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1. Abstract 

 

The main topic of this thesis is the comparative investigation of divalent selenium 

centers interactions in solids and solution. Therefore we decided to combine experimental 

and theoretical results in order to gather more insight into selenium – selenium interactions. 

The idea of using the chalcogen–chalcogen interactions as directional forces to obtain 

tubular structures was validated during recent experimental studies in which cyclic aliphatic 

diynes and dienes containing chalcogen atoms organized themselves in columnar 

structures1. Moreover, theoretical investigations confirmed the description of divalent 

selenium interactions as a secondary interaction between an occupied p-type orbital of one 

chalcogen center (X) and the empty X-C σ* orbital of the other (see Figure 3.19.), together 

with induction and dispersion forces2. 

 

The first part of this work deals with the synthesis of three isomeric cyclophanes and 

their solid-state structures in comparison with previously synthesized similar cyclic 

compounds. The cycles investigated so far consisted of rigid units (e.g. X-C≡C-X, where  

X= S, Se, Te) and methylene chains as flexible parts. The inclusion of benzene rings into 

the methylene chains is expected to add more rigidity and also to open the possibility of π-π 

stacking. To investigate the results of this idea we synthesized three isomeric cyclic 

tetraselenadiynes containing the building blocks mentioned. We analyzed their solid-state 

structure characteristics in our larger effort to understand the nature of chalcogen-

chalcogen non-bonding interactions. The synthesis of the three isomeric tetraselena-

[6.6]cyclophanes 18 a-c was achieved using a stepwise approach, as shown in Scheme 1.1. 

Scheme 1.1.  Multi-step synthesis of isomeric tetraselena [6.6]cyclophanes 18 a-c. 

 Remarkable features of the solid-state structure of 18 a-c were analyzed and compared 

with other structural features of compounds that involved Se centers in Se���Se interactions. 
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Se���Se intermolecular interactions with distances between 348 pm and 397 pm have been 

detected in all three isomers, generating columnar-like structures in all three cases (see 

Figure 1.1. and figures in Chapter 3.2.3.). These values are significantly smaller or close to 

the sum of the Van-der-Waals radii for Se, indicating strong interactions. Besides the 

intermolecular selenium-selenium interactions, in the stacked structures other 

intramolecular and intermolecular interactions involving selenium centers can be observed, 

like significant inter- and intramolecular Se���H hydrogen bonding or offset aligned π-π

interactions (see Figure 2.14.)  

Figure 1.1.  Threaded arrangement in the solid state structure of compound 18a. 

 

The second part of this work investigates the presence and the strength of the Se���Se 

interaction in solution. A series of model systems containing two selenium centers situated 

at a convenient distance, but also with significant internal motion ability, were synthesized. 

The NMR spectroscopy was the method of choice to investigate the interaction in solution. 
77Se NMR chemical shifts (δSe) are sensitive to the electronic environment around the Se 

atom, therefore their behaviour can be used as gauge for evaluating the strength of 

nonbonding interactions involving Se centers.  

 

The synthesis of the desired model compounds was performed using a less direct 

synthetic pathway, mainly due to the difficulties encountered in introducing the second Se 

center. Due to the ambivalent character (electrophile/nucleophile) of the first Se atom, the 

synthetic pathways available for introducing the second Se atom are severely reduced. The 

synthetic approach used for obtaining three of the desired model compounds is depicted in 

Scheme 1.2.  
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Scheme 1.2. Synthetic pathway for obtaining the desired model compounds 24, 29 and 33. 

 

A comparison of the experimental values for the 77Se chemical shifts for the synthesized 

compounds 24, 29 and 33 with simpler compounds such as 22 and 61 (see page 71) 

revealed a high field shift for the 77Se NMR signal of the SeCH3 group, implying an increased 

electron density around the Se atom. The same trend was observed when comparing the 

chemical shift of the second Se atom in comparison with the respective simpler fragments 

23, 28 and 32, indicating an increased electron density, despite the electron withdrawing 

character of the C≡CH and CN groups. Taken together, this leads to the conclusion of 

increased electron density around both Se atoms, due to a non-bonding interaction between 

them in which the SeCH3 group plays the electron donor role, while the second group is the 

acceptor, the interaction being slightly stronger starting from Se-CH3 to SeCN. 

A comparison of the observed 77Se NMR signal shifts in our compounds with the 

literature data3 for 2-methyl-selenobenzylhalogenides (62–64) leads us to assume that the 

Se���Se interactions are slightly stronger than the Se���halogen interactions. 

 

Investigation of the coupling constants (J coupling) between the 77Se nuclei for the 

compounds 24, 29 and 33 confirmed our assumption of increasing interaction strength. The 

values of the J coupling are increasing in the order 24 < 33 < 29. Additionally NMR 
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methods for determining the relaxation time of the 77Se nuclei involved in the interactions 

were used and confirmed the observation based on chemical shifts and coupling constants. 

Variable temperature NMR experiments revealed the existence of several conformers for 

each of the model compounds, but also showed that there is only a very small energy 

barrier between them. 

 

In order to get some more insight in the behaviour of our model compounds and the 

predominant interactions in their conformers, we performed a conformational analysis for all 

three model compounds. Theoretical calculations at the MP2/6-311+g(d)//B98/6-311+g(d) 

level revealed the existence of four conformers for each of the investigated compounds, in 

which the Se���Se interaction or the competing Se���H  bonding is the predominant force. A 

comparison of the theoretical results against the solid-state structure of compound 29 

showed that in the solid-state the Se���Se interaction can become predominant. Theoretical 

calculated nuclear shieldings and chemical shifts were compared with the experimental 

values. Based on this comparions we assume that in solution, the Se���Se interactions are 

less favoured in comparison with Se-H bonding. In the solid-state, the Se���Se interaction 

becomes the predominant stabilization force for the model compounds. 

 

In conclusion, our investigation of the nature of the Se���Se interactions show that the 
77Se chemical shifts represent an useful tool in qualitatively assessing the strength of the 

interaction. The strength in the order MeSe���SeMe < MeSe���SeC≡CH < MeSe���SeCN 

qualitatively revealed from the NMR chemical shifts is consistent with the nSe–σ*Se-C orbital 

interaction model. It proves furthermore that electron correlation and dispersion forces play 

an intimately interconnected role in these interactions, that influence each other, therefore 

being difficult to analyze separately. 

 

 

Zusammenfassung 
 

Der Schwerpunkt der vorliegenden Arbeit liegt auf der Untersuchung von 

Wechselwirkungen divalenter Selenzentren in Festkörpern und Flüssigkeiten. Hierzu werden 

Ergebnisse experimenteller und theoretischer Untersuchungen kombiniert, um mehr Licht in 

die Natur dieser Selen-Selen-Wechselwirkungen zu bringen. 

Das Konzept, gerichtete Chalkogen-Chalkogen-Wechselwirkungen zur Erzeugung 

röhrenförmiger Strukturen zu nutzen, wurde jüngst durch experimentelle Arbeiten bestätigt, 

in denen chalkogenhaltige cyclische aliphatische Diine und Diene sich in säulenartigen 

Strukturen organisierten1. Des Weiteren bestätigen theoretische Untersuchungen die 
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Beschreibung von divalenten Selen-Selen Wechselwirkungen als sekundäre Wechselwirkung 

zwischen einem besetzten p-Orbital  des einen und dem leeren X-C σ*-Orbital des anderen 

Chalkogen-Zentrums (siehe Abbildung 3.19.) in Verbindung mit Induktions- und 

Dispersionskräften2. 

 

Im ersten Teil dieser Arbeit werden die Synthesen dreier isomerer Cyclophane und deren 

Festkörperstrukturen behandelt und mit ähnlichen, bereits dargestellten, cyclischen 

Verbindungen verglichen. Die bisher synthetisierten Cyclen bestanden aus starren 

Untereinheiten (z.B.: X-C≡C-X mit X=S, Se, Te) und flexiblen Alkylketten. Die Einführung 

von Phenyleinheiten in diese Ketten sollte die Rigidität erhöhen und darüber hinaus die 

Möglichkeit von π–π-Wechselwirkungen eröffnen. Um die Gültigkeit dieser Gedanken zu 

überprüfen, wurden drei isomere cyclische Tetra[6.6]selenadiine dargestellt, die eben solche 

Phenyleinheiten enthalten, und ihre Festkörperstrukturen untersucht, um mehr Aufschluss 

über die nichtbindenden Chalkogen-Chalkogen-Wechselwirkungen zu erhalten. Die Synthese 

dieser Cyclophane erfolgte über einen mehrstufigen Ansatz (Schema 1.1.). 

Schema 1.1. Synthese der isomeren Tetraselen[6.6]cyclophane 

 

Signifikante Strukturdaten von 18 a-c wurden mit den Daten vergleichbarer 

Verbindungen mit Selen-Selen-Wechselwirkungen verglichen. Hierbei wurden in allen drei 

isomeren Verbindungen Selen-Selen-Wechselwirkungen mit Abständen zwischen 348 und 

397 pm gefunden, die zu röhrenartigen Strukturen führten. Diese Abstände sind bedeutend 

kleiner bzw. nahe der Summe der Van-der-Waals-Radien zweier Selenatome, was auf starke 

Wechselwirkungen hinweist. Neben den eben erwähnten (intermolekularen) 

Wechselwirkungen können weitere intra- und intermolekulare Wechselwirkungen von 

Selenzentren beobachtet werden wie z.B. inter- und intramolekulare Selen-

Wasserstoffbrücken und versetzt angeordnete π–π–Wechselwirkungen (siehe Abbildung 

2.14.). 
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Abbildung 1.1. Anordung im Kristallstrukture von Verbindung 18 a.  

 

Der zweite Teil dieser Arbeit konzentriert sich auf das Vorhandensein und die 

Beschaffenheit von Selen-Selen-Wechselwirkungen in Lösung. Eine Reihe von 

Modellsystemen, die zwei Selenatome in geeignetem Abstand enthalten, aber trotzdem 

flexibel sind, wurden hierfür dargestellt. Da die Verschiebungen in den 77Se-NMR-Spektren 

von der elektronischen Umgebung der Selenatome beeinflusst werden, stellen NMR-

Experimente eine geeignete Methode zur Untersuchung der Selen-Selen-Wechselwirkungen 

in Lösung dar. 

 

Da die Einführung des zweiten Selenzentrums synthetisch schwer durchführbar war, 

musste die Darstellung der für die NMR-Untersuchungen genutzten Modellverbindungen 

über einen komplizierten Weg erfolgen (siehe Schema 1.2.). 
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Schema 1.2. Syntheseweg zur Darstellung der Modelvebindungen 24, 29 und 33. 

 

Ein Vergleich der experimentellen Werte der Verschiebungen der synthetisierten 

Verbindungen 24, 29 und 33 mit den einfacheren Verbindungen 22 und 61 zeigt in den 
77Se-NMR-Spektren eine Hochfeldverschiebung der Signale für das methylsubstituierte 

Selenatom, was auf eine erhöhte Elektronendichte hindeutet.  

 

Der gleiche Trend konnte beim Vergleich der Verschiebungen des zweiten Selenatoms 

mit den einfacheren Verbindungen 23, 28 und 32 festgestellt werden, trotz des 

elektronenziehenden Effektes der Alkin- und Nitrilfunktionen. Zusammengenommen deuten 

diese Befunden auf eine nichtbindende Wechselwirkung zwischen den Selenzentren hin, 

wobei das methylsubstituierte Selenatom die Rolle des Elektronendonors übernimmt, 

während das Zweite als Elektronenakzeptor fungiert.  

Vergleicht man die von uns beobachteten Verschiebungen in den 77Se-NMR-Spektren mit 

den Daten von Iwaoka3 für 2-Methyl-selenbenzylhalogenide (62–64), liegt der Schluss 

nahe, dass die Selen-Selen-Wechselwirkungen leicht stärker sind als die Selen-Halogen-

Wechselwirkungen. 
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Eine nähere Betrachtung der Se-Se-Kopplungskonstanten der Verbindungen 24, 29 und 

33 bestätigt die Vermutung zunehmender Wechselwirkungsstärke in der Reihenfolge  

24 < 33 < 29. Eine zusätzliche Bestimmung der Relaxationszeiten der 77Se-Kerne, die in 

die Se-Se-Wechselwirkungen involviert sind, bestätigt die auf Grundlage von 

Verschiebungen und Kopplungskonstanten gemachten Annahmen. Tieftemperatur-77Se-

NMR-Spektren zeigen das Vorhandensein mehrerer Konformere für jede Modellverbindung 

an, allerdings mit äußerst geringen Energiedifferenzen zwischen den Konformeren. 

 

Um das Verhalten der Modellverbindungen und die bevorzugten Wechselwirkungen in 

ihren Konformeren besser verstehen zu können, wurden Konformationsanalysen für 

sämtliche Modellverbindungen durchgeführt. Theoretische Berechnungen auf dem  

MP2/6-311+g(d)//B98/6-311+g(d) Niveau ergeben vier Konformere für jede der 

untersuchten Verbindungen in denen entweder die Se-Se-Wechselwirkung oder die 

konkurrierende Se-H-Bindung die vorherrschende Kraft ist. Ein Vergleich der berechneten 

Struktur mit der Kristallstruktur von Verbindung 29 lässt erkennen, dass im Kristall die Se-

Se-Wechselwirkung überwiegen kann. Es wurden theoretische Berechnungen in Bezug auf 

die Abschirmung und magnetischen Verschiebungen mit experimentellen Befunden 

verglichen. Daraus kann man schliessen, dass in Lösung die Se-Se-Wechselwirkung weniger 

stark ausgeprägt ist als die Se-H Bindung. Hingegen dominiert im Festkörper die Se-Se-

Wechselwirkung für die gegebenen Modellverbindungen. 

 

Diese Arbeit zeigt, dass die chemische Verschiebung in 77Se-NMR-Spektren eine 

nützliche Sonde bei der quantitativen Untersuchung von Se-Se-Wechselwirkungen darstellt. 

Die gefundene Zunahme in der Reihenfolge von MeSe���SeMe < MeSe���SeC≡CH < 

MeSe���SeCN stimmt mit dem nSe–σ*Se-C-MO-Wechselwirkungsschema überein und zeigt, 

dass Elektronenkorrelation und dispersion eng verknüpfte Rollen bei diesen 

Wechselwirkungen spielen, die sich gegenseitig beeinflussen und somit schwer von einander 

zu trennen sind. 
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2. Introduction 

 

2.1 General remarks on molecular self-assembly 

Intermolecular interactions have always fascinated scientists, as they are essential4 

forces for any form of life. They enable molecules to interact with each other, control how 

they relate to their environment, they even “hold” us, human beings, together. 

Intermolecular interactions are also pivotal for all conveniences of modern living, such as 

building constructions, the printing and binding of books, LED and touch screens of laptops 

and mobile phones and countless other advantages of nowadays comfortable living. 

Therefore, it is essential that scientists understand the way molecules are bound to each 

other. 

 

There are numerous types of intermolecular interactions comprising an extended range 

of attractive and repulsive forces. The simplest could be considered for example the cation-

anion interaction. With strength comparable to covalent bonding (bond energy = 100–

350 kJ/mol)4 ion–ion interactions are long-ranged and directional, and they induce a well-

organized complementary pattern of cations and anions in crystal lattices. Even if not 

involved in pure electrostatic (Coulomb) interactions, electronically neutral molecules do 

take part in similar interactions, as they can be influenced by the electrostatic field of 

surrounding molecules. The bonding of an ion with a polar molecule is another type of 

interaction, the ion-dipole interaction. A slightly weaker interaction (50-200 kJ/mol bond 

energies)4, can be observed in solid and liquid states, a typical example being that of 

complexes of alkali metal cations with large macrocyclic ethers, also known as crown 

ethers, in which the oxygen lone pairs of the ethers are attracted to the cation positive 

charge, stabilizing it. Coordinative (dative) bonds can also be included in the ion-dipole 

interaction category, although in this case, the border between non-bonding and bonding is 

relatively difficult to pinpoint. Interactions of metal and organic cations with molecules 

containing π systems is a much more noncovalent “weak” interaction (5-80 kJ/mol 

interaction energy)4, but the cation–π interactions play an important role in biological 

systems5 and lately have been used in organic synthesis for controlling molecular 

conformations6. 

If neutral molecules have a dipole moment, they can interact with each other due to the 

dipole-dipole interaction. Relatively weak (5-50 kJ/mol interaction energy)4, this attractive 

interaction results from matching either one pair of poles from adjacent molecules (Type I) 

or opposing arrangements of one dipole of one molecule with one dipole from another 
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molecule (Type II). The typical example is observed in solid state arrangements of organic 

carbonyl compounds (Figure 2.1.), but in solution the interactions are even weaker4. 

Figure 2.1. Types of dipole-dipole interactions in carbonyls 

 

One particular type of dipole-dipole interaction could be considered as the ubiquitous 

hydrogen bonding (4-120 kJ/mol interaction energy)4. A hydrogen bond is formed when a 

hydrogen atom covalently bonded to an electron withdrawing group is attracted to a 

neighboring dipole or functional group (be it from an adjacent molecule or even from the 

same molecule in the case of larger cyclic molecules). Hydrogen bonds have an amazingly 

large range of strengths, lengths and geometries7. As little as one strong hydrogen bond 

may be sufficient to determine the solid-state structure of organic compounds and influence 

behaviors in solution or gas phase. On the other hand, weaker hydrogen bonds play an 

important role in structural stabilization in various chemical and biological systems8. Given 

its significant strength, highly directional nature and omnipresence, there is no argument 

why hydrogen bonding has been labelled as the “masterkey interaction in supramolecular 

chemistry”4. 

π-π stacking is another type of weak electrostatic interaction (1-50 kJ/mol interaction 

energy)4 that occurs between aromatic rings, usually in the situation where one is relatively 

electron poor and the other electron rich. 

Even weaker are interactions based on Van der Waals forces (less than 5 kJ/mol), 

arising from the polarization of an electron cloud due to the proximity of a neighboring 

group, resulting in a weak temporary electrostatic interaction. Van der Waals interactions 

provide a general attractive interaction for most polarizable species. They can be divided 

into a dispersion (London) term and an exchange-repulsion term. The dispersion interaction 

is attractive and results from interactions between fluctuating dipoles, it also includes 

induced dipole–to-induced dipole interactions. This interactions decrease with the distance, 

while the exchange-repulsion term dictates the molecular shape and compensates the 

dispersion effect. Usually non-directional, Van der Waals forces are considered to have only 

a minor importance, but lately specific cases of directional interactions of this type surfaced 

and generated new interest in understanding and using them in organic synthesis. 
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All these types of interactions can be found as building blocks of a whole range of 

supramolecular structures in natural as well as artificial systems. These nanoscale 

supramolecular structures have been generating a lot of interest in the last quarter of a 

century as they are the logical candidates for filling the gap between molecular (chemical) 

and macromolecular (biological) structures. 

 

The field of electronics pushed the limits and forced stepwise the realization that the  

so-called “engineering down” approaches may find their limit in the following decade. The 

current lithographic techniques can still be improved, but the practical limit of these 

methods seems to lie at a microscale unit. In semiconductor devices with dimensions lower 

than 0.2 to 1 µm, the difficulties of isolating the silicon components, due to the electronic 

cross-talk between devices as a direct consequence of electron tunneling or poor heat 

dissipation, would increase the difficulty of fabrication and sky-rocket the costs of 

production. These factors make it an economically unfeasible technology. Therefore, an 

increased interest is manifested in understanding of supramolecular biological structures 

and the forces behind their self-organization and extension of this understanding to 

chemical or less-complicated biological systems. Biological systems consisting of nanoscale 

structures and devices provide a lot of valuable information about the rules of self-

organization or self-assembly of molecular structures, interacting chemically and physically 

in certain defined ways. One can even claim that the phenomenon of self-organization is 

responsible for life itself. Chemists are seeking to understand, imitate and even surpass the 

functions of biological systems in building nanoscale structures, with the ultimate goal of 

being able to control the assembly and function of these structures with the same precision 

displayed by nature. 

Figure 2.2. Nucleation and propagation in nucleic acid self-assembly. 
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Probably the most well-known and extensively studied example of self-assembly in 

biological structures is the reproduction through self-assembly of the DNA double helix from 

two complementary oligonucleotides (Figure 2.2). Simply explained, the assembly results 

after the contact and recognition of one nucleotide strand by another, which is followed by 

the propagation of the growing helix based on matching of complementary base pairs. 

Successive dynamic assembling and disassembling allow for correction of errors due to 

mismatching base pairs, ultimately leading to correct connections between the two strands. 

 

Another typical example that helps to illustrate many features present in the self-

organization of biological systems is the tobacco mosaic virus (TMV), a helical virus particle, 

300 nm in length and 18 nm in diameter (Figure 2.3), composed of 2130 identical units 

(each comprising 158 aminoacids), which form a helical ribbon around a single strand of 

6390 base pairs of RNA. 

 

Figure 2.3.  Electron micrograph image (left, from lit.9) of the tobacco mosaic virus and 
schematic representation (right, from lit.10). 

 

Each protein subunit forms a disk-shaped building unit (Figure 2.4.a), which grows 

together into a helical form supported by the insertion of a loop of RNA into the central 

cavity of the disk (Figure 2.4.b). Additional protein subunits associate with the growing 

structure through non-covalent interactions (Figure 2.4.c and d). 
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Figure 2.4. Self-assembling process of the tobacco mosaic virus (from lit.11). 

 

The self-assembling process of TMV demonstrates the ability of biological systems to 

construct large-size ordered supramolecular structures from relatively simple subunits. 

 

Further examples can be found easily in the literature, but the most common feature of 

all these biological self-assembling processes is the ability to use many weak so called 

nonbonding interactions between subunits in order to construct a supramolecular structure 

as well as to stabilize the final construct12. 

Tubular structures resulting from a self-assembling process have received a particular 

interest from chemists due to their occurrence in biological systems where they act as 

chemical information carriers. Transmembrane ion channels13 are natural nanotubes made 

of protein molecules in cell membranes that link the out- and in-solutions of cells, allowing 

the transfer of ions (like Na+, K+, Ca2+ or Cl-) through their cylindrical cavity. The transfer is 

controlled not only based on electrodiffusion (controlled by the charge of the cavity), but 

also by the size of the opening. An illustrative example is the membrane protein aquaporin, 

which selectively allows only the transport of water molecules through its central channel14. 

Natural nanotubes are not only transport channels, but also “miniature reactors” as 

proven by protein degrading enzymes or protein-folding chaperonins. The cylindrical inside 

surfaces of these tubes contain the specifical chemical functional groups enhancing the 

enzyme/protein activity based on functional group complementarity and/or chemical 

catalysis15. Many other biological systems which rely on self-assembling inspired much 

research in the construction of smaller chemically synthesized tubes used as tiny molecular 

reaction chambers, molecular sieves or ion detection devices. Biologically derived principles 

for construction of supramolecular structures have been used in synthesizing materials that 



Introduction 

 

 14 

don’t necessarily have a biological action. The best example would be liquid crystal display 

components16, birefringent materials with optical applications17 or anti-misting additives for 

safer jet fuels18. 

 

2.2 Structural types of tubular motives 

The approaches for generating tubular structures could be classified according to the 

different proportions of intratubular covalent and non-covalent bonding involved in 

assembling (“encoding”) the chemical information (shape, connecting groups, local charges, 

recognition sites) contained in the small molecular building blocks.  

 

Figure 2.5. Possibilities for molecular assembling of tubular structures, based on pure 
covalent (left) to pure non-covalent (right) bonding 

 

Both extremes (pure covalent, left side of Figure 2.5. and pure non-covalent bonding, 

right side) can be used for generating open-ended tubular objects, with a lot of mixing 

possibilities in between.  

 

2.2.1 Tubular structures based on pure covalent bonding 

 

Chemical bonding in building the tubular structure increases the stability of the molecule 

as well as offering synthetic control of the conformations, but has the disadvantage of being 

(at the moment) a tedious approach, with significant drawbacks due to purification issues19. 

The highest covalent bond containing nanotubes are represented by the carbon nanotubes, 

       nanotubes            helices                    bundles                        stacks            self-assembled amphiphiles 

COVALENT NON-COVALENT 
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already commercially available. Carbon nanotubes are some of the most promising 

candidates for the future of nanomaterials. It should be mentioned that research on 

different electronic properties of single-walled carbon nanotubes proved that they are 

related to the direction in which a starting graphene sheet is to be folded in order to form 

the tubular structure. Therefore, research in the field of carbon nanotubes is bound to 

continue and be enlarged due to the multiple preparation and synthesis strategies 

available20. Carbon nanosheets and tubes are predicted as a new revolutionary material that 

will replace silicon in the search for manufacturing super-fast computer chips21. But, in the 

not-so-distant future, carbon could loose its monopoly in the nanoengineering world, as 

recently synthesized boron nanotubes22 might even outperform carbon nanotubes for 

certain electronic applications according to published theoretical calculations23. 

 

Another approach in generating tubular nanostructures based on covalent bonding is 

based on generating an inherently stiff helical structure containing an internal void 

channel24. The classical examples are α-helices from nucleic acids (DNA), peptides from α- 

and β-amino acids or Vollhart’s [n]phenylenes, synthesized by the insertion of 

cyclobutadienes into meta-annelated benzene ring systems through two- or threefold 

intramolecular Co-catalyzed [2+2+2] cyclotrimerization reactions25. Figure 2.6. shows 

schematically a top view and a side view of [8]phenlyene, the stiff and helical backbone 

induced due to the ring annelation being easily recognizable. 

Figure 2.6. Top view (left, spacefilling representation) and side-view (right, ball and stick 
representation) of [8]phenylene (CCDC ref. no: 180984). 
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2.2.2 Tubular structures based on pure non-covalent bonding 

 

The other extreme of the scale, where the predominant driving forces of the self-

assembly are non-covalent interactions, consists of sector or wedge-like molecules that due 

to non-bonding interactions assemble themselves into discs and furthermore, as a result of 

face-to-face interactions, stack to form continuous cylinders similar to macrocycles. The 

typical examples are biological amphiphiles, lipids composed of long hydrocarbon tails and 

polar head groups as depicted in Figure 2.7. The aspect of the self-assembled structure is 

dependant on the volume difference between head and tail, the bigger the tail proportion 

the easier cyclic structures are realized. Typical amphiphile structures include a large class 

of compounds like: nucleic acid derivatives27, N-acylated amino acids28, double chain 

amonium salts29, unsaturated double-chain phosphatidylethanolamines30 and aldonamides 

or gluconamides31. Polar or ionic heads, usually an ionized or esterified carboxylic group, 

will form the inner part of the cylinders, filled with polar solvent molecules and the 

disordered non-polar tails will form the outer part and isolate the tubes from each other.  

Different type of shapes can be used, and through covalent stabilization using cross-

linking, more complicated structures with induced features can be obtained. Considering the 

simple and easily preparation, this type of self-assembling nanotubes has become 

interesting for potential applications in life and material sciences32. 

 

Figure 2.7.  Flat-shaped dendritic amphiphile, based on gallic acid, self-assembly into layered 
tubes, based on polar inner core and crosslinkable tails (from lit.33).  
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2.2.3 Tubular structures based on both non-covalent and 

covalent bonding 

 

In between these two extremes, the process of generating tubular structures is a 

compromise of using both covalent and non-covalent bonding in order to obtain the desired 

structural features. When the starting molecular building block is already prone to form a 

helical backbone or sheet, non-covalent interaction is used to manipulate the secondary 

structure, like in the chains of alternating non-cyclic D,L-α-peptides which, due to 

stabilization through hydrogen bonding, adopt a beta-helical conformation. The amino acid 

side chains point outward, generating an inner cylindrical cavity with a diameter of up to 5 Å 

according to early computational studies, strongly influenced by the helix periodicity and the 

number of residues per turn34. Alternatively, hydrogen bonding can be used to constrain the 

backbone into a continuously forced kinked conformation that given enough length would 

afford a helical structure, as in aromatic and heteroaromatic amides35. These in turn will 

generate a tubular structure, especially if the H-bonding interaction would manifest its 

influence on the external side of the backbone, rather then in the interior part36.  

Furthermore, helical structures with small cavities can be interconnected through non-

bonding interactions to form stacking helices37 or helical bundles with inner cavities having 

either hydrophilic or hydrophobic characteristics38 (see Figure 2.5.). Most of the known 

examples are based on peptides, so a rational design of the amino acid sequence allows for 

controlling the electrostatic properties and dimension of the inner void size, with examples 

known to vary from only 1.5 Å39 up to even 1 nm40. 

 

Probably the largest class of tubular structures is based on cyclic molecules which take 

advantage of a mixture of bonding and directional non-bonding interactions self-assembling 

or stacking on top of each other. This type of architecture is the most balanced between 

bonding and non-bonding design, as the covalent structure of the molecule contains 

information regarding the inner and outer dimensions of the tubes, while the non-covalent 

interactions direct the length, strength and direction for the structure. The hydrogen bond 

proved to be the most prominent non-covalent directional force involved in the self-

assembly of biological systems, so it is logically the first candidate considered when 

designing a stacked molecular association. But other intermolecular interactions responsible 

for this type of structure must include π-π interactions, ion dipole interactions, short 

interactions between halogen centers and also chalcogen-chalcogen interactions. Strangely 

enough, the macrocycle stacking motif is not very common in biological systems, but it has 

been used extensively to design artificial tubular systems. 
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Figure 2.8.  Strategies for interconnecting molecular rings to form tubular structures 

 

Possible strategies to connect molecular rings to form tubular structures include the 

connection with each other based on strong interaction forces only in the stacking direction 

(Figure 2.8 A); strong in-plane connections and weaker inter-planar interactions (Figure 2.8 

B) or connections based on zig-zag and ladder-type weak forces in between the rings 

(Figure 2.8 C) generating stacked structures as well. 

Several types of non-bonding interaction are involved in generating tubular or columnar 

structures and the most important ones of them are disscused in the following paragraphs. 

 

2.2.3.1 Hydrogen bonding 
 

The first strategy generates a densely packed aggregation of rods as in the case of cyclic 

peptides. After the original recognition of De Santis34 that peptides have the potential to 

generate hollow cylinders through H-bonding if the amino acid sequence is carefully 

selected, Ghadiri et al.41 proved the validity of the concept designing and synthesizing 

alternating cyclic peptides with an even number of amino acids, that later aggregated to 

form a tubular structure (Figure 2.9.). 

Figure 2.9.  Ghandiri’s self-assembling columnar structures using a cyclic α-peptide with an 
even number of alternating D- and L-amino acids as building blocks. 

A B C
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The approach is extremely versatile, the internal diameter (to a certain extent) and the 

properties of the internal as well as external surface can be easily modified by carefully 

adjusting the number of amino acids in the ring42. When the outside chains are kept 

hydrophobic, the tubular structures can be used to create ionic channels with transport 

activity for potassium and sodium ions close to that of natural systems. The inside of the 

tube was also made hydrophobic by incorporating triazole-containing ε-amino acids43. 

Similarly, a H-bonding-based tubular organizational behaviour has been observed by 

Seebach’s group in the case of cyclic tetramers of 3-aminobutanoic acid44 and by 

Ranganathan et al. for cystinospirobicyclic peptides45. Based on the work of Seebach, 

Kimura et al. constructed through self-assembly a stacked column of cyclic peptides. Three 

trans-2-aminocyclohexylcarboxylic acid (ACHC) units linked in a ring yielded a cyclic tri-β-

peptide. The computationally predicted stacking was confirmed through electron 

crystallography. Rod-shaped crystals were observed using transmission electron microscopy 

(TES) (Figure 2.10.). Interestingly, all amide groups in the peptide are in the trans positions 

and thus oriented in the same direction in the generated tubes, resulting in a macrodipole 

moment of the nanostructure. This property has been suggested as one mechanism by 

which electron transfer might occur in molecules. Therefore, this type of dipolar nanotubes 

could find a role in future molecular electronic devices, like a molecular diode46.  

 

Figure 2.10. Kimura’s cyclic tri-β-peptide chemical formula (left) and optical microscopic  
  image (right) of crystal nanotubes. 

 

Similar channel-like structures have been obtained from cyclic oligosaccharides. 

Cyclodextrines (CDs) consist of six or more α-1,4-linked D-glucopyranose rings, resulting in 

a rigid, well defined bucket-shaped structure (Figure 2.11.). 
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Cyclodextrines can form inclusion complexes with a wide variety of substrates47, the 

precise nature of the binding interaction has been a subject of debate for a long time, most 

likely consisting of a sum of several relatively weak forces, like Van der Waals interactions, 

hydrophobic binding48 and even CH/π hydrogen bonds8,49. 

 

Figure 2.11. Chemical formula (left) and schematic representation of the structure (right,  
  from lit.9) of α-CD. 

 

Through self-assembly cyclodextrines generate tubes, in most of the cases including 

solvent molecules in the inner channel of the tube (Figure 2.12.). Stoddart et al. described 

similar tubular channels obtained from 1,4-linked α-D- and α-L-rhamnopyranose residues50. 

The cycles stack in a head-to-tail pattern generating tubular channels with diameters of 

around 10 Å. An interesting feature of the tubes is that intermolecular H-bonds are not 

involved in stabilizing individual stacks, but mainly in connecting the adjacent columns. 

Figure 2.12. Columnar structures based on α-cyclodextrines (from lit.51) 
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Furthermore, the ability to form inclusion complexes with guest molecules has been 

used by researchers for constructing polyrotaxanes. Harada et al. synthesized a 20 nm long 

polyrotaxane and following a cross-linking reaction involving OH groups of adjacent 

cyclodextrin with epichlorohydrin and  then removal of the polymeric thread, obtained a 

cyclodextrin-based-nanotube52 (Figure 2.13.). 

Figure 2.13. Harada’s α-cyclodextrin-based nanotube. 

 

Similarly, Liu et al. prepared tubular dimers from β-cyclodextrine derivatives linked by 

selenium and platinum complexes53. 

 

2.2.3.2 π−ππ−ππ−ππ−π stackings 
 

 Another commonly found interaction that is responsible for channel-like molecular 

aggregations is the π-π interaction. π-π stacking is certainly a weaker force compared to H-

bonding, but nevertheless an important one, especially in systems where H-bonding based 

structural stabilization is not favourable. There are two types of π–π stacking: 

face-to-face and edge-to-face (as pictured in Figure 2.14.), but a wide range of 

intermediate geometries have been observed, especially in the solid state.  

 

Figure 2.14. The two limiting cases of alignments in π-π stacking interactions. 

 

The edge-to-face alignment can be regarded as a weak hydrogen bond between the 

aromatic ring electron cloud and the slightly electron deficient H atom perpendicular 

H3.3Å - 3.8Å

face-to-face
offset alignment

edge-to-face
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to it54,55. The face-to-face alignment is representative of stacked structures with strong in-

plane connectivity and a weak inter-stack connection (see Figure 2.8.B), in molecules 

containing an aromatic building block. Largely conjugated π−systems like [8]annulene, 

kekulene or porphyrins show in the solid state a cofacial arrangement with offset centers. 

Due to the π-π repulsion of the aromatic moieties, the planes tend to shift sidewise. Sanders 

rationalized this behavior through a competitive process56. The repulsion between the π 

electrons forces the planes to slip sideways, but the attraction forces between the 

electronically poor σ-frame and the electronically rich π-system just barely overweigh the 

repulsion ones, enough though to generate a channel-like arrangement in solid-state. This 

model stresses the importance of interactions between individual pairs of atoms, rather than 

whole molecules. According to this model, extended π-systems like kekulenes are not suited 

to generate tubular structures, but additional directional non-bonding interactions could 

easily influence the competitive process, stabilizing the stacking.  

The debate on the nature of π-π stacking is far from being finished, with suggestions 

that London dispersion forces might play a more important role than the electrostatic 

interactions54. However, the electrostatic principle was advantageously used by Moore and 

others57 to create not only a foldamer family24, but also a variety of macrocycles and 

dendritic architectures which generate channels between the macrocycles (Figure 2.15.). 

Figure 2.15. Several members of Moore’s shape-persistent phenylacetylenes58 

 

Based on meta-connected phenylacetylenes containing peripheral phenolic groups, two-

dimensional H-bonded closely packed sheets are formed with two types of holes of about  

9 Å in diameter, one due to the macrocyle itself, the other due to the hydrogen bonds. The 

sheets are aligned in such a way that they build columnar structures, being only slightly 
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shifted from a symmetrical alignment. Presumably, the concentrated electron-withdrawing 

effects of the triple bonds and aromatic ring substituents reduce the repulsive π-π 

interaction, allowing the stacking to be maintained (Figure 2.16.). 

 

 

Figure 2.16. Arrangement of 1a in crystalline lattice forming a mesoporous material59. 

 

Solvent-induced conformational changes were observed for similar macrocycles60. 

Recrystallization from a polar solvent resulted in conformations with the interior cavity 

occupied, leaving only external channels of about 5 Å, while recrystallization from a less 

polar solvent forced the side chains outwards, generating therefore channels with larger 

oval inner pores of up to 8 x 12 Å. 

 

2.2.3.3 Van der Waals forces 
 

Further self-assembling directional forces are short interactions between halogen 

centers61 and between chalcogen centers62. These interactions generate intermolecular X���X 

contacts slightly shorter (0.1 to 0.4 Å) than the sum of the Van der Waals radii. These 

interactions have been described as Van der Waals type forces, which usually do not show 

much directionality, resulting in two- and three-dimensional networks, but no helical or 

tubular structures were reported until recently. 
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Desiraju analyzed halogen–halogen interactions in the solid state. Although previously 

considered as a predominantly non-directional interaction, he revealed that it could be 

subdivided in two types (I and II) with preferred directionalities (Figure 2.17.)61. 

Furthermore, it was shown that for the Cl���Cl interaction a realistic anisotropic model 

including repulsion, dispersion and electrostatic forces has to be used in order to reasonably 

describe the non-covalent interactions63. 

 

Figure 2.17. Desiraju’s definition of two types (I and II) of halogen–halogen interactions 
based  on θ1 and θ2 angles. 

 

The directional concept of halogen–halogen interactions was experimentally confirmed 

by Morita et al.64 who obtained stacked molecular structures based on interactions between 

iodide atoms . 

 

2.2.3.4 Chalcogen - chalcogen interactions 
 

The discovery of the superconducting properties of complexes of tetrathiafulvalene 

(TTF)62, revived the interest in investigating solid state structures of chalcogen containing 

molecules.  

 

Gleiter and coworkers1 previous studies of cyclic tetrachalcogenadiynes revealed a series 

of tubular structures in which the rings associate in such a way that one chalcogen center of 

one ring is involved in a short contact with other chalcogen centers from rings belonging to 

the neighboring stacks (Figure 2.18.). This type of interaction leads to tubes like the ones 

shown schematically in Figure 2.8.C, based on a zig-zag arrangement of the chalcogen 

centers.  

 

Studies demonstrate that the chalcogen–chalcogen interactions are mostly responsible 

for the build–up of the networks in the solid state. Beside them others interactions such as 

C-H���S, C-H��� π and π-π stacking contribute to the organized assemblies65. 
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Figure 2.18. Plot of a typical columnar structure generated as a result of self-assembly of    
 cyclic tetraselenadiyne molecules. 

 

Interestingly enough, larger cyclic building blocks containing chalcogen atoms allow the 

formation of columnar structures with included guests in the inner cavities of the generated 

tubes66. Flexible enough, the rings allow the conformation to be alternated in such a way 

that even larger solvent molecules can be specifically hosted inside (Figure 2.19.). 

Figure 2.19. Top view of columnar arrangements of a hexaselenacyclohexayne based self- 
 assembling tube with inclusion of toluene (left) and mesitylene (right). 
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Two main contributions to the chalcogen–chalcogen interactions have been revealed: 

the isotropic dispersion forces and the interaction between an occupied p-orbital at one 

chalcogen center (the nucleophilic unit) and an unoccupied X-C(sp) σ*-orbital of another 

chalcogen center (the electrophilic unit). The p–σ* interaction determines the directionality 

of this type of non-bonding interaction. The concept has been confirmed through recent 

quantum chemical calculations2 and statistical analysis of crystal structures of 

dimethyldichalcogenides67. 

 

Continuing previous interest, the present work is focused on widening the knowledge 

about chalcogen–chalcogen interactions, especially selenium–selenium interactions with a 

special interest in predicting and manipulating the non-bonding contacts. This would provide 

a major impact on material sciences. 
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3.  Experimental part 

 

3.1 Motivations 

 

Following experimental and theoretical interest in chalcogen-chalcogen interactions in 

our group, we decided to focus our research on selenium containing molecules. We intended 

to investigate chalcogen-chalcogen interactions in solution using NMR spectroscopy. For this 

purpose selenium containing molecules were the most suitable, as from all chalcogen 

elements (O, S, Se, Te), Se has the more advantageous spectral properties (higher 

magnetic susceptibility, greater magnetically active isotope abundance) in comparison with 

the known synthetic difficulties (odor, solubility, air and humidity sensitivity). 

 

Selenium has valences 2, 4 and 6 like sulfur and is a third row element in the periodic 

table. Since selenium can be substituted for sulfur even in biological systems, it is logical to 

assume that some of the important electronic and chemical properties are similar. 

 

Although selenium is not as common in biological processes as sulfur, it is still an 

important component of several biological macromolecules such as formate dehydrogenase, 

glycine reductase, nicotinic acid hydroxylase and glutathione peroxidase (GPX)68. 

Unfortunately, appreciation of the bad odor and toxicity of selenium and selenium 

containing compounds is more widespread than the appreciation of the essential nature of 

selenium in many functional proteins. However, it is becoming increasingly evident that 

there are many enzymes that are selenium dependent and also that selenium is able to 

substitute sulfur in many biological molecules. For instance, when organisms receive more 

than micromolar concentrations of selenium, some enzymes begin to substitute sulfur with 

selenium in many cellular constituents. 

 

Very recent research reported the first case of a naturally occurring Se-Se bond69, 

formed by two selenocysteine residues within the same protein, with an unusual high 

occurrence in diverse aquatic organisms, including fish, invertebrates, and marine bacteria. 

The low redox potential of the Se-Se bond suggests that it might play a role in regulation of 

redox levels in cells, based on similarity with thioredoxins (with known bioactivity, using a 

reversible disulfide bond to reduce cellular substrates), both having the (seleno)cysteine 

residues in the active site. Other known selenocysteine-containing proteins tend also to 

have a cysteine residue, the two amino-acids forming a reversible selenium-sulfur bond.  
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The mechanism for formation and reduction of the diselenide bond in vivo is not completely 

clear, but chalcogen – chalcogen interactions are thought to have significant importance. 

 

The ability to get involved in non-bonding interactions is considered to be essential for 

the biological activity of selenium and selenium containing compounds. It was reported that 

the molecular structure and biological activity of selenazofurin (2 in Figure 3.1.) and its 5-

amino derivative are controlled by intermolecular interactions involving the Se atom70,71. 

Taking advantage of the Se preference to build intramolecular interactions with oxygen 

and/or nitrogen atoms in several types of diselenide, several compounds with enzyme-like 

activity have been synthesized (3–5 in Figure 3.1.)72.  

Figure 3.1.  Different applications of organoselenium compounds with non-bonding Se 
centers in biologically active compounds (2), enzyme-mimetic compounds (3) 
and in catalysis (4, 5). 

 

Not only the biological activity of selenium containing compounds, but also their 

application in organic synthesis has been proved useful during several decades73. Based on 

their ambivalence of being able to function as either electrophiles or nucleophiles 

organoselenium substances have been inserted in other organic molecules, producing 

compounds which are very useful intermediates in organic synthesis. Preparation of novel 

optically active organoselenium compounds and their application as chiral ligands to some 

transition metal catalyzed reactions is a research domain of current interest74. Diselenides 

and selenides having internal tertiary amine groups (3 and 4 in Figure 3.1.), with significant 

intramolecular Se���N interactions have been used for catalytic conversion of alkenes into 

allylic ethers and esters75. Wirth et al.76 demonstrated that high asymmetric induction is 
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achieved in the oxyselenation reaction of alkenes by use of asymmetric selenium reagents 

that possess strong intramolecular Se���O interactions.  

 

Furthermore, there has been an increasing interest in Se interactions with the new 

developments in organic superconducting materials. A full understanding of the type and/or 

strength of the intermolecular interactions involved is a prerequisite for the intelligent 

design of superconducting crystals, the final goal of the crystal engineering of molecular 

materials77.  

 

Since the original synthesis of tetrathiafulvalene (TTF) (Figure 3.2.) and its selenium 

analoque tetraselenvafulvalene (TSF) (Figure 3.2.), more than three decades ago78 these 

type of compounds have been at the center of extensive research of electrically conducting 

materials on account of their unique π-electron-donor properties. With the discovery of the 

first metallic charge-transfer (CT) TTF complex79 and later the discovery of the first organic 

superconductor, tetramethyltetraselenafulvalene (TMTSF) (Figure 3.2.)80, a considerable 

attention was devoted to finding new TTF/TSF type molecules with superconducting 

properties. The most advantageous feature of TTF/TSF-type π donor molecules in the design 

of the organic conductors is in fact that the HOMO (highest occupied molecular orbital) from 

which the conduction band is formed has a large amplitude and the same sign on every 

chalcogen atom. Because of the large electron cloud at the S (or Se) atom, intermolecular 

HOMO-HOMO overlap becomes large. Furthermore, because of the same sign of HOMO on 

every S (or Se) atom, every intermolecular S���S contact can contribute additively to 

enhance the intermolecular interaction. According to Novoa et al.81, the S���S interaction is 

moderately attractive (in the range of -0.35 to -0.60 kcal/mol) and plays an important role 

in the packing of ionic crystals showing metallic and superconducting properties. 

 

These interactions have been used as a crystal engineering tool for the design of new  

π-electron donor molecules, combining both Se and S atoms to synthesize bis(ethylene- 

-dithio)tetraselenafulvalene (BETS) (Figure 3.2.) and generating a whole new class of 

organic metals and superconducting materials with more than 60 organic compounds82.  

With all the interesting applications where weak interacting selenium centers are of 

obvious importance, our scope was to try to understand the origin and characteristics of the 

selenium–selenium interactions. This would allow for controlled design and development of 

selenium containing reagents for organic and bioorganic synthesis, as well as new materials. 
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Figure 3.2.  Different chalcogen containing compounds with important applications in organic 
superconducting materials. 

 

In the current work, we approached the understanding of the selenium–selenium 

interaction both from an experimental point of view and from a theoretical one. 

Experimentally, we were interested in synthesizing new cyclophane-type compounds 

containing Se centers and analyzed their structural organization features. For the theoretical 

scope of this work, firstly a series of model compounds were synthesized, then their 

properties were compared with results of theoretical studies referring to NMR chemical shifts 

and conformational analysis. 
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3.2 Synthesis and structure of new tetraselenadiyne 

cyclophanes 

3.2.1 Introduction 

 

The weak interactions between chalcogen centers are influenced by a combination of 

factors including steric and electrostatic effects, as well as attractive and repulsive orbital 

interactions. The stabilizing contributions are stronger for the heavier chalcogens, especially 

when bonded to electron-withdrawing groups. 

 

Theoretical and experimental studies of the chalcogen-based weak interactions indicate 

that their binding energies are comparable to those of some hydrogen bonds, therefore it is 

possible to build supramolecular entities based on organo-chalcogen molecules83. 

Although weakly bonding interactions of the chalcogens are observed frequently as 

intramolecular contacts as described before, there are important examples in the literature 

of intermolecular association. It was shown that the electric conductivity of sulfur and 

selenium organic compounds in the solid state is favored by the formation of chalcogen- 

chalcogen networks, as in the cases of TTF and TSF-like compounds. 

 

 

Figure 3.3.  Several chalcogen containing cycles (6 - 10) with mono- and dialkyne bridges as 

building blocks. 
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Previous work in our group on synthesizing electron-rich cyclic poliynes which contain 

chalcogen atoms generated a series of cyclic poliynes (Figure 3.3.), whose columnar-type 

solid-state structures are based on short chalcogen–chalcogen contacts. These type of 

molecules differentiate themselves from the many other cases previously discussed in 

Chapter 2, as being constructed from flexible (aliphatic) and rigid (alkyne) units. Due to the 

flexibility of the aliphatic chain, the inside cavity could even modify its shape in order to 

accommodate guest molecules, such as solvent molecules. 

 

Our goal was to extend the series of electron-rich polyynes studies to systems 

containing some rather rigid units, like benzene rings and to observe the influence in the 

solid-state organization of new interactions. We decided to focus on selenium containing 

cyclic compounds, as the 77Se isotope offered the most favorable NMR properties84 in the 

chalcogene series (natural abundance and receptivity relative to 13C) in our attempt to 

study the existence of chalcogen-chalcogen interactions also in solutions. Moreover, 

selenium-containing molecules were considered as early theoretical calculations85,86 

suggested that the interactions would be stronger than in the case of analogous sulfur 

containing compounds. 

 

Although sulfur containing alkynes have been already synthesized as early as the 20’s87 

through dehydrohalogenation of convenient dithioethers, analogous compounds containing 

selenium attracted interest only in the 60’s88. Based on already developed methods for 

synthesis of sulfur acetylenes, Brandsma tried to synthesize analogous compounds 

containing selenium instead of sulfur. He used sodium ethynyl, which reacts in liquid 

ammonia with elemental sulfur to obtain the thiol anion. This nucleophilic agent was reacted 

with halogenated compounds to obtain substituted thiol acetylene species (Scheme 3.1.). 

 

Scheme 3.1.  Brandsma’s synthesis of terminal alkynes containing sulfur atoms. 

 

While using the same procedure with elemental selenium, the desired selena-acetylene 

could only be observed in small traces. Unexpectedly, the terminal alkyne containing 

selenium suffered a disproportionation reaction, eliminating acetylene and obtaining for the 

first time an acetylenediselenaether (Scheme 3.2.).  
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Scheme 3.2.  Brandsma’s synthesis of the first acetylenediselenoehter. 

 

Cyclophanes, as cylic hosts made by linking aromatic rings, with their rigid geometry 

and interesting conformational characteristics, are important building blocks in 

supramolecular chemistry and belong to one of the most interesting and used macrocyclic 

ligands. Heteraphanes containing nitrogen, oxygen and sulfur have been widely studied89. 

Not so many reports can be found on heteraphanes containing selenium atoms90. The first 

unsubstituted 1,13-diselena[3.3]phane was obtained through coupling of dihalogenides with 

sodium selenide91 and the synthesis was later improved by Misumi92 using a coupling of 

bis(selenocyanate) with the respective dibromide in the presence of NaBH4 in a solvent 

mixture of ethanol and THF (Scheme 3.3.) 

 

Scheme 3.3.  Misumi’s synthesis of 1,11-diselena[3.3]phane. 

 

In the previously synthesized selenium containing cyclic dialkynes shown in Figure 3.3. 

the conjugation between the diselenaalkynes units is interrupted through the alkylic chains, 

therefore the idea to introduce aromatic building blocks was considered as a chance to 

obtain a possible electronic conjugation.  

 

Scheme 3.4.  Synthesis of tetrasulfurdiynes [5.5]cyclophane 11. 
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Previous attempts to introduce an aromatic building block between the 

dichalcogenaalkyne bridges as in Scheme 3.4. resulted, however in very low yields of the 

desired cyclophane and unexpected products, like dibenzotetrathiofulvalene (12) and a tris-

disulfide bridged cyclophane (13)85. 

Figure 3.4.  Unexpected products obtained at the attempted synthesis of cyclophane 11. 

 

3.2.2 Synthesis of new cyclophanes 

 

Considering previous attempts of obtaining chalcogen containing cyclophanes, we 

decided to replace only one part of the methylene chains with benzene rings. Therefore we 

used xylene derivatives instead of pure aliphatic fragments, for inducing more rigidity in the 

cycles and also opening the possibility of further stabilization through π–π stackings. 

 

The synthesis of cyclic tetraselenadiynes containing benzene rings as building blocks was 

based on Brandsma’s synthesis of acetylenedithioethers93 and protocols already developed 

in Gleiter’s group for the synthesis of cyclic tetrathiadiynes by Benisch94 and Werz85. 

 

Scheme 3.5.  Synthesis of isomeric bis-selenocyanatomethyl benzenes 

 

The alkyne-selenium bond resulted from a reaction between lithiated acetylene 

derivatives as nucleophilic reagents and positively polarized selenium containing 

S

S S

S

S S

S

SS

S

12

13

Br

Br

SeCN

SeCN

KSeCN

CH3COCH3

∆T

14 a-c 15 a-c



Experimental part 

 

 35 

compounds. Due to their enhanced stability we preferred selenocyanato compounds over 

selenochlorides or selenobromides. The bis-selenocyanatomethyl-benzenes were 

synthesized from the respective bis-bromides and potassium selenocyanate reacted in 

degassed acetone at reflux95 (Scheme 3.5.).  

 

The reaction of the terminal bis-selonocyanates 15 (a-c) with lithiated trimethyl-

silylacetylene in dry THF at -25°C, afforded the protected bis-selenadiynes 16 a-c with 

yields between 45 and 66% (Scheme 3.6.).  

Scheme 3.6. Step-wise synthesis of cyclic tetraselenadiynes. 

 

The protecting TMS groups were removed easily using 0.1N solution NaOH in a mixture 

of solvents consisting of methanol and THF at room temperature, under vigorous stirring for 

ca. 2 hours96. After purification by silica gel column-chromatography the terminal bis-

selenadiynes 17 (a-c) were reacted with 2 equivalents of n-butyllithium and then with an 

equivalent of the corresponding bis-selenacyanato compound 15. During the coupling 

reactions low concentration conditions were maintained, in order to avoid unwanted side-

reactions. The cyclic tetraselenadiynes 18 (a-c) were obtained in low yields after 

purification as pale-yellowish solids, usually crystallizing as tiny needles. 

 

The low yields (see Table 3.1.) in comparison with the methylene chains bridged 

congeners can be explained by the much lower solubility of the compounds containing 

aromatic rings. Similar results were obtained in the case of the synthesis of cyclic 

tetraselenatetraynes containing aromatic rings97. Furthermore, usage of long aliphatic chain 

substituted benzene derivates, which have better solubility in solvents, led to the 

orientation of the aliphatic chain towards the interior of the cycle, therefore blocking the 

formation of the columnar structures. 
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Table 3.1. Overview of reaction conditions and yields for synthesis of cylic 
tetraselenadyinophanes 18 (a-c). 

Compound 
Coupling reaction 

Time 

Coupling reaction 

Temperature [°C] 

Concentration 

[mmol/l] 

Yield 

[%] 

18 a 5h -40 9  3,6 

18 b 6h -45 1.9 < 0.5 

18 b 7h -50 1.8  7,4 

18 c 6h -40 5  < 0.5 

18 c 6h -50 1.25  1,8 

 

Preliminary DFT calculations suggested the para isomer as the most stable; therefore we 

expected better yields for this isomer in comparison with the other two isomers. 

Surprisingly, the yields for synthesis of the para isomer were extremely low, even at the 

lowest concentrations. A possible explanation followed after the investigation of the 

precursor compounds’ geometries. The solid-state structures for 1,2-bis-(seleno- 

cyanatomethyl)-benzene (15a) could be obtained from the Cambridge Crystallographic 

Database (CCDB ref. code: NARBIR)98 and it shows that both SeCN groups are on the same 

side of the benzene rings (see Figure 3.5. left side). We successfully crystallized both  

1,4-bis-(selenocyanatomethyl) benzene (15c), as well as 1,4-bis-(ethynyl-selenylmethyl) 

benzene (17c) and we observed that in their case the SeCN and SeCCH groups are on 

opposite sides of the benzene ring (Figure 3.5. middle and right), thus reducing drastically 

the probability of a simultaneous coupling reaction. Therefore, we assume that this 

geometrical restrains play an important role in the synthesis of the para-isomeric 

cyclophane.  

Figure 3.5. Solid-state structures of intermediates for the synthesis of the cyclic 
tetraselenadiynes: left 1,2-bis(selenocyanatomethyl)-benzene (15a) from 
CCDB; middle 1,4-bis-(selenocyanatomethyl)benzene (15c); right 1,4-bis-
(ethynylselenylmethyl)-benzene (17c) (50% ellipsoid probabilities). 
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Furthermore, the overall low yields are also due to several possible side- and/or 

secondary reactions. For example, the base n-butyllithium present in the reaction flask can 

attack the precursor terminal alkyne in two ways: A) at the Se center, partially positively 

polarized and having two pairs of non-bonding electrons or B) at the terminal H, leading to 

the desired deprotected terminal alkynes (Scheme 3.7.). 

 

 

Scheme 3.7.  Pathways of attack of the deprotonating agent n-BuLi generating the desired 
product (path B), or unwanted by-products (path A). 

 

Another difficulty in the synthesis is due to the fact that the deprotonated alkynes have 

to react with only one selenocyanide in order to obtain the desired cycle. If this is not the 

case, oligomerisation products (Scheme 3.8.) can easily be formed, reducing the yields. 
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Scheme 3.8. Oligomerization possibilities for the case of coupling reaction generating the 
  para isomer 18 c. 

 

 Even worse, traces of unreacted n-butyllithium could also attack molecules of the 

desired product, reducing even more the yields (Scheme 3.9.).  
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Scheme 3.9.  Possible secondary reaction involving the desired tetraselenacyclophanes. 

 

The existence of some of the possible by-products could be confirmed either through 

mass spectrometric evidence, or through NMR spectroscopic data. In conclusion, the 

coupling reaction generating the desired cyclic tetraselenides is dependant essentially on 

the concentrations of the coupling partners and the n-butyllithium base. The desired 

products being themselves only one favored product in a multitude of other possibilities. 

 

Complete spectroscopic characterization of the three desired tetraseleno cyclophanes 

(18 a-c) was possible, although all three isomers are highly sensitive to air, light and 

humidity. Melting points could not be determined as the compounds 18 a-c decomposed 

upon heating in a temperature range from 68 to 78°C. The usual ionization methods for 

obtaining a high-resolution mass spectrum (Electron Ionization, Fast Atom Bombardment 

and even the very mild Matrix Assisted Liquid Desorption / Ionization) proved not to be 

suitable for these type of compounds, only decomposition and fragment peaks could be 

determined. Only using the Field Desorption Ionization procedure we managed to observe 

the molecular peaks of the three isomeric compounds and also some of the fragment peaks 

which differ from one isomer to the others. In Figure 3.6. all three Liquid Injection Field 

Desorption Ionization (LIFDI) mass spectra of the target compounds are depicted. In  

Figure 3.7., a comparison of the theoretically calculated isotopic pattern for the molecular 

formula C16H20Se4 versus the experimentally observed isotopic distribution patterns is 

depicted. Based on this comparison and taking in consideration the results of other 

analytical investigation methods (NMR spectra and X-ray diffraction) we can assume with 

certitude that we did obtain all the three isomers of the tetraselena-cyclophanes in pure 

form. 
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Figure 3.6.  Mass spectra (LIFDI ionization method) of the three isomeric selenium 
containing cyclophanes (18a – top; 18b –middle; 18c- bottom). 
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Figure 3.7. Comparison of theoretically calculated (upper) and experimentally observed  
(lower) isotopic distribution patterns for the three isomeric selenium containing 
cyclophanes (18a – top; 18b –middle; 18c - bottom). 
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3.2.3 Structural investigations 

 

3.2.3.1 Solid state structures 
 

All isomeric cyclic tetraselenadiynes were crystallized from a mixture of n-hexane / 

dichloromethane at room temperature. Usually needle-like single crystals were obtained.  In 

Figure 3.8., the most important bonding angles and torsional angles for the following 

discussion are defined. 

 

Figure 3.8.  Definition of the bonding angles α1- α4 at selenium and the bonding angles at 

the sp-type C atoms β1- β4, as well as torsion angles γ1 and γ2 

 

3.2.3.2  2,5,14,17-Tetraselena[6.6]-ortho-cyclophan-3,15-diyne (18a) 
 

 

Single crystals suitable for X-ray diffraction studies of 18a were obtained from a solution 

of n-hexane / dichloromethane at 20°C. The most striking features of the molecular 

structure of 18a (Figure 3.9.) are the twisting of the planes of the two benzene rings by 87° 

along the common axis and the differences in the bending of the two Se-C≡C-Se units. 

 

Figure 3.9.  Molecular structure of compound 18a in the solid state (50% ellipsoid 
probability, hydrogen atoms are not displayed)  
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The twisting of the two benzene rings we ascribe to the fact that the torsion angles γ of 

the two CH2-Se bonds99 of each CH2-Se-C≡C-Se-CH2 unit in a cyclic system tries to adopt 

values between 60° and 90°, depending on the size of the ring99. In the case of 18a, γ 

amounts to 75° (C1-Se1-Se2-C4) and 92° (C11-Se3-Se4-C14).  

Figure 3.10. Plot of a columnar structure of 18a in the solid state. 

 

Figure 3.10. presents a section of the columnar structure, which arises in the solid state 

by stacking the rings on top of each other. A remarkable feature of the structure of 18a is 

that only one Se-C≡C-Se unit of each ring is involved in the stronger intermolecular 

bonding. This gives the impression that the various rings are threaded like pearls on a string 

made of ���Se-C≡C-Se���Se-C≡C-Se��� units (Figure 3.11.).  

Figure 3.11. Threaded arrangement in the solid state structure of compound 18a (50% 
ellipsoid probability; hydrogen atoms not displayed). Dotted lines represent 
different Se-Se interactions (Se1-Se1= 3.476 Å, Se2-Se2= 3.523 Å, Se4-
Se4=3.934 Å). 
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To optimize the Se���Se interaction, the angles at the sp centers have been altered. 

Those units that are involved in the string formation show a stronger bending (167.1° and 

168.7°) than those angles of the sp centers of the Se-C≡C-Se units which are not a 

member of the intermolecular thread (176.2° and 178.2°). The inter-ring distances between 

the Se atoms are 348 pm and 352 pm, both values being considerably smaller than the sum 

of the Van-der-Waals radii for Se (380 pm)100. Parallel strings are interconnected through 

weaker Se���Se interactions (Se4-Se4=393 pm) in the crystallographic a-direction. It is 

remarkable that the C(sp3)-Se-C(sp) angles amount to 102.1° (Se1) and 102.6° (Se2) for 

the selenium atoms involved into the short Se���Se contacts, whereas this angle for the 

selenium atoms with the weaker interaction is much smaller, 99.1° (Se3) and 98.1° (Se4) 

respectively.  

 

Selenium-selenium interactions are not the sole interactions responsible for the solid 

state characteristics of 18a. All four Se atoms are involved also in selenium-hydrogen intra- 

and intermolecular interactions. Interestingly enough, when analyzing intramolecular  

Se-H interactions (see Table 3.2.), it can be observed that the two longest interactions 

(Se1-H14A=305 pm and Se2-H11A=306 pm) involve the Se atoms that build the strongest 

Se���Se interaction, while the shortest two interactions (Se3-H4A=283 pm and  

Se4-H1A=296 pm) relate to Se centers involved in the weakest Se���Se interaction. This 

behavior can be seen as an added proof of the competition between selenium-selenium and 

selenium-hydrogen interactions, as it will be discussed later in Chapter 3.3.4. 

 

Table 3.2.  Most relevant short intra- and intermolecular selenium–hydrogen contacts  
(in pm) of 18a (Sex-Hz). 

 

 Intramolecular Intermolecular 

Sex Hz (distance) Hz (distance) 

Se1 H14A (305) H’1B (330) H’19 (328) 

Se2 H11A (306) H”4B (318) H”6   (310) 

Se3 H4A   (296) - - 

Se4 H1A   (283) - - 

 

 

Furthermore, intermolecular Se-H interactions also help in stabilizing the columnar 

structure, as Se centers are involved in weak bonding with H atoms belonging to molecules 

situated either under or on top in the molecular column (see Table 3.2.). 
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3.2.3.3 2,5,14,17-Tetraselena[6,6]-meta-cyclophan-3,15-diyne (18b) 
 

In Figure 3.12. the solid-state structure of compound 18b is depicted and it can be 

observed that the molecule shows an anti-chair conformation with C2h symmetry. 

Figure 3.12.  Molecular structure of compound 18b in the solid state (50% ellipsoid 
probability, hydrogen atoms are not displayed)  

 

Both aromatic rings are parallel and the torsion angle γ of the two CH2-Se bonds along 

the CH2-Se-C≡C-Se-CH2 unit amounts to – 58.2°, while the C(sp3)-Se-C(sp) angles amount 

to 98°. We notice in the crystal a stacking of the rings on top of each other in the 

crystallographic b-direction. The Se���Se interactions within one stack are rather long 

(> 436 pm), but inter-stacks Se-Se contacts are relatively strong, amounting for about  

397 pm (Figure 3.13.). This value is similar to those found in related systems99 and close to 

Figure 3.13. Columnar structure of compound 18b in the solid state (50% ellipsoid 
probability, hydrogen atoms are not displayed for sake of clarity). Dotted lines 
represent selenium–selenium interactions in the structure (Se5–Se5=3.975 Å; 
Se5-Se2=4.363 Å) 
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close to the values omputed for a Van-der-Waals dimer consisting of two dimethylselenide 

units2. 

Therefore, it was reasonable to assume that the columnar structure is based on a 

mixture of Se-Se interactions, weak Se-H as well as CH/π interactions. A closer look at the 

crystal structure of 18b, revealed a network of Se-H interactions varying from 295 pm 

(intramolecular) to up to 320 pm (intermolecular), representing the so called weak 

hydrogen bonds7,8 (see Figure 3.14.). 

Figure 3.14.  Plot of inter- and intramolecular Se–H interactions in the solid state structure 
of compound 18b (50% ellipsoid probability). Dotted lines illustrate the  
Se–H interactions ( SE5-H8=2.948 Å; SE5-H6A=3.200 Å; SE2-H10=3.194 Å, 
SE2-H11=3.161 Å). 

 

Furthermore, CH/π interactions between the benzylic proton and the C(sp)-C(sp) unit 

from a molecule situated in the same stacks, with distances of 274 pm are also involved in 

generating the stacks. Similar interactions have been observed in the case of 18a, with 

even smaller distances of around 264 pm. π-π stacking contributes, although to a smaller 

extent, to the stabilization of the stacked structure. The distance between two benzene 

planes amounts to 352 nm, (comparable with the 350 nm distances between planes in 

graphite and pyrene101) with the benzene rings in an offset arrangement (as in Figure 2.14.) 

in which the benzylic CH2 is situated right under one benzene ring from the upper molecule 

in stack. These interactions illustrate both the competitive relation between non-bonding 

weak interactions and also their complementary action that helps keep up a supramolecular 

structure.  
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3.2.3.4 2,5,14,17-Tetraselena[6,6]-para-cyclophan-3,15-diyne (18c) 
 

The para isomer, compound 18c, also adopts a chair conformation (non-crystallographic 

C2h) in the solid state as does 18b. The planes of the two aromatic rings are symmetry 

imposed parallel. The torsion angles between the CH2-Se bonds along the CH2-Se-C≡C-Se-

CH2 unit axes amount to 116.7° (Figure 3.15.). 

 

This value is considerably larger than those values found for 18a and 18b indicating 

some strain energy due to the para-connection. The C(sp3)-Se-C(sp) angles in 18c were 

recorded to be 97.1° and 99.7°, respectively. 

 

Figure 3.15.  Molecular structure of compound 18c in the solid state (50% ellipsoid 
probability, hydrogen atoms are not displayed). 

 

In the solid state each selenium atom of 18c is involved in three short contacts (379, 

380 and 381 pm) with selenium atoms of three different neighboring molecules, giving rise 

to a structure with two-dimensional Se regions showing multiply linked selenium networks. 

The smallest Se���Se interactions (379 pm) are the main forces that generate a sheet-like 

arrangement in the crystallographic c-direction, consisting of intercalating stair-

arrangements as depicted in Figure 3.16.A. The sheets have a thickness of about 530 pm 

and they are closely packed one with the others due to the marginally larger Se���Se 

interactions (see Figure 3.16.D). 

 

Once again, the selenium-selenium interactions are not strong enough to be the sole 

forces involved in the solid-state structure of 18c. Selenium – hydrogen weak bondings, 

along with π-π interactions provide a significant contribution to the supramolecular 

structure. Like in the case of 18b, the distances between two benzene ring planes in the 

solid structure of 18c, amount to 359 pm, also with an offset arrangement of the benzene 

rings. The selenium atoms do not have identical behavior as far as the weak selenium-

hydrogen interaction is concerned. One selenium center (Se1) has only one weak Se-H 
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interaction amounting to 315 pm with an aromatic proton, while the other (Se2) has two 

weak Se-H interactions with benzylic protons from neighboring molecules, amounting to 314 

and 320 pm, respectively.  

 

Another interesting observation is that in 18a, the -Se-Csp-Csp-Se- unit is the most 

compact, with slightly smaller Se-C and C≡C bond lengths than the respective averages and 

also the -Se-Csp-Csp-Se- unit with the strongest intermolecular Se-Se contacts. 

Figure 3.16. Sheet-like arrangement of compound 18c in the solid state structure (50% 
ellipsoid probability, H atoms are not displayed). A. Front view of the sheet. 
Dotted lines represent the smallest observed Se-Se contacts (3.79 Å); B. Side 
view; C. Top view of one sheet with the internal Se-Se contacts; D. Top view of 
several sheets closely packed together. Dotted lines represent the larger Se-Se 
contacts (3.80 and 3.81 Å). 

 

In order to establish if there is a preference of orientation in the Se���Se interactions, the 

interatomic contacts were analyzed using the spherical polar coordinates, θ and ψψψψ, where θθθθ 

A B 

D 

C 
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is the azimuthal angle and ψψψψ, the elevation angle, specifying the direction of the Se���Se 

contact with reference to the selenide plane C(sp3)-Se-C(sp), as depicted in Figure 3.17. 

Early studies on the directionality of interactions involving chalcogenes had been done 

already before the Cambridge Crystallographic Database102 was generally available, 

suggesting that functional groups involved in non-bonding contacts with sulfur atoms, show 

a preference of their location depending on their (partial) charges103. 

Figure 3.17. Definition of azimuthal (θ) and elevation (ψψψψ) angles 

 

Electrophiles tend to approach in a direction of elevation angle ψψψψ between 50° to 90° to 

the sulfide plane (the X-S-Y plane, when usually X and Y are carbon atoms), while 

nucleophiles approach the sulfur within 30° of the sulfide plane. The study was further 

extended to S���S contacts104 and the analysis showed that if one sulfur atom acts as an 

electrophile, it approaches the other which behaves as a nucleophile. Another study of 

protein structures in the Protein Data Bank (PDB) database105 showed that metal ions 

approach the sulfur of methionine fragments at around 62° to the C-S-C group106 a value 

very similar to small-molecule crystal structures, where electrophiles are presumed to 

interact with the sulfur lone-pair orbital.  

Furthermore, an extension of the study on selenium interactions observed similarity in 

the directionality preference of electrophiles and nucleophiles approach at divalent selenium 

centers, with average ψψψψ values of  68° for electrophiles and 11° for nucleophiles, 

respectively107. Also, evidence of incipient formation of attractive electrophile-nucleophile 

interaction in Se–Se contacts are presented. Although, Se���Se interactions closely resemble 

S���S interactions in crystals, the complementary electrophile nucleophile pairing for Se���Se 

interactions is much more pronounced than for S���S. 

 

Frontier orbital theory108 suggests that the electrophiles (electron acceptors) are 

interacting with the highest occupied molecular orbital (HOMO) of the chalcogen atom, this 

being a lone-pair orbital nearly perpendicular to the chalcogenide plane. On the other hand, 

nucleophiles (electron donors) approach the chalcogen atom closely to the chalcogenide 

Sey
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PSe
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plane, and have the tendency to lie along the extension of one of the C-X (X=S,Se,Te) 

bonds, the direction predicted for the lowest unoccupied molecular orbital (LUMO).  

 

Table 3.3. Selected intermolecular Se–Se distances, measured and calculated angles for 
determining directionality of Se���Se interactions. 

 

 Contact 
Sex-Sey 

Dist. Se���Se 
[Å]  ω1 [°] ω2 [°] αSe [°] θ [°] ψ  [°] 

ORTHO Se1-Se1A 3.476 99.22 150.05 102.08 150.92 20.90 

(18 a) Se2-Se2A 3.523 100.51 152.48 102.59 152.17 14.80 

 Se4-Se4A 3.934 95.61 158.51 98.12 144.91 16.49 

 Se3-Se4A 4.28 130.4 67.91 98.12 72.97 44.85 

 Se4-Se3A 4.28 70.84 140.68 99.15 115.39 36.77 

META Se5-Se5A 3.975 76.17 76.17 97.95 180.00 68.64 

(18 b) Se5-Se5A 4.505 120.38 111.39 97.95 188.02 47.96 

 Se2-Se5A 4.363 161.69 64.63 97.95 66.51 5.34 

 Se5-Se2A 4.363 70.68 59.1 98.02 169.35 49.08 

PARA Se1-Se2A 3.792 102.43 149.83 99.66 153.09 20.18 

(18 c) Se2-Se1A 3.792 78.82 74.38 97.14 171.83 69.29 

 Se1-Se2A 3.805 142.79 72.53 99.66 61.81 35.49 

 Se2-Se1A 3.805 77.55 153.83 97.14 124.77 25.36 

 Se1-Se2A 3.812 77.15 82.47 99.66 192.31 73.72 

 Se2-Se1A 3.812 160.84 99.29 97.14 212.00 9.76 

 

 

We calculated the corresponding azimuthal θ and elevation angles ψψψψ  as defined in  

Figure 3.17. for all intermolecular selenium – selenium contacts observed in the solid-state 

structures of the three isomeric cyclic tetraselenadiynes. In Table 3.3., the measured 

distances and the corresponding angles are presented. Contacts that are longer than the 

sum of the Van der Waals radii were also included, since theoretical calculations of the 

interaction energy of the Se���Se interactions showed that the potential energy curve is a 

very flat one, with 50% of the maximum stabilization energy still being observed at 4.5 Å 2. 

In Figure 3.18., a correlation between the elevation angle ψψψψ and the distance of Se–Se 
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contact is presented and one can observe that the Se���Se interactions tent to cluster 

themselves in three regions. The ones involving long contact distances display mostly a 

preference of interacting at a 45° elevation angle (red circles), while the contacts with 

significantly short distances, separate in two groups, around ψψψψ=20° (dark blue squares) and 

ψψψψ=70° (green triangles) showing that the Se���Se interactions have a preferential 

directionality. 

Figure 3.18. Plot of elevation angles against distances of the Se–Se contacts. 

 

These observations confirm the non-spherical shape of the Se atom109 and that Se–Se 

contacts are more than just simple Van der Waals forces, which do not show much 

directionality, as already theoretically predicted by previous investigations2. 

 

3.2.3.5 NMR investigations of compounds 18 a - c 
 

A single signal was observed for 77Se chemical shifts in all three cyclophanes, indicating 

the equivalency of the selenium atoms in the compounds when in solution. An interesting 

phenomenon was observed for the chemical shifts of the selenium atoms. The chemical 

shifts move downfield in the series ortho < meta < para indicating an increase in the cavity 

of the cycle, or at least a less crowded one. This is evident in comparing the meta and the 

para compounds, where the cavity size is not significantly different, but due to the two 

aromatic protons the cavity is more crowded in the case of the meta isomer. 

 

Table 3.4. 77Se chemical shifts of the isomeric tetraselenacyclophanes 

 ORTHO (18a) META (18b) PARA (18c) 

77Se (δ, ppm) 235.0 288.5 299.8 

Elevation angle[°] vs. Se-Se Contact distance[A]
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The same pattern could be observed not only in the three cyclophanes, but also in the 

precursor compounds 16 a-c and 17 a-c. These findings seem to confirm the observations 

made for the solid-state for compounds 15a and 15c. It can be assumed that in solution, in 

the ortho type compounds the SeCN or SeCCH groups are on the same side of the aromatic 

plane, whereas in the case of the para type compounds, they find themselves on opposite 

sides. For the meta type compounds, the 77Se chemical shifts sugest that the distance 

between the selenium containing groups is significantly larger than for the ortho type 

compounds and more similar to the para type compounds. 

 

The NMR spectra of 18 a in deuterated dichloromethane show only one signal for the 

four selenium atoms, one for the four CH2 carbon atoms and even a broad singlet for the 

four aromatic protons instead of the expected AA’BB’ pattern specific of ortho identically bis-

substituted benzene rings. The spectra are almost unchanged during a variable temperature 

NMR measurement between -80°C and room temperature indicating C2 symmetry due to 

very rapid motion. 

 

Table 3.5.  Selected 1H, 13C, 77Se chemical shifts (ppm), 2JSe,H coupling constants (Hz) and 
some 1JSe,C coupling constants (in brackets) (Spectra were measured in CD2Cl2 
unless otherwise stated). 

Compound 1H CH2 2JSe,H  (CH2) 13C – SeCH2 13C - SeCsp 77Se 

15 a 4.63 15.0 Hz 29.89 (48.5 Hz) 101.52 302.30a 

15 b 4.29 16.2 Hz 32.56 (48.9 Hz) 101.83 294.55 

15 c 4.44 16.3 Hz 32.53 101.81 307.10a 

16 a 4.21 13.9 Hz 30.30 (53.4 Hz) 86.4o 255.00 

16 b 4.00 15.4 Hz 32.97 86.60 267.64 

16 c 4.01 15.4 Hz 32.83 (52.9 Hz) 86.73 269.13 

17 a 4.21 13.1 Hz 29.90 (51.8 Hz) 90.40 (37.9 Hz) 232.12 

17 b 4.04 14.9 Hz 32.14 (52.9 Hz) 90.02 (37.9 Hz) 246.44 

17 c 4.04 14.2 Hz 32.34 90.22 247.79 

18 a 4.47 7.9 Hz 33.05 85.92 235.04 

18 b 3.93 17.4 Hz 33.92 85.66 288.52 

18 c 3.89 20.3 Hz 33.32 84.37 299.81 

a - due to solubility issues the spectra were measured in deuterated acetone. 
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The chemical shifts of the methylene carbons and protons are almost not influenced by 

formation of the cyclophanes in the cases of 18 b and 18 c, a small deshielding (less than 1 

ppm for 13C and 0.15 ppm for 1H) being observed in comparison with the corresponding 

terminal alkynes (17 b and c). In the case of 18 a, the deshielding of the 13C chemical shift 

in comparison with 17 a is more significant, accounting to about 3 ppm, while in the case of 

benzylic protons a shielding effect of about 0.24 ppm is observed. 

 

The values of 2JSe,H are in the range of 13 to 20 Hz, again with the exception of the CH2 

protons of compound 18 a, with a lower value of about 8 Hz.  Due to solubility and 

sensitivity reasons, only a few 1JSe,c could be determined, ranging from 48 to 53 Hz, without 

determining the sign of the coupling constant. According to McFarlane et al. 1JSe,c values 

larger than 45 Hz are indicative of a direct C(sp3)-Se bond110. Surprisingly small 1JSe,c values 

(around 38 Hz) were observed in the case of the C(sp) atoms in 17 a and 17 b, usually 
1JCsp-Se being known to be in the -184 to –193 Hz range111,112. More detailed interpretations 

of the values for 2JSe,H or 
1JSe,c are difficult. 

 

In conclusion, we observed that by using benzene rings helps in stabilizing the bridge 

between the diselenaalkyne units, but doesn’t necessary reduce the internal motion of the 

molecules in the solution state, as it could be observed from low temperature NMR 

experiments of 18 a. Nevertheless, the aromatic ring induces an extra stabilizing effect, in 

the solid-state structures of 18 b and 18 c, which prefer a chair-type conformation, based 

mainly on π- π interactions and also on CH/π interactions. Solid-state structures are 

preponderantly based on the selenium – selenium interactions, but additional stabilizing 

forces are involved. The internal cavities of the cycles are not big enough to allow trapping 

of even small guest solvent molecules and due to a reduced solubility, a three- or four-

component coupling, which would have generated cycles with a larger internal cavity, could 

not be observed.  
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3.3 Experimental and theoretical investigations of new 
model compounds 

3.3.1 Introduction 

 

Despite an already large interest and an abundance of mechanistic studies on 

interactions between chalcogens and other donating heteroatoms (halogens, nitrogen, 

oxygen) and also between different chalcogen centers, it doesn’t seem that the discussion 

on the nature of these interactions is likely to reach a point of agreement soon. The physical 

mechanism of these interactions is not yet completely clear. 

The nature of these interactions was already explained either as a pure electrostatic 

phenomena70 or as a pure second order orbital interaction phenomena113. In the literature, 

explanations in between these two extreme cases can be found, especially as they actually 

do not exclude each other. The latest theoretical calculations2 illustrate, based on NBO 

population analysis, that the electrostatic nature of the mechanism can not be completely 

ignored, concluding that the real nature of the interaction mechanism can not be simplified 

to only one of the already mentioned extremes. The situation is even more complicated as 

many different terms are used in order to describe the heteronuclear-chalcogen and/or 

chalcogen-chalcogen interaction, ranging from “non-bonded”12, “secondary bonding”114, 

“fractional bonding”115, “specific non-covalent contacts”116 to “premature hypervalent 

bonds”117 or “three center – four electron interactions”118. 

 

 
 
(a) Donor-acceptor interaction in    (b) Donor-acceptor interaction in      

hetero - selenium contacts           selenium - selenium contacts 
 

Figure 3.19. Orbital interaction models for contacts involving selenium centers. 

 

Our group was interested in the chemistry involving the interactions of lone-pair 

electrons of chalcogen atoms and in order to elucidate the nature of the interaction. In the 

particular case of selenium, we decided to study a series of model compounds containing 
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divalent selenium at suitable distances. Benzlyselenide compounds with different selena 

containing groups in the 2 position (Figure 3.20.) are expected to provide a good system to 

study such non-bonded interactions, as the distances between two selenium centers is 

favorable, while the mobility of the second selenide group is not strongly hindered, thus not 

forcefully inducing the Se atom in an interacting alignment. The model compounds are not 

very large molecules so we also intended to compare experimental results (from X-ray 

crystallography and NMR spectroscopy) with theoretically calculated properties at the 

highest level that was available. 

 

Se

Se

X

Y

X, Y = CH3, CN, CCH

 

Figure 3.20. Scheme of model compounds to be synthesized for investigation of  
intramolecular Se���Se interactions. 

 

In order to assess either qualitatively or quantitatively the strength of the Se���Se 

interaction in solution, we decided to compare the NMR parameters of newly synthesized 

model compounds with those of already known ones. The comparison series are depicted in 

Scheme 3.10. 
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Scheme 3.10. Series of model compounds to be synthesized and investigated. 
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3.3.2 Synthesis of model compounds 

 

We intended to compare experimental values of NMR chemical shifts in the mentioned 

series to test if the chemical shifts could be a good probe for interaction between selenium 

atoms in solution. Since it is known that 77Se chemical shifts are quite sensitive to solvent 

and temperature effects, we had also to synthesize model compounds with only one Se 

center., so that our comparison would be meaningful. 

 

Br SeMeSeLi/THF, 2h, 68°C

Br Se
MeSeLi/DMF, 4h, 130°C

MeI 60%MeI51%

35 22 36 23  

Scheme 3.11. Synthesis of phenyl methyl selenide (22) and benzyl methyl selenide (23). 

 

Phenyl methyl selenide (22) and benzyl methyl selenide (23) were prepared (Scheme 

3.11.) according to literature procedures119, by reacting the corresponding bromide with in-

situ generated MeSeLi120. For the more reactive benzylic bromide the reaction gives good 

yields in refluxing THF. In the case of the unreactive aryl bromide, the reaction is successful 

in DMF, whereas in THF the yields are poor (less than 5%). Tiecco et al.121 demonstrated 

that MeSeLi in DMF seems to be the most effective reagent for carrying out SN2 type 

cleavage reactions. The addition of methyl iodide is absolutely necessary to obtain a yield of 

over 50%. This is due to the fact that two consecutive reactions are taking place: a 

nucleophilic aromatic substitution on the unreactive bromobenzene by the strongly 

nucleophilic methylselenide anion, followed by a nucleophilic aliphatic substitution on the 

phenyl methyl selenide. This yields the demethylated product, with the latter reaction being 

much faster than the SNAr reaction119. Therefore, by adding methyl iodide, the product of 

the SN2 reaction is transformed back into the desired phenyl methyl selenide (see Scheme 

3.12.). 

 

C6H5Br MeSeLi LiBr

C6H5SeMe C6H5SeLi MeSeMe

+ + C6H5SeMe

MeSeLi+ +

C6H5SeLi + MeI LiI + C6H5SeMe  

Scheme 3.12. Competing substitution reactions during the synthesis of phenyl methyl 
selenide (22). 

 

To obtain phenyl selenocyanate (27) and benzyl selenocyanate (28) (see Scheme 

3.13.), we used standard methods given in the literature. For the synthesis of phenyl 



Experimental part 

 

 56 

selenocyanate, we reacted commercially available phenyl selenylchloride (PhSeCl) (37) with 

trimethylsilylcyanide (TMSCN) in dry THF122, while the reaction of the benzylbromide (36) 

with potassium selenocyanate (KSeCN) in hot DMF95, generated benzyl selenocyanate.  

 

Br SeKSeCN/DMF,8h,80°C

76%

Se
Cl

Se
CNTMSCN/THF,0.5h,RT

77%

CN

37 27

2836  

Scheme 3.13.  Synthesis of phenyl selenocyanate (27) and benzyl selenocyanate (28). 

 

Aryl and alkyl selenocyanates posess reactive groups, which tend to br hydrolyzed 

rapidly to selenols and further generate their respective di-aryl and di-alkyl diselenides123. 

This drawback makes them difficult to purify and to be manipulated. However, based on 

their reactivity, selenocyanates are very good precursors for the synthesis of terminal 

selenaalkynes. The reaction of the lithiated salt of TMSA with selenocyanates generates by 

means of a nucleophilic substitution the TMS protected terminal selenaalkynes (Scheme 

3.14.). The protecting TMS groups were removed easily using a 0.1N solution of NaOH in a 

mixture of solvents consisting of methanol and THF at room temperature, under vigorous 

stirring for ca. 2 hours96. As a result, the desired phenyl ethynyl selenide (31) and benzyl 

ethynyl selenide (32) were generated in relatively good yields of up to 53%. 

 

Se
CN

Se TMS Se
TMSA/nBuLi

THF/ -25°C 65%

0.1N NaOH

MeOH, RT 39%

27 38 31  

SeCN Se TMSTMSA/nBuLi

THF/ -25°C 56%

0.1N NaOH Se

MeOH, RT 53%

3928 32  
 

Scheme 3.14.  Synthesis of phenyl ethynyl selenide (31) and benzyl ethynyl selenide (32). 

 

The preparation of the three isomers 24, 25 and 26 was achieved in an one pot reaction 

starting from the corresponding o-, m- and p-bromo-benzylbromide (40 a-c). Treatment of 
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the bromides with in-situ generated lithium metyl selenide (MeSeLi) followed by methylation 

yielded the desired (methylselenyl)-benzylmethyl selenides (Scheme 3.15.). 

 

Br Se1) MeSeLi
DMF, 130°C, 54h

2) MeI
26-47%

Br Se

40 a-c 24, 25, 26  

Scheme 3.15. One-pot reaction for synthesis of isomeric 2-, 3-, and 4-(methylselenyl) 
benzyl methyl selenide (24, 25, 26). 

 

During our initial trials of synthesizing 2-(methylselenyl)-benzyl methyl selenide (24), 

we attempted the synthesis in THF as solvent. We observed that we could only achieve 

methylselenation of the benzylic bromine center. Although methyl iodide was used to 

prevent demethylation, this could not be completely avoided. As a by-product, probably due 

to the reaction between a demethylated 41 and one equivalent of 40 a, compound 42 was 

obtained. Its solid state structure, which is disscused in Chapter 3.2.3.1.5., reavealed some 

interesting features about interactions between the Se and Br atoms. 

 

Br Se1) MeSeLi
THF, 70°C, 4h

2) MeI

Br Br

Se

Br

Br

40 a 41 (40%) 42 (11%)

+

 

Scheme 3.16. Products obtained by reacting MeSeLi with 40a in THF. 

 

The aryl-bromide position is unreactive, therefore the bromo-benzylbromides dissolved 

in DMF were added over the THF solution containing MeSeLi and, after removal of the THF, 

the reaction mixture was stirred at reflux for long periods of time of up to 3 days. After 

methylation with methyl iodide, the equilibrium of the competing substitution reactions (see 

Scheme 3.12) can be manipulated to obtain the desired (methylselenyl)benzyl methyl 

selenide isomers with acceptable yields in the range of 25 to 50%. 

 

Several synthetic approaches were considered in our attempt to synthesize model 

compounds containing different substituents at the selenium centers. Due to the 

ambivalence of selenium, behaving either as a nucleophile or as an electrophile depending 

on reaction conditions, we had to consider alternative methods to what was available in the 

literature.  
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The syntheses of 29 and 33 were finally successful using a rather less direct synthetic 

procedure, summarized in Scheme 3.17. The synthesis commenced with commercially 

available 2-bromobenzylalcohol (43) which, after protection with t-butyldimethylsilyl 

(TBDMS) chloride, was reacted with MeSeLi followed by methylation to yield 45. The TBDMS 

protection group is relatively stable under mild basic conditions as compared to their 

trimethylsilyl (TMS) equivalents124. There are also literature reports125 of metallation 

reactions in the presence of t-BuLi,  during which TBDMS protected ethers were unaffected, 

thus making TBDMS the protection group of choice for our synthetic method. 

The TBDMS group was not removed using the classical fluoride reagents like HF in 

MeCN126, HF�pyridine complexes in MeOH127 or tetra-n-butylammonium fluoride (TBAF) in 

THF128 , as a fluoride attack at the already introduced selenium center was to be expected. 

We preferred the rather mild conditions of deprotection using diluted acetic acid in THF at 

room temperature128 to afford the corresponding 2-(methylselenyl)-benzyl alcohol (46).  
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Scheme 3.17. Reaction scheme for the synthesis of 2-(methylselenyl)-benzylseleno 
cyanate (29) and 2-(methylselenyl)-benzyl-ethynyl selenide (33)  

 

The introduction of the SeCN-group was successfully achieved using a selenocyanation 

reagent (Ph3P(SeCN)2), according to the literature129 affording 2-(methylselenyl)benzyl 

selenocyanate (29) with a yield of 26%. Similar to halogenation of alcohols using tertiary 

phosphine dihalides130, the Ph3P(SeCN)2 reagent, easily prepared by addition of an 

equimolar amount of triphenylphosphine to a freshly prepared selenocyanogen131 solution in 

dichloromethane and THF, reacts at temperatures below -60°C with primary alcohols to 
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yield the corresponding selenocyanates, according to the following mechanism (Scheme 

3.18): 

 

2 KSeCN Br2 2 KBr

SeCN

+ + (SeCN)2

PPh3+ +

o-SeMe-C6H4-CH2OH

+

(SeCN)2 Ph3P SeCN Ph3P(SeCN)2

Ph3P SeCN

o-SeMe-C6H4-CH2SeCNo-SeMe-C6H4-CH2

O PPh3

SeCN

Ph3P OH
 

 

Scheme 3.18. Mechanism of selenocyanation of benzylic alcohols129. 

 

The selenocyanate 29 was reacted with the lithium salt of trimethylsilylacetylene (TMSA) 

to afford 47, which was deprotected with a 0.1 N solution of NaOH in MeOH96 to give the 

terminal alkyne 33 (see Scheme 3.17.). 
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Scheme 3.19. Possible side reactions generating compound 48.  

 

The use of n-BuLi as deprotonating agent for TMSA (see Scheme 3.17.), can also cause 

side reactions, either by an attack at the selenylmethyl group, thus reducing the yields of 

the desired product, or as depicted in Scheme 3.19., by removing the TMS group of the 

terminal alkyne and allowing another SeCN moiety from a separate molecule of 29 to react. 

This later possibility affords the di-selena di-substituted alkyne 48, which turns out to be a 

very interesting compound for our investigations of selenium-selenium interactions. Its 

solid-state structure will be discussed in Chapter 3.3.3.1.2. 

 

After the series with a SeMe group in the 2-position on the aromatic ring was completed, 

we attempted to synthesize other model compounds with other groups in that position. A 
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promising reaction pathway focused on synthesizing a diselenide type compound. Diselenide 

bonds can be cleaved using different methods, therefore it looked as a promising approach. 

Following a procedure of Iwaoka and Tomoda132 we synthesized 2,2’-diselenobis(benzyl 

alcohol) (51) starting from commercially available methyl anthranilate (49) as depicted in 

Scheme 3.20. We isolated crystals of the bis-alcohol, and using thionyl bromide (SOBr2) and 

pyridine we obtained 2,2’-diselenobis(benzyl bromide) (52). To our surprise, no crystal 

structure of 52 was yet reported in the literature, although a similar compound, based on 

naphthene rings, bis[3-(bromomethyl)-2-naphthyl] diselenide was reported having a short 

Se���Br contact. A discussion of the solid-state structure of 52 is presented in Chapter 

3.2.3.1.5. 
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Scheme 3.20.   Synthesis attempts for some other model compounds. 

 

Attempts to synthesize 2,2’-diselenobis(benzyl selenocyanate) (53) or 2,2’-diseleno-

bis(benzyl methylselenide) (54) using the usual procedures failed, although in the case of 

54 traces of the compound have been observed in a FD mass spectra and also a benzylic 

proton signal in a 1H-NMR spectrum displays the typical 2JSe,H coupling pattern. In the 77Se 

NMR spectrum two signals could be detected in the region characteristic for diaryldiselenide 

(381 and 410 ppm)111,112. Considering the reactive nature of selenocyanate groups and their 
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ability to transform themselves into diselenides123, one can assume that unwanted reactions 

of this sort take place. Therefore, products like oligomeric or macrocyclic compounds 

containing diselenide bridges are to be expected, but none of these could be isolated and 

characterized. Reaction of 2,2’-diselenobis(benzyl bromide) (52) with bromine132 afforded 

2-(bromoselenyl)-benzyl bromide (55) as a purple solid. Despite its reactive nature, 55 

could be characterized through mass spectrometry and complete NMR spectroscopy 

analysis, before being reacted with TMSCN to afford 2-(cyanoselenyl)-benzyl bromide (56). 

Attempts of using MeSeLi to replace the benzylic bromide of 56 failed, as the attack was 

also taking place at the Se atom of the selenocyanate group. As a result the main product 

obtained was 2-(methylselenyl) benzyl methyl selenide (24). Upon reacting 56 with KSeCN 

in DMF, 2-(selenocyanato) benzyl selenocyanate (57) was obtained and although, due to 

the reactivity of the SeCN, it quickly decomposed, but we were able to obtain a NMR 

spectroscopic characterization of the compound. As illustrated from the mass spectra, one 

of the possible decomposition products could be 3H-1,2-benzodiselenole (58), whose 

molecular mass peak was detected in a mass spectrum (EI) of the raw reaction product. 

The anticipated 2-(selenocyanato) benzyl selenocynate (57) could not be isolated and fully 

characterized. 

 

3.3.3 Structural investigations of model compounds 

 

3.3.3.1 Solid state structures 
 

3.3.3.1.1 Crystal structure of 2-(methylselenyl)-benzyl-selenocyanate (29). 

 

We were able to grow single crystals of 2-(methylselenyl)-benzyl-selenocyanate (29) 

from a n-hexane / dichloromethane solvent mixture, which allowed a detailed structural 

investigation by means of a X-ray diffraction analysis. A closer look at the solid-state 

structure of 29 reveals strong intra- and intermolecular interactions involving both selenium 

centers. Competing intramolecular Se���Se interactions, weak Se���H bonding (Figure 3.21.), 

strong intermolecular Se���Se interactions in between pairs of diastereoisomers of 29 

(Figure 3.22.) and some strong intermolecular interactions between nitrogen atoms and 

selenium atoms of the SeCN groups are all involved in the packing of the crystal of  

2-(methylselenyl)-benzyl-selenocyanate (29). 
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Figure 3.21. Molecular structure of 2-(methylselenyl)-benzyl-selenocyanate (29) in the 
solid-state (ellipsoid probability 50%). 

 

Figure 3.21. depicts the molecular structure of 29 in the solid-state and the significant 

intramolecular interactions. A short Se���Se distance between the SeCH3 and the SeCN 

moieties of 372 pm and a small (275 pm) distance between Se1 and H17a indicating weak 

hydrogen bonding, competing with the intermolecular Se���Se interaction. These 

observations confirm the competing character of these interactions. An evaluation of which 

interaction has a stronger effect in the solid-state structure of 29 can only be speculative. 

Interestingly enough, in order to favour these interactions, the C(sp2)-Se1-C(sp3) angle is 

larger than the usual divalent selenium angle (around 95°), having a value of 102.1°. The 

methyl group bonded to Se1 lies almost in the same plane with the aromatic ring, with a 

deviation of only 9.7°. 

 

 

Figure 3.22. Diastereoisomeric pairs in the solid-state structure of 29 showing Se���Se 
intermolecular contacts (50% ellipsoid probability, H atoms are not displayed). 
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The intermolecular interactions between the selenium centers of (29) (Figure 3.22) are 

short (347 pm) and are among the shortest reported in the literature. Only 15 compounds, 

out of 227 compounds reporting intermolecular Se–Se contacts below 380 pm in the 

Cambridge Crystallographic Database (CCDC)102, show Se–Se distances equal or below 347 

pm. Furthermore, the spatial orientation between the selenocyanate group and the selenium 

atom of the methylselenyl group of the pairing molecule displays nearly a linear 

configuration (163.4°), which does provide favorable geometrical conditions for an 

attractive interaction between a lone-electron-pair of Se1 and the σ*-orbital of the Se2-C2 

bond as depicted in Figure 3.19. The favored alignment explains the shorter intermolecular 

Se–Se contact, in comparison with the intramolecular one, thus offering more support for 

the orbital interaction theory of chalcogen-chalcogen interactions. 

 

To verify whether these short intermolecular Se���Se interactions would not be only a 

result of crystal packing effects133, we decided to investigate the pairing of the 

diastereoisomers also on a theoretical level. By freezing the internal coordinates of the two 

molecules and only varying the distance between them, we obtain an energy profile of the 

two interacting molecules corresponding to Se–Se contact distances in the range of 335 pm 

to 531 pm. The energy calculations of the diastereoisomeric pair were carried out at DFT 

level of theory, using the B3LYP functional of Becke134, Lee, Yang and Parr functional135 in 

combination with a large basis set, 6-311++g(2d), containing both polarization and 

diffusion functions. The necessity of these additional functions for relatively accurate 

theoretical calculations of chalcogen – chalcogen interactions was already illustrated in 

previous theoretical investigations of these types of interaction2  and confirmed in our 

theoretical investigations of the model compounds (see Chapter 3.3.4.). 

Figure 3.23. Energy profile for a diastereoisomeric pair of compound (29) relative to the  
Se–Se contact distances. 
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Some additional intermolecular interactions can be observed in the X-ray structure of 

compound 29 (see Figure 3.24.). The distance between a nitrogen atom (N2) of a cyano 

group and a selenium atom (Se2) of a methylene selenocyanate group from another 

neighboring molecule is relatively short at 313 pm (compared to the sum of the Van der 

Waals radii of 345 pm) and represents a further strong attractive interaction. Its geometric 

characteristics support again the orbital theory of interactions (as in Figure 3.19.a), as the 

N-Se-C(sp3) angle amounts to 166.7°, again close to a linear alignment. 

 

Figure 3.24. Top view of a “layer” of diastereoisomeric pairs of 29, connected through 
Se���Se (dark orange dotted lines) and Se���N (red dotted lines) interactions 
(50% ellipsoid probability, H atoms are not displayed)  

 

These interactions between heavy atoms of molecules in the crystal structure build up to 

a sort of a crystal layer construction based on the interactions between selenium centers on 

one hand and between nitrogen and selenium on the other (Figure 3.24.). Thus, Se���Se 

interactions are responsible for pairing of the diastereoisomers, while Se���N interactions are 

the driving force that is linking the diastereoisomeric pairs with each other. 
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3.3.3.1.2 Crystal structure of 1,6-bis(2´-methylselenylbenzene)-2,5-diselena- 

-3-hexyne (48) 

 

We obtained compound 48 as a by-product in the synthesis of 47, most probably based 

on the side-reaction illustrated in Scheme 3.19. That could have occurred due to unreacted 

n-BuLi present in the reaction mixture, or even in the initial phase, when TMSA might have 

been deprotected besides being deprotonated, resulting in the dilithiated salt of acetylene 

(LiCCLi), which in turn could have been reacting with 2 equivalents of 29, leading to the by-

product 48.  Although not a target compound for our studies, 48 received our attention, 

especially after discovering that, contrary to our expectations, the terminal alkyne 33 

cannot be recrystallized. We managed to recrystallize 48 out of a solvent mixture of n-

hexane/dichloromethane, thus allowing us to investigate its solid-state structure. 

Figure 3.25. Molecular structure of compound 48. Dotted lines represent strong 
intramolecular interactions: Se���Se (dark orange, 364 pm) and Se���H (blue, 
277 pm) (50% ellipsoid probability)  

 

Interestingly enough, significantly strong intermolecular interactions could be detected. 

Figure 3.25. depicts the molecular structure of 48 and the observed interactions. The strong 

Se���Se interaction, with a distance of 364 pm is surprising, because a short distance was 

not expected when replacing the SeCN group with a SeCCH group, considering that they are 

isoelectronic. Also, a surprisingly short Se���H contact could be observed between Se1 and 

one of the benzylic protons (H7B). Its value of 277 pm is well below the sum of the Van der 

Waals radii, and also shorter than the first reported C-H���Se bond by Tomoda et al.136 

 

It is interesting to observe that the strength of the intramolecular Se���Se (364 pm in 48 

vs. 372 pm in 28) interaction increased, while the Se���H (277 pm in 48 vs. 275 pm in 29) 

interaction is almost unchanged with the disappearance of the N center from 29 and its 

ability to get also involved with one Se center in an interaction. 
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Figure 3.26.  Solid state structure of 48. The column like arrangement of the molecules is 
presented in a top view (top) and in a side-view (bottom). (50% ellipsoid 
probability, only selected H are displayed). Thin dotted lines represent the 
significant intermolecular contacts: dark orange for Se���Se (383 pm) and blue 
for Se���H (297 pm)  

 

The intramolecular interactions are the strongest in the case of 48. Similar to the case 

of compound 29, the driving forces in building a column-like structure are weak Se���Se 

interactions, with lengths of 383 pm and Se���H interactions with lengths of 297 pm. It can 

be observed that because of the strong intramolecular Se���Se interactions, the expected 

zig-zag arrangement of the Se–Se contacts is not anymore alone responsible for the 

column-like arrangement, such as in the case of the selenium containing cyclic compounds 

(see Chapter 3.1.). In this case, one could speak of a collaborative effect of Se���H bonding 

that “keeps together” molecules in the same plane, and weak Se���Se contacts that build the 

“connection” between the planes.  

 

3.3.3.1.3 Crystal structure of 2-(methylselenyl)-benzyl-alcohol (46)  

 

The preparation of the alcohol 46 was already described by Tomoda et al.137 However, 

we were able to grow crystals of 46 for the first time. Recrystallization of the raw material 
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was successful only at -20°C, from dichloromethane, in the presence of traces of n-hexane 

as co-solvent. Even if not a main focus for our investigations of Se���Se interactions, the 

solid-state structure of 46 brings some additional insights regarding the interaction of 

selenium with other chalcogen atoms.  

A relatively strong interaction between the oxygen and the selenium center was to be 

expected, as theoretically calculated values138 indicated an interaction energy of 2.5 to 4 

kcal/mol. This was explained by a nO →  σ*Se-C orbital overlap (as depicted in Figure 

3.19.a). Tomoda et. al.137 reported that the 17O-NMR chemical shift of 46 (δO=10.6 ppm), 

shows a significant downfield shift as compared to that of reference compound benzyl 

alcohol (C6H5-CH2OH, δO=0.7 ppm)139. Recent investigations of Singh et. al.140 also assigned 

a  downfield shift of ca. 54.5 ppm in this case in the 77Se-NMR spectrum of o-CH2(OH)-C6H4-

SeH (δSe= 199 ppm) in comparison with benzeneselenol (C6H5-SeH, δSe= 152 ppm)141 to a 

strong intramolecular interaction between Se and O atoms. 

 

Figure 3.27.  Crystal packing at -20°C, for 46 (ellipsoid probabilities 50%). Red thin dotted 
lines represent O-H���O bonding. 

 

The most stable conformer of 46 based on DFT calculations (B3LYP/631H//B3LYP/631H 

level), reported in the already mentioned publications of Tomoda et al., displays the Se and 

O atoms being situated at a distance of 300 pm (42 pm less than the sum of Van der Waals 

radii) and the O atom is almost linearly aligned with the Se-CH3. In the measured solid-

state structure, however, the most important force behind the crystal packing is classical 

hydrogen bonding. Even if a short contact of 278 pm between Se and one of the benzylic 

protons can be detected and also some weak Se���Se contacts, the predominant interaction 
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observed is the strong O-H���O bonding, with distances of 272 and 276 pm in between the O 

atoms. In Figure 3.27. it can be seen that the O atom in the molecules are pointing away 

from the Se atom, in such a way that the O-H���O contact is favored.   

These observations illustrate once again that, even if the Se���O interaction is considered 

one of the strongest Se���heteroatom interactions (Tomoda et al138reported a decrease in 

strength of Se���heteroatom interactions in the following series: Se���N > Se���O > Se���F > 

Se���Cl ≥ Se���Br), it can not compete with the “classical” hydrogen bonding.  

 

3.3.3.1.4 Crystal structure of 2,2’-diselenobis(benzyl alcohol) (51). 

 

Obtained as an intermediate product in the synthesis of some of the model compounds, 

2,2’-diselenobis(benzyl alcohol) (51), was easily recrystallized from a solvent mixture of 

light-petroleum and dichloromethane. 

Figure 3.28. Intermolecular interactions observed in the solid-state structure of 2,2’-
diselenobis(benzyl alcohol) (51): O-H���O bonding – thin red dotted lines; 
Se���Se interactions – thin dark orange dotted line; Se���H contacts – thin blue 
dotted lines  (50 % ellipsoid probabilities, only selected H atoms displayed). 

 

After comparison with the already reported solid-state structure of 51 available in the 

Cambridge Crystallographic Database reported by Singh et al. (CCDC ref. no: 292678)140, 

we were surprised to observe significant differences between our findings and that reported 

by Singh. While in the reported structure a strong Se���O contact (301 pm) was to be 

observed and the two aromatic rings being almost perpendicular to each other, in our case, 

there is no significant interaction between Se and O atoms, the intramolecular Se���O 

distances amounting to 368 and 459 pm and the two benzene rings are situated in planes 

almost parallel to each other. The interesting features of our solid-state structure are not 

only the strong classical O-H���O bonds, with O���O distances amounting to 275 and 279 pm. 
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A short intermolecular Se���Se contact (376.5 pm) and two Se���H contacts (309 pm) 

between Se atoms from the diselenide bond with benzylic protons from another molecule 

are generating a “pairing” of molecules in the crystal structure (Figure 3.28.). 

 

Another structural feature that attracted our attention was a short distance from one Se 

atom to a benzene ring from a neighboring molecule. A closer look revealed the 

arrangement depicted in Figure 3.29., where pairs of molecules are kept together in the 

crystal based on short (342 pm) offset-type π–π interactions (see also Figure 2.14.) that 

involve also the Se atoms.  

 

Figure 3.29. π−π interactions in the solid-state structure of 2,2’-diselenobis(benzyl alcohol) 
(51) (50% ellipsoid probabilities, H atoms are not displayed, except the 
benzylic protons interacting with Se atoms). 

 

These significant differences in between the solid-state structures of the same molecule 

(51) can be explained by the difference of solvents used in the crystallization (toluene vs. 

light petroleum / dichlormethane mixture) and illustrate that even small changes in the 

conditions can influence strongly whether the selenium atoms are involved in selenium-

selenium or selenium-heteroatom interactions. 

 

3.3.3.1.5 Comparison of the crystal structures of 2,2’-diselenobis(benzyl bromide) 

(52) vs. bis(2-bromo)benzyl selenide (42). 

 

Further insight into the chalcogen interactions with different heteroatoms can also be 

gained from investigating the molecular structures of 2,2’-diselenobis(benzyl bromide) (52) 

and bis(2-bromo)benzyl selenide (42). 

Both were obtained during the synthetic attempts of our desired model compounds, 

either as a intermediate, as in the case of 52 or as an unwanted by-product, as in the case 

342 pm 342 pm 
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of 42. Molecular structures in the solid-state of both of them could be measured by means 

of X-ray crystallography after recrystallizing them from a solvent mixture of light petroleum 

/ dichloromethane.  

52     42 

 

Figure 3.30. Molecular structures of 2,2’-diselenobis(benzyl bromide) (52) and bis-(2-
bromo)benzyl selenide (42). (50% ellipsoid probabilities, H atoms are not 
displayed). Dotted brown lines represent the weak Se-Br interactions. 

 

Comparing the structural features of the two molecular structures provides a new 

experimental confirmation of the nHet →  σ*Se-C orbital overlap concept in the case of non-

bonding interactions of divalent selenium atoms. In the case of 52, two rather short 

bromine – selenium contacts have been observed. The shorter of them, amounting to 367 

pm, is smaller than the sum of the Van der Waals radii (375 pm) and it occurs at an angle 

(Br2���Se2–Se1) of 170.1°, almost linearly aligned with the diselenide bond. Another, 

slightly larger Se���Br contact, with a length of 383 pm is marginally less aligned with the 

selenide bond, forming an angle (Br1���Se1–Se2) of 168°. As a result of these short 

contacts, the alignment Br1���Se1–Se2���Br2 is almost linear, as shown in Figure 3.30. (left). 

Similar linear alignments of four interacting centers was reported by Nakanishi et al.142 for 

bis[8-(phenylselenyl)naphthyl]-1,1´-diselenide, where four linearly aligned selenium atoms 

are strongly interacting. This strong interaction was explained based on a four-center six-

electron (4c-6e) model constructed with the non-bonded interaction between the two p-type 

lone pairs of the outer Se atoms and the σ*Se-Se orbital of the diselenide bond, which results 

in charge transfer from the outside Se atoms to the inside Se atoms. On the other hand, in 

the case of 42, although the three heteroatoms are almost linearly aligned (Br12-Se1-Br22 

angle amount for 169°), the Se���Br distances are significantly larger than in the case of 52, 

amounting for 389 and 406 pm. This supports the interpretation of this interaction on the 

basis of a Van-der-Waals interaction between Se and Br. 
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3.3.3.2 NMR chemical shifts 
 

Nuclear magnetic resonance (NMR) is probably the most widely spread spectroscopic 

technique applied in modern organic chemistry. Highly sensitive and requiring usually mild 

conditions for measurements, it’s the method of choice for structural determination and 

especially for kinetic measurements. Formerly limited to solution state samples, it has 

expended its application to solid-state in the latest years, with better results and an 

accuracy that can even compete with X-ray spectroscopy. A lot of proteins that form 

disordered aggregates but can not be crystallized, play an important role in diseases such 

as Alzheimer’s disease or in spongioform encephalopathies. They still can be investigated by 

means of solid-state NMR which provides high-resolution information otherwise 

unavailable143. Several NMR parameters that are very important: chemical shift, direct and 

indirect coupling and also relaxation times. 

 

The chemical shift reflects the distribution of electrons surrounding the observed nucleus 

(bonding and valence electrons, but also non-bonding electron pairs and other electronic 

influences like the electronegativiy of neighbouring groups) and is, in general, a very 

sensitive probe for the characterization of chemical properties in a molecule.  

Although considerable progress has been made towards a refined theory of nuclear 

shielding, the ab initio calculation of chemical shifts is still a difficult problem and a 

satisfactory correlation with experimental data remains relatively limited. We also 

attempted a comparison of experimentally acquired 77Se chemical shifts vs. theoretically 

calculated values, but we discuss these results later, in Chapter 3.3.4.3. 

 

In the case of 77Se, the large range of around 1000 ppm for the observed chemical shifts 

of common selenium containing organic compounds makes 77Se NMR spectroscopy a 

powerful tool for organic chemists.  

 

Tomoda et al. reported monitoring Se���F interactions based on 77Se,19F couplings, with  

J values of up to 84 Hz for 2-(fluoromethly)-benzene selenocynate. Calculations suggested 

that an nF →  σ*Se-X interaction is responsible (X=CN, in 2-(fluoromethly)-benzene 

selenocynate). Analogous interactions were reported when F was replaced with Cl, and Br, 

but the interaction’s strength decreased with a lower electronegativity value of the halogen: 

Se���F > Se���Cl > Se���Br. When the X substituent was a methyl group, the chemical shift of 

the Se nuclei experienced a shielding, opposing the previously observed trends. This could 

be an indication that due to the electron donating character of the CH3 group, the 

interaction mechanism could be slightly different. 
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Nakanishi et al. observed a similar inverse substituent effect of X (X=OMe, Me, H, Cl, Br, 

COOEt and NO2) on the chemical shift of the 77Se nuclei in peri-subsituted bis(naphthyl) 

diselenides and could also determine long range 77Se,77Se coupling constants. A non-

bonding interaction involving the p-orbitals of one type of Se atoms and the σ* orbitals of 

diselenide bond is invoked in what is known as a 4c-6e interaction between four linear Se 

atoms. 

 

Silks et al. have proven the existence of through-space N-H���Se=C coupling and also  

C-H���Se=C interactions by recording 1H,77Se HMQC spectra. For compound 59, a signal 

splitting of 13 Hz was registered as being much too high for a through-bond 5JSe,H coupling 

constant, while for compound 60, it was found that the CH proton interacts with selenium, 

based on a through-space 77Se,1H coupling of 5-7 Hz, rather that the initially expected 

hydrogen bonding between the OH group and the selenium atom144. 
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Figure 3.31. N-H���Se=C and C-H���Se=C interactions detected using 1H,77Se HMQC 
experiments 

 

A surprisingly strong shielding is found for benzene-1,2-bis(selenylchloride) amounting 

to almost 200 ppm in comparison with phenyl selenylchloride (885.1 ppm vs. 1039 ppm)145. 

The reason is not clear; in the absence of an interaction (like N-Se or O-Se interaction), one 

expects a deshielding γ-gauche effect from one selenium to the other. On the other hand, 

benzene-1,2-bis(selenylchloride) forms close dimers in the solid-state which results in 

intermolecular Se���Se distances that are only slightly larger than the intramolecular Se���Se 

distances so that some interaction may also be expected in solution.  

 

Considering all the aforementioned examples, it can be concluded that 77Se NMR 

chemical shifts (δSe) are sensitive to the environment around the Se atom, and their shift 

can be used as probe for the strength of nonbonding interactions of Se with other 

heteroatoms3,113,137. Extrapolating, δSe values for model compounds 24, 29 and 33  

(see Figures 3.32. and 3.33.) were analyzed in our aim of a deeper understanding of the 

nonbonding Se���Se interactions. Although originally considered as a reference, phenyl 
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methyl selenide (22) (δSe 199 ppm)111,112, which does not have a methyl substituent at the 

ortho position, cannot be used to appreciate the influence of different substituents on the 

Se���Se interaction. Compound 61 (2-methylphenly methyl selenide) is better suited for our 

purpose. The methyl group in the ortho- position to the Se-CH3 leads to a high field shift of 

around 37 ppm compared to 22, an anticipated upfield shift if one takes in consideration the 

γ effect on 77Se chemical shifts111,112.  
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Figure 3.32.  77Se – NMR chemical shift comparison of 22–26 and 61. 

 

We also compared the 77Se chemical shift of the three bis-methyl selenide substituted 

isomers 24, 25 and 26, in order to asses if the observed chemical shifts are not simply due 

to substitution at the different positions of the aromatic ring. As illustrated in Figure 3.32, in 

comparison with benzyl methyl selenide (23), the introduction of another selenium 

containing substituent at the meta (25) and para (26) positions generates the deshielding 

of the Se nuclei [from 23 (171) to 25 (201), respectively 26 (197) ppm], whereas for the 

ortho position a significant shielding effect was detected. If we compare the δSe  for the 

SeCH3 group, we observed a shielding of ca. 25 ppm in comparison with 22, for the 

compounds 25 and 26. An even stronger shielding of 40 ppm is observed in the case of 

compound 24, as mentioned before. Therefore, the stronger upfield shifts observed for both 

Se nuclei of 24 in comparison with the equivalent simpler fragments, compounds 22 and 

23 could only be interpreted as a result of a Se���Se interaction, most likely intramolecular. 

 

In Figure 3.33., we have compared the 77Se chemical shifts of the 24, 29 and 33 with 

those of 2-methylselenobenzylhalogenides 62–643 and the simpler compounds 61, 23, 32 

and 28. The comparison 61 (162) – 24 (158) – 33 (157) – 29 (157) reveals for the 77Se 

signal of the SeCH3 group a high field shift, implying an increased electron density around 

the Se atom bound to the methyl group. The comparisons 23 (171) – 24 (158); 28 (290) – 
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29 (282); 32 (245) – 33 (238), yield also high field shifts for the 77Se signal of the second 

Se containing group, indicating an increased electron density on the second Se atom, 

despite the electron withdrawing character of C≡CH and CN groups. Taken together, this 

leads to the conclusion of an increased electron density around both Se atoms, due to a 

non-bonding interaction between them in which one could consider that the SeMe group 

plays the electron donor role, while the second Se containing group is the acceptor, the 

interaction being slightly stronger starting from Se-CH3 to SeCN. Furthermore, a comparison 

with literature data for similar compounds 62–64 leads us to assume that the Se���Se 

interaction is slightly stronger than the known Se���halogen interactions3. 
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Figure 3.33. 77Se – NMR chemical shift comparison of 23, 24, 28, 29, 32, 33 and 62–64. 

 

Our effort to correlate the 77Se chemical shifts given in Figure 3.33. with the calculated 

atom charges (Mulliken, ATP and NBO charges) at the Se centers were not convincing, even 

when we took the conformers of lowest energies (∆E < 2 kcal/mol) into consideration. 

Nevertheless, for the NBO charges of the Se center of the SeCH3 group a trend was 

observed similar to the chemical shifts. However, our comparison clearly shows that there is 

a sizeable interaction between the two selenium centers in compounds 24, 29 and 33 

already in solution. 

 

Another interesting observation was made regarding the chemical shifts for the methyl 

protons and carbons in compounds 24, 29 and 33.  
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Table 3.6. Selected 1H-, 13C- and 77Se-NMR δ values (in ppm) for 22, 24, 29 and 33 in 
CD2Cl2. 

Compound δH CH3 δC CH3 δSe SeCH3 Se-R 

C6H5-Se-CH3 (22) 2.30 7.2 199 - 

o-(SeCH3) –C4H4-CH2-Se-CH3 (24) 2.32 7.6 158.8 CH3 

o-(SeCH3) –C4H4-CH2-Se-CCH (33) 2.35 8.3 157.5 C≡CH 

o-(SeCH3) –C4H4-CH2-SeCN (29) 2.37 9.0 157.3 C≡N 

 

 

Comparing δH and δC for compounds 22, 24, 33 and 29, we observed that they are 

shifting downfield in the series, while the Se chemical shifts are shifting upfield, suggesting 

that electron density is transferred from the CH3 group to the Se atom. This would confirm 

our hypothesis that the Se���Se interaction is forcing more electron density towards both Se 

nuclei. 

 

3.3.3.3 Couplings between selenium atoms 
 

An even more sensitive probe for our investigations was the coupling constant between 

interacting Se centers. Even in completely isotropic liquids, due to the influence of the 

bonding electrons on the magnetic fields of the two nuclear spins, they do couple with each 

other, and this coupling mechanism is called J–coupling or indirect coupling to illustrate the 

assistance of the electrons in the coupling mechanism. The J–coupling represents the 

second most important NMR parameter for chemistry. While the chemical shift indicates the 

local electronic environment, the J–coupling provides a direct spectral measureable 

manifestation of chemical bonding146. Two nuclear spins have a measureable J–coupling 

only if they are linked together through a small number of chemical bonds; here being 

included also hydrogen bond types. 

 

Coupling constants between a 77Se nuclei and other nuclei X (nJSe,X) can be extracted 

quite easily in the case of first-order spectra, either from the 77Se signals if X has a 

satisfactory natural abundance (typical for 1H, 19F and 31P) or from the spectra of X by 

inspecting the 77Se satellites (typical for 13C and 15N). Several reports of coupling constants 

of Se nuclei with other nuclei have been already mentioned in relation with the strength of 

an intramolecular Se���X interaction. The first reported Se���H-C bonding by Iwaoka and 

Tomoda136 was confirmed based on a spin-spin coupling between Se and the proton 

involved in the bonding with values between 25 to 34 Hz. Furthermore, the strength of 
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Se���N and Se���F interactions was qualitatively and quantitatively evaluated based on long-

range 77Se-19F3,113,147 and 77Se-15N couplings148.  

 

Generally, Se-Se coupling did not receive much attention, as it usually requires the 

observation of Se satellites in 77Se-NMR spectra, with relatively low intensities (2-4 %). One 

bond 1JSe,Se couplings have been measured for many compounds, with values varying from -

66.5 Hz up to 361 Hz for a diselenide bridged cyclic compound149. The large variety of 

values for one-bond couplings makes the understanding of the influence of structure and 

substitution far from being understood in the case of Se,Se couplings. Two-bond couplings 

(2JSe,Se) can adopt large values between 20 and 55 Hz111,112. 3JSe,Se values have been 

successfully used for stereochemical differentiation of Se centers in tetraselenafulvalene 

type compounds150.  

 

Four-bond couplings received significantly less interest, with values ranging from 0 to 16 

Hz mentioned in some sulfur-selenium cycles151. More recently, Nakanishi’s investigations152 

on Se ���Se interactions determined four- and five-bond coupling constants between Se 

nuclei, with values ranging from 294 to 371 Hz for 4J and 11.9 to 16.1 Hz for 5J for some 

bis[8-(arylselenyl)naphthyl] diselenides and 1-(methylselenyl)-8-(phenylselenyl) naphtha-

lene derivatives. The large values are correlated with the strength of the Se���Se 

interactions, based on orbital overlapping. 

 

Indeed, a careful examination of the satellites of the 77Se signals in the NMR spectra 

allowed us to determine long range coupling between the two selenium atoms in the case of 

compounds 29 and 33. For compound 24, the 77Se NMR spectrum showed relatively broad 

signals for both peaks, suggesting the existence of several conformers in solution, which 

was later confirmed by theoretical calculations. Even at low temperatures of around -80°C, 

the peaks were not resolved so that it would allow neither to determine the energy barriers 

of the conformers’ equilibrium, nor to determine the long-range 77Se-77Se coupling 

constants. Nevertheless, we were able to determine the coupling constant for compound 24 

based on a 2D homonuclear 77Se-77Se shift correlation experiment with proton 

decoupling153, which is depicted in Figure 3.34.  
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Figure 3.34. 77Se-77Se correlation spectrum detail for compound 24. The four bond 77Se-77Se 
coupling constant is determined to amount for 37.8 Hz. 

 

The values (see Table 3.7.) ranging from 37.8 to 58.8 Hz are large, therefore we dare to 

assign them not only to through-bond coupling but also to a direct spin-spin, through-space 

coupling. 

 

Table 3.7. Chemical shifts (δSe) and long range couplings (4JSe,Se) of the Se centers in the 
model compounds 24, 29 and 33 (see Figure 3.33.). δSe measured in ppm, 
referenced by using the Ξ scale (see experimental part) and 4JSe,Se is measured in 
Hz. Only absolute values were determined, the signs of the coupling constants are 
unknown. 

 

Compound 24 33 29 

δSe – SeX  161.0 238.3 282.9 

δSe– SeCH3 158.9 157.5 157.3 

4JSe,Se 37.8 40.9 58.8 

 

 

The increase in the coupling constant from 24 to 33 to 29, indicates an increased spin 

interaction between the two selenium nuclei, which we assign to an increasing 

intramolecular Se���Se interaction. Confirming these suppositions, the long range JSe,Se 

coupling for compound 57 was determined to amount only to 34 Hz, illustrating that in the 

Se

Se

24
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case where both substituents (SeCN) are electron withdrawing groups, the Se���Se 

interaction is less favoured. 

 

3.3.3.4 NMR relaxation times 
 

 

One of the most important and useful features of NMR spectroscopy is the ability to 

probe molecular motion, over a wide range of timescales, ranging from picoseconds to 

several seconds. T1 – nuclear spin-lattice relaxation, as a physical phenomenon, is an 

energetic exchange between excited nuclear spins and their environment. The T1 relaxation 

values can also provide valuable information concerning molecular dynamics and 

interactions, molecular structure, conformation and composition. 

 

T1 relaxation times were determined for compounds 24, 29 and 33 using an inverse 

recovery method. By definition, time delays in the pulse sequences used for determining the 

T1 values should provide enough relaxation of nuclei in each cycle of measurements. In the 

case of monoexponential nuclear relaxation, it is easy to show that the time delays after 

acquisitions of FIDs, close to the T1 values, recover around 63% of an equilibrium nuclear 

magnetization. In turn, a 99% recovery of the equilibrium magnetization will require time 

delays equal to or larger than five times the T1 values. For our experiments, such long 

relaxation delays were not realistic in terms of NMR spectrometer usage time; therefore we 

had to do all measurements using relaxation delays of 12 seconds per scan (aprox. three 

times the T1 values).  

 

The measurements for non-selective 77Se T1 relaxation time determination were 

performed using a proton decoupled inverse recovery pulse program, with a relaxation 

delay of 12s, using 12 increments for the τ delay between the excitation and recovery 

pulses and 192 scans for each increment, resulting in experimental times longer than 13 

hours. Considering the relatively similarly diluted samples (0.17–0.23 mg/ml) and using the 

same solvent for all experiments and degassing all samples by four freeze-pump-thaw 

cycles, the errors induced by the smaller relaxation delays should be similar in all samples. 

Therefore, even if a quantitative evaluation of the obtained values is prone not to be exact, 

a qualitative evaluation of the observed trends of relaxation should provide us with 

interesting information about the molecular motions of the Se centers. The T1 values were 

calculated from the intensities of the observed peaks using a standard non-linear three-

parameter fitting routine. 
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Table 3.8. T1 relaxation time values (in seconds) for the corresponding 77Se signals of the 
model compounds (24, 29, 33) and the smaller molecules 22, 23, 28 and 32. 

 

Compound δSe – SeCH3 T1(SeCH3) 
δSe – SeX  

(X=Me, CCH, CN) 
T1(SeX) 

C6H5-Se-CH3 (22) 199 4.86 - - 

C6H5-CH2-Se-CH3(23) - - 172 5.44 

C6H5-CH2-Se-CCH (32) - - 245.3 4.92 

C6H5-CH2-SeCN (28) - - 288.9 4.64 

o-(SeCH3) –C4H4-CH2-Se-CH3 (24) 158.8 4.52 161.2 3.53 

o-(SeCH3) –C4H4-CH2-Se-CCH (33) 157.5 4.91 238.8 4.42 

o-(SeCH3) –C4H4-CH2-SeCN (29) 157.3 5.43 282.9 3.83 

 

 

The T1 relaxation times for the Se nuclei of the SeCH3 group are increasing in the series 

24 < 33 < 29. With most factors influencing T1 relaxation time measurements 

(temperature, solvent, concentration) being held almost constant the increase in the T1 

relaxation times suggests a restraining of motional freedom at the Se nucleus, as expected 

from a stronger interaction between the two Se centers. The order of increase of relaxation 

time is similar to the assumed order of increased strength of the Se-Se interaction. 

 

 

3.3.4 Theoretical investigations 

 

Following our experimental observations and successful theoretical investigations of 

chalcogen-chalcogen interactions for very simple systems2 we were interested in evaluating 

the possibility of extending the theoretical investigations to “real-life” systems and 

furthermore, comparing the theoretical predictions with the experimental results. 

As NMR is becoming an increasingly important tool in the study of intermolecular 

interactions, the ab initio calculations of NMR parameters of interacting species are also 

becoming increasingly more common in the latest years. 

Our aim was a comparison between theoretically calculated NMR chemical shifts and 

experimentally determined values. To reach this goal we had first to determine the level of 

theory needed to allow a meaningfull evaluation of our results. A difficult problem referring 

to NMR chemical shifts calculations is the choice of method, as well as the basis sets to be 
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used, especially if theoretical results are to be compared with experimental values. This 

problem is even more important when investigating weak non-covalent interactions, as it is 

the case with selenium-selenium interactions. Several of these problems are subsequently 

discussed and solutions or acceptable approximations that were used in our investigations 

are presented. 

3.3.4.1  Theoretical aspects of calculations of NMR parameters154 
 

NMR spectroscopy studies energetic levels of the spin eigenstates of chemically bonded 

nuclei in the presence of a magnetic field and their modifications due to the surrounding 

electrons. Therefore, the most important parameters of NMR spectra can be satisfactory 

accounted for by solving the energy equation of a simpler, effective spin-Hamiltonian in 

which the electrons do not appear and the nuclei are represented only by their intrinsic 

spins and their associated magnetic moments. Such a Hamiltonian is described by the 

Equation 3.1: 
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where iγ  are the nuclear gyromagnetic ratios, iσ  are the magnetic shielding tensors of 

nuclei (describing the magnetic shielding effects of the electrons), ijD  is the classical dipolar 

interaction (describing the direct coupling of the nuclear magnetic dipole moments), ijK  is 

the indirect nuclear spin-spin coupling tensor (which describes the indirect coupling, 

mediated by the surrounding electrons) and iI  the nuclear spin operators. This is related to 

the nuclear magnetic dipole moments iM as: 

iii IM hγ=      Eq. 3.2 

For calculating the nuclear shielding and/or the spin-spin coupling tensors, two magnetic 

fields are of interest: the external field of the magnet and the internal field of the nuclei, 

therefore they are evaluated ab initio as the second derivatives of the electronic energy with 

respect to the magnetic induction B and the nuclear magnetic moments M :  
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The equations are rather more complicated because, unlike the electric field, which 

perturbs the potential energy term of the Hamiltonian, the magnetic field perturbs the 

kinetic energy term, as it is the motion of electrons that generates electronic magnetic 

moments. The nature of the perturbed kinetic energy term in the Hamiltonian is such that 

an origin must be specified defining a coordinate system for the calculation, this origin being 

called the “gauge origin”. The magnetic field itself is independent of the choice of the gauge 

origin, and so the calculated nuclear properties would also be independent if the wave 

functions used for the calculation would be exact, which is hardly an option. The calculated 

nuclear shielding values can only be independent of the choice of gauge origin with 

extremely large basis sets. 

 

Several methods were devised to bypass the gauge origin problem. The older method 

uses “Gauge-Invariant Atomic Orbitals” (GIAO)155 as basis sets. They incorporate the gauge 

origin into the basis function, so that all matrix elements involving the basis functions can 

be arranged to be independent of it. Another version is the “Individual Gauge for Localized 

Orbitals” (IGLO) method156, where different gauge origins are used for each localized 

molecular orbital in order to minimize error introduced by having the gauge origin far from 

any particular molecular orbital. A similar distributed gauge origin method is the “Localized 

Orbitals/Localized Origins” (LORG) method developed by Bouman and Hansen157, in which 

the local gauge origins are chosen to be at the nucleus for which the shielding is calculated 

for all orbitals attached to this nucleus, and at the center of electronic charge for the 

remaining ones. Bader and Keith used another approach in their IGAIM method (Individual 

Gauges for Atoms In Molecules)158: instead of calculating the shieldings from the behaviour 

of the molecular orbitals, they use the calculation of molecular current density distributions. 

The induced current density distribution of a molecule is constructed from its constituent 

current density components accurately determined over each spacially defined atom in the 

molecule, using their nuclei as origin. A later development, CSGT (Continuous Set of Gauge 

Transformations)159 uses a continuous shift function, that moves the gauge origin towards 

the nucleus which is the nearest to the point for which the current density is calculated. 

 

Although the oldest method, after the modern and efficient implementation of Pulay et. 

al.160 the GIAO method became widespread. For benchmarking our 77Se NMR shielding 

calculations we had to use data from the literature and because the GIAO method is the 

most widely-used procedure in previous investigations we also decided to use this method. 

Furthermore, GIAO is free of localization artifacts and appears to be less sensitive to basis 

set quality161. Adding to this, the method is more robust and also implemented to correlated 

wave functions in the Gaussian software package. Furthermore, our expectations of not 
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being able to perform MP2 calculations for the larger compounds being later confirmed (see 

later) and the good implementation of the GIAO approach with Density Functional Theory 

(DFT) methods, made the GIAO approach our method of choice. 

 

Interestingly enough, ab initio calculations of shieldings are also a very convenient 

method of testing the “goodness” of newly developed basis sets by performing shielding 

calculations at various gauge origins. The gauge dependence of the computed shieldings 

that one sees in these series of calculations can be regarded as an artifact of the basis set 

used. It is important to note that the convergence observed for calculated shieldings with 

continuously increasing basis sets is extremely slow. As a result, the effort is on developing 

methods that would relax the basis sets requirements162,163  

 

Literature reports of benchmarking of NMR calculations mention the use of very large 

basis sets and recommendations tend to call for at least a triple-zeta basis set with a lot of 

diffuse and polarization functions. These basis sets are not very practical; nevertheless 

several basis sets were specially developed for NMR parameter calculations. Although the 

basis sets developed by Pople et al. are not recommended, addition of polarization and 

diffusion functions improves the results obtained with them. Better results were obtained 

using the IGLO II-IV basis sets developed by Schindler and Kutzelnigg156,164. Also the TZP 

and QZP sets of Ahlrichs et al.165, which are well suited for larger molecules, although being 

fairly small basis sets, give only small deviations from the estimated Hartree-Fock limit. The 

best results were, generally, observed when core-valence correlation consistent basis sets 

(cc-pVnZ) were used. But these basis sets are even larger and so, they are not an optimal 

choice for the larger systems that were the aim of our investigations.  

 

Therefore we chose to perform the geometry optimizations and the calculation of 

vibrational frequencies for the conformational analysis using a more economical basis set 

and to calculate the NMR parameters using the TZVP basis sets of Ahlrichs et al. in the 

context of a single point calculation.  

 

Recent theoretical calculations2 proved that the family of Dunning’s correlation 

consistent basis sets cc-pVnZ166 with high-quality and large-core effective core potentials 

(ECPs) representing the core electrons26, are very well suited for quantitatively estimating 

different chalcogen–chalcogen interactions. However, they are not suited for the calculation 

of NMR parameters. Not only are they still too large for usage in conformational analysis of 

our model compounds, but also if the core electrons of a heavy atom are represented by an 

ECP, it is not possible to correctly predict the nuclear shielding for that nucleus, since the 

remaining basis functions will have incorrect behaviour at the nuclear position. It is mostly 
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the “tails” of the valence orbitals at the nucleus that influence the nuclear shielding, not the 

core orbitals themselves, since they are filled shells167. 

 

Another issue associated with calculations of NMR chemical shifts of heavier nuclei one 

has to consider is the influence of relativistic effects168. In terms of computing absolute 

nuclear shieldings, the relativistic effects can be very large in heavy elements. It is 

recommended that for accurate calculations involving atoms beyond the first row of 

transition metals, relativistic effects have to be considered. Scalar relativistic increase of an 

average of 300 ppm in the case of 125Te nuclear shieldings have been reported169, but only 

an average of 63 ppm deviation in the case of 77Se nuclear shielding in comparison with the 

experimental values170. Since the relativistic effects are primarily associated with core 

orbitals that do not change much from one chemical environment to the other, the effect is 

strongly reduced by considering relative chemical shifts only. In this case a maximum 

change in the chemical shift of just 9 ppm was reported169. 

 

 

3.3.4.2 Conformational anaylsis of model compounds 
 

As we intended to analyze the ability to calculate the 77Se chemical shifts for the three 

model compounds (24, 29 and 33) we synthesized, we had to perform a conformational 

analysis. For all three model compounds considered, we found four conformers. The 

geometries were optimized first at the density functional theory (DFT) level of the Becke’s 

three-parameter hybrid functional134 combined with the Lee-Yang-Parr correlation 

functional135 using a basis set from Pople/McLean-Chandler’s 6-311G family of basis sets171, 

with polarization and diffuse functions, as implemented in the Gaussian 03 software172. 

Taking in consideration that using the DFT level with the B3LYP functional is known to over-

estimate hydrogen bonding, we refined the prelimary obtained geometries using the B98 

hybrid functional173. B98 is Becke’s 1998 revision of one of his previous three parameter 

hybrid functionals, respectively the B97174. Using the optimized geometries, the energies 

were calculated using the MP2 methods175.  

 

For all three cases, the conformers found have very similar energies, with energy 

differences less than 2 kcal/mol, between the most stable and the most unstable conformer. 

 

Also, it could be observed that the same types of conformers were obtained in all cases. 

They are labeled as (exo/endo)H/X. The exo/endo differentiation is based on the position 

of the substituents in relationship with the benzene ring (pointing towards or away from the 
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benzene ring), while the H/X labelling refers to the most significant intramolecular 

interactions observed.  

 

The four conformers obtained for all three model compounds investigated present either 

predominant selenium-selenium interaction (being labelled with (exo/endo)X ) or significant 

selenium-hydrogen  contacts (being labelled with (exo/endo)H). The energy barriers for the 

equilibrium between the four conformers are very small, as depicted in the Figures 3.35., 

3.37. and 3.39. 

 

For compound 24, considering that both subsituents (methyl groups) have an electron 

donating character, the difference between the two most stable conformers is extremely 

low. It can also be observed that the two endoX/H conformers are the more stable ones in 

comparison with the exoX/H pair. 

 

 

 

Figure 3.35.  Equilibrium diagram for the conformers of compound 24 (left) and energy 
diagram for the relative energies of the expected conformers. Competing 
Se���Se (small dotted lines) and Se���H interactions (dashed lines) are depicted 
for each conformer.  
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Figure 3.36.   Calculated structures of the four conformers of compound 24. 

 

For the calculated lowest energy conformer (24 endoX), the calculations predict short 

Se���Se distance of 371 pm and one weak Se���H bond, between one hydrogen atom of the 

benzyl fragment and the selenium atom of the methyl group (290 pm). For the 24 endoH 

conformer, the one with the next lowest energy, two weak Se���H bonds with lengths of 289 

and 317 pm, are the main stabilizing forces, while the Se���Se distance is calculated to be 

significantly larger than in the previous case amounting to 401 pm. In conformer 24 exoX 

(having the highest energy) the same two interactions as in 24 endoX were calculated. It is 

found for 24 endoH that the Se���Se distance is larger (381 pm), while the Se���H bond with 

282 pm in length is shorter, illustrating the competition between the two types of 

interaction. Similarly, in conformer 24 exoH the Se���H bonds are shorter (278 pm, 

respectively 316 pm), while the Se���Se distance is even larger with a length of 434 pm 

(Figure 3.36.). 

 

For compound 33, the conformer with the calculated lowest energy 33 endoH predicts 

two weak Se���H contacts, amounting for 289 pm and 326 pm. The Se���H bonds are the 

stabilizing forces for this conformer, but the Se���Se interaction also brings its contribution 
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to the stabilization. The Se���Se distance amounts to 390 pm, just slightly larger than the 

sum of the Van der Waals radii. For the 33 endoX conformer, the Se���Se distance is shorter 

(382 pm), and only one weak Se���H contact, with a length of 288 pm is to be expected. 

 

 

 

Figure 3.37.  Equilibrium diagram for the conformers of compound 33 (left) and energy 
diagram for the relative energies of the expected conformers. Competing 
Se���Se (small dotted lines) and Se���H interactions (dashed lines) are depicted 
for each conformer. 

 

Also in this case, the exoH/X types of conformer are the less stable ones. For 33 exoH 

the predicted two Se���H contacts are stronger than in 33 endoH with lengths of 278 and 

316 pm, while the Se���Se contact is weaker, the distance amounting to 433 pm. In the case 

of conformer 33 exoX the predicted Se���Se distance is 388 pm, while the one weak Se���H 

contact amounts to 279 pm. 
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33 endoX    33 exoX 

33 endoH    33 exoH 

 

Figure 3.38.   The four calculated stable conformers of compound 33. 

 

 

 

The calculated structure of lowest energy (29 endoH), shows a short Se���Se distance 

(380 pm) and two weak Se���H bonds. One occurs between a hydrogen atom of the benzyl 

group and the Se atom of the SeCH3 group (292 pm) and the other between one hydrogen 

of the methyl group and the Se atom of the SeCN group (336 pm). For structure 29 endoX 

one close Se���Se bond (386 pm) and one Se���H bond is predicted. The latter is formed 

between one benzylic hydrogen atom and the CH3Se- group and amounts to 288 pm. In 29 

exoX, the calculated structure with the highest energy, the same interactions as for 

conformer 29 endoX are expected, although the Se���Se contact is predicted to be slightly 

larger (389 pm), whereas the Se���H distance slightly smaller (278 pm). For conformer 29 

exoH, as for 29 endoH, two Se���H bonds and one Se���Se weak contact have been 

predicted, and one can observe that in this case the Se���H bond lengths are smaller than in 

the case of 29 endoH (279 pm and 327 pm, respectively), while the Se���Se contact is very 

weak, amounting to 430 pm, thus confirming again the competitive nature between the 

non-bonding Se���Se and Se���H contacts. 
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Figure 3.39.  Equilibrium diagram for the conformers of compound 29 (left) and energy 
diagram for the relative energies of the expected conformers. Competing 
Se���Se (small dotted lines) and Se���H interactions (dashed lines) are depicted 
for each conformer. 

29 endoX    29 exoX 

29 endoH    29 exoH 

 

Figure 3.40.   The four calculated stable conformers of compound 29. 
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It is interesting to observe that although one would expect that the endoX type of  the 

conformer would be the most stable, it only holds true for the case of compound 24. In the 

cases of 29 and 33, the endoH type is marginally more stable, although a stronger Se���Se 

interaction was experimentally observed. Considering the very small differences (of less 

than 0.5 kcal/mol), we assume that to be a result of the calculation methods used. Most 

probably, using a larger basis set or improved functionals would improve the quality of the 

predictions. 

3.3.4.3 Calculations of 77Se NMR chemical shifts 
 

As NMR spectroscopy became an increasingly important tool in the study of 

intermolecular interactions, the ab initio calculations of NMR parameters of interacting 

atoms became much more common. It was driven forward especially because of the interest 

of understanding the behaviour of ligands interacting with proteins. Since the shielding 

property is very sensitive to both structure and environment, ab initio calculations can 

likewise be used to decipher the dependence of the shielding on the geometry of the 

molecule, as well as the intra- and intermolecular interactions present among molecules162.  

 

Shielding is an extraordinary sensitive probe, and since it is electronic in origin, it can be 

influenced by factors that can induce a change in the electronic distribution of the molecule. 

For example, the internal motions which a molecule undergoes during the NMR experiment 

introduce averaging over the shielding values appropriate to each geometrical configuration 

sampled during the motion. Likewise, interactions among the molecules themselves can 

have a significant effect on the shielding property. Not only the experimentally observed 

shieldings (as chemical shifts), but also theoretical calculated shieldings offer important 

information referring to the molecule. Owing to its localized nature, shielding offers some 

advantages over other molecular electronic properties that pertain to the molecule as a 

whole (like the dipole moment or polarizability) as it offers specificity in location. 

 

A number of calculations of 77Se shielding constants and chemical shifts derived from 

theoretical investigations have been reported. In most of the cases, the performance of 

calculations for 77Se nuclei is used as an important test for newly developed theoretical 

methods. Buhl et al. have performed calculations at the GIAO-SCF, GIAO-MP2176 and GIAO-

CCSD177 levels of theory. Magyarfalvi and Pulay178 carried out similar investigations with 

GIAO-SCF and GIAO-MP2 on a very similar set of selenium containing molecules. Both 

investigations concluded that correlated methods were necessary to give quantitative 

agreement with experimental values for the 77Se chemical shifts. The most popular 

theoretical method of incorporating electron correlation effects into shielding calculations, 
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was however until now DFT. In DFT methods, electron exchange and correlation effects are 

taken into account by semiempirical functionals representing electron density. Malkin et 

al.179 using their “Loc. 1” and “Loc. 2” approximations, as well as Schreckenbach et al.170 

demonstrated that it is possible to obtain results for chemical shifts that are superior to 

GIAO-SCF. Wilson180 extended his previously developed empirical scheme WAH181 to 

selenium to obtain particularly accurate results. Magyarfalvi and Pulay 161 applied a constant 

level shift to the virtual orbitals, obtaining significant improvement of the DFT results, 

concluding that the main error of currently used density functional theories with regard to 

magnetic shieldings is underestimation of the HOMO-LUMO gap, and not the omission of the 

current-dependent terms from the exchange-correlation functionals. Nevertheless, as it was 

pointed out by Van Wüllen182, one should always acknowledge that, manipulation of orbital 

energies leads to a loss of the strict gauge invariance. Lately, encouraging results were 

obtained by Keal and Tozer183 using a new generalized gradient approximation functional 

(KT3)184 and the LORG method for calculating nuclear shieldings. All these calculations are 

performed using very large basis sets and in most cases the DFT functionals are not yet 

available in usual computational chemistry software packages. In our case, considering that 

the goal was to perform magnetic shielding calculations on relatively large molecules, a 

benchmarking of the calculation method was necessary.  

 

For benchmarking the calculation methods an admittedly small set of five small 

molecules (which appear almost always in the before mentioned studies) was optimized at 

the highest level of theory available, before calculating the nuclear shieldings of the 77Se 

nuclei. 

Optimized geometries for the five molecules were obtained at MP2 level of theory, using  

Dunning’s correlation consistent triple-zeta basis set (cc-pVTZ)185. The NMR shielding 

calculations were performed using the GIAO method at different levels of theory using the 

TVZP basis sets of Ahlrichs et al.165. The results are presented in Table 3.9. and 3.10. 

Table 3.9. 77Se isotropic NMR shielding constants, in ppm, calculated at MP2 geometries. The 
absolute mean deviation │d│ is listed in the last entry (a from lit.177; b from lit. 186; 
c from lit. 187). 

             Method 

 

Compound 

GIAO-

HF-SCF 

GIAO-

B3LYP 

GIAO-

B98 

GIAO-

PBE 

GIAO-

MP2 

GIAO-

CCSD a 
Expt. b,c 

CH3SeCH3 1997.3 1754.2 1794.4 1835.6 1982.5 1873.6 1756±64 

HSeH 2212.7 2120.4 2139.7 2172.5 2287.2 2207.4 2101±64 

SeCO 2325.8 2272.8 2281.5 2293.8 2465.5 2352.6 2348±60 

CSe2 1574.4 1528.0 1545.3 1556.6 1857.1 1596.0 1544±80 

CH3SeH 2090.3 1918.3 1950.4 1987.9 2122.0 2028.0 1911±64 

│d│CCSD 47.9 92.8 69.3 42.2 131.3   
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It is interesting to observe that if one investigates the 77Se NMR shieldings, acceptable 

results are obtained in Hartree-Fock (HF) calculations in comparison with the calculations 

done at high-levels of theory, like the couple cluster methods used by Buhl et al.177. The 

DFT methods used have also interesting results. Although the hybrid functional of Becke134 

and Lee, Yang and Parr135, known as B3LYP, is among the most popular functional of DFT 

calculations, it does not perform well when trying to calculate 77Se magnetic shieldings. 

Significantly better results were obtained using Becke’s  B98 functional173, as well as PBE, 

the hybrid functional of Perdew, Burke and Ernzerhof189 which uses 25% exchange and 75% 

correlation weighting, as it can be observed from the decreasing values of the absolute 

mean deviation (│d│CCSD) (see Table 3.9.) in comparison with the CCSD calculations. For 

the MP2 method, the absolute mean deviation value confirms the overestimation of 

correlation effects in calculating 77Se shieldings, as already observed by Bühl et al.176 

 

Table 3.10.  77Se chemical shifts, in ppm, calculated at MP2 geometries. The absolute mean 
deviation │d│ is listed in the last entry (a from lit.177; d From lit.112,188). 

 

          Method 

 

Compound 

GIAO-

HF-SCF 

GIAO-

B3LYP 

GIAO-

B98 

GIAO-

PBE 

GIAO-

MP2 

GIAO-

CCSDa 
Expt.d 

CH3SeCH3 0.0 0.0 0.0 0.0 0.0 0.0 0 

HSeH -215.4 -366.2 -345.27 -336.93 -304.7 -333.8 -345 

SeCO -328.5 -518.6 -487.02 -458.23 -483 -479 -447 

CSe2 422.9 226.2 249.14 278.96 125.4 277.6 243 

CH3SeH -92.96 -164.05 -155.91 -152.36 -139.51 -154.4 -155 

│d│ 98.0 23.7 9.5 11.6 41.9 15.7  

 

 

If one considers the calculated 77Se chemical shifts (see Table 3.10.), it can be 

concluded that the DFT methods are performing significantly better than the HF or MP2 

methods. The absolute mean deviations from the experimental values are as small as 9.5 

ppm in the case of GIAO-B98. This is a very small deviation considering the range of about 

700 ppm of the 77Se NMR chemical shifts of this set of molecules. 

 

Comparing our results with the latest results of Keal and Tozer183, we were surprised to 

observe that they obtained relatively larger absolute mean deviations (│d│) compared with 

the experimental results, even when using the same functional (as is the case for B3LYP) 

and a larger basis sets than in our study. The probable explanation is the fact that in our 

study the geometries were optimized at the MP2 level with smaller basis sets. 
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After benchmarking the methods for calculating 77Se shieldings and concluding that the 

GIAO-B98 and GIAO-PBE are seemingly the best performers, we tested the methods on a 

“test” set of seven Se containing molecules, compounds that were also a part of our 

experimental NMR chemical shifts analysis. 

 

Table 3.11. 77Se chemical shifts, in ppm, calculated at MP2 geometries. The absolute mean 
deviation │d│ is listed in the last entry. 

 

Method 
Compound 

GIAO 
HF-SCF 

GIAO- 
B3LYP 

GIAO- 
B98 

GIAO- 
PBE 

GIAO- 
MP2 Expt.a 

CH3SeCH3 0 0 0 0 0 0 

C6H5SeCH3 (22) 166 193.5 191.5 191.4 237 199 

C6H5CH2SeCH3 (23) 122.2 144.9 142.6 142.6 - 171 

C6H5SeCCH (31) 161.1 185.2 198.1 199 232 283 

C6H5CH2SeCCH (32) 231.7 253.8 259.2 258.9 - 245 

C6H5SeCN (27) 254.7 231.7 254 253.6 279 318 

C6H5CH2SeCN (28) 305.4 300.1 309.1 307.3 - 289 

│d│ 49.4 39.3 36.5 36.1 42.7  

 

 

The molecular geometries were optimized at the MP2 level of theory, using a 

combination of basis sets, for the Se and C atoms the cc-pVTZ basis set is preferred, while 

for the H atoms, a smaller 6-311g(d) basis sets was designated. The NMR shielding 

calculations were performed using Ahlrichs’s TVZP basis set165 with all methods. 

Already here we reached the limit of computational power, for some of the compounds, 

although the geometries could be optimized, the NMR calculations at the MP2 level of theory 

could not be anymore performed. Once again, the best results were obtained when using 

the B98 and PBE functionals at the DFT level (see Table 3.11.). The absolute mean 

deviations from the experimental values were much larger in the case of the “testing” set of 

molecules in comparison with the “benchmarking” set.  

 

These model studies revealed that a full geometry optimization at the MP2 level of 

theory for the targeted compounds 24, 29, and 33 was not possible. Therefore, we decided 

to test the performance of the DFT functionals starting from geometries optimized also at 

the DFT level of theory. Starting with geometries optimized at the DFT level, using the 

B3LYP functional and the 6-311+G(d) basis set, the NMR shieldings were again calculated 

using Ahlrichs’s triple zeta TVZP basis set165. The B3LYP, B98 and PBE functional were used. 

Surprisingly enough, the absolute mean deviations (│d│) in comparison with the 
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experimental values are smaller in this case (see Table 3.12.), when compared with the 

calculations that started from geometries optimized at the MP2 level. 

 

Table 3.12. 77Se chemical shifts, in ppm, calculated at B3LYP geometries. The absolute mean 
deviation │d│ is listed in the last entry. 

 

Method 
Compound 

GIAO- 
B3LYP* 

GIAO- 
B98* 

GIAO- 
PBE* Expt. 

CH3SeCH3 0 0 0 0 

C6H5SeCH3 (22) 221.8 219.2 217.7 199 

C6H5CH2SeCH3 (23) 164.1 161.1 160.7 171 

C6H5SeCCH (31) 190.2 204.6 209.0 283 

C6H5CH2SeCCH (32) 245.1 250.5 249.8 245 

C6H5SeCN (27) 243.3 255.2 253.2 318 

C6H5CH2SeCN (28) 285.1 294.0 291.3 289 

│d│ 33.5 30.3 29.1  

 

 

These results are very encouraging, if one considers that these are some of the largest 

molecules for which the 77Se magnetic shielding constants and chemical shifts have been 

determined. The combination of DFT level optimized geometries and DFT level GIAO 

calculations of the nuclear shieldings using several functionals gave some of the best 

results, in comparison with experimental values. 

 

Our investigations support the already known observation that the most widely-used 

DFT functional B3LYP, performs relatively poor in comparison with other functionals, even 

with ones that are already fully implemented in comecially available software packages like 

Gaussian 03172. 

 

The geometries for compounds 24, 29 and 33 were already optimized at various levels 

for the previously presented conformational analysis. Using the geometries optimized at the 

B98/6-311+G(d) level of theory, the NMR shielding calculations were performed using 

Ahlrichs’s triple zeta TVZP basis set165. The chemical shifts were calculated by referencing 

the shielding values to the shielding value calculated for dimethyl selenide (CH3SeCH3) at 

the same level of theory for both geometry optimization and magnetic shielding calculation 

(see Table 3.13.). 
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Table 3.13.  Calculated isotropic 77Se nuclear shieldings and chemical shifts for compound 
24, in ppm, at the B98 optimized geometries. The upper line for each conformer 
refers to the SeCH3 center and the lower one to the benzylic Se center. 

 

GIAO-B3LYP GIAO-B98 GIAO-PBE          Method 

 

Conformer Shielding Chem.shift Shielding Chem.shift Shielding Chem.shift 

1573.2858 114.9 1612.2263 119.4 1651.2923 122.7 endoX 

1493.1304 195.1 1539.2377 192.4 1582.4302 191.5 

1559.5913 128.6 1602.0998 129.5 1644.4867 129.5 endoH 

1467.1299 221.1 1514.6435 217.0 1558.3268 215.6 

1566.9319 121.3 1605.8635 125.8 1645.3931 128.6 exoX 

1551.6643 136.6 1596.5730 135.0 1639.1277 134.8 

1540.7679 147.5 1583.6350 148.0 1627.2229 146.7 exoH 

1523.2156 165.0 1569.5241 162.1 1612.6416 161.3 

 

 

For all four conformers of 24 (see Table 3.13.), the NMR shielding calculations predict 

an up-field shift of the chemical shift for the 77Se nuclei, in comparison with the smaller 

compounds 22 and 23. The values for the chemical shifts vary significantly between the 

conformers illustrating the sensitive nature of the NMR shielding property to its 

environment. The amount of up-field shifts predicted also vary from only a few ppm, up to 

almost 50 ppm, but interestingly enough it is always an up-field shift predicted regardless of 

the geometry of the conformer considered. This is in accordance with our experimental 

results, in which we observed an up-field shift for both 77Se nuclei chemical shifts of 24 in 

comparison with the corresponding values for the 77Se nuclei from compounds 22 and 23. 

 

Unexpected, the best agreement between calculated and experimental values (158.9 

ppm for the benzylic Se nuclei and 161 ppm for the SeCH3 group) is observed in the case of 

the 24 exoH conformer, for all three functionals used, with a slightly better performance for 

the B98 and the PBE functional. For the conformers of 24 we already determined a flat 

potential energy surface (see Figure 3.35 left). Both observations might suggest that in 

solution the favored conformer is the one in which the weak Se���H have the strongest 

effect. 

 

 

 

 



Experimental part 

 

 95 

 

Table 3.14.  Calculated isotropic 77Se nuclear shieldings and chemical shifts for compound 
33, in ppm, at the B98 optimized geometries. The upper line for each conformer 
refers to the SeCH3 center and the lower one to the benzylic Se center. 

 

GIAO-B3LYP GIAO-B98 GIAO-PBE        Method 

 

Conformer Shielding Chem.shift Shielding Chem.shift Shielding Chem.shift 

1579.8613 108.4 1621.1111 110.5 1663.5840 110.4 endoX 

1434.7636 253.5 1472.7300 258.9 1515.7199 258.2 

1573.6711 114.6 1614.8443 116.8 1657.2344 116.7 endoH 

1457.3071 230.9 1494.7265 236.9 1537.8187 236.2 

1560.2110 128.0 1598.1019 133.5 1637.0447 136.9 exoX 

1568.9284 119.3 1604.0724 127.5 1643.7183 130.3 

1536.3942 151.8 1579.4086 152.2 1623.3433 150.6 exoH 

1541.0749 147.2 1577.1555 154.5 1617.1030 156.9 

 

In the case of compound 33, the best agreement between calculated and experimental 

values was obtained for the two most stable conformers the endoX/H type (see Table 

3.14.). Encouraging, in this case the best prediction is obtained using the GIAO-B98 and 

GIAO-PBE methods for the 33 endoH conformer, which is also the most stable one of all 

four conformers. Again, a high-field shift is predicted in comparison with the respective 77Se 

chemical shift from compounds 32 and 22. Comparing the calculated values for the 77Se 

chemical shifts with the experimental ones (157.5 ppm for the SeCH3 group and 238.3 ppm 

for the benzylic Se nuclei) one may conclude that also in the case of compound 33, the 

most favored conformer in solution is probably the 33 endoH conformer. For the cases of 

exoX/H type of conformers, the 77Se chemical shift of the SeCH3 group is more accurately 

predicted, but the errors for the second Se atom are very large, with deviations of up to 

almost 100 ppm. These findings confirm the preference for the endoX/H type of conformers.  

 

Table 3.15. illustrates the isotropic nuclear shieldings calculated for the conformers of 

compound 29. The same trends as for compound 33 are to be observed here. The values 

predicted for endoX/H type of conformers agree best with the measured chemical shifts of  

157.3 ppm for the SeCH3 group and 283 ppm for the SeCN group. The predicted values of 

the exoX/H type conformer for the Se nuclei of the SeCH3 group are more accurate, but the 

large errors in predicting the Se nuclei of the SeCN group make on average the prediction of 

the endoX/H conformers more accurate. In this case, for the most stable conformer 29 

endoH the predicted NMR chemical shifts are only marginally better than for the 29 endoX, 

the closest in energy conformer.  

 



Experimental part 

 

 96 

Table 3.15.  Calculated isotropic 77Se nuclear shieldings and chemical shifts for compound 
29, in ppm, at the B98 optimized geometries. The upper line for each conformer 
refers to the SeCH3 center and the lower one to the benzylic Se center. 

 

GIAO-B3LYP GIAO-B98 GIAO-PBE       Method 

 

Conformer Shielding Chem.shift Shielding Chem.shift Shielding Chem.shift 

1578.7493 109.5 1620.3064 111.3 1663.0082 111.0 endoX 

1402.8878 285.3 1436.7384 294.9 1481.5705 292.4 

1583.1538 105.1 1624.4776 107.1 1665.9973 108.0 endoH 

1420.2273 268.0 1453.7468 277.9 1498.9027 275.1 

1552.5932 135.6 1590.1497 141.5 1628.6427 145.3 exoX 

1559.6834 128.6 1590.3534 141.3 1630.5429 143.4 

1538.0259 150.2 1580.8058 150.8 1624.7303 149.2 exoH 

1535.2192 153.0 1566.5720 165.0 1606.7098 167.3 

 

It is interesting to observe that the solid-state structure of compound 29, as previously 

described in Chapter 3.3.3.1.1., looks to be in between the 29 endoX and 29 endoH 

conformers. Thus, it confirms our previous observation that although present and relatively 

strong in solution, as proven by the long range JSe,Se couplings, the Se���Se interactions are 

weaker than the competing Se���H bonding. However, in the solid-state, the Se���Se 

interaction contribution to the stabilization of the structures seems to prevail.  

 

Further investigations would certainly provide more understanding of the Se���Se 

interactions and generally into chalcogen–chalcogen interactions. For the Se���Se 

interaction, the 77Se NMR shielding constants and chemical shifts are promising probes. 

While better functionals are becoming available and wider used, computational power is 

increasing, therefore there are good prospects of accurately being able to compute nuclear 

shieldings, maybe even taking in consideration solvent effect, or in a later stage, computing 

coupling constants. 
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4. Outlook 

 

4.1  Syntheses 

4.1.1 Selenium containg cycles with larger inner cavities 

 

Synthetically we obtained three interesting isomeric tetraselena-[6.6]cyclophanes, 

containing aromatic rings as bulding block, which confirmed the assumption that the 

introduction of the aromatic rings will open the opportunity for further stabilization based on 

π-π interactions.  

These cylcophanes obtained through a two-component coupling generate columnar 

structures in all three cases, but their internal cavities proved to be small. Another problem 

encountered refers to the insolubility of the resulting cyclophanes. Previous synthetic work 

of Fischer97 by-passed this problem by using aromatic rings substituted with long alkylic 

chains.  Positioning the aromatic ring between two alkyne units, while the Se centers are 

connected through an alkylic chain has the disadvantage that the substituents of the 

benzene rings, intrude into the cavity.  

Therefore, replacing the alkylic chain with a xylene-type fragment could present some 

advantages in generating columnar structures with larger cavities, either through a two-

component coupling reaction and even better through a three-component coupling. For this 

purpose, an ortho- or meta-xlyene bis-selena fragment would be more suitable than their 

para-xylene isomer. Also by using different substituents on the aromatic ring the solubility 

of the desired compounds could be improved, without the risk of the substituents blocking 

the internal cavity (Figure 4.1.). Even more, the properties of the columnar structures thus 

generated could be controlled. Based on the substituents of the aromatic rings used, the 

external side of the tubular construction could be made hydrophobic or hydrophilic. 
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Figure 4.1.   Model compounds with larger inner cavities. 
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4.1.2 Cage molecules 

 Another interesting synthetic goal would be to generate cage molecules based on 

diselenium alkyne (as in 73) or diselenium dialkyne (as in 74) units, which could be 

synthesized based on a similar procedure, starting from trimethyl benzene-1,3,5-

tricarboxylate (67). 
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Scheme 4.1. Suggested synthetic approach for obtaining the selenium containing cage 
molecules 73 and 74. 

The bottle-neck of this synthesis could nevertheless lay in purifying the intermediate 

1,3,5-tris(selenocyanatomethyl)benzene (70) and in the final coupling reactions. 
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4.2 NMR investigations 

 
77Se chmical shifts and 77Se–77Se coupling constants are excellent measures to 

investigate the interactions between divalent selenium atoms. Although the high field shift 

of the 77Se signal illustrated a trend that could be interpreted in relation with other known 

data from literature, more insight was gained from investigating the coupling constants. 

Nevertheless, the coupling mechanisms involved can not be completely assigned to the 

through-bond or the through-space types. Probably, an interesting option to consider would 

be to measure the long-range JSe,Se in a weakly anisotropic liquid solution, that would enable 

determination of residual dipolar couplings (RDCs). These provide information about the 

direct dipole-dipole interaction between the two Se spins, information that is usually 

averaged out in isotropic liquids. 

 

T1 relaxation measurements of the 77Se signal did not provide a very clear picture, 

therefore it might be useful to investigate the T1 relaxation time dependence with regard to 

the strength of the magnetic field. As it was shown by Wong et al.190 the Se longitudinal 

(spin-lattice) relaxation has a significant chemical shift anisotropy (CSA) mechanism part, in 

addition to the spin-rotation mechanism (SR – caused by fast molecular or segmental 

motion) and the dipole-dipole interaction (DD) associated with the nuclear Overhauser 

effect (NOE)111,112. Building on the understanding of the longitudinal relaxation times of 77Se 

nuclei, the investigation could be pushed forward to measurements of heteronuclear 

Overhauser effects between Se and H atoms in the small model compounds already 

synthesized and to new molecules. These types of experiments would provide information 

regarding Se-H interactions and the correlation with the long range Se-Se couplings would 

allow an easier evaluation of the competition between Se���Se and Se-H interactions in the 

liquid-state. Furthermore, evaluating the Se-H distances would also clarify the 

conformational preference of the model compounds in liquids, completing thus the picture 

obtained through the theoretical conformational analysis. 

 

4.3 Theoretical calculations of NMR parameters 

 

Last, but not least, further implementation of new computational chemistry methods 

which would reduce the computational time would be more than welcomed in our quest for 

making a more exact comparison between experimentally obtained informations and 

theoretically calculated ones. An interesting method that is receiving attention lately is the 

linear scaling method of Ochsenfeld et al.191, with which NMR spectra for molecular 
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systems with more than a thousand atoms were calculated. Calculating 77Se NMR 

parameters at the MP2 level of theory with such a method would initially be a good test for 

the applicability of the method, and would later allow to determine better NMR parameters 

and thus give the opportunity to interpret better the experimentally obtained results. In the 

future, theoretical calculations of spin-spin couplings192 which are now limited to molecules 

with only a few atoms, would allow a much better understanding of the selenium – selenium 

interactions and the possible ways in which they can be “manipulated” to obtain new 

materials with special electronic properties. 
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5. Preparative procedures 

5.1 General considerations 

 

Due to high sensitivity to air and humidity, all reactions were carried out in special treated 

equipment which was two to three times evacuated by an oil pump, heated up to 150°C and 

fluted with anhydrous argon. A three-way bubbler filled with paraffin oil served as a device 

for the pressure balance during reaction under protecting gas. For those reactions that are 

not sensitive to air or humidity a standard glass tube filled with drying gel was the first 

choice. The used solvents were dried and degassed under argon atmosphere according to 

standard methods. These procedures for absolution and degassing of the solvents were 

done as shortly before use as possible. As reaction vessels, three necked flasks with 

magnetic stirring were usually used. In the case that a solution containing a metallorganic 

reagent was added this was done with a syringe through one of the necks which was closed 

by a thin rubber lid. 

 

Thin layer chromatography: Polygram-DC-micro cards from the company Macherey-

Nagel (silica gel: SIL G/UV254, 0.20 mm) were the standard application. The detection 

occurred using UV light at 254 nm and/or dyeing the cards with iodide vapors. The 

mentioned Rf values are referring to smallest concentration of substances possible; at 

higher concentration different Rf values can be expected. 

 

Column chromatography: As stationary phase for column chromatographic separations, 

MN silica gel 60 from the company Macherey-Nagel (0.04-0.063 mm, 230-400 mesh ASTM 

for column chromatography) was the standard application. Unless otherwise stated, the 

silica gel was deactivated with 3% (vol.) triethylamine (NEt3). 

 

Gas chromatography: The GC samples were measured using a HP 59970 CD GC/MS-MSD 

workstation (separation column: HP-5, 30 m, transport gas: He). The control application 

with a given starting temperature (ST) of 60° is configured in the following way: 3 min 

isotherm at the ST, then the temperature was increased for 10°C/min till the end 

temperature (ET) was reached at 250°C, depending on the sample staying isotherm at ET 

for some minutes, to give an experimental total time between 32 to 45 minutes. 
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Nuclear Magnetic Resonance Spectroscopy: The NMR spectra were measured using the 

following NMR spectrometers: 

 
1H-NMR:  250 MHz Bruker AS 250 

   300 MHz Bruker Avance 300 

   500 MHz Bruker Avance 500 
13C-NMR:  75 MHz Bruker Avance 300 

   125 MHz Bruker Avance 500 
77Se-NMR:  95 MHz Bruker Avance 500 

 

At the 1H-NMR- and 13C-NMR-spectra the prevailing solvents were used as the internal 

standards. Referencing in the 77Se-NMR-spectra was done using the standardized scale Ξ, in 

accordance with the IUPAC-reference 2001193. 13C-NMR spectra were measured using 1H 

decoupling. Information regarding the multiplicity of 13C-NMR signals was (if necessary) 

obtained from DEPT–135 experiments. The signals were assigned as exact as possible, the 

necessary information being extracted from gs-COSY194, gs-HMQC195 and gs-HMBC196 

spectra. For complete assignment of the Se signals, standard versions of gs-HMQC and gs-

HMBC experiments were modified to afford Se–H correlations, according to gradient 

selection rules197. Unless otherwise stated, the NMR measurements were done at room 

temperature. Long range Se–Se coupling constants were measured from the natural 

abundance satellites in the 77Se NMR spectra when possible, or from a heteronuclear proton 

decoupled correlation experiment153. 

 Abbreviations: 1H-NMR    13C-NMR 

   s – singlet     p – primary C atom 

    d – doublet    s – secondary C atom 

    t – triplet    t – tertiary C atom 

    q – quartet    q – quaternary C atom 

    dd – doublet of doublets 

    dt – doublet of triplets 

    m – multiplet 

    p – pseudo-… 

    b – broad signal 

 

UV Spectra: The UV/VIS spectra were recorded on a Hewlett-Packard HP 8452A Diode-

Array-Spectrometer. The solvent and the concentrations are stated in the brackets. 

 

IR Spectra: The IR spectra were measured using a Bruker Vector 22-FT-IR-Spectrometer. 

Solvents or matrix used are presented in brackets. Only the most intensive or characteristic 
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wavelengths are indicated. The relative intensities are characterized by the following 

abbreviations: 

(vs) very strong  (s) strong 

(m) medium  (w) weak 

(b) broad 

 

Mass Spectra: The EI and FAB mass spectra were recorded at a JEOL JMS-700 (Jeol, 

Tokyo, Japan) double-focusing reversed-geometry magnetic sector instrument. Ionization 

was done by electron impact (70 eV) and for the FAB measurements 2-nitrobenzol served 

as matrix. On the same device were measured the high-resolution mass spectra (HR-MS). 

The LIFDI measurements were performed on the same JEOL JMS-700 instrument, admitting 

toluene from the reservoir inlet to the ion source for tuning and field ionized. The 

unmodified manufacturer's FD/FI ion source was kept at 80 °C; the emitter potential was 

11.0-11.5 kV. Indicated are: ionisation method, mole peak and characteristic fragments. 

Only peaks with higher relative intensities as the molecular peak and m/z > 50 are 

indicated. The following abbreviations were used: M = mole peak, BP = basis peak.  

 

Melting points: Uncorrected melting points were measured in an opened capillary using a 

Dr. Tottoli melting point apparatus from Büchi, Swiss Company. 

 

X-ray spectrometry: The X-ray spectrometric investigations were performed by Dr. Frank 

Rominger on a Bruker Smart CCD system and by Dr. Thomas Oeser on a Bruker Smart 

Apex system. In all cases a MoKα radiation source was used (λ1=0.71073 Å). Diffraction 

intensities were corrected for Lorentz and polarization effects and an empirical absorption 

correction was applied using SADABS198 based on the Laue symmetry of the reciprocal 

space. Heavy atoms diffractions were solved by direct methods and refined against F2 with 

a full-matrix least square algorithm. Hydrogen atoms were either isotropically refined or 

introduced into the models at calculated positions. The structures were solved and refined 

using the SHELXTL software package199. For the analysis of the results and depiction of the 

solid-state structures, WinOrtep200 and Mercury201 software packages were used. 
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5.2 Preparation of tetraselenadiynes cyclophanes 

 

5.2.1 General procedure for preparation of the bis(seleno-

cyanatomethyl)-benzenes 

To a stirred solution of dibromoxylene in 200 mL of degassed dry acetone a solution of 

KSeCN in 200 ml degassed acetone was added dropwise under argon atmosphere at room 

temperature over a period of 3 h. The reaction mixture was stirred for an additional hour 

and the resulting KBr was filtered off. The solvent was removed by rotary evaporation and 

the product was purified by column chromatography on deactivated silica or if the purity of 

the raw product was determined by NMR spectroscopy to be over 98%, it was used without 

further purification95. 

 

5.2.1.1 1,2-bis(selenocyanatomethyl)-benzene (15a)  

 

Materials: 

10.56 g (40.0mmol)   1,2-bis-bromomethylbenzene (14a) 

14.4 g (100 mmol)   potassium selenocyanate (KSeCN) 

400 ml     acetone (solvent) 

 

Experimental procedure: 

The experimental procedure followed as described in section 5.2.1. Purification by silica-gel 

column chromatography using a mixture of n-hexane / diethyl ether (1:2), resulted in 11.24 

g of 1,2-bis(selenacyanatomethyl)-benzene (15a). 

 

Yield  11.24 g (35.8 mmols)  89% 

 

Habitus white thin needles 

 

Molecular formula: 

C10H8N2Se2 

 

Molecular weight: 

314.109 g/mol 

SeCN

SeCN
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m.p.  106°C 

 

TLC  Rf value  0.34   n-hexane / diethyl ether   (1:2) 

 

GC  Rt = 20.19 min  

 

MS (EI+; m/z; %): 314 [M]+ (0.9); 263.9 [C8H8Se2]+ (7.8); 209.9  [M-SeCN]+ 

(52.8); 182.9 [C8H8Se]+ (28.4); 104  [C8H8]+ (BP, 100); 78  [C6H6] + (18.2) 

 
1H-NMR (500MHz, CD2Cl2) δ=4.42 (s, 4H, CH2, 2JSe,H= 15.0 Hz); δ=7.39–7.40 (m, 4H, 

Harom). 

 
13C-NMR (125MHz, acetone-d6): δ=28.9 (2C, s-CH2, 1JSe,C=48.5 Hz); δ=101.5 (2C, q-

SeCN); δ=130.0 (2C, t-Carom); δ=131.9 (2C, t-Carom); δ=134.5 (2C, q-Carom). 

 
77Se-NMR (95 MHz, acetone-d6): δ=302.3. 

 

IR  (KBr, cm-1): 3442 (vb); 3007 (w); 2148 (s); 2073 (m); 1630 (w); 1491 (m); 

1451 (m); 1299 (w); 1210 (w); 1194 (m); 1177 (m); 1068 (m); 1042 (m); 

852 (s); 775 (w); 596 (s); 541 (w); 515 (m). 

 

UV  (c = 0.085 mg/ml in CH2Cl2): 

λ = 278 nm; log ε = 3.35; ε = 2216   l/(mol�cm); extinction = 0.06 

λ = 248 nm; log ε = 4.09; ε = 12191 l/(mol�cm); extinction = 0.33 

 

5.2.1.2 1,3-bis(selenocyanatomethyl)-benzene (15b) 

 

Materials:  

5.28 g  (20.0 mmol)  1,3-bis-bromomethylbenzene (14b) 

Molecular formula: 

C10H8N2Se2 

 

Molecular weight: 

314.109 g/mol 

 

SeCN

SeCN
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8.75 g  (60.8 mmol)  potassium selenocyanate (KSeCN) 

400 ml     degassed acetone. 

 

Experimental procedure: 

The experimental procedure followed as described in section 5.2.1. Purification by silica-gel 

column chromatography using a mixture of n-hexane / diethyl ether (1:2), resulted in 4.20 

g of 1,3-bis(selenacyanatomethyl)-benzene (15b). 

 

Yield  4.206 g  (13.4 mmols)  67% 

 

Habitus white solid 

 

m.p.  108°C 

 

TLC  Rf-value 0.32   n-hexane / diethyl ether (1:2) 

 

GC  Rt = 26.15 min 

 

MS (EI+; m/z; %): 314 [M]+ (0.9); 210 [M-SeCN]+ (37.8); 116 [M-2SeCN]+ 

(62.2); 104 [M-C8H8]+ (BP, 100); 78 [C6H6]+ (26.2); 51 [M-C4H3]+ (19.2). 

 
1H-NMR (500 MHz, CD2Cl2): δ=4.29 (s, 1H, CH2, 2JSe,H= 16.2 Hz); δ=7.35 (s, 1H, 

Harom); δ=7.37- 7.39 (d, 2H, Harom); δ=7.41 (t, 1H, Harom) 

 
13C-NMR  (125 MHz, CD2Cl2): δ=32.56 (2C, s-CH2, 1JSe,C=48.9 Hz); δ=101.53 (2C, t-

CN); δ=129.18 (2C, t-Carom); δ=129.50 (1C, t-Carom); δ=129.78 (1C, t-Carom); 

δ=137.10 (2 C, q-Carom) 

 
77Se-NMR  (95 MHz, CD2Cl2): δ=294.6. 

 

UV  (c = 0.167 mg/ml in CH2Cl2): 

  λ = 240 nm; log ε = 4.12; ε = 13083 l/(mol�cm); extinction = 0.5 

λ = 246 nm; log ε = 3.96; ε =   9158 l/(mol�cm); extinction = 0.35 

λ = 272 nm; log ε = 2.89; ε =     785 l/(mol�cm); extinction = 0.03 

 

IR (KBr, cm-1): 3444 (s); 2151 (s); 1630 (m); 1486 (w); 1444 (m); 1255 (w); 

1199 (s); 1160 (w); 1127 (w); 1081 (w); 894 (w); 845 (w); 803 (m); 746 

(w); 699 (m); 578 (m); 541 (w); 513 (m). 
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5.2.1.3 1,4-bis(selenocyanatomethyl)-benzene (15c) 
 

Materials:  

6.60 g  (25.00 mmol)  1,4-bis-bromomethyl-benzene (14c) 

10.80 g (74.96 mmol)  potassium selenocyanate (KSeCN) 

400 ml     degassed acetone. 

 

Experimental procedure: 

The experimental procedure followed as described in section 5.2.1. Purification by silica-gel 

column chromatography using a mixture of n-hexane / diethyl ether (1:2), resulted in 7.5 g 

of 1,4-bis(selenacyanatomethyl)-benzene (15c). 

 

Yield  7.47 g  (23.78 mmol)  95.1 % 

 

Habitus pale yellow crystals 

 

m.p.  138°C 

 

TLC  Rf-value 0.32  dichloromethane 

 

GC  Rt = 27.02 min 

 

MS (EI+; m/z; %): 316 [M]+ (8.3); 210 [M-SeCN]+ (74.8); 182 [C8H8Se]+ (4.2); 

104 [C8H8]+ (BP, 100); 78 [C6H6]+ (7.2). 

 
1H-NMR (500 MHz, acetone-d6): δ=4.44 (s, 4H, CH2, 2JSe,H= 16.3 Hz); δ=7.46 (s, 4H, 

Harom).  

 
13C-NMR  (125 MHz, acetone-d6): δ=31.81 (2C, s-CH2); δ=102.21 (2C, q-SeC);   

δ=129.36 (4C, t-Carom); δ=137.80 (2C, q-Carom). 

Molecular formula: 

C10H8N2Se2 

 

Molecular weight: 

314.109 g/mol 

 

SeCN

SeCN
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77Se-NMR  (95 MHz, acetone-d6,): δ=307.1. 

 

IR (KBr, cm-1): : 3428 (b); 3048 (w); 3013 (w); 2955 (w); 2147 (s); 2073 (s); 

1630 (m); 1509 (m); 1425 (m); 1225 (m); 1190 (m); 1130 (w); 1092 (m); 

1018 (w); 851 (m); 837 (m); 754 (w); 604 (s); 516 (m). 

 

UV  (c = 0.136 mg/ml in CH2Cl2): 

λ = 283 nm; log ε = 3.48; ε = 3001   l/(mol�cm); extinction = 0.13 

λ = 248 nm; log ε = 4.24; ε = 17547 l/(mol�cm); extinction = 0.76 

 

5.2.2 General procedure for preparation of the bis(trimethylsilyl) 

-diselenaalkadiynes93 

 

In a four-necked flask, trimethylsilylacetylene (TMSA) was dissolved in dry THF at  

– 35°C. At this temperature a solution of n-butyllithium in n-hexane was added dropwise 

over a period of 20 minutes by using a syringe. Then the solution was stirred under the 

same conditions for two hours. The diselenocyanatoxylene dissolved in anhydrous THF was 

added dropwise over a period of 45 minutes at –35°C. After stirring for one hour at this 

temperature the mixture was allowed to warm up to room temperature. 50 ml of saturated 

NH4Cl solution and 100 ml n-hexane were added. The aqueous layer was separated and 

extracted four times with n-hexane. After combining the organic layers the mixture was 

dried over MgSO4 overnight. The mixture was filtrated, the solvent evaporated and the 

resulting product was purified by silica-gel column chromatography. 

5.2.2.1 1,2-bis(((trimethylsilyl)ethynyl-selenyl)methyl)benzene (16a) 
 

 

Materials:  

6.3 g  (20 mmol)  1,2-bis(selenocyanatomethyl)-benzene (15a) 

 

Molecular formula: 

C18H26Se2Si2 

 

Molecular weight: 

456.500 g/mol 

Se

Se

TMS

TMS
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25 ml  (40 mmol)  n-BuLi (solution 1.6 M in n-hexane) 

4 g  (40 mmol)  Trimethylsylilacetylene (TMSA) 

750 ml     THF  

 

Experimental procedure: 

The experimental procedure followed as described in section 5.2.2. Purification by silica-gel 

column chromatography was carried out using a mixture of light petroleum / diethyl ether 

(20:1 ratio) affording 5.76 g of 1,2-bis(((trimethylsilyl)ethynyl-selenyl)methyl)-benzene 

(16a) as a dark yellow colored oil.  

 

Habitus dark yellow colored oil 

 

Yield 5.759 g  (12.6mmol)  63.1% 

 

GC Rt=28.4 min 

 

TLC Rf-value 0.52  light petroleum / diethyl ether (20:1) 

 

MS (EI+; m/z; %): 458 [M]+ (<1); 427 [M-2�CH3]+ (1.2); 264  [C8H8Se2]+ (2.3); 

183 [C8H8Se]+ (13.6); 143 [C11H11]+ (40.9); 128 [C10H8]+ (29.0); 104 

[C8H8)]+ (31.2); 97 (28.5) [C5H9Si]+; 73 [Si(CH3)3]+ (BP, 100). 

 
1H-NMR (500 MHz, CDCl3, ppm): δ=0.16 (s, 18H, Si(CH3)3); δ=4.21 (s, 4H, CH2, 

2JSe,H= 13.9 Hz); δ=7.23 (m, 2H, Harom); δ=7.26 (m, 2H, Harom).  
 

13C-NMR (125 MHz, CD2Cl2, ppm): δ=-0.8 (6C, Si(p-CH3)3, 1JSi,C= 56.6 Hz); δ=30.3 

(2C, s-CH2, 1JSe,C= 53.4 Hz); δ=86.4 (2C, q-SeC≡); δ=110.1 (2C, q-SiC≡); 

δ=128.3 (2C, t-Carom); δ=131.4 (2C, t-Carom); δ=136.2 (2C, q-Carom). 

 
77Se-NMR  (95 MHz, CD2Cl2, ppm): δ=255.0. 

 

IR (film, cm-1): 3112 (w); 3026 (w); 2958 (s); 2897 (m); 2350 (w); 2087 (s); 

1491 (w); 1453 (w); 1420 (w); 1262 (m); 1249 (s); 1172 (m); 1066 (w); 

1043 (w); 945 (w); 859 (vs); 843 (vs); 760 (vs); 700 (m); 622 (m); 595 (m) 

 

UV  (c = 0.121 mg/ml in CH2Cl2): 

λ = 304 nm; log ε = 2.58; ε = 377 l/(mol�cm); extinction = 0.1 

λ = 250 nm; log ε = 4.09; ε = 12436 l/(mol�cm); extinction = 0.33 
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HRMS  (EI+): 

  m/z 12C 1H 28Si  80Se mmu Obs.Mass Calc.Mass 

  458 18 26 2 2 -1.8 457.9886 457.9903 

 

5.2.2.2 1,3-bis(((trimethylsilyl)ethynyl-selenyl)methyl)benzene (16b) 
 

 

Materials:  

1.054  g (3,356 mmol)   1,3-bis-selenocyanatomethyl-benzene (15b) 

0.820  g (8,349 mmol)   trimethylsilylacetylene (TMSA) 

5.230  ml (8,368 mmol)   n-butyllithium (solution 1,6 M in n-hexane) 

200  ml     THF  

 

Experimental procedure: 

The experimental procedure followed as described in section 5.2.2. Purification by silica-gel 

column chromatography was carried out using a mixture of n-hexane / diethyl ether (12:1 

ratio), affording 1.015 g of 1,3-bis(((trimethylsilyl)ethynyl-selenyl)methyl)benzene (16b) as 

an yellow colored oil. 

 

Yield  1.015 g (2.223 mmol)  66.2 % 

 

Habitus yellow colred oil 

 

TLC  Rf-value: 0.49 n-hexane / diethyl ether   (10:1) 

 

GC Rt= 29.00 min 

 

MS (EI+; m/z; %): 458 [MP]+ (1.1); 281 [M-C5H9SeSi]+ (1.9); 143 [C11H11]+ 

(40.9); 128 [C10H8]+ (29.0); 104 [C8H8]+ (31.2); 73 [Si(CH3)3]+ (BP, 100). 

Molecular formula: 

C18H26Se2Si2 

 

Molecular weight: 

456.500 g/mol 

Se

Se

TMS

TMS
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1H-NMR (500 MHz, CD2Cl2): δ=0.15 (s, 18H, Si(CH3)3); δ=4.00 (s, 4H, CH2, 
2JSe,H=15.4 Hz); δ=7.20-7.30 (m, 4H, Harom). 

 
13C-NMR  (125 MHz, CD2Cl2): δ=0.01 (6C, p-CH3); δ=32.97 (2C, s-CH2); δ=86.61 (2C, 

q-SeC); δ=109.83 (2C, q-SiC); δ=128.55 (2C, t-Carom); δ=128.99 (1C, t-

Carom); δ=129.54 (1C, t-Carom); δ=138.63 (2C, q-Carom). 

 
77Se-NMR  (95 MHz, CD2Cl2): δ=267.6. 

 

UV  (c = 0.167 mg/ml in CH2Cl2): 

λ = 284 nm; log ε = 2.87; ε = 734 l/(mol�cm); extinction = 0.27 

λ = 304 nm; log ε = 2.66; ε = 462 l/(mol�cm); extinction = 0.17 

 

IR (film,cm-1): 2958 (s); 2897 (w); 2087 (s) , 1605 (w); 1487 (w); 1443 (w); 

1410 (w); 1249 (s); 1191 (m); 1079 (w) , 862 (s); 793 (m); 761 (s); 699 

(m); 622 (w); 579 (w).  

 

HRMS  (EI+): 

  m/z 12C 1H 28Si 80Se mmu Obs.Mass Calc.Mass 

  458 18 26 2 21 +1.0 457.9913 457.9903 

 

5.2.2.3 1,4-bis(((trimethylsilyl)ethynyl-selenyl)methyl)benzene (16c) 
 

 

Materials:  

5.027    g (16.00 mmol)  1,4-bis-selenocyanatomethyl-benzene (15c) 

3.143    g (31.99 mmol)  Trimethylsilylacetylene (TMSA) 

20.0     ml (32.00 mmol)  n-butyllithium (solution 1,6 M in n-hexane) 

700      ml    THF (solvent) 

 

Molecular formula: 

C18H26Se2Si2 

 

Molecular weight: 

456.500 g/mol 

Se

Se

TMS

TMS



Preparative procedures 

 

 112 

 

Experimental procedure: 

The experimental procedure followed as described in section 5.2.2. Purification by silica-gel 

column chromatography was carried out using a mixture of n-hexane / diethyl ether (20:1), 

affording 3.318 g of 1,4-bis(((trimethylsilyl)ethynyl-selenyl)methyl)benzene (16c). 

 

Yield  3.318 g (7.27 mmol)  45.4 % 

 

Habitus pale yellow crystals 

 

m.p.  52-54°C 

 

TLC  Rf-value: 0.46 n-hexane / diethyl ether (20:1) 

 

GC Rt= 30.05 min 

 

MS (EI+; m/z; %): 458 [M]+ (1.1); 442 [M-CH3]+ (0.7); 354 [C13H11Se2Si]+ (6.7); 

281 [C13H17SeSi]+ (12.3); 162 [C4H6SeSi]+ (4.3); 143 [C11H11]+ (10.9); 128 

[C10H8]+ (12.0); 104 [C8H8]+ (BP, 100); 73 [Si(CH3)3]+ (65.0). 

 
1H-NMR (500 MHz, CD2Cl2): δ=0.15 (s, 18H, Si(CH3)3); δ=4.01 (s, 4H, CH2, 2JSe,H= 

15.4 Hz); δ=7.28 (s, 4H, Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=-0.0 (6C, p-CH3, 1JSi,C= 56.2 Hz); δ=32.8 (2C, s-CH2, 

1JSe,C= 52.9 Hz); δ=86.7 (2C, q-SeC); δ=109.8 (2C, q-SiC); δ=129.4 (4C,  

t-Carom); δ=137.6 (2C, q-Carom). 

 
77Se-NMR  (95 MHz, CD2Cl2): δ=269.1 

 

UV   (c = 0.073 mg/ml in CH2Cl2): 

λ = 246 nm; log ε = 4.31; ε = 20614 l/(mol.cm); extinction = 0.33 

λ = 298 nm; log ε = 2.97; ε = 937    l/(mol.cm); extinction = 0.15 

 

IR (film, cm-1): ~3100-3600 (s); 3022 (w); 2957 (m); 2899 (w); 2082 (s); 1636 

(w); 1511 (m); 1419 (m); 1253 (s); 1247 (s); 1169 (s); 1122 (w);1018 (w); 

864 (s); 841 (s); 762 (s); 698 (w); 622 (m); 486 (w). 
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HRMS  (EI+): 

  m/z 12C 1H 28Si 78Se  80Se mmu Obs.Mass Calc.Mass 

  458 18 26 2  2 +2.5 457.9929 457.9903 

  458 18 26 2 1 1 +1.5 457.9929 457.9903 

 

 

5.2.3 General procedure for preparation of the diselenaalka-

diynes 

 

To a solution of bis(trimethylsilyl)diselenaalkadiynes in 100 ml anhydrous MeOH and  

5 ml anhydrous THF, a 0.1N NaOH solution was added dropwise during a period of 15 

minutes at room temperature. Then the mixture was stirred for two hours. The reaction was 

stopped by adding 150 ml ice-water mixture and 150 ml diethyl ether. After separation of 

the organic layer the aqueous layer was extracted four times with 80 ml of diethyl ether. 

The combined organic layers were washed three times with saturated NH4Cl solution and 

three times with brine. After drying over MgSO4, the solvent was evaporated and the 

product purified by silica-gel column chromatography or recrystallized. 

 

5.2.3.1 1,2-bis(ethynylselenylmethyl)-benzene (17a) 
 

 

Materials: 

4.917 g (10.77 mmol) 1,2-bis(((trimethylsilyl)ethynylselenyl)methyl)benzene (16a) 

450 ml    MeOH 

11 ml    solution 0.1 N NaOH 

15 ml    THF (cosolvent) 

 

 

Molecular formula: 

C12H10Se2 

 

Molecular weight: 

312.128 g/mol 

 

Se

Se
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Experimental procedure: 

The experimental procedure followed as described in section 5.2.3. After removal of the 

solvent through rotary evaporation, the NMR analysis of the raw product showed a purity of 

more than 99 %. Thus the product was not further purified, but used as obtained for the 

following reaction step. 

 

Yield  3.028 g 9.701 mmol  90.1 % 

 

Habitus dark yellow colored oil 

 

GC   Rt= 21.5 min 

 

MS (EI+; m/z; %): 313 [M-H]+ (<1); 233 [C12H9Se]+ (11.3); 152 [C12H8]+ 

(17.9); 128 [C10H8]+ (100.0); 104 [C8H8]+ (63.3); 78 [C6H6]+ (32.5). 

 
1H-NMR (500 MHz, CD2Cl2): δ=2.93 (s, 2H, C≡CH); δ=4.21 (s, 4H, CH2, 2JSe,H= 13.1 

Hz); δ=7.25 (m, 2H, Harom); δ=7.31 (m, 2H, Harom). 

 
13C-NMR  (125 MHz, CD2Cl2): δ=29.9 (2C, s-CH2, 1JSe,C=51.8 Hz); δ=65.8 (2C, t-CH); 

δ=90.4 (2C, q-SeC, 1JSe,C=37.9Hz); δ=128.5 (2C, t-Carom); δ=131.3 (2C, t-

Carom); δ=135.9 (2C, q-Carom).  

 
77Se-NMR  (95 MHz, CD2Cl2): δ=232.1. 

 

IR (KBr, cm-1): 3277 (s); 3061 (w); 3020 (w); 2954 (w); 2028 (w); 1491 (m); 

1452 (m); 1420 (w); 1376 (w); 1300 (w); 1172 (m); 1067 (w); 1042 (w); 

948 (w); 875 (w); 834 (w); 762 (m); 681 (m); 592 (m); 436 (w) 

 

UV   (c= 0.063 mg/ml in CH2Cl2): 

λ = 244 nm; log ε = 3.16; ε = 1436 l/(mol�cm); extinction = 0.29 

 

HRMS  (EI+): 

  m/z 12C 1H 78Se  80Se 82Se mmu Obs.Mass Calc.Mass 

 312 12 9  2  +3.0 312.9065 312.9035 

 [M-H] 12 9 1  1 +2.1 312.9065 312.9035 
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5.2.3.2 1,3-bis(ethynylselenylmethyl)-benzene (17b) 

 

Materials:  

0.965 g (2.11 mmol) 1,3-bis(((trimethylsilyl)ethynylselenyl)methyl)benzene (16b) 

1.840  ml (0.18 mmol) solution 0.1 N NaOH solution 

100   ml   MeOH (solvent) 

5 ml   THF (cosolvent) 

 

Experimental procedure: 

The experimental procedure followed as described in section 5.2.3. Purification by column 

chromatography on silica gel using n-hexane / diethyl ether (6:1) as solvent mixture, 

affording 1,3-bis(ethynylselenylmethyl)-benzene (17b) as an yellow colored oil. 

 

Yield  0.627 g (2.009 mmol)  95.03 % 

 

Habitus yellow colored oil 

 

TLC  Rf-value 0.29  n-hexane / diethyl ether (6:1) 

 

GC Rt= 21.18 min 

 

MS (EI+; m/z; %): 313 [M-H]+ (0.4); 233 [C12H9Se]+ (15.1); 153 [C12H9]+ 

(11.8); 129 [C10H9]+ (49.5); 128 [C10H8]+ (BP, 100); 104 [C8H8]+ (43.0); 78 

[C6H6]+ (28.0). 

 
1H-NMR (500 MHz, CD2Cl2): δ=2.94 (s, 2H, C≡CH); δ=4.04 (s,4H, CH2, JSe,H=14.9Hz); 

δ=7.20-7.35 (m, 4H, Harom). 

 
 

Molecular formula: 

C12H10Se2 

 

Molecular weight: 

312.128 g/mol 

Se

Se
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13C-NMR (125 MHz, CD2Cl2): δ=32.14 (2C, s-CH2); δ=65.58 (2C, t-CH, 1JSe,C=52.9 Hz); 

δ=90.02 (2C, q-SeC, 1JSe,C=37.9 Hz); δ=128.16 (2C, t-Carom); δ=128.87 (1C, 

t-Carom); δ=129.45 (1C, t-Carom); δ=138.18 (2C, q-Carom). 

 
77Se-NMR  (95 MHz, CD2Cl2): δ=246.6. 

 

IR (KBr, cm-1): 3277 (s); 3025 (w); 2939 (w); 2028 (m); 1604 (m); 1486 (m); 

1443 (m); 1193 (m); 1079 (w); 895 (w); 839 (w); 796 (m); 743 (w); 698 

(s); 579 (s); 430 (w). 

 

UV  (c = 0.184 mg/ml in CH2Cl2): 

λ = 274 nm; log ε = 2.90; ε = 797 l/(mol�cm); extinction = 0.47 

λ = 302 nm; log ε = 2.66; ε = 458 l/(mol�cm); extinction = 0.27 

 

HRMS  (EI+): 

  m/z 12C 1H 80Se mmu Obs.Mass Calc.Mass 

 314 12 10 2 +2.6 313.9139 313.9113 

 

5.2.3.3 1,4-bis(ethynylselenylmethyl)-benzene (17c) 

 

Materials: 

2.981 g (6.53 mmol) 1,4-bis(((trimethylsilyl)ethynylselenyl)methyl)benzene  (16c) 

6.537 ml (0.65 mmol)  0.1 N NaOH solution 

300  ml   MeOH (solvent) 

15 ml   THF (cosolvent) 

 

 

 

Molecular formula: 

C12H10Se2 

 

Molecular weight: 

312.128 g/mol 

Se

Se
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Experimental procedure: 

The experimental procedure followed as described in section 5.2.3. Purification of the 

product was carried out by column chromatography using a mixture of n-hexane / diethyl 

ether (6:1), affording 1,4-bis(ethynylselenylmethyl)-benzene (17c) as pale yellow crystals. 

 

Yield  1.952 g (6.254 mmol)  95.8 % 

 

Habitus pale yellow crystals 

 

m.p.  78-79°C 

 

TLC  Rf-value 0.35  n-hexane / diethyl ether (6:1) 

 

GC Rt= 22.29 min 

 

MS (EI+; m/z; %): 314 [M]+ (0.1); 289 [C10H9Se2]+ (1.3); 209 [C10H9Se]+ (12.1); 

184 [C8H8Se]+ (1.4); 153 [C12H9]+ (6.8); 128 [C10H8]+ (16.4); 104 [C8H8]+ 

(BP, 100); 78 [C6H6]+ (21.0). 

 
1H-NMR (500 MHz, CD2Cl2): δ=2.93 (s, 2H, C≡CH); δ=4.04 (s, 4H, CH2, 2JSe,H= 14.2 

Hz); δ=7.30 (s, 4H, Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=32.34 (2C, s-CH2); δ=65.93 (2C, t-CH); δ=90.22 (2C, 

q-SeC); δ=129.45 (4C, t-Carom); δ=137.58 (2C, q-Carom). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=247.8. 

 

IR (KBr, cm-1): ~3100-3600 (s); 3262 (s); 3247 (m); 3052 (w); 2084 (w); 1636 

(w); 1510 (w); 1419 (w); 1189 (m); 1089 (w); 861 (w); 843 (m); 834 (w); 

756 (w); 702 (m); 694 (m); 607 (m); 586 (m); 545 (w); 481 (w). 

 

UV  (c = 0.018 mg/ml in CH2Cl2): 

λ = 248 nm; log ε = 4.25; ε = 17853 l/(mol�cm); extinction = 1.03 

 λ = 292 nm; log ε = 3.02; ε = 1040 l/(mol�cm); extinction = 0.06 

 

HRMS  (EI+): 

  m/z 12C 1H 80Se mmu Obs.Mass Calc.Mass 

 314 12 10 2 +2.8 313.9141 313.9113 
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5.2.4 General procedure the preparation of the tetraselena-

cyclodiynes 

 

To a solution of diselenaalkadiyne in anhydrous THF in a three neck flask, n-butyllithium 

(1.6 M solution in n-hexane) was added dropwise during 15 minutes, while maintaining the 

temperature below –25°C. The mixture was stirred for one hour at this temperature. To 

about 500 ml of dry THF in a 2L round bottom three necked flask, cooled to –50°C, the 

solutions of diselenocyanatoxylene and dilithiated diselenaalkadiynes in anhydrous THF were 

added simultaneously via separate dropping funnels over a time period of 5 - 7 hours. After 

complete addition the reaction mixture was allowed to warm up to room temperature 

overnight. The solvent was evaporated to give the raw product which was cleaned by fast 

silica-gel chromatography with toluene to remove salts and polymers. Further purification 

was accomplished using silica-gel chromatography with appropriate solvent mixtures. 

 

Note: Melting points (m.p.) for compounds 18 a-c could not be determined as in all cases, 

the samples decomposed upon heating in the 60 to 80°C range. Gas chromatography (GC) 

analysis of compounds 18 a-c was unsuccessful, decomposition of the samples taking place 

both on the chromatographic column and in the transfer line to the mass spectrometer 

detection device. 

 

5.2.4.1 2,5,14,17-tetraselena[6.6]-ortho-cyclophan-3,15-diyne (18a)  
 

 

Materials: 

2.81 g  (9 mmol) 1,2-bis(ethynylselenylmethyl)-benzene (17a) 

11 ml   (18 mmol) n-BuLi (solution 1.6 M in n-hexane) 

2.83 g  (9 mmol) 1,2-bis(selenocyanatomethyl)-benzene  (15a) 

1000 ml   THF (solvent) 

Molecular formula: 

C20H16Se4 

 

Molecular weight: 

572.191 g/mol 

 Se

Se Se

Se
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Experimental procedure: 

The experimental procedure was carried out following the description in section 5.2.4. The 

product was purified using silica-gel column chromatography. First, a n-hexane / toluene 

(3:1) mixture was used as eluent and an enriched fraction was further purified through a 

second column chromatography using a n-hexane / diethyl ether (10:1) mixture. The 

purified compound (18a) was recrystallized from a dichloromethane / n-hexane mixture 

affording thin yellow needle-like crystals. 

 

Yield  0.182g  (0.32 mmol)  3.6% 

 

Habitus yellow needle-like crystals 

 

TLC  Rf-value 0.23   n-hexane / toluene   (3:1) 

 
1H-NMR (500MHz, CDCl3): δ=4.47 (s, 8H, CH2, 2JSe,H= 7.9 Hz); δ=7.22 (bs, 8H, 

Harom). 

 
13C-NMR (125 MHz, CDCl3): δ=33.05 (4C, s-CH2); δ=85.92 (4C, q-SeC≡≡≡≡CSe);  

δ=128.41 (4C, t-Carom); δ=130.87 (4C, t-Carom); δ=135.46 (4C, q-Carom).  
 

77Se-NMR (95 MHz, CDCl3): δ=235.04. 

 

IR (KBr, cm-1): 3100-3600(s); 1772(w); 1636(m); 1559(w); 1507(w); 1490(w); 

1452(w); 1419(w); 1384(w); 1249(w); 1174(w); 1162(w); 1105(w); 

845(w); 759(m); 617(w); 536(w); 458(w); 443 (w); 436 (w); 416 (w). 

 

UV  (c = 0.068 mg/ml in CH2Cl2): 

λ = 238 nm; log ε = 4.76; ε = 57200 l/(mol�cm); extinction = 0.68 

 

MS (LIFDI, ion mode: FD+, toluene):  

m/z  Obs. Mass  Calc.Mass % 

574  573.60   573.79  100 

572  571.59   571.79  92 
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5.2.4.2 2,5,14,17-tetraselena[6,6]-meta-cyclophan-3,15-diyne (18b) 

 

Materials: 

0.568 g (1.820 mmol)  1,3-bis-(ethynylselenylmethyl)-benzene (17b) 

2.250 ml  (3.600 mmol)  n-butyllithium (solution 1,6 M in n-hexane) 

0.565 g (1.799 mmol)  1,3-bis-(selenocyanatomethyl)-benzene (15b) 

1000 ml    THF 

 

Experimental procedure: 

The experimental procedure was followed as described in section 5.2.4., with an addition 

period of 7 hours. The product was purified using silica-gel column chromatography, firstly 

with a mixture of n-hexane/toluene (4:1) and then an enriched fraction was further purified 

with a mixture of n-hexane/toluene (1:2). Finally, the clean product was obtained from a 

further enriched fraction using chromatography on silica-gel with a mixture of n-hexane / 

diethyl ether (5:1), obtaining 18b as thin colourless needles.  

 

Yield   0.076 g  (0.133 mmol)  7.4% 

 

Habitus thin colourless needles 

 

TLC  Rf-value 0.22   n-hexane / diethyl ether   (5:1) 

 
1H-NMR (500 MHz, CD2Cl2): δ=3.93 (s, 8H, CH2, 2JSe,H=17.4 Hz); δ=7.18 (dd, 4H, 

J=7.5, 1.3 Hz, Harom); δ=7.19 (dt, 2H,J=1.3, 0.9 Hz, Harom); δ=7.29 (td, 2H, 

J=7.5Hz; 0.9 Hz, Harom).  

 
13C-NMR (125 MHz, CD2Cl2): δ=33.92 (4C, s-CH2); δ=85.66 (4C, q-SeC); δ=128.31 

(2C, t-Carom); δ=128.92 (1C, t-Carom); δ=130.73 (1C, t-Carom); δ=138.37 (2C, 

q-Carom). 

Molecular formula: 

C20H16Se4 

 

Molecular weight: 

572.191 g/mol 

Se Se

Se Se
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77Se-NMR (95 MHz, CD2Cl2): δ=288.52. 

 

IR (CH2Cl2, cm-1): 3679(s); 3600(m); 2930(s); 2852(w); 2371(w); 2335(m); 

1702(w); 1605(s); 1487(w); 1464(w); 1442(w); 1187(m); 894(w); 838(w); 

798(m); 778(m); 669(w); 618 (m). 

 

MS (LIFDI, ion mode: FD+, toluene):  

m/z  Obs. Mass  Calc.Mass % 

574  573.62   573.79  100 

572  571.62   571.79  92 

 

 

5.2.4.3 2,5,14,17-tetraselena[6,6]-para-cyclophan-3,15-diyne (18c) 

 

 

Materials:  

0.780 g  (2.499 mmol)  1,4-bis(ethynylselenylmethyl)-benzene (17c) 

3.125 ml  (5.000 mmol)  n-butyllithium (solution 1,6 M in n-hexane) 

0.785g  (2.499 mmol)  1,4-bis(selenocyanatomethyl)-benzene (15c) 

800 ml     THF 

 

Experimental procedure: 

The experimental procedure was followed as described in section 5.2.4., with an addition 

period of 5 hours. The product was purified using silica-gel column chromatography, using 

with a mixture of n-hexane / diethyl ether (5:1). After rotary evaporation of solvents the 

product was recrystallised from a mixture of n-hexane and dichloromethane, resulting in 

0.045g of 18c as thin colourless crystals. 

Molecular formula: 

C20H16Se4 

 

Molecular weight: 

572.191 g/mol 

 

Se

Se

Se

Se
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Yield  0.045g  (0.08 mmol)  1.8% 

 

Habitus thin colourless crystals 

 

TLC  Rf-value 0.22   n-hexane /diethyl ether (5:1) 

 
1H-NMR (500 MHz, CD2Cl2): δ=3.89 (s, 8H, CH2, 2JSe,H= 20.3 Hz); δ=7.15 (s, 8H, 

Harom). 

 
13C-NMR (75 MHz, CD2Cl2): δ=33.32 (4C, s-CH2); δ=84.37 (4C, q-SeC); δ=129.20 

(8C, t-Carom); δ=138.31 (4C, q-Carom). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=299.81. 

 

IR (CHCl3, cm-1): 3582(w); 2957(s); 2927(vs); 2856 (s); 2676 (w); 2241 (w); 

1712(w); 1650(m); 1604(w); 1557(w); 1538(w); 1509(w); 1457(m); 

1366(w); 1261(m); 1182(w); 1082(m); 1017(m); 810(m); 594(w). 

 

MS (LIFDI, ion mode: FD+, toluene):  

m/z  Obs. Mass  Calc.Mass % 

574  573.67   573.79  100 

572  571.67   571.79  92 

 

5.3 Experimental procedures for synthesis of small 
model compounds  

 

5.3.1 General preparation procedure for synthesis of lithium 

methyl selenide (MeSeLi)  

 

MeSeLi was prepared using a slightly modified procedure of Tiecco et al.119.  To a stirred 

solution of powder gray selenium ( 3.2 g, 40 mmols) in 50 ml of THF cooled at – 25°C was 

added dropwise methyllithium (commercial solution 1.6M in ether - 30 ml, 45 mmol) using a 

syringe, under argon atmosphere. After complete addition of the MeLi solution, under 

continuous stirring the reaction mixture was allowed to warm to room temperature for 2 h. 

When reaching room temperature, full consumption of powder selenium could be observed 
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and a white suspension of MeSeLi was obtained. MeSeLi obtained using this procedure was 

used in several syntheses described in the following sections. 

 

5.3.2 Model compounds containg one selenium center 

5.3.2.1 Phenyl methyl selenide (22) 

 

Materials: 

1.57 g  (10 mmol)  phenyl bromide (35) 

4.26 g  (30 mmol)  methyl iodide 

3.03 g  (30 mmol)  lithium methyl selenide (as THF/DE solution) 

25    ml    dimethylformamide (DMF) 

 

Experimental procedure119: 

To a freshly prepared solution of lithium methyl selenide in THF and diethyl ether (DE) (see 

section 5.3.1.), was added dropwise and under stirring phenyl bromide dissolved in dry DMF 

was added dropwise under stirring. After 4 hours of stirring at room temperature, the THF 

and DE were distilled off. When only DMF was left as solvent, the reaction flask was fitted 

with a reflux condenser and the reaction mixture was refluxed for 90 hours. Afterwards, MeI 

was added dropwise under stirring and the reaction was allowed to cool down to room 

temperature. After cooling, it was poured into cold distilled water. After extraction with 

diethyl ether, the organic layers were washed with water and brine and dried over Na2SO4. 

Following rotary evaporation of the solvent the raw product was purified through silica-gel 

column chromatography, using a mixture of light petroleum and diethyl ether, affording 

compound 22 as dark yellow colored oil. 

 

Yield  0.867 g  (5.07 mmol)  50.7 % 

 

Habitus yellow colored oil 

Molecular formula: 

C7H8Se 

 

Molecular weight: 

171.098 g/mol 

Se
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TLC  Rf-value 0.51   petrol ether (45-60) / diethyl ether (9:1) 

 

GC Rt= 10.69 min  

 

MS (EI+; m/z; %): 172 [M]+ (96.8); 157 [M-CH3]+ (BP, 100); 91 [C7H7]+ (64.9); 

77 [C6H5]+ (69.6); 65 [C5H5]+ (16.9). 

 
1H-NMR (500 MHz, CD2Cl2): δ=2.30 (s, 3H, CH3, 2JSe,H= 11.0 Hz); δ=7.20 (tt, 1H,  

J= 7.3, 1.3 Hz, Harom); δ=7.27 (td, 2H, J= 7.3, 1.3 Hz, Harom); δ=7.42 (dd, 

2H, J= 7.3, 1.3 Hz, Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=7.22 (3C, p-CH3, 1JSe,C=63.4 Hz); δ=126.3 (1C, t-

Carom); δ=129.4 (1C, t-Carom); δ=130.5 (1C, t-Carom, 2JSe,C=11.5 Hz); 
1JSe,C=63.4 Hz); δ=132.4 (1C, q-CaromSe, 1JSe,C=104.5 Hz). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=199.8. 

 

IR (film, cm-1): 3774 (w); 3057 (w); 2999 (w); 2927 (m); 2252 (w); 1579 (m); 

1478 (s); 1437 (m); 1299 (w); 1273 (w); 1074 (m); 1023 (m); 999 (w); 904 

(m); 734 (vs); 690 (s); 670 (m); 536 (w); 520 (w); 513(w). 

 

HRMS  (EI+): 

  m/z 12C 1H 80Se mmu Obs.Mass Calc.Mass 

  172 7 8 1 +0.9 171.9800 171.9791 

 

5.3.2.2 Benzyl methyl selenide (23) 
 

 

Materials: 

1.748 g (20.5 mmol)  benzyl bromide 

Molecular formula: 

C8H10Se 

 

Molecular weight: 

185.125 g/mol 

Se
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2.071 g (20.5 mmol)  lithium methyl selenide – (as a THF / DE solution) 

50 ml     THF 

 

Experimental procedure119:  

To a freshly prepared (see section 5.3.1.) solution of lithium methyl selenide in THF,  was 

added dropwise using a syringe a solution of benzyl bromide in THF. The colouring of the 

reaction turned from pale yellow to a darker orange during the addition. After the complete 

addition of the benzyl bromide the reaction was stirred for 2 hours at room temperature and 

finally refluxed for about 30 minutes. Alkylating agent, methyl iodide, was added dropwise 

and the reaction mixture was allowed to cool down to room temperature. The reaction 

mixture was hydrolyzed with deionized water and the organic phase separated, washed with 

water, saturated solution of sodium bicarbonate and brine, and then dried over sodium 

sulfate. Rotary evaporation of the solvent afforded the raw product as dark yellow colored 

oil. After purification through silica-gel column chromatography using a n-hexane / 

dichloromethane (1:1) mixture, benzyl methyl selenide (23) was obtained as yellow colored 

oil. 

 

Yield  2.304 g  (12.4 mmol)  60.5 % 

 

Habitus yellow colored oil 

 

TLC  Rf-value 0.183   n-hexane / dichloromethane  (1:1) 

 

GC Rt= 12.57 min  

 

MS (EI+; m/z; %): 186 [M]+ (11.6); 169 [M-CH3]+ (1,3); 91 [C7H7]+ (BP, 100); 

65 [C5H5]+ (19.5).  

 
1H-NMR: (500 MHz, CD2Cl2): δ=1.92 (s, 3H, CH3, 2JSe,H= 10.5 Hz); δ=3.76 (s, 2H, CH2, 

2JSe,H= 13.2 Hz); δ=7.23 (tt, 1H, Harom, J= 6.8, 1.7 Hz); δ=7.27-7.34 (m, 4H, 

Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=4.2 (1C, p-CH3, 1JSe,C=64.2 Hz); δ=28.3 (2C, s-CH2, 

1JSe,C=58.3 Hz); δ=126.6 (1C, t-Carom); δ=128.4 (2C, t-Carom); δ=128.7 (2C, 

t-Carom); δ=139.2 (1C, q-Carom). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=172.0. 
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5.3.2.3 Phenyl selenocyanate (27) 

 

Materials: 

6.18 g  (32.3 mmol)  phenyl selenyl chloride (37) 

4.5 ml  (35 mmol)  trimethylsilyl cyanate (TMSCN) 

200ml     tetrahydrofuran (THF) 

 

Experimental procedure122: 

A solution of phenyl selenyl chloride (37) in dry THF was added dropwise over a period of 

15 minutes to a solution of TMSCN in dry THF under stirring, at room temperature in an 

inert gas atmosphere. After the addition of 37 was completed, the reaction mixture was 

stirred for further 45 minutes. The solvent, as well as the unreacted TMSCN were removed 

by rotary evaporation, resulting in a colorless oil residue. GC-MS analysis showed a purity of 

the raw product of over 99.5%. For ulterior use compound 27 was not further purified. 

 

Yield  5.69 g  (31 mmol)  96 % 

 

Habitus colorless oil (solid at -20°C)  

 

GC  Rt = 10.75 min 

 

MS (EI+; m/z; %): 183 [M]+ (BP, 100); 156 [M-CN]+ (31,3); 103 [SeCN]+ 

(94.7); 77 [C6H5]+ (81.5); 65 [C5H5]+ (4.3); 51 [C4H3]+ (27.4). 

 
1H-NMR (500 MHz, CD2Cl2): δ=7.39-7.47 (m, 3H, Harom); δ=7.65 (ddd, 2H, Harom,  

J= 8.9, 2.0, 0.8 Hz). 

 
13C-NMR (125 MHz, CD2Cl2): δ=101.8 (1C, q-SeCN); δ=122.4 (1C, q-SeCarom); 

δ=130.1 (1C, t-Carom); δ=130.7 (2C, t-Carom); δ=133.1 (2C, t-Carom, 2JSe,C= 

12.7 Hz). 

Molecular formula: 

C7H5NSe 

 

Molecular Weight: 

182.081 g/mol 

 

Se N
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77Se-NMR (95 MHz, CD2Cl2): δ=317.3. 

 

IR (film, cm-1): 3063 (w); 2153 (m); 1577 (m); 1478 (s); 1441 (s); 1356 (w); 

1324(w); 1067 (m); 1019 (m); 999 (m); 738 (s); 686 (s); 667 (m); 613 (w); 

586 (w); 553 (w); 547 (w); 539 (w); 534 (w); 522 (w); 517 (m); 511 (m); 

504 (w). 

 

UV  (c = 0.168 mg/ml in CH2Cl2): 

λ = 272 nm; log ε = 2.77; ε = 587   l/(mol�cm); extinction = 0.06 

λ = 264 nm; log ε = 2.89; ε = 783   l/(mol�cm); extinction = 0.08 

λ = 238 nm; log ε = 3.63; ε = 4305 l/(mol�cm); extinction = 0.44 

 

5.3.2.4 Benzyl selenocyanate (28) 
 

 

Materials: 

3.42 g  (20 mmol)  benzyl bromide (35) 

6.00 g  (40 mmol)  potassium selenocyanate 

50 ml     dimethylformamide 

 

Experimental procedure123: 

A solution of benzyl bromide in dry DMF was added dropwise by using a syringe into a 

solution of KSeCN in dry distilled DMF. A two-necked round bottom flask fitted with a 

magnetic stirrer, a rubber lid and a reflux condenser connected to an argon line was used as 

a rection vessel. The reaction mixture was heated at 80°C under continous stirring for a 

period of 8 hours, then it was cooled to room temperature. The reaction mixture was then 

hydrolyzed and the organic compounds were extracted with diethyl ether. The etheral 

fractions were combined, washed with water and dried over magnesium sulfate. After rotary 

evaporation of the solvent an orange solid was obtained as raw material. Further 

Molecular formula: 

C8H7NSe 

 

Molecular weight: 

196.108 g/mol 

Se
CN
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recrystallization from methanol afforded the purified product as white solid, crystallized in a 

needle-like form. 

 

Yield  3.724 g  (18.9 mmol)  76.3 % 

 

Habitus white needles 

 

m.p.  70°C 

 

GC Rt= 15.31 min  

 

MS (EI+; m/z; %): 197 [M]+ (3.6); 169 [C7H7Se]+(1,3); 91 [C7H7]+ (BP, 100); 65 

[C5H5]+ (74.3). 

 
1H-NMR (500 MHz, CD2Cl2): δ=4.29 (s, 2H, CH2, 2JSe,H= 15.8 Hz); δ=7.31-7.36  

(m, 1H, Harom); δ=7.36-7.39 (m, 5H, Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=33.2 (2C, s-CH2); δ=102.0 (1C, q-CN); δ=128.9 (1C, 

t-Carom); δ=129.34 (2C, t-Carom); δ=129.36 (2C, t-Carom); δ=136.4 (1C,  

q-Carom). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=288.9 

 

IR (KBr, cm-1): 3441(bs); 3083(w); 3069(w); 3027(m); 3002(m); 2147(vs); 

1952(w); 1883(w); 1810(w); 1492(s); 1455(s); 1425(m); 1219(m); 

1193(s); 1178(m): 1070(m); 1028(w); 763(s); 696(s); 592(s); 551(m); 

518(m). 

 

UV (c = 0.19 mg/ml in CH2Cl2): 

λ = 274 nm; log ε = 2.73; ε = 539 l/(mol�cm); extinction = 0.52 
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5.3.2.5 Phenyl-2-(trimethylsilyl)-ethynyl selenide (38) 

 

Materials: 

4.55 g  (25 mmol)  phenyl selenocyanate (27) 

2.65 g  (27.5 mmol)  trimethylsilylacetylene (TMSA) 

17.2 ml (27.5 mmol)  n-butyl lithium (as a 1.6 M solution in n-hexane) 

400 ml     dry THF (solvent) 

450 ml     light petroleum ether 

 

Experimental procedure93: 

To a solution of TMSA in 250 ml of dry THF a solution of n-butyl lithium in n-hexane was 

added slowly at -25°C in such a way that the temperature does not exceed -25°C. After 

complete addition of n-BuLi the pale yellow solution was stirred for 2 hours at -30°C. The 

solution of 27 in ca. 100 ml of dry THF was slowly added to the reaction flask, without 

letting the temperature exceed -20°C. After the addition was completed, the reaction 

mixture was allowed to stir for 2 hours at a temperature under - 10°C. At the end of the 

reaction time, ca. 100 ml of a saturated NH4Cl acqueous solution was added to the reaction 

mixture. After transferring the reaction mixture into a separation funnel, the organic phases 

were extracted with light petroleum ether (3 times ca. 125 ml). The organic phases were 

collected together, washed with water and brine and dried overnight on MgSO4. After 

removal of the solvent by rotary evaporation, the raw product was purified through column 

chromatography on deactivated silica-gel using a solvent mixture of light petroleum ether / 

dichloromethane (10:1) to afford compound 38 as yellow colored oil. 

 

Yield  4.31 g  (17 mmol)  68 % 

 

Habitus yellow colored oil 

 

TLC  Rf-value 0.48  light petroleum ether / dichloromethane (5:1) 

 

Molecular formula: 

C11H14SeSi 

 

Molecular weight: 

253.274 g/mol 

Se TMS
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GC  Rt = 16.54 min 

 

MS (EI+; m/z; %): 254 [M]+ (41.3); 239 [M-CH3]+ (61.2); 209 [M-3CH3]+ (4); 

159 [M-C5H19Si]+ (86.9); 97 [C5H9Si]+ (6); 73 [C3H9Si]+ (BP, 100). 
 

1H-NMR (500 MHz, CD2Cl2); δ=0.23 (s, 9H, Si(CH3)3); δ=7.27 (tt, J = 7.4, 1.2 Hz, 1H, 

Harom);  δ=7.33 (td, J = 7.4, 1.2 Hz, 2H, Harom); δ=7.52 (dt, J = 7.4, 1.2 Hz, 

2H, Harom). 

 
13C-NMR (125 MHz, CD2Cl2); δ=-0.05 (p-Si(CH3)3; 1JSi,C=56.7 Hz); δ=84.4 (q-SeCC); 

δ=112.0 (q-SiCC); δ=127.5 (t-Carom); δ=128.7 (q-CaromSe); δ=129.1 (t-Carom, 

2C, 2JSe,C=14.5 Hz ); δ=129.9 (t-Carom, 2C). 

 
77Se-NMR  (95 MHz, CD2Cl2) δ=283.8. 

 

IR  (film, cm-1): 3060 (w); 2959 (m); 2091 (s); 1578 (m); 1477 (s); 1440 (m); 

1409 (w); 1325 (w); 1250 (s); 1067 (w); 1021 (m); 999 (w); 860 (vs); 761 

(s); 733 (s); 687 (m); 667 (w); 623 (w); 513 (w). 

 

UV  (c = 0.047 mg/ml in CH2Cl2): 

  λ = 304 nm; log ε = 4.68; ε = 47979 l/(mol�cm); extinction = 0.41 

  λ = 278 nm; log ε = 4.99; ε = 97128 l/(mol�cm); extinction = 0.83 

 

HRMS  (EI+): 

  m/z 12C 1H Si 80Se mmu Obs.Mass Calc.Mass 

  254 11 14 1 1 +3.2 254.0062 254.0030 
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5.3.2.6 Benzyl-2-(trimethylsilyl)-ethynyl selenide (39) 
 

 

Materials: 

1.96 g  (10 mmol)  benzylselenocynante (28) 

1.03 g  (10.5 mmol)  trimethylsilylacetylene (TMSA) 

6.6 ml  (10.5 mmol)  n-butyl lithium (as a 1.6 M solution in n-hexane) 

250 ml     THF (solvent) 

375 ml     light petroleum ether 

 

Experimental procedure93: 

To a solution of TMSA in 250 ml of dry THF a solution of n-butyl lithium in n-hexane was 

added slowly at -25°C in such a way that the temperature does not exceed -25°C. After 

complete addition of n-BuLi the pale yellow solution was stirred for 2 hours at -25°C. The 

solution of 28 in ca. 100 ml dry THF was slowly added to the reaction flask, without letting 

the temperature exceed -20°C. After the addition was completed, the reaction mixture was 

allowed to stir for 2 hours at a temperature under - 10°C. At the end of the reaction time, 

ca. 75 ml of a saturated NH4Cl acqueous solution was added to the reaction mixture. After 

transferring the reaction mixture into a separation funnel, the organic phases were 

extracted with light petroleum ether (3 times 125 ml). The organic phases were collected 

together, washed with water and brine and dried overnight on MgSO4. After removal of the 

solvent by rotary evaporation, the raw product was purified through column 

chromatography on deactivated silica-gel using a solvent mixture of light petroleum ether / 

dichloromethane (2:1) to afford compound 39 as pale yellow colored oil. 

 

Yield  1.5 g  (5.6 mmol)  56 % 

 

Habitus pale yellow colored oil 

 

TLC  Rf-value  0.53  light petroleum ether / dichloromethane  (2:1) 

Molecular formula: 

C12H16SeSi 

 

Molecular weight: 

267.300 g/mol 

Se TMS



Preparative procedures 

 

 132 

 

GC  Rt = 18.44 min 

 

MS (EI+; m/z; %): 268 [MP]+ (2); 253 [M-CH3]+ (1); 194 [M-C3H9Si]+ (1); 171 

[C7H7Se]+ (2); 162 [C4H6SeSi]+ (4); 147 [C3H3SeSi]+ (2); 91 [C7H7]+ (BP, 

100); 73 [C3H9Si]+ (54.2); 65 [C5H5]+ (14.5). 

 
1H-NMR (500 MHz, CD2Cl2); δ=0.18 (s, 9H, Si(CH3)3); δ=4.02 (s, 2JSe,H=15.7 Hz, 2H, 

CH2Se); δ=7.28 (tt, J= 8.4, 1.2 Hz, 1H, Harom); δ=7.32–7.35 (m, 4H, Harom). 

 
13C-NMR (125 MHz, CD2Cl2); δ=-0.1 (p-Si(CH3)3, 1JSi,C=52.9 Hz); δ=33.1 (p-CH2, 

1JSe,C=56.3 Hz); δ=86.8 (q-SeC); δ=109.8 (q-CSi); δ=127.9 (t-Carom); 

δ=128.8 (t-Carom, 2C); δ=129.3 (t-Carom, 2C); δ=138.3 (q-CaromCH2). 

 
77Se-NMR  (95 MHz, CD2Cl2): δ=269.3. 

 

IR  (film, cm-1): 3063 (w); 3029 (m); 2958 (s); 2897 (m); 2088 (vs); 1495 (s); 

1454 (m); 1408 (w); 1262 (m); 1249 (vs); 1218 (w); 1186 (m); 1067(m); 

1029 (w); 862 (bs); 760 (vs); 695 (vs); 622 (m); 594 (m); 551 (w). 

 

UV  (c = 0.133 mg/ml in CH2Cl2): 

  λ = 240 nm; log ε = 4.01; ε = 10277 l/(mol�cm); extinction = 0.51 

  λ = 274 nm; log ε = 2.74; ε = 544 l/(mol�cm); extinction = 0.27 

  λ = 296 nm; log ε = 2.53; ε = 343 l/(mol�cm); extinction = 0.17 

  λ = 274 nm; log ε = 2.08; ε = 121 l/(mol�cm); extinction = 0.06 

 

HRMS  (EI+): 

  m/z 12C 1H Si 80Se mmu Obs.Mass Calc.Mass 

  268 12 16 1 1 -2.0 268.0166 268.0187 

 

 

 

 

 

 

 

 



Preparative procedures 

 

 133 

5.3.2.7 Phenyl ethylnyl selenide (31) 
 

 

Materials: 

0. 345 g (1.4 mmol)  phenyl-2-(trimethylsilyl)-ethynyl selenide (38) 

1.5 ml  (1.5 mmol)  0.1 N aqueous solution NaOH 

20 ml     methanol 

 

Experimental procedure: 

The experimental procedure followed as described previously in section 5.2.3. After removal 

of the solvent through rotary evaporation compound 31 was obtained as a brown colored 

oil. GC-MS analysis showed a purity of more than 99.5 %, therefore it was not further 

purified. 

 

Yield  0.050 g ( 0.27 mmol)  20 % 

 

Habitus brown colored oil 

 

GC  Rt = 11.8 min 

 

MS (EI+; m/z; %): 182 [M]+ (58); 157 [M-C2H]+ (6.9); 103 [C2Se]+ (BP, 100); 

77 [C6H5]+ (21.6); 51 [C4H3]+ (22.4). 

 
1H-NMR (500 MHz, CD2Cl2): δ=3.24 (s, 1H, CH); δ=7.27 (tt, J = 7.3, 1.1 Hz, 1H, 

Harom); δ=7.34 (td, J = 7.3, 1.2 Hz, 2H, Harom); δ=7.57 (dt, J = 7.3, 1.1 Hz, 

2H, Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=64.6 (1C, t-CH); δ=91.9 (1C, q-SeC, 1JSe,C=33.6 Hz); 

δ=127.76 (q-CaromSe); δ=127.78 (t-Carom); δ=127.7 (t-Carom, 2C, 3JSe,C=14.2 

Hz ); δ=129.9 (t-Carom, 2C). 

Molecular formula: 

C8H6Se 

 

Moecular weight: 

181.093 g/mol 

Se
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77Se-NMR  (95 MHz, CD2Cl2): δ=269.1. 

 

IR  (film, cm-1): 3288 (m); 3057 (m); 2920 (w); 2254 (w); 1685 (w); 1577 (m); 

1476 (s); 1439 (m); 1301 (w); 1177 (w); 1068 (w); 1021 (m); 999 (m); 953 

(s); 806 (w); 736 (vs); 712 (s); 688 (vs); 577 (m); 525 (w); 513 (w). 

 

UV  (c = 0.082 mg/ml in CH2Cl2): 

  λ = 254 nm; log ε = 3.62; ε = 4194 l/(mol�cm); extinction = 0.19 

  λ = 284 nm; log ε = 3.49; ε = 3090 l/(mol�cm); extinction = 0.14 

  λ = 330 nm; log ε = 3.30; ε = 1987 l/(mol�cm); extinction = 0.09 

 

 

HRMS  (EI+): 

  m/z 12C 1H 80Se mmu Obs.Mass Calc.Mass 

  182 8 6 1 +1.2 181.9647 181.9635 

 

5.3.2.8 Benzyl ethynyl selenide (32) 
 

 

Materials: 

1.5 g  (5.6 mmol)  benzyl-2-(trimethylsilyl)-ethynyl selenide (39) 

5.6 ml  (0.56 mmol)  0.1 N NaOH solution 

40 ml     methanol (solvent) 

 

Experimental procedure: 

The experimental procedure followed as described previously in section 5.3.2. After removal 

of the solvent through rotary evaporation compound 32 was obtained as yellow colored oil. 

GC-MS analysis showed a purity of more than 99 %, therefore it was not further purified. 

 

Molecular formula: 

C9H8Se 

 

Molecular weight: 

195.120 g/mol 

Se
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Yield  0.584 g (2.9 mmol)  53 % 

 

Habitus light yellow colored oil 

 

GC  Rt = 13.71 min 

 

MS (EI+; m/z; %):  196 [M]+ (5); 169 [C7H7Se]+ (1); 105 [C2HSe]+ (5.4); 91 

[C7H7]+ (BP, 100); 65  [C5H5]+ (14.5). 

 
1H-NMR (500 MHz, CD2Cl2): δ=2.93 (s, 1H, CH); δ=4.05 (s, 2JSe,H=14.8 Hz, 2H, 

CH2Se); δ=7.27 (tt, J = 6.5, 1.9 Hz, 1H, Harom); δ=7.30–7.36 (m, 4H, Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=32.7 (2C, 1JSe,C=52.4 Hz, s-CH2); δ=66.0 (2C, t-CH); 

δ=90.0 (2C, 1JSe,C=38,4 Hz, q-SeC); δ=127.9 (t-Carom); δ=128.9 (t-Carom, 

2C); δ=129.2 (t-Carom, 2C); δ=138.1 (q-CaromCH2). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=245.3. 

 

IR  (film, cm-1): 3279(vs); 3084(w); 3062(w); 3028(m); 2936(w); 2029(m); 

1949(w); 1877(w); 1805(w); 1601(w); 1494(vs); 1454(s); 1418(s); 

1218(m); 1188(m); 1067(m); 1029(m); 913(w); 842(w); 802(w); 759(s); 

696(vs); 595 (s); 552(m). 

 

UV  (c = 0.145 mg/ml in CH2Cl2): 

  λ = 242 nm; log ε = 3.83; ε = 6759 l/(mol�cm); extinction = 0.5 

  λ = 266 nm; log ε = 2.67; ε = 473 l/(mol�cm); extinction = 0.35 

  λ = 294 nm; log ε = 2.39; ε = 243 l/(mol�cm); extinction = 0.18 

 

HRMS  (EI+): 

  m/z 12C 1H 80Se mmu Obs.Mass Calc.Mass 

  196 9 8 1 +1.8 195.9809 195.9791 
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5.3.3 Model compounds with two selenium centers 

 

5.3.3.1 2-(methylselenyl) benzyl-methyl-selenide (24) 
 

 

Materials: 

2.5 g  (10 mmol)  2-bromo-benzyl bromide (40 a) 

4.04 g  (40 mmol)  lithium methyl selenide (as THF solution) 

2.5 ml  (40 mmol)  methyl iodide 

 

Experimental procedure119: 

A solution of 2-bromo benzylbromide (40 a) in freshly distilled DMF was added dropwise via 

seringe under stirring to a solution of lithium methyl selenide in THF (see section 5.3.1.1.). 

The reaction flask, a four-necked round bottom flask, was immersed into a silicon bath and 

the THF and DE were distilled off. Then the flask was fitted with a reflux condenser, and the 

reaction mixture was kept under reflux for 50 hours at 135°C. After refluxing, the alkylating 

agent methyliodide was added under stirring and the reaction mixture was allowed to cool 

down to room temperature. The reaction mixture was quenched by dropping it into 50 mL of 

deionized water and extracted with diethyl ether (3 times ca. 50 ml). The combined organic 

layers were washed with water and brine and dried over anhydrous MgSO4 overnight, then 

the solvent was removed by rotary evaporation to afford a brown redish oil. After 

purification through silica-gel column chromatography using a solvent mixture of petrol 

ether / diethyl ether (20:1 to 10:1), compound 24 was obtained as yellow colored oil. 

 

Yield  0.713 g (2.5 mmol)  25 % 

 

Habitus yellow colored oil 

 

TLC  Rf-value 0.41  light petrol ether / diethyl ether  (10:1) 

Molecular formula: 

C9H12Se2 

 

Molecular weight: 

278.111 g/mol 

Se

Se
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GC  Rt = 18.98 min 

 

MS (EI+; m/z; %):  280 [M]+ (42.5); 265 [M-CH3]+ (62.1); 250 [M-2CH3]+ 

(40.6); 185 [M-SeCH3]+ (37.4); 169 (53.9) [C7H7Se]+; 105 (BP) [C8H9]+ ; 91 

(43.8) [C7H7]+; 78 (11.5) [C6H5]+. 

 
1H-NMR  (500 MHz, CD2Cl2): δ=1.94 (s, 3H, CH2SeCH3, 2JSe,H=10.6 Hz); δ=2.32 (s, 3H, 

CH3, 2JSe,H=11.8 Hz); δ=3.87 (s, 2H, CH2, 2JSe,H=12.6 Hz); δ=7.11-7.19 (m, 

3H, Harom / at low temperature it separated in 3 signals: δ=7.25 - dt, J=7.8, 

7.5, 1.5 Hz, 1H; δ=7.16 - dt, J=7.8, 7.6, 1.2 Hz, 1H; δ=7.09 - dd, J = 7.5, 

1.2 Hz, 1H); δ=7.41 (dd, J = 7.6, 1.5 Hz 1H, Harom)  

 
13C-NMR (125MHz, CD2Cl2): δ=4.6 (p-CH2SeCH3, 1JSe,C=64.6 Hz); δ=7.6 (p–SeCH3, 

1JSe,C=65.1 Hz); δ=28,9 (s–CH2Se, 1JSe,C=57.9 Hz, 3JSe,C=13.0 Hz); δ=126.2 

(t-Carom); δ=127.8 (t-Carom); δ=129.8 (t-Carom); δ=131.4 (t-Carom); δ=133.4 

(q-Carom, C-Se); δ=140.2 (q-Carom, C-CH2). 

 
77Se-NMR  (95 MHz, CD2Cl2): δ=158.8 (SeCH3, 4JSe,Se=37.8 Hz); δ=161,2 (CH2SeCH3, 

4JSe,Se=37.8 Hz). 

 

IR  (film, cm-1): 3055(w); 3001(m); 2923(s); 2072(w); 1948(w); 1917(w); 1692  

(w); 1636(m); 1583(m); 1566(w); 1463(s); 1438(s); 1424(s); 1270(m); 

1031(m); 904(m); 754(vs); 727(m); 614(w). 

 

HRMS  (EI+): 

  m/z 12C 1H 78Se 80Se 82Se  mmu Obs.Mass Calc.Mass 

  280 9 12     2  +1.7 279.9287 279.9269

  280 9 12    1     1 +0.8 279.9287 279.9269 

  278 9 12    1    1  +1.8 277.9295 277.9277 
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5.3.3.2 3-(methylselenyl) benzyl-methyl-selenide (25) 
 

 

Materials: 

5 g  (20 mmol)  3-bromobenzyl bromide (40 b) 

10.1 g  (100 mmol)  lithium methyl selenide (as THF/DE solution) 

6.25 ml (100 mmol)  methyl iodide 

 

Experimental procedure119: 

The experimental procedure follows the description from section 5.3.1.10. The reaction 

mixture was refluxed in DMF at 135°C for 66 hours. Purification of compound 25 was 

achieved by using a silica-gel column chromatography, with a light petroleum ether / diethyl 

ether (10:1 ratio) mixture as eluent.  

 

Yield  0.742 g (2.6 mmol)  13.3 % 

 

Habitus yellow colored oil 

 

TLC  Rf-value 0.22  light petroleum ether (30/40) / diethyl ether (10:1) 

 

GC  Rt = 19.05 min 

 

MS (EI+; m/z; %): 280 [M]+ (24.2); 265 [M-CH3]+ (0.5); 249 [M-2CH3]+ (0.9); 

185 [M-SeCH3]+ (BP, 100); 170 [C7H7Se]+ (31.3); 104 [C8H9]+ (32.5); 95 

[CH3Se]+ (7); 91 [C7H7]+ (8.9); 78 [C6H5]+ (5.9). 

 
1H-NMR  (500 MHz, CD2Cl2): δ=1.91 (s, 3H, CH3, 2JSe,H=10.6 Hz); δ=2.34 (s, 3H, CH3, 

2JSe,H=11.2 Hz); δ=3.69 (s, 2H, CH2, 2JSe,H=13.3 Hz); δ=7.094 (dt, J= 7.6, 

1.3 Hz, 1H, Harom); δ=7.18 (t, J= 7.6, 1H, Harom); δ=7.25 (dt, J= 7.6, 1.3 Hz, 

1H, Harom); δ=7.32 (t, J = 1.3 Hz, 1H, Harom). 

Molecular formula: 

C9H12Se2 

 

Molecular weight: 

278.111 g/mol 

Se

Se
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13C-NMR (125MHz, CD2Cl2): δ=4.4 (p-CH2SeCH3); δ=7.1 (p–SeCH3); δ=28,3 (s–

CH2Se); δ=126.9 (t-Carom); δ=128.5 (t-Carom); δ=129.3 (t-Carom); δ=130.6 (t-

Carom); δ=132.4 (q-Carom, C-CH2); δ=140.9 (q-Carom, C-Se). 

 
77Se-NMR  (95 MHz, CD2Cl2): δ=173.5 (SeCH3); δ=201.1 (CH2SeCH3). 

 

IR  (film, cm-1): 3049 (w); 3000 (m); 2923 (s); 2253 (w); 1687 (w); 1598 (s); 

1568 (s); 1474 (s); 1423 (s); 1272 (m); 1216 (w); 1185 (w); 1074 (m); 996 

(w); 903 (m); 853 (w); 782 (s); 696 (vs); 668 (w); 564 (w); 520 (w). 

 

UV  (c = 0.137 mg/ml in CH2Cl2): 

  λ = 248 nm; log ε = 3.94; ε = 8788 l/(mol�cm); extinction = 0.43 

  λ = 268 nm; log ε = 3.83; ε = 6745 l/(mol�cm); extinction = 0.33 

 

HRMS  (EI+): 

  m/z 12C 1H 78Se 80Se 82Se  mmu Obs.Mass Calc.Mass 

  280 9 12     2  –0.5 279.9265 279.9269

  280 9 12    1     1 –1.5 279.9265 279.9269 

  278 9 12    1    1  –0.5 277.9272 277.9277 

 

5.3.3.3 4-(methylselenyl) benzyl-methyl-selenide (26) 

 

Materials: 

2.45 g  (10 mmol)  4-bromo-benzyl bromide (40 c) 

4.04 g  (40 mmol)  lithium methyl selenide (as THF solution) 

2.5 ml  (40 mmol)  methyl iodide 

 

 

Molecular formula: 

C9H12Se2 

 

Molecular weight: 

278.111 g/mol 

Se

Se
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Experimental procedure119: 

The experimental procedure follows the description from section 5.3.1.10. The reaction 

mixture was refluxed in DMF at 125°C for 60 hours. Purification of compound 26 was 

achieved by using a silica-gel column chromatography, with a light petroleum ether / diethyl 

ether (100:1 ratio) solvent mixture. 

 

Yield  0.58 g  (2.1 mmol)  21 % 

 

Habitus yellow colored oil 

 

TLC  Rf-value 0.23 light petroleum ether (30/40) / diethyl ether     (100:1) 

 

GC  Rt = 19.33 min 

 

MS (EI+; m/z; %): 280 [M]+ (14.5); 265 [M-CH3]+ (1.1); 249 [M-2CH3]+ (0.6); 

185 [M-SeCH3]+ (BP,100); 170 [C7H7Se]+ (61.6); 104 [C8H9]+ (12) ; 95 

[CH3Se]+ (3.7); 91 [C7H7]+ (4.8); 78 [C6H5]+ (15). 

 
1H-NMR (500 MHz, CD2Cl2): δ=1.89 (s, 3H, CH3, 2JSe,H=10.6 Hz); δ=2.33 (s, 3H, CH3, 

2JSe,H=11.1 Hz); δ=3.69 (s, 2H, CH2, 2JSe,H=14.4 Hz); δ=7.16 (m, J= 8.4, 2.1, 

0.9 Hz, 2H, Harom);δ=7.33 (m, J= 8.4, 2.1 Hz, 2H, Harom). 

 
13C-NMR (125MHz, CD2Cl2): δ=4.3 (p-CH2SeCH3, 1JSe,C=64.3 Hz; δ=7.3 (p–SeCH3, 

1JSe,C=64.9 Hz); δ=28.1 (s–CH2Se, 1JSe,C=58.4 Hz); δ=129.8 (t-Carom); 

δ=130.3 (q-Carom, C-CH2); δ=130.6 (t-Carom, 2JSe,C=11.5 Hz); δ=137.9 (q-

Carom, C-Se). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=174.5 (SeCH3); δ=197.3 (CH2SeCH3). 

 

IR  (film, cm-1): 3047 (w); 2999 (m); 2922 (s); 2818 (w); 2226 (w); 1593 (w); 

1489 (s); 1423 (m); 1398 (m); 1272 (m); 1185 (w); 1094 (w); 1070 (m); 

905 (m); 826 (m); 717 (w); 622 (w); 600 (w); 537 (w); 514 (w). 

 

UV  (c = 0.083 mg/ml in CH2Cl2): 

  λ = 276 nm; log ε = 4.01; ε = 10157 l/(mol�cm); extinction = 0.3 

  λ = 258 nm; log ε = 3.96; ε = 9141 l/(mol�cm); extinction = 0.27 
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HRMS  (EI+): 

  m/z 12C 1H 78Se 80Se 82Se  mmu Obs.Mass Calc.Mass 

  280 9 12     2  -1.6 279.9254 279.9269

  280 9 12    1     1 -2.5 279.9254 279.9269 

 

5.3.3.4  2-bromobenzyl methyl selenide (41) 

 

Materials: 

10.0 g  (40 mmol)  2-bromobenzyl bromide (40 a) 

6.05 g  (60 mmol)  lithium methyl selenide (as THF/DE solution) 

2.5 ml  (40 mmol)  methyl iodide 

 

Experimental procedure119: 

Lithium methyl selenide was prepared according to the procedure described in section 5.3.1. 

The subsequent synthesis follows the procedure described in section 5.3.2.2. Refluxing 

period was 4 hours and stirring at room temperature took place for a period of 12 hours. 

The product was purified by silica-gel column chromatography using a solvent mixture of n-

hexane / dichloromethane (20:1). 

 

Yield  4.17 g  (15.8 mmol)  39.5 % 

 

Habitus yellow colored oil 

 

TLC  Rf-value  0.34   n-hexane / dichloromethane  (20:1)  

 

GC  Rt = 16.7 min 

 

MS (EI+; m/z; %): 264 [M]+ (18.8); 169 [C7H6Br]+ (BP, 100); 91 [C7H6]+ (40.7); 

63 [C5H3]+ (22.3). 

Molecular formula: 

C8H9BrSe 

 

Molecular weight: 

264.021 g/mol 

Se

Br



Preparative procedures 

 

 142 

1H-NMR (500 MHz, CD2Cl2): δ=1.97 (s, 3H, CH3, 2JSe,H= 10.8 Hz); δ=3.85 (s, 2H, CH2, 
2JSe,H= 13.1 Hz), δ=7.09 (ddd, 1H, J= 7.9, 7.0, 2.1 Hz; Harom), δ=7.25 (p-dt, 

1H, J= 7.6, 7.0, 1.0 Hz; Harom); δ=7.28 (dd, 1H, J= 7.6, 2.1 Hz; Harom); 

δ=7.54 (dd, 1H, J= 7.90, 0.91 Hz, Harom). 
13C-NMR (125 MHz, CD2Cl2): δ= 4.5 (3C, s-CH3) δ=28.7 (2C, s-CH2, 1JSe,C= 61.8 Hz); 

δ=124.5 (1C, q-Carom); δ=127.8 (1C, t-Carom); δ=128.6 (1C, t-Carom); 

δ=130.9 (1C, q-CaromCH2); δ=133.4 (1C, t-Carom); δ=139.5 (1C, q-CaromSe). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=166.9.  

 

IR (film, cm-1): 3055 (m); 2996 (m); 2922 (m); 2818 (w); 1565 (m); 1472 (s); 

1465(m); 1439 (s); 1422 (s); 1275 (m); 1187 (m); 1096 (m); 1043 (w); 

1023 (s); 943 (m); 919 (m); 817 (w); 754 (vs); 723 (m); 658 (m); 615 (w); 

568 (w). 

 

UV  (c = 0.086 mg/ml in CH2Cl2): 

λ = 274 nm; log ε = 3.04; ε = 1105 l/(mol�cm); extinction = 0.36 

 

5.3.3.5   Bis-(2-bromobenzyl) selenide (42) 
 

 

Materials: 

10.0 g  (40 mmol)  2-bromobenzyl bromide (40 a) 

6.05 g  (60 mmol)  lithium methyl selenide (as THF/DE solution) 

2.5 ml  (40 mmol)  methyl iodide 

 

 

Experimental procedure: 

The compound 42 was obtained as a by-product at the synthesis of 2-bromobenzyl methyl 

selenide (41). The experimental procedure is described in section 5.3.3.4. Purification by 

Molecular formula: 

C14H12Br2Se 

 

Molecular weight: 

419.013 g/mol 

Se

Br

Br
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column chromatography on silica-gel using a solvent mixture of n-hexane / dichloromethane 

(20:1) afforded pure 42.  

 

Yield  1.812 g  (4.3 mmol)  10.7 % 

 

Habitus light yellow crystals 

 

TLC  Rf-value 0.17   n-hexane / dichloromethane  (20:1)  

 

GC Rt= 29.7 min  

 

MS (EI+; m/z; %): 420 [M]+ (11.8); 169 [C7H6Br]+ (BP, 100); 91 [C7H6]+ (30.7); 

63 [C5H3]+ (12.3). 

 
1H-NMR (500 MHz, CD2Cl2): δ=3.94 (s, 4H, CH2, 2JSe,H= 11.4 Hz), δ=7.09 (dt, 2H, J= 

7.9, 7.7, 1.9 Hz, Harom), δ=7.24 (dt, 2H, J= 7.7, 7.6, 1.2 Hz, Harom); δ=7.30 

(dd, 2H, J= 7.6, 1.9 Hz, Harom); δ=7.54 (dd, 2H, J= 7.9, 1.2 Hz, Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=28.6 (2C, s-CH2, 1JSe,C= 62.9 Hz); δ=124.6 (2C, q-

Carom); δ=127.9 (2C, t-Carom); δ=128.8 (2C, t-Carom); δ=131.0 (2C, q-

CaromCH2); δ=133.4 (2C, t-Carom); δ=139.2 (2C, q-CaromSe). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=314.3.  

 

IR (KBr, cm-1): 3442(bs); 3079(w); 3066(w); 3050(w); 2985(w); 2943(m); 

1648(w); 1565(w); 1475(m); 1465(m); 1439(s); 1418(m); 1264(w); 

1188(w); 1182(m); 1137(w); 1043(m); 1026(s); 1021(s); 946(w); 838(m); 

763(vs); 753(vs); 723(s); 658(m); 609(w); 573(m); 481(m). 

 

UV  (c = 0.026 mg/ml in CH2Cl2): 

λ = 270 nm; log ε = 4.00; ε = 9944 l/(mol�cm); extinction = 0.062 

 

HRMS  (EI+): 

  m/z 12C 1H 81Br 78Se mmu  Obs.Mass Calc.Mass 

  420 14 12 2 1 +1.6  419.8454 419.8451 

 

  m/z 12C 1H 79Br  81Br 80Se mmu Obs.Mass Calc.Mass 

  420 14 12 1 1 1 +0.4 419.8454 419.8451 
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  m/z 12C 1H 79Br  82Se mmu  Obs.Mass Calc.Mass 

  420 14 12 2 1 -1.9  419.8454 419.8451 

 

5.3.3.6 2-bromobenzyl-t-butyldimethylsilyl ether (44) 

 

Materials:  

5.79 g  (31.0 mmol)  2-bromobenzyl alcohol (43) 

5.58 g  (37.0 mmol)  t-butyldimethylchloro silane (TBDMS-Cl) 

5.20 g  (76.4 mmol)  imidazole 

ca. 60 ml    dimethylformamide (solvent) 

 

Experimental procedure128:  

To a solution of 2-bromobenzyl alcohol (43) and imidazole in 50 ml of dry DMF in a 250 ml 

Schlenk-flask was added a solution of TBDMS-Cl in 10 ml dry DMF using a syringe. The 

reaction mixture was stirred for the next 20 h at room temperature. After that time the 

reaction was quenched by 100 ml deionized water and stirred for further 1.5 h. Afterwards 

the work up was carried out by extracting the reaction mixture with diethyl ether (4 times 

ca. 70 ml). The combined organic layers were washed with water, brine and then dried over 

MgSO4. The solvent was evaporated to afford a brown oil as raw product. The product was 

isolated by purification using column chromatography on silica gel, eluting with a petroleum 

ether / dichloromethane (10:1 ratio) solvent mixture. 

 

Yield  8.580 g (28.5 mmol)  92% 

 

Habitus colourless, clear oil 

 

TLC  Rf-value 0.45  petroleum ether (30/40) / dichloromethane  (10:1) 

 

GC  Rt = 18.50 min 

Molecular formula: 

C13H21OSiBr 

 

Molecular weight: 

301.295 g/mol 

O

Br

TBDMS
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MS (EI+; m/z; %): 301 [M]+ (~1); 243 [M-C4H9]+ (BP, 100); 213 [M-C6H15]+ 

(27.2); 169 [M-C6H15OSi]+ (46.9); 105 [C7H6O]+ (5.2); 90 [C7H6]+ (3.5). 
 

1H-NMR (500 MHz, CDCl3): δ=0.14 (s, 6H, Si(CH3)2); δ=0.97 (s, 9H, SiC(CH3)3); 

δ=4.74 (s, CH2); δ=7.12 (td, 1H, J= 7.8, 0.5 Hz, Harom); δ=7.33 (td, 1H, J= 

7.8, 0.6 Hz, Harom); δ=7.49 (dd, 1H, J= 7.9, 0.5 Hz, Harom); δ=7.56 (dd, 1H, 

J= 7.8, 0.6 Hz, Harom). 

 
13C-NMR (125 MHz, CDCl3): δ=-5.3 (2C, p-Si(CH3)2); δ=18.4 (q-SiC(CH3)3); δ=25.9 

(3C, p-SiC(CH3)3); δ=64.6 (s-CH2); δ=121.0 (q-CarBr); δ=127.3 (t-Carom); 

δ=127.5 (t-Carom); δ=128.1 (t-Carom); δ=132.0 (t-Carom); δ=140.3 (q-CarCH2). 

 

IR (KBr, cm-1): 3500-3150 (bs); 2955 (s); 2930 (s); 2885 (m); 2857 (s); 1700 

(m); 1592(w); 1571 (w); 1471 (m); 1442 (m); 1430 (w); 1421 (w); 1291 

(s); 1255 (m); 1201(m); 1130 (m); 1098 (m); 1044 (m); 1027 (m); 1006 

(w); 940 (w); 837 (s); 778 (s); 749 (s); 671 (m). 

 

UV  (c = 0.136 mg/ml in CH2Cl2): 

λ = 306 nm; log ε = 2.59; ε = 390 l/(mol�cm); extinction = 0.11 

λ = 282 nm; log ε = 2.78; ε = 602 l/(mol�cm); extinction = 0.17 

λ = 256 nm; log ε = 3.24; ε = 1735 l/(mol�cm); extinction = 0.49 

λ = 244 nm; log ε = 3.35; ε = 2231 l/(mol�cm); extinction = 0.63 

 

5.3.3.7 2-(methylselenyl)-benzyl-t-butyldimethylsilyl ether (45)  

 

Materials: 

6.03 g  (20.0 mmol)  2-bromobenzyl-t-butyldimethylsilyl ether (44) 

6.06 g  (60.0 mmol)  lithium methyl selenide (as a THF / DE solution) 

3.8 ml   (60.0 mmol)  methyl iodide 

ca. 100 ml    tetrahydrofuran (solvent) 

Molecular formula: 

C14H24OSiSe 

 

Molecular weight: 

315.386 g/mol 

O

Se

TBDMS
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ca. 100 ml    dimethylformamide (solvent) 

 

Experimental procedure119: 

To a solution of 6.03 g (20 mmol) of 44 in 100 ml of dry DMF was added 6.06 (20 mmol) of 

lithium methyl selenide as a THF/diethyl ether solution, prepared as described in section 

5.3.1.1. The reaction mixture was heated up to 70°C in order to remove the THF and diethyl 

ether by distillation. Subsequently the reaction solution was heated at 80 - 90°C under 

vigorous stirring for further 60 h. After cooling down to room temperature, MeI was added 

and stirred for 45 min, then the reaction was quenched with ca. 200 ml water and stirred 

for 1.5 h. After extraction with diethyl ether (4 times 100ml) the combined organic layers 

were washed with water, saturated NaHCO3 solution and brine, then dried over MgSO4. 

After removal of the solvent, the raw product was obtained as orange oil. The pure product 

was isolated by column chromatography on silica gel, eluting with petroleum ether (30/40) / 

diethyl ether (10:1 ratio) solvent mixture. 

 

Yield  2.98 g  (9.4 mmol)  47% 

 

Habitus dark yellow colored oil 

 

TLC  Rf-value 0.62   petroleum ether (30/40) / diethyl ether  (10:1) 

 

GC  Rt = 20.1 min 

 

MS (EI+; m/z; %): 316 [M]+ (>1); 259 [M-C4H9]+ (BP, 100); 185 [M-C6H15SiO]+ 

(50.7); 169 [M-C7H18SiO]+ (12.0); 91 [M-C7H18SiOSe]+ (27.2); 105 [C7H5O]+ 

(49.3). 
 

1H-NMR (500 MHz, CDCl3): δ=0.12 (s, 6H, Si(CH3)2); δ=0.95 (s, 9H, SiC(CH3)3); 

δ=2.31 (s, 3H, SeCH3); δ=4.77 (s, 2H, CH2); δ=7.20 (td, 1H, J= 7.4, 1.3 Hz, 

Harom); δ=7.23 (td, 1H, J= 7.4, 0.5 Hz, Harom); δ=7.37 (dd, 1H, J= 7.4, 1.3 

Hz, Harom); δ=7.45 (td, 1H, J= 7.4, 0.5 Hz, Harom). 
 

13C-NMR (125 MHz, CDCl3): δ=-5.3 (2C, p-Si(CH3)2); δ=6.9 (p-SeCH3); δ=18.4 (q-

SiC(CH3)3); δ=26.0 (3C, p-SiC(CH3)3); δ=64.6 (s-CH2); δ=126.1 (t-Carom); 

δ=126.6 (t-Carom); δ=127.6 (t-Carom); δ=129.6 (t-Carom); δ=130.4 (q-

CaromSeCH3); δ=141.2 (q-CaromCH2). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=154.5. 
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IR (film, cm-1): 3059 (w); 2954 (s); 2929 (s); 2885 (m); 2856 (s); 1528(w); 

1467 (m); 1448 (m); 1431 (w); 1255 (s); 1201(m); 1123 (m); 1093 (s); 

1051 (m); 1034 (m); 1006 (w); 839 (s); 815 (m); 777 (s); 745 (m); 672 

(m). 

 

UV  (c = 0.136 mg/ml in CH2Cl2): 

λ = 282 nm; log ε = 3.63; ε = 4281 l/(mol�cm); extinction = 0.21 

λ = 248 nm; log ε = 3.67; ε = 4689 l/(mol�cm); extinction = 0.23 

 

HRMS  (EI+): 

  m/z 12C 1H 16O 28Si 80Se mmu Obs.Mass Calc.Mass 

  316 14 24 1 1 1 -0.1 316.0760 316.0762 

 

5.3.3.8 2-(methylselenyl)-benzyl alcohol (46) 

 

 

Materials: 

5.670 g (18 mmol) 2-(methylselenyl)-benzyl-tert-butyldimethylsilyl ether (45) 

103 ml    concentrated acetic acid 

34 ml    tetrahydrofuran 

34 ml    water 

 

Experimental procedure128: 

To a solution consisting of acetic acid, THF and water was added compound 45. The slightly 

pale mixture was stirred for 20 h at room temperature. After extraction with diethy ether (4 

times 100 ml), the combined organic layers were washed with a large quantity of water, 

then saturated NaHCO3 solution and brine. The organic layers were dried over MgSO4 and 

then the solvent was removed by rotary evaporation. The final product was purified by 

column chromatography on deactivated silica gel, eluting with a petroleum ether (30/40) / 

dichloromethane (1:1 ratio) solvent mixture. 

Molecular formula: 

C8H10OSe 

 

Molecular weight: 

201.124 g/mol 

OH

Se
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Yield  3.356 g   (16.7 mmol)  93 % 

 

Habitus light yellow colored oil (crystals at -25°C) 

 

TLC  Rf-value 0.05  petroleum ether (30/40) / dichloromethane (1:1) 

 

GC  Rt = 16.25 min 

 

MS (EI+; m/z; %): 202 [M]+ (61.0); 187 [M-CH3]+ (36.6); 157 [M-C2H5O]+ 

(28.0); 105 [C7H5O]+ (95.1); 77 [C6H5]+ (BP, 100). 

 
1H-NMR (500 MHz, CDCl3): δ=2.19 (s, 1H, OH); δ=2.33 (s, 3H, SeCH3 2JSe,H=11.6 

Hz); δ=4.75 (s, 2H, CH2); δ=7.21-7.26 (m, 2H, Harom); δ=7.35-7.39 (m, 1H, 

Harom); δ=7.41-7.45 (m, 1H, Harom). 

 
13C-NMR (125 MHz, CDCl3): δ=7.4 (p-SeCH3); δ=65.1 (s-CH2); δ=126.5 (t-Carom); 

δ=128.1 (t-Carom); δ=128.4 (t-Carom); δ=130.7 (t-Carom); δ=131.5 (q-

CaromSeCH3); δ=140.9 (q-CaromCH2). 
 

77Se-NMR (95 MHz, CD2Cl2): δ=155.1. 

 

IR (film, cm-1): 3348(bs); 3057(m); 3007(w); 2927(m); 2874(w); 1587(w); 

1568(w); 1464(m); 1442(s); 1428(s); 1271(w); 1197(m); 1060(m); 1028 

(s); 908(m); 749(vs); 661(w); 603(m); 533(w); 516(w). 
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5.3.3.9 2-(methylselenyl)-benzyl selenocyanate (29)  
 

 

Materials: 

1.410 g (7.0 mmol)  2-(methylselenyl)-benzyl alcohol (46) 

4.180 g (29.0 mmol)  potassium selenocyanate 

0.75 ml (14.6 mmol)  bromine 

3.777g  (7.2 mmol)  triphenylphosphine (PPh3) 

ca. 250 ml    dichloro methane 

ca. 200 ml    tetrahydrofuran 

 

Experimental procedure129:    

To synthesize selenocyanogen131, KSeCN was dissolved in ca. 200 ml of THF and placed into 

a 500 ml three-necked flask. After cooling to -15°C bromine was added by using a syringe 

through a rubber lid. An orange colouring appeared which changed to a strong yellow colour 

at the end of the addition process. The mixture was cooled to -75°C, stirred for 45 min and 

filtrated over a glass frite (under vacuum) to a 1000 ml three-necked flask already cooled 

down to -75°C. The PPh3 dissolved in 200 ml anhydrous CH2Cl2, was added dropwise using a 

cooled dropping funnel, taking care that the reaction mixture did not warm up over a 

temperature of -65°C. The colour changed while adding to a dark orange. Then the alcohol 

46 dissolved in 50 ml of dichloromethane was slowly added by syringe in a controlled 

manner so that the reaction temperature would not exceed -70°C. Following complete 

addition of the alcohol, the reaction mixture was cooled to -75°C and stirred overnight. 

Allowed to warm up to room temperature the reaction mixture was filtered and the solvent 

evaporated. The product was purified by column chromatography on deactivated silica-gel, 

with a mixture of petroleum ether (30/40) / dichloromethane (1:1 ratio) as eluent. 

 

Yield  0.534 g (1.85 mmol)  26% 

 

Habitus pale yellow crystals 

Molecular formula: 

C9H9NSe2 

 

Molecular weight: 

289.094 g/mol 

Se

Se

N
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TLC  Rf-value  0.26  petroleum ether (30/40) / dichloro methane (1:1) 

 

GC  Rt = 21.15 min 

 

MS (EI+; m/z; %): 291 [M]+ (3.7); 185 [M-SeCN]+ (45.7); 169 [M-CH3SeCN]+ 

(23.0); 105 [SeCN]+ (BP, 100); 91 [C7H7]+ (48.1). 
 

1H-NMR (500 MHz, CD2Cl2): δ=2.37 (s, 3H, SeCH3, 2JSe,H=11.4 Hz ); δ=4.39 (s, 2H, 

CH2, 2JSe,H=15.2 Hz); δ=7.25 (td, J= 7.4, 1.6, 1H, Harom); δ=7.27 (td, J= 7.4, 

2.0, 1H, Harom); δ=7.35 (dd, J= 7.4, 2.0, 1H, Harom) δ=7.52 (dd, J=7.4, 1.6, 

1H, Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=9.0 (p-SeCH3); δ=34.4 (s-CH2); δ=102.6 (q-SeCN); 

δ=127.5 (t-Carom); δ=129.8 (t-Carom); δ=130.1 (t-Carom); δ=132.8 (t-Carom); 

δ=133.5 (q-CaromSeCH3); δ=137.7 (q-CaromCH2). 
 

77Se-NMR (95 MHz, CD2Cl2): δ=157.3 (SeCH3, 4JSe,Se=58.8 Hz); δ=282.9 (SeCN, 
4JSe,Se=58.8 Hz). 

 

IR (KBr, cm-1): 3424 (bm); 3060(w); 2992(w); 2925(m); 2153(s);  1627(w); 

1558(w); 1473(m); 1462(s); 1440(m); 1420(s); 1269(w); 1209(m); 1187 

(m); 1055(w); 1029(s); 916(m); 840(w); 765(s); 725(m); 657(m); 597(s); 

564(w); 523(w). 

 

UV  (c = 0.136 mg/ml in CH2Cl2): 

λ = 272 nm; log ε = 3.45; ε = 2846 l/(mol�cm); extinction = 1.33 

λ = 292 nm; log ε = 3.26; ε = 1819 l/(mol�cm); extinction = 0.85 

λ = 300 nm; log ε = 3.19; ε = 1541 l/(mol�cm); extinction = 0.72 

 

HRMS  (EI+) 

  m/z 12C 1H 14N 78Se 80Se mmu Obs.Mass Calc.Mass 

  291 9 9 1 1 1 +0.5 290.9080 290.9065

  291 9 9 1  2 +1.5 290.9080 290.9065 
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5.3.3.10  2-(methylselenyl)-benzyl-2-(trimethylsilyl)-ethynyl selenide (47) 
 

 

Materials: 

0.613 g (2.12 mmol)  2-(methylselenyl)-benzyl selenocyanate (29) 

0.212 g (2.16 mmol)  trimethylsilyl acetylene (as DE solution) 

1.35 ml (2.16 mmol)  n-butyllithium 

ca. 300 ml    tetrahydrofuran (solvent) 

 

Experimental procedure93: 

To a solution of TMSA (0.212 g, 2.16 mmol) in 200 ml dry THF, cooled at -25°C, n-BuLi was 

added dropwise through a rubber lid by using a syringe within a period of 10 min, then 

stirred for 2 h at -40°C. 2-(methylselenyl)-benzyl selenocyanate (29) dissolved in ca. 100 

ml of dry THF was added dropwise through a cooled dropping funnel during a period of 1.5 

h at -30°C and stirred for an additional hour. The pale yellow colored reaction mixture was 

allowed to warm up to room temperature and mixed with ca. 60 ml of saturated NH4Cl-

solution. As a result a white precipitation appeared. After adding 80 ml of light petroleum 

ether, the layers were separated. The aqueous layer was further extracted three times with 

ca. 50 ml of light petroleum ether. The combined organic layers were washed with brine and 

dried over MgSO4. The solvents were removed through rotary evaporation and the resulting 

residue was purified by silica-gel column chromatography using a mixture of petroleum 

ether (30/40) / diethyl ether (10:1) as eluent. 

 

Yield  0.259 g (7.19 mmol)  34% 

 

Habitus colourless oil 

 

TLC  Rf-value  0.56  petroleum ether (30/40) / diethyl ether (10:1) 

 

GC  Rt = 22.80 min 

Molecular formula: 

C13H18SiSe2 

 

Molecular weight: 

360.288 g/mol 

Se

Se

TMS
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MS (EI+; m/z; %): 362 [M]+ (6.9); 347 [M-CH3]+ (4.9); 185 [M-SeC5H9Si]+ 

(64.2); 169 [M-SeC6H12Si]+ (21.0); 105 [SeC2H2]+ (BP, 100). 
 

1H-NMR (500 MHz, CDCl3): δ=0.21 (s, 9H, Si(CH3)3); δ=2.40 (s, 3H, SeCH3, 
2JSe,H=11.6 Hz); δ=4.22 (s, 2H, CH2, 2JSe,H=15.8 Hz); δ=7.22–7.30 (m, 2H, 

Harom); δ=7.33 (dd, J= 7.1, 1.7 Hz, 1H, Harom); δ=7.52 (dd, J= 7.6, 1.1 Hz, 

1H, Harom). 
 

13C-NMR (125 MHz, CDCl3): δ=-0.3 (3C, p-Si(CH3)3); δ=7.9 (p-SeCH3); δ=33.6 (s-

CH2); δ=86.5 (q-SeCC); δ=109.5 (q-SiCC); δ=126.3 (t-Carom); δ=128.4 (t-

Carom); δ=130.1 (t-Carom); δ=131.5 (t-Carom); δ=133.0 (q-CarSeCH3); δ=138.5 

(q-CarCH2). 
 

77Se-NMR (95 MHz, CDCl3): δ=157.2 (SeCH3); δ=260.7 (SeC≡CTMS). 

 

5.3.3.11    1,6-bis(2´- methylselenylbenzene)-2,5-diselena-3-hexyne  (48) 
 

 

Materials: see section 5.3.3.10. 

0.613 g (2.12 mmol)  2-(methylselenyl)-benzyl selenocyanate  

0.212 g (2.16 mmol)  trimethylsilyl acetylene 

1.35 ml (2.16 mmol)  n-butyllithium 

ca. 300 ml    tetrahydrofuran (solvent) 

 

Experimental procedure: 

Compound 48 was obtained as a secondary product at the synthesis of compound 47, the 

experimental procedure being previously described in section 5.3.3.10. Compound 48 was 

purified through silica-gel column chromatography, resulting in small white needles. 

 

Molecular formula: 

C18H18Se4 

 

Molecular weight: 

550.175 g/mol 

Se

Se Se

Se
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Yield  0.082 g (0.15 mmol)  14% 

 

Habitus white thin needles  

 

TLC  Rf-value  0.21   petroleum ether (30/40) / diethyl ether  (10:1) 

 

GC  Rt = 29.86 min 

 

MS (EI+; m/z; %): 550.9 [M]+ (0.9); 534.9 [M-CH3]+ (11.2); 366.9 [C10H9Se3]+ 

(14.9); 265.0 [C8H9Se2]+ (73.6); 249.9 [C7H6Se2]+ (4.3); 185.0 [C8H9Se]+ 

(91); 105.0 [C2HSe]+ (BP, 100); 91.1 [C7H7]+ (38.9). 

 
1H-NMR  (500 MHz, CD2Cl2): δ=2.34 (s, 3H, SeCH3, 2JSe,H=11.6 Hz); δ=4.10 (s, 2H, 

CH2, 2JSe,H=15.6 Hz); δ=7.12 (dd, J= 7.5, 1.8 Hz, 1H, Harom); δ=7.16 (ddd,  

J= 7.5, 7.4, 1.3 Hz, 1H, Harom); δ=7.19 (ddd, J= 7.6, 7.4, 1.8 Hz, 1H, Harom); 

δ=7.45 (dd, J = 7.6, 1.3 Hz, 1H, Harom). 

 
13C-NMR (125MHz, CD2Cl2): δ=7.8 (p-SeCH3); δ=34.6 (s-CH2); δ=84.6 (q-C≡C); 

δ=126.3 (t-Carom); δ=128.2 (t-Carom); δ=130.0 (t-Carom); δ=131.3 (t-Carom); 

δ=132.9 (q-CaromSeCH3); δ=138.3 (q-CaromCH2). 

 
77Se-NMR (95 MHz, CDCl3): δ=159.8 (SeCH3); δ=273.3 (SeC≡C). 

 

IR (film, cm-1): 3054 (w); 3003 (w); 2925 (m); 2850 (w); 1688 (w); 1667 (w); 

1584 (w); 1463 (m); 1439 (m); 1424 (m); 1268 (w); 1203 (w); 1179 (w); 

1055 (w); 1030 (m); 952 (w); 907 (w); 840 (w); 753 (s); 726 (m); 710 (w); 

659 (w); 512 (m). 

 

UV  (c = 0.047 mg/ml in CH2Cl2): 

λ = 304 nm; log ε = 4.68; ε = 47979 l/(mol�cm); extinction = 0.41 

λ = 278 nm; log ε = 4.99; ε = 97128 l/(mol�cm); extinction = 0.83 

 

HRMS  (EI+). 

  m/z 12C 1H 78Se 80Se 82Se mmu Obs.Mass Calc.Mass 

  551 18 18 1  3 +1.8 551.8095 551.8077 

  551 18 18 2 1 1 +0.8 551.8095 551.8077 
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5.3.3.12 2-(methylselenyl)-benzyl ethynyl selenide (33) 
 

 

Materials: 

0.18 g     (0.5 mmol)    2-(methylselenyl)-benzyl 2-(trimethylsilyl)-ethynyl selenide (47) 

0.5 ml     (0.05 mmol)   0.1N NaOH solution 

50 ml        methanol (solvent) 

10 ml        tetrahydrofuran (solvent) 

 

Experimental procedure: 

To a solution of compound 47 in 50 ml methanol and 10 ml THF was added the 0.1N NaOH 

solution dropwise over a period of 5 minutes. The reaction mixture was stirred for 2 h at 

room temperature. Then the mixture was poured into 100 ml of ice/water mixture, and 100 

ml of diethyl ether was added. The layers were separated and the aqueous layer was 

extracted 3 times with diethyl ether. The combined organic layers were washed with NH4Cl 

solution and brine and dried over MgSO4 for 1 h. After rotary evaporation, the product was 

purified by silica-gel column chromatography, eluting with a mixture of petroleum ether 

(30/40) / diethyl ether (20:1). 

 

Yield  0.109 g (0.38 mmol)  76% 

 

Habitus colourless oil 

 

TLC  Rf-value  0.41   petroleum ether (30/40) / diethyl ether  (20:1) 

 

GC  Rt = 19.71 min 

 

MS (EI+; m/z; %): 290 [M]+ (4.9); 185 [M-SeC2H]+ (45.5); 169 [M-SeC3H4]+ 

(22.4); 105 [SeC2H2]+ (BP, 100). 

 

Molecular formula: 

C10H10Se2 

 

Molecular weight: 

288.106 g/mol 

Se

Se
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1H-NMR (500 MHz, CD2Cl2): δ=2.35 (s, 3H, SeCH3, 2JSe,H=11.6 Hz); δ=2.93 (s, 

C≡CH); δ=4.19 (s, 2H, CH2, 2JSe,H=14.9 Hz); δ=7.19 (td, J =7.4, 1.4, 1H, 

Harom); δ=7.22 (td, J= 7.4, 1.8, 1H, Harom); δ=7.29 (dd, J= 7.1, 1.8, 1H, 

Harom) δ=7.47 (dd, J= 7.4, 1.4, 1H, Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=8.3 (p-SeCH3); δ=33.6 (s-CH2, 1JSe,C=51.6 Hz); δ=66.1 

(t-CH); δ=90.1 (q-SeCCH); δ=126.7 (t-Carom); δ=128.8 (t-Carom); δ=130.1 (t-

Carom); δ=131.9 (t-Carom); δ=133.4 (q-CarSeCH3); δ=138.7 (q-CarCH2). 
 

77Se-NMR (95 MHz, CD2Cl2): δ=157.5 (SeCH3, 4JSe,Se=40.9 Hz); δ=238.3 (SeC≡CH, 
4JSe,Se=40.9 Hz). 

 

IR (film, cm-1): 3277 (s); 3161 (w); 3055 (w); 3002 (w); 2926 (w); 2882 (w); 

2615 (w); 2028 (w); 1912 (m); 1563 (w); 1463 (m); 1440 (m); 1423 (m); 

1269 (m); 1208 (m); 1184 (s); 1096 (m); 1054 (m); 1031 (s); 909 (m); 840 

(m); 812 (m); 755 (vs); 726 (s); 678 (m); 660 (m); 597 (m);567 (m); 536 

(m); 513 (w).  

 

UV  (c = 0.13 mg/ml in CH2Cl2): 

λ = 302 nm; log ε = 3.62; ε = 4209 l/(mol�cm); extinction = 0.19 

λ = 272 nm; log ε = 3.25; ε = 1772 l/(mol�cm); extinction = 0.08 

 

HRMS  (EI+): 

  m/z 12C 1H 78Se 80Se 82Se mmu Obs.Mass Calc.Mass 

  290 10 10     2  +1.3 289.9126 289.9113 

  290 10 10    1     1 +0.3 289.9126 289.9113 

  288 10 10    1    1  +1.2 287.9132 287.9121 
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5.3.3.13 Methyl 2-selenocyanatobenzoate (50)  
 

 

Materials: 

39.45 g  (261 mmol)  methylantranilate (49) 

21.61 g  (313 mmol)  sodium nitrite (as aqueos 3M solution) 

36.76 g  (255 mmol)  potassium selenocyanate (KSeCN) 

150 ml      HCl 6N solution 

ca. 60 g     sodium acetate 

 

Experimental procedure132: 

Methyl anthranilate (49) was suspended in 6N HCl at -20°C and the solution of NaNO2 was 

added dropwise, in such a way that the temperature of the reaction mixture was kept below 

-10°C. After stirring for 1 hour, saturated aqueous CH3COONa was added dropwise until the 

pH of the reaction solution reached a value around 5.7-6.2. Then the mixture was filtered 

and poured into aqueous solution of KSeCN all at once. The resulting precipitate was 

collected and washed with a small amount of water. Recrystallization from methanol 

afforded yellow crystals, which were dried under vacuum to remove all traces of solvent. 

 

Yield  37.1 g  (154 mmol)  61 % 

 

Habitus redish yellow crystals 

 

GC  Rt = 19.07  min 

 

MS (EI+; m/z; %): 241 [M]+ (83.2); 210 [M-CH3O]+ (100); 182 [C7H4NSe]+, 

(64.7); 156 [C6H4Se]+, (28.9); 104 [C7H4O]+ (11.5); 92 [CHSe]+ (8.6); 76 

[C6H4]+ (32.5). 

 

Molecular formula: 

C9H7NO2Se 

 

Molecular weight: 

240.117 g/mol 

O

Se

CN

O
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1H-NMR (500 MHz, CD2Cl2): δ= 3.99 (s, 3H, CH3); δ=7.44 (dt, J= 7.7, 7.4, 0.8, 1H, 

Harom); δ=7.44 (ddd, J= 8.1, 7.4, 1.5, 1H, Harom); δ=8.06 (dd, J= 8.1, 0.8, 

1H, Harom); δ=8.12 (dd, J= 7.7, 1.5, 1H, Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=3.7 (1C, p-CH3); δ= 105.8 (1C, q-SeCN); δ=126.7 

(1C, q-Carom); δ=128.1 (1C, t-Carom); δ=130.3 (1C, t-Carom); δ=131.4 (1C,  

q-Carom); δ=131.8 (1C, t-Carom); δ=135.0 (1C, t-Carom); δ=168.7 (1C, q-C=O). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=391.1. 

 

IR (KBr, cm-1): 3442 (b); 2953 (w); 2918 (m); 2850 (w); 2148 (w); 1725 (w); 

1686 (vs); 1586 (m); 1568 (w); 1467 (m); 1437 (s); 1312 (vs); 1291 (vs); 

1267 (m); 1194 (m); 1144 (m); 1113 (m); 1052 (m); 1029 (m); 804 (w); 

738 (vs); 681 (w). 

 

UV  (c = 0.075 mg/ml in CH2Cl2): 

λ = 308 nm; log ε = 3.46 ; ε = 2880 l/(mol�cm); extinction = 0.09 

λ = 250 nm; log ε = 3.85 ; ε = 7040 l/(mol�cm); extinction = 0.22 

 

5.3.3.14 2,2’- diselenobis(benzyl alcohol) (51) 
 

 

 

Materials: 

22.68 g (94.0 mmol)  methyl 2-selenocyanatobenzoate (50) 

5.33 g  (140,0 mmol)  lithium aluminium hydride  

ca. 40 ml    6N HCl solution 

600 ml     diethyl ether (solvent) 

 

 

Molecular formula: 

C14H14O2Se2 

 

Molecular weight: 

372.179 g/mol 

Se Se

OH

HO
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Experimental procedure132: 

To a suspension of LiAlH4 in dry diethyl ether was added slowly under argon atmosphere an 

ethereal solution of methyl 2-selenocyanatobenzoate (50) was added slowly to the mixture 

under stirring. After addition was complete, the reaction mixture was refluxed for 2.5 hours. 

After cooling down, an excess of 6N HCl solution was carefully added until all solid residue 

formed during the reflux was dissolved. Through a needle, air was bubbled into the reaction 

mixture under stirring overnight. After extraction with diethyl ether, the organic layers were 

washed with water and brine, then dried over Na2SO4. Removal of solvent through rotary 

evaporation and further recrystallization from dichloromethane and light petroleum yielded 

2,2’-diselenonobis(benzyl alcohol) (51) as a yellow solid.  

 

Yield  15.81 g  (42.5 mmol)  45 % 

 

Habitus yellow solid 

 

m.p.  94°C 

 

GC Rt= 25.05 min  

 

MS (FAB+; m/z; %): 374 [M]+ (21.4); 357 [M-OH]+ (12.1); 339 [M-2�OH]+ (3.6); 

154 [C6H4Se]+ (BP, 100). 

 
1H-NMR (300 MHz, CDCl3): δ=1.79 (s, 2H, 0H) , δ=4.72 (s, 2H, CH2); δ=7.19 (td, 2H, 

J= 7.6, 7.5, 1.4 Hz, Harom); δ=7.30 (dt, 2H, J= 7.6, 7.5, 1.0 Hz, Harom); 

δ=7.39 (dd, 2H, J= 7.6, 1.4 Hz, Harom); δ=7.68 (dd, 2H, J= 7.5, 1.0 Hz, 

Harom). 

 
13C-NMR (75 MHz, CDCl3): δ=65.3 (2C, s-CH2); δ=128.4 (2C, t-Carom); δ=128.8 (2C,  

t-Carom); δ=128.9 (2C, t-Carom); δ=130.6 (2C, q-CaromCH2); δ=134.9 (2C,  

t-Carom); δ=142.1 (2C, q-CaromSe). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=431.4.  

 

IR (KBr, cm-1): 3313 (bs); 3056 (w); 2965 (w); 2891 (w); 2848 (m); 1523 (w); 

1566 (m); 1488 (m); 1469 (m); 1458 (m); 1441 (s); 1369 (w); 1262 (m); 

1192 (m); 1192 (m); 1153 (w); 1113 (m); 1054 (vs); 1044 (vs); 1024 (vs); 

990 (w); 798 (m); 740 (s). 
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UV  (c = 0.121 mg/ml in CH2Cl2): 

λ = 326 nm; log ε = 2.96; ε = 922 l/(mol�cm); extinction = 0.03 

λ = 246 nm; log ε = 4.14; ε = 13835 l/(mol�cm); extinction = 0.45 

 

HRMS  (EI+): 

  m/z 12C 1H O 80Se  mmu Obs.Mass Calc.Mass 

  374 14 14 2 2  +0.1 373.9325 373.9327 

 

m/z 12C 1H O 78Se 82Se mmu Obs.Mass Calc.Mass 

  374 14 14 2 1 1 -0.9 373.9325 373.9327 

 

5.3.3.15 2,2’- diselenobis(benzyl bromide) (52) 

 

Materials: 

18.285 g (49.1 mmol)  2,2’-diselenobis(benzyl alcohol) (51) 

11.659 g (147.4 mmol)  pyridine 

24.512 g (117.9 mmol)  thionyl bromide 

150 ml     6N HCl solution 

450 ml     dichloromethane (solvent) 

  

Experimental procedure3: 

To a solution of 2,2’-diselenobis(benzyl alcohol) (51) in dichloromethane was added 11.66 g 

of pyridine and cooled to -10°C. Thionyl bromide was slowly added dropwise to the solution 

under vigorous stirring. The reaction mixture was allowed to warm up to room temperature 

and stirred for 4 hours at room temperature. An excess amount of 6N HCl solution was 

added and after extracting with dichloromethane, the raw product, obtained after 

evaporation of the solvents, was purified by silica-gel column chromatography to afford 

compound 52 as a yellow solid. 

 

Yield  22.57 g  (45.3 mmol)  92 % 

Molecular formula: 

C14H12Br2Se2 

 

Molecular weight: 

497.973 g/mol 

Se Se

Br

Br
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Habitus yellow solid 

 

m.p. 76.5°C 

 

GC Rt= 25.7 min  

 

MS (FAB+ - matrix NBA; m/z; %): 497.7 [M]+ (52.7); 418.8 [M-Br]+ (25.1); 

339.9 [M-2�Br]+ (9.6); 154 [C6H4Se]+ (BP, 100). 

 
1H-NMR (500 MHz, CD2Cl2): δ=4.62 (s, 2H, CH2); δ=7.23 (dt, 2H, J= 7.6, 7.5, 1.4 Hz, 

Harom); δ=7.29 (dt, 2H, J= 7.6, 7.5, 1.1 Hz, Harom); δ=7.38 (dd, 2H, J= 7.5, 

1.4 Hz, Harom); δ=7.75 (dd, 2H, J= 7.6, 1.1 Hz, Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=34.4 (2C, s-CH2); δ=129.4 (2C, t-Carom); δ=130.0 (2C, 

t-Carom); δ=130.4 (2C, t-Carom); δ=132.8 (2C, q-CaromCH2); δ=135.6 (2C,  

t-Carom); δ=139.6 (2C, q-CaromSe). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=432.5.  

 

IR (KBr, cm-1): 3440(bs); 3047(w); 3023(w); 1948(w); 1916(w); 1628(m); 

1580(w); 1563(w); 1465(m); 1441(m); 1274(w); 1222(s); 1200(m); 

1137(w); 1049(m); 1026(w); 816(m); 755(vs); 722(m); 654(w); 601(s); 

559(m); 485(w). 

 

UV  (c = 0.063 mg/ml in CH2Cl2): 

λ = 332 nm; log ε = 3.16; ε = 1457 l/(mol�cm); extinction = 0.29 

λ = 296 nm; log ε = 3.67; ε = 4724 l/(mol�cm); extinction = 0.94 

λ = 254 nm; log ε = 4.30; ε = 20101 l/(mol�cm); extinction = 0.4 

 

HRMS  (FAB+): 

  m/z 12C 1H 81Br 80Se mmu Obs.Mass Calc.Mass 

  498 14 12 2 2 +2.2 497.7636 497.7660 
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5.3.3.16 2-(bromoselenyl)-benzyl bromide (55) 

 

Materials: 

1.0 g  (2.0 mmol)  2,2’- diselenobis(benzyl bromide) (52) 

0.11 ml (2.1 mmol)  bromine 

100 ml     dichloromethane (solvent) 

 

Experimental: 

To a solution of compound 52 dissolved in 100 ml dichloromethane in a Schlenck flask, 

bromine was added dropwise from a syringe through a septum. The solution started to 

change its colour to a dark brown. After addition of bromine was completed the reaction 

mixture was stirred for 1 h at room temperature. The solvent and the unreacted bromine 

were removed through evaporation under medium vacuum conditions in anhydrous argon 

atmosphere and compound 55 was obtained as a dark brown wax-like solid. The raw 

product was kept for a short time under argon and used, without any further purification, 

for synthesizing 2-(cyanoselenyl)-benzyl bromide (56). 

 

Yield  0.320 g raw product   (49%) 

 

Habitus dark brown amorphous solid 
 

1H-NMR (300 MHz, CDCl3): δ=4.58 (s, 2H, CH2); δ=7.06 (m, Harom, 2H); δ=7.22 (m, 

Harom, 1H); δ=7.33 (m, Harom, 1H). 
 

13C-NMR (125 MHz, CDCl3): δ=36.9 (s-CH2), δ=125.7 (t-Carom); δ=126.38 (t-Carom); 

δ=126.39 (t-Carom); δ=127.3 (t-Carom); δ=137.4 (q-CaromSeBr); δ=143.0  

(q-CaromCH2). 

 
77Se-NMR (75 MHz, CDCl3): δ=787.4 

 

Molecular formula: 

C7H6SeBr2 

 

Molecular weight: 

329.890 g/mol SeBr

Br
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IR  (film, cm-1): 3600–3100 (bs); 3058 (m); 1622 (bm); 1584 (m); 1373 (w); 

1222 (s); 1199 (m); 1058 (m); 755 (s); 723 (m); 666 (w); 605 (w); 564 (s); 

520 (m); 502 (m). 

 

UV  (c = 0.095 mg/ml in CH2Cl2): 

λ = 460 nm; log ε = 2.96; ε = 914     l/(mol�cm); extinction = 0.14 

λ = 386 nm; log ε = 3.29; ε = 1958   l/(mol�cm); extinction = 0.30 

λ = 302 nm; log ε = 4.12; ε = 13053 l/(mol�cm); extinction = 0.20 

λ = 266 nm; log ε = 4.58; ε = 37853 l/(mol�cm); extinction = 0.58 

λ = 250 nm; log ε = 4.70; ε = 50253 l/(mol�cm); extinction = 0.77 

 

HRMS  (EI+): 

  m/z 12C 1H 81Br 78Se  mmu Obs.Mass Calc.Mass 

  330 7 6 2 1  +0.0 329.7968 329.7981 

 

  m/z 12C 1H 79Br 81Br 80Se mmu Obs.Mass Calc.Mass 

  330 7 6 1 1 1 -1.3 329.7968 329.7981 

 

  m/z 12C 1H 79Br 82Se  mmu Obs.Mass Calc.Mass 

  330 7 6 2 1  -3.5 329.7968 329.7981 

 

5.3.3.17   2-(cyanoselenyl)-benzyl bromide (56) 

 

Materials: 

1.19 g  (2.4 mmol)  2,2’- diselenobis(benzyl bromide) (52) 

0.12 ml (2.4 mmol)  bromine 

100 ml     dichloromethane (solvent) 

0.96 ml (7.2 mmol)  trimethylsilylcyanide (TMSCN) 

100 ml     tethrahydrofuran (solvent) 

Molecular formula: 

C8H6NSeBr 

 

Molecular weight: 

275.004 g/mol 

Br

Se

N
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Experimental procedure: 

Compound 56 was synthesized in a one-pot reaction from compound 52, having as an 

intermediate compound 55, following the procedure from section 5.3.1.25. The solid dark 

brown colored raw product containing 55 was dissolved into 100 ml of dry THF under argon 

atmosphere. Afterwards TMSCN was added carefully and stirred for 2h. The colour of the  

reaction mixture changed from dark redish to light orange. The solvent was evaporated and 

the raw material purified by silica-gel column chromatography, eluting with a mixture of 

petroleum ether (30/40) / dichloromethane (2:1), obtaining pure compound 56 as a viscous 

oil, that slowly solidifies at room temperature. 

 

Yield  1.255 g (4.5 mmol) 95 % 

 

Habitus light yellow solid 

 

TLC  Rf-value  0.17 petroleum ether (30/40) / dichloromethane (2 : 1) 

 

GC  Rt = 19.15 min 

 

MS (EI+; m/z; %): 275 [M]+ (13.6); 196 [M-Br]+ (54.3); 169 [M-BrCN]+ (BP, 

100); 89 [C7H5]+ (48.6). 

 
1H-NMR (500 MHz, CD2Cl2): δ=4.65 (s, 2H, CH2); δ=7.37 (dt, J = 7.6, 1.5 Hz, 1H, 

Harom); δ=7.43 (dt, , J = 7.5, 1.1 Hz, 1H, Harom); δ=7.49 (dd, J = 7.5, 1.5 Hz, 

1H,  Harom); δ=7.86 (dd, J = 7.6, 1.1 Hz, 1H, Harom). 

 
13C-NMR (125 MHz, CD2Cl2): δ=33.6 (s-CH2); δ=101.4 (q-SeCN); δ=124.9 (q-Carom); 

δ=130.9 (t-Carom); δ=131.0 (t-Carom); δ=131.4 (t-Carom); δ=135.8 (t-Carom); 

δ=139.8 (q-Carom). 

 
77Se-NMR (95 MHz, CD2Cl2): δ=276.3. 

 

IR (KBr, cm-1): 3426(b); 3070(w); 3024(m); 2964(w); 2153(s); 1567(m); 

1464(s); 1443(s); 1428(s); 1278(w); 1223(s); 1196(m); 1027(m); 819(m); 

759(s); 717(s); 652(m); 602(s); 567(m); 520(m); 484(w); 439(m). 

 

UV  (c = 0.196 mg/ml in CH2Cl2): 

λ = 246 nm; log ε = 3.80; ε = 6314 l/(mol�cm); extinction = 0.45 

λ = 274 nm; log ε = 3.32; ε = 2105 l/(mol�cm); extinction = 0.15 
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HRMS  (EI+): 

  m/z 12C 1H 14N 79Br 80Se mmu Obs.Mass Calc.Mass 

  275 8 6 1 1 1 +0.0 290.8849 290.8849 

 

5.3.3.18    2-(cyanoselenyl)-benzyl selenocyanate (57) 
 

 

Materials: 

0.55 g  (2 mmol) 2-methylselenyl-benzyl bromide (56) 

0.36 g  (2.5 mmol) potassium selenocyanate (KSeCN) 

ca. 50 ml    acetone (solvent) 

 

 

Experimental procedure:  

To a solution of KSeCN in 35 ml of dry degassed acetone was added a solution of 56 in 15 

ml of acetone by using a syringe. The reaction mixture was heated to 60°C under reflux and 

stirred for 4 hours. The solvent was removed through rotary evaporation. The brown solid 

obtained as a raw material, was dissolved in dichloromethane. A white precipitate appeared 

and it was removed thourgh filtration under vacuum. Dichloromethane was removed by 

rotary evaporation, yielding a viscous oil as raw material. The GC/MS analysis showed the 

desired product as 50% of the raw material, in a mixture with an unkown product (1:1 

ratio) with a molecular peak corresponding to 3H-1,2-benzodiselenole (58). Several 

attempts of purifying compound 57 through silica-gel column chromatography or 

recrystallization failed. NMR spectroscopic analysis were done using some enriched fractions 

from silica-gel column chromatography. 

 

Yield  0.270 g (0.9 mmol)   45% (yield from the GC analysis). 

 

GC  Rt = 22.95 min 

 

Molecular formula: 

C9H6N2Se2 

 

Molecular weight: 

300.077 g/mol 

Se

Se

N

N
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MS (EI+; m/z; %): 300 [M]+ (2.2); 247 [M-C2N2]+ (11.1); 196 [M-SeCN]+ (35.8); 

169 [M-SeC2N2]+ (BP, 100); 116 [SeC3H]+ (27.2); 89 [M-Se2C2N2]+ (60.5). 

 
1H-NMR  (500 MHz, CD2Cl2): δ=4.48 (s, 2H, CH2, 2JSe,H=17.4 Hz); δ=7.37–7.43 (m, 

1H, Harom); δ=7.51–7.53 (m, 2H, Harom); δ=7.89 (d, J = 7.8 Hz, 1H, Harom). 

 
13C-NMR (125 MHz, CDCl3): δ=32.7 (s-CH2, 1JSe,C=49.4Hz); δ=100.56 (q-SeCN); 

δ=100.61 (q-SeCN); δ=122.8 (q-Carom); δ=130.8 (t-Carom); δ=131.5  

(t-Carom); δ=131.7 (t-Carom); δ=137.3 (t-Carom); δ=138.8 (q-Carom). 

 
77Se-NMR (95 MHz, CDCl3): δ=267.9 (4JSe,Se=34 Hz, SeCN); δ=309.0 (4JSe,Se=34 Hz, 

SeCN). 
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6. X-ray structures 

 

6.1 2,5,14,17-Tetraselena[6.6]-ortho-cyclophan- 
3,15-diyne (18 a) 

Crystal data and structure refinement 

 Operator F. Rominger 
 Identification code al12  
 Empirical formula C20H16Se4  
 Formula weight 572.17  
 Temperature 100(2) K  
 Wavelength 0.71073 Å  
 Crystal system monoclinic  
 Space group C2/c  
 Z 8  
 Unit cell dimensions a = 24.293(2) Å α = 90 deg.  
  b =5.2235(5) Å β =92.753(2) deg.  
  c = 30.239(3) Å γ = 90 deg.  
 Volume 3832.6(7) Å3  
 Density (calculated) 1.98 g/cm3  
 Absorption coefficient 7.66 mm-1  
 Crystal shape polyhedron  
 Crystal size 0.20 x 0.08 x 0.05 mm3  
 Crystal colour colorless  
 Theta range for data collection 1.7 to 28.3 deg.  
 Index ranges -32≤h≤32, -6≤k≤6, -40≤l≤40  
 Reflections collected 19112  
 Independent reflections 4744 (R(int) = 0.0384)  
 Observed reflections 3821 (I >2σ(I))  
  
 Absorption correction Semi-empirical from equivalents  
 Max. and min. transmission 0.70 and 0.31  
 Refinement method Full-matrix least-squares on F2  
 Data/restraints/parameters 4744 / 0 / 217  
 Goodness-of-fit on F2 1.01  
 Final R indices (I>2σ(I)) R1 = 0.029, wR2 = 0.058  
 Largest diff. peak and hole 0.55 and -0.41 eÅ-3  
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Atomic coordinates and equivalent isotropic displacement parameters (Å2) for 18a  
Ueq is defined as one third of the trace of the orthogonalized Uij tensor 

 Atom x y z Ueq  

 Se1 0.5149(1) 1.0104(1) 0.4444(1) 0.0172(1)  
 Se2 0.5177(1) 0.5534(1) 0.3072(1) 0.0216(1)  
 Se3 0.7192(1) 0.4538(1) 0.3257(1) 0.0300(1)  
 Se4 0.7227(1) 1.0473(1) 0.4487(1) 0.0222(1)  
 C1 0.5782(1) 1.2550(5) 0.4484(1) 0.0195(6)  
 C2 0.5256(1) 0.8478(5) 0.3923(1) 0.0168(5)  
 C3 0.5266(1) 0.7091(5) 0.3606(1) 0.0167(5)  
 C4 0.5774(1) 0.2919(5) 0.3097(1) 0.0229(6)  
 C5 0.6015(1) 0.2773(5) 0.2651(1) 0.0188(6)  
 C6 0.5813(1) 0.0966(5) 0.2348(1) 0.0204(6)  
 C7 0.6009(1) 0.0820(5) 0.1924(1) 0.0222(6)  
 C8 0.6415(1) 0.2483(5) 0.1803(1) 0.0239(6)  
 C9 0.6624(1) 0.4284(5) 0.2103(1) 0.0242(6)  
 C10 0.6427(1) 0.4471(5) 0.2524(1) 0.0192(5)  
 C11 0.6671(1) 0.6398(5) 0.2845(1) 0.0253(6)  
 C12 0.7233(1) 0.6841(5) 0.3711(1) 0.0229(6)  
 C13 0.7248(1) 0.8313(5) 0.4014(1) 0.0218(6)  
 C14 0.6623(1) 0.8766(5) 0.4797(1) 0.0196(6)  
 C15 0.6393(1) 1.0699(5) 0.5107(1) 0.0162(5)  
 C16 0.6572(1) 1.0722(5) 0.5548(1) 0.0202(6)  
 C17 0.6377(1) 1.2517(5) 0.5841(1) 0.0220(6)  
 C18 0.6000(1) 1.4332(5) 0.5691(1) 0.0223(6)  
 C19 0.5817(1) 1.4332(5) 0.5250(1) 0.0185(5)  
 C20 0.6005(1) 1.2540(5) 0.4952(1) 0.0164(5)  

Hydrogen coordinates and isotropic displacement parameters (Å2) for 18a  

 Atom x y z Ueq  

 H1A 0.6070 1.2011 0.4282 0.023  
 H1B 0.5656 1.4291 0.4398 0.023  
 H4A 0.6062 0.3402 0.3324 0.028  
 H4B 0.5622 0.1232 0.3178 0.028  
 H6 0.5535 -0.0193 0.2432 0.024  
 H7 0.5864 -0.0416 0.1719 0.027  
 H8 0.6552 0.2394 0.1515 0.029  
 H9 0.6907 0.5411 0.2017 0.029  
 H11A 0.6376 0.7214 0.3012 0.030  
 H11B 0.6867 0.7748 0.2686 0.030  
 H14A 0.6331 0.8178 0.4580 0.024  
 H14B 0.6767 0.7263 0.4965 0.024  
 H16 0.6834 0.9486 0.5653 0.024  
 H17 0.6503 1.2497 0.6143 0.026  
 H18 0.5867 1.5574 0.5889 0.027  
 H19 0.5557 1.5584 0.5148 0.022  

Anisotropic displacement parameters (Å2) for 18a  
The anisotropic displacement factor exponent form:  -2 pi2 (h2 a*2 U11 + ... + 2 h k a* b* U12) 

 Atom U11 U22 U33 U23 U13 U12  

 Se1 0.0190(1) 0.0188(1) 0.0139(1) -0.0035(1) 0.0019(1) -0.0004(1)  



X-ray structures 

 

 169 

 Se2 0.0266(2) 0.0238(1) 0.0142(1) -0.0052(1) -0.0022(1) 0.0020(1)  
 Se3 0.0281(2) 0.0271(2) 0.0337(2) -0.0101(1) -0.0086(1) 0.0078(1)  
 Se4 0.0202(2) 0.0226(1) 0.0241(2) -0.0029(1) 0.0054(1) -0.0053(1)  
 C1 0.0245(15) 0.0165(12) 0.0173(14) 0.0018(10) -0.0024(11) -0.0038(11)  
 C2 0.0164(13) 0.0187(13) 0.0151(13) 0.0015(10) 0.0003(10) 0.0029(10)  
 C3 0.0189(14) 0.0179(12) 0.0134(13) 0.0006(10) 0.0020(11) -0.0034(10)  
 C4 0.0314(16) 0.0171(13) 0.0204(15) 0.0014(11) 0.0031(12) 0.0044(11)  
 C5 0.0237(15) 0.0157(12) 0.0171(14) 0.0019(10) 0.0009(11) 0.0043(10)  
 C6 0.0197(14) 0.0190(13) 0.0224(15) 0.0010(11) 0.0023(11) 0.0009(10)  
 C7 0.0240(15) 0.0230(14) 0.0195(14) -0.0069(11) 0.0004(11) 0.0032(11)  
 C8 0.0267(16) 0.0284(15) 0.0169(14) -0.0003(12) 0.0042(12) 0.0042(12)  
 C9 0.0257(15) 0.0240(14) 0.0231(15) 0.0035(12) 0.0045(12) -0.0017(12)  
 C10 0.0203(14) 0.0158(12) 0.0213(14) 0.0003(11) -0.0017(11) 0.0024(10)  
 C11 0.0281(16) 0.0190(13) 0.0285(16) 0.0012(12) -0.0044(13) 0.0001(12)  
 C12 0.0162(14) 0.0259(14) 0.0264(16) 0.0000(12) -0.0018(12) -0.0008(11)  
 C13 0.0176(14) 0.0252(14) 0.0225(15) 0.0016(12) -0.0001(12) 0.0011(11)  
 C14 0.0181(14) 0.0169(12) 0.0241(15) 0.0043(11) 0.0030(11) -0.0021(10)  
 C15 0.0141(13) 0.0171(12) 0.0174(13) 0.0029(10) 0.0008(10) -0.0035(10)  
 C16 0.0174(14) 0.0191(13) 0.0238(15) 0.0072(11) -0.0023(11) -0.0036(10)  
 C17 0.0231(15) 0.0273(14) 0.0152(14) 0.0052(11) -0.0037(12) -0.0096(12)  
 C18 0.0268(15) 0.0207(13) 0.0199(14) -0.0044(11) 0.0042(12) -0.0080(11)  
 C19 0.0167(13) 0.0159(12) 0.0228(14) 0.0004(11) 0.0002(11) -0.0016(10)  
 C20 0.0172(13) 0.0159(12) 0.0164(13) 0.0023(10) 0.0021(11) -0.0048(10)  

Bond lengths (Å) and angles (deg) for 18a  

 Se1-C2 1.818(3)  
 Se1-C1 1.997(3)  
 Se2-C3 1.813(3)  
 Se2-C4 1.990(3)  
 Se3-C12 1.825(3)  
 Se3-C11 1.986(3)  
 Se4-C13 1.825(3)  
 Se4-C14 1.990(3)  
 C1-C20 1.492(4)  
 C2-C3 1.203(4)  
 C4-C5 1.500(4)  
 C5-C6 1.388(4)  
 C5-C10 1.405(4)  
 C6-C7 1.391(4)  
 C7-C8 1.377(4)  
 C8-C9 1.385(4)  
 C9-C10 1.387(4)  
 C10-C11 1.500(4)  
 C12-C13 1.195(4)  
 C14-C15 1.503(4)  
 C15-C16 1.385(4)  
 C15-C20 1.410(4)  
 C16-C17 1.387(4)  
 C17-C18 1.380(4)  
 C18-C19 1.386(4)  
 C19-C20 1.392(4)  
 C2-Se1-C1 102.08(12)  
 C3-Se2-C4 102.59(12)  
 C12-Se3-C11 99.15(12)  
 C13-Se4-C14 98.12(12)  

 C20-C1-Se1 107.41(17)  
 C3-C2-Se1 168.7(2)  
 C2-C3-Se2 167.1(2)  
 C5-C4-Se2 108.34(18)  
 C6-C5-C10 118.9(3)  
 C6-C5-C4 119.2(2)  
 C10-C5-C4 121.9(2)  
 C5-C6-C7 121.3(3)  
 C8-C7-C6 119.4(3)  
 C7-C8-C9 120.1(3)  
 C8-C9-C10 121.1(3)  
 C9-C10-C5 119.2(2)  
 C9-C10-C11 120.0(3)  
 C5-C10-C11 120.8(3)  
 C10-C11-Se3 107.26(18)  
 C13-C12-Se3 178.2(3)  
 C12-C13-Se4 176.2(3)  
 C15-C14-Se4 107.28(16)  
 C16-C15-C20 119.3(2)  
 C16-C15-C14 119.8(2)  
 C20-C15-C14 120.9(2)  
 C15-C16-C17 121.3(3)  
 C18-C17-C16 119.8(3)  
 C17-C18-C19 119.6(3)  
 C18-C19-C20 121.5(3)  
 C19-C20-C15 118.6(2)  
 C19-C20-C1 119.7(2)  
     C15-C20-C1 121.7(2) 
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6.2 2,5,14,17-tetraselena[6,6]-meta-cyclophan-3,15-
diyne (18 b) 

Crystal data and structure refinement.  

 Operator T. Oeser 
 Identification code al15 
 Empirical formula C20H16Se4  
 Formula weight 572.17  
 Temperature 100(2) K  
 Wavelength 0.71073 Å  
 Crystal system monoclinic  
 Space group P21/n  
 Z 2  
 Unit cell dimensions a =8.057(1) Å α =90.0 deg.  
  b =4.7364(6) Å β =98.151(2) deg.  
  c = 24.438(3) Å γ =90.0 deg.  
 Volume 923.2(2) Å3  
 Density (calculated) 2.06 g/cm3  
 Absorption coefficient 7.95 mm-1  
 Crystal shape needles  
 Crystal size 0.32 x 0.06 x 0.03 mm3  
 Crystal colour colourless  
 Theta range for data collection 1.7 to 28.3 deg.  
 Index ranges -10≤h≤10, -6≤k≤6, -32≤l≤32  
 Reflections collected 8715  
 Independent reflections 2306 (R(int) = 0.0407)  
 Observed reflections 1963 (I >2σ(I))  
 Absorption correction Semi-empirical from equivalents  
 Max. and min. transmission 0.80 and 0.19  
 Refinement method Full-matrix least-squares on F2  
 Data/restraints/parameters 2306 / 0 / 141  
 Goodness-of-fit on F2 1.05  
 Final R indices (I>2σ(I)) R1 = 0.026, wR2 = 0.056  
 Largest diff. peak and hole 0.83 and -0.43 eÅ-3  

Atomic coordinates and equivalent isotropic displacement parameters (Å2) for 18b  
Ueq is defined as one third of the trace of the orthogonalized Uij tensor  

 Atom x y z Ueq  

 Se2 0.5964(1) 0.4018(1) 0.3318(1) 0.0171(1)  
 Se5 0.7133(1) -0.2000(1) 0.4937(1) 0.0184(1)  
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 C1 0.8218(3) 0.5834(5) 0.3379(1) 0.0180(5)  
 C3 0.6327(3) 0.1893(5) 0.3947(1) 0.0164(5)  
 C4 0.6634(3) 0.0434(5) 0.4354(1) 0.0183(5)  
 C6 0.7780(4) 0.0851(5) 0.5522(1) 0.0186(5)  
 C7 1.1579(3) 0.0573(5) 0.3943(1) 0.0150(5)  
 C8 1.0292(3) 0.2560(5) 0.3909(1) 0.0147(5)  
 C9 0.9623(3) 0.3764(5) 0.3405(1) 0.0153(5)  
 C10 1.0274(3) 0.2981(5) 0.2926(1) 0.0177(5)  
 C11 1.1568(3) 0.1043(5) 0.2957(1) 0.0181(5)  
 C12 1.2228(3) -0.0161(6) 0.3461(1) 0.0174(5)  

Hydrogen coordinates and isotropic displacement parameters (Å2) for 18b  

 Atom x y z Ueq  

 H1A 0.830(4) 0.705(6) 0.3716(12) 0.025(8)  
 H1B 0.818(4) 0.695(6) 0.3074(12) 0.019(7)  
 H6A 0.677(4) 0.185(6) 0.5544(11) 0.012(7)  
 H6B 0.857(4) 0.188(6) 0.5401(11) 0.012(7)  
 H8 0.990(3) 0.301(5) 0.4231(10) 0.004(6)  
 H10 0.988(4) 0.385(6) 0.2591(12) 0.018(7)  
 H11 1.199(4) 0.048(6) 0.2634(13) 0.027(8)  
 H12 1.312(3) -0.149(6) 0.3502(11) 0.016(7)  

Anisotropic displacement parameters (Å2) for 18b 
The anisotropic displacement factor exponent takes the form: -2 pi2 (h2 a*2 U11 + ... + 2 h k a* b* U12)  

 Atom U11 U22 U33 U23 U13 U12  

 Se2 0.0183(2) 0.0179(1) 0.0146(1) 0.0020(1) 0.0013(1) 0.0024(1)  
 Se5 0.0256(2) 0.0150(1) 0.0143(1) 0.0010(1) 0.0015(1) 0.0003(1)  
 C1 0.0209(15) 0.0145(12) 0.0192(13) 0.0005(10) 0.0051(11) -0.0007(10)  
 C3 0.0175(13) 0.0164(12) 0.0155(12) -0.0036(10) 0.0027(10) 0.0001(10)  
 C4 0.0178(14) 0.0201(14) 0.0167(12) -0.0024(9) 0.0015(10) -0.0005(10)  
 C6 0.0231(15) 0.0149(12) 0.0177(12) 0.0003(10) 0.0028(11) -0.0002(11)  
 C7 0.0166(13) 0.0123(12) 0.0157(12) 0.0009(9) 0.0006(10) -0.0025(9)  
 C8 0.0179(13) 0.0132(12) 0.0137(11) -0.0016(9) 0.0046(10) -0.0007(9)  
 C9 0.0180(13) 0.0121(11) 0.0156(12) -0.0009(9) 0.0021(10) -0.0031(10)  
 C10 0.0207(14) 0.0170(12) 0.0148(12) 0.0011(10) 0.0008(10) -0.0019(11)  
 C11 0.0204(14) 0.0191(12) 0.0164(12) -0.0034(10) 0.0082(10) -0.0009(11)  
 C12 0.0152(13) 0.0151(11) 0.0222(13) -0.0012(10) 0.0032(10) 0.0009(11)  

Bond lengths (Å) and angles (deg) for 18b 

 Se2-C3 1.826(2)  
 Se2-C1 1.997(3)  
 Se5-C4 1.833(3)  
 Se5-C6 1.981(3)  
 C1-C9 1.492(4)  
 C1-H1A 1.00(3)  
 C1-H1B 0.91(3)  
 C3-C4 1.206(4)  
 C6-C7#1 1.499(3)  
 C6-H6A 0.95(3)  
 C6-H6B 0.89(3)  
 C7-C8 1.394(4)  
 C7-C12 1.398(3)  

 C7-C6#1 1.499(3)  
 C8-C9 1.396(3)  
 C8-H8 0.91(2)  
 C9-C10 1.399(3)  
 C10-C11 1.383(4)  
 C10-H10 0.93(3)  
 C11-C12 1.392(4)  
 C11-H11 0.94(3)  
 C12-H12 0.95(3) 
 C3-Se2-C1 98.02(11)  
 C4-Se5-C6 97.95(11)  
 C9-C1-Se2 113.36(17)  
 C9-C1-H1A 112.6(18)  
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 Se2-C1-H1A 105.0(17)  
 C9-C1-H1B 111.0(18)  
 Se2-C1-H1B 105.2(19)  
 H1A-C1-H1B 109(2)  
 C4-C3-Se2 176.8(2)  
 C3-C4-Se5 175.7(2)  
 C7#1-C6-Se5 110.27(16)  
 C7#1-C6-H6A 111.5(16)  
 Se5-C6-H6A 103.9(16)  
 C7#1-C6-H6B 111.2(18)  
 Se5-C6-H6B 105.2(17)  
 H6A-C6-H6B 114(2)  
 C8-C7-C12 118.9(2)  
 C8-C7-C6#1 121.1(2)  
 C12-C7-C6#1 120.0(2)  

 C7-C8-C9 121.2(2)  
 C7-C8-H8 117.0(16)  
 C9-C8-H8 121.8(16)  
 C8-C9-C10 119.1(2)  
 C8-C9-C1 120.1(2)  
 C10-C9-C1 120.7(2)  
 C11-C10-C9 120.0(2)  
 C11-C10-H10 119.9(17)  
 C9-C10-H10 120.0(17)  
 C10-C11-C12 120.7(2)  
 C10-C11-H11 120.0(19)  
 C12-C11-H11 119.3(19)  
 C11-C12-C7 120.1(2)  
 C11-C12-H12 123.7(17)  
 C7-C12-H12 116.2(17)  

Symmetry transformations used to generate equivalent atoms:  #1 -x+2,-y,-z+1  

 

6.3 2,5,14,17-tetraselena[6,6]-para-cyclophan-3,15-
diyne (18 c) 

 

 

 

Crystal data and structure refinement 

 Operator F. Rominger 
 Identification code al17  
 Empirical formula C20H16Se4  
 Formula weight 572.17  
 Temperature 200(2) K  
 Wavelength 0.71073 Å  
 Crystal system monoclinic  
 Space group P21/c  
 Z 2  
 Unit cell dimensions a = 10.7377(5) Å α = 90 deg.  
  b =9.2932(4) Å β =107.836(1) deg. 
  c = 10.0453(5) Å γ = 90 deg.  
 Volume 954.22(8) Å3  
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 Density (calculated) 1.99 g/cm3  
 Absorption coefficient 7.69 mm-1  
 Crystal shape polyhedron  
 Crystal size 0.20 x 0.11 x 0.01 mm3  
 Crystal colour colorless  
 Theta range for data collection 3.0 to 24.1 deg.  
 Index ranges -12≤h≤12, -10≤k≤10, -11≤l≤11  
 Reflections collected 6786  
 Independent reflections 1512 (R(int) = 0.0785)  
 Observed reflections 1105 (I >2σ(I))  
 Absorption correction Semi-empirical from equivalents  
 Max. and min. transmission 0.96 and 0.31  
 Refinement method Full-matrix least-squares on F2  
 Data/restraints/parameters 1512 / 0 / 109  
 Goodness-of-fit on F2 1.10  
 Final R indices (I>2σ(I)) R1 = 0.052, wR2 = 0.093  
 Largest diff. peak and hole 0.89 and -0.54 eÅ-3  

Atomic coordinates and equivalent isotropic displacement parameters (Å2) for 18c  
Ueq is defined as one third of the trace of the orthogonalized Uij tensor  

 Atom x y z Ueq  

 Se1 0.1623(1) -0.2459(1) 0.5986(1) 0.0394(3)  
 Se2 0.0861(1) 0.1097(1) 0.2292(1) 0.0412(3)  
 C1 0.2723(8) -0.3790(9) 0.5278(9) 0.037(2)  
 C2 0.1444(8) -0.1056(10) 0.4659(9) 0.039(2)  
 C3 0.1286(8) -0.0147(10) 0.3795(9) 0.035(2)  
 C11 0.4168(8) -0.3456(8) 0.5751(8) 0.0287(19)  
 C12 0.5024(8) -0.4244(9) 0.6809(8) 0.037(2)  
 C13 0.6344(9) -0.4009(9) 0.7150(9) 0.041(2)  
 C14 0.6862(8) -0.3006(9) 0.6464(8) 0.0309(19)  
 C15 0.5998(8) -0.2195(9) 0.5422(9) 0.042(2)  
 C16 0.4666(8) -0.2417(9) 0.5076(9) 0.040(2)  
 C4 0.1687(7) 0.2872(9) 0.3238(9) 0.041(2)  

Hydrogen coordinates and isotropic displacement parameters (Å2) for 18c 

 Atom x y z Ueq  

 H1A 0.2599 -0.4779 0.5582 0.045  
 H1B 0.2406 -0.3776 0.4244 0.045  
 H12 0.4697 -0.4950 0.7299 0.044  
 H13 0.6919 -0.4556 0.7883 0.050  
 H15 0.6327 -0.1480 0.4942 0.050  
 H16 0.4087 -0.1848 0.4366 0.048  
 H4A 0.1267 0.3702 0.2654 0.049  
 H4B 0.1491 0.2950 0.4136 0.049  

Anisotropic displacement parameters (Å2) for 18c 
The anisotropic displacement factor exponent takes the form: -2 pi2 (h2 a*2 U11 + ... + 2 h k a* b* U12)  

 Atom U11 U22 U33 U23 U13 U12  

 Se1 0.0376(5) 0.0409(5) 0.0440(5) -0.0092(5) 0.0187(4) -0.0063(4)  
 Se2 0.0338(5) 0.0391(5) 0.0458(5) -0.0073(5) 0.0049(4) 0.0044(4)  
 C1 0.042(5) 0.029(5) 0.047(5) -0.010(4) 0.022(4) -0.006(4)  
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 C2 0.025(5) 0.043(6) 0.046(6) -0.017(5) 0.005(4) -0.006(4)  
 C3 0.028(5) 0.033(5) 0.043(5) -0.014(4) 0.009(4) -0.002(4)  
 C11 0.037(5) 0.024(4) 0.027(4) 0.000(4) 0.012(4) -0.002(4)  
 C12 0.047(6) 0.031(5) 0.039(5) 0.002(4) 0.023(5) 0.003(4)  
 C13 0.048(6) 0.034(5) 0.037(5) 0.006(4) 0.006(4) 0.010(4)  
 C14 0.033(5) 0.027(5) 0.033(5) -0.002(4) 0.009(4) 0.002(4)  
 C15 0.040(5) 0.038(5) 0.050(6) 0.017(4) 0.016(4) -0.010(4)  
 C16 0.029(5) 0.038(5) 0.048(5) 0.019(5) 0.004(4) -0.002(4)  
 C4 0.033(5) 0.029(5) 0.058(6) -0.009(4) 0.009(4) 0.005(4)  

Bond lengths (Å) and angles (deg) for 18c   

 Se1-C2 1.833(10)  
 Se1-C1 1.987(8)  
 Se2-C3 1.844(10)  
 Se2-C4 1.973(8)  
 C1-C11 1.509(11)  
 C2-C3 1.186(11)  
 C11-C16 1.379(11)  
 C11-C12 1.383(11)  
 C12-C13 1.370(12)  
 C13-C14 1.373(11)  
 C14-C15 1.390(11)  
 C14-C4#1 1.500(11)  
 C15-C16 1.380(11)  
 C4-C14#1 1.500(11)  
 C2-Se1-C1 97.1(4)  

 C3-Se2-C4 99.7(4)  
 C11-C1-Se1 115.2(5)  
 C3-C2-Se1 177.9(8)  
 C2-C3-Se2 171.8(7)  
 C16-C11-C12 118.8(8)  
 C16-C11-C1 120.4(7)  
 C12-C11-C1 120.7(7)  
 C13-C12-C11 120.1(8)  
 C12-C13-C14 122.0(8)  
 C13-C14-C15 117.8(8)  
 C13-C14-C4#1 120.8(8)  
 C15-C14-C4#1 121.2(7)  
 C16-C15-C14 120.6(7)  
 C11-C16-C15 120.6(8)  
 C14#1-C4-Se2 116.9(5)  

Symmetry transformations used to generate equivalent atoms:  #1 -x+1,-y,-z+1  
 

6.4 1,4-bis(selenocyanatomethyl)-benzene (15c) 

Crystal data and structure refinement.  

 Operator F. Rominger  
 Identification code al18  
 Empirical formula C10H8N2Se2  
 Formula weight 314.10  
 Temperature 200(2) K  
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 Wavelength 0.71073 Å  
 Crystal system monoclinic  
 Space group P21/c  
 Z 4  
 Unit cell dimensions a = 22.2635(9) Å α = 90 deg.  
  b =5.9933(3) Å β =98.896(1) deg. 
  c =8.3679(4) Å γ = 90 deg.  
 Volume 1103.11(9) Å3  
 Density (calculated) 1.89 g/cm3  
 Absorption coefficient 6.66 mm-1  
 Crystal shape needles  
 Crystal size 2.00 x 0.04 x 0.02 mm3  
 Crystal colour colorless  
 Theta range for data collection 0.9 to 27.5 deg.  
 Index ranges -28≤h≤28, -7≤k≤7, -10≤l≤10  
 Reflections collected 9528  
 Independent reflections 2488 (R(int) = 0.0694)  
 Observed reflections 1835 (I >2≤(I))  
 Absorption correction Semi-empirical from equivalents  
 Max. and min. transmission 0.88 and 0.03  
 Refinement method Full-matrix least-squares on F2  
 Data/restraints/parameters 2488 / 0 / 108  
 Goodness-of-fit on F2 1.30  
 Final R indices (I>2ı (I)) R1 = 0.108, wR2 = 0.257  
 Largest diff. peak and hole 3.37 and -1.36 eÅ-3  

Atomic coordinates and equivalent isotropic displacement parameters (Å2) for 15c 
Ueq is defined as one third of the trace of the orthogonalized Uij tensor 

 Atom x y z Ueq  

 Se11 0.3133(1) 0.5719(3) 0.9206(2) 0.0255(5)  
 C11 0.3173(6) 0.282(2) 0.9189(17) 0.018(3)  
 N11 0.3255(9) 0.074(3) 0.918(2) 0.055(5)  
 C101 0.3844(7) 0.618(3) 0.809(2) 0.034(4)  
 C111 0.4442(6) 0.557(3) 0.907(2) 0.026(3)  
 C121 0.4703(7) 0.353(3) 0.8867(19) 0.026(3)  
 C131 0.5258(6) 0.292(3) 0.9772(18) 0.020(3)  
 Se12 0.1852(1) 0.5963(3) 0.5801(2) 0.0274(5)  
 C12 0.1794(10) 0.272(4) 0.575(3) 0.054(5)  
 N12 0.1814(8) 0.096(3) 0.572(2) 0.042(4)  
 C102 0.1145(7) 0.629(3) 0.4032(19) 0.029(3)  
 C112 0.0548(7) 0.564(3) 0.4549(18) 0.023(3)  
 C122 0.0299(7) 0.354(3) 0.4104(18) 0.025(3)  
 C132-0.0251(7) 0.290(3) 0.4570(17) 0.020(3)  

Hydrogen coordinates and isotropic displacement parameters (Å2) for 15c 

 Atom x y z Ueq  

 H10A10.3788 0.5274 0.7087 0.041  
 H10B10.3857 0.7764 0.7773 0.041  
 H121 0.4500 0.2512 0.8095 0.031  
 H131 0.5434 0.1513 0.9611 0.024  
 H10A20.1120 0.7867 0.3664 0.035  
 H10B20.1214 0.5356 0.3103 0.035  
 H122 0.0505 0.2553 0.3485 0.030  
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 H132-0.0419 0.1471 0.4283 0.024  

 

Anisotropic displacement parameters (Å2) for 15c
The anisotropic displacement factor exponent takes the form: -2 pi2 (h2 a*2 U11 + ... + 2 h k a* b* U12)  

 Atom U11 U22 U33 U23 U13 U12  

 Se11 0.0130(7) 0.0278(9) 0.0352(10) 0.0003(7) 0.0027(6) 0.0021(6)  
 C101 0.014(7) 0.039(9) 0.050(11) 0.013(8) 0.008(7) 0.008(6)  
 C111 0.012(6) 0.035(9) 0.031(8) 0.008(7) 0.007(6) -0.004(6)  
 C121 0.020(7) 0.033(8) 0.024(8) -0.005(6) 0.001(6) -0.003(6)  
 C131 0.016(6) 0.026(7) 0.019(7) 0.005(6) 0.008(5) -0.001(5)  
 Se12 0.0234(8) 0.0232(8) 0.0359(10) 0.0000(7) 0.0052(7) 0.0007(6)  
 C102 0.023(8) 0.045(10) 0.020(8) 0.004(7) 0.007(6) 0.001(7)  
 C112 0.019(7) 0.027(8) 0.021(7) 0.008(6) -0.003(5) 0.000(6)  
 C122 0.029(8) 0.029(8) 0.017(7) -0.013(6) 0.005(6) -0.001(6)  
 C132 0.023(7) 0.024(7) 0.014(6) 0.001(5) 0.001(5) 0.001(6)  

Bond lengths (Å) and angles (deg) for 15c 

 Se11-C11 1.737(14)  
 Se11-C101 1.977(16)  
 C11-N11 1.26(2)  
 C101-C111 1.49(2)  
 C111-C121 1.38(2)  
 C111-C131#1 1.41(2)  
 C121-C131 1.39(2)  
 C131-C111#1 1.41(2)  
 Se12-C12 1.95(2)  
 Se12-C102 1.997(16)  
 C12-N12 1.05(3)  
 C102-C112 1.51(2)  
 C112-C132#2 1.38(2)  
 C112-C122 1.40(2)  
 C122-C132 1.40(2)  
 C132-C112#2 1.38(2)  

 C11-Se11-C101 95.1(7)  
 N11-C11-Se11 174.6(14)  
 C111-C101-Se11 114.7(12)  
 C121-C111-C131#1119.2(14)  
 C121-C111-C101 120.2(15)  
 C131#1-C111-C101120.6(15)  
 C111-C121-C131 121.3(15)  
 C121-C131-C111#1119.5(14)  
 C12-Se12-C102 92.4(9)  
 N12-C12-Se12 174(2)  
 C112-C102-Se12 112.9(10)  
 C132#2-C112-C122120.7(14)  
 C132#2-C112-C102120.2(14)  
 C122-C112-C102 119.1(14)  
 C132-C122-C112 120.1(14)  
 C112#2-C132-C122119.2(14)  

Symmetry transformations used to generate equivalent atoms:  #1 -x+1,-y+1,-z+2 
       #2 -x,-y+1,-z+1  
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6.5 1,4-bis(ethynylselenylmethyl)-benzene (17c) 

 

 

Crystal data and structure refinement  

 

 Operator F. Rominger 
 Identification code al16  
 Empirical formula C12H10Se2  
 Formula weight 312.12  
 Temperature 200(2) K  
 Wavelength 0.71073 Å  
 Crystal system orthorhombic  
 Space group Pbca  
 Z 4  
 Unit cell dimensions a =5.9208(3) Å α = 90 deg.  
  b =8.5285(4) Å β = 90 deg.  
  c = 22.4766(9) Å γ = 90 deg.  
 Volume 1134.97(9) Å3  
 Density (calculated) 1.83 g/cm3  
 Absorption coefficient 6.47 mm-1  
 Crystal shape polyhedron  
 Crystal size 0.20 x 0.18 x 0.06 mm3  
 Crystal colour colorless  
 Theta range for data collection 1.8 to 27.5 deg.  
 Index ranges -7≤h≤7, -11≤k≤11, -29≤l≤29  
 Reflections collected 10337  
 Independent reflections 1300 (R(int) = 0.3352)  
 Observed reflections 951 (I >2σ(I))  
 Absorption correction Semi-empirical from equivalents  
 Max. and min. transmission 0.70 and 0.36  
 Refinement method Full-matrix least-squares on F2  
 Data/restraints/parameters 1300 / 0 / 64  
 Goodness-of-fit on F2 1.14  
 Final R indices (I>2σ(I)) R1 = 0.088, wR2 = 0.190  
 Largest diff. peak and hole 2.10 and -1.20 eÅ-3  

 

 



X-ray structures 

 

 178 

Atomic coordinates and equivalent isotropic displacement parameters (Å2) for 17c
Ueq is defined as one third of the trace of the orthogonalized Uij tensor  

 Atom x y z Ueq  

 Se1 0.2186(2) 0.8870(1) 0.1689(1) 0.0369(4)  
 C1 0.099(2) 0.7853(12) 0.0961(5) 0.041(2)  
 C2 -0.0179(18) 1.0204(14) 0.1832(5) 0.040(3)  
 C3 -0.168(2) 1.1041(17) 0.1955(6) 0.054(3)  
 C11 0.0471(15) 0.8956(11) 0.0469(4) 0.0301(19)  
 C12 0.2122(16) 0.9311(12) 0.0041(4) 0.032(2)  
 C13 0.1631(17) 1.0330(12) -0.0413(5) 0.036(2)  

Hydrogen coordinates and isotropic displacement parameters (Å2) for 17c 

 Atom x y z Ueq  

 H1A 0.2110 0.7078 0.0818 0.049  
 H1B -0.0404 0.7274 0.1065 0.049  
 H3 -0.2895 1.1719 0.2055 0.064  
 H12 0.3577 0.8846 0.0066 0.039  
 H13 0.2767 1.0556 -0.0699 0.043  

Anisotropic displacement parameters (Å2) for 17c 
The anisotropic displacement factor exponent takes the form: -2 pi2 (h2 a*2 U11 + ... + 2 h k a* b* U12))  

 Atom U11 U22 U33 U23 U13 U12  

 Se1 0.0354(6) 0.0318(6) 0.0436(7) 0.0032(4) -0.0061(4) 0.0058(4)  
 C1 0.046(6) 0.023(5) 0.054(6) 0.000(4) -0.006(5) 0.008(4)  
 C2 0.028(5) 0.047(7) 0.046(6) 0.000(5) -0.007(4) 0.003(5)  
 C3 0.050(7) 0.055(8) 0.056(7) -0.001(6) -0.005(6) 0.007(7)  
 C11 0.026(4) 0.026(5) 0.038(5) -0.002(4) -0.002(3) -0.003(4)  
 C12 0.026(4) 0.030(5) 0.040(5) -0.007(4) -0.007(4) 0.004(4)  
 C13 0.024(4) 0.031(5) 0.053(6) -0.003(4) 0.003(4) -0.002(4)  

Bond lengths (Å) and angles (deg) for 17c 

 Se1-C2 1.832(11)  
 Se1-C1 1.982(11)  
 C1-C11 1.484(14)  
 C2-C3 1.173(17)  
 C11-C13#1 1.392(13)  
 C11-C12 1.405(14)  
 C12-C13 1.370(15)  
 C13-C11#1 1.392(13)  

 C2-Se1-C1 98.2(5)  
 C11-C1-Se1 114.3(7)  
 C3-C2-Se1 176.4(11)  
 C13#1-C11-C12 117.7(9)  
 C13#1-C11-C1 122.0(9)  
 C12-C11-C1 120.2(9)  
 C13-C12-C11 119.9(9)  
 C12-C13-C11#1 122.3(10)  

  
 Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z  
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6.6 Bis-(2-bromobenzyl) selenide (42) 

 

 

Crystal data and structure refinement 

 Operator T. Oeser 
 Identification code al13  
 Empirical formula C14H12Br2Se  
 Formula weight 419.02  
 Temperature 200(2) K  
 Wavelength 0.71073 Å  
 Crystal system triclinic  
 Space group P-1  
 Z 2  
 Unit cell dimensions a =6.9710(3) Å α =78.534(1) deg.  
  b =7.6909(3) Å β =80.586(1) deg.  
  c = 13.5259(6) Å γ =80.280(1) deg.  
 Volume 694.12(5) Å3  
 Density (calculated) 2.01 g/cm3  
 Absorption coefficient 8.44 mm-1  
 Crystal shape blocks  
 Crystal size 0.20 x 0.14 x 0.04 mm3  
 Theta range for data collection 1.5 to 27.5 deg.  
 Index ranges -9≤h≤9, -9≤k≤9, -17≤l≤17  
 Reflections collected 7216  
 Independent reflections 3141 (R(int) = 0.0290)  
 Observed reflections 2521 (I >2σ(I))  
 Absorption correction Semi-empirical from equivalents  
 Max. and min. transmission 0.73 and 0.28  
 Refinement method Full-matrix least-squares on F2  
 Data/restraints/parameters 3141 / 0 / 154  
 Goodness-of-fit on F2 1.04  
 Final R indices (I>2σ(I)) R1 = 0.059, wR2 = 0.134  
 Largest diff. peak and hole 1.42 and -0.51 eÅ-3  
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Atomic coordinates and equivalent isotropic displacement parameters (Å2) for 42 
Ueq is defined as one third of the trace of the orthogonalized Uij tensor 

 Atom x y z Ueq  

 Se1 0.2543(1) 0.8461(1) 0.7223(1) 0.0550(2)  
 Br12 0.7682(1) 0.8079(1) 0.5584(1) 0.0654(2)  
 Br22 -0.3048(1) 0.8225(1) 0.8619(1) 0.0786(2)  
 C1 0.3276(7) 0.7213(6) 0.6048(3) 0.0532(9)  
 C2 0.1436(8) 0.6473(6) 0.8176(4) 0.0604(11)  
 C11 0.4849(6) 0.5645(6) 0.6214(3) 0.0508(9)  
 C12 0.6855(7) 0.5792(6) 0.6047(3) 0.0511(9)  
 C13 0.8286(7) 0.4319(6) 0.6203(4) 0.0556(10)  
 C14 0.7746(8) 0.2612(7) 0.6533(4) 0.0609(11)  
 C15 0.5753(8) 0.2418(7) 0.6708(4) 0.0610(11)  
 C16 0.4339(7) 0.3908(7) 0.6546(4) 0.0572(10)  
 C21 0.0777(7) 0.6992(6) 0.9205(4) 0.0560(10)  
 C22 -0.1092(7) 0.7779(7) 0.9506(4) 0.0597(11)  
 C23 -0.1640(9) 0.8259(7) 1.0470(4) 0.0705(14)  
 C24 -0.0272(10) 0.7928(8) 1.1134(4) 0.0741(15)  
 C25 0.1646(10) 0.7125(7) 1.0851(4) 0.0754(15)  
 C26 0.2138(8) 0.6685(7) 0.9907(4) 0.0651(12)  

Hydrogen coordinates and isotropic displacement parameters (Å2) for 42 

 Atom x y z Ueq  

 H1A 0.2098 0.6794 0.5906 0.064  
 H1B 0.3735 0.8071 0.5442 0.064  
 H2A 0.0306 0.6181 0.7913 0.072  
 H2B 0.2441 0.5396 0.8234 0.072  
 H13 0.9634 0.4471 0.6085 0.067  
 H14 0.8719 0.1593 0.6638 0.073  
 H15 0.5368 0.1262 0.6938 0.073  
 H16 0.2992 0.3753 0.6662 0.069  
 H23 -0.2939 0.8805 1.0663 0.085  
 H24 -0.0629 0.8248 1.1789 0.089  
 H25 0.2589 0.6890 1.1312 0.090  
 H26 0.3444 0.6153 0.9715 0.078  

Anisotropic displacement parameters (Å2) for 42  
The anisotropic displacement factor exponent takes the form: -2 pi2 (h2 a*2 U11 + ... + 2 h k a* b* U12)  

 Atom U11 U22 U33 U23 U13 U12  

 Se1 0.0539(3) 0.0496(3) 0.0581(3) -0.0090(2) 0.0016(2) -0.0071(2)  
 Br12 0.0574(3) 0.0543(3) 0.0814(4) -0.0103(2) 0.0012(2) -0.0113(2)  
 Br22 0.0645(3) 0.0809(4) 0.0830(4) 0.0060(3) -0.0139(3) -0.0099(3)  
 C1 0.050(2) 0.059(2) 0.049(2) -0.0113(19) -0.0065(18) -0.0024(18)  
 C2 0.069(3) 0.050(2) 0.059(3) -0.009(2) 0.002(2) -0.012(2)  
 C11 0.053(2) 0.054(2) 0.046(2) -0.0110(18) -0.0068(17) -0.0052(18)  
 C12 0.055(2) 0.049(2) 0.051(2) -0.0109(18) -0.0050(18) -0.0088(18)  
 C13 0.052(2) 0.058(2) 0.057(2) -0.015(2) -0.0075(19) -0.0016(19)  
 C14 0.066(3) 0.056(3) 0.059(3) -0.012(2) -0.011(2) 0.003(2)  
 C15 0.069(3) 0.056(3) 0.058(3) -0.012(2) -0.005(2) -0.011(2)  
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 C16 0.053(2) 0.063(3) 0.058(3) -0.015(2) -0.0055(19) -0.012(2)  
 C21 0.061(3) 0.049(2) 0.056(2) -0.0065(19) 0.001(2) -0.0131(19)  
 C22 0.057(2) 0.055(2) 0.062(3) -0.001(2) -0.005(2) -0.0088(19)  
 C23 0.073(3) 0.055(3) 0.073(3) -0.010(2) 0.015(3) -0.008(2)  
 C24 0.105(4) 0.061(3) 0.055(3) -0.011(2) 0.001(3) -0.018(3)  
 C25 0.105(4) 0.059(3) 0.064(3) 0.003(2) -0.024(3) -0.020(3)  
 C26 0.067(3) 0.051(2) 0.072(3) -0.003(2) -0.004(2) -0.008(2)  

Bond lengths (Å) and angles (deg) for 42  

 Se1-C2 1.970(5)  
 Se1-C1 1.971(4)  
 Br12-C12 1.899(4)  
 Br22-C22 1.906(5)  
 C1-C11 1.494(6)  
 C1-H1A 0.9900  
 C1-H1B 0.9900  
 C2-C21 1.503(7)  
 C2-H2A 0.9900  
 C2-H2B 0.9900  
 C11-C12 1.399(6)  
 C11-C16 1.408(7)  
 C12-C13 1.384(6)  
 C13-C14 1.394(7)  
 C13-H13 0.9500  
 C14-C15 1.399(7)  
 C14-H14 0.9500  
 C15-C16 1.386(7)  
 C15-H15 0.9500  
 C16-H16 0.9500  
 C21-C22 1.374(7)  
 C21-C26 1.410(7)  
 C22-C23 1.401(8)  
 C23-C24 1.373(9)  
 C23-H23 0.9500  
 C24-C25 1.401(9)  
 C24-H24 0.9500  
 C25-C26 1.360(8)  
 C25-H25 0.9500  
 C26-H26 0.9500  
 C2-Se1-C1 96.4(2)  
 C11-C1-Se1 113.0(3)  
 C11-C1-H1A 109.0  
 Se1-C1-H1A 109.0  
 C11-C1-H1B 109.0  
 Se1-C1-H1B 109.0  
 H1A-C1-H1B 107.8  
 C21-C2-Se1 110.0(3)  
 C21-C2-H2A 109.7  
 Se1-C2-H2A 109.7  

 C21-C2-H2B 109.7  
 Se1-C2-H2B 109.7  
 H2A-C2-H2B 108.2  
 C12-C11-C16 116.7(4)  
 C12-C11-C1 123.4(4)  
 C16-C11-C1 119.8(4)  
 C13-C12-C11 122.4(4)  
 C13-C12-Br12 117.9(4)  
 C11-C12-Br12 119.7(3)  
 C12-C13-C14 119.9(4)  
 C12-C13-H13 120.1  
 C14-C13-H13 120.1  
 C13-C14-C15 119.2(4)  
 C13-C14-H14 120.4  
 C15-C14-H14 120.4  
 C16-C15-C14 120.2(5)  
 C16-C15-H15 119.9  
 C14-C15-H15 119.9  
 C15-C16-C11 121.7(4)  
 C15-C16-H16 119.2  
 C11-C16-H16 119.2  
 C22-C21-C26 117.2(5)  
 C22-C21-C2 123.7(5)  
 C26-C21-C2 119.1(5)  
 C21-C22-C23 121.8(5)  
 C21-C22-Br22 120.5(4)  
 C23-C22-Br22 117.7(4)  
 C24-C23-C22 119.1(5)  
 C24-C23-H23 120.5  
 C22-C23-H23 120.5  
 C23-C24-C25 120.5(5)  
 C23-C24-H24 119.7  
 C25-C24-H24 119.7  
 C26-C25-C24 119.0(6)  
 C26-C25-H25 120.5  
 C24-C25-H25 120.5  
 C25-C26-C21 122.3(5)  
 C25-C26-H26 118.9  
 C21-C26-H26 118.9 
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6.7 2-(methylselenyl)-benzyl alcohol (46) 

 

Crystal data and structure refinement 

 Operator F. Rominger 
 Identification code al20  
 Empirical formula C8H10OSe  
 Formula weight 201.12  
 Temperature 200(2) K  
 Wavelength 0.71073 Å  
 Crystal system monoclinic  
 Space group P21/n  
 Z 4  
 Unit cell dimensions a = 13.1179(2) Å α = 90 deg.  
  b =4.7578(1) Å β = 99.294(1) deg. 
  c = 13.2194(3) Å γ = 90 deg.  
 Volume 814.22(3) Å3  
 Density (calculated) 1.64 g/cm3  
 Absorption coefficient 4.54 mm-1  
 Crystal shape polyhedron  
 Crystal size 0.45 x 0.18 x 0.18 mm3  
 Crystal colour colorless  
 Theta range for data collection 2.0 to 27.4 deg.  
 Index ranges -16≤h≤16, -6≤k≤6, -17≤l≤17  
 Reflections collected 7591  
 Independent reflections 1822 (R(int) = 0.0545)  
 Observed reflections 1538 (I >2σ(I))  
 Absorption correction Semi-empirical from equivalents  
 Refinement method Full-matrix least-squares on F2  
 Data/restraints/parameters 1822 / 0 / 95  
 Goodness-of-fit on F2 1.04  
 Final R indices (I>2σ(I)) R1 = 0.029, wR2 = 0.065  
 Largest diff. peak and hole 0.59 and -0.53 eÅ-3  

 

Atomic coordinates and equivalent isotropic displacement parameters (Å2) for 46 
 Ueq is defined as one third of the trace of the orthogonalized Uij tensor 

 Atom x y z Ueq  

 Se1 0.6876(1) 0.1359(1) 0.8599(1) 0.0345(1)  
 C1 0.7322(2) -0.0719(6) 0.9864(2) 0.0400(7)  
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 C2 0.5477(2) 0.2477(5) 0.6520(2) 0.0284(5)  
 O2 0.4927(2) 0.2523(4) 0.5497(1) 0.0368(4)  
 C11 0.5535(2) -0.0286(5) 0.8166(2) 0.0236(5)  
 C12 0.4998(2) 0.0455(5) 0.7196(2) 0.0221(5)  
 C13 0.4026(2) -0.0697(5) 0.6867(2) 0.0274(5)  
 C14 0.3591(2) -0.2605(6) 0.7473(2) 0.0333(6)  
 C15 0.4128(2) -0.3348(6) 0.8424(2) 0.0366(6)  
 C16 0.5091(2) -0.2184(5) 0.8777(2) 0.0317(6)  

Hydrogen coordinates and isotropic displacement parameters (Å2) for 46 

 Atom x y z Ueq  

 H1A 0.6848 -0.0334 1.0350 0.060  
 H1B 0.8022 -0.0131 1.0164 0.060  
 H1C 0.7319 -0.2737 0.9715 0.060  
 H2A 0.5483 0.4391 0.6815 0.034  
 H2B 0.6202 0.1917 0.6508 0.034  
 H2C 0.5147 0.1236 0.5155 0.05(2)  
 H2D 0.5060 0.4020 0.5208 0.05(2)  
 H13 0.3652 -0.0172 0.6218   0.033  
 H14 0.2931 -0.3392 0.7235 0.040  
 H15 0.3837 -0.4661 0.8837 0.044  
 H16 0.5450 -0.2678 0.9436 0.038  

Anisotropic displacement parameters (Å2) for 46. 
The anisotropic displacement factor exponent takes the form: -2 pi2 (h2 a*2 U11 + ... + 2 h k a* b* U12) 

 Atom U11 U22 U33 U23 U13 U12  

 Se1 0.0302(2) 0.0348(2) 0.0344(2) 0.0046(1) -0.0073(1) -0.0027(1)  
 C1 0.0375(15) 0.0499(16) 0.0285(13) 0.0013(12) -0.0069(11) 0.0067(12)  
 C2 0.0357(14) 0.0241(11) 0.0235(12) 0.0038(10) -0.0009(10) -0.0024(10)  
 O2 0.0531(12) 0.0325(10) 0.0220(9) 0.0056(8) -0.0023(8) -0.0029(9)  
 C11 0.0252(12) 0.0234(11) 0.0213(11) -0.0008(9) 0.0012(9) 0.0037(9)  
 C12 0.0263(12) 0.0190(10) 0.0209(11) -0.0015(8) 0.0038(9) 0.0039(9)  
 C13 0.0291(13) 0.0262(12) 0.0252(12) -0.0004(9) -0.0007(10) 0.0007(10)  
 C14 0.0271(13) 0.0356(13) 0.0373(15) 0.0011(11) 0.0052(11) -0.0025(11)  
 C15 0.0403(16) 0.0382(15) 0.0335(14) 0.0086(12) 0.0125(12) -0.0020(12)  
 C16 0.0352(15) 0.0357(13) 0.0238(12) 0.0067(10) 0.0032(11) 0.0036(11)  

Bond lengths (Å) and angles (deg) for 46 

 Se1-C11 1.926(2)  
 Se1-C1 1.950(3)  
 C1-H1A 0.9800  
 C1-H1B 0.9800  
 C1-H1C 0.9800  
 C2-O2 1.427(3)  
 C2-C12 1.517(3)  
 C2-H2A 0.9900  
 C2-H2B 0.9900  
 O2-H2C 0.8400  
 O2-H2D 0.8400  
 C11-C16 1.399(4)  

 C11-C12 1.405(3)  
 C12-C13 1.392(3)  
 C13-C14 1.392(4)  
 C13-H13 0.9500  
 C14-C15 1.384(4)  
 C14-H14 0.9500  
 C15-C16 1.389(4)  
 C15-H15 0.9500  
 C16-H16 0.9500  
 C11-Se1-C1 100.47(11)  
 Se1-C1-H1A 109.5  
 Se1-C1-H1B 109.5  
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 H1A-C1-H1B 109.5  
 Se1-C1-H1C 109.5  
 H1A-C1-H1C 109.5  
 H1B-C1-H1C 109.5  
 O2-C2-C12 112.0(2)  
 O2-C2-H2A 109.2  
 C12-C2-H2A 109.2  
 O2-C2-H2B 109.2  
 C12-C2-H2B 109.2  
 H2A-C2-H2B 107.9  
 C2-O2-H2C 109.5  
 C2-O2-H2D 109.5  
 C16-C11-C12 119.7(2)  
 C16-C11-Se1 122.41(18)  
 C12-C11-Se1 117.92(17)  

 C13-C12-C11 119.1(2)  
 C13-C12-C2 120.7(2)  
 C11-C12-C2 120.2(2)  
 C14-C13-C12 121.1(2)  
 C14-C13-H13 119.5  
 C12-C13-H13 119.5  
 C15-C14-C13 119.6(2)  
 C15-C14-H14 120.2  
 C13-C14-H14 120.2  
 C14-C15-C16 120.4(2)  
 C14-C15-H15 119.8  
 C16-C15-H15 119.8  
 C15-C16-C11 120.2(2)  
 C15-C16-H16 119.9  
 C11-C16-H16 119.9  

6.8 2-(methylselenyl)-benzyl selenocyanate (29) 

Crystal data and structure refinement 

 Operator F. Rominger 
 Identification code al8  
 Empirical formula C9H9NSe2  
 Formula weight 289.09  
 Temperature 200(2) K  
 Wavelength 0.71073 Å  
 Crystal system monoclinic  
 Space group P21/c  
 Z 4  
 Unit cell dimensions a =8.8538(1) Å α = 90 deg.  
  b = 16.6622(4) Å β =113.004(1) deg. 
  c =7.2143(2) Å γ = 90 deg.  
 Volume 979.65(4) Å3  
 Density (calculated) 1.96 g/cm3  
 Absorption coefficient 7.49 mm-1  
 Crystal shape polyhedron  
 Crystal size 0.26 x 0.14 x 0.04 mm3  
 Theta range for data collection 2.4 to 27.5 deg.  
 Index ranges -11≤h≤11, -21≤k≤21, -9≤l≤9  
 Reflections collected 10108  
 Independent reflections 2259 (R(int) = 0.0602)  
 Observed reflections 1723 (I >2σ(I))  
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 Absorption correction Semi-empirical from equivalents  
 Max. and min. transmission 0.75 and 0.25  
 Refinement method Full-matrix least-squares on F2  
 Data/restraints/parameters 2259 / 0 / 110  
 Goodness-of-fit on F2 1.02  
 Final R indices (I>2σ(I)) R1 = 0.031, wR2 = 0.065  
 Largest diff. peak and hole 0.75 and -0.84 eÅ-3  

Atomic coordinates and equivalent isotropic displacement parameters (Å2) for 29 
Ueq is defined as one third of the trace of the orthogonalized Uij tensor 

 Atom x y z Ueq  

 Se1 1.1915(1) 0.0546(1) 0.9520(1) 0.0398(1)  
 Se2 0.7551(1) 0.1195(1) 0.7661(1) 0.0264(1)  
 C1 1.4096(5) 0.0930(3) 1.1030(6) 0.0519(12)  
 C2 0.6676(4) 0.1991(2) 0.5770(5) 0.0231(7)  
 N2 0.6127(4) 0.2492(2) 0.4618(4) 0.0335(7)  
 C11 1.1386(4) 0.1062(2) 0.6981(5) 0.0227(7)  
 C12 1.2551(4) 0.1478(2) 0.6490(5) 0.0269(7)  
 C13 1.2100(4) 0.1849(2) 0.4637(5) 0.0318(8)  
 C14 1.0509(4) 0.1808(2) 0.3250(5) 0.0313(8)  
 C15 0.9346(4) 0.1398(2) 0.3709(5) 0.0253(7)  
 C16 0.9760(4) 0.1011(2) 0.5560(5) 0.0209(7)  
 C17 0.8462(4) 0.0562(2) 0.5988(5) 0.0229(7)  

Hydrogen coordinates and isotropic displacement parameters (Å2) for 29  

 Atom x y z Ueq  

 H1A 1.4831 0.0741 1.0401 0.078  
 H1B 1.4478 0.0728 1.2413 0.078  
 H1C 1.4092 0.1518 1.1046 0.078  
 H12 1.3656 0.1506 0.7433 0.032  
 H13 1.2897 0.2135 0.4320 0.038  
 H14 1.0211 0.2062 0.1977 0.038  
 H15 0.8245 0.1378 0.2750 0.030  
 H17A 0.8936 0.0056 0.6696 0.027  
 H17B 0.7560 0.0420 0.4696 0.027  

Anisotropic displacement parameters (Å2) for 29 
 The anisotropic displacement factor exponent takes the form: -2 pi2 (h2 a*2 U11 + ... + 2 h k a* b* U12)  

 Atom U11 U22 U33 U23 U13 U12  

 Se1 0.0290(2) 0.0501(3) 0.0299(2) 0.0162(2) 0.0003(2) -0.0079(2)  
 Se2 0.0276(2) 0.0274(2) 0.0265(2) 0.0052(1) 0.0132(2) 0.0057(2)  
 C1 0.042(2) 0.050(3) 0.040(2) 0.0114(19) -0.010(2) -0.014(2)  
 C2 0.0200(17) 0.0248(18) 0.0260(17) -0.0019(14) 0.0106(14) -0.0013(14)  
 N2 0.0360(18) 0.0334(17) 0.0343(17) 0.0039(14) 0.0174(15) 0.0053(14)  
 C11 0.0252(18) 0.0177(16) 0.0258(16) -0.0019(13) 0.0106(14) 0.0016(13)  
 C12 0.0198(17) 0.0279(18) 0.0311(18) -0.0044(14) 0.0078(15) -0.0045(14)  
 C13 0.035(2) 0.0291(19) 0.034(2) 0.0001(15) 0.0162(17) -0.0041(16)  
 C14 0.041(2) 0.0296(19) 0.0269(18) 0.0039(15) 0.0166(17) 0.0031(17)  
 C15 0.0208(17) 0.0284(18) 0.0236(16) -0.0001(14) 0.0053(14) 0.0029(14)  
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 C16 0.0242(17) 0.0157(16) 0.0238(16) -0.0033(12) 0.0104(14) 0.0014(13)  
 C17 0.0208(17) 0.0209(16) 0.0262(16) -0.0017(13) 0.0084(14) 0.0002(13)  

Bond lengths (Å) and angles (deg) for 29 

 Se1-C11 1.909(3)  
 Se1-C1 1.919(4)  
 Se2-C2 1.842(3)  
 Se2-C17 1.995(3)  
 C2-N2 1.144(4)  
 C11-C12 1.398(5)  
 C11-C16 1.406(5)  
 C12-C13 1.383(5)  
 C13-C14 1.374(5)  
 C14-C15 1.380(5)  
 C15-C16 1.397(4)  
 C16-C17 1.501(4)  
 C11-Se1-C1 102.08(16)  

 C2-Se2-C17 94.86(13)  
 N2-C2-Se2 178.9(3)  
 C12-C11-C16 119.5(3)  
 C12-C11-Se1 122.5(3)  
 C16-C11-Se1 118.0(2)  
 C13-C12-C11 120.2(3)  
 C14-C13-C12 120.5(3)  
 C13-C14-C15 119.9(3)  
 C14-C15-C16 121.1(3)  
 C15-C16-C11 118.7(3)  
 C15-C16-C17 119.4(3)  
 C11-C16-C17 121.9(3)  
 C16-C17-Se2 112.6(2)  

6.9  2,2’- diselenobis(benzyl alcohol) (51)  

Crystal data and structure refinement 

 Operator F. Rominger 
 Identification code al2  
 Empirical formula C14H14O2Se2  
 Formula weight 372.17  
 Temperature 200(2) K  
 Wavelength 0.71073 Å  
 Crystal system triclinic  
 Space group P 1
 Z 2  
 Unit cell dimensions a =8.4461(2) Å α =72.904(1) deg. 
  b =8.9003(3) Å β =78.950(1) deg. 
  c =9.7427(3) Å γ =76.978(1) deg. 
 Volume 675.81(3) Å3  
 Density (calculated) 1.83 g/cm3  
 Absorption coefficient 5.46 mm-1  
 Crystal shape polyhedron  
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 Crystal size 0.24 x 0.16 x 0.10 mm3  
 Theta range for data collection 2.2 to 27.5 deg.  
 Index ranges -10≤h≤10, -11≤k≤11, -12≤l≤12  
 Reflections collected 6951  
 Independent reflections 3051 (R(int) = 0.0291)  
 Observed reflections 2667 (I >2σ(I))  
 Absorption correction Semi-empirical from equivalents  
 Max. and min. transmission 0.61 and 0.35  
 Refinement method Full-matrix least-squares on F2  
 Data/restraints/parameters 3051 / 0 / 171  
 Goodness-of-fit on F2 1.09  
 Final R indices (I>2σ(I)) R1 = 0.026, wR2 = 0.069  
 Largest diff. peak and hole 0.60 and -0.52 eÅ-3  

Atomic coordinates and equivalent isotropic displacement parameters (Å2) for 51.  
Ueq is defined as one third of the trace of the orthogonalized Uij tensor  

 Atom x y z Ueq  

 Se1 0.3297(1) 0.8337(1) 0.4287(1) 0.0264(1)  
 Se2 0.0975(1) 0.9716(1) 0.3166(1) 0.0266(1)  
 O1 0.0427(3) 0.4895(2) 0.7814(2) 0.0342(4)  
 O2 0.1712(3) 1.3434(2) 0.0417(2) 0.0379(5)  
 H2 0.149(5) 1.374(5) -0.033(4) 0.059(13)  
 C11 0.3137(3) 0.6194(3) 0.4352(2) 0.0234(5)  
 C12 0.4015(3) 0.5537(3) 0.3245(3) 0.0300(6)  
 C13 0.3932(3) 0.4003(3) 0.3251(3) 0.0375(7)  
 C14 0.2973(3) 0.3125(3) 0.4361(3) 0.0357(6)  
 C15 0.2078(3) 0.3768(3) 0.5477(3) 0.0293(5)  
 C16 0.2153(3) 0.5299(3) 0.5500(2) 0.0224(5)  
 C17 0.1211(3) 0.6030(3) 0.6692(3) 0.0299(5)  
 C21 0.1801(3) 0.9551(3) 0.1218(2) 0.0228(5)  
 C22 0.1505(3) 0.8264(3) 0.0839(3) 0.0289(5)  
 C23 0.2023(3) 0.8097(3) -0.0559(3) 0.0361(6)  
 C24 0.2818(3) 0.9230(4) -0.1574(3) 0.0367(7)  
 C25 0.3128(3) 1.0502(3) -0.1191(3) 0.0312(6)  
 C26 0.2637(3) 1.0691(3) 0.0212(2) 0.0235(5)  
 C27 0.3022(3) 1.2092(3) 0.0571(3) 0.0310(6)  
 H1 -0.022(4) 0.540(4) 0.819(3) 0.036(9)  

Hydrogen coordinates and isotropic displacement parameters (Å2) for 51.  

 Atom x y z Ueq  

 H2 0.149(5)     1.374(5) -0.033(4) 0.059(13)  
 H12    0.4678 0.6146 0.2479 0.036  
 H13    0.4535 0.3557 0.2491 0.045  
 H14    0.2921 0.2069 0.4366 0.043  
 H15    0.1410 0.3151 0.6230 0.035  
 H17A  0.1969 0.6431 0.7101 0.036  
 H17B  0.0375 0.6950 0.6288 0.036  
 H22    0.0948 0.7494 0.1537 0.035  
 H23    0.1832 0.7210 -0.0816 0.043  
 H24    0.3152 0.9134 -0.2537 0.044  
 H25    0.3687 1.1265 -0.1897 0.037  
 H27A  0.3269 1.1758 0.1582 0.037  
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 H27B   0.4015 1.2415 -0.0072 0.037  
 H1 -0.022(4)     0.540(4)       0.819(3) 0.036(9) 

Anisotropic displacement parameters (Å2) for 51 
The anisotropic displacement factor exponent takes the form: -2 pi2 (h2 a*2 U11 + ... + 2 h k a* b* U12) 

 Atom U11 U22 U33 U23 U13 U12  

 Se1 0.0338(2) 0.0243(1) 0.0224(1) -0.0049(1) -0.0042(1) -0.0094(1)  
 Se2 0.0321(2) 0.0217(1) 0.0214(1) -0.0049(1) 0.0015(1) -0.0008(1)  
 O1 0.0405(11) 0.0269(10) 0.0270(10) -0.0019(8) 0.0078(8) -0.0066(9)  
 O2 0.0521(13) 0.0267(10) 0.0314(11) -0.0082(8) -0.0067(9) 0.0019(9)  
 C11 0.0276(12) 0.0205(11) 0.0225(11) -0.0060(9) -0.0080(9) -0.0008(10)  
 C12 0.0303(13) 0.0370(14) 0.0228(12) -0.0105(10) -0.0015(10) -0.0042(11)  
 C13 0.0395(15) 0.0384(16) 0.0397(15) -0.0246(13) -0.0110(12) 0.0066(13)  
 C14 0.0417(15) 0.0255(13) 0.0458(16) -0.0185(12) -0.0137(13) 0.0011(12)  
 C15 0.0335(13) 0.0212(12) 0.0340(13) -0.0064(10) -0.0079(11) -0.0045(10)  
 C16 0.0249(11) 0.0212(11) 0.0209(11) -0.0057(9) -0.0060(9) -0.0012(9)  
 C17 0.0386(14) 0.0267(13) 0.0242(12) -0.0081(10) 0.0024(10) -0.0090(11)  
 C21 0.0246(12) 0.0214(12) 0.0209(11) -0.0050(9) -0.0041(9) -0.0008(9)  
 C22 0.0304(13) 0.0254(13) 0.0310(13) -0.0062(10) -0.0043(10) -0.0068(10)  
 C23 0.0377(15) 0.0376(15) 0.0407(15) -0.0213(13) -0.0103(12) -0.0031(12)  
 C24 0.0349(14) 0.0494(17) 0.0261(13) -0.0188(12) -0.0065(11) 0.0055(13)  
 C25 0.0271(13) 0.0381(15) 0.0237(12) -0.0052(11) -0.0015(10) -0.0018(11)  
 C26 0.0209(11) 0.0237(12) 0.0227(11) -0.0033(9) -0.0042(9) -0.0001(9)  
 C27 0.0310(13) 0.0280(14) 0.0326(14) -0.0048(11) -0.0036(11) -0.0076(11)  

Bond lengths (Å) and angles (deg) for 51 

 Se1-C11 1.924(2)  
 Se1-Se2 2.3441(3)  
 Se2-C21 1.929(2)  
 O1-C17 1.424(3)  
 O2-C27 1.427(3)  
 C11-C12 1.387(3)  
 C11-C16 1.413(3)  
 C12-C13 1.381(4)  
 C13-C14 1.375(4)  
 C14-C15 1.392(4)  
 C15-C16 1.385(3)  
 C16-C17 1.504(3)  
 C21-C22 1.387(3)  
 C21-C26 1.400(3)  
 C22-C23 1.389(4)  
 C23-C24 1.382(4)  
 C24-C25 1.381(4)  
 C25-C26 1.399(3)  
 C26-C27 1.505(4)  
 C11-Se1-Se2 98.92(7)  
 C21-Se2-Se1 99.06(7)  
 C12-C11-C16 120.3(2)  

 C12-C11-Se1 118.61(19)  
 C16-C11-Se1 121.07(17)  
 C13-C12-C11 120.4(2)  
 C14-C13-C12 119.7(2)  
 C13-C14-C15 120.7(2)  
 C16-C15-C14 120.6(3)  
 C15-C16-C11 118.3(2)  
 C15-C16-C17 122.1(2)  
 C11-C16-C17 119.6(2)  
 O1-C17-C16 111.1(2)  
 C22-C21-C26 121.0(2)  
 C22-C21-Se2 117.09(18)  
 C26-C21-Se2 121.91(17)  
 C21-C22-C23 120.1(2)  
 C24-C23-C22 119.7(3)  
 C25-C24-C23 120.1(2)  
 C24-C25-C26 121.5(3)  
 C25-C26-C21 117.6(2)  
 C25-C26-C27 119.2(2)  
 C21-C26-C27 123.3(2)  
 O2-C27-C26 113.0(2)  
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6.10 2,2’- diselenobis(benzyl bromide) (52) 

Crystal data and structure refinement 

 Operator T.Oeser 
 Identification code al10  
 Empirical formula C14H12Br2Se2  
 Formula weight 497.98  
 Temperature 296(2) K  
 Wavelength 0.71073 Å  
 Crystal system monoclinic  
 Space group C2/c  
 Z 8  
 Unit cell dimensions a = 11.409(1) Å α =90.0 deg.  
  b = 11.359(1) Å β =101.861(2) deg.  
  c = 24.176(2) Å γ =90.0 deg.  
 Volume 3066.2(5) Å3  
 Density (calculated) 2.16 g/cm3  
 Absorption coefficient 10.02 mm-1  
 Crystal shape irregular  
 Crystal size 0.13 x 0.11 x 0.04 mm3  
 Theta range for data collection 2.8 to 22.0 deg.  
 Index ranges -12≤h≤12, -11≤k≤11, -25≤l≤25  
 Reflections collected 9097  
 Independent reflections 1866 (R(int) = 0.0273)  
 Observed reflections 1468 (I >2σ(I))  
 Absorption correction Semi-empirical from equivalents  
 Max. and min. transmission 0.69 and 0.36  
 Refinement method Full-matrix least-squares on F2  
 Data/restraints/parameters 1866 / 0 / 163  
 Goodness-of-fit on F2 1.08  
 Final R indices (I>2σ(I)) R1 = 0.065, wR2 = 0.148  
 Largest diff. peak and hole 1.24 and -0.33 eÅ-3  

Atomic coordinates and equivalent isotropic displacement parameters (Å2) for 52 
 Ueq is defined as one third of the trace of the orthogonalized Uij tensor 

 Atom x y z Ueq  

 Se1 0.6998(1) 0.0999(1) 0.7924(1) 0.1099(5)  
 Se2 0.6617(1) 0.1613(1) 0.6993(1) 0.1057(4)  
 Br1 0.7616(1) 0.0670(1) 0.9534(1) 0.1188(5)  
 Br2 0.5963(1) 0.2043(1) 0.5455(1) 0.1223(5)  
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 C11 0.8099(8) 0.2206(7) 0.8291(4) 0.090(2)  
 C12 0.8937(8) 0.2664(8) 0.8023(4) 0.097(2)  
 C13 0.9695(8) 0.3530(8) 0.8284(4) 0.099(3)  
 C14 0.9626(9) 0.3915(9) 0.8799(5) 0.104(3)  
 C15 0.8788(9) 0.3463(8) 0.9068(4) 0.100(3)  
 C16 0.8015(7) 0.2602(8) 0.8828(4) 0.089(2)  
 C17 0.7079(8) 0.2141(9) 0.9123(4) 0.103(3)  
 C21 0.7901(7) 0.0875(8) 0.6697(4) 0.088(2)  
 C22 0.8493(8) -0.0075(9) 0.6958(4) 0.101(3)  
 C23 0.9377(9) -0.0602(9) 0.6714(5) 0.109(3)  
 C24 0.9647(9) -0.0162(10) 0.6229(5) 0.111(3)  
 C25 0.9032(8) 0.0800(10) 0.5972(5) 0.105(3)  
 C26 0.8150(8) 0.1343(8) 0.6197(4) 0.093(2)  
 C27 0.7544(9) 0.2408(9) 0.5913(5) 0.114(3)  

Hydrogen coordinates and isotropic displacement parameters (Å2) for 52 

 Atom x y z Ueq  

 H12 0.8994 0.2393 0.7666 0.117  
 H13 1.0261 0.3851 0.8100 0.119  
 H14 1.0152 0.4493 0.8974 0.124  
 H15 0.8742 0.3749 0.9424 0.120  
 H17A 0.6346 0.1994 0.8848 0.123  
 H17B 0.6910 0.2728 0.9388 0.123  
 H22 0.8317 -0.0370 0.7290 0.122  
 H23 0.9785 -0.1260 0.6884 0.131  
 H24 1.0243 -0.0511 0.6073 0.133  
 H25 0.9214 0.1092 0.5640 0.126  
 H27A 0.8039 0.2750 0.5673 0.137  
 H27B 0.7458 0.2987 0.6197 0.137  

Anisotropic displacement parameters (Å2) for 52 
The anisotropic displacement factor exponent takes the form: -2 pi2 (h2 a*2 U11 + ... + 2 h k a* b* U12) 

 Atom U11 U22 U33 U23 U13 U12  

 Se1 0.1124(8) 0.1183(8) 0.1053(8) -0.0172(6) 0.0369(6) -0.0331(6)  
 Se2 0.0887(7) 0.1256(8) 0.1013(7) -0.0178(5) 0.0163(5) 0.0132(5)  
 Br1 0.1366(9) 0.1138(8) 0.1111(8) 0.0098(6) 0.0372(7) -0.0073(6)  
 Br2 0.1030(8) 0.1458(10) 0.1139(8) 0.0126(7) 0.0126(6) 0.0091(6)  
 C11 0.085(5) 0.090(5) 0.097(6) -0.008(5) 0.023(5) -0.014(4)  
 C12 0.098(6) 0.097(6) 0.099(6) -0.005(5) 0.027(5) -0.008(5)  
 C13 0.090(6) 0.093(6) 0.115(7) 0.008(5) 0.023(5) -0.015(5)  
 C14 0.090(6) 0.099(6) 0.115(7) -0.020(6) 0.006(5) -0.008(5)  
 C15 0.096(6) 0.099(6) 0.100(6) -0.014(5) 0.010(5) 0.003(5)  
 C16 0.083(5) 0.099(6) 0.085(5) 0.001(5) 0.020(4) 0.003(5)  
 C17 0.103(7) 0.112(7) 0.095(6) -0.003(5) 0.025(5) 0.007(5)  
 C21 0.075(5) 0.097(6) 0.089(6) -0.017(5) 0.008(4) -0.004(4)  
 C22 0.090(6) 0.114(7) 0.098(6) -0.005(5) 0.015(5) 0.017(5)  
 C23 0.102(6) 0.096(6) 0.118(8) -0.012(6) -0.004(6) 0.018(5)  
 C24 0.084(6) 0.123(8) 0.125(9) -0.032(7) 0.022(6) 0.000(6)  
 C25 0.088(6) 0.124(8) 0.108(7) -0.021(6) 0.031(5) -0.009(6)  
 C26 0.090(6) 0.091(5) 0.100(6) -0.002(5) 0.020(5) -0.004(4)  
 C27 0.111(7) 0.115(7) 0.115(7) 0.000(6) 0.025(6) -0.005(6)  
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Bond lengths (Å) and angles (deg) for 52 

 Se1-C11 1.947(8)  
 Se1-Se2 2.3096(16)  
 Se2-C21 1.947(8)  
 Br1-C17 1.975(9)  
 Br2-C27 1.957(10)  
 C11-C12 1.364(12)  
 C11-C16 1.395(13)  
 C12-C13 1.374(13)  
 C12-H12  0.9300  
 C13-C14 1.338(14)  
 C13-H13 0.9300  
 C14-C15 1.363(14)  
 C14-H14 0.9300  
 C15-C16 1.365(12)  
 C15-H15 0.9300  
 C16-C17 1.496(12)  
 C17-H17A 0.9700  
 C17-H17B 0.9700  
 C21-C22 1.357(13)  
 C21-C26 1.403(13)  
 C22-C23 1.403(13)  
 C22-H22 0.9300  
 C23-C24 1.367(15)  
 C23-H23 0.9300  
 C24-C25 1.376(15)  
 C24-H24 0.9300  
 C25-C26 1.383(13)  
 C25-H25 0.9300  
 C26-C27 1.489(13)  
 C27-H27A 0.9700  
 C27-H27B 0.9700 
  
 C11-Se1-Se2 101.9(3)  
 C21-Se2-Se1 102.9(3)  
 C12-C11-C16 120.6(8)  
 C12-C11-Se1 120.0(7)  
 C16-C11-Se1 119.4(6)  
 C11-C12-C13 119.4(9)  
 C11-C12-H12 120.3  
 C13-C12-H12 120.3  
 C14-C13-C12 120.6(9)  

 C14-C13-H13 119.7  
 C12-C13-H13 119.7  
 C13-C14-C15 120.2(9)  
 C13-C14-H14 119.9  
 C15-C14-H14 119.9  
 C14-C15-C16 121.5(9)  
 C14-C15-H15 119.3  
 C16-C15-H15 119.3  
 C15-C16-C11 117.7(8)  
 C15-C16-C17 120.7(8)  
 C11-C16-C17 121.6(8)  
 C16-C17-Br1 111.0(6)  
 C16-C17-H17A 109.4  
 Br1-C17-H17A 109.4  
 C16-C17-H17B 109.4  
 Br1-C17-H17B 109.4  
 H17A-C17-H17B 108.0  
 C22-C21-C26 122.1(8)  
 C22-C21-Se2 120.8(7)  
 C26-C21-Se2 117.0(7)  
 C21-C22-C23 118.5(10)  
 C21-C22-H22 120.8  
 C23-C22-H22 120.8  
 C24-C23-C22 120.8(10)  
 C24-C23-H23 119.6  
 C22-C23-H23 119.6  
 C23-C24-C25 119.6(9)  
 C23-C24-H24 120.2  
 C25-C24-H24 120.2  
 C24-C25-C26 121.4(10)  
 C24-C25-H25 119.3  
 C26-C25-H25 119.3  
 C25-C26-C21 117.5(9)  
 C25-C26-C27 119.2(9)  
 C21-C26-C27 123.3(8)  
 C26-C27-Br2 112.1(7)  
 C26-C27-H27A 109.2  
 Br2-C27-H27A 109.2  
 C26-C27-H27B 109.2  
 Br2-C27-H27B 109.2  
 H27A-C27-H27B 107.9  
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6.11 1,6-bis-(2´-methylselenylbenzene)-2,5-diselena-
3-hexyne (48) 

Crystal data and structure refinement 

 Operator T.Oeser 
 Identification code al14  
 Empirical formula C18H18Se4  
 Formula weight 550.16  
 Temperature 200(2) K  
 Wavelength 0.71073 Å  
 Crystal system monoclinic  
 Space group C2/c  
 Z 4  
 Unit cell dimensions a = 15.856(2) Å α = 90 deg.  
  b =5.2497(7) Å β =101.456(3) deg.  
  c = 22.816(3) Å γ = 90 deg.  
 Volume 1861.4(4) Å3  
 Density (calculated) 1.96 g/cm3  
 Absorption coefficient 7.88 mm-1  
 Crystal shape polyhedron  
 Crystal size 0.35 x 0.06 x 0.04 mm3  
 Crystal colour colorless  
 Theta range for data collection 1.8 to 26.1 deg.  
 Index ranges -19≤h≤19, -6≤k≤6, -28≤l≤28  
 Reflections collected 7851  
 Independent reflections 1846 (R(int) = 0.0422)  
 Observed reflections 1486 (I >2σ(I))  
 Absorption correction Semi-empirical from equivalents  
 Max. and min. transmission 0.74 and 0.17  
 Refinement method Full-matrix least-squares on F2  
 Data/restraints/parameters 1846 / 0 / 101  
 Goodness-of-fit on F2 1.04  
 Final R indices (I>2σ(I)) R1 = 0.033, wR2 = 0.074  
 Largest diff. peak and hole 0.72 and -0.45 eÅ-3  
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Atomic coordinates and equivalent isotropic displacement parameters  (Å2) for 48.  
Ueq is defined as one third of the trace of the orthogonalized Uij tensor 

 Atom x y z Ueq  

 Se1 0.4034(1) 0.3005(1) 0.4620(1) 0.0474(2)  
 Se2 0.5402(1) 0.1295(1) 0.3574(1) 0.0452(2)  
 C1 0.3316(2) 0.1384(7) 0.3948(2) 0.0317(8)  
 C2 0.3695(2) -0.0517(7) 0.3657(2) 0.0297(8)  
 C3 0.3173(3) -0.1821(7) 0.3193(2) 0.0356(9)  
 C4 0.2316(3) -0.1247(8) 0.3016(2) 0.0428(10)  
 C5 0.1964(2) 0.0685(8) 0.3299(2) 0.0423(10)  
 C6 0.2459(3) 0.1987(8) 0.3765(2) 0.0394(9)  
 C7 0.4621(2) -0.1204(7) 0.3832(2) 0.0388(9)  
 C8 0.5081(2) 0.0971(8) 0.2769(2) 0.0402(9)  
 C9 0.3250(3) 0.5466(8) 0.4843(2) 0.0529(12)  

Hydrogen coordinates and isotropic displacement parameters (Å2) for 48  

 Atom x y z Ueq  

 H3 0.3415 -0.3140 0.2993 0.043  
 H4 0.1967 -0.2176 0.2701 0.051  
 H5 0.1375 0.1117 0.3171 0.051  
 H6 0.2211 0.3304 0.3960 0.047  
 H7A 0.4712 -0.2885 0.3658 0.047  
 H7B 0.4773 -0.1372 0.4273 0.047  
 H9A 0.3031 0.6578 0.4501 0.079  
 H9B 0.3552 0.6494 0.5178 0.079  
 H9C 0.2768 0.4576 0.4962 0.079  

Anisotropic displacement parameters (Å2) for 48. 
The anisotropic displacement factor exponent takes the form: -2 pi2 (h2 a*2 U11 + ... + 2 h k a* b*

U12)  

 Atom U11 U22 U33 U23 U13 U12 U12  

 Se1 0.0515(3) 0.0484(3) 0.0399(3) -0.0125(2) 0.0032(2) 0.0039(2)  
 Se2 0.0339(2) 0.0557(3) 0.0476(3) -0.0108(2) 0.0118(2) -0.0019(2)  
 C1 0.038(2) 0.0318(19) 0.0256(19) 0.0031(15) 0.0063(15) -0.0024(16)  
 C2 0.0330(19) 0.0270(18) 0.0305(19) 0.0063(15) 0.0092(15) -0.0016(15)  
 C3 0.049(2) 0.0291(19) 0.031(2) 0.0026(16) 0.0137(18) -0.0013(17)  
 C4 0.044(2) 0.049(2) 0.034(2) 0.0010(18) 0.0025(18) -0.0069(19)  
 C5 0.030(2) 0.054(3) 0.042(2) 0.006(2) 0.0062(18) -0.0017(18)  
 C6 0.040(2) 0.042(2) 0.039(2) 0.0034(18) 0.0152(18) 0.0072(18)  
 C7 0.045(2) 0.037(2) 0.035(2) 0.0046(17) 0.0096(18) 0.0066(18)  
 C8 0.031(2) 0.044(2) 0.050(2) 0.0006(17) 0.019(2) 0.0035(17)  
 C9 0.072(3) 0.043(2) 0.050(3) -0.012(2) 0.027(2) -0.001(2)  

Bond lengths (Å) and angles (deg) for 48 

 Se1-C1 1.918(4)  
 Se1-C9 1.930(4)  
 Se2-C8 1.814(4)  

 Se2-C7 1.973(4)  
 C1-C6 1.377(5)  
 C1-C2 1.399(5)  
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 C2-C3 1.388(5)  
 C2-C7 1.488(5)  
 C3-C4 1.372(5)  
 C4-C5 1.378(6)  
 C5-C6 1.371(6)  
 C8-C8#1 1.202(8)  
 C1-Se1-C9 101.34(18)  
 C8-Se2-C7 99.99(17)  
 C6-C1-C2 120.8(3)  
 C6-C1-Se1 122.3(3)  

 C2-C1-Se1 116.9(3)  
 C3-C2-C1 117.8(3)  
 C3-C2-C7 119.5(3)  
 C1-C2-C7 122.7(3)  
 C4-C3-C2 121.4(4)  
 C3-C4-C5 119.6(4)  
 C6-C5-C4 120.5(4)  
 C5-C6-C1 119.9(4)  
 C2-C7-Se2 113.8(3)  
 C8#1-C8-Se2 173.3(3)  

Symmetry transformations used to generate equivalent atoms:  #1 -x+1,y,-z+1/2  
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