 7601 | TAUCACGACG   | TIGINAAACG  | ACGGCCAGIG   | ALIGIAAIA     | CGACICACIA   |
| LOON | тЧ           |             |              |               |              |

## 5.5.7 pCS-ΔβCatGFP (Abschnitt 4.2.11), (ΔN90Beta-CateninGFP)

| 1    | ATGAGTCAGC | GTGCTAGAAC | AGGAATGTTT | CCTGAGGCTA | TGCATGAAAA |
|------|------------|------------|------------|------------|------------|
| 51   | TATGGAACTC | TCTCATGCAC | AAATTCATAA | TAACAACTCT | GCTGTACCTC |
| 101  | AACGTCTTGC | TGAACCAACT | CAAATGCTTA | AGAACAATGT | AATTGACCTT |
| 151  | ATCAATTATC | AAGATGAGAC | AGATGTAGCA | CTTAGAGCTG | TACCAGAGCT |
| 201  | TGCTCGTTTA | TTATGTAACA | GTGATGCTCA | AACTATTCAT | CAGGCTTCTA |
| 251  | TTATGGTCAA | CCAGCTAACA | AAGAAGGAAG | CTAGTTGTTA | TGCAGTTATG |
| 301  | AATAACACAA | ACATTGTTGC | TGCATTGGTT | GGTGTGACTG | CAACTTCAAA |
| 351  | TGATGGAGAA | ACTATACGCA | ATGTTGTTGG | TGCTTTACAT | AATATGAGCC |
| 401  | ATCACAGACA | AGGTTTAATG | GCTATTTTCA | AATGTAGTGG | AATTCCAGCT |
| 451  | TTAGTAAAAT | TGTTAGGCCA | TCGAATTGAA | GCTGTTGTTT | TTTATGCAAT |
| 501  | TACAACTTTG | CACAATCTTC | TCCTCCATCA | AGAAGGTGCA | AAGATGGCTG |
| 551  | TCCGTTTAGC | TTTAGGTTTG | CAGAAGATGG | TCTCTCTTTT | GCAGAGGCCA |
| 601  | AAAGTAAAAT | TTCTTGCAAT | TGTAACAGAT | TGTTTACAAA | TTTTGGCATA |
| 651  | TGGTAACCAA | GAATCTAAGC | TGATTATTTT | ATCTTCTGGT | GGACCTGCTG |
| 701  | AACTTGTTCG | CATAATGAGA | AGCTATACTT | ATGAAAAATT | GTTATATACA |
| 751  | ACTTGTCGAG | TTTTAAAAGT | ACTTTCTGTA | TGTTCCAGCA | ATAAACCTGC |
| 801  | TATTGTTGAG | GCTGGAGGTA | TGCAAGCATT | GGCACATTAT | TTGTCTCATC |
| 851  | AGAGCACGCG | TCTTGTACAA | AATTGTTTAT | GGACCTTGAG | AAATCTTTCT |
| 901  | GATGTAGCTA | CTAAACAAGA | TGGTTTAGAA | GGACTCTTGC | AGATGCTTGT |
| 951  | ACAACTTTTA | TCTTCAAATG | ATATCAATGT | TGTGACATGT | GTTTCTGGCA |
| 1001 | TTATATCAAA | TTTAACTTGC | AACAATCCTC | GGAATAAGCA | AGTTGTATTT |
| 1051 | CAAGTGGGTG | GAATTGAAGC | ATTAGTTCGA | ACAATCATAA | ATGCTGGTGA |
| 1101 | CCGTGAGGAA | ATAACTGAAC | CAGCTGTATG | CGCCTTGCGA | CACCTTACAA |

| 1151 | GTAGACATCC | AGATGCAGAG | CATGCAGAAA | ATGGTGTAAG | ATTACATTAT |
|------|------------|------------|------------|------------|------------|
| 1201 | GGAATACCAA | TTCTTGTAAA | GTTGTTAAAT | CCTCCTTCTC | GCTGGCCTTT |
| 1251 | AATTAAAGCT | GTTGTTGGCT | TAATTAGGAA | CCTTGGTTTG | TGTCCTAGCA |
| 1301 | ACCATACTCC | TATTCGTGAT | CAAGGTGGTC | TTCCTAAGCT | TGTGCAGTTG |
| 1351 | TTAATGAAAT | CATATCAAGA | TATTCAGAGA | CGTGGTCCAG | GAGCCCAGAA |
| 1401 | TATGCAAGAC | GGTGTTAGAA | TGGAGGAAAT | TGTTGAGGGG | ACTGTTGGCG |
| 1451 | CTCTTCACAT | TTTAGCTCGA | GAAGCTCTAA | ATCGTTCAAT | TATTCGCGAC |
| 1501 | CTAAATTGTA | TTCCTACATT | TGTTCAACTT | TTGTATTCTG | AAGTTGAAAA |
| 1551 | TATTGTTCGT | GTGGCTGCCG | GTGTATTATG | TGAGTTAGCT | CAAGATAAAG |
| 1601 | AAGGGGCTGA | CGCTATTGAG | CGTGAAGGTG | CAACAACTAT | TTTAACTGAA |
| 1651 | CTTTTACATT | CTCGAAATGA | TGGCATTGCA | GCATATGCTC | GTGCTGTGCT |
| 1701 | TTTCCGCATG | TCAGAAGACA | AAAGTCAAGA | TTACAAAAAA | CGACTCTCTG |
| 1751 | TTGAATTAAC | TAGTTCACTA | TTTCGTGATG | ACGTTCCTTG | GGAGCCTGGT |
| 1801 | AATACGGAAA | TGGCTGATAT | TCTTACTTCA | CAGTCTTATG | CTGATGAAAT |
| 1851 | ATATTCGCCT | CACGTGTCAC | AAAACAACTT | ATCTTATAAT | CCAAATAGCT |
| 1901 | ATCAACATCA | GCAAAGCGGG | ATGTTTCCGC | AAATGCAAAA | TAATGTGACG |
| 1951 | CAGGGTTGGT | TTGACCCTGA | CTTGCCCATG | AGTAAAGGAG | AAGAACTTTT |
| 2001 | CACTGGAGTT | GTCCCAATTC | TTGTTGAATT | AGATGGTGAT | GTTAATGGGC |
| 2051 | ACAAATTTTC | TGTCAGTGGA | GAGGGTGAAG | GTGATGCAAC | ATACGGAAAA |
| 2101 | CTTACCCTTA | AATTTATTTG | CACTACTGGA | AAACTACCTG | TTCCATGGCC |
| 2151 | AACACTTGTC | ACTACTTTCT | GTTATGGTGT | TCAATGCTTT | TCAAGATACC |
| 2201 | CAGATCATAT | GAAACGGCAT | GACTTTTTCA | AGAGTGCCAT | GCCCGAAGGT |
| 2251 | TATGTACAGG | AAAGAACTAT | ATTTTTCAAA | GATGACGGGA | ACTACAAGAC |
| 2301 | ACGTGCTGAA | GTCAAGTTTG | AAGGTGATAC | CCTTGTTAAT | AGAATCGAGT |
| 2351 | TAAAAGGTAT | TGATTTTAAA | GAAGATGGAA | ACATTCTTGG | ACACAAATTG |
| 2401 | GAATACAACT | ATAACTCACA | CAATGTATAC | ATCATGGCAG | ACAAACAAAA |
| 2451 | GAATGGAATC | AAAGTTAACT | TCAAAATTAG | ACACAACATT | GAAGATGGAA |
| 2501 | GCGTTCAACT | AGCAGACCAT | TATCAACAAA | ATACTCCAAT | TGGCGATGGC |
| 2551 | CCTGTCCTTT | TACCAGACAA | CCATTACCTG | TCCACACAAT | CTGCCCTTTC |
| 2601 | GAAAGATCCC | AACGAAAAGA | GAGACCACAT | GGTCCTTCTT | GCGTTTGTAA |
| 2651 | CAGCTGCTGG | GATTACACAT | GGCATGGATG | AACTATACAA | ATAG       |
|      |            |            |            |            |            |

## 5.6 Tabellen

5.6.1 Zu Abschnitt 4.1

| Medium  | Transfizierte<br>Polypen [%] | Zellen/ Polyp | Zellen <sup>max</sup> / Polyp |
|---------|------------------------------|---------------|-------------------------------|
| ddH₂O   | 20,0                         | 1,8           | 3                             |
| 1 x PBS | 50,0                         | 3,3           | 13                            |
| 2 x PBS | 36,0                         | 3,3           | 9                             |
| 4 x PBS | 24,0                         | 2,3           | 5                             |

Tabelle C1 Einfluss der Salzkonzentration bei der Elektroporation.

Polypen wurden mit 500 ng/  $\mu$ l pHotG in unterschiedlichen Salzkonzentrationen intraepithelial mikroinjiziert und direkt darauf mit Platin-Elektroden mit 1 x 12 V, 80 ms elektroporiert. Die Auswertung der Transfektionseffizienzen erfolgte 72 h nach Elektroporation.

Tabelle C2: Einfluss der DNA-Konzentration bei der Elektroporation (Epithelzell-Bedingungen).

| Medium  | DNA<br>[ng/ μl] | Transfizierte<br>Polypen [%] | Zellen/ Polyp | Zellen <sup>max</sup> / Polyp |
|---------|-----------------|------------------------------|---------------|-------------------------------|
| 1 x PBS | 1000            | 24,0                         | 3,2           | 5                             |
| 2 x PBS | 1000            | 36,0                         | 2,9           | 5                             |

Die Auswertung erfolgte 72 h nach Transfektion.

Tabelle C3: Einfluss der DNA-Konzentration bei der Elektroporation (I-Zell-Bedingungen).

| Medium  | DNA<br>[ng/ μl] | Transfizierte<br>Polypen [%] | Zelltyp/ Polyp |          |         | Zellen <sup>max</sup> /<br>Polyp |
|---------|-----------------|------------------------------|----------------|----------|---------|----------------------------------|
|         |                 |                              | Epithelzelle   | I-Zellen | Neurone |                                  |
| 1 x PBS | 1000            | 36,0                         | 1,6            | 0,6      | 0,0     | 5                                |
| 2 x PBS | 1000            | 32,0                         | 1,9            | 1,1      | 0,5     | 4                                |

Die Auswertung erfolgte 72 h nach Transfektion.

#### 5.6.2 Zu Abschnitt 4.3

Tabelle C4: Tranfektion von Polypen mit Meganukleasen.

|        |                             | DNA-<br>Konzentration | Enzym   | transfizierte<br>Polypen | Zellen/<br>Polyp | Zellen <sup>max</sup> /<br>Polyp |
|--------|-----------------------------|-----------------------|---------|--------------------------|------------------|----------------------------------|
|        |                             | [ng/ μl]              | [u/ μl] | •                        |                  |                                  |
| I-Scel | pBSIScelAktGFP<br>+ I-Scel  | 450                   | 1       | 0 %                      | 0                | 0                                |
|        | pBSIScelAktGFP              | 450                   |         | 36 %                     | 2,78             | 6                                |
| l-Ceul | pGEMICeulAktGFP<br>+ I-Ceul | 450                   | 1       | 4 %                      | 1                | 1                                |
|        | pGEMICeulAktGFP             | 450                   |         | 4 %                      | 2                | 2                                |

Die Auswertung erfolgte 72 h nach Transfektion.

Tabelle C5: Transfektion von Polypen mit Meganukleasen in 1 x PBS..

|        |                 | DNA-<br>Konzentration | Enzym   | transfizierte<br>Polypen | Zellen/<br>Polyp | Zellen <sup>max</sup> /<br>Polyp |
|--------|-----------------|-----------------------|---------|--------------------------|------------------|----------------------------------|
|        |                 | [ng/ μl]              | [u/ μl] |                          |                  |                                  |
| I-Scel | pBSIScelAktGFP  | 450                   | 1       | 0 %                      | 0                | 0                                |
|        | pBSIScelAktGFP  | 450                   |         | 24 %                     | 1,83             | 3                                |
| I-Ceul | pGEMICeulAktGFP | 450                   | 1       | 4 %                      | 1                | 1                                |
|        | pGEMICeulAktGFP | 450                   |         | 8%                       | 2,5              | 3                                |

Die Auswertung erfolgte 72 h nach Transfektion.

#### 6. Literaturverzeichnis

Argast, G.M., Stephens, K.M., Emond, M.J., and Monnat, R.J. (1998) I-PpoI and I-CreI homing site sequence degeneracy determined by random mutagenesis and sequential in vitro enrichment. J. Mol. Biol. 280:345–353

Asakawa K., Suster M.L., Mizusawa K., Nagayoshi S., Kotani T., Urasaki A., Kishimoto Y., Hibi M., and Kawakami K. (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. *PNAS* 105: 1255-1260

**Barth A. I. M., Stewart D. B., and Nelson W. J.** (1999) T cell factor-activated transcription is not sufficient to induce anchorage-independent growth of epithelial cells expressing mutant  $\beta$ -catenin. *PNAS* (USA) 96: 4947-4952

**Behrens J.** (1993) The role of cell adhesion molecules in cancer invasion and metastasis. *Breast Cancer Res. Treat.* 24: 175-184

Belfort, M., and Roberts, R. J. (1997) Homing endonucleases: Keeping the house in order. *Nucleic Acids Res.* 25, 3379-3388

Bode H. R., Berking s., David C. N., Gierer A., Schaller C. H. und Trenkner E. (1973) Quantitative analysis of cell types during growth and morphogenesis in hydra. *Wilhelm Roux's Arch. Dev. Biol.* 171: 269-285

**Bode H. R., Flick K. M., and Smith G. S.** (1976) Regulation of interstitial cell differentiation in Hydra attenuata. I. Homeostatic control of interstitial cell populations size. *J. Cell Sci.* 20: 29-46

Bode H. R., Heimfeld S., Chow M. A., and Huang L. W. (1987) Gland cells arise by differentiation from interstitial cells in Hydra attenuate. *Dev. Biol.* 122: 577-585

**Bode, H. R.** (1996) The interstitial cell lineage of hydra: a stem cell system that arose early in evolution. *Journal of Cell Science* 109: 1155-1164

Bosch T. C. G., David C. N. (1990) Cloned interstitial stem cells grow as contiguous patches in hydra. *Dev. Biol.* 138: 513-515

Bosch T. C. G., Rollbühler R., Scheider B. David C. N. (1991) Role oft the cellular environment in interstitial stem cell proliferation in hydra. *Roux's Arch. Dev. Biol.* 200: 269-276

Böttger A., Alexandrova O., Cikala M., Schade M., Herold M., David C. N. (2002) GFP Expression in Hydra: Lessons from particle gun. *Dev Genes Evol.* 6: 302-305

**Campbell R. D.** (1967a) Tissue dynamics of stady state growth in hydra littoralis. I. Pattern of cell divisions. *Dev. Biol.* 15: 487-502

**Campbell R. D.** (1985) Tissue architecture and hydroid morphogenesis: The role of locomotory traction in shaping the tissue. In The Cellular and Molecular Biology of Invertebrate *Development* (ed. R. H. Sawyer and R. M. Shawman), pp. 221-238 Columbia, South Carolina, USA: University of South Carolina Press

Campbell R. D. and David C. N. (1974) Cell cycle kinetics and development of Hydra attenuata. II. Interstitial cells. J. Cell Sci. 16: 349-358

Chevalier B. S., and Stoddard B. L. (2001) Homing endonucleases: Structural and functional insight into the catalysts of intron/intein mobility. *Nucleic Acids Res.* 29, 3757-3774

Chevalier, B., Turmel, M., Lemieux, C., Monnat, R.J., and Stoddard, B.L. (2003) Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI. J. Mol. Biol. 329: 253–269

Colleaux, L., D'Audol, L., Galibert, F., and Dujon, B. (1988). Recognition and cleavage site of the intron-encoded omega transposase. *PNAS*. (USA) a5: 6022-6026

David C. N. and Gierer A. (1974) Cell cycle kinetics and development of Hydra attenuata. III. Nerve and nematocyte differentiation. J. Cell Sci. 16: 359-375

David C. N. and Plotnick I. (1980) Distribution of interstitial stem cells in Hydra. Dev. Biol. 76(1): 175-184

David C.N. and Challoner D. (1974) Distribution of interstitial cells and differentiating nematocytes in Hydra attenuata. *Am. Zool.* 14: 537-542

Davidson, A. E., Balciunas, D., Mohn, D., Shaffer, J., Hermanson, S., Sivasubbu, S., Cliff, M. P., Hackett, P. B., and Ekker, S. C. (2003) Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. *Dev. Biol.* 263, 191-202

Fadool, J. M., Hartl, D. L., and Dowling, J. E. (1998) Transposition of the mariner element from Drosophila mauritiara in zebrafish. *PNAS* (USA) 95: 5182-5186

**Fujisawa T., David C. N., Bosch T. C. G.** (1990) Transplantation stimulates interstitial cell migration in hydra. *Dev. Biol.* 138: 509-512

Geurts A.M., Yang Y., Clark K.J., Liu G., Cui Z., Dupuy A.J., Bell J.B., Largaespada D.A., Hackett P.B. (2003) Gene transfer into genomes of human cells by the Sleeping beauty transposon system. *Mol. Ther.* 8: 108-117

Gierer A. and Meinhardt H. (1972) A theory of biological pattern formation. Kybernetik 12: 30-39

Gierer A., Berking S., Bode H. R., David C. N., Flick K., Hansmann G., Schaller H., Trenkner E. (1972) Regeneration of Hydra from reaggregated cells. *Nature New Biol.* 239: 98-101

**Gimble, F.S., Moure, C.M., and Posey, K.L.** (2003). Assessing the plasticity of DNA target site recognition of the PI-SceI homing endonuclease using a bacterial two-hybrid selection system. *J. Mol. Biol.* 334: 993–1008

Grabher C., and Wittbrodt J. (2007) Meganuclease and transposon mediated transgenesis in medaka. Genome *Biol.8 Suppl* 1:S10. Review

Grabher C., Joly J. S., Wittbrodt J. (2004) Highly efficient zebrafish transgenesis mediated by the meganuclease I-SceI. *Methods Cell Biol.* 77: 381-401

Grabher, C., Henrich, T., Sasado, T., Arenz, A., Furutani-Seiki, M., and Wittbrodt, J. (2003) Transposon-mediated enhancer trapping in medaka. *Gene* 322: 57-66.

Guder C., Pinho S., Nacak T.G., Schmidt H.A., Hobmayer B., Niehrs C., and Holstein T.W. (2005) An ancient Wnt-Dickkopf antagonism in Hydra. *Development* 133: 901-911

**Gumbiner B. M.** (1995) Signal transduction by β-Catenin. Curr. Opin. Cell Biol. 7: 634-640 Hanahan D., Jesee S., Bloom FR (1991) Plasmid transformation of E.coli and other bacteria. *Methods Enzymol* 204: 63-113

Hartl D. L. (1989) Transposable element mariner in Drosophila species. In: Mobile DNA (ed. Berg D. E. and Howe M. M.) *American Society for Microbiology* : 5531-5536, Washington D. C.

Haymer D. S. And Marsh J. L. (1986) Germ line and somatic instability of a white mutation in Drosophila mauritiana due to a transposable element. *Dev. Genet.* 6: 281-291

Heimfeld S. Javois L. C., Dunne J. L., Littlefield C. L., Huaung L. and Bode H. R. (1985) Monoclonal antibodies: a new approach to the study of hydra development. *Arch. des Sciences physiques et naturelles* 38: 429-438

Heimfeld S., and Bode H. R. (1986a) Growth regulation of the interstitial cell population in hydra. III. Interstitial cell density does not control stem cell proliferation. *Dev. Biol.* 116: 51-58

Heimfeld S., and Bode H. R. (1986b) Growth regulation of the interstitial cell population in hydra. IV. Control of nerve cell and nematocyte differentiation by amplification of non-stem interstitial cells. *Dev. Biol.* 116: 59-68

Hobmayer B., Rentzsch F., Kuhn K., Happel C.M., Cramer v. Laue C., Snyder P., Rothbächer U., and Holstein T.W. (2000) WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. *Nature* 407: 186-189

Hobmayer B., Snyder P., Alt D., Happel C. M. and Holstein T. W. (2001) Quantitative analysis of epithelial cell aggregation in the simple metazoan Hydra reveals a switch from homotypic to heterotypic cell interactions. *Cell Tissue Res* 304: 147-157

Hoffmeister S. and Schaller H. C. (1985) A new biochemical marker for foot-specific cell differenciation in hydra. *Wilhelm Roux's Arch. Dev. Biol.* 194: 453-461

Holstein T. W., Hobmayer E. and David C. N. (1991) Pattern of of epithelial cell cycling in hydra. Dev. Biol. 148: 602-611

Holstein T. W., Hobmayer E., and Technau U. (2003) Cnidarians: An evolutionarily conserved model organism for regeneration? *Dev. Dynamics* 226: 257-267

**Honegger T.** (1981) Light and scanning electron microscopic investigation of sexual reproduction in Hydra carnea. *Int. J. Invertebr. Reprod. Dev.* 3: 245-255

Honegger T., Zürrer D., amd Tardent P. (1989) Oogenesis in Hydra carnea: a new model based on light and electron mircroscopic analysis of oocyte and nurse cell differentiation. *Tissue Cell* 21: 381-393

Horie K., Kuroiwa A., Ikawa M., Okabe M., Kondoh G., Matsuda Y., Takeda J. (2001) Efficient chromosomal transposition of a Tc1/mariner-like transposon Sleeping beauty in mice.*PNAS* (USA) 98(16):9191-9196

Horn C., B. Jaunich, E. A.Wimmer (1995) Highly sensitive, fluorescent transformation marker for Drosophila transgenesis. *Dev Genes Evol* 210: 623-629

Horn C., Wimmer E. A. (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210: 630-637

**Ivics Z., P. B. Hackett, R. H. Plasterk, Z. Izsvák** (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like Transposon from Fish, and its Transposition in Human Cells. *Cell* 91: 501-510

Izsvák Z., Ivics Z., and Plasterk R.H. (2000) Sleeping beauty, a wide host-range transposon vector for genetic transformation in vertebrates. *J. Mol. Biol.* 302: 93-102

Jacobson J. W. and Hartl D. L. (1985) Coupled instability of two X-linked genes in Drosophila mauritiana: germinal and somatic mutability. Genetics 111: 5-65

Jacquier, A., and Dujon, B. (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. *Cell* 41: 383-394.

Jesuthasan, S., and Subburaju, S. (2002) Gene transfer into zebrafish by sperm nuclear transplantation. Dev. Biol. 242: 88 95.

Khalturin K., Anton-Erxleben F., Milde S., Plötz C., Wittlieb J., Hemmrich G. and Bosch T.C.G. (2007) Transgenic stem cells in Hydra reveal an early evolutionary origin for key elements controlling self-renewal and differentiation. *Dev. Biol.* 309(1): 32-44

Kawakami K. (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biology 8 (Suppl. I): S7

Kawakami, K., Shima, A., and Kawakami, N. (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germline lineage. *PNAS* (USA) 97: 11403-11408.

Keller R. E. (1980) The cellular basis of epiboly: An SEMstudy of deep-cell rearrangement during gastrulation in Xenopus leavis. J. Embryol. Exp. Morphol. 60: 201-234

Kengaku M., Capdevila J., Rodriguez-Esteban C., De La Pena J., Johnson R.L., Belmonte J.C., Tabin C.J. (1998) Distinkt WNT pathways regulating AER formation and dorsoventral polarity in the chick limb bud. Science 280(5367):1274-1277

Kim K., Pang K. M., Evans M., and Hay E. D. (2000) Overexpression of  $\beta$ -catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. *Mol. Biol. of the Cell* 11: 3509-3523

Kishimoto Y., Murate M., and Sugiyama T. (1996) Hydra regeneration from recombined ectodermal and endodermal tissue. *Journal of Cell Science* 109: 763-772

Kong B.W., Carlson D.F., Fahrenkrug S.C., and Foster D.N. (2008) Application of the Sleeping Beauty transposon system to avian cells. *Animal Genetics* 39: 180-186

Kroll, K. L., and Amaya, E. (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. *Development* 122: 3173-3183

Kroll, K. L., and Gerhart, J. C. (1994) Transgenic .X. leavis embryos from eggs transplanted with nuclei of transfected cultured cells. *Science* 266: 650 653

Kuspa, A., and Loomis, W- F. (1992) Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. *PNAS* (USA) 89: 8803-8807 Kusserow A., Pang K., Sturm C., Hronda M., Lentfer J., Schmidt H.A., Technau U., v. Haessler A., Hobmayer B., Martindale M.Q., and Holstein T.W. (2005) Unexpected complexity of the Wnt gene family in a sea anemone. *Nature* 433: 156-160

Lampe D. J., Churchill M. E. A. and Robertson H. M. (1996) A purified mariner transposase is sufficient to mediate transposition in vitro. *EMBO J.* 15: 143-148

Lohmann J. U., Endl I., Bosch T.C.G. (1999) Silencing of developmental genes in Hydra. Dev. Biol. 214: 211-214

Lohmann J.U. and Bosch T.C.G. (2000) The novel peptide HEADY specifies apical fate in a simple radially symmetric metazoan. *Genes & Dev.* 14:2771-2777

Macreadie, L G., Scott, R. M., Zinn, A. R., and Butow, R. A. (1985) Transposition of an intron in yeast mitochondria requires a protein encoded by that intron. *Cell* 41, 395-402.

Marambaud P., Shioi J., Serban G., Georgakopoulos A., Sarner S., Nagy V., Baki L., Wen P., Efthimiopoulos S., Shao Z. (2002) A presinilin-1/ gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. *Embo J.* 21: 1948-1956

Martin V. J., Littlefield C. L., Archer W. E., and Bode H. R. (1997) Embryogenesis in Hydra. *Biol. Bull.* 192: 345-363

Medora M., Maruyama K., Hartl D. L. (1991) Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. *Genetics* 128: 311-318

**Meinhardt H.** (1993) A model for pattern formation of hypostome, tentacles, and foot in Hydra: how to form structures close to each other, how to form them at a distance. *Developmental Biology* 157: 321-333

Miljkovic M., F. Mazet, B. Galliot (2002) Cnidarian and Bilaterian Promotors can direct GFP Expression in transfected Hydra. *Developmental Biology* 246: 377-390

Miljkovic-Licina M., Chera S., Ghila L., and Galliot B. (2007) Head regeneration in wild-type Hydra requires de novo neurogenesis. *Development* 134: 1191-1201

Molenaar M., van de Wetering M., Oosterwegel, Peterson-Maduro J., Godsave S., Korinek V., Roose J., Destrée O., and Clevers H. (1996) XTCF-3 transcription factor mediates β-catenin induced axis formation in Xenopus embryos. *Cell* 86:391-399

**Mueller J. F.** (1950) Some observations on the structure of hydra, with particular reference to the muscular system, *Trans. Amer. Microsc. Soc.* 69:133-147

Mussauer H., Sukhorukov V. L., Zimmermann U. (2001) Trehalose improves survival of electrotransfected mammalian cells. *Cytometrie* 45:161-169

**New D. A. T.** (1959) The adhesive properties and expansion of the chick blastoderm. *J. Embryol. Exp. Morphol.* 7: 146-164

Noda K. (1971) Reconstitution of dissociated cells of Hydra. Zool. Magazine 80: 27-31

Otto J. J. and Campell R. D. (1977) Tissue economics of Hydra: regulation of cell cycle, animal size and development by controlled feeding rates. J. Cell Sci. 28: 117-132

Oyama T., Kanai Y., Ochiai A., Akimoto S., Oda T., Yanagihara K., Nagafuchi A., Tsukita S., Shibamoto S., Ito F., et. al. (1994) A truncated  $\beta$ -catenin disrupts the interaction between E-cadherin and  $\alpha$ -catenin: A cause of loss of intercellular adhesiveness in human cancer cell lines. *Cancer Res.* 54: 6282-6287

Pan F.C., Chen Y., Loeber J., Henningfeld K., and Pieler T. (2006) I SceI meganuclease-mediated transgenesis in Xenopus. *Dev. Dyn.* 235: 247-252

Plasterk R. H. (1996) The Tc1/mariner transposon family. Curr. Top. Microbiol. Immunol. 204: 125-143

**Powell S. M., Zilz N., Beazer-Barclay Y., Bryan T. M., Hamilton S. R., Thibodeau S. N., Vogelstein B., and Kinzler K. W.** (1992) APC mutations occur early during colorectal tumorgenesis. *Nature* 359: 235-237

Raz, E., van Luenen, H. G., Schaerringer, B., Plasterk, R. H. A., and Driever, W. (1998) Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. *Curr. Biol.* 8: 82-88

Rich F. and Tardent P. (1969) Untersuchungen zur Nematocyten-Differenzierung bei Hydra attenuata Pall. *Rev. Suisse Zool.* 76: 779-787

Robertson H. M. (1995) The Tc1-mariner superfamily of transposons in animals. J. Insect Physiol. 41: 99-105

**Robertson H. M.** (1997) Multiple mariner transposons in flatworms and hydras are related to those of insects. *Journal of Heredity* 88: 195-201

Sambrock J. et al, eds (1989) Molecular Cloning: A laboratory manual, 2nd ed Cold Spring Harbor, Cold Spring Harbor Laboratory Press NY, Vol. 1, 2, 3.

Sato-Maeda M., Uchida M., Graner F., Tashiro H. (1994) Quantitative evaluation of tissue-specific cell adhesion at the level of a single cell pair. *Dev. Biol.* 162: 77-84

Schaller H. C., Hoffmeister S. A., Dübel S. (1989) Role of the neuropeptide head activator for growth and development in hydra and mammals. *Development* 1989:107 Suppl:99-107

Shibano T., Takeda M., Suetake I., Kawakami K., Asashima M., Tajima S., and Taira M. (2007) Recombinant Tol2 transposase with activity in Xenopus embryos. *FEBS Letters* 581: 4333-4336

Shimizu H. and Bode H.R. (1995) Nematocyte Differentiation in Hydra: Commitment to Nematocyte type occurs at the beginning of the pathway. *Dev. Biol.* 169: 136-150

Sproull F. and David C. N. (1979) Stem cell growth and differentiation in Hydra attenuate: I. Regulation of the self-renewal probability in multiclone aggregates. J. Cell. Sci. 38: 155-169

**Steele R. E.** (2002) Developmental signaling in Hydra: what does it take to build a "simple" animal? Dev Biol. 248(2):199-219

Steinberg M. S. (1970) Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of hierarchy among populations of embryonic cells. J. Exp. Zool. 173: 395-434

Takahashi T. Koizumi O., Ariura Y., Romanovitch A., Bosch T. C. G., Kobayakawa Y., Mohri S., Bode H. .R. Yum S. Hatta M., Fujisawa T. (2000) A novel neuropeptide, Hym-355, positively regulates neuron differentiation in Hydra. *Development* 127: 997-1005

Takahashi T., Muneoka Y., Lohmann J., deHaro L. M., Solleder G., Bosch T. G. C., David C. N., Bode H. R., Koizumi O., Shimizu H., Hatta M., Fujisawa T., Sugiyama T. (1997) Systematic isolation of peptide signal molecules regulating development in hydra: Lwamide and PW families. *PNAS* (USA) 94: 1241-1246

Takaku Y., Hariyama T., and Fujisawa T. (2005) Motility of endodermal epithelial cells plays a major role in reorganizing the two epithelial layers in hydra. *Mech. of Development* 122: 109-122

Takeda J., Keng V. W., and Horie K. (2007) Germline mutagenesis mediated by Sleeping Beauty transposon system in mice. *Genome Biology* 8 (Suppl. I): S14

**Technau U. and Holstein T.** (1995) Head formation in Hydra is different at apical and basal levels, *Development* 121: 1273-1282

**Technau U. and Holstein T. W.** (1992) Cell sorting during the regeneration of Hydra from reaggregated cells. *Dev. Biol.* 151: 117-127

Technau U., C. van Laue, F. Rentzsch, S. Luft, B. Hobmayer, H. R. Bode, T. W. Holstein (2000) Parameters of self-organization in Hydra aggregates. *PNAS* 97: 12127-12131

**Teragawa C.K. and Bode H.R.** (1995) Migrating interstitial cells differentiate into neuron in Hydra. *Dev. Biol.* 171:286-293

**Thermes V., Grabher C., Ristoratore F., Bourrat F., Choulika A., Wittbrodt J., and Joly J. S.** (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. *Mech. Dev.* 118(1-2):91-98. Erratum in: *Mech Dev.* 2003 Feb;120(2):267

Trinkaus J. P. (1984) Mechanism of Fundulus epiboly – a current view. Am. Zool. 24: 673-688

Vos J. A., De Baere I. and Plasterk R. H. (1994) Transposase is the only nematode protein required for in vitro transposition of Tc1. *Genes Dev.* 10: 755-761

Wittlieb J., Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TC. (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. *PNAS* (USA). 103(16): 6208-6211

Yang Y., Topol L., Lee H., Wu J. (2003) Wnt5a and Wnt5b exibit distinct activities in coordinating chondrocyte proliferation and differentiation. *Development* 130(5): 1003-1015

Yoshikawa S., Mc Kinnon R.D., Kokel M., Thomas J.B. (2003) Wnt-mediated axon guidance via the drosophila derailed receptor. *Nature* 422(6932): 583-588

Zihler J. (1972) Zur Gametogenese und Befruchtungsbiologie von Hydra. Wilhelm Roux ' Arch. 169: 239-267

#### 7. Danksagung

Thomas Holstein danke ich für die Annahme als Doktorand und das ich in seinem großzügig ausgestatteten Labor arbeiten durfte. Weiterhin bedanke ich mich für die spannende und herausfordernde Thematik und natürlich besonders für seine Unterstützung und wertvollen Ratschläge.

Suat Özbek für sein offenes Ohr, wenn Probleme in der Arbeit auftauchten und seine hilfreichen Ratschläge.

Annabel Christ für ihre Unterstützung an der Etablierung der Elektroporationstechnik an Hydra im Rahmen ihrer Diplomarbeit.

Bianca Bertulat für Tipps bei der Mikroskopie und für ihre Unterstützung, gerade am Ende dieser Arbeit.

Jochen Wittbrodt und Marcel Souren dafür, dass sie meiner Einladung zur "Summerschool" gefolgt sind, für die wertvollen Diskussionen zur Anwendung der Meganukleasen und die unterhaltsame Zeit. Weiterhin bedanke ich mich für die Bereitstellung des Vektors *pBSIScel*.

Klaus Unsicker für Bereitstellung des Elektroporations-Setups in seinem Labor und Marie Schier-Suchankova für ihre große Hilfsbereitschaft, dem wertvollem Erfahrungsaustausch und ihrer Einführung, wie man *in ovo* Elektroporationen am Neuralrohr im Hühnerembryo durchgeführt.

Ulrike Engel für die freundliche und gute Einweisung in die Bedienung des Spinning Disc Confocal Mikroskops und Christian Ackermann für die vielen guten Ratschläge rund um das Mikroskopieren & "Imaging"

Allen übrigen Mitgliedern der Arbeitsgruppe danke ich für den freundlichen Umgang miteinander und der stetigen Hilfsbereitschaft, die das Arbeiten im Labor sehr angenehm gemacht hat. Ich werde den Arbeitsalltag mit Euch sicherlich vermissen!

Meinen Kooperationspartnern möchte ich auch meinen Dank aussprechen. Hierzu zählen: Das Nikon Imaging Center (nic@uni-hd)

Prof. Dr. Angelika Böttger (LMU München) für den Vektor pHotG, mein wichtigstes Reporterplasmid

Prof. Dr. Robert Steele (University of California) danke ich für die Klonierung und Bereitstellung der "Sleeping Beauty" Vektoren *pASBT* und *pTHB* für Hydra.

Dr. Jasen Bell aus dem Labor von Prof. Dr. Perry Hackett (University of Minnesota) bedanke ich mich für die Zusendung und die Erlaubnis den Vektor *pSBRNAX* zur Transkription der SB mRNA zu verwenden.