
Extended and Constrained Cimmino-type

Algorithms with Applications in

Tomographic Image Reconstruction

Stefania Petra1, Constantin Popa,2 Christoph Schnörr3

Abstract. In the first part of this paper we propose an extension of Cim-
mino’s reflections algorithm to inconsistent least squares problems. For proving
convergence of the extended algorithm we first make a convergence analysis of
the classical method that reveals other interesting aspects which don’t appear
in the convergence analysis made in the original paper by G. Cimmino. In the
second part of the paper we introduce in both original and extended Cimmino
algorithms constraining procedures and prove convergence of mixed algorithms in
both cases to constrained classical or least squares solutions, respectively. In the
third part of the paper we present numerical experiments on some algebraic image
reconstruction models, with particular attention to tomographic particle image re-
construction, which illustrate the performance of both extended and constrained
algorithms.

Keywords: Cimmino and Cimmino Extended algorithms, constraining
strategies, algebraic image reconstruction, tomographic particle image recon-
struction

2000 MS Classification: 65F10, 65F22

1 Introduction

One of the basic problems in scientific computation consists in the solution of
systems of linear algebraic equations. Almost all problems of computational
mathematics boil down, in the end, to the solution of such systems, often

1petra@math.uni-heidelberg.de, University of Heidelberg, Dept. of Mathematics and
Computer Science, Germany

2cpopa@univ-ovidius.ro, Ovidius University Constanta, Dept. of Mathematics and
Computer Science, Romania

3schnoerr@math.uni-heidelberg.de, University of Heidelberg, Dept. of Mathematics and
Computer Science, Germany

1

of very large dimensions. A classical example is image reconstruction from
limited-view projections. Upon discretization these problems are reduced to
linear algebraic systems of the form

Ax = b , (1)

with rank-deficient system matrix A and b a measurement vector. It is well
known that the minimal `2-norm of the least squares problem

min ‖Ax− b‖ , (2)

is the best (minimum variance) unbiased estimator for the “true“ solution
x of (1), due to inevitable measurement errors in b. Moreover, the errors
in b often make the problem (1) inconsistent, i.e. b /∈ R(AT). Thus, the
pursuit of the least squares solution of (2) instead of (1) turns out to be a
basic necessity. However, the minimum norm solution of (2) or (1) (in the
consistent case) may considerably differ from the true solution, and hence a
priori knowledge is needed to improve the reconstruction. Usually we have
a priori information about the range within the values of the components of
acceptable image vectors must lie, i.e.

x ∈ B , (3)

with B some compact set in Rn. This assumption can substantially regularize
the ill-posed image reconstruction problems as we will see in Section 6 and
should be exploited by the iterative method considered for solving (2). Iter-
ative methods, preferred over direct methods due to the huge dimensionality
of A in real-world applications, produce a sequence of successive approxima-
tions xk which, under appropriate conditions, converge to a solution of (2) as
k →∞. Hence, we are interested in techniques able to steer the approxima-
tions xk in the set B. Such techniques traditionally termed as constraining
strategies were investigated in [9] applied to iterative methods for consistent
systems (1) in particular for Kaczmarz-like methods. For the inconsistent
case such constraining strategies are investigated in [16] for Kaczmarz-type
algorithms, likewise. In Kaczmarz’s method, the current approximation xk

is orthogonally sequentially projected onto the hyperplanes defined by the
rows of A. The projection onto the last hyperplane is taken as the new ap-
proximation xk, and the process is repeated. The method was rediscovered
in the field of computerized tomography, where the method of Kaczmarz was

2

rediscovered around 1970 under the name of Algebraic Reconstruction Tech-
nique (ART); see [3, 5]. Convergence results of ART are well established
also for the inconsistent case, see e.g. [17]. A different approach was adopted
by the authors in [14], where a Kaczmarz-type algorithm, called Kaczmarz
Extended with Relaxation Parameters (KERP), employs a modified right-
hand side vector b to deal with the inconsistent case. Convergence of KERP
towards a least-squares solution was proved.

In this work we follow a similar approach as the authors in [9] and [14, 16]
and will investigate the compatibility of Cimmino‘s method and its extension
in the above mentioned sense to constraining strategies.

Cimmino’s method, the method of simultaneous orthogonal reflections
with respect to the every hyperplane described by every equation in (1)
simply writes as

xk+1 = xk +
2

ω
AT DT D(b− Axk) ,

with some ω > 0 and D some diagonal matrix, see also next section. Cimmino
shows that the method is always convergent, even in the inconsistent case: no
restriction is imposed on the system matrix A except the extremely mild one
of having rank at least 2. We will refine this result by giving an expression
for the limit of the above sequence {xk} in Section 2. This result will be used
in Section 3 to prove the convergence of an extended version of Cimmino’s
method to a least squares solution even in the inconsistent case. We stress
that the above approximations {xk} in Cimmino’s original method converge
in the inconsistent case to a weighted least squares solution, i.e.

min ‖D(Ax− b)‖ , (4)

which might substantially differ from the least squares solution (2). The
proposed extended Cimmino algorithm employs a corrected right-hand side
bk which approaches the projection of the given measurement vector b onto
the range of AT , thus the inconsistent system Ax ≈ b will approach its con-
sistent counterpart Ax = PR(AT)(b). A constrained version for the proposed
extended Cimmino algorithm is investigated in Section 5, where the iterates
of the extended Cimmino algorithm are steered in the range I(C) of a con-
straining function C. Convergence of the new algorithm towards a point in
the intersection LSS(A, b) ∩ I(C) is proved for weaker assumptions on the
function C than in the case of the constrained original Cimmino algorithm
which we investigate in Section 4. Here C has to be strictly nonexpansive to

3

obtain convergence towards a point within the intersection of I(C) and the
solution set of the weighted least squares problem (4). Similar results are
obtained for the Kaczmarz-type methods by the author in [16].

In this respect the methods of Cimmino and Kaczmarz are closely re-
lated. However, Cimmino’s algorithm has been found to be better suited for
parallel computers, whereas Kaczmarz’s method tends to converge somewhat
faster. This can be best understood by observing that Cimmino’s method
is equivalent to a damped Jacobi iteration applied to the normal equations
AT Ax = AT b. Likewise, Kaczmarz method is equivalent to the classical
Gauss-Seidel method applied to the system AAT y = b, with AT y = x, see
e.g. [18]. A further attractive feature of both methods is their extremely low
storage demand. This is especially evident for Kaczmarz’s method, which
only requires one row of the coefficient matrix A to perform one iteration: in
other words, Kaczmarz’s method is a row action method, see [3]. Cimmino’s
method and our proposed extensions can also be implemented in this way. As
for parallel computing, as we already comment, Cimmino’s method and our
proposed extensions is ideally suited for parallel implementation, and stress
that our interest in old algorithms like Cimmino’s is primarily due to this
feature, having in mind the huge dimensionality of the real-world application
we have to tackle in the field of image reconstruction.

Our notation is standard; in particular we will denote by ‖ · ‖, the Eu-
clidean `2-norm and by ‖ · ‖1 the `1-norm in the n-dimensional real vector
space Rn. For a m×n matrix A, Ai is the i-th row of A, Aj is the j-th row of
A and aij denotes the i, j-th element of A. In what follows we shall suppose
that the matrix A has nonzero rows Ai and columns Aj, i.e.

Ai 6= 0, i = 1, . . . ,m, Aj 6= 0, j = 1, . . . , n. (5)

The (nonempty) set of all least-squares solution of (2) will be denoted
by LSS(A, b) and the minimal `2-norm solution in LSS(A, b) by xLS. The
null space of an matrix M will be denoted by N (M), whereas by R(M) we
will denote the range of M . The projection onto linear subspaces S will be
denoted by PS . The same symbol PS is often used to denote the matrix and
the linear mapping it represents. The image of a (nonlinear) mapping C will
be denoted by I(C).

4

2 Original Cimmino’s algorithm revisited

In [4], Cimmino considers a system of linear algebraic equations Ax = b
where A is a real matrix (initially assumed square and nonsingular). A
solution point will lie in the intersection of the m hyperplanes described by

Hi := {x | AT
i x = bi}, i = 1, . . . ,m. (6)

Given a current approximation xk, Cimmino takes, for each i = 1, . . . ,m the
reflection yk,i of xk with respect to the hyperplane (6)

yk,i = xk + 2
bi − AT

i xk

‖Ai‖2
Ai . (7)

Given m arbitrarily chosen positive quantities

ωi > 0,
m∑

i=1

ωi =: ω , (8)

the next iterate xk+1 is the center of gravity of the system formed by plac-
ing the m masses ωi at the points yk,i given by (7). Cimmino notes that
the point xk and its reflections with respect to the hyperplanes (6) all lie
on a hypersphere the center of which is precisely a point x common to all
hyperplanes. Because the center of gravity of the system of masses ωi must
necessarily fall inside this hypersphere, it follows that the new iterate xk+1

is a better approximation to the solution xk,

‖xk+1 − x‖ < ‖xk − x‖ .

The above considerations can be summarized as taking

xk+1 =
m∑

i=1

ωi

ω
yk,i = xk + 2

m∑
i=1

ωi

ω

bi − AT
i xk

‖Ai‖2
Ai ,

thus, Cimmino’s method can be written as follows
Algorithm Cimmino (C). Let x0 ∈ Rn; for k = 0, 1, . . . do

xk+1 = xk +
2

ω
AT DT D(b− Axk) , (9)

5

where

D :=

√

ω1

‖A1‖ √
ω2

‖A2‖
. . .

√
ωm

‖Am‖

 . (10)

Cimmino showed the following result:

Theorem 1 [4] Provided that the rows and columns of A satisfy (5) and

rank(A) ≥ 2 , (11)

then for any initial approximation x0 ∈ Rn the sequence {xk} generated by
(9) converges

(i) to one solution of Ax = b, if the problem (1) is consistent;

(ii) to a solution of the perturbed least squares problem

min
x
‖D(Ax− b)‖ . (12)

As we can see from the previous theorem, Cimmino’s algorithm (9) gives
approximations of the solutions of (1) only in the consistent case. In the
inconsistent case, because the positive weights ωi are arbitrary the solutions
of the weighted least squares problem (12) can be far enough from the least
squares solutions of the original one (12). For overcoming this difficulty we
shall present in the next section an extended version of Cimmino’s original
method (9).

Remark 1 From (10) it results that, for the particular choice ωi = ‖Ai‖2,
∀i = 1, . . . ,m we get D = I thus problem (12) is exactly the initial one (2).
So, for the above particular choice for ωi (and only for this !) the original
Cimmino’s algorithm (9) converges also in the inconsistent case to a solution
of (2) (see for details [15]).

As will be presented in Section 3, our extension of Cimmino’s algorithm
(9) is based on an extension of Kaczmarz’s method, proposed by one of
the authors in [12] (see also [14]), for inconsistent and rank-deficient least
squares problems (2). From this view point we need a convergence analysis

6

for it similar with that made for Kaczmarz’s method in [17] (see also [13]).
In particular we need to gain more knowledge about the limit of the sequence
in (9) in dependence of the starting point x0. This will be done in the rest
of this section.

To this end, we rewrite the iteration in (9) as

xk+1 = Txk + Rb , (13)

where

T := I − 2

ω
AT DT DA (14)

and

R :=
2

ω
AT DT D . (15)

First, we observe that T can be written as

T :=
m∑

i=1

Si , (16)

where Si is the Householder linear transformation

Si := I − 2

ω

AiA
T
i

‖Ai‖2
, (17)

i.e. the orthogonal reflector with respect to the reflection hyperplane orthog-
onal to Ai. Next we will study several important properties of the linear
operator T and note that N (A) and R(AT) are invariant subspaces of T .

Lemma 1 (i) If x ∈ N (A) then Tx = x ∈ N (A).

(ii) If x ∈ R(AT) then Tx ∈ R(AT).

(iii) For any y ∈ Rm, Ry ∈ R(AT).

Proof. The statements in (i) - (iii) follow directly from (14) and (15). �

Now we will see that T from (14) is contractive on R(AT).

Lemma 2 (i) For any x ∈ Rn, ‖Six‖ = ‖x‖; in particular, ‖Si‖ = 1 for
all i = 1, . . . ,m.

7

(ii) The matrix T satisfies
‖T‖ = 1 . (18)

(iii) If rank(A) ≥ 2, we have

‖T |R(AT)‖ < 1 , (19)

where by T |R(AT) we denoted the restriction of T to the corresponding
linear subspace R(AT).

(iv) ‖Tx‖ = ‖x‖ ⇐⇒ x ∈ N (A) .

Proof. Since Si is orthogonal, statement (i) follows directly. Indeed,

ST
i Si =

(
I − 2

AiA
T
i

‖Ai‖2

)2

= I − 4
AiA

T
i

‖Ai‖2 + 4
AiA

T
i AiA

T
i

‖Ai‖4 = I.

Hence, ‖Six‖2 = ‖x‖2 for all i = 1, . . . ,m and thus (i) holds.

(ii) For an arbitrary x ∈ Rn we get

‖Tx‖ = ‖
m∑

i=1

ωi

ω
Six‖ ≤

m∑
i=1

ωi

ω
‖Six‖

(8),(i)
= ‖x‖ (20)

By Lemma 1 (i) ‖T‖ = 1 now follows.

(iii) Let x ∈ R(AT)\0. Hence x /∈ N (A) as Rn = R(AT)⊕N (A). By the
nonsingularity of Si we have Six 6= 0 for all i = 1, . . . ,m. Since the `2-norm
is strictly convex, ωi > 0 and

∑m
i=1

ωi

ω
= 1 the equality in (20) only holds if

S1x = · · · = Smx. Let us suppose that S1x = Six for all i = 2, . . . ,m. This
is equivalent to

AT
1 x

‖A1‖2
A1 −

AT
i x

‖Ai‖2
Ai = 0 for all i = 2, . . . ,m.

Since rank(A) ≥ 2 the equalities above imply that AT
i x = 0 for all i=1,. . . ,m.

But this contradicts x /∈ N (A). Hence we showed that the reflectors of x
with respect to every hyperplane orthogonal to Ai cannot be all equal. Thus,
the strict inequality in (20) holds for all x ∈ R(AT) \ 0.

8

The implication ”⇐” in (iv) follows directly from Lemma 1 (i) whereas
the reverse implication ”⇒” follows from (iii). �

Next we are interested in the recursive application of T .

Lemma 3 We have
T k = PN (A) + T̃ k , (21)

where T̃ := TPR(AT) and T k = TT k−1 with T 0 = I.

Proof. We will use an induction argument. First, we decompose the operator
T from as

T = TI = T
(
PN (A) + PR(AT)

) Lem.1(i)
= PN (A) + T̃ .

Thus, the statement in (21) holds for k = 1. Let us assume it for an arbitrary
k. Then

T k+1 = TT k =
(
PN (A) + T̃

) (
PN (A) + T̃ k

)
= P 2

N (A) + PN (A)T̃
k + T̃PN (A) + T̃ k+1

= PN (A) + T̃ k+1

holds, since

PN (A)T̃ x = PN (A) TPR(AT)x︸ ︷︷ ︸
∈R(AT)

= 0 for all x ∈ Rn (22)

and
T̃PN (A) = T PR(AT)PN (A)︸ ︷︷ ︸

=0

= 0 . (23)

�

We can now prove a convergence result, similar with Cimmino’s original
one from Theorem 1, in which we give more information about the expression
for the limit of the sequence of approximations.

Theorem 2 Let us suppose that the matrix A satisfies (5) and (11). Then
the following hold.

9

(i) For any initial approximation x0 ∈ Rn, the sequence {xk} generated by
Cimmino’s algorithm (9) converges and its limit is given by

lim
k→∞

xk = PN (A)(x
0) +

(
I − T̃

)−1

Rb . (24)

(ii) If the problem (1) is consistent, i.e. b ∈ R(A) then(
I − T̃

)−1

Rb = xLS (25)

and the limit point in (24) is one of its solutions.

Proof. (i) Using (13) and a recursive argument, we obtain

xk = Txk−1 + Rb = T
(
Txk−2 + Rb

)
+ Rb = · · · = T kx0 +

k−1∑
j=0

T jRb ,

as for Kaczmarz method in [17]. Now using Lemma 3 we obtain

xk = T̃ kx0 + PN (A)(x
0) +

k−1∑
j=0

T jRb

(27)
= T̃ kx0 + PN (A)(x

0) +
k−1∑
j=0

T̃ jRb ,

(26)

since
T jR = T̃ jR, ∀j ∈ N , (27)

holds by Lemma 1 (iii) and the definition of T̃ .

Since ‖T̃‖ < 1 the Neumann series
∑∞

j=0 T̃ j converges and we obtain

lim
k→∞

T̃ kx0 = 0 and lim
k→∞

k−1∑
j=0

T̃ jRb =
(
I − T̃

)−1

Rb ,

which gives us in view of (26) exactly the statement in (24).
(ii) It is well known (see e.g. [2]) that the consistency assumption, b ∈ R(A)
is equivalent with the equality

AGb = b ,

10

where G is a matrix (the generalized inverse of A) that satisfies

AGA = A. (28)

Moreover, in this case the vector Gb is the minimal norm solution of the
system Ax = b. According to the above considerations, (25) will hold if we
prove that the matrix G given by

G =
(
I − T̃

)−1

R (29)

satisfies (28). To this end, we observe that T and R from (14) - (15) satisfy

I − T = RA . (30)

Indeed, I −RA = I − 2
ω
AT DT DA = T .

Finally we obtain

AGA = A
(
I − T̃

)−1

RA
(30)
= A

(
I − T̃

)−1

(I − T)

(21)
= A

(
I − T̃

)−1 (
(I − T̃)− PN (A)

)
= A− A

(
I − T̃

)−1

PN (A) = A− A
∞∑

j=0

T̃ jPN (A)︸ ︷︷ ︸
=0

= A ,

which completes the proof.

Remark 2 From the above theorem, it results that, in the consistent case any
solution of (1) can be obtained as a limit point in (24), for appropriate values
of x0. Although in practice we usually approximate the minimal `2 norm
solution, recent trend has been to replace the `2 norm with an `1 norm. This
`1 regularization has many of the beneficial properties of `2 regularization,
but yields sparse solutions of (1) and (2) that are better suited for a large set
of applications. This will be illustrated also in Section 6.

Remark 3 It turns out that Cimmino’s algorithm (9) is a damped gradient
method applied to

fD :=
1

2
‖D(Ax− b)‖2 , (31)

11

thus
xk+1 = xk − tk∇fD(xk) ,

with constant stepsize tk = 2
ω
. Note that convergence of the overall method to

a minima of fD holds for this particular stepsize even in the case of a rank
deficient matrix A.

3 Cimmino Extended Algorithm

The extension that we propose for Cimmino’s algorithm (9) is based on
an extension of Kaczmarz’s algorithm, previously proposed by one of the
authors in [12] (see also [13]). It will be briefly presented in the first part
of this section. To this end, let us suppose that the rows and columns of
A satisfy (5). For an arbitrary starting point x0 Kaczmarz’s method can be
written as

xk+1 := PHm(. . . (PH2(PH1(x
k))) . . .) , (32)

where Hi denote the hyperplanes in (6) and k = 0, 1, We must mention
that the order of the sequential projections in (32) can be chosen arbitrarily.

Likewise, the Kaczmarz Extended (KE) algorithm, can be written as fol-
lows.
Algorithm Kaczmarz Extended (KE). Let x0 ∈ Rn, y0 = b;
for k = 0, 1, . . . do

yk+1 = PĤn
(. . . (PĤ2

(PĤ1
(yk))) . . .) =: Φ(yk) , (33)

bk+1 = b− yk+1 , (34)

xk+1 = P eHm
(. . . (P eH2

(P eH1
(xk))) . . .) =: Qxk + Ubk+1 , (35)

where Ĥj := {y | (Aj)T y = 0} and H̃i := {x | AT
i x = bk+1

i }.
In this extension, the auxiliary sequence {yk} is generated in (33) by

applying Kaczmarz’s algorithm (32) to the consistent system

AT y = 0 , (36)

with the initial approximation y0 = b. According to the convergence results
concerning Kaczmarz’s method (32) (see e.g. [13], [17]) we know that

lim
k→∞

yk = PN (AT)(b), thus lim
k→∞

bk = PR(A)(b).

12

In this way, in each iteration (34), the ”new” right hand side bk approaches
the component PR(A)(b), i.e. the inconsistent problem Ax ≈ b = PN (AT)(b)+
PR(A)(b) approaches its consistent equivalent formulation Ax = PR(A)(b).

By analogy, the ”additional” part in the further proposed Cimmino Ex-
tended (CE) algorithm, will be the Cimmino’s algorithm (9) applied to the
consistent problem (36). In this end, we will consider other positive weights

αj > 0, α =
n∑

j=1

αj (37)

and the ”column” versions of the above operators T and D, denoted by T

and D respectively, and defined as follows (see (14) and (10))

D :=

√

α1

‖A1‖ √
α2

‖A2‖
. . .

√
αn

‖An‖

 (38)

and

T := I − 2

ω
ADT DAT . (39)

Then, by analogy with the KE method (33) – (35), the Cimmino Extended
(CE) algorithm can be written as:
Algorithm Cimmino Extended (CE). Let x0 ∈ Rn, y0 = b;
for k = 0, 1, . . . do

yk+1 = Tyk , (40)

bk+1 = b− yk+1 , (41)

xk+1 = Txk + Rbk+1 . (42)

The following results for the operator T and the sequence yk can be
obtained by simply replacing AT with A in the corresponding analogous
statements for T and xk in Lemma 1, Lemma 2 and Theorem 2.

Lemma 4 (i) N (AT) and R(A) are invariant subspaces for the application
T and we have

Tk = PN (AT) + T̃k, ∀k ∈ N , (43)

13

where T̃ is defined by
T̃ = T PR(A) . (44)

(ii) The matrix T̃ has the property

‖ T̃ ‖= sup
y∈R(A)

‖Ty‖
‖y‖

< 1 . (45)

(iii) If {yk} is the sequences defined in (40) where y0 = b ∈ Rm then

lim
k→∞

yk = PN(AT)(b) = b− PR(A)(b) . (46)

Moreover, the projection of every iterate generated by CE algorithm on
the null space of A equals the projection of the starting point x0 on N (A).

Lemma 5 Let {xk} be the sequence generated by CE algorithm (40) – (42)
for an arbitrary initial approximation x0 ∈ Rn. Then

PN (A)(x
k) = PN (A)(x

0), ∀k ∈ N . (47)

Proof. Using mathematical induction the result can be proved using Lemma
1 (i) and (iii) and PN (A)PR(AT) = 0. �

We are now able to prove the main convergence result for the CE algo-
rithm.

Theorem 3 Let us suppose that the matrix A satisfies (5) and (11). Then,
for any initial approximation x0 ∈ Rn, the sequence {xk} generated by Cim-
mino Extended algorithm (40) – (42) converges and its limit is given by

lim
k→∞

xk = PN (A)(x
0) + xLS ∈ LSS(A, b). (48)

Proof. It is well known that LSS(A, b) = {x ∈ Rn | Ax = PR(AT)b}. Let
G denote the generalized inverse of A. Then the minimal norm least squares
solution satisfies xLS = GPR(AT)b. In the following we will try to evaluate the

error vector ek := xk −
(
PN (A)(x

0)− xLS

)
using G = (I − T̃)−1R according

to the proof of Theorem 2.

14

Following the proof from [13] we successively obtain

ek = xk − (PN (A)(x
0) + xLS)

= Txk−1 + Rbk − (PN (A)(x
0) + xLS)

(43)
= PN (A)x

k−1 + T̃ xk−1 + Rbk − (PN (A)(x
0) + xLS)

(47)
= T̃ xk−1 + Rbk − (I − T̃ + T̃)(I − T̃)−1RPR(AT)(b)

= T̃ (xk−1 − xLS) + R(bk − PR(AT)(b))

= T̃ (xk−1 − PN (A)(x
0)− xLS) + R(b− yk − PR(AT)(b))

= T̃ ek−1 + R(PN (A)(b)− yk) .

(49)

On the other hand

PN (A)(b)−yk (40)
= PN (A)(b)−Tkb

(43)
= PN (A)(b)−(PN (A) + T̃k)b = −T̃kb . (50)

Then, combining (49) and (50) we obtain

ek = T̃ ek−1 −RT̃kb (51)

and a recursive application of (51) gives us

ek = T̃ ke0 −
k−1∑
j=1

T̃ k−jRT̃jb−RT̃kb, k ≥ 2. (52)

Thus, by taking norms, we get

‖ek‖ ≤ ‖T̃‖k‖e0‖+ ‖R‖‖b‖
(
ck + ‖T̃‖k

)
, (53)

where by {ck}k≥2 we denoted the sequence of positive numbers defined by

ck =
k−1∑
j=1

‖ T̃ ‖k−j‖ T̃ ‖j, k ≥ 2 . (54)

Let now δ ∈ (0, 1) be defined by

δ = max{‖ T̃ ‖, ‖ T̃ ‖} . (55)

Then, from (53) and (54) we obtain

‖ ek ‖≤ δk
(
‖ e0 ‖ +k · ‖R‖‖b‖

)
→ 0, as k →∞ , (56)

which completes the proof. �

15

Remark 4 From the above theorem it results that, in the general case for
(2) any of its least squares solutions can be obtained as a limit point in (48),
for an appropriate value of x0.

4 Constrained Cimmino algorithm

As we already mentioned, additional information about the real-world prob-
lem can further restrict the solution set of both (1) and (2). A common
idea in image reconstruction is to look for solutions satisfying x ≥ 0 or
x ∈ [l, u] ⊂ Rn

+. Therefore the iterates generated by ART are usually pro-
jected onto the range within the values of the components of an accept-
able image vector must lie, see [3]. These interval constraining techniques
were generalized by Koltracht and Lancaster in [9], were the authors made a
complete theoretical analysis of a more general class of constraining strate-
gies applied to (classical) Kaczmarz projection method, for consistent sys-
tems of equations. In paper [9] the authors consider a constraining function
C : Rn −→ Rn with a closed image I(C) ⊂ Rn and the properties

‖C(x)− C(y)‖ ≤ ‖x− y‖ , (57)

if ‖C(x)− C(y)‖ = ‖x− y‖ then C(x)− C(y) = x− y , (58)

if y ∈ I(C) then y = C(y) , (59)

and proposed the constrained version of Kaczmarz’s algorithm:
Algorithm Constrained Kaczmarz (CK). Let x0 ∈ I(C);
for k = 0, 1, . . . do

xk+1 = C(Qxk + Ub) . (60)

Here we stress that Kaczmarz’s algorithm can be written in the form

xk+1 = Qxk + Ub , (61)

for some matrices Q ∈ Rn×n and U ∈ Rn×m, compare also [17], similar to
Cimmino’s algorithm, see (13).

According to (60) the constrained version of Cimmino’s algorithm (9) is
the following.
Algorithm Constrained Cimmino (CC). Let x0 ∈ I(C);
for k = 0, 1, . . . do

xk+1 = C(Txk + Rb). (62)

16

Now, by following exactly the same way from [9, Th. 3], we can show the
following convergence result for the CC algorithm (62).

Theorem 4 Let us suppose that the matrix A satisfies (5) and (11), the
constraining function C satisfies (57) – (59) and the set V defined by

V = {y ∈ I(C), y −∆ ∈ LSS(A, b)} (63)

is nonempty, where ∆ is defined by

∆ = (I − T̃)−1RPN (AT)(b), (64)

with T̃ , T, R from (21), (14), (15), respectively. Then, for any x0 ∈ I(C) the
sequence {xk} generated by (62) converges and its limit belongs to the set V.
If the problem (1) is consistent, then the above limit is one of its constrained
solutions.

Remark 5 First we have to observe that all the assumptions (57) – (59) are
essential in the proof of the above theorem, see the comments of the authors
in [9, p. 562]. Second, if the problem (1) is consistent then

∆ = 0 and V = LSS(A, b) ∩ I(C), (65)

i.e. in this case, the algorithm CC generates a ”constrained” solution of the
problem (1).

The following two results are essential for the proof of Theorem 4 from
above, compare [9].

Theorem 5 Suppose that the assumptions of Theorem 2 hold. Let {xk} be
the sequence generated by Cimmino’s algorithm (9), then

lim
k→∞

xk = PN (A)(x
0) + xLS + ∆ , (66)

with ∆ given in (64).

Proof. According to the decomposition b = PR(A)(b) + PN (AT)(b) we obtain
in view of (24) exactly

lim
k→∞

xk = PN (A)(x
0) +

(
I − T̃

)−1

RPR(A)(b)︸ ︷︷ ︸
=xLS

+
(
I − T̃

)−1

RPN(AT)(b)︸ ︷︷ ︸
=∆

. (67)

17

�

In the rest of this section we shall suppose that the set V is nonempty.
The following counterpart of Lemma 1 from [9] shows that the image of a
vector in I(C) through the map · 7→ C(T (·) + Rb), with C satisfying (57)
– (59), can only be closer to V than this vector itself.

Lemma 6 If the constraining function C satisfies all the assumptions (57)
– (59), h ∈ I(C) and g is given by

g = C(Th + Rb) , (68)

with T, R from (14), (15) then, for any y ∈ V we have

‖g − y‖ ≤ ‖h− y‖ . (69)

Moreover, either
‖g − y‖ < ‖h− y‖ (70)

or
g = h ∈ V . (71)

Proof. Here we follow the proof in [9, Lem. 1]. Let y ∈ V and h ∈ I(C). In
order to prove the inequality (69), we first prove

Rb = (I − T)y. (72)

Since y ∈ V it exists a ζ ∈ LSS(A, b) such that

y = ζ + ∆ . (73)

Further, we denote by ξ the limit of the sequence from (66), for the initial
approximation x0 = 0, thus by Theorem 5 we also have

ξ = xLS + ∆. (74)

Combining (73) and (74) we obtain

y − ξ = ζ − xLS ∈ N (A) (75)

and by Lemma 1 (i)
(I − T)(y − ξ) = 0 . (76)

18

On the other hand, by taking limits in (13) we get

(I − T)ξ = Rb . (77)

Now equation (72) follows from (77) and (76).
For any h ∈ I(C) we successively obtain

g − y
y∈I(C)

= C(Th + Rb)− C(y)

(72)
= C(Th + (I − T)y)− C(y)

= C(T (h− y) + y)− C(y)

(78)

and by taking norms

‖g − y‖ = ‖C(T (h− y) + y)− C(y)‖
(57)

≤ ‖T (h− y) + y)− y‖ = ‖T (h− y)‖
‖T‖≤1

≤ ‖h− y‖ ,

(79)

thus (69) holds.
Let us suppose now that (70) doesn’t hold, thus, according to (69) we get

‖g − y‖ = ‖h− y‖ . (80)

Then, in (79) we have a sequence of equalities and thus, according to (58)

C(T (h− y) + y)− C(y) = T (h− y)

or, using (78)
g − y = T (h− y) . (81)

From (80) and (81) we then obtain

‖T (h− y)‖ = ‖h− y‖ . (82)

By Lemma 2 (iv) h−y ∈ N(A) and using Lemma 1 we get T (h−y) = h−y,
which implies

g = h (83)

in view of (81). Thus, for completely proving (71) we must show that h ∈ V
or equivalently (compare (63))

h−∆ ∈ LSS(A, b) . (84)

19

Indeed,

h−∆ = y −∆︸ ︷︷ ︸
∈LSS(A,b)

+ h− y︸ ︷︷ ︸
∈N (A)

∈ LSS(A, b) (85)

which completes the proof. �

Remark 6 For the particular choice

C(x) = ΠB(x) := argmin{‖x− y‖ | y ∈ B} ,

with B a closed convex set Cimmino Constrained algorithm is a projected
gradient method defined by xk+1 = ΠB(x

k−tk∇fD(xk)), with constant stepsize
tk = 2

ω
and fD defined in (31).

5 Constrained Cimmino Extended algorithm

In this section we will investigate the constrained version of Cimmino Ex-
tended algorithm (40) – (42), which is constructed analogously to the con-
strained version of Kaczmarz Extended algorithm (CKE) (33) – (35), pro-
posed by one of the authors in [16]. This will be briefly described in what
follows.
Algorithm Constrained Kaczmarz Extended (CKE). Let x0 ∈ I(C), y0 =
b; for k = 0, 1, . . . , do

yk+1 = Φ(yk) , (86)

bk+1 = b− yk+1 , (87)

xk+1 = C(Qxk + Ubk+1) . (88)

Let Γ be the set defined by

Γ = LSS(A, b) ∩ I(C). (89)

The following convergence result was proved in [16] for the algorithm CKE.

Theorem 6 If A satisfies (5), the set Γ from (89) is nonempty and the
constraining function C satisfies the assumptions (57) and (59), then for
any x0 ∈ Rn the sequence {xk} generated with the algorithm CKE (86)- (88)
converges to an element of the set Γ.

20

Remark 7 As we have already observed in in the Introduction, the assump-
tion (58) on the constraining function C doesn’t appear in the hypothesis of
the above Theorem 6. This, together with (57) is called ”strict nonexpansiv-
ity” property for C and is essentially used in the proof of Theorem 4 and [9,
Th. 3].

By analogy with CKE, we shall consider in what follows the Constrained
Cimmino Extended (CCE) algorithm.
Algorithm Constrained Cimmino Extended (CCE). Let x0 ∈ I(C),
y0 = b; for k = 0, 1, . . . , do

yk+1 = T(yk) , (90)

bk+1 = b− yk+1 , (91)

xk+1 = C(Txk + Rbk+1) . (92)

The proof of Theorem 6 is based on the Lemmas 2 – 5 from [16]. These
lemmas follow from the properties of the matrices Q, U and Φ, which were
proved also for the corresponding operators T , R and T, respectively. Thus,
we claim that similar results analogous to the above mentioned lemmas hold
also for the CCE algorithm. Then, the following convergence result (similar
with Theorem 6) will be true for the CCE algorithm.

Theorem 7 If the matrix A satisfies (5) and (11), the set Γ from (89) is
nonempty and the constraining function C satisfies the assumptions (57) and
(59), then for any x0 ∈ Rn the sequence {xk} generated by the algorithm CCE
(90) – (92) converges to an element of the set Γ.

Remark 8 The assumption that the set Γ from (89) is nonempty is directly
connected with the perturbation of b, which makes the system inconsistent. If
we do not have anymore least squares solution in the set I(C), we conjecture
that the CCE algorithm still converges, but to a vector at a certain distance
from LSS(A, b), see also next section.

6 Numerical experiments

In this section we illustrate the numerical performance of the proposed meth-
ods in the context of image reconstruction from limited-data. In particular
we focus on two examples of tomographic inversion problems inspired by
real-world applications.

21

6.1 Test Data

6.1.1 Transmission tomography.

First we describe a discretized model for an image-reconstruction problem; it
is the simplest algebraic image reconstruction model [5] for X-ray transmis-
sion tomography. It assumes that the cross section of an object represented
by an image consists of an array of unknowns, and then sets up algebraic
equations for the unknowns in terms of the measured projection data. To
this end, a Cartesian grid of square picture elements (pixels) is introduced
into the region of interest so that it covers the whole image that has to
be reconstructed. The pixels are numbered in some agreed manner, say
from 1 to n (see Fig. 1, left). The image, here the X-ray attenuation func-
tion, is assumed to take a constant value xi throughout the j-th pixel for
j = 1, 2, . . . , n. Source Si and detector Di are assumed to be points and the
rays between them lines. Further, assume that the length of intersection of
the i-th ray with the j-th pixel, denoted by aij for all i = 1, 2, . . . ,m and
j = 1, 2, . . . , n represents the weight of the contribution of the j-th pixel to
the total attenuation along the i-th ray. The physical measurement of the
total attenuation of the i-th ray, denoted by bi, represents approximatively
(due to measurement errors) the line integral of the unknown attenuation
function along the path of the ray. Therefore, in this discretized model, the
line integral turns out to be a finite sum and the whole model is described
by a system of linear equations

n∑
j=1

aijxj ≈ bi i = 1, 2, . . . ,m .

Our first set of numerical experiments are concerned with the two images
xex,p ∈ R16 (4 × 4 pixels), p ∈ {1, 2}, from Fig. 1, middle and right. The
equally spaced sources Si and detectors Di are arranged according to a par-
allel beam geometry from angles 0o, 45o, 90o, as depicted in Fig. 1, left, re-
sulting in m = 15 measurements. The corresponding right hand side b ∈ R15

was computed for according to

b = Axex,p + e , (93)

for some error vector e ∈ Rm, which we will define in Section 6.2 and p ∈
{1, 2}. It must be pointed out that in clinical Computerized Tomography

22

Figure 1: Left to: Scanning procedure in transmission tomography accord-
ing to a parallel beam geometry. Middle: First test image xex,1. Right:
Second test image xex,2.

(CT) transmission profiles of a patient are acquired under a large range
of angles, i.e. the image to be reconstructed is highly oversampled. Still,
there are situations when substantially fewer projections are sufficient to
obtain a good enough reconstruction of the object under consideration, due
to a simpler structure of this image. Typical examples are angiography or
geophysical imaging. A further example is presented in what follows.

6.1.2 Tomographic Particle Image Reconstruction

Our second model problem has its origin in tomographic particle image ve-
locimetry (TomoPIV) [6], a measurement technique which provides the ba-
sis for estimating turbulent flows and related flow patterns through image
processing directly in 3D. The essential step of this technique is the 3D re-
construction of an particle distribution within the fluid from few projections
(2D images). It is assumed that the image I to be reconstructed can be
approximated by a linear combination of basis functions Bj,

I(z) ≈
n∑

j=1

xjBj(z), ∀z ∈ Ω ⊂ R3 , (94)

where Ω denotes the volume of interest. The main task is to estimate the
weights xj from the recorded 2D images, corresponding to basis functions
located at a Cartesian equidistant 3D grid pj , j = 1, . . . , n. We consider
Gaussian-type basis functions (“blobs”), an alternative to the classical voxels,

23

of the form

Bj(z) = e−
‖z−pj‖

2
2

2σ2 , for z ∈ R3 : ‖z − pj‖2 ≤ r , (95)

or value 0, if ‖z − pj‖2 > r. The recorded pixel intensity bi is the object
intensity integrated along the corresponding line of sight Li, obtained from a
calibration procedure. Similar to the previous example the i-th measurement
obeys

bi :≈
∫

Li

I(z)dz ≈
∫

Li

Î(z)dz =
n∑

j=1

xj

∫
Li

Bj(z)dz︸ ︷︷ ︸
:=aij

. (96)

In order to enable visualization we further present a 2D model and stress
that 3D models are direct extensions of the present one. We consider 3 and
20 particles in a 2D volume V = [−1

2
, 1

2
] × [−1

2
, 1

2
], see Fig. 6.1.2, middle

and right. The grid refinement was chosen d = 0.0154, resulting in 4356
gridpoints. At these gridpoints we center a Gaussian-type basis function,
where σ = d. Particle positions were chosen randomly but at grid positions,
to avoid discretization errors. Thus, xex,p, p = {3, 4}, is a binary vector
in R4356 having 3 or 20 nonzero components. Four 50−pixel cameras are
measuring the 2D volume from angles 45o, 15o,−15o,−45o, according to a
fan beam geometry, see Fig. 2, left. The screen and focal length of each
camera is 0.5. The pixel intensities in the measurement vector b are computed
according to (96), integrating the particle image exactly along each line of
sight and perturbing the result according to

b = Axex,p + e ,

where p ∈ {3, 4} and e from (97) in Section 6.2.

6.2 General Considerations

We applied the algorithms Cimmino (C) (9) from Section 2, Constrained
Cimmino (CC) (62) from Section 4, Cimmino Extended (CE) (40) – (42)
from Section 3 and Constrained Cimmino Extended (CCE) (90) – (92) from
Section 5 to the perturbed system

b = Axex,p + e ,

24

Figure 2: Left: Four cameras measuring the 2D volume from angles
45o, 15o,−15o,−45o. Middle: The original image xex,3 contains 3 particles.
Right: The original image xex,4 contains 20 particles.

where p ∈ 1, 2, 3, 4 and A and xex,p obtained as detailed in Section 6.1. The
error vector e = e(ε) ∈ Rm is defined by

e(ε) := ε
v

‖v‖
‖b‖ , (97)

where the components of v are chosen at random drawn from a uniform
distribution on the unit interval. We have chosen four different values for ε,
i.e. ε ∈ {0, 0.05, 0.1, 0.15}. The bigger is ε, the bigger will be

‖∆‖ = ‖GPN (AT)(b)‖,

see (64) and we obtain an inconsistent least squares problem Ax = b.
The constraining function used in all computations was the orthogonal

projection onto the box [0, 1]n, i.e. C : Rn −→ Rn defined by

[C(x)]i :=

xi, xi ∈ [0, 1]
0, xi < 0
1, xi > 1 .

(98)

All original images xex lie in I(C) = [0, 1]n. Moreover, the original images
xex,2, xex,3 and xex,4 are the unique solutions of Ax = b, for e = 0, which
also lie in the set [0, 1]n. Thus, V from (63) and Γ from (89) consists of only
one point for ε = 0 and Cimmino Constrained and Cimmino Constrained

25

Extended algorithm will converge according to Theorem 4 and Theorem 7 to
xex,p in the noiseless (and consistent) case.

Our uniqueness claim is based on the following observations. If bi = 0,
then we can remove all columns of A, whose i-th entry is positive, as well as
the i-th row. This procedure will lead to a ”equivalent” feasible set of reduced
dimensionality, see [10, Prop. 2.1] Fr := {x ∈ Rnr : Arx = br, x ≥ 0}, where
Ar ∈ Rmr×nr is the reduced projection matrix and br > 0 the new data
vector. All xj variables corresponding to removed columns in A can be set
to zero.

As a preprocessing step we reduce system Ax = Axex,p according to the
above methodology for the two TomoPIV examples. The reduced dimension-
alities for all considered examples are summarized in Tab. 1. Indeed, xex,2,
and xex,3 respectively, is the unique positive solution of Ax = Axex since Ar

is a full rank and overdetermined matrix. The uniqueness claim for xex,4 is
due to the sparsity of xex,4, see e.g. [10].

In all computations we used x0 = 0 as an initial approximation and
terminating if the relative error at the current iterate xk or the difference
between two subsequent iterations is small enough, i.e.

‖xk − xex‖
‖xex‖

< 10−3 or ‖xk − xk−1‖ < 10−8n

or if the maximum iteration number is reached, i.e. k ≥ kmax, where
kmax = 106 . Moreover the implementation of Cimmino’s algorithm uses
an additional termination criterion which verifies if the relative residual of
the weighted normal equations at the current iterate is small enough,

‖AT D2(Axk − b)‖
‖AT D2b‖

< 10−6 , (99)

whereas CE algorithm employs

‖AT (Axk − b)‖
‖AT b‖

< 10−6 . (100)

Different termination criteria we used for the constrained algorithms Cim-
mino Constrained and CCE. Additionally to the above mentioned criteria we
test if

K(xk) = ‖min(xk, max(xk − 1,−∇f(xk))‖∞ < 10−6 (101)

26

for f = fD from (31) for CC, and f(x) = 1
2
‖Ax − b‖2 for CCE algorithm.

Note that K(x) = 0 iff x is a solution of

min f(x) s.t. x ∈ [0, 1]n

since f and [0, 1]n are convex.
The weights ωi in (8) and αi in (37) equal 1 in all computations.

Table 1: Dimensions of the reduced matrix Ar

Example m n mr nr rank(Ar) xex unique?
1 15 16 15 16 12 no
2 15 16 12 8 8 yes
3 200 4356 41 7 7 yes
4 200 4356 128 1901 128 yes

6.3 Results

Here we summarize the results obtained by the proposed constrained and
extended versions of Cimmino’s algorithm, for both consistent noiseless and
inconsistent noisy case. Table 2 shows the results for the first considered
example xex,1, whereas the reconstructed images are presented in Fig. 3
when no constraints are taken into account and in Fig. 4 the constrained
reconstructions. The corresponding results for the second example xex,2 are
presented in Table 2, Fig. 3 and Fig. 4 respectively. Since xex,3 corresponding
to the 3 particles example is the unique solution of Arx = br in the noise-
free case, we applied to this test example Cimmino and CE. No constraints
are necessary. We stress that 3 particles correspond to a particle density
of 0.06 pp (particles/pixel) that is currently in use in TomoPIV. To obtain
reconstructions of denser particle distributions constraining strategies should
be used. Therefore we applied CC and CCE to the 20 particles example.
Results are summarized in Table 4 and reconstructed images are presented
in Fig. 7 and 8. Although pictures speak for themselves several remarks are
in order.

Cimmino and CE algorithm outperforms CC and CCE in terms of speed
(i.e. # iterations). Constraining leads, as expected, to an improved recon-
struction. This becomes evident especially when the original image xex,p to
be reconstructed is the unique solution of Ax = Axex,p in [0, 1]n, thus for

27

p = {2, 3, 4}. However, we note that in case of error measurements the sys-
tems Ax = b (or DAx = Db) as well as AT Ax = AT b (or AT D2Ax = AT D2b)
do not have positive solutions. This findings we verified by using Farkas’s
lemma. For instance to verify that Ax = b, x ≥ 0 has no solution we solved
AT y >= 0, bT y < 0.

This situation is reflected also by the high value of K(xk) at the final
iterate.

In Fig. 8 we present some preliminary results obtained by the Bregman
Iterative Algorithm in [19], especially designed to find the minimum `1-norm
solution of a linear system. In theory (at least for e = 0) this method will
converge to the same solution as CC and CCE, namely to xex,4. The recon-
structions differ significantly due to the slow convergence of CC and CCE.
The iteration process was stopped since the difference between two subse-
quent iterates become small enough and the algorithms started to stagnate.
Since constraining seem to decelerate C and CE in the underdetermined case,
an interesting question would be how to choose the starting point x0 to obtain
the minimal `1-norm (least squares) solution of Ax = b directly.

Table 2: Results of Cimmino, CE, CC and CCE applied
to xex,1

Cimmino CE CC CCE
ε 0 0 0 0

#Iter. 180 327 675 771
‖xk−xex‖
‖xex‖ 0.100000 0.100000 0.022530 0.008987

‖Axk−b‖
‖b‖ 0.000002 0.000003 0.000044 0.000011

‖AT (Axk−b)‖
‖AT b‖ 0.000001 0.000001 0.000028 0.000007

‖AT D2(Axk−b)‖
‖AT D2b‖ 0.000001 – 0.000025 –
‖Axk−bk)‖
‖bk‖ – 0.000002 – 0.000011

K(xk) – – 0.000100 0.000100
‖xk − xk−1‖ 0.000001 0.000000 0.000004 0.000001

ε 0.05 0.05 0.05 0.05
#Iter. 174 313 745 860
‖xk−xex‖
‖xex‖ 0.122644 0.118048 0.076295 0.066922

‖Axk−b‖
‖b‖ 0.011153 0.010267 0.011150 0.010267

‖AT (Axk−b)‖
‖AT b‖ 0.002623 0.000001 0.002632 0.000007

28

Table 2: Results of Cimmino, CE, CC and CCE applied
to xex,1 (continued)

Cimmino CE CC CCE
‖AT D2(Axk−b)‖

‖AT D2b‖ 0.000001 – 0.000024 –
‖Axk−bk)‖
‖bk‖ – 0.000002 – 0.000010

K(xk) – – 0.000099 0.000100
‖xk − xk−1‖ 0.000001 0.000000 0.000004 0.000001

ε 0.10 0.10 0.10 0.10
#Iter. 156 214 777 898
‖xk−xex‖
‖xex‖ 0.239630 0.216823 0.234172 0.205273

‖Axk−b‖
‖b‖ 0.031943 0.029404 0.031940 0.029404

‖AT (Axk−b)‖
‖AT b‖ 0.007431 0.000001 0.007440 0.000006

‖AT D2(Axk−b)‖
‖AT D2b‖ 0.000001 – 0.000022 –
‖Axk−bk)‖
‖bk‖ – 0.000002 – 0.000010

K(xk) – – 0.000100 0.000100
‖xk − xk−1‖ 0.000001 0.000001 0.000004 0.000001

ε 0.15 0.15 0.15 0. 15
#Iter. 162 324 802 644
‖xk−xex‖
‖xex‖ 0.464404 0.412956 0.487774 0.423684

‖Axk−b‖
‖b‖ 0.059689 0.054945 0.059686 0.054945

‖AT (Axk−b)‖
‖AT b‖ 0.013755 0.000001 0.013762 0.000005

‖AT D2(Axk−b)‖
‖AT D2b‖ 0.000001 – 0.000019 –
‖Axk−bk)‖
‖bk‖ – 0.000002 – 0.000009

K(xk) – – 0.000099 0.000100
‖xk − xk−1‖ 0.000001 0.000001 0.000004 0.000001

Table 3: Results of Cimmino, CE, CC and CCE applied
to xex,2

Cimmino CE CC CCE
ε 0 0 0 0

#Iter. 201 397 531 582
‖xk−xex‖
‖xex‖ 0.500000 0.500000 0.000997 0.000995

29

Table 3: Results of Cimmino, CE, CC and CCE applied
to xex,2 (continued)

Cimmino CE CC CCE
‖Axk−b‖
‖b‖ 0.000002 0.000003 0.000315 0.000314

‖AT (Axk−b)‖
‖AT b‖ 0.000001 0.000001 0.000211 0.000211

‖AT D2(Axk−b)‖
‖AT D2b‖ 0.000001 – 0.000154 –
‖Axk−bk)‖
‖bk‖ – 0.000002 – 0.000314

K(xk) – – 0.000504 0.002029
‖xk − xk−1‖ 0.000000 0.000002 0.000024 0.000024

ε 0.05 0.05 0.05 0.05
#Iter. 202 396 435 491
‖xk−xex‖
‖xex‖ 0.502039 0.501592 0.036469 0.035431

‖Axk−b‖
‖b‖ 0.011041 0.010164 0.021668 0.021738

‖AT (Axk−b)‖
‖AT b‖ 0.002678 0.000001 0.007075 0.007568

‖AT D2(Axk−b)‖
‖AT D2b‖ 0.000001 – 0.021090 –
‖Axk−bk)‖
‖bk‖ – 0.000002 – 0.019217

K(xk) – – 0.072239 0.080728
‖xk − xk−1‖ 0.000000 0.000000 0.000000 0.000000

ε 0.10 0.10 0.10 0.10
#Iter. 202 396 467 460
‖xk−xex‖
‖xex‖ 0.519121 0.514985 0.112168 0.109400

‖Axk−b‖
‖b‖ 0.031295 0.028808 0.061413 0.061613

‖AT (Axk−b)‖
‖AT b‖ 0.007569 0.000001 0.020003 0.021395

‖AT D2(Axk−b)‖
‖AT D2b‖ 0.000001 – 0.059326 –
‖Axk−bk)‖
‖bk‖ – 0.000002 – 0.054486

K(xk) – – 0.223072 0.249289
‖xk − xk−1‖ 0.000001 0.000000 0.000000 0.000000

ε 0.15 0.15 0.15 0.15
#Iter. 202 395 439 414
‖xk−xex‖
‖xex‖ 0.579955 0.563380 0.236114 0.230287

‖Axk−b‖
‖b‖ 0.057917 0.053314 0.113657 0.114027

‖AT (Axk−b)‖
‖AT b‖ 0.013987 0.000001 0.036966 0.039539

30

Table 3: Results of Cimmino, CE, CC and CCE applied
to xex,2 (continued)

Cimmino CE CC CCE
‖AT D2(Axk−b)‖

‖AT D2b‖ 0.000001 – 0.108889 –
‖Axk−bk)‖
‖bk‖ – 0.000002 – 0.100938

K(xk) – – 0.469567 0.524754
‖xk − xk−1‖ 0.000001 0.000000 0.000000 0.000000

Table 4: Results of Cimmino, CE, CC and CCE applied
to xex,3 and xex,4

3 Particles 20 Particles
Cimmino CE CC CCE

ε 0 0 0 0
#Iter. 162 655 29684 30919
‖xk−xex‖
‖xex‖ 0.000980 0.000997 0.765976 0.836548

‖Axk−b‖
‖b‖ 0.000200 0.000176 0.022421 0.035621

‖AT (Axk−b)‖
‖AT b‖ 0.000122 0.000038 0.012632 0.019959

‖AT D2(Axk−b)‖
‖AT D2b‖ 0.000086 – 0.009629 –
‖Axk−bk)‖
‖bk‖ – 0.000051 – 0.034496

K(xk) – – 0.003712 0.184839
‖xk − xk−1‖ 0.000065 0.000017 0.000019 0.000019

ε 0.05 0.05 0.05 0.05
#Iter. 253 1011 40328 37978
‖xk−xex‖
‖xex‖ 1.349164 0.055816 1.043464 0.844548

‖Axk−b‖
‖b‖ 0.794428 0.033868 0.600412 0.032052

‖AT (Axk−b)‖
‖AT b‖ 0.830303 0.000001 0.291489 0.015632

‖AT D2(Axk−b)‖
‖AT D2b‖ 0.000001 – 0.391864 –
‖Axk−bk)‖
‖bk‖ – 0.000001 – 0.027487

K(xk) – – 1.000000 0.140784
‖xk − xk−1‖ 0.000001 0.000000 0.000019 0.000019

ε 0.10 0.10 0.10 0.10
#Iter. 285 976 32469 117714

31

Table 4: Results of Cimmino, CE, CC and CCE applied
to xex,3 and xex,4 (continued)

3 Particles 20 Particles
Cimmino CE CC CCE

‖xk−xex‖
‖xex‖ 4.134589 0.171002 1.108025 0.909299

‖Axk−b‖
‖b‖ 2.278256 0.097125 0.568035 0.091394

‖AT (Axk−b)‖
‖AT b‖ 2.371626 0.000001 0.280415 0.039024

‖AT D2(Axk−b)‖
‖AT D2b‖ 0.000001 – 0.721760
‖Axk−bk)‖
‖bk‖ – 0.000001 – 0.084547

K(xk) – – 1.000000 0.677917
‖xk − xk−1‖ 0.000002 0.000000 0.000019 0.000019

ε 0.15 0.15 0.15 0.15
#Iter. 292 891 39376 150386
‖xk−xex‖
‖xex‖ 8.599377 0.355635 1.262440 1.082098

‖Axk−b‖
‖b‖ 4.262568 0.181720 0.572720 0.217518

‖AT (Axk−b)‖
‖AT b‖ 4.446508 0.000001 0.279046 0.098684

‖AT D2(Axk−b)‖
‖AT D2b‖ 0.000001 – 0.856854 –
‖Axk−bk)‖
‖bk‖ – 0.000001 – 0.208584

K(xk) – – 1.000000 1.000000
‖xk − xk−1‖ 0.000004 0.000001 0.000019 0.000019

7 Conclusions

We presented two extensions and a corresponding convergence analysis of the
classical Cimmino algorithm for iteratively computing constrained solutions
to inconsistent least-squares solutions. Taking into account previous related
work of one author on Kaczmarz iterations, this completes the picture of
row-action iterations with respect to parallel version of the overall method.

Synthetical numerical experiments simulating a challenging real-world ap-
plication revealed a significantly different impact of the two extensions, how-
ever. While removal of inconsistency converges quite slowly - but comparably
to the state of the art adopted in the respective application area, see [10] -

32

(a) xwLS, ε = 0 (b) C, ε = 0 (c) xLS, ε = 0 (d) CE, ε = 0

(e) xwLS, ε = 0.05 (f) C, ε = 0.05 (g) xLS, ε = 0.05 (h) CE, ε = 0.05

(i) xwLS, ε = 0.10 (j) C, ε = 0.10 (k) xLS, ε = 0.10 (l) CE, ε = 0.10

(m) xwLS, ε = 0.15 (n) C, ε = 0.15 (o) xLS, ε = 0.15 (p) CE, ε = 0.15

Figure 3: Unconstrained reconstruction results for image xex,1:
(a),(e),(i),(m): Minimal norm solution xwLS of the weighted least squares
problem (4) obtained via the Moore-Penrose pseudoinverse for the four
level of perturbation, i.e. ε ∈ {0, 0.05, 0.10, 0.15}. (b),(f),(j),(n): Recon-
struction using Cimmino’s (C) algorithm for different perturbation levels.
(c),(g),(k),(o): Minimal norm solution xLS of the least squares problem
(2) obtained via the Moore-Penrose pseudoinverse for the four level of
perturbation. (d),(h),(l),(p): Reconstruction using Cimmino Extended (CE)
algorithm.

33

(a) x+
wLS, ε = 0 (b) CC, ε = 0 (c) x+

LS, ε = 0 (d) CCE, ε = 0

(e) x+
wLS, ε = 0.05 (f) CC, ε = 0.05 (g) x+

LS, ε = 0.05 (h) CCE, ε = 0.05

(i) x+
wLS, ε = 0.10 (j) CC, ε = 0.10 (k) x+

LS, ε = 0.10 (l) CCE, ε = 0.10

(m) x+
wLS, ε = 0.15 (n) CC, ε = 0.15 (o) x+

LS, ε = 0.15 (p) CCE, ε = 0.15

Figure 4: Constrained reconstruction results for image xex,1: (a),(e),(i),(m):
The nonnegative minimal norm solution x+

wLS of the weighted least squares
problem (4) obtained via the MATLAB solver lsqnonneg(D*A,D*b) for the
four level of perturbation, i.e. ε ∈ {0, 0.05, 0.10, 0.15}. (b),(f),(j),(n): Recon-
struction using Cimmino Constrained (CC) algorithm for different perturba-
tion levels. (c),(g),(k),(o): The nonnegative minimal norm solution x+

LS of the
least squares problem (2) obtained via the MATLAB solver lsqnonneg(A,b)
for the four level of perturbation. (d),(h),(l),(p): Reconstruction using Cim-
mino Constrained Extended (CCE) algorithm.

34

(a) xwLS, ε = 0 (b) C, ε = 0 (c) xLS, ε = 0 (d) CE, ε = 0

(e) xwLS, ε = 0.05 (f) C, ε = 0.05 (g) xLS, ε = 0.05 (h) CE, ε = 0.05

(i) xwLS, ε = 0.10 (j) C, ε = 0.10 (k) xLS, ε = 0.10 (l) CE, ε = 0.10

(m) xwLS, ε = 0.15 (n) C, ε = 0.15 (o) xLS, ε = 0.15 (p) CE, ε = 0.15

Figure 5: Unconstrained reconstruction results for image xex,2:
(a),(e),(i),(m): Minimal norm solution xwLS of the weighted least squares
problem (4) obtained via the Moore-Penrose pseudoinverse for the four
level of perturbation, i.e. ε ∈ {0, 0.05, 0.10, 0.15}. (b),(f),(j),(n): Recon-
struction using Cimmino’s (C) algorithm for different perturbation levels.
(c),(g),(k),(o): Minimal norm solution xLS of the least squares problem
(2) obtained via the Moore-Penrose pseudoinverse for the four level of
perturbation. (d),(h),(l),(p): Reconstruction using Cimmino Extended (CE)
algorithm.

35

(a) x+
wLS, ε = 0 (b) CC, ε = 0 (c) x+

LS, ε = 0 (d) CCE, ε = 0

(e) x+
wLS, ε = 0.05 (f) CC, ε = 0.05 (g) x+

LS, ε = 0.05 (h) CCE, ε = 0.05

(i) x+
wLS, ε = 0.10 (j) CC, ε = 0.10 (k) x+

LS, ε = 0.10 (l) CCE, ε = 0.10

(m) x+
wLS, ε = 0.15 (n) CC, ε = 0.15 (o) x+

LS, ε = 0.15 (p) CCE, ε = 0.15

Figure 6: Constrained reconstruction results for image xex,2: (a),(e),(i),(m):
The nonnnegative minimal norm solution x+

wLS of the weighted least squares
problem (4) obtained via the MATLAB solver lsqnonneg(D*A,D*b) for the
four level of perturbation, i.e. ε ∈ {0, 0.05, 0.10, 0.15}. (b),(f),(j),(n): Re-
construction using Cimmino Constrained (CC) algorithm for different per-
turbation levels. (c),(g),(k),(o): The nonnnegative minimal norm solution
x+

LS of the least squares problem (2) obtained via the MATLAB solver
lsqnonneg(A,b) for the four level of perturbation. (d),(h),(l),(p): Recon-
struction using Cimmino Constrained Extended (CCE) algorithm.

36

(a) C, ε = 0 (b) C, ε = 0.05 (c) C, ε = 0.10 (d) C, ε = 0.15

(e) CE, ε = 0 (f) CE, ε = 0.05 (g) CE, ε = 0.10 (h) CE, ε = 0.15

Figure 7: Unconstrained reconstruction results for the 3 particles image xex,3:
Top: (a) – (d): Reconstruction using Cimmino’s (C) algorithm for the four
level of perturbation, i.e. ε ∈ {0, 0.05, 0.10, 0.15}. Bottom: (e) – (h):
Reconstruction using Cimmino Extended (CE) algorithm for different per-
turbation levels.

37

(a) CC, ε = 0 (b) CC, ε = 0.05 (c) CC, ε = 0.10 (d) CC, ε = 0.15

(e) CCE, ε = 0 (f) CCE, ε = 0.05 (g) CCE, ε = 0.10 (h) CCE, ε = 0.15

(i) `1, ε = 0 (j) `1, ε = 0.05 (k) `1, ε = 0.10 (l) `1, ε = 0.15

Figure 8: Constrained reconstruction results for the 20 particles image xex,4:
Top (a) – (d): Reconstruction using Cimmino’s (C) algorithm for the four
level of perturbation, i.e. ε ∈ {0, 0.05, 0.10, 0.15}. Middle (e) – (h): Recon-
struction using Cimmino Extended (CE) algorithm for different perturbation
levels. Bottom (i) – (l) `1 reconstruction obtained via the Bregman Iterative
algorithm in [19].

38

constraining appears to be far more effective. As a consequence, suitable
constraints along with consistently modifying the objective criterion (norm)
will be investigated in our future work.

Acknowledgements

The authors1,3 gratefully acknowledge financial support from the German
National Science Foundation under grant SCHN 457/10-1.

References

[1] Bjork A., Numerical methods for least squares problems, SIAM Philadel-
phia, 1996.

[2] Boullion T. L., Odell P. L. Generalized inverse matrices, Willey - Inter-
science, New York,1971.

[3] Censor Y., Stavros A. Z. Parallel optimization: theory, algorithms and
applications, ”Numer. Math. and Sci. Comp.” Series, Oxford Univ.
Press, New York, 1997.

[4] Cimmino G. Calcolo approssiomatto per le soluzioni dei sistemi di
equazioni lineari, Ric. Sci. progr. tecn. econom. naz. 1 (1938), pp. 326 –
333.

[5] Herman, G. T., Image reconstruction from projections. The fundamen-
tals of computerized tomography, Academic Press, New York, 1980.

[6] G. Elsinga, F. Scarano, B. Wieneke,B. van Oudheusden: Tomographic
particle image velocimetry. Exp. Fluids, 41 (2006), pp. 933 – 947.

[7] Elsner L., Koltracht I. and Lancaster P., Convergence properties of ART
and SOR algorithms, Numer. Math. , 59 (1991), pp. 91 – 106.

[8] Kaczmarz S. Angenäherte Auflösung von Systemen linearer Gleichun-
gen, Bull. Acad. Polonaise Sci. et Lettres A (1937), pp. 355 – 357.

[9] Koltracht I. and Lancaster P., Constraining strategies for linear iterative
processes, IMA Journal of Numerical Analysis, 10 (1990), pp. 555 – 567.

39

[10] Petra S., Schnörr C., Schröder A., Wieneke B., Tomographic Image Re-
construction in Experimental Fluid Dynamics: Synopsis and Problems.
to appear in Proceedings of 6th Workshop on Math. Modeling Environ.
Life & Sci. Problems (2007/2008).

[11] Petra S., Schröder A., Wieneke B., Schnörr C., On Sparsity Maximiza-
tion in Tomographic Particle Image Reconstruction. In Pattern Recog-
nition – 30th DAGM Symposium, volume 5096 of LNCS, 2008. Springer
Verlag.

[12] Popa C., Least-squares solution of overdetermined inconsistent linear
systems using Kaczmarz’s relaxation; Intern. J. Comp. Math., 55 (1995),
pp. 79 – 89.

[13] Popa C., Extensions of block-projection methods with relaxation param-
eters to inconsistent and rank-defficient least-squares problems, B I T,
38 (1998), pp. 151 – -176.

[14] Popa C. and Zdunek R., Kaczmarz extended algorithm for tomographic
image reconstruction from limited-data, Math. and Computers in Simu-
lation, 65 (2004), pp. 579 – 598.

[15] Popa C., On Cimmino’s reflection algorithm, Proceedings of the Roma-
nian Academy, Series A, 9, January-April 2008.

[16] Popa C., Constrained Kaczmarz extended algorithm for image recon-
struction, Linear Algebra and its Applications, 429 (2008), pp. 2247 –
2267.

[17] Tanabe K., Projection Method for Solving a Singular System of Linear
Equations and its Applications, Numer. Math., 17 (1971), pp. 203 – 214.

[18] Saad Y. , Iterative Methods for Sparse Linear Systems, SIAM, Philadel-
phia, 2nd rev. and exp. Ed., 2003.

[19] Yin. W., Osher S., Goldfarb D., Darbon J., Bregman Iterative Algo-
rithms for l1-Minimization with Applications to Compressed Sensing,
SIAM J. Imaging Sciences, 1 (2008), pp. 143-168.

40

