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Abstract

The use of increasingly detailed reaction mechanisms for the chemistry descripti-

on in computational fluid dynamics simulations plays a major role in combustion

research. Model reduction adresses the discrepancy between the need to develop

detailed high-dimensional multi-scale models (e.g. in chemical kinetics) and the in-

efficiency of their use in computationally demanding numerical simulations. Many

modern model reduction approaches are based on the approximation of slow inva-

riant manifolds of lower dimension than the original system. Pursuing the work of

Lebiedz on Minimum Entropy Production Trajectories (MEPT), this work pres-

ents a way to approximate slow invariant manifolds based on the optimization of

trajectories. This work particularly covers the generalization of the MEPT concept

for the construction of invariant manifolds of arbitrary dimension and guides the

way for the construction of general relaxation criteria. Especially the minimizati-

on of curvature of trajectories – used for model reduction purposes for the first

time within the scope of this work – leads to highly encouraging results, where the

optimized trajectories are close to the slow invariant manifold. For the derivation

of a reliable method for the construction of low-dimensional manifolds to be used

in chemical kinetics, this work deals with advanced numerical methods, ideas from

thermodynamics and differential geometry.

Kurzfassung

Für die Beschreibung chemischer Reaktionen für Simulationen numerischer Strö-

mungsmechanik in der Verbrennungsforschung wird die Benutzung immer detail-

lierterer Reaktionsmechanismen zunehmend wichtiger. Die Modellreduktion be-

fasst sich mit der Diskrepanz zwischen der Notwendigkeit solcher hochdimensio-

nalen Multiskalenmodelle (z.B. in der chemischen Reaktionskinetik) und deren

Limitierung in der Anwendung in hohe Rechenleistung erfordernden numerischen

Simulationen. Viele moderne Modellreduktionsansätze fußen auf der Approxima-

tion langsamer invarianter Mannigfaltigkeiten, die gegenüber dem ursprünglichen

System eine niedrigere Dimension aufweisen. Basierend auf der Arbeit von Le-

biedz über Trajektorien minimaler Entropieproduktion (Minimum Entropy Pro-

duction Trajectories – MEPT) befasst diese Arbeit sich mit der Approximation

langsamer invarianter Mannigfaltigkeiten durch die Optimierung von Trajektori-

en. Insbesondere wird dabei das MEPT-Konzept für die Konstruktion invarianter

Mannigfaltigkeiten beliebiger Dimension verallgemeinert und Wege zur Konstruk-

tion allgemeiner Relaxationskriterien aufgezeigt. Vor allem die Minimierung der

Krümmung von Trajektorien, die im Rahmen dieser Arbeit das erste mal für Zwe-

cke der Modellreduktion angewendet wird, führt zu viel versprechenden Ergebnis-

sen, bei denen die optimierten Trajektorien sehr nah an der langsamen invarianten

Mannigfaltigkeit liegen. Um eine zuverlässige Methode für die Konstruktion nied-

rigdimensionaler Mannigfaltigkeiten für chemische Reaktionskinetik zu entwickeln,

befasst sich diese Arbeit mit hochentwickelten numerischen Methoden, Ideen aus

der Thermodynamik und der Differentialgeometrie.
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Chapter 1

Introduction

The scientific examination of combustion is motivated by the fact that com-
bustion is, by far, the main energy source of today’s world. Driven by eco-
nomical and ecological needs, the optimization of combustion processes plays
a major role in combustion research.

Early combustion research was rather directed to fluid dynamics, often un-
der the assumption of infinitely fast chemistry. While this approach may be
successful for stationary combustion, it is not sufficient to treat e.g. pollutant
formation or transient processes, which require a detailed chemistry treat-
ment. Since the late seventies of the last century numerical simulations of
combustion including chemical reaction kinetics have developed from laminar
flat flame calculations [91, 92, 93] to modern computational fluid dynamics
that can resolve turbulent structures [1].

Along with this development, reaction mechanisms for the detailed descrip-
tion of chemistry in combustion processes are on the increase. Modern reac-
tion mechanisms may contain hundreds of species and thousands of reactions.
Despite growing computer power, a solution of these detailed reaction mech-
anisms in a full spatiotemporal reactive flow simulation is not in sight.

This is where model reduction comes into application. A key issue of model
reduction is to address the discrepancy between the need to develop detailed
high-dimensional models (e.g. in chemical kinetics) and the inefficiency of
their use in computationally demanding multi-scale numerical simulations.
The ultimate goal of all model reduction techniques in chemical kinetics
is to find a low-dimensional approximation of a reaction mechanism which
contains essential information to still describe the system accurately enough.

For models of chemical kinetics this is equivalent to identifying the essential
degrees of freedom with respect to (w.r.t.) the system properties of inter-
est. Those properties of interest are often related to long-term dynamics.
To construct low-dimensional approximations, many model reduction tech-
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2 CHAPTER 1. INTRODUCTION

niques therefore make use of intrinsic multiple time scales. If the long-term
behaviour of a system is to be studied, fast transient dynamical modes are
assumed to be relaxed within the reduced model approximation replacing the
original system of differential equations by one of lower dimension without
losing too much key information about the long-term system dynamics.
An important point in simulations of technical processes is that usually all
species are relevant for the properties of interest and therefore have to be
considered, not only the ones that parametrize the reduced reaction mecha-
nism. Hence the concentrations for the species of the full mechanism need
to be calculated automatically as functions of the species parametrizing the
reduced mechanism. This so-called automatic species reconstruction is im-
plemented in most of the model reduction algorithms, independently of the
concepts the methods are based on.
Algorithms for model reduction in chemical kinetics range from “manual”
methods like quasi steady-state or partial equilibrium assumptions to mod-
ern methods approximating slow invariant manifolds. Many of the model
reduction methods are not generally restricted to the application in chemical
kinetics. However, the methods benefit from the large number of fast tran-
sient processes in chemical reaction mechanisms which enable a very efficient
reduction without imposing too large errors.
While many model reduction methods have been introduced in the past and
most modern ones are based on the approximation of slow invariant mani-
folds, the problem of a simple and robust method to compute such manifolds
still remains. For example many methods suffer from their local character.
Nowadays, sophisticated mathematical tools allow for the computation of
optimal trajectories for dynamical systems such as chemical reaction mecha-
nisms. Mathematically, this computation of optimal trajectories corresponds
to a so-called variational boundary-value problem. As the original formulation
of such a problem is of infinite dimension, a discretization provides a finite
dimensional Nonlinear Programming Problem (NLP), which can be solved
using standard approaches, e.g. Sequential Quadratic Programming (SQP).
Based on these tools, Lebiedz [50] presented a novel approach to model re-
duction in chemical kinetics. The resulting trajectories are supposed to be
maximally relaxed with respect to an optimization criterion which, for these
calculations, was chosen to be minimal entropy production rate in [50]. The
variables parametrizing the low-dimensional manifold – the so-called progress
variables – find a fully natural realization as initial values of the trajectory
in this context. This approach assures that at least an approximation of
slow attracting manifolds that is “as good as possible” in the sense of the
optimization criterion is found, even in regions where other model reduction
methods requiring a clear time scale separation – as for example the Intrinsic
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Low-Dimensional Manifold (ILDM) [60] – fail.
Pursuing Lebiedz’s optimality concept, this work presents a generalized tra-
jectory-based optimization approach suitable for the accurate computational
approximation of slow invariant manifolds and its application to increasingly
realistic kinetic models. In particular, this work covers the derivation of
alternative criteria for the optimization of trajectories and the efficient eval-
uation of the variational boundary value problems to improve the quality
of the resulting approximations of slow attracting manifolds. The approach
is also adapted for the computation of higher-dimensional manifolds, where
optimal trajectories are computed for different initial values. A paramet-
ric embedding of the optimization problem serves for an efficient solution of
these neighbouring problems.
In summary, this work brings together highly sophisticated numerical meth-
ods, ideas from thermodynamics and differential geometry to derive a reli-
able method for the construction of low-dimensional manifolds to be used in
chemical kinetics.

1.1 Outline

The structure of this thesis is as follows:
In Chapter 2 a detailed overview of methods for the reduction of chemical
kinetics modeled by Ordinary Differential Equation (ODE) systems is given.
The methods presented range from quasi steady-state and partial equilibrium
assumptions to modern manifold methods.
Chapter 3 introduces the theoretical background which is used for both the
description and reduction of models in chemical kinetics in this work. These
comprise chemical kinetics for the description of chemical reactions in terms
of ODE systems, basic theory of dynamical systems for the solution of these
ODE systems and elements from thermodynamics and differential geometry
which are used for the reduction of ODE models in this work.
The trajectory-based optimization approach for model reduction that is em-
ployed in this work is described by a variational boundary value problem.
Chapter 4 introduces the methods for the numerical solution of this prob-
lem. These methods cover the computation of single optimal trajectories as
well as the embedding of these computations in a parametric optimization
setting.
Bringing together the ideas from the previous chapters, a general strategy
for model reduction by trajectory-optimization is presented in Chapter 5.
Along with a numerical continuation strategy and a detailed description of
the relaxation criteria to be used in this framework, this strategy constitutes
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the methodological focus of this work.
The main results achieved with this strategy are presented in Chapter 6.
The variety of underlying dynamical systems, for which results are presented,
ranges from small two-dimensional systems to a realistic hydrogen combus-
tion mechanism. These examples can also be found in the Appendix.
The thesis is summarized in Chapter 7 along with an extended outlook. This
extended outlook has its focus on the extension of the developed method for
large-scale model reduction.



Chapter 2

Model Reduction in Chemical
Kinetics

“It is useful to solve invariance equations.”
Alexander N. Gorban (following Newton)

at a workshop on model reduction

Model reduction is situated at the discrepancy between increasingly detailed
models for chemical kinetics and high-resolution spatiotemporal numerical
calculations that need to rely on these models at every grid-point.
The aim of model reduction therefore is the low-dimensional description of
high-dimensional models while preserving the most important features such
as the long term dynamics.
In this chapter, common model reduction techniques for chemical and bio-
chemical systems modeled by Ordinary Differential Equation (ODE) systems

ẋi = Fi(x) =
m∑

j=1

νijvj(x), i = 1, ..., n (2.1)

and their applications in practical simulations are reviewed.
In practical applications, the components xi of the vector x usually denote
(bio)chemical species and vj denotes the velocity of the j-th reaction. The sto-
ichiometric coefficients νij determine the reactions that contribute to the for-
mation and consumption of the i-th species. The aim of a lower-dimensional
description is usually met by reducing the number of differential variables xi.
As the presentation of the model reduction methods in this chapter is de-
signed to be a summary, the reader is referred to [33, 68] for comprehensive
overviews of the most common model reduction techniques and their un-
derlying concepts. Comparisons of different methods for the construction of
invariant manifolds can be found in [14].

5



6 CHAPTER 2. MODEL REDUCTION IN CHEMICAL KINETICS

2.1 Model Reduction Methods – Overview

2.1.1 QSSA and PEA

The Quasi Steady-State Assumption (QSSA) [9, 10, 13] (or Quasi-Stationary
Assumption) and the Partial Equilibrium Assumption (PEA) [62] have been
among the first ideas to reduce chemical reaction mechanisms [45, 46, 84, 88].
The key idea of both assumptions is similar. The QSSA assumes certain
species to be in a steady-state, while the PEA assumes certain reactions to
be in equilibrium.
A good explanation of the QSSA is found in the following simple example
from [95]:

Example 2.1 (QSSA)
Consider the reaction

S1
k12→ S2

k23→ S3 (2.2)

described by the ODE system

d[S1]

dt
= −k12[S1] (2.3a)

d[S2]

dt
= k12[S1] − k23[S2] (2.3b)

d[S3]

dt
= k23[S2]. (2.3c)

Figure 2.1: Left: Exact solution of ODE system 2.3, right: Temporal
evolution of the reaction S1 → S2 → S3 with assumed quasi-stationarity
for [S2] [95].

If S2 is assumed to be a reactive particle, its formation and decomposition
can be assumed to have similar velocity

d[S2]

dt
= k12[S1] − k23[S2] ≈ 0 (2.4)
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and hence (2.3b) can be replaced by

[S2] =
k12

k23

[S1]. (2.5)

Figure 2.1 shows a comparison of the exact solution of the linear ODE system
(2.3) and the solution assuming quasi-stationarity for [S2].

Another common example for the QSSA is the Michaelis-Menten kinetics [62],
where – similar to the above example – the concentration of an intermediate
species is assumed to be in steady-state.
As stated above, the PEA is conceptually similar to the QSSA, except that
the major assumption is on reactions as opposed to species. This idea again
is explained by an example from [95]:

Example 2.2 (PEA)
The analysis of experiments or simulations with reaction mechanisms for the
combustion of hydrogen shows that for large temperatures (e.g. T > 1800 K
at p = 1 bar) reaction velocities of forward and reverse reactions are so high
that the reactions

OH + H2 ⇋ H2O + H (2.6a)

H + O2 ⇋ OH + O (2.6b)

O + H2 ⇋ OH + H (2.6c)

are in a so-called partial equilibrium, i.e. their forward and reverse reactions
have (approximately) equal velocity. Equating the reaction velocities yields
the algebraic expressions

k1[OH][H2] = k2[H2O][H]

k3[H][O2] = k4[OH][O]

k5[O][H2] = k6[OH][H]

that can be solved for the radical species O, H and OH

[H] =

(
k2

1k3k5[O2][H2]
3

k2
2k4k6[H2O]2

) 1
2

(2.7a)

[O] =
k1k3[O2][H2]

k2k4[H2O]
(2.7b)

[OH] =

(
k3k5

k4k6
[O2][H2]

) 1
2

. (2.7c)
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Hence the radical particles are expressed in terms of the more stable particles
[H2], [O2] and [H2O]. In [94] this procedure has been compared to a detailed
reaction mechanism. Figure 2.2 shows that the PEA yields satisfactory re-
sults only for high temperatures.

Figure 2.2: Maximal mole fractions of the radical species H, O, OH
in premixed stoichiometric H2-Air-Flames from [94], computed by a de-
tailed reaction mechanism (black dots) and with the partial equilibrium
assumption (white dots).

Despite the development of more sophisticated model reduction methods,
both the QSSA and the PEA are still used nowadays due to their concep-
tual simplicity [69]. However, it has to be noted that usually both methods
require detailed knowledge of the mechanism to decide which species a quasi-
stationarity or which reactions a partial equilibrium can be assumed for. A
technique for the automatic choice of these species or reactions is presented
in [88].

2.1.2 Time-Scale Analysis

While the background of the QSSA and PEA lies in a “by-hand” time-scale
analysis, modern time-scale analysis based methods try to automatize this
process by computing approximations of invariant manifolds [32].

The basis for this procedure is the fact that chemical kinetics are based on
largely different time scales. The QSSA and the PEA try to exploit this
fact by finding (and eliminating) the fast reactions or fast chemical source
terms. The methods presented in this section have a more general view on the
underlying chemical systems. The main difference is that the processes which
are assumed (or computed) to be relaxed are not directly related to either
reactions or species, but to generalized mathematical or physical properties
of the underlying ODE system (2.1).



2.1. MODEL REDUCTION METHODS – OVERVIEW 9

Intrinsic Low-Dimensional Manifold

In 1992, Maas and Pope [60] introduced a way of approximating slow man-
ifolds by applying a time-scale analysis to the underlying ODE-system ψ̇ =
S(ψ) with the state vector ψ = (T, p, w1, ..., wn)

T , where p denotes pressure,
T temperature and wi the mass fraction of species i.
The local time scales of this system can be determined as the inverse eigen-
values of the Jacobian J(ψ0) = ∂S(ψ0)

∂ψ
. By linear algebra transformations

explained in more detail in [19], this Jacobian can be written as

J(ψ) = LT̃L−1 = L

(
T̃slow 0

0 T̃fast

)

L−1 (2.8)

where T̃slow and T̃fast are the real Schur matrices with the slow and fast
eigenvalues as diagonal entries. In the case of complex eigenvalues these
diagonal entries have a 2-by-2 block structure.
The aim of the Intrinsic Low-Dimensional Manifold (ILDM) method is to
represent the fast variables as a function of the slow ones, under the assump-
tion that the fast processes are already relaxed. In combustion processes,
most eigenvalues of the Jacobian have large negative real parts, which means
that there is a large number of fast modes and a small number of slow ones.
With the decoupling from (2.8), the ODE system can be transformed into

dxslow

dt
= gslow(x)

dxfast

dt
= gfast(x)

!
= 0 (2.9)

for x =

(
xslow

xfast

)

= L−1ψ and g =

(
gslow

gfast

)

= L−1S, where gfast = 0 is the

relaxation assumption defining the ILDM.
Denoting Efast the part of L−1 corresponding to the fast variables (i.e. gfast =
EfastS), the full ILDM equation system to be solved is given by

EfastS(x) = 0, P (x, c) = 0. (2.10)

The parametrization P (x, c) = 0 closes the algebraic equation system. It
contains the mass conservation relations associated with the chemical reac-
tion system and specifies a single point on the manifold in terms of given
concentration values of the chosen reaction progress variables.
For the application of reduced mechanisms, the computationally expensive
solution of the ILDM equation (2.10) is performed a priori and the ILDM
is tabulated on a numerical grid defined by appropriate step sizes for the
reaction progress variables. The computation of the ILDM is then accom-
plished by using a continuation method, taking previously calculated ILDM
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points as initial guesses for subsequent ones. As a starting point for this
procedure usually a point near the chemical equilibrium is taken which is a
zero-dimensional ILDM by definition.
Roussel and Tang [79] recently developed a new algorithm for the computa-
tion of ILDM-points by functional iteration. More information on the practi-
cal realization of ILDM and its applications can be found in [1, 15, 58, 59, 64].

Computational Singular Perturbation

The Computational Singular Perturbation (CSP) method [49] has first been
presented by Lam in 1985 [48].
The CSP method is based on a reformulation of the ODE system

ẋi = Fi(x) =
m∑

j=1

νijvj(x), i = 1, ..., n (2.11)

in terms of a new (orthogonal) basis with the basis vectors ai, i = 1, ..., n,
bi, i = 1, ..., n, bTi aj = δij , i, j = 1, ..., n, i.e.

F (x) =

n∑

i=1

aici (2.12)

ci = bTi F (x) =
m∑

j=1

Bijvj(x), ∀i (2.13)

Bij = bTi νij , ∀i. (2.14)

After this choice of basis, the modes ci are reordered according to their time-
scales. Differentiating ci = bTi F (x) w.r.t. time one obtains

dci
dt

=
n∑

j=1

Λijcj , ∀i with Λij =

(
dbi
dt

+ bTi J

)T

aj , (2.15)

where J is the Jacobian of the original system (2.11).
Based on eigenvectors of the Jacobian of the original system, CSP refines the
new basis vectors to approximate a set of “ideal” basis vectors. The aim of
this refinement procedure is a representation of the original system in a basis
such that the slow and fast modes are decoupled. Essentially the refinement
procedure is a generalization of the so-called “power-method” for computing
eigenvectors and produces a block-diagonal Λij when converged.
An analysis of the CSP method can be found in [99].
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2.1.3 Iterative Methods

Apart from methods based on the explicit separation of time-scales, methods
based on a functional equation that can be obtained from the original ODE
formulation have been introduced in the past.

Fraser’s algorithm

In [26, 63], Fraser introduced an iterative way to compute a “slow manifold”
– a term that has also been introduced in this context. Singh et al. [83] later
named this manifold Slow Invariant Manifold (SIM). Here Fraser’s algorithm
is introduced in terms of the modified version presented in [16]. The basis
for this procedure is the elimination of time from the model equation (2.1).
For a two-dimensional system

(
ẋ
ẏ

)

=

(
F1(x, y)
F2(x, y)

)

this yields
F2(x, y)dx− F1(x, y)dy = 0. (2.16)

Figure 2.3: Illustration of Fraser’s algorithm in 2D from [16]. Points
on the slow manifold are computed iteratively by solving (2.17).

Note that the extension to more dimensions is straightforward. The fixed
point equation (2.16) can be rewritten in an iterative form as

F2(xi, y
n+1
i )dxi − F1(xi, y

n+1
i )dyni = g(yn+1

i ) = 0, i = 1, ..., m, (2.17)
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which has to be solved at each of the m points of the manifold. Note different
from the usual notation m and n do not denote the numbers of chemical
reactions and species respectively, but m denotes the number of points on
the manifold and n is the iteration index.

The idea of using the fixed point equation (2.17) is depicted in Figure 2.3
from [16].

The applicability of this method for the construction of manifolds of higher
dimensions has been demonstrated in [77, 78].

A comparison of the ILDM and the Roussel-Fraser algorithm can be found
in [42].

Constrained Runs

Another iterative approach that has been introduced recently in [27] and
analysed for accuracy and convergence in [98] is the so-called Constrained
Runs algorithm.

The basic idea is that (2.1) is described by

u̇ = p(u, v) (2.18)

v̇ = q(u, v), (2.19)

with initial conditions u(0) specified only for u, which in other words sim-
ply means that the progress variables or variables parametrizing the “slow
manifold” are collected in u.

Assuming the existence of a singular perturbation form, the Constrained
Runs scheme proposes the iterative solution of

dm+1v

dtm+1
= 0, (2.20)

i.e. the (m+ 1)st (time) derivative of the free variables is computed as being
zero (note that the iteration does not take place in m, but in the computation
of the zero of (2.20)). The intuition behind this condition is that differen-
tiation “amplifies” rapidly varying components more than slowly varying
components.

For the practical implementation, the authors of [27] suggest the use of for-
ward differences to approximate the (m+1)st derivative, an approach which
even has some theoretical advantages in this context.
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2.1.4 Other Approaches

Rate-Controlled Constrained Equilibrium

In 1971 Keck and Gillespie proposed in [43] the Rate-Controlled Constrained
Equilibrium (RCCE) method, which later was further developed by Hami-
roune et al. [40]. The method is based on locally maximizing the entropy or
minimizing the Gibbs free energy of the mixture. This optimization (subject
to a set of constraints fixing the reaction progress variables) is achieved by
using the Lagrange multipliers method.

Subsequently, the species composition can be computed as a function of
the Lagrange multipliers. While the method is appealing in its simplicity,
a conceptual problem of the RCCE method is the question of the physical
relevance of the computed optimal solutions as they generally do not lie on
– or even close to – slow manifolds.

Invariant Constrained Equilibrium Edge Preimage Curve

In [75, 76] Ren, Pope et al. introduced a new species reconstruction method
called Invariant Constrained Equilibrium Edge Preimage Curve (ICE-PIC).
This method uses the RCCE method on the boundary of a predefined real-
izable region. More precisely, the “ICE-Manifold is the union of all reaction
trajectories emanating from boundary points in the edge of the constrained
equilibrium manifold”. The invariance of the resulting manifold is guaranteed
by the fact that it is constructed from reaction trajectories.

By using preimage curves (PIC), Ren and Pope [75] then realize “species
reconstruction” locally, i.e. without having to construct a complete manifold
in advance.

Method of Invariant Grids

In [32], Gorban and Karlin comprehensively studied invariant manifolds for
physical and chemical kinetics. The basis for their analysis is the invariance
equation

∆ = (1 − P )F = 0, (2.21)

where P is a projection on an invariant manifold. This projection actually
defines the invariant manifold to be computed.
Based on this theoretical approach, Gorban et al. present the Method of
Invariant Grids in [31]. For this method, the choice of the projector is based
on the second law of thermodynamics: it is chosen in such a way that entropy
grows in the fast motion. For the realization of this idea, the authors use
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the “entropic scalar product”, which is used in this work as the Riemannian
metric in Subsection 5.2.3.
The Method of Invariant Grids has been further pursued and compared to
other methods in [14].

Flamelet-Generated Manifold

For combustion applications, van Oijen and de Goey introduced the Flamelet
Generated Manifold (FGM) method in [67]. This method combines the idea
of flamelet approaches – that a multidimensional flame can be considered
as an ensemble of one-dimensional flames – with the precomputation and
storage from manifold approaches.
However, even though recent research [17] tries to extend the FGM from
2D to 3D, the extension of this method to arbitrary dimensions remains a
problem.

2.1.5 Yet Another Approach?

As can be seen in this section, many conceptually different approaches to
model reduction have been presented in the past and the most modern ones
are based on finding or approximating invariant manifolds.
However, the computation of invariant manifolds is not a trivial task and
most of the methods presented in this section have disadvantages by some
means or other.
One of the problems that is often encountered is the fact that some model
reduction methods depend on the explicit separation of the time-scales. Prob-
lems arise under conditions where the requirement of clear timescale separa-
tion does not hold. Low temperatures, for example may impede the solution
of time scale decoupling equations, e.g. in the computation of ILDM-points.
Another drawback of many model reduction approaches is the fact that they
often depend on the computation of the complete manifold or at least large
parts of it. However, from the application point of view it is highly desirable
to find reduced descriptions on the manifold locally. The computation of
single manifold points without having to construct a complete manifold first
is called “local species reconstruction” or “in-situ approach”.
The approach developed in this work can overcome some of the problems in
the computation or approximation of slow invariant manifolds. Particularly
the optimization basis of the approach guarantees solvability by computing
“optimally reduced” models even in cases where other approaches fail.
For consistent optimization criteria (see Definition 5.1), the approach pre-
sented here is also capable of local species reconstruction.
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Finally, approaches like the ILDM exploit only local information for their
time-scale analysis, the approach presented in this work uses global infor-
mation by considering trajectories instead of points in phase space, hence
making use of the nonlinearities of the underlying dynamical systems.
Considering all this, the trajectory-based optimization approach for model
reduction presented in this work bears promise for a fast and robust con-
structive approximation and application of invariant manifolds.

2.2 Model Reduction and Complexity Anal-

ysis

A field that is closely related to model reduction is complexity analysis. While
the aim of model reduction lies in the explicit expression of a large system
in dependence of only a few degrees of freedom, complexity analysis aims
at finding the essential system dynamics and coupling relations. In other
words, complexity analysis tries to find the necessary degrees of freedom
(minimal dimension) of a system within a given error tolerance, while model
reduction tries to explicitly compute and apply attracting manifolds of a
given dimension (usually neglecting errors).
Although both fields show different aims, they often share their key algo-
rithms. For example [100] uses an ILDM-related strategy to find the active
modes of a biochemical system (the PO reaction). A similar strategy is
used in [82] to find the essential dynamics of the photosensitive Belousov-
Zhabotinsky reaction and subsequently reduce the dimension of its model.
This way, [82] combines complexity analysis and model reduction. However,
the by-hand model reduction used by [82] is only very loosely related to the
automatic model reduction treated in this thesis.
Lebiedz et al. [52] use a mathematically more sophisticated strategy for com-
plexity analysis. In principal, this strategy (based on a singular value de-
composition of sensitivity matrices) could also be applicable for model re-
duction; for large systems however, the computation of sensitivities becomes
too demanding. The complexity analysis in [52] of the Michaelis-Menten [62]
kinetics in a way justifies the QSSA for this system (see Subsection 2.1.1).
More results of research in the field of complexity analysis can be found in
[41].
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Chapter 3

Theoretical Background

“It is useful to solve differential equations.”

V. Arnold’s translation of

“Data aequatione quotcunque fluentes quantitae involvente flux-
iones invenire et vice versa.”

Sir Isaac Newton

This chapter deals with the theoretical background necessary for the dis-
cussion and application of the trajectory-based optimization approach for
model reduction that is pursued in this work. Section 3.1 introduces some
aspects from the general theory of dynamical systems and ordinary differ-
ential equations, whereas Section 3.2 discusses properties of the solutions of
these systems. The physical background for the systems dealt with in this
work is introduced in Sections 3.3 and 3.4.

3.1 Dynamical Systems

The theory of dynamical systems aims at analyzing qualitative properties of
mathematical models describing the behaviour of time-dependent processes.

Definition 3.1 (Autonomous Differential Equation (System))
An ordinary differential equation or a system of ordinary differential equa-
tions (ODE system) ċ = f(c, t) is said to be autonomous, if it does not
explicitly depend on time t, i.e.

ċ(t) :=
dc(t)

dt
= f(c(t)), c(t) ∈ R

n. (3.1)

17
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The dynamical systems considered in this work are chemical reaction mecha-
nisms, which can be described by autonomous ordinary differential equations
with a continuous (in c) vector function f : U → R

n, where U is an open set
in R

n. The right hand side (r.h.s.) of equation (3.1) can also be referred to
as a vector field, as c can be geometrically interpreted as a curve in R

n with
its tangent vectors given by f(c(t)) at each point.
A solution of (3.1) is a mapping

c : I →R
n

t 7→c(t)

from some interval I ⊂ R into R
n, such that c(t) satisfies equation (3.1).

Note that – together with the continuity of f(c(t)) – this implies that c(t) is
continuously differentiable in c.

Definition 3.2 (Phase Space)
The space of all possible states of the dependent variables c(t) of the au-
tonomous ODE (system) (3.1) is called phase space. A point in phase space
is called phase point.

A solution of (3.1) for a given initial condition c(t0) = c0 is often denoted by
c(t, c0).

Definition 3.3 (Trajectory)
The solution c(t, c0) of (3.1) with the initial value c0 is called trajectory or
phase curve through the point c0 at t = t0.

Definition 3.4 (Orbit)
For a point c0 in the phase space of (3.1), the orbit O(c0) through c0 is
defined as the set of points in phase space which lie on a trajectory passing
through c0. For c0 ∈ U ⊂ R

n, the orbit through c0 is given by

O(c0) = {c ∈ R
n|c = c(t, c0), t ∈ I} . (3.2)

The motion of a set of phase points along the corresponding orbits is called
the phase flow or flow.

Different solutions of the ODE (3.1) are distinguished by specifying initial
conditions:

Definition 3.5 (Initial Value Problem (IVP))
The ODE system (3.1) together with a specified initial condition

ċ(t) =f(c(t)), t ∈ I

c(t0) =c0
(3.3)
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is called initial value problem.

The solution to an initial value problem is unique under certain regularity
conditions imposed on the right hand side f .

Definition 3.6 (Lipschitz condition)
A vector valued function f(c) is said to satisfy a Lipschitz-condition in the
interval [t0, tf ] with respect to c (with the Lipschitz-constant L ≥ 0), if for
c1, c2 ∈ R

n

‖f(c1(t)) − f(c2(t))‖ ≤ L‖c1(t) − c2(t)‖ (3.4)

holds for all t ∈ [t0, tf ].
The function is said to satisfy a local Lipschitz condition if for every c ∈
R
n there exists a neighbourhood U(c) such that f restricted to U satisfies a

Lipschitz condition (the Lipschitz constant L may take different values on
different neighbourhoods).

Theorem 3.7 (Existence and Uniqueness Theorem)
Let f be continuous on the strip S := {(t, c)|t0 ≤ t ≤ tf , c ∈ R

n} with finite
t0 and tf and satisfy a local Lipschitz-condition with respect to c.
Then for every pair (t, c0) with t ∈ [t0, tf ] and c ∈ R

n there exists exactly one
function c(t) with

ċ(t) = f(c(t)) for t ∈ [t0, tf ] and c(t0) = c0. (3.5)

Proof. See e.g. Walter [90].

Remark 3.8
If f is continuously differentiable with respect to c, then f satisfies a local
Lipschitz condition with respect to c. Hence a solution to an initial value
problem (3.3) always exists and is unique, if f is continuously differentiable
with respect to c, which is given for the ODE systems considered in this
work.

Definition 3.9 (Equilibrium Solution)
A solution c̄(t) : I → R

n of (3.1) satisfying

f(c̄(t)) = 0 ∀t ∈ I

is called equilibrium solution.

As an equilibrium solution does not change in time, it is often referred to as
fixed point, critical point or steady-state and will in the sequel be denoted by
c̄ (omitting t).
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Equilibrium solutions are of particular interest for dynamical systems, as
they can be used to analyze the structure of the system’s phase space in
their neighbourhood. A property of interest regarding equilibrium solutions
is stability. There are two important definitions of stability for equilibrium
solutions that will be introduced here:

Definition 3.10 (Lyapunov Stability)
An equilibrium solution c̄ of (3.1) is called stable or Lyapunov stable, if for
any given ε > 0 there exists a δ = δ(ε) > 0, such that ‖c̄− c(t)‖ < ε for any
solution c(t) of (3.1) that satisfies ‖c̄− c(t0)‖ < δ with t > t0, t0 ∈ R.

Definition 3.11 (Asymptotic Stability)
An equilibrium solution c̄ of (3.1) is called asymptotically stable, if it is
Lyapunov stable and if there exists a constant b > 0 such that limt→∞ ‖c̄ −
c(t)‖ = 0 follows from ‖c̄− c(t0)‖ < b.

In other words, Lyapunov stability means that solutions starting “close” to
c̄ will remain close to c̄ for all time, while asymptotical stability means that
trajectories starting nearby c̄ all converge to c̄ eventually.

Definition 3.12 (Lyapunov function)
Consider a dynamical system governed by the ODE system ċ(t) = f(c(t)),
c(t) ∈ R

n with a fixed point c̄. A C1-function V : U → R in a neighbourhood
U of c̄ is called Lyapunov function, if the following properties are satisfied

1. V (c̄) = 0

2. V (c) > 0 if c 6= c̄

3. dV (c)
dt

≤ 0 in U \ {c̄}
There is no general way to find a Lyapunov function for arbitrary systems,
but for some systems Lyapunov functions are known. An important impli-
cation of the existence of a Lyapunov function is given in the following

Theorem 3.13
If a Lyapunov function V exists for a dynamical system ċ = f(c) with a fixed
point c̄, then c̄ is a stable fixed point. If further strict inequality holds for 3.
in Definition 3.12, c̄ is asymptotically stable.

Proof. See Wiggins [96].

Definition 3.14 (Invariant Set / Manifold)

1. A set S ⊂ R
n is called invariant under ċ = f(c), if for any c0 ∈ S it

holds that c(t, c0) ∈ S for all t ∈ R.
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2. An invariant set S ⊂ R
n is said to be a Ck(k ≥ 1) invariant manifold,

if S has the structure of a Ck differentiable manifold.

Definition 3.15 (Attracting Set / Attractor)
A closed and invariant set A is called an attracting set, if there exists an
open neighbourhood U of A, such that all solutions c(t) with initial solution
in U will eventually enter A, i.e.

lim
t→∞

d(c(t),A) = 0 (3.6)

for a given metric d.
An attractor of (3.1) is an attracting set which contains a dense orbit.

Remark 3.16
Every asymptotically stable fixed point is an attractor.

Definition 3.17 (Dissipative / Conservative System)
A dynamical system ċ = f(c) is called dissipative, if the volume of its phase
space contracts along a trajectory. If the phase space volume of a dynamical
system is preserved along a trajectory, it is called conservative.

For dissipative systems the generalized divergence is less than zero, i.e.
n∑

i=1

∂fi
∂ci

< 0. (3.7)

The change of the volume of an element in phase space caused by the flow
of an autonomous differential equation (3.1) can be characterized by the
following lemma:

Lemma 3.18 (Phase space contraction)
Consider the equation ċ = f(c) in R

n and a domain D(0) in R
n which has the

volume v(0). The flow defines a mapping g of D(0) into R
n, g : R

n → R
n,

D(t) = gtD(0). For the volume v(t) of the domain D(t) we have

dv

dt

∣
∣
∣
∣
t=0

=

∫

D(0)

∇ · fdc, (3.8)

where ∇ · f = ∂f1
∂c1

+ ∂f2
∂c2

+ ... + ∂fn

∂cn
= divf .

Proof. See Verhulst [89].

Remark 3.19
Lemma 3.18 can be used for the proof of Liouville’s theorem which states
that the flow generated by a time-independent Hamiltonian system is volume-
preserving (see [89]). In mathematics, Lemma 3.18 itself is sometimes named
Liouville’s theorem.
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3.2 Differential Geometry of Curves

The solutions of the ODE systems described in the previous section are curves
in phase space. In this section some properties of these curves that can be
of importance in the model reduction context are described.

While the most interesting part of differential geometry may be the study
of manifolds, in the context of trajectory-based optimization curves are of
special interest. This section will focus on the differential geometry of curves
only. An extensive overview of differential geometry in physics can be found
in [25].

The material presented here is mainly based on [6, 12]. Although the presen-
tation in these textbooks mainly deals with R

3, some ideas can be directly
transferred to R

n. As the context of this work is based on dynamical systems
of arbitrary dimension, the definitions here will be given in R

n.

Some basic definitions for differential geometry of curves are given in the
following definition. As the curves that are analyzed in this work are given
as solutions of ODE systems, the same notation c(t) is chosen for solutions
of ODE systems and parametrized differentiable curves.

Definition 3.20 (Regular Curve)

• A parametrized differentiable curve is a differentiable map c : I → R
n

of an open interval I = (a, b) ∈ R into R
n.

• Given t ∈ I, the velocity vector (or tangent vector) of a parametrized
differentiable curve is ċ(t) and the speed at t is ‖ċ(t)‖. A curve is said
to be unit speed if ‖ċ(t)‖ = 1 for all t ∈ I.

• A point t of a parametrized differentiable curve c : I → R
n is called

singular point of c, if ċ(t) = 0.

• A parametrized differentiable curve c : I → R
n is said to be regular if

ċ(t) 6= 0 ∀t ∈ I.

An important property of a curve is its arc length.

Definition 3.21 (Arc Length)
Given t ∈ I, the arc length of a regular parametrized differentiable curve
c : I → R

n from the point t0 is

s(t) =

∫ t

t0

‖ċ(τ)‖dτ. (3.9)
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Definition 3.22 (Energy of a Curve)
Given t ∈ I, the energy E of a regular parametrized differentiable curve
c : I → R

n is

E(t) =

∫ t

t0

‖ċ(τ)‖2dτ. (3.10)

Lemma 3.23 (Energy-Length Inequality)
Given t ∈ I, the energy E(t) of a regular parametrized differentiable curve
c : I → R

n can be related to its length s(t) by the inequality

s(t)2 ≤ (t− t0)E(c). (3.11)

Equality holds if and only if the parameter t is proportional to the arc length.

Proof. The proof is based on the integral form of the Cauchy-Schwarz in-
equality:

s(t) =

∫ t

t0

‖ċ(τ)‖dτ =

∫ t

t0

‖ċ(τ)‖‖1‖dτ

≤
(∫ t

t0

‖ċ(τ)‖2dτ

) 1
2

︸ ︷︷ ︸

=
√
E(t)

(∫ t

t0

‖1‖2dτ

) 1
2

︸ ︷︷ ︸

=
√
t−t0

.
(3.12)

By squaring (3.12) the desired inequality is proven.
Now if (and only if) t is proportional to the arc length, it follows that ‖ċ(τ)‖ is
constant and hence equality holds in the integral form of the Cauchy-Schwarz
inequality.

Definition 3.24 (Reparametrization)
Let c : I → R

n and c̃ : Ĩ → R
n be parametrized differentiable curves. c̃ is

called a reparametrization of c, if there exists a diffeomorphism h : Ĩ → I
such that c̃ = c ◦ h.
Note that a curve has the same image set in R

n as any reparametrization of
it.
An important special case of a reparametrization is given in the following
definition:

Definition 3.25 (Natural Parametrization)
For a regular parametrized differentiable curve c : I → R

n the natural, arc
length or unit speed parametrization ĉ : Î → R

n is defined by

c(t) = ĉ(s(t)),

where s(t) is the arc length from Definition 3.21. s(t) is also called the natural
parameter of c.
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Definition 3.26 (Curvature)
Let c : I → R

n be a curve parametrized by arc length s ∈ I. The real number
k(s) = ‖c′′(s)‖ is called the curvature of c at s.

Remark 3.27 (Arc length in ODE context)
Note that in general the solutions to the ODE systems treated in this work
will not be parametrized by arc length. However, an arc length reparametriza-
tion is simple in the ODE context, as arc length can be computed from the
right hand side of the ODE by

s(t) =

∫ t

t0

‖ċ(τ)‖dτ =

∫ t

t0

‖f(c(τ))‖dτ. (3.13)

3.3 Chemical Kinetics

While the previous sections gave introductions to the mathematical fields of
dynamical systems and differential geometry, this section and the subsequent
one give basic overviews over the chemical and physical processes ruling the
dynamical systems that are dealt with in this work.
The temporal behaviour of chemical reaction systems can be modeled by
systems of ordinary differential equations.
In a general case, a chemical reaction can be described by the equation

A + B + C + ...
k(f)

⇋

k(r)
D + E + F + ..., (3.14)

where A, ...,F denote the species involved in the reaction and the superscripts
(f) and (r) denote forward and backward reactions respectively. The rate of
formation or consumption of a species can be expressed by a rate law, e.g.

d[A](f)

dt
= −k(f) · [A]a[B]b[C]c... (3.15)

for species A. There a, b, c, ... are the reaction orders with respect to the
species A,B,C and k is the rate coefficient of the reaction.
Accordingly, the rate law for the production of A is obtained as

d[A](r)

dt
= k(r) · [D]d[E]e[F]f ... (3.16)

and hence the overall change of A is

d[A]

dt
= −k(f) · [A]a[B]b[C]c... + k(r) · [D]d[E]e[F]f ... (3.17)
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At chemical equilibrium, forward and backward reactions have the same rate,
therefore one has

k(f) · [A]a[B]b[C]c... = k(r) · [D]d[E]e[F]f ... (3.18)

or
k(f)

k(r)
=

[D]d[E]e[F]f ...

[A]a[B]b[C]c...
. (3.19)

The expression on the right hand side of this equation corresponds to the
equilibrium constant K:

K :=
k(f)

k(r)
=

[D]d[E]e[F]f ...

[A]a[B]b[C]c...
(3.20)

The equilibrium constant can also be calculated from thermodynamic data.
For details see [95] and equation (3.39).

3.3.1 Elementary Reactions

An elementary reaction is one that occurs on a molecular level exactly in the
way which is described by the kinetic rate law. Generally the equation of an
elementary reaction r can be written as

n∑

s=1

ν(e)
rs As

kr−→
n∑

s=1

ν(p)
rs As, (3.21)

and the rate law for the formation of species i in reaction r is then given by
the equation

(
dci
dt

)

r

= kr

(

ν
(p)
ri − ν

(e)
ri

) n∏

s=1

cν
(e)
rs
s . (3.22)

Here ν
(e)
rs and ν

(p)
rs denote stoichiometric coefficients of educts/reactants and

products in reaction r and cs are the concentrations of the n different species
As.

3.3.2 Reaction Mechanisms

Generally one is rather interested in more complex reactions than in ele-
mentary ones. To describe such reactions, they can be decomposed into el-
ementary reactions (3.21), which in turn can be combined to an elementary
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reaction mechanism. For an elementary mechanism composed of m reactions
of n species, given by

n∑

s=1

ν(e)
rs As

kr−→
n∑

s=1

ν(p)
rs As, r = 1, ..., m, (3.23)

the rate of formation of species i is simply given by summation over the rate
equations of all elementary reactions,

dci
dt

=
m∑

r=1

kr

(

ν
(p)
ri − ν

(e)
ri

) n∏

s=1

cν
(e)
rs
s . (3.24)

An important relation in the description of chemical reactions is the tem-
perature dependence of the rate coefficients. This dependence is most easily
described as k = Ã exp

(
− Ea

RT

)
by the Arrhenius law, but generally the for-

mulation

k = AT b exp

(

− Ea

RT

)

(3.25)

is used, which additionally includes a temperature dependence of the preex-
ponential factor Ã.
With (3.25) the rate coefficient for a reaction at a given temperature can
be computed from three characteristic quantities: The activation energy Ea,
which corresponds to an energy barrier to be overcome during reaction, and
the quantities A and b, forming the preexponential factor, which has different
physical meanings in uni-, bi- and termolecular reactions – i.e. for reactions
which involve one, two or three molecules respectively.
These three quantities Ea, A, b and the reaction equations for all elementary
reactions (which are the basis for the stoichiometric coefficients) form the
reaction mechanism.
Apart from the temperature dependence, rate coefficients can also show de-
pendence on pressure. As the example mechanisms used in this work do not
exhibit a pressure dependence this topic is not treated here and the reader
is referred to [29, 87, 95] for more details.
More detailed introductions to chemical reaction kinetics can be found in
[3, 95] e.g.

3.4 Thermodynamics

The field of thermodynamics studies – on a macroscopic scale – the ener-
getic changes of a physical system as effects of changes in the system state.
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The changes in the system state can be due to changes of e.g. temperature,
pressure or volume.

Much of the material presented in this section follows the book of Kondepudi
and Prigogine [47].

Systems in thermodynamics are usually discriminated according to their
boundary conditions:

Definition 3.28 (Isolated / Closed / Open System)
Isolated systems exchange neither energy nor matter with their exterior.
Closed systems exchange energy, but not matter with their exterior.
Open systems exchange both energy and matter with their exterior.

All systems considered in this work are isolated, which is a simplification for
real systems.

3.4.1 The Fundamental Laws of Thermodynamics

Thermodynamics is based on four laws which axiomatically postulate that
and how energy can be exchanged between physical systems as heat or work.
The two most important laws will be stated here.

Theorem 3.29 (The First Law of Thermodynamics)
In an isolated system, the internal energy is conserved in any state change.

The first law does not yield any information about the directionality of state
changes (e.g. in chemical reaction systems) and hence does not give any
information on irreversible processes as e.g. chemical reactions, which is the
main interest in this work.

The explanation of irreversibility is the main idea of the Second Law, that can
be stated in a number of different fashions. For reasons of comprehensibility
some common formulations of the Second Law are stated here.

Theorem 3.30 (The Second Law of Thermodynamics)
“It is impossible that, at the end of a cycle of changes, heat has been trans-
ferred from a colder to a hotter body without at the same time converting a
certain amount of work into heat.” Clausius (1822-1888).

“A perpetual motion machine of the second kind is impossible.” Max Planck
(1858-1947)

Theorem 3.31 (The Second Law (in terms of entropy))
The entropy S of an isolated system not at equilibrium will tend to increase
over time, approaching a maximum value at equilibrium.
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3.4.2 “Driving Force” for Chemical Reactions

Irreversible processes in thermodynamics can be described in terms of ther-
modynamic forces and thermodynamic flows, i.e. a change in entropy due to
irreversible chemical reactions in an isolated system can be written as

diS = FdX, (3.26)

where the change in entropy diS is written in terms of the force F and the
flow dX and the subscript i denotes the change due to irreversible processes,
whereas the subscript e will denote changes due to the exchange of matter
with the exterior in the sequel.
In the context of this work, we are mainly interested in driving forces for
chemical reactions. Such “driving forces” for chemical reactions have been
called affinities by chemists in the nineteenth century, but it was not until
1927, that a clear definition of affinities had been given.
The thermodynamic formulation of affinity which is used today has been
introduced by de Donder and can be found in [22]. Its basis lies in the
concept of chemical potential introduced by Gibbs.
Gibbs introduced an equation for changes in the internal energy U that was
similar∗ to

dU = T dS − p dV +
n∑

k=1

µk dNk, (3.27)

with temperature T , pressure p, volume V and the species mole numbers
Nk. The coefficients µk are called chemical potentials. Gibbs did not take
into account irreversible chemical reactions in his concept, but considered
transformations between equilibrium states. Despite of that, equation (3.27)
forms the fundament to de Donder’s formulation of the thermodynamics of
irreversible transformations.
A distinction between the entropy change deS due to the exchange of matter
and energy with the exterior (entropy flow) and the irreversible increase of
entropy diS due to chemical reactions (entropy production) was introduced.
Using this distinction, the change in mole numbers dNk can be expressed as
a sum of two parts

dNk = diNk + deNk. (3.28)

As Gibbs considered only the reversible exchange of heat and matter, his
equation (3.27) could also be written as

deS =
dU + p dV

T
−

∑n
k=1 µkdeNk

T
. (3.29)

∗Gibbs actually wrote this equation in terms of the masses m1, ..., mn of the substances.
However, as chemical reaction rates are most easily formulated in terms of mole numbers,
the reformulation (3.27) is used here.
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De Donder formulated the entropy production due to a change in mole num-
bers dNk by irreversible chemical reactions, diS as

diS = −
∑n

k=1 µkdiNk

T
. (3.30)

This formulation is in accordance with the Second Law due to the fact that
chemical reactions occur in such a way that diS is always positive. For the
total change of entropy dS we have

dS = deS + diS, (3.31)

which by summing up (3.29) and (3.30) recovers (3.27). Hence (3.27) al-
ready included everything that was necessary for a description of irreversible
thermodynamics.
Since the rate of chemical reaction specifies dNk

dt
, the rate of entropy produc-

tion due to chemical reactions can be written as

diS

dt
= − 1

T

n∑

k=1

µk
diNk

dt
> 0. (3.32)

Now, for a general chemical elementary reaction

a1A1 + a2A2 ⇋ b1B1 + b2B2 (3.33)

the extent ξ of the reaction is defined as

dNA1

−a1
=

dNA2

−a2
=

dNB1

b1
=

dNB2

b2
= dξ (3.34)

and the affinity A of the reaction is defined as

A ≡
2∑

k=1

µAk
ak −

2∑

k=1

µBk
bk, (3.35)

where the µi are chemical potentials.
The substitution of (3.34) and (3.35) in the equation for the rate of entropy
production (3.32) yields

diS

dt
=

(
A

T

)
dξ

dt
> 0, (3.36)

which reflects the description of a thermodynamical property (entropy pro-
duction) in terms of a thermodynamical force (affinity) and a thermodynam-
ical flow (reaction rate) as in (3.26).
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However, the purpose here is to look at the entropy production explicitly
while chemical reactions are in progress, i.e. to look for explicit expressions
for diS

dt
in terms of the rates of reaction (for the general problem of specifying

rates of reactions see Section 3.3).
In equation (3.36), the entropy production rate has been expressed in terms
of the extent of reaction ξ and the affinity A.
For a single reaction the time derivative of the extent ξ can be related to
reaction rates by the relation

v =
dξ

V dt
= Rf − Rr (3.37)

where v = Rf − Rr is the reaction velocity, Rf and Rr are the forward and
reverse reaction rates and V is the volume of the system.
The next step towards an expression of entropy production in terms of reac-
tion rates now is a relation of the affinity A to reaction rates.
A general chemical potential can be expressed as

µk(T ) = µk0(T ) +RT ln[Ak], (3.38)

where [Ak] is the concentration of Ak and µk0 = ∆G0
f [k] is the standard molar

Gibbs free energy of formation which is a tabulated property. R denotes the
universal gas constant. With this, the affinity can be rewritten as

A =

2∑

k=1

akµAk,0
(T ) −

2∑

k=1

bkµBk,0
(T ) +

2∑

k=1

akRT ln[Ak] −
2∑

k=1

bkRT ln[Bk].

Now, at equilibrium the thermodynamic forces and the corresponding flows
become zero (i.e. A = 0 ⇔ ∑2

k=1 µAk
ak =

∑2
k=1 µBk

bk and v = 0 ⇔ Rf =
Rr).
By reformulating the condition A = 0 one obtains the equilibrium constant

K(T ) = exp

(−∆G0
rxn

RT

)

(3.39)

with

∆G0
rxn :=

2∑

k=1

bkµBk0
(T ) −

2∑

k=1

akµAk0
(T )

the Gibbs free energy of reaction and hence

∆G0
rxn = −RT lnK(T ).
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With this, the formula for the affinity is

A = RT lnK(T ) +RT ln

(
[A1]

a1 [A2]
a2

[B1]b1 [B2]b2

)

and since K(T ) = k(f)

k(r) , combining the logarithms this can be written as

A = RT ln

(
k(f)[A1]

a1 [A2]
a2

k(r)[B1]b1 [B2]b2

)

= RT ln

(
Rf

Rr

)

, (3.40)

Substituting (3.37) and (3.40) into the expression (3.36) for the entropy pro-
duction yields

1

V

diS

dt
=

1

V

A

T

dξ

dt
= R(Rf − Rr) ln

(
Rf

Rr

)

≥ 0. (3.41)

This is an expression relating entropy production per unit volume to reaction
rates which was the aim of the derivations in this section. As required by the
Second Law, the right hand side is non-negative, as the two factors Rf − Rr

and ln
(
Rf

Rr

)

always have the same sign.

For several simultaneous (elementary) reactions equation (3.41) can be gen-
eralized by

1

V

diS

dt
=

1

V

m∑

k=1

Ak
T

dξk
dt

= R

m∑

k=1

(Rkf −Rkr) ln

(
Rkf

Rkr

)

≥ 0, (3.42)

where k is the index for a single reaction and Rkf and Rkr are the forward
and reverse reaction rates for this reaction.
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Chapter 4

Optimization

“And this is my prayer: that your love may abound more and
more in knowledge and depth of insight, so that you may be able
to discern what is best.”

Phil. 1,9-10

In this chapter the numerical optimization methods used for solving the vari-
ational boundary value problems that occur in the novel model reduction
approach are explained. The general problem formulation is introduced and
explained in Section 4.1 whereas Sections 4.2 and 4.3 deal with the discretiza-
tion of this formulation, such that a nonlinear programming problem (NLP)
is obtained. Using the numerical integration from Section 4.4, this NLP
can be solved using a numerical standard approach introduced in Section
4.5. Section 4.6 then introduces an embedding strategy for the efficient solu-
tion of neighbouring problems, which is of special interest as a continuation
method in the model reduction context.

4.1 Problem Formulation

A variational boundary value problem as used in this work can be formulated
as

min
x(·),(tf )

∫ tf

t0

L(x(t), p)dt (4.1a)

subject to

ẋ(t) − f(x(t), p) = 0, t ∈ [t0, tf ] (4.1b)

g(x(t), p) ≥ 0, t ∈ [t0, tf ] (4.1c)

r0(x(t0), p) + rf(x(tf), p) = 0 (4.1d)

33
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Here t0 and tf denote the initial and final time respectively and can be chosen
as t0 = 0 and tf = T without loss of generality. The functions L, r0, rf
and g are assumed to be continuously differentiable. The right hand side
f of the ODE (4.1b) is assumed to fulfil the usual smoothness conditions
ensuring local existence and uniqueness of its solution x for given initial
values x(0) = x0.
The length T of the integration horizon [0, T ] can either be fixed or used as
an additional degree of freedom subject to optimization.
In the sequel, these equations will be explained in more detail.

Objective Functional Generally the objective of an ODE-constrained op-
timization problem lies in the minimization of certain overall “costs” which
are usually defined on a finite time horizon [t0, tf ] with initial time t0 and
final time tf by a general Bolza-type objective functional

∫ tf

t0

L(x(t), p)dt+ E(x(tf), p). (4.2)

The terms L(x(t), p) and E(x(tf), p) are called Lagrange term and Mayer term
of the objective function respectively. A Mayer term can be reformulated
into a Lagrange term and vice versa. For the sake of brevity we will only
use Lagrange-type objective functionals as in (4.1a) in the formulation of
variational boundary value problems throughout this work.

ODE constraints In the context of variational boundary value problems,
an ODE model usually enters the formulation of the general problem as a
constraint. Homogeneous chemical reaction systems can be described by
autonomous (see Definition 3.1) ODE models of the form (4.1b)

ẋ(t) = f(x(t), p), (4.3)

where x(t) ∈ R
nx denotes the differential state vector, t ∈ R time, and p ∈

R
np is a vector of constant system parameters such as for example reaction

coefficients in chemical kinetics.

Path Constraints and Boundary Constraints Path constraints as for-
mulated in (4.1c) are constraints that have to be satisfied by the state trajec-
tories x(t) on the given time horizon. For a chemical reaction system these
constraints may reflect positivity of chemical species concentrations.
Boundary constraints in the variational boundary value problem can be writ-
ten in the general form (4.1d). These constraints may include conservation
equations (element conservation) or can be employed e.g. to fix initial or final
species concentrations.
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4.2 Problem Discretization

The optimization problem (4.1) has to be discretized to be solved numerically.
Therefore the problem is transformed into a nonlinear programming problem
(NLP) first, which then can be solved using standard approaches for the
solution of NLPs. A standard approach for the solution of NLPs based on the
successive solution of quadratic approximations of the NLP is the Sequential
Quadratic Programming (SQP) which is explained in detail in Section 4.5.
Strategies for the formulation of the NLP can be divided into two different
approaches, namely the sequential and the simultaneous approach. In the
sequential approach simulations and optimization calculations are performed
sequentially. However, especially for poor initial guesses and unstable sys-
tems this procedure might lead to strong nonlinearity of the resulting NLPs
and a poor convergence behaviour.

The simultaneous approach avoids this drawback by first discretizing the
state trajectory and then solving both the dynamic model equations and
the optimization problem simultaneously in one large constrained NLP. As
the discretized state variables become part of the optimization variables,
nonlinearity and instability can be better controlled.

4.3 Multiple Shooting

All calculations in this work have been carried out by software based on the
direct multiple shooting method which has been first presented by Bock [7, 8]
and Plitt [70]. The term direct refers to the direct approach used for the
discretization of infinite dimensional optimal control problems. However, as
no control functions are used in this work, the presentation here is restricted
to the explanation of the multiple shooting method which is described for
the solution of two point boundary value problems in [44] e.g.

The idea of the multiple shooting method is to subdivide the integration in-
terval [0, T ] into several subintervals on each of which an independent initial
value problem is solved. Matching conditions which enter the optimization
problem as additional equality constraints assure continuity of the state tra-
jectory from one subinterval to the next one. A modern implementation of
this idea is realized in the optimal control software package MUSCOD-II by
Leineweber [54, 55, 56, 57]. In the sequel the multiple shooting method shall
be described in more detail.
A multiple shooting grid with multiple shooting nodes at the time points
τ0, ..., τN ,

0 = τ0 < τ1 < ... < τN = T (4.4)
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Figure 4.1: Multiple shooting discretization for N = 5 multiple shoot-
ing nodes. An initial value problem is solved on each multiple shooting
interval.

is introduced for the discretization of the state trajectory as seen in Figure
4.1 for T = 1 and N = 5. On each of the intervals [τi, τi+1], (i = 0, ..., N − 1)
introduced by this discretization an initial value problem

ẋi(τ) = f(xi(τ), p) τ ∈ [τi, τi+1]

xi(τi) = si,
(4.5)

has to be solved. As the resulting trajectories xi(τ) on [τi, τi+1] depend only
on the initial values si, these solutions can be computed simultaneously.
As stated above, continuity of the solution state trajectory is enforced by
imposing matching conditions

si+1 = xi(τi+1; si), i = 0, ..., N − 1. (4.6)

These conditions assure that the initial value on the i+1st multiple shooting
interval equals the final value on the ith multiple shooting interval in the
solution. Likewise by

s0 = x0 (4.7)

the value of the first differential node s0 should be equal to the initial value
x0 of the original problem.

On the same multiple shooting grid as introduced for the state trajectory,
τ0, ..., τN , the inequality path constraints (4.1c) are transformed into N + 1
discrete vector inequality constraints

g(si, p) ≥ 0, i = 0, 1, ..., N. (4.8)
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Having all this, a finite dimensional NLP can be formulated as

min
s0,...,sN

N−1∑

i=0

∫ τi+1

τi

L(xi(τ), p)dτ (4.9a)

subject to
xi(τi+1; si) − si+1 = 0, i = 0, ..., N − 1 (4.9b)

x0 − s0 = 0 (4.9c)

g(si, p) ≥ 0, i = 0, ..., N (4.9d)

r0(s0, p) + rf(sN , p) = 0 (4.9e)

and subject to the initial value problems (4.5). The solution of these IVPs
is discussed in Section 4.4.
Using the multiple shooting discretization (N > 1), more variables and con-
straints are added to the NLP than by using single shooting (N = 1). How-
ever, the equality constraints in the matching conditions (4.9b) allow for the
application of a condensing algorithm [7]. Using this algorithm, the compu-
tational costs for the numerical solution of the resulting condensed problem
are only slightly higher than for the solution of the NLP set up by a single
shooting discretization.

4.4 Numerical Integration

To solve the NLP (4.9), the solutions xi(τ), τ ∈ [τi, τi+1], i = 0, ..., N − 1 to
the initial value problems (4.5), which occur within the integrals in (4.9a)
have to be computed numerically. The underlying ODE models for chemical
kinetics are generally stiff differential equation systems comprising multiple
timescales. Employing explicit methods for the accurate solution of stiff
differential equations requires too small step sizes. Hence for the efficient
numerical solution of the initial value problems (4.5) the implicit Differential
Algebraic Equation (DAE) solver DAESOL [2, 4, 5] is used which is inte-
grated in the software package MUSCOD-II [54, 55]. The multistep Back-
ward Differentiation Formula (BDF) methods implemented in DAESOL have
beneficial stability properties (see [18]).
To explain the idea behind BDF methods, first a general linear multistep
method is defined.

Definition 4.1 (Linear Multistep Method)
In a general linear multistep method (LMM) for the numerical solution of an
initial value problem an approximate value ηm+k of x(tm+k) is computed from
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k (k ≥ 2) given approximate values ηj of x(tj), j = m,m+1, ..., m+ k− 1 at
equidistant points tj = t0 + jh by the general formula

k∑

l=0

αlηm+l = h

k∑

l=0

βlf(ηm+l), m = 0, ..., N − k (4.10)

with αl, βl ∈ R, αk 6= 0 and |α0| + |β0| 6= 0.
If βk = 0 then this is an explicit, otherwise an implicit method.

BDF methods are linear multistep methods defined by finding a polynomial
that interpolates the (k + 1) values ηm, ..., ηm+k and satisfies the differential
equation at t = tm+k.

Definition 4.2 (BDF method)
The k-step BDF method is defined by the k starting values ηm, ..., ηm+k−1

specified and the formula

k∑

l=0

αlηm+l = h f(ηm+l), m = 0, ..., N − k (4.11)

with αl ∈ R, and α0, αk 6= 0.

More detailed information about BDF methods including extensive stability
analysis of multistep methods can be found in [37, 38].

4.5 Sequential Quadratic Programming

The finite dimensional NLP (4.9) from Section 4.2 can be solved by numerical
standard approaches. In general a constrained NLP can be formulated as

min
w∈Rnw

F (w) (4.12a)

subject to

G(w) = 0

H(w) ≥ 0
(4.12b)

where the functions F : R
nw → R, G : R

nw → R
nG and H : R

nw → R
nH are

assumed to be twice continuously differentiable.

The solution of this problem can be based on meeting local optimality con-
ditions.
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Definition 4.3 (Feasibility and Optimality)

1. The set S := {w ∈ R
nw |G(w) = 0, H(w) ≥ 0} is called feasible set, and

w∗ ∈ S is called feasible point.

2. A feasible point w∗ is called a local minimizer of the NLP (4.12) if there
exists a neighbourhood Uε(w

∗) of w∗ such that F (w∗) ≤ F (w) for all
w ∈ Uε(w

∗) ∩ S.

3. The inequality constraint Hi(w) ≥ 0 is called active, if Hi(w) = 0.
All active inequality constraints at the feasible point w are denoted by
Hact(w).

4. A feasible point w is called a regular point, if the Jacobian of the active

constraints ∇G̃(w)T has full rank. G̃(w) :=

(
G(w)
Hact(w)

)

is the vector

of equality and active inequality constraints.

To formulate necessary conditions for the optimality of a feasible point w∗

for (4.12), the Lagrangian function L is defined as

L(w, λ, µ) := F (w) − λTG(w) − µTH(w). (4.13)

Using this function, necessary conditions for the optimality of w∗ for (4.12)
can be formulated as given in the following theorem.

Theorem 4.4 (Karush-Kuhn-Tucker Necessary Conditions)
Let the regular point w∗ be a local minimizer of (4.12). Then there exist
Lagrange multiplier vectors λ∗ ∈ R

nG and µ∗ ∈ R
nH such that (w∗, λ∗, µ∗)

satisfies the following necessary conditions:

∇wL(w∗, λ∗, µ∗) = 0 (4.14a)

G(w∗) = 0 (4.14b)

H(w∗) ≥ 0 (4.14c)

µ∗ ≥ 0 (4.14d)

µ∗jHj(w
∗) = 0, j = 1, ..., nH . (4.14e)

These conditions are called Karush-Kuhn-Tucker Necessary Conditions or
KKT conditions.

Proof. See e.g. Nocedal and Wright [66].

Definition 4.5 (Karush-Kuhn-Tucker Point)
A triple (w∗, λ∗, µ∗) satisfying the necessary Karush-Kuhn-Tucker conditions
(4.14) is called a stationary point or KKT point.
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The active set vector function Hact(w∗) at a KKT point (w∗, λ∗, µ∗) can
be divided into strongly active parts (with strictly positive multipliers) and
weakly active parts (with zero multipliers):

Hact(w∗) =

(
Hs.act

Hw.act

)

(w∗). (4.15)

A KKT point for which all active constraints are strongly active is said to
satisfy the strict complementarity condition.
In Theorem 4.4, necessary conditions for the optimality of w∗ have been
treated. However, for a method based on meeting local optimality condi-
tions, sufficient conditions are required. By the following theorem, sufficient
conditions for w∗ to be a local minimizer of (4.12) are given.

Theorem 4.6 (Strong Second Order Sufficient Conditions)
A regular point w∗ ∈ R

nw satisfying the necessary KKT conditions (4.14) is a
local minimizer of (4.12) if and only if the Hessian matrix ∇2

wL(w∗, λ∗, µ∗) :=
∂2L
∂w2 (w

∗, λ∗, µ∗) is positive definite on the null space

N s := {∆w ∈ R
nw |∇wG̃

s(w∗)T∆w = 0}

of the linearized strongly active constraints

G̃s(w∗) :=

(
G

Hs.act

)

(w∗),

i.e. for every non-zero vector ∆w ∈ N s

∆wT∇2
wL(w∗, λ∗, µ∗)∆w > 0

holds.

Based on the sufficient conditions from Theorem 4.6, Sequential Quadratic
Programming (SQP), going back to Powell [72], is an iterative procedure to
find a KKT point (w∗, λ∗, µ∗) of an NLP (4.12).
A general SQP method replaces this NLP by a sequence of quadratic pro-
grams

min
∆w∈Ωk

1

2
∆wTAk∆w + ∇wF (wk)

T∆w (4.16a)

subject to

G(wk) + ∇wG(wk)
T∆w = 0

H(wk) + ∇wH(wk)
T∆w ≥ 0

(4.16b)
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with the solution point (∆wk, λ̃k, µ̃k) that determine the directions

∆yk =





∆wk
∆λk
∆µk



 :=





∆wk
λ̃k − λk
µ̃k − µk



 (4.17)

for the SQP iteration

yk+1 = yk + αk∆yk (4.18)

where αk ∈ (0, 1] is a steplength and Ak in (4.16) is the so-called Hessian
matrix (which need not be the exact Hessian, but can also be computed by
update formulae such as BFGS – see [66, 86]). The SQP iteration is obviously
subject to an initial guess y0 = (w0, λ0, µ0).
The iterates yk from equation (4.18) form a sequence that is expected to
converge towards a KKT point y∗ = (w∗, λ∗, µ∗) of the original NLP. In
practice, the iterations are stopped when a prespecified convergence criterion
is fulfilled.
Practical realizations of SQP methods differ in steplength strategies for αk,
the choice (or update-strategy) of Ak and the choice of the set Ωk ⊂ R

nw .
Particularly, if αk := 1 ∀k,Ωk := R

nw and Ak := ∇2
wL(wk, λk, µk) (i.e. the

exact Hessian of the Lagrangian function) are chosen, the SQP method is
called Full Step Exact Hessian SQP Method and can be proven to be locally
convergent (see Fletcher [24], Section 12.4).
For practical applications update formulae are used for Ak rather than the
exact Hessian. For details see any textbook on numerical optimiziation (e.g.
[24, 28, 35, 66]).

4.6 Parametric Optimization and Initial Value

Embedding

4.6.1 Parametric Optimization

Instead of a single optimization problem, now consider a parametrized family
of optimization problems P (p):

min
w∈Rnw

F (p, w) (4.19a)

subject to
G(p, w) = 0

H(p, w) ≥ 0,
(4.19b)
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where F : R × R
nw → R, G : R × R

nw → R
nG and H : R × R

nw → R
nH are

twice continuously differentiable.

Single optimization problems in (4.19) are distinguished by the parameter p
and the interest of this section now focuses on the set of local minimizers for
P (p), i.e.

Σloc := {(p, w) ∈ R × R
nw |w is a local minimizer for P (p)} , (4.20)

restricting the attention to the subset of points (p, w∗(p)) of Σloc satisfying
the strong second order sufficient conditions of Theorem 4.6.

The main result of interest in in this section is a statement on the differen-
tiability of the solution (w∗(p), λ∗(p), µ∗(p)) with respect to the parameter
p. A detailed introduction to parametric optimization and the properties of
Σloc can be found in [36].

The following theorem in its present form is taken from [21] where also a
proof can be found. A similar formulation of the theorem and a proof can
also be found in [36].

Theorem 4.7 (One Sided Differentiability)
Consider a parametrized family of optimization problems P (p) as in (4.19).
Assume that a KKT point (w∗(0), λ∗(0), µ∗(0)) satisfying the sufficient op-
timality conditions from Theorem 4.6 with strongly and weakly active set
vectors Hs.act and Hw.act has been found for problem P (0). Assume further
that the solution (δw∗, δλ∗, δµ

s.act
∗ , δµw.act

∗ ) of the following quadratic program
(with all derivatives evaluated at the solution point (w∗(0), λ∗(0)µ∗(0)) for
p = 0)

min
δw∈Rnw

1

2
(δw)T∇2

wL(δw) +

(
∂

∂t
∇wL

)T

δw (4.21a)

subject to

∂G

∂p
+ ∇wG

T δw = 0

∂Hs.act

∂p
+ (∇wH

s.act)T δw = 0

∂Hw.act

∂p
+ (∇wH

w.act)T δw ≥ 0.

(4.21b)

satisfies the strict complementary condition for the multiplier vector δµw.act
∗

of the inequality constraints.
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Then there exists an ε > 0 and a differentiable curve

v : [0, ε) → R
nw × R

nG × R
nH ,

p 7→





w∗(p)
λ∗(p)
µ∗(p)





of KKT points that satisfy the sufficient optimality conditions of Theorem
4.6 for the corresponding problems P (p), p ∈ [0, ε). At p = 0, the one sided
derivative of this curve is given by

lim
p→0,p>0

1

p





w∗(p) − w∗(0)
λ∗(p) − λ∗(0)
µ∗(p) − µ∗(0)



 =









δw∗
δλ∗

 δµ∗













:=









δw∗
δλ∗
δµs.act
∗

δµw.act
∗
0









.

Remark 4.8
Compared to Theorem 4.6, Theorem 4.7 needs only one additional condition,
the assumption of strict complementarity in the solution of the QP (4.16),
which is needed to guarantee that the active set of the local solutions of P (p)
does not change for p ∈ [0, ε).

Remark 4.9
The theorem only assures existence for a solution curve for a positive change
in p, i.e. for the solution curve (w∗(p), λ∗(p), µ∗(p)) on the interval p ∈ [0, ε).
However, if the strict complementarity condition is also satisfied for the solu-
tion of an inverted version of the QP (4.16), the solution curve p ∈ (−ε′, 0] 7→
(w∗(p), λ∗(p), µ∗(p)), ε > 0 also exists and has a one sided derivative.
This is an immediate consequence of the application of the same theorem to
the reversed problem family P ′(p) = −P (p).

4.6.2 SQP for a Parameterized Problem Family

A family of augmented optimization problems that is equivalent to the family
P (p) defined by (4.19) can be written as the family P̆ (p̆):

min
p∈R,w∈Rnw

F (p, w) (4.22a)

subject to
p− p̆ = 0

G(p, w) = 0

H(p, w) ≥ 0,

(4.22b)
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where again the functions F : R × R
nw → R, G : R × R

nw → R
nG and H :

R × R
nw → R

nH are twice continuously differentiable. The only difference
to the family P (p) defined by (4.19) is the introduction of p as an additional
variable, fixed by the constraint p− p̆ = 0. As a consequence of this addition
of p to the SQP variables, derivatives with respect to p are evaluated in the
SQP algorithm, hence allowing the transition between different optimization
problems in such a way that a first order approximation of the solution
manifold as in Theorem 4.7 is provided by the first iterate.

This can be subsumed in the following theorem:

Theorem 4.10
Assume that a KKT point (w̆∗(0), λ̆∗(0), µ̆∗(0)) of problem P̆ (0) satisfying
the sufficient optimality conditions of Theorem 4.6 has been found. If a full
step exact Hessian SQP algorithm is applied for the solution of P (ε) (ε > 0
sufficiently small) with this solution as an initial guess, then the nontrivial
part of the first SQP step, (∆w,∆λ,∆µ), is identical to ε times the one-sided
derivative of the solution manifold (w∗(·), λ∗(·), µ∗(·)) of Problems P (p) as
given in Theorem 4.7, i.e.

1

ε





∆w
∆λ
∆µ



 =





δw∗
δλ∗
δµ∗



 = lim
p→0,p>0

1

p





w∗(p) − w∗(0)
λ∗(p) − λ∗(0)
µ∗(p) − µ∗(0)



 . (4.23)

A proof to this theorem can be found in [21]. The proof is based on making
ε sufficiently small to ensure that the active set of the first QP corresponds
to the active set in the immediate vicinity of the solution point w∗(0).

However, Diehl [21] also demonstrates that the SQP method is also able
to treat distant active set changes, which is the case that will be typically
encountered in practice.

4.6.3 Embedded NLP Formulation

In the variational boundary value problems to be solved in this work, the
distinguishing parameter of the NLPs P (x0) is the initial value x0, which is
constraining sx0 by a trivial equality constraint sx0 − x0 = 0.
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Therefore, the NLP formulation (4.9) can be regarded as an embedded for-
mulation of the form

min
sx
0∈Rnx ,w̃∈Rnw−nx

F (sx0, w̃) (4.24a)

subject to
sx0 − x0 = 0

G̃(sx0 , w̃) = 0

H(sx0, w̃) ≥ 0,

(4.24b)

with w = (sx0 , w̃).
Assuming that a solution y∗(x0) = (w∗(x0), λ

∗(x0), µ
∗(x0)) of problem P (x0)

has been found and that the SQP algorithm for the solution of a neighbouring
problem P (x0 + ε) is initialized with this solution, the first full step exact
Hessian SQP iterate provides already an excellent (first order) approximation
of the solution y∗(x0 + ε), as demonstrated by Diehl [21, Example 4.2].
This initial value embedding which was originally invented for Nonlinear
Model-Predictive Control (NMPC) [20] will be exploited in Chapter 5 as a
continuation strategy in model reduction.
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Chapter 5

Force Relaxation Along
Trajectories

“You are like a hurricane,
there’s calm in your eye”

Neil Young, 1977

In [50], Lebiedz introduced a novel concept for model reduction, that can be
interpreted as a minimization of relaxing forces along reaction trajectories.
Lebiedz used entropy production, as described in Section 3.4, to measure
chemical forces. However, to consider entropy production along trajectories
is not sufficient and hence other measures of forces relaxing along trajectories
have to be taken into account.
In Section 5.1 a general description of trajectory-based optimization ap-
proaches for model reduction is given and then in Section 5.2 the choice
of different optimization criteria aimed at the description of relaxation of
chemical forces is discussed.

5.1 Trajectory-based Optimization Approach

5.1.1 General Concept

Mathematically, Lebiedz’ idea of Minimal Entropy Production Trajectories
(MEPT) corresponds to a variational boundary value problem as given in
(4.1). To be able to use other measures of forces within a trajectory-based
optimization approach for model reduction, this concept can be written in a
very general fashion.

47
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This general trajectory-based optimization approach is written as

min
c

∫ T

0

Φ(c(t)) dt (5.1a)

subject to

dck
dt

= fk(c), k = 1, ..., n (5.1b)

ck(0) = c0k, k ∈ Ifixed (5.1c)

|ck(T ) − ceqk | ≤ ε, k ∈ Ifixed (5.1d)

and additionally is subject to conservation relations. The variables ck denote
the concentrations of chemical species, and Ifixed is the index set that con-
tains the indices of variables with fixed initial values (the reaction progress
variables). The system dynamics are described by (5.1b) and the initial con-
centrations of the reaction progress variables are fixed in (5.1c). When ap-
proaching the equilibrium point ceq, the system dynamics become infinitely
slow. Therefore the equilibrium point is approximated in (5.1d) within a
surrounding of small radius ε for the concentration of the reaction progress
variables. A priori the end time T is free and is determined within the opti-
mization for (5.1d) to be fulfilled. Alternatively the time T can be fixed in
such a way that the final state of the system is very close to the chemical
equilibrium point. The objective functional Φ(c(t)) in (5.1a) describes the
optimization criterion related to the degree of relaxation of chemical forces.
The key idea of using this approach for model reduction is found in the fact
that trajectories can be used to span invariant manifolds. More precisely, a
manifold spanned by trajectories is invariant by definition. The optimization
in the formulation (5.1) assures that the spanned manifold is not only an
invariant manifold but as close as possible to the Slow Invariant Manifold
(SIM), if a suitable relaxation criterion Φ is chosen. The approximated SIM
can then be used as a reduced model for the underlying ODE model. This
reduced model can be parametrized by the progress variables which find a
fully natural realization as initial concentrations in (5.1c).

5.1.2 Continuation Strategy

For a practical implementation of a model reduction method based on the
considerations above, a sophisticated continuation strategy is essential to ef-
ficiently solve (5.1) for varying progress variable concentrations c0k. Based on
the theory from Section 4.6, a very efficient continuation strategy can be em-
ployed for the initialization of neighbouring trajectories. Once an optimized
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trajectory has been computed for given parameters P (c0), a neighbouring
problem with parameters P (c0 + h) is initialized with this solution giving
a good approximation of the desired solution, as described in Section 4.6.
Passing through the whole computational domain, the initial values of the
optimal trajectories can be stored in tables as reduced chemistry descriptions.
In these tables the progress variable concentrations and other parameters as
e.g. temperature, pressure or mixture fraction (see [95] e.g.) serve as tab-
ulation axes, the species concentrations of the other variables are stored in
dependence of these properties. For more details on the storage of tables of
reduced chemistry, the reader is referred to [64, 71, 80]. Figure 5.1 illustrates

Figure 5.1: Continuation strategy: Neighbouring trajectories can be
computed using an initialization from already computed trajectories.

the general continuation strategy.

Generally it is not necessary to compute all trajectories depicted in Figure
5.1. A manifold could also be composed of trajectories that emanate from
the boundary of a predefined computational domain if an adequate storage
strategy is used. This procedure has the additional advantage that the con-
structed manifold will at least be invariant, as it is composed of trajectories.
However, as this work does not cover storage strategies for reduced chem-
istry, the simple strategy of computing reduced descriptions for parameter
sets that are distributed equidistantly within the computational domain is
chosen here.
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5.2 Relaxation Criteria

As stated above, different criteria for the maximal relaxation of chemical
forces can theoretically be applied. The background of some possible criteria
has been described in Chapter 3.
The choice of the criterion Φ(c(t)) affects both success and degree of accuracy
of the resulting method. A suitable criterion Φ(c(t)) should at least fulfil the
following three requirements:

• Φ should describe the extent of relaxation of “chemical forces” in the
evolution of trajectories to equilibrium – i.e. it should be minimal along
a trajectory whose relaxation is as big as allowed by the initial con-
straints (5.1c).

• It should consist of easily accessible data (e.g. reaction rates, chemical
source terms and their derivatives).

• It should be twice continuously differentiable along reaction trajecto-
ries.

Another desirable, but not necessary property is the following consistency
property:

Definition 5.1 (Consistency property)
Suppose an optimal trajectory c̃(t) has been computed as a solution of (5.1).
Take the concentrations of the progress variables at some time t1 > 0 as
new initial concentrations and solve (5.1) again. If the resulting trajectory
ĉ(t) is the same as the part of the original trajectory that starts from t1 (i.e.
ĉ(t) = c̃(t+ t1)), we call the optimization criterion Φ consistent.

This property, which is illustrated in Figure 5.2 states a strong demand and
will not be fulfilled in general. However, an invariant manifold can in principle
be constructed without a consistent criterion by solving (5.1) for initial values
c0k, k ∈ Ifixed on the boundary of the desired domain and spanning the low-
dimensional manifold by the resulting trajectories.
The theoretical background for the consistency property is found in the mean-
ing of the Slow Invariant Manifold (SIM). The main characteristic of a SIM
– regardless of its dimension – is, that it is attracting. In other words,
trajectories from arbitrary (feasible) initial values converge towards a SIM.
Additionally, once a trajectory has – at least approximately – reached the
SIM, it remains on the SIM.
Using a relaxation criterion that fulfils the consistency property hence assures
that trajectories are computed that fully reside on the SIM. An important
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Figure 5.2: “Consistency property”: If the blue trajectory has been
computed as a solution c̃(t) of problem (5.1), the red trajectory is the
desired solution of problem (5.1) with the initial concentrations c0k =
c̃k(t1), k ∈ Ifixed. That means if the red trajectory is a solution of
problem (5.1) for a criterion Φ̃, this criterion is consistent. The green
trajectory depicts a solution of problem (5.1) with a criterion that does
not fulfil the consistency property.

implication of such trajectories is that their initial values can be used for
local species reconstruction, i.e. for a given combination of progress variables
all other species can be reconstructed as the initial values of a trajectory
computed as a solution of (5.1) with a relaxation criterion satisfying the
consistency property.

5.2.1 Entropy Production

In order to derive a thermodynamic criterion which is related to maximal
relaxation of “chemical forces” along phase space trajectories, Lebiedz [50]
considered a generalized concept for the “distance” of a chemical system from
its attractor. Under isolated conditions the attractor of a chemical system
is the thermodynamic equilibrium. In Lebiedz’ model reduction approach, a
special trajectory (called Minimal Entropy Production Trajectory (MEPT))
is calculated in such a way that the sum of affinities of the entropy production
rates of single reaction steps is minimized [50, 51, 53]. The entropy produc-
tion rate is closely related to the concept of chemical affinity which was first
introduced by de Donder [22] as the driving force of chemical reactions. For
an elementary reaction step j with the forward and backward reaction rates
Rj→ and Rj←, the concept of chemical affinity can be related to the concept
of entropy production by the following relation [47]:

diSj
dt

= R (Rj→ − Rj←) ln

(
Rj→
Rj←

)

, (5.2)
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where diSj/dt is the entropy production rate for reaction j and R is the
gas constant. Entropy production rates are additive for several elementary
reaction steps. Therefore the total entropy production rate (the sum of the
entropy production rates of all n elementary reaction steps) can be computed
for an arbitrary reaction system, if kinetic data are available and a detailed
elementary reaction step mechanism is known.
An intuitive justification for the minimization of the total entropy produc-
tion rate in the optimization problem (5.1) is provided by relation (5.2). In
partial equilibrium the entropy production rate diSj/dt of a single elemen-
tary reaction step is zero, since in partial equilibrium forward and backward
reaction rates are equal. This is equivalent to the thermodynamic driving
force being fully relaxed, which in turn is an equivalent of the assumption
of model reduction techniques based on time scale separation. Here it is as-
sumed that fast reaction modes successively relax into partial equilibrium or
quasi steady-states and the whole system can be satisfactorily described by
the slow modes only. But unlike the methods explicitly based on time scale
separation it is not necessary in the MEPT approach to actually identify
and analyze the dynamical modes by e.g. numerically expensive eigenvalue
decomposition and solve highly nonlinear algebraic “reduction equations”. A
configuration with as many elementary reaction steps as possible being close
to quasi-equilibrium in terms of the objective functional is determined auto-
matically by the optimization algorithm. The logarithmic ratio of forward
and backward reaction rates in (5.2) has the meaning of a reaction affin-
ity (see Subsection 3.4.2 or [47]). It is weighted by the absolute difference
between the rates for forward and backward reactions. Thus fast processes
produce more entropy than slow ones and the fast reactions have a stronger
weighting factor in the optimization problem (5.1), which is fully natural
for the purpose of this work. Moreover entropy production is a Lyapunov
function (see Definition 3.12) for chemical systems [65].
In the context of the general optimization problem (5.1), using entropy pro-
duction as an optimization functional means

Φ(c(t)) =

n∑

j=1

diSj
dt

. (5.3)

The details on the derivation of this criterion can be found in Section 3.4.

Remark 5.2
For isothermal isobaric systems, (negative) Gibbs free energy instead of en-
tropy is the Lyapunov function. However, as

dG

dt
= −T diS

dt
, (5.4)
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the minimization of (negative) “Gibbs free energy production rate” along a
trajectory is realized with the same criterion Φ from (5.3), making the MEPT
approach valid for isothermal isobaric systems as well.

5.2.2 Curvature

As stated above, a suitable objective functional Φ(c(t)) should characterize
the relaxation of “chemical forces”. A fundamentally rooted criterion in this
context can be derived on the basis of the concept of curvature of trajectories
in phase space and subsequently be combined with the entropy production
[97]. From a physical point of view curvature is closely related to the geo-
metric interpretation of a force.

One of the most popular examples is Einstein’s general theory of relativity
[23] which proposes the idea that gravitational force is replaced by a “ge-
ometric picture”. Einstein’s general theory of relativity relates the special
theory of relativity and Newton’s law of universal gravitation with the insight
that gravitation can be described by curvature of space-time. Space-time is
treated as a 4-dimensional manifold whose curvature is due to the presence
of mass, energy and momentum.
But even long before Einstein, the concept of curvature has already been re-
lated to the concept of force in physics. In 1687 Sir Isaac Newton published
the laws of motion in his work “Philosophiae Naturalis Principia Mathemat-
ica”. In a differential formulation Newton’s second law can be stated as

F = m · a ,
where m is mass, a is acceleration and F is force. Since the acceleration a is
the second derivative of the state variable x(t) with respect to time, a = ẍ,
and thus contains information about the curvature of x, Newton’s law is the
first one to directly relate force to curvature.
In this context it is important to remark that equations of motion in classical
mechanics can also be described by a variational principle, Hamilton’s prin-
ciple of least action. In Lagrangian mechanics, the trajectory of an object is
determined in such a way that the action (which is defined as the integral of
the Lagrangian over time, where the Lagrangian is the difference of kinetic
energy and potential energy) is minimal. It can be shown by using the calcu-
lus of variations and the Legendre transformation technique, that Lagrange’s
equations of motion are equivalent to Hamilton’s principle [30].
Another well-known variational principle is Fermat’s principle of geometric
optics. It states in its classical form that the actual path between two points
taken by a beam of light is minimal.
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The aim here is to transfer the principle of “force = curvature” to the field
of chemical systems and look for a corresponding variational principle.
In chemical systems dissipative forces are active. Slow and fast dynamic
modes result in an anisotropic force relaxation behaviour in phase space. To
formally be able to describe this anisotropy for a chemical system whose dy-
namics are described by the ODE ċ = f(c), curvature of the trajectories c(t)
as geometrical objects in phase space is considered. The following relations
hold:

c̈(t) =
d2c

dt2
=

dċ

dt
=

dċ

dc
· dc

dt
= J(ċ(t)) · ċ(t)

= J(f(c(t))) · f(c(t))
(5.5)

with J(f) being the Jacobian of the right hand side of the ODE ċ(t) = f(c(t)).
Hence the curvature of c(t) can be defined as the vector norm

||c̈(t)|| = ||J(f(c(t))) · f(c(t))|| . (5.6)

Transferring the fundamental geometric principle of force being equivalent
to curvature mentioned above, we relate the curvature of trajectories in a
kinetic model ċ = f(c) to the forces driving the chemical system towards
equilibrium by subsequent relaxation of dynamical modes. In thermody-
namic equilibrium those chemical forces become zero. In search of a criterion
which characterizes maximal relaxation of chemical forces it is tempting to
describe the maximal relaxation of the system by minimal remaining chemi-
cal forces on its way to equilibrium, i.e. in the context here by minimal total
(“integrated”) curvature of trajectories defined by the objective function

Φ(c(t)) = ‖J(f(c)) · f(c)‖ (5.7)

in the general optimization problem (5.1).
Interestingly, from a different point of view the objective function (5.7) can
also be interpreted as minimizing the length of a trajectory in a suitable
Riemannian metric.
For any continuously differentiable curve γ(t) on a Riemannian manifold, the
length L of γ is defined as

L(γ) =

∫

γ

√

gγ(t)(γ̇(t), γ̇(t)) dt (5.8)

with gγ(t) being a scalar product defined on the tangent space of the curve
in each point. If the Riemannian metric gγ(t) is chosen as

gγ(t)(f, f) := fT JTJ
︸︷︷︸

positive definite

f = ‖J f‖2 (5.9)
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the “length-minimizing” objective functional equivalent to (5.7) is now

min

∫ T

0

√

gγ(t)(ċ(t), ċ(t)) dt . (5.10)

The solution trajectory of this problem can be interpreted as a geodesic, i.e. a
curve which minimizes the length of the path between two points in a possibly
curved manifold. Hence the “distance from equilibrium in a chemical sense”
can be formulated here in an explicit mathematical form based on concepts
from differential geometry.

To describe the distance of a chemical system from its thermodynamic equi-
librium in a general way, the Riemannian metric

ĝγ(t)(f, f) := fT JT · A · J
︸ ︷︷ ︸

positive definite

f =: ‖J f‖2
A , (5.11)

can be considered, where A is a positive definite matrix. A proposition for a
possible choice of A is the diagonal matrix with the entries

akk =

n∑

j=1

νkj
diSj
dt

(k = 1, . . . , m) . (5.12)

which represents an anisotropic “kinetic weighting” of the phase space di-
rections by including the entropy production rate. Here n is the number of
reactions, νkj are the stoichiometric coefficients describing the degree (but
not the direction), i.e. νkj ≥ 0 to which the chemical species k participates
in reaction j, and diSj/dt is the entropy production rate of reaction j. The
diagonal element akk of A is the sum of the entropy production rates of all
elementary reactions in which species k takes part. A is positive definite
since according to the Second Law of Thermodynamics diSj/dt > 0 holds for
any spontaneous process, and therefore akk > 0 for all k = 1, . . . , m.

With this result an objective function in the general problem (5.1) is readily
formulated as

Φ(c(t)) = ‖J f‖A (5.13)

which obviously includes formulation (5.7) for the choice A = Im (identity
matrix).

Another possible choice for a Riemannian metric would be the (negative)
second differential of entropy which is used for the so-called Shahshahani
metric [81] and employed for model reduction purposes in [33]. A more
detailed look at this metric will be given in Subsection 5.2.3.
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Computation of Curvature

From a practical perspective, the computation of the Jacobian for the cur-
vature expression in (5.5) is not necessary, as c̈ simply states a directional
derivative of the right hand side of the ODE-system in the direction of the
right hand side itself.
This directional derivative could also be evaluated using difference quotients
[86], but a more appealing alternative is found in [85].
Instead of using the central difference formula

F ′(x0) ≈
F (x0 + δ) − F (x0 − δ)

2δ
(5.14)

for the approximation of the derivative of the real valued function F (x),
Squire and Trapp [85] suggest replacing δ with iδ (i =

√
−1). If F is an

analytic function, (5.14) then reads

F ′ ≈ im (F (x0 + iδ))

δ
, (5.15)

which is called complex-step derivative approximation.
This result is especially appealing, as (5.15) does not contain a subtraction
and hence eliminates cancellation errors. Therefore δ can be chosen as small
as possible, hence making higher-order terms in the Taylor expansion negli-
gible.
For the directional derivative c̈ at a point c0 with c from ċ = f(c), (5.15)
reads

c̈|c0 ≈
im (f(c+ iδf(c)))

δ
. (5.16)

Compared to using an exact Jacobian, the complexity for the evaluation of
c̈ can be reduced from O(n2) to O(n) using this complex variable approach.
At the same time a high accuracy is guaranteed by the possibility of using
an extremely small δ.
In principle, automatic (or algorithmic) differentiation (see [34]) could also be
used for the computation of curvature, however this usually requires the inclu-
sion of external program packages, while (5.15) can easily be implemented. A
benefit of automatic differentiation compared to the complex step derivative
approximation is the capability to compute higher-order derivatives, which
is not necessary for the computation of curvature.

5.2.3 Length / Velocity

As stated in the previous subsection, the objective function (5.7) can also be
interpreted as minimizing the length of a trajectory in a suitable Riemannian
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metric, leading to an optimization functional

Φ(c(t)) = ‖f‖B (5.17)

where B is a positive definite matrix. Reinterpreting the curvature mini-
mization from the previous subsection, this matrix can be chosen as

B = JTAJ. (5.18)

However, including the Jacobian of the ODE system in the formulation of
the minimization functional leads to an increase of computational demand.
Another choice for the Riemannian metric is the so-called Shahshahani metric
[81]. Shahshahani supposes the use of the metric defined by using

B = diag

(‖x‖
xi

)

, i = 1, ..., n. (5.19)

The application of this metric for systems in a constant volume under a
constant temperature (like the model hydrogen combustion mechanism in
A.2) is based on the fact, that the unnormalized version of this metric (i.e.

diag
(

1
xi

)

, i = 1, ..., n) is found by the second differential of the Lyapunov

function G of such systems

G =

n∑

i=1

xi

(

ln
xi
xeq
i

− 1

)

. (5.20)

Using B as defined in (5.19) a minimization criterion can be stated as

Φ(c(t)) = fTdiag

(‖x‖
xi

)

f. (5.21)

Having this functional, the length of a trajectory can be minimized. From a
different point of view this minimization represents a velocity minimization,
as (5.21) is the local speed of c(t) as defined in Definition 3.20, evaluated in
the Shahshahani metric. Moreover, the length of the trajectory is minimized
on a constant time interval. Having these ideas in mind, a relation to “slow
manifolds” is easily established.
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Chapter 6

Results

“What’s good is bad,
what’s bad is good,
you’ll find out when you reach the top,
you’re on the bottom.”

Bob Dylan, 1975

In this chapter optimized trajectories as approximations of slow attracting
manifolds for different model problems and reaction mechanisms (which are
found in the Appendix of this work) are presented. These trajectories are so-
lutions of the generalized trajectory-based optimization approach from Chap-
ter 5 using relaxation criteria introduced in the same chapter.

This chapter is subdivided in four sections dealing with different aspects
of the application of the trajectory-based optimization approach for model
reduction. Section 6.1 deals with the generalization of the approach for
multiple dimensions. For reasons of presentability the results concentrate on
the construction of two-dimensional manifolds. Section 6.2 then focuses on
different ways to improve relaxation criteria with respect to the consistency
property from Definition 5.1. The behaviour of the presented approach for
temperature dependent systems is treated in Section 6.3. Section 6.4 deals
with challenges that are faced when applying the approach to large-scale
systems.

Results are generally shown as phase space plots, i.e. dependent variables rep-
resenting the concentration of chemical species are plotted against each other,
with time being eliminated from the system. For the two-dimensional mani-
folds in Section 6.1, the x- and y-axes depict the concentrations of progress
variables, whereas the free variables are plotted on the z-axis. Generally
these phase plots nicely depict the dynamical behaviour of the system.

59
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6.1 Two-dimensional Manifolds

Lebiedz presented the approach of computing minimal entropy production
trajectories (MEPT) in 2004 [50]. This approach has been first applied for
the construction of an invariant manifold of higher dimension in [53].
This section focuses on the construction these higher-dimensional manifolds
and for reasons of presentability especially on two-dimensional manifold

6.1.1 Entropy Production

Here results for a simplified six species isothermal hydrogen combustion reac-
tion mechanism are shown. The mechanism comprises six species and twelve
(six forward and six reverse) reactions and two conservation laws. Due to
these conservation laws, the number of remaining degrees of freedom is four.
Details about the mechanism are found in Section A.2 of the appendix.

Standard Approach

In Figure 6.1, the solutions of the general approach (5.1) with entropy pro-

duction as the relaxation criterion Φ = diS
dt

=
∑m

k=1R(Rf − Rr) log
(
Rf

Rr

)

as

discussed in Subsection 5.2.1 are depicted. These results have been presented
in [51, 53].

As explained in Subsection 5.1.1, the final time T is fixed to a value large
enough for the species concentrations to approximately reach equilibrium.
This means that (5.1d) will be fulfilled in general and can be omitted in the
problem formulation (5.1).
The optimization problem whose solution is presented in Figure 6.1 can be
stated as

min
c

∫ T

0

m∑

j=1

R(Rf,j − Rr,j) log

(
Rf,j

Rr,j

)

dt (6.1a)

subject to

dck
dt

= fk(c),k = 1, ..., n (6.1b)

ck(0) = c0k, k ∈ Ifixed (6.1c)

T fixed, sufficiently large (6.1d)

2cH2 + 2cH2O + cH + cOH = C1

2cO2 + cH2O + cO + cOH = C2

(6.1e)
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Figure 6.1: Two different views on MEPTs in their original formula-
tion with two progress variables, H2O and H2. The union of the MEPTs
spans an invariant manifold.
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This problem has been solved for different fixed initial values. First, only cH2O

has been fixed to cH2O = 10−4, yielding the red trajectory, which represents
a one-dimensional MEPT.
The two-dimensional manifold is created from the blue lines, which represent
MEPTs with H2O and H2 chosen as progress variables. For the construction
of the two-dimensional manifold first cH2O was set to 10−4 and cH2 varied
from 0.3 to 0.95, then cH2 was set to 0.3 and cH2O varied from 0.05 to 0.65.
The green lines represent arbitrary trajectories relaxing to the two-dimen-
sional manifold first, then relaxing to the one-dimensional MEPT and finally
converging to equilibrium.
Hence by combining the MEPTs with H2O and H2 chosen as progress vari-
ables one obtains a manifold that is invariant by definition (as it is built from
trajectories which are invariant by definition) and attracting at least close to
equilibrium, as can be seen in Figure 6.1.

Figure 6.2: MEPTs computed as solutions to (6.1) on a grid including
“inner points” as in Figure 5.1.

However, it looks like the MEPTs themselves are relaxing to an attracting
manifold in their initial phase and then continue their course on this manifold.
This in turn would mean that the consistency property from Section 5.2
(Definition 5.1) is not fulfilled for the so-computed MEPTs. This conclusion
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is clearly confirmed by Figure 6.2, where MEPTs as solutions of (6.1) have
been computed on a grid that includes “inner points” (cf. Figure 5.1).
This violation of the consistency property motivates the search for alternative
optimization criteria and for remedies in the computation of MEPTs that will
be pursued in the subsequent paragraphs and sections.

Velocity Weighted Formulation

An improvement for the computation of minimal entropy production trajec-
tories can be found by looking at the optimization functional

∫ T

0

m∑

j=1

diSj
dt

dt (6.2)

Using this formulation, entropy production is integrated over time. However,

Figure 6.3: Comparison of MEPTs in the original formulation (blue
lines, solutions of (6.1)) and “velocity weighted MEPTs” (red lines,
solutions of (6.1) with modified optimization functional (6.6)). The
trajectories computed by the velocity weighted problem start closer to
the attracting manifold.

it would be more natural for the original task of minimizing entropy produc-
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tion along a trajectory to consider a path integral from the initial value to
equilibrium

∫ s(ceq)

s(0)

m∑

j=1

diSj
dt

ds(t), (6.3)

where s(t) is the length of the curve c(t) at time t, which is given by (see
Section 3.2)

s(t) =

∫ t

0

‖ċ(τ)‖2dτ. (6.4)

Note that (6.3) is not simply a reparametrization of (6.2), as
diSj

dt
still depends

on t and not on s. By differentiation of (6.4) one gets

ds(t)

dt
= ‖ċ(t)‖2 or ds(t) = ‖ċ(t)‖2dt. (6.5)

As the derivative ċ(t) of the curve c(t) is already given by the initial ODE
ċ(t) = f(c), a modified version of the optimization functional can be given
by

∫ T

0

m∑

j=1

diSj
dt

‖f(c(t))‖2dt. (6.6)

Thus, the initial integration phase, that corresponds to processes that are
further away from equilibrium and hence generally faster, is weighted more
than in the original formulation (6.2).
The results for the velocity weighted version of (6.1) – where (6.1a) simply
has been replaced by (6.6) – are depicted in Figure 6.3 and can also be found
in [74].

Short Integration Times

Another alternative for the application of entropy production as a relaxation
criterion is closely related to the velocity weighting argument from the last
paragraph. One problem in the original formulation of minimal entropy pro-
duction trajectories lies in the “underweighting” of the initial fast motion
towards the slow attracting manifold described above. This “underweight-
ing” can be conceptually avoided by using the above velocity weighting. An-
other possibility to deal with this situation is to minimize the optimization
functional only on the initial trajectory piece.
For the optimization problem this means choosing a smaller value for T which
obviously has the appealing side-effect that the solution of (6.1) will be less
demanding in terms of computation time. Although this formulation violates
the condition (5.1d) of the original trajectory-based optimization problem,
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Figure 6.4: Original MEPTs as solutions of (5.1) (blue lines) in com-
parison with trajectories starting from initial points from MEPTs with
a fixed integration time T = 10−4 (green lines) and T = 10−6 (red
lines).

the results in Figure 6.4 demonstrate that this change in the philosophy of
evaluation of the general problem (5.1) yields better results.

Note that the green and red lines in Figure 6.4 are not solutions of (5.1).
Instead, (5.1) has been solved on a very small integration horizon [0, T ] (T =
10−4 and T = 10−6 respectively). In general, the end-point c(T ) of a solution
to an optimization problem with such an integration horizon is not close to
equilibrium. The trajectories in Figure 6.4 are trajectories that are integrated
from the initial values c(0) of these solutions.

6.1.2 Curvature Based Methods

In the last section, the computation of minimal entropy production trajec-
tories for a model hydrogen combustion system has been demonstrated. A
couple of improvements that can be found for the problem that the resulting
trajectories do not completely lie on the slow invariant manifold have been
shown in that section. However, none of these remedies resulted in “per-
fect” trajectories fulfilling the consistency property from Section 5.2, which
should be the ultimate goal for all modifications of the general problem. An-
other possibility for the adaptation of the general problem (5.1) lies in the
modification of the relaxation criterion Φ(c(t)) in (5.1a).
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In [73, 97], a novel optimization criterion for model reduction based on the
minimization of curvature has been introduced. A detailed explanation on
the implications of curvature for model reduction can be found in these ref-
erences and in Subsection 5.2.2.
Results achieved with criteria based on curvature are reviewed in this section.
Before turning to more realistic scenarios and to the computation of two-
dimensional manifolds with curvature as the relaxation criterion, a simple
two-dimensional model problem is used to demonstrate the conceptual power
of the curvature approach.

Davis-Skodje Problem

A simple two-dimensional model that can be used as a benchmark is the
model of Davis and Skodje from [16], which is given by

dy1

dt
= −y1

dy2

dt
= −γy2 +

(γ − 1)y1 + γy2
1

(1 + y1)2
,

(6.7)

where γ > 1 is a measure of stiffness for the system (the stiffness of the
system grows with γ).
An exact slow invariant manifold and an analytical ILDM can be found for
this system. The equations for these manifolds and further details on the
model can be found in the appendix (Section A.1).
To demonstrate the behaviour of the minimal curvature method compared
to the ILDM method, minimally curved trajectories in an Euclidian norm
formulation (A = In in (5.13)) have been computed, i.e.

∫ 1

0

‖J(f(y))f(y)‖2dy (6.8)

has been minimized subject to the usual constraints.
The trajectories computed by this procedure are compared to the exact slow
invariant manifold (SIM) and the ILDM in Figure 6.5. Note that stiffness
often supports model reduction methods (especially those directly based on
the separation of time-scales), as it allows for a decoupling of slow and fast
subsystems. This can also be seen in the fact that both the ILDM and the
minimal curvature method show an increased accuracy for growing γ.
Even though the minimally curved trajectories do not exactly represent the
slow invariant manifold for small values of γ, they are always closer to the
SIM than the ILDM is. A modified matrix A in the norm used in (5.13) may
lead to even better results.
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Figure 6.5: Results for the Davis-Skodje problem for different values
of γ. Minimally curved trajectories are found to be closer to the true
slow invariant manifold than the ILDM solution.

However, the entropy production based choice (5.12) of A is not feasible in
this case, as there is no obvious formulation for entropy production in this
system.

Model mechanism

The promising results for the Davis-Skodje problem suggest the applicability
of the curvature minimization to more realistic situations. Here the six-
species model reaction mechanism from A.2 is considered as the example
application, allowing for the computation of a two-dimensional manifold ap-
proximating the SIM.
For this mechanism the entropy production is well defined, hence the curva-
ture

‖Jf‖A =
√

fTJTAJf (6.9)

in the modified norm formulation with A = diag(ak), ak =
∑m

j=1 νkj
diSj

dt

from (5.12) can be minimised subject to the usual constraints.
For the results presented here, the same variables have been used as progress
variables as for the MEPT-approach in Section 6.1.1, making the results
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Figure 6.6: Results for the model hydrogen combustion mechanism
using the curvature minimization from Subsection 5.2.2. Red lines rep-
resent arbitrary trajectories relaxing to the attracting manifold spanned
by the blue minimal curvature trajectories.
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comparable. The results of this computation are depicted in Figure 6.6.
Again, the fixed initial concentration of H2 is varied between 0.3 and 0.95 and
the initial concentration of H2O is varied between 0.05 and 0.65. However,
compared to the results from Figure 6.1, the results here also include “inner
points”, whereas the MEPT manifold in Figure 6.1 has been computed just
by trajectories starting from the boundary of a predefined domain. It is
especially this inclusion of inner points that demonstrates the high extent of
relaxation, as it allows for an optical verification of the consistency property.
The results in Figure 6.6 suggest that the minimization of curvature in the
modified formulation (6.9) at least approximately fulfils the consistency prop-
erty from Section 5.1 and hence can be used for local species reconstruction
for the given mechanism.

6.2 Towards Consistent Reduction Criteria

The previous section describes the general application of the trajectory-based
optimization approach and especially for the construction of two-dimensional
manifolds. By using the improved reduction criterion based on the minimiza-
tion of curvature, a manifold that at least approximately fulfils the consis-
tency criterion has been created using this approach.

This section focuses on the investigation of reduction criteria in the light
of the consistency criterion from Definition 5.1. To guide the way towards
criteria that fulfil the consistency criterion, this section concentrates on the
computation of one-dimensional manifolds for the model hydrogen combus-
tion mechanism from A.2. For a one-dimensional manifold – which is simply
a trajectory – the consistency of the reduction criterion can be “optically”
analyzed by looking at two-dimensional phase space plots.
All figures presented in this section follow the same idea: Optimized trajec-
tories are computed for each of the following initial concentrations of H2O:
cH2O(0) ∈ {10−4, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9, 0.99}. The initial concen-
tration cH2O(0) = 0.7 is not considered, as it corresponds to the equilibrium
concentration of H2O. For a perfect optimization criterion satisfying the con-
sistency property, all trajectories computed for these initial values would lie
on the same 1-dimensional manifold, i.e. on the same line. For an accurate
comparison between different criteria, the species concentrations of all other
species are plotted against the concentration of the progress variable cH2O.
Additionally the optimization criterion (or a related function) is depicted as
a function of cH2O as well. Hence the figures in this section present a way of
validating the consistency of an optimization criterion by eye inspection.
Special attention has to be paid to the initial values cH2O > 0.7. From a phys-
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ical perspective these initial values are not meaningful, as the main product
(H2O) of the reaction is being consumed and the main reactants (H2 and
O2) are produced. However, from a mathematical point of view, the under-
lying ODE system can be integrated to equilibrium from these unphysical
initial conditions and it is of special interest whether the consistency of the
reduction criteria holds even in this region.

6.2.1 Standard Evaluation

Three different relaxation criteria for the trajectory-based optimization ap-
proach are introduced in Chapter 5, entropy production, curvature and arc
length. These basic criteria are reviewed in this subsection.

Entropy Production

The first relaxation criterion used in the context of the trajectory-based opti-
mization approach was entropy production, introduced in [50] and reviewed
in Section 5.2.1. Results for the minimization of entropy production along
trajectories are shown in Figure 6.7. Instead of leaving the overall integration
time T free for the optimizer and demanding the final point to be sufficiently
close to the equilibrium point by (5.1d), a fixed integration horizon [0, 1]
is chosen here. This integration horizon has turned out to be sufficient to
approximately reach equilibrium.
Figure 6.7 depicts results of the optimization problem (5.1a–5.1c), where the
relaxation criterion Φ is

Φ(c(t)) =
dS

dt
= R

m∑

j=1

diSj
dt

(6.10)

i.e. entropy production, with
diSj

dt
from (5.2).

One can see that the manifold resulting from the solution of this problem
does not fulfil the consistency criterion – the optimized trajectories contain
an initial relaxation phase especially in the radical species O and H. Regard-
ing the behaviour of entropy production in dependence of cH2O an interesting
fact can be noticed that has also been observed in [97]: In an initial phase
of the trajectories an entropy production rate higher than necessary is ac-
cepted. A possible explanation to this behaviour is the weighting of the
relaxation criterion along the trajectories which are parametrized by time –
the optimizer can decrease the overall entropy production by increasing en-
tropy production on a short (w.r.t. time) initial phase, keeping the entropy
production lower for the rest of the time interval.
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Figure 6.7: MEPTs for Φ from (6.10) on a fixed time horizon [0, 1]
with only H2O as a progress variable. A strong initial relaxation phase
is found for H and O.

Curvature

In [73, 97], curvature has been introduced as a relaxation criterion (see Sec-
tion 5.2.2). Motivated by the promising results presented for the Skodje-
Davis system in Subsection 6.1.2 and the results presented in [97], curvature
as a relaxation criterion is investigated with respect to the consistency prop-
erty here.
Figure 6.8 shows trajectories with minimized curvature in the Euclidian met-
ric, i.e.

Φ(c(t)) = ‖J(f(c(t))) · f(c(t))‖2 (6.11)

has been used as objective functional for problem (5.1a–5.1c) with a fixed
integration time of T = 1.
Similar to the results presented for the Skodje-Davis system in Subsection
6.1.2 and the results presented in [97], Figure 6.8 shows that the trajectories
computed with this curvature minimization start reasonably close to the
one-dimensional SIM. Nevertheless Figure 6.8 also shows that the curvature
minimization does not fulfil the consistency criterion, making improvement
indispensable. A possible explanation to the violation of the consistency
criterion may be that curvature is evaluated in a metric that is not adequate
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Figure 6.8: Curvature minimization results with Φ from (6.11) for
H2O as a progress variable on a fixed time horizon [0, 1]. Trajectories
start reasonably close to the one-dimensional SIM.

in the phase space of the given system with respect to its thermodynamic
and kinetic properties.

Length / Velocity

The third relaxation criterion presented in Chapter 5 is the speed of the tra-
jectories, which by integration leads to an arc length minimization. As this
minimization takes place on a constant time interval, the resulting trajecto-
ries can either be interpreted as shortest trajectories or a relation to “slow
manifolds” can be established. Figure 6.9 depicts these shortest trajectories
in the sense of a minimal arc length in an Euclidian norm formulation (cf.
Subsection 5.2.3).
The trajectories in this figure are solutions to the optimization problem (5.1a–
5.1c) on the fixed time horizon [0, 1] using the criterion

Φ(c(t)) = ‖ċ(t)‖2 = ‖f(c(t))‖2 =
√

fTf. (6.12)

The resulting trajectories are very similar to the minimal entropy produc-
tion trajectories from Figure 6.7 – a large initial relaxation period can be
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Figure 6.9: Shortest trajectories in the sense of minimal arc length
in an Euclidian norm formulation – i.e. Φ from (6.12) on a fixed time
horizon [0, 1].

observed especially for the radical species O and H. Again this violation
of the consistency property may be explained by inadequate metrics for the
evaluation of the velocity ‖f‖2.

6.2.2 Improving Relaxation Criteria

The previous subsection shows that all three presented relaxation criteria –
entropy production, curvature and speed/arc length – violate the consistency
property. In this subsection possibilities to mitigate these violations are
presented and investigated. Two possible explanations to the violation of
the consistency criterion by the presented relaxation criteria have already
been stated in Section 6.1 – an underweighting of the relaxation criterion
on the initial trajectory piece and the usage of inadequate metrics in phase
space.

A remedy for the underweighting of the initial trajectory piece can be found
by multiplication of the relaxation criterion Φ(c(t)) with a suitable weighting
function g(c(t)), i.e.

Φ̃(c(t)) := Φ(c(t))g(c(t)). (6.13)
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The idea of finding a suitable metric for the kinetic phase space is conceptu-
ally similar, but additionally allows for different weightings of the different
species. As stated in Section 5.2, the key idea is to replace the Euclidian
metric ‖x‖2 :=

√
xTx by

‖x‖A :=
√
xTAx, (6.14)

where A is a symmetric, positive definite matrix. Two such matrices are
proposed in the equations (5.12) and (5.19).
Generally such matrices are based on properties concerning the species, but
the computation of entropy production is not based on species but on reac-
tions (more precisely on pairs of forward and reverse reactions). Hence the
use of a different metric based on species – as all modified metric used in this
work – is not meaningful in the context of entropy production as a relaxation
criterion. Hence in the sequel the weighting function g(c(t)) will primarily be
used in the entropy production context, while modified metric formulations
will be used for the modification of arc length and curvature as relaxation
criteria.

Arc Length in Different Metrics

As stated in Subsection 5.2.3, the length of a trajectory can be computed
in terms of different Riemannian metrics by adapting the Euclidian scalar
product and its induced norm. A choice of Riemannian metric that has
been used in model reduction [33] before is the so-called Shahshahani metric.
Figure 6.10 shows minimal-length trajectories in this metric.
These trajectories have been computed as solutions of the optimization prob-
lem (5.1a–5.1c) on the fixed time horizon [0, 1] using the criterion

Φ(c(t)) = ‖ċ(t)‖B = ‖f(c(t))‖B =
√

fT · B · f (6.15)

with B = diag
(

1
ci

)

corresponding to the Shahshahani metric discussed in

5.2.3.
Figure 6.10 shows that using the Shahshahani metric, the initial relaxation
period can be largely diminished – the resulting trajectories start very close
to the SIM even for the radical species O and H. For the other species there
is no visible deviation from the SIM. Even though the deviations for O and
H demonstrate that the consistency property is still violated, the velocity
property ‖ċ(t)‖B can also be useful for model reduction, e.g. as a weighting
function g(c(t)) for entropy production.
Note that due to the large range of values of the relaxation criterion a log-
arithmic scale has been chosen for the plot of ‖f‖B against cH2O in Figure
6.10.
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Figure 6.10: Shortest trajectories in the sense of minimal arc length
in a Shahshahani metric formulation – i.e. Φ from (6.15) with B =

diag
(

1
ci

)

on a fixed time horizon [0, 1]. A logarithmic scale has been

chosen for the plot of ‖f‖B against cH2O.

Weighting Functions for Entropy Production

As discussed above, weighting functions can help to improve relaxation crite-
ria based on entropy production. In the sequel potential weighting functions
helping to improve (in terms of the consistency) entropy production as an
optimization criterion are introduced.

Velocity Weighting The idea that weighting functions can help to im-
prove relaxation criteria is that due to the dissipative nature of the under-
lying dynamical systems, fast time-scales are underweighted if no weighting
function is used. Due to this underweighting an excess in the relaxation crite-
rion can be compensated by quickly reaching a longer (with respect to time)
period close to equilibrium. A self-evident weighting function that serves
for a kinetic weighting of the criterion with respect to the arc length of the
trajectory is the velocity along the trajectory, i.e.

g(c(t)) := ‖ċ(t)‖2 = ‖f(c(t))‖2. (6.16)
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Figure 6.11: MEPTs weighted by velocity – i.e. for Φ from (6.17) on a
fixed time horizon [0, 1]. The initial relaxation phase has been reduced
but not eliminated compared to Figure 6.7.

Using velocity as a weighting function the weighted entropy production cri-
terion Φ for (5.1a–5.1c) is

Φ(c(t)) =
dS

dt
‖f‖2 = R

m∑

j=1

diSj
dt

‖f‖2. (6.17)

Figure 6.11 shows minimal entropy production trajectories for this weighted
entropy production criterion.

Compared to Figure 6.7 one can see that the initial relaxation period has
been reduced, but not completely eliminated. The two-dimensional manifold
in Figure 6.3 confirms this impression. Interestingly, whereas Figure 6.7
exhibited an excess of entropy production in the initial relaxation phase,
Figure 6.11 shows that the entropy production in the initial phase is actually
less than for the one-dimensional SIM. Hence by the velocity weighting
the problem of the initial excess entropy production has been solved, but
nevertheless the SIM is not well approximated.

As the arc length minimization using the Shahshahani metric showed promis-
ing results, it is reasonable to use this metric for the velocity weighting as
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well, i.e. to use

g(c(t)) := ‖ċ‖B = ‖f‖B, B = diag

(
1

ci

)

, i = 1, ..., n. (6.18)

Figure 6.12 shows results for the minimal entropy production weighted by
velocity evaluated using the Shahshahani metric, i.e. for the minimization of

Φ(c(t)) =
dS

dt
‖f‖B = R

m∑

j=1

diSj
dt

‖f‖B (6.19)

with ‖.‖B being the Shahshahani metric induced by B = diag
(

1
ci

)

and

discussed in 5.2.3.

Figure 6.12: MEPTs weighted by velocity in Shahshahani metric – i.e.
for Φ from (6.19) on a fixed time horizon [0, 1]. Trajectories start closer
to the SIM than those computed with the Euclidian metric velocity
weighting in Figure 6.11.

In both Figure 6.11 and Figure 6.12, the large relaxation phases present in
the “pure” entropy production minimization could be decreased – especially
close to equilibrium. However, for the Euclidian metric formulation results
depicted in Figure 6.11, the deviations from the one-dimensional SIM are
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larger than for the Shahshahani metric in Figure 6.12. This can especially
be seen by comparing the results for the radical species OH. A further
observation that can be made is that further away from equilibrium the
shortest trajectories in Shahshahani metric from Figure 6.10 start closer to
the SIM than the velocity-weighted MEPTs.

Curves of Minimal Energy While a velocity weighting of the arc length
optimization criterion does not seem meaningful at first sight, a second view
reveals another picture. As a velocity weighting is simply achieved by multi-
plying the original criterion by ‖f‖2, a velocity weighted criterion based on
arc length is obtained as

Φ(c(t)) = ‖f(c(t))‖2
2. (6.20)

Integrating this criterion leads to
∫ T

0
‖f‖2

2dt, which by Definition 3.22 is the
energy of the curve described by the underlying ODE system ċ = f(c). Hence
optimizing (5.1a–5.1c) with Φ from 6.20 as the relaxation criterion amounts
to a computation of curves of minimal energy.

Figure 6.13: Trajectories with minimal energy – i.e. for Φ from (6.20)
on a fixed time horizon [0, 1]. The results are comparable to the velocity
weighted MEPTs in Figure 6.11.

Results achieved using this energy minimization are depicted in Figure 6.13.
These results are roughly comparable to the velocity weighted MEPTs in
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Figure 6.11 which was to be expected as the results for minimal entropy pro-
duction trajectories and arc length minimization are very similar (cf. Figures
6.7 and 6.9).

Restricted Velocity Weighting A problem resulting from a pure velocity
weighting as in the previous paragraph is that both the dynamics for the
progress variables and for the other species are uniformly weighted. However,
from a model reduction point of view, the dynamics for the progress variables
should not be weighted at all. An approach to have the weighting function
depend on the choice of progress variables is simply not to use the progress
variables for the weighting, i.e. to use the seminorm

‖x‖2,non-rpv :=

√
√
√
√
√

n∑

i=1
i6∈Ifixed

x2
i . (6.21)

Note that the case ‖x‖2,non-rpv = 0 for x 6= 0 will only occur if the progress
variable concentrations are set such that all other species concentrations are
zero – a case that can be avoided by the user. With this seminorm, a re-
stricted weighting function can be stated as

g(c(t)) := ‖f(c)‖2,non-rpv. (6.22)

Using this weighting function, Figure 6.14 shows results for the optimization
problem (5.1a–5.1c) with the optimization functional

Φ(c(t)) =
dS

dt
‖f‖2,non-rpv. (6.23)

Compared to the results from Figure 6.11 with a pure velocity weighting, the
results in Figure 6.14 are improved far away from equilibrium, while close
to equilibrium the trajectories start further away from the one-dimensional
SIM.
A seminorm similar to the one from (6.21) can also be introduced using the
Shahshahani metric. This seminorm then is written as

‖x‖B,non-rpv :=

√
√
√
√
√

n∑

i=1
i6∈Ifixed

bi · x2
i , (6.24)

with bi > 0 being the diagonal entries of matrix B from equation (6.18).
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Figure 6.14: MEPTs weighted by restricted velocity – i.e. for Φ from
(6.23) on a fixed time horizon [0, 1]. Compared to the Euclidian metric
velocity weighting in Figure 6.11, the results are improved only far
away from equilibrium, while close to equilibrium the deviations from
the SIM are larger.

Results for the minimization of

Φ(c(t)) =
dS

dt
‖f‖B,non-rpv (6.25)

are shown in Figure 6.15.
While the results for H2O as the progress variable in Figure 6.15(a) look very
promising, Figure 6.15(b) at least partly disproves this impression. For high
concentrations of H2 an initial relaxation phase can be noticed. This is not
surprising, because the dynamics on the SIM are most likely not governed
by a user-defined progress variable.
A weighting function that is capable of distinguishing between the dynamics
on an towards the SIM will probably have to include time-scale information to
determine the true parameter of the SIM. However, getting this information
involves the expensive computation of eigenvalues and hence is infeasible
in this context. Nevertheless the results in Figure 6.15(a) demonstrate the
potential of a weighting function that depends on the parametrization of the
SIM.
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(a) H2O as progress variable.

(b) H2 as progress variable.

Figure 6.15: MEPTs weighted by restricted velocity in Shahshahani
metric – i.e. for Φ from (6.25) for the reaction progress variables H2O
(a) and H2 (b). The consistency property seems to be nearly satisfied
for the results depicted in (a), while the results depicted in (b) exhibit
more deviations from the SIM.
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Curvature in Different Metrics

As discussed in Subsection 5.2.2 and demonstrated in the results from [73] in
Section 6.1, a possible way of diminishing the small initial relaxation phase
of the curvature minimization results in Figure 6.8 is to choose a different
norm in (6.11). While this procedure is conceptually comparable to the use
of a weighting function as above, it also allows for the different weighting of
different phase space directions which seems to be advantageous.

Using this strategy results for the minimized curvature

Φ(c(t)) = ‖J(f(c)) · f(c)‖A (6.26)

with the norm ‖.‖A based on the diagonal matrix A = diag (akk) , akk =
∑m

j=1 νkj
diSj

dt
, k = 1, ..., n are depicted in Figure 6.16.

Figure 6.16: Curvature minimization results in entropy production
metric with Φ from (6.26) for H2O as a progress variable on a fixed
time horizon [0, 1]. No clear improvement compared to the results in
Figure 6.8 is found.

While this procedure leads to a minimal relaxation phase for the two-dimen-
sional manifold in Subsection 6.1.2 (cf. [97]), no clear improvement can be
found for the results in Figure 6.16 compared to the results in Figure 6.8.



6.2. TOWARDS CONSISTENT REDUCTION CRITERIA 83

However, choosing the Shahshahani metric instead, i.e. minimizing

Φ(c(t)) = ‖J(f(c)) · f(c)‖B (6.27)

with ‖x‖B = xTdiag
(

1
xi

)

x, leads to the improved results shown in Figure

6.17.

Figure 6.17: Curvature minimization results in Shahshahani metric
with Φ from (6.27) for H2O as a progress variable on a fixed time horizon
[0, 1]. Trajectories start very close to the SIM, but the range of values
for the relaxation criterion is extremely large.

The latter results look very promising and demonstrate the potential of the
curvature minimization approach. However, it has to be noted that the range
of values that the relaxation criterion takes is extremely large compared
to the other criteria entropy production, arc length and even curvature in
other metrics. Due to this reason the relaxation criterion is plotted on a
logarithmic scale in the bottom right plot of Figure 6.17. In large scale model
reduction this range of values may lead to numerical problems, especially as
the relaxation criterion and its derivatives may take even larger values during
the optimization.
Another point that has to be mentioned is that the second differential of
entropy – the Shahshahani metric – takes this simple diagonal form only due
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to the fact that the underlying system is regarded for constant volume and
constant temperature. For other conditions the matrix B may be much more
complicated and the user could even be forced to rely on approximations that
would have to be assured to lead to a positive definite matrix.

6.2.3 A Modified Problem Formulation Using an Ad-

ditive Initial Value Term

In the previous subsection, a way to improve the consistency of the minimal
curvature criterion by evaluating curvature in a different geometry has been
discussed. Another possibility for improvement is to add an initial value term
to the integral formulation, i.e.

min
ck

∫ T

0

Φ(c(t)) dt− ϕ(c(0)) (6.28a)

subject to

dck
dt

= fk(c), k = 1, ..., n (6.28b)

ck(0) = c0k, k ∈ Ifixed (6.28c)

2cH2 + 2cH2O + cH + cOH = C1,

2cO2 + cH2O + cO + cOH = C2.
(6.28d)

A (heuristic) motivation for this procedure might be found in the idea that
ϕ(c(0)) may represent the past or history of the trajectory. For Φ(c) =
‖c̈‖2, this idea suggests the choice of ϕ(c) = ‖ċ‖2. Results for this choice of
Φ(c), ϕ(c) are depicted in Figure 6.18.
While the initial relaxation phase seems to be completely eliminated for the
values cH2O(0) ∈ {10−4, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, the (unphysical) results to
the right of the equilibrium point do not look satisfying in terms of the
consistency criterion. Interestingly, a remedy for this is found in a change of
sign in ϕ(c) for values of cH2O(0) > c̄H2O = 0.7.
A more general expression for the change of sign in ϕ(c) is found as follows:
As the mechanism is based on the overall reaction 2 H2 + O2 → 2 H2O, its
equilibrium constant (see Section 3.3) is

KC =
c̄2H2O

c̄2H2
c̄O2

,

where c̄ denotes the equilibrium concentration. Choosing the sign of ϕ ac-
cording to the sign of the difference between this equilibrium constant and
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Figure 6.18: Optimal trajectories as solutions of the additive initial
value term problem (6.28) with Φ = ‖c̈‖2 and ϕ = ‖ċ‖2 for H2O as
the progress variable. For cH2O(0) < 0.7, the trajectories seem to com-
pletely reside on the SIM, for (the unphysical region) cH2O(0) > 0.7 a
large initial relaxation phase is observed.

the mass action coefficient yields a negative sign for an excess of products
(and a deficit of reactants) and a positive sign for an excess of reactants (and
a deficit of products). For the mechanism treated here, this difference is

c̄2H2O

c̄2H2
c̄O2

− c2H2O

c2H2
cO2

.

Using

ϕ(c(0)) = sign

(
c̄2H2O

c̄2H2
c̄O2

− c2H2O(0)

c2H2
(0)cO2(0)

)

‖f(c(0))‖2, (6.29)

the results depicted in Figure 6.19(a) are achieved.
While the initial relaxation phase of the trajectories in Figure 6.19(a) seems
to be completely eliminated, the the bottom right plot of curvature of Figure
6.19(a) indicates that the computed trajectories are not completely identical
to the SIM.
Nevertheless this result shows that a very good approximation of the SIM is
possible with the trajectory-based optimization approach used in this work.
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(a) H2O as progress variable

(b) H2 as progress variable

Figure 6.19: Optimal trajectories as solutions of problem (6.28) with
Φ = ‖c̈‖2 and ϕ from (6.29) for different progress variables (H2O and
H2). Trajectories form an excellent approximation of the SIM. A small
remaining deviation is visible for the bottom right plot of curvature in
(a) and for some plots of species in (b).
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Additionally, using this strategy good results can also be achieved for differ-
ent scenarios. For example Figure 6.19(b) shows that even for a change of
the progress variable the solutions to problem (6.28) still result in a good ap-
proximation of the SIM. The same problem (i.e. solve (6.28) with Φ = ‖c̈‖2

and ϕ(c(0)) = ‖ċ(0)‖2) has been treated for these results, except that in-
stead of initial concentrations of H2O, initial concentrations of H2 have been
fixed – i.e. cH2(0) ∈ {0.05, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. Note that
in Figure 6.19(b) the axes have been chosen according to the modified choice
of the progress variable.

Figure 6.20: Optimal trajectories as solutions of problem (6.28) with
Φ = ‖c̈‖2 and ϕ from (6.29). Dashed lines denote the solution for
only H2 as a progress variable (cH2(0) = 0.9), dotted lines the solution
for cH2(0) = cH2O(0) = 0.1 and solid red lines the solution for initial
values of H2 and H2O taken from the dotted trajectory. These results
demonstrate an excellent approximation of the two-dimensional SIM by
the additive initial value term approach.

Moreover, solving problem (6.28) with Φ = ‖c̈‖2 and ϕ from (6.29) also gives
an excellent approximation of a SIM of dimension two. As a demonstration of
this, the results depicted in Figure 6.20 have been computed in the following
fashion:
First a solution of (6.28) has been computed for the initial values of H2 and
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H2O set to 0.1 (blue dotted line). An arbitrary point from this solution (i.e.
c(t1) for an arbitrarily t1) has been chosen and the concentrations cH2(t1)
and cH2O(t1) have been chosen as new initial values for H2 and H2O. For
these new initial values, a new solution of (6.28) has been computed (red
solid line). The one-dimensional SIM (blue dashed line) (for cH2(0) = 0.9) is
included in Figure 6.20 for comparison.
In other words, the idea of the consistency property from Definition 5.1 has
been analyzed for a two-dimensional case and the results underline that the
criterion chosen in (6.28) with Φ = ‖c̈‖2 and ϕ from (6.29) is very close to
being consistent as judged by eye-inspection for the two-dimensional case.

6.2.4 Discussion

The aim of Section 6.2 was a detailed overview over different relaxation crite-
ria and their modifications with the ultimate goal of finding a (possibly uni-
versal) criterion that satisfies the consistency property from Definition 5.1.
Although no general relaxation criterion satisfying this property is found,
some trends can be seen from the results presented here.
As a general trend it can be stated that criteria based on curvature as in-
troduced in Subsection 5.2.2 seem to be more successful than those based
on entropy production as introduced in Subsection 5.2.1 or arc length as
introduced in Subsection 5.2.3.
The minimization of curvature without any modifications (see Figure 6.8) al-
ready shows results that are closer to the SIM than nearly any result based on
minimizations of modified entropy production. However, there is one excep-
tion – the minimization of entropy production parametrized by a progress-
variable-dependent arc length in a different metrics (see Figure 6.15). While
this seems complicated at first sight, the idea of including a dependence on
the parametrization of the SIM in the minimization (e.g. via a weighting
function g(c(t))) is an idea that is worth to be pursued in the future. The
main advantage is that relaxation criteria based on this idea need not include
derivatives of the reaction rates as the curvature minimization does.
For the curvature minimization, two basic directions for modifications have
been inspected – a change of the metric and the addition of an optimization
objective for the initial point – both with encouraging results.
While the entropy production metric, introduced and successfully used for a
two-dimensional manifold in [97], does not seem to help in the one-dimen-
sional case, minimizing curvature in the Shahshahani metric leads to an
improved approximation of the SIM in the one-dimensional case as seen in
Figure 6.17. The use of different metrics in the formulation of curvature cer-
tainly seems to be a promising way of improving the curvature minimization
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criterion. However, the search for an “optimal geometry” in phase-space of
chemical reaction mechanisms (and in other settings, too) remains an open
question for future work.
The most encouraging result in this work probably is the inclusion of an
additive initial value term in the formulation of curvature minimization –
i.e. the modified problem (6.28). The results achieved with this strategy are
depicted in Figures 6.19 and 6.20 and show a very good approximation for
the SIM for different choices of progress variables and manifold dimensions.
It also has to be noted that preliminary tests of the combination (6.28)
with Φ = ‖c̈‖2 and ϕ from (6.29) with other systems (e.g. the Skodje-Davis
problem) do not give results of the same quality as the ones presented here
for the model hydrogen combustion mechanism. Nevertheless, the general
strategy of adding an initial value optimization term to the trajectory-based
optimization approach seems promising, which is confirmed by the results
for the ozone combustion reaction mechanism in Subsection 6.3.2.

6.3 Temperature Dependence

The results in the previous sections have been achieved with model reaction
mechanisms that did not include any temperature dependence. The focus
of this section lies on detailed chemical reaction mechanisms that include
temperature dependence in terms of the Arrhenius law (see Section 3.3).

6.3.1 Short Integration Horizon

To demonstrate the capability of the general trajectory-based optimization
approach, a detailed reaction mechanism including temperature dependence
is investigated here. The mechanism for ozone combustion consists of three
species and one conservation relation and therefore has two degrees of free-
dom. Hence the investigation is based on a reduction to a one-dimensional
manifold only. Details on the reaction mechanism are found in A.3.
The methodology used for the approximation of the SIM here is based on the
curvature minimization idea and the unit-speed parametrization. However,
instead of integrating the system for a fixed time horizon, a fixed arc length
is chosen.
There are two general ideas how to achieve this. One way is to introduce an
additional differential state ds

dt
= ‖f(c)‖ to the original problem formulation

along with two equality constraints s(0) = 0 and s(T ) = sf .
However, a more convenient way might be to replace the governing ODE
ċ(t) = f(c) by a “normalized” version ċ = f(c)

‖f(c)‖ , whose solutions are curves
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in unit-speed parametrization.

Figure 6.21: Ozone mechanism at three different temperatures,
2000 K, 1000 K and 500 K with the relaxation criterion Φ = ‖c̈‖2.
The solid lines depict the trajectory computed from the initial values
of the solution of (6.30) for cO2(0) = 10−4. The dots correspond to the
initial values of solutions of (6.30) on an equidistant grid. Deviations
from the SIM are found away from equilibrium for 1000 K and 500 K.

The reparametrized problem is then written as

min
ck

∫ sf

0

Φ(c(s))ds (6.30a)

subject to

dck
ds

=
fk(c)

‖f(c)‖ , k = 1, ..., n (6.30b)

ck(0) = c0k, k ∈ Ifixed. (6.30c)

Note that in this formulation t and T have been replaced by s and sf , rep-
resenting the arc length of the trajectory. It turns out, that short trajectory
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pieces c(s), s ∈ [0, sf ] are sufficient for the optimizer to find accurate reduced
descriptions. sf is generally chosen as 10−3 in this section.

The optimization criterion Φ is chosen as curvature ‖J(f(c))f(c)‖ = ‖c̈‖.
Note that the derivative c̈ = d2c

dt2
is taken w.r.t. time. Figure 6.21 shows

results for the minimization of curvature by solving problem (6.30).

There the solid line depicts a trajectory integrated from the initial values of
a solution of problem (6.30) for cO2(0) = 10−4 and the circles denote initial
values from solutions of problem (6.30) on an equidistant grid for the fixed
initial values cO2(0) with a spacing of 0.02. The results at 2000 K look very
promising, all computed points share the same trajectory, suggesting that
the consistency property is fulfilled. However, this is not the case for lower
temperatures. This can be seen in the plots for 1000 K and 500 K in Figure
6.21, where the initial values from the solutions of (6.30) show deviations
from the SIM especially further away from equilibrium.

However, similar to the previous sections, curvature in a special metric can
again be used to improve these results. In this case

Φ(c) = ‖c̈‖D (6.31)

is chosen with the positive definite matrix

D = diag (dkk) , dkk =
‖f‖
‖fk‖

. (6.32)

Similar to the entropy production metric from (5.12), this modified metric
yields a kinetic weighting. While the choice of the matrix D is to some
extent heuristic, the results for this optimization – given in Figure 6.22 –
clearly suggest that the consistency property is also fulfilled for the lower
temperature values 1000 K and 500 K. With this the successful application
of the chosen approach using the metric ‖.‖D with D from (6.32) for a wide
range of different temperatures seems to be possible at least for the given
mechanism.

Nevertheless, a drawback of this optimization strategy also has to be men-
tioned: Due to the small integration horizons, the strategy is highly depen-
dent on good initial values and hence also depends on a good numerical
continuation strategy.
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Figure 6.22: Ozone mechanism at three different temperatures,
2000 K, 1000 K and 500 K with the relaxation criterion Φ = ‖c̈‖D and
D from (6.32). The solid lines depict the trajectory computed from
the initial values of the solution of (6.30) for cO2(0) = 10−4. The dots
correspond to the initial values of solutions of (6.30) on an equidistant
grid. Deviations from the SIM are not visible.

6.3.2 Additive Initial Value Term Strategy

In Subsection 6.2.3 the modified problem formulation (6.28) was used, that
includes an additive initial value term. In this subsection the same strategy
is used for the computation of optimal trajectories for the ozone combustion
reaction mechanism from A.3 that has also been used in the previous subsec-
tion. Note that this means that as opposed to the results in Subsection 6.3.1,
the ODE is written in its standard (time-parametrized) formulation again and
the integration horizon [0, T ] is chosen such that c(T ) is approximately the
equilibrium concentration. For the computations in this Subsection, T = 0.1
has been chosen.

As in Subsection 6.2.3, Φ(c(t)) = ‖c̈(t)‖2 and ϕ(c(0)) = ‖ċ(0)‖2 are used.
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Having all this, the results depicted in Figures 6.23 and 6.24 are computed
as solutions of

min
ck

∫ T

0

‖c̈(t)‖2 dt− ‖ċ(0)‖2 (6.33a)

subject to

dck
dt

= fk(c), k = 1, ..., n (6.33b)

ck(0) = c0k, k ∈ Ifixed (6.33c)

cO + 2cO2 + 3cO3 = C. (6.33d)

Figure 6.23: Solution of the additive initial value term problem (6.33)
for the ozone reaction mechanism from A.3 at three different temper-
atures, 2000 K, 1000 K and 500 K. Crosses denote initial points of
computed trajectories. All trajectories emanating from these points
are plotted and approximately lie on the same manifold which is ex-
pected to be the SIM.

In other words, the results depicted in Figures 6.23 and 6.24 are trajectories
(and their initial values, marked by crosses) that are computed as optimal
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solutions of problem (6.33) while the results depicted in Figures 6.21 and
6.22 are initial points of small trajectory pieces.
The results depicted in Figure 6.23 demonstrate that the additive initial value
strategy – successfully applied to the model hydrogen combustion mechanism
in Subsection 6.2.3 – also yields very good results for the ozone combustion
reaction mechanism for different temperatures. The trajectories depicted in
the figures in this subsection are computed on the same grid for the progress
variable O2 as used for the results in Subsection 6.3.1 and the initial values of
these trajectories are marked by crosses. For the temperatures 500 K, 1000 K

Figure 6.24: Solution of the additive initial value term problem (6.33)
for the ozone reaction mechanism from A.3 at three different tempera-
tures, 400 K, 350 K and 300 K. Crosses denote initial points of com-
puted trajectories. All trajectories emanating from these points are
plotted, growing deviations from the SIM are observed for decreasing
temperature.

and 2000 K the resulting trajectories are found to satisfy the consistency
property by eye-inspection. The results for these temperatures are depicted
in Figure 6.23.
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However, if the temperature is decreased to 400 K and below, deviations
from the SIM are found for the progress variable concentrations further away
from equilibrium. These deviations can be observed in the results depicted in
Figure 6.24 especially for the solutions of (6.33) for 300 K – a condition which
states a strong demand for all model reduction techniques, as it amounts to
approximately 27◦C. At such low temperatures the chemical kinetics are
extremely slow and a clear separation of time-scales can not be guaranteed.
While the results in Figure 6.24 question the generality of using problem
(6.33) to approximate the SIM for all temperatures, a wide range of temper-
atures for which the consistency property is observed to be satisfied is found
in Figure 6.23. Together with the promising results presented in Subsection
6.2.3, the results depicted in Figure 6.23 demonstrate the potential of the
additive initial value term strategy for the approximation of the SIM.

6.4 Large-Scale Mechanisms

The mechanism in A.4 is a realistic reaction mechanism for the combustion
of hydrogen in pure oxygen consisting of 8 species and 60 reactions. Com-
pared to the other test-cases used in this work, this hydrogen combustion
mechanism provides a substantial step towards large-scale application of the
methods derived in this work.
No results as solutions of optimization problems are presented in this work
for this mechanism, but some statements on trajectories shall be made here.
These statements may be of importance for the transfer of the methods
derived in this work to realistic large-scale reaction mechanisms. The insight
given here is illustrated by the trajectories in Figure 6.25.
Three trajectories are displayed in this figure. The first one (solid blue,
c1) starts from the initial point where only the reactants H2 and O2 have a
non-zero concentration (cH2(0) = 1

6
, cO2(0) = 1

3
).

The second trajectory (dashed blue, c2) starts from the point where the initial
concentrations (cH(0), cO(0), cOH(0), cHO2(0), cH2O2(0), cO2(0), cH2(0), cH2O(0))
are (.441, .217, 6×10−3, 10−5, 5×10−5, .05, .1, .01). This point is chosen arbi-
trarily but consistent with the conservation equations (A.8) and (A.9) with
C1 = 2

3
and C2 = 1

3
. The third trajectory (solid red, c3) is the part of the first

trajectory that can be interpreted as a part of the one-dimensional SIM∗.
In the computations performed in this work, the Lagrange-type optimization
criterion usually has been included in the ODE system as an additional state,

∗Remember that all trajectories relax towards the one-dimensional SIM and hence there
exists a point in time t0 from which on the curve c(t), t ∈ [t0, T ] is reasonably close to the
one-dimensional SIM.
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Figure 6.25: Three different trajectories for the detailed hydrogen
mechanism from A.4 at 1500 K. The solid blue and dashed blue lines
denote trajectories (c1 and c2 respectively) from arbitrary initial values
consistent with the conservation relations. The red line (c3) can be
interpreted as a part of the one-dimensional SIM.

i.e.
ċ(t) = f(c(t))

ṁ(t) = Φ(c(t)),
(6.34)

with m(0) = 0.

If this procedure is applied to the eight species reaction mechanism, some
difficulties arise.

The number of time steps and minimal time step for the solution of the
original ODE system ċ = f(c) using a standard integrator (ode15s) from
Matlab

r are shown in Table 6.1.

Integrating (6.34) with the same integrator as the ODE system, about ten
times as many time steps and minimum time steps occur that are smaller by
a factor of 10−3. The detailed results of these integration are shown in Table
6.2.

In particular the fact that even the integration of the (non-stiff) SIM (solid
red line) needs so many timesteps causes concern. However, if trajectories are
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Trajectory Time Steps Minimal Time Step

c1 632 2.6832 × 10−7

c2 674 8.1777 × 10−11

c3 396 1.8600 × 10−8

Table 6.1: Number of time steps and minimal time step for the inte-
gration of ċ(t) = f(c(t)).

Trajectory Time Steps Minimal Time Step

c1 6577 2.4269 × 10−10

c2 5641 1.0224 × 10−14

c3 5358 4.1808 × 10−11

Table 6.2: Number of time steps and minimal time step for the inte-
gration of (6.34).

computed as solutions of the original ODE ċ = f(c) only and the relaxation
criterion is evaluated along these trajectories, the accuracy of the computed
trajectories may be to low for an accurate evaluation of the relaxation cri-
terion. These inaccuracies in the evaluation of the relaxation criterion may
in turn lead to problems in the optimization. An alternative optimization
strategy for large-scale problems avoiding these integration difficulties may
be found using a fixed discretization of the trajectories (possibly in terms of
an arc length parametrization) within a collocation method (see [86, p. 595]).
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Chapter 7

Summary, Conclusion and
Outlook

7.1 Summary

This work deals with the problem of model reduction in chemical kinetics.
The main task of model reduction is the provision of low-dimensional descrip-
tions of high-dimensional systems for the efficient application within compu-
tationally demanding multi-scale numerical simulations. In the context of
this work the systems to be reduced are dissipative systems described by
Ordinary Differential Equation (ODE) systems. Due to their dissipative na-
ture, phase trajectories in these systems tend to relax to invariant manifolds
of decreasing dimension, the so-called Slow Invariant Manifolds (SIM) and
finally to equilibrium, which can be interpreted as a zero-dimensional Slow
Invariant Manifold (SIM). These SIMs can be employed for model reduction
as they are parametrized by a small number of parameters – the so-called
progress variables, which are often chosen as certain species concentrations –
but contain information about the long-term behaviour of all species present
in the system. Therefore most modern model reduction methods are based
on computing approximations of these SIMs.

For this purpose a novel approach introduced by Lebiedz [50] for the approx-
imation of SIMs is pursued and examined for increasingly realistic reaction
mechanisms and higher-dimensional manifolds in this work. The basis for this
approach is the computation of optimal trajectories via suitable optimization
criteria that can be achieved by sophisticated numerical tools. Methodolog-
ically the optimization criteria are supposed to describe the extent of relax-
ation, as trajectories on the SIM can be interpreted as “maximally relaxed”
trajectories.
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Mathematically, the basis for this novel model reduction approach is its for-
mulation as a variational Boundary Value Problem (BVP), introduced in
Chapter 5 and its solution via a Nonlinear Programming Problem (NLP)
formulation. The tools for the solution of the variational BVP – which are
discussed in Chapter 4 – are based on a direct multiple shooting discretization
[7, 8] that subdivides the integration horizon into several subintervals on each
of which an independent Initial Value Problem (IVP) is solved. The resulting
NLP is then solved by Sequential Quadratic Programming (SQP), a standard
approach for such problems. As the underlying ODE systems in this work are
usually stiff systems (for the description of chemical kinetics), the IVPs are
integrated using the implicit Differential Algebraic Equation (DAE) solver
DAESOL [2, 4, 5] which is integrated in the software package MUSCOD-II
[54, 55, 56, 57] that is used to solve the variational BVP.

For the construction of invariant manifolds of dimension n > 1, the general
trajectory-based optimization approach has to be formulated as a parametri-
zed problem family with the different initial concentrations parametrizing the
manifold.For this formulation, an efficient initial value embedding strategy
can be applied, which has been used before for Nonlinear Model-Predictive
Control (NMPC) [20, 21]. Using this initial value embedding strategy, neigh-
bouring problems can be solved efficiently, leading to a powerful continuation
strategy for the construction of low-dimensional manifolds.

Using this numerical optimization framework, this work presents the approx-
imation of SIMs by the means of minimizing different criteria describing the
relaxation of chemical forces. The original criterion – entropy production
– is fundamentally rooted in the field of thermodynamics. However, as it
turns out that the minimization of entropy production along trajectories is
not sufficient, Chapter 5 and 6 of this work focus on the derivation of alter-
native criteria to be used in the context of the trajectory-based optimization
approach and on the introduction of a kinetic weighting in these criteria.
The aim of these considerations is to improve the approximations of the SIM
achieved with these criteria.

For this purpose, a qualitative way of evaluating the performance of the cri-
teria is introduced in Section 5.2 – the consistency property. This property
allows for the analysis of different criteria by eye-inspection, a path that has
been followed in Section 6.2. The results presented in that section demon-
strate the potential of the trajectory-based optimization approach, especially
if curvature in a modified metric formulation∗ is used as the relaxation crite-
rion. Apart from analyzing different criteria and kinetic weightings, a mod-
ification of the original optimization approach is presented in Subsection

∗The modified metric formulations represent one possibility of a kinetic weighting.
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6.2.3. This approach, which introduces an additive term that is evaluated at
the initial point of the integration horizon, leads to very promising results
for the mechanism discussed in that subsection. These results demonstrate
that a very good approximation of the SIM is possible via trajectory-based
optimization.

7.2 Conclusion

As alternative approaches to model reduction exist which are introduced in
Chapter 2, two concluding questions shall be addressed here:

• How can the approach presented in this thesis be compared to other
approaches?

• Why is the presented approach reasonable?

The overview of model reduction algorithms in Chapter 2 shows that many
modern model reduction methods are based on finding or approximating slow
invariant manifolds, which is a point that is shared by the trajectory-based
optimization approach proposed in this thesis. In fact, the only (modern)
approach presented here that does not rely on the computation or approxi-
mation of invariant manifolds is the RCCE method discussed in 2.1.4.
Instead the RCCE method locally reconstructs predefined minor species by
locally maximizing entropy for fixed concentrations of the major species.
The original MEPT method follows a similar idea by the minimization of an
integral over entropy production.
However, the pointwise maximization of entropy bears the same problems
as the initial phase of original minimal entropy production trajectories. The
maximum entropy compositions do not lie close to the slow invariant man-
ifold. Hence the RCCE method will, in general, only provide good results
when the concentrations of the progress variables are close to their equilib-
rium values. For the original MEPT method this problem can at least be
attenuated by starting trajectories from the boundary of a predefined com-
putational domain and combining them to an invariant manifold.
This construction of a manifold from trajectories emanating from the bound-
ary of a predefined computational domain is the exact idea of the ICE-PIC
method. A manifold created like this is at least invariant by definition, as it
consists of trajectories.
Nevertheless, an invariant manifold is not necessarily the Slow Invariant
Manifold. Basing the manifold generation on trajectories serves for invari-
ance, finding the SIM itself is usually more complicated. Iterative methods
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have been introduced for this task and are discussed in Chapter 2. An in-
teresting similarity of ideas can be found in the Constrained Runs Schemes,
where the m + 1st time derivative of the free variables is computed to be
zero. For m = 1, this idea (although applied locally) is conceptually close
to the curvature minimization presented in this work as the same directional
derivatives occur in this context.
Summarizing the findings, it is clear that the approach pursued in this work
shares some ideas with other model reduction approaches, but is unique in
its idea of optimizing trajectories in such a way that the resulting trajecto-
ries approximate the SIM. With this optimization – based on sophisticated
numerical tools – the approach bears potential to overcome at least some of
the drawbacks of other approaches for the approximation of slow invariant
manifolds in chemical kinetics for the purpose of model reduction.

7.3 Outlook

While substantial steps towards the generalization of trajectory-based opti-
mization for model reduction have been taken within the scope of this work,
future work may include the further optimization of relaxation criteria as
well as the implementation of these methods for large-scale automatic model
reduction. Some issues that may be of importance for these future develop-
ments are discussed in this section.

7.3.1 Criteria and Evaluation

In Chapter 5, three important criteria for the reduction of chemical reaction
mechanisms via optimization of trajectories have been presented: entropy
production, curvature of trajectories and length of trajectories – in a suitable
metric.
In principle other reduction criteria are conceivable. Lemma 3.18, for exam-
ple, relates the volume of the phase space to the divergence of the r.h.s. of the
ODE-system. This relationship can also form an important background to
a successful model reduction criterion, as the phase space volume is related
to the dissipativity of the underlying system by Definition 3.17. One prob-
lem of this formulation is the integration of the divergence over a domain as
opposed to a pure time integration.
Apart from choosing different reduction criteria, modifications of these crite-
ria as e.g. a kinetic weighting can enhance the quality of the resulting reduced
models. For example the velocity weighting that has been used e.g. for the
results in Figure 6.3 can be interpreted as a modification of a given reduc-
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tion criterion (here: entropy production). By the implementation of time
transformations the same idea can also be directly applied to the differential
equation system: conceptually, transforming the standard time t to a new
time variable τ

τ =
t

‖f(t)‖ (7.1)

can be achieved by a normalization of the ODE system

ċ =
f(c)

‖f(c)‖ (7.2)

and if now the original (time-dependent) relaxation criterion is minimized
subject to this normalized ODE system, the same velocity weighting as used
in Chapter 6 is achieved. [39] uses similar methods to transform systems in
a way that allows for the use of constant step-size methods for the solution
of ODE systems.
While a unit-speed parametrization of the solutions of the ODE system is
appealing for a trajectory-based method, problems arise by the singularity of
the equilibrium point. A method making use of the normalized ODE system
(7.2) has to be constructed in such a way that it avoids integration horizons
that are too large. First steps into this direction have been taken for the
results in Section 6.3.1.

7.3.2 Practical Issues

To make the methods developed in this work available for large-scale auto-
matic model reduction of chemical reaction mechanisms in combustion, some
further steps have to be taken. This subsection focuses on key issues on the
way towards an automatic large-scale model reduction method based on the
optimization of trajectories.

Automatic Model Reduction

For applications the automatization of a model reduction method is of par-
ticular importance. The aim of automatic model reduction is to provide
reduced descriptions of reaction mechanisms based on as little input of the
user as necessary. Generally, the user will supply a mechanism file and the
physical conditions for which a reduced description shall be computed.

Mechanism Parser A mechanism parser is necessary for the conversion of
large amounts chemical data to the right hand side of an autonomous ODE
as (3.1).
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The Arrhenius parameters A, b, Ea from (3.25) which determine the chemi-
cal source terms for an elementary reaction are generally stored in reaction
mechanism files. Along with thermodynamical and molecular data, these
parameters determine the reaction velocity for elementary reactions.

Parametrization by Chemical Properties Large scale model reduction
tables of reduced chemistry can – in addition to the parametrization by
reaction progress variables – also be parametrized by chemical properties.
In practice, this parametrization leads to additional tabulation axes. The
most common properties used for tabulation are temperature, pressure and
mixture fraction (fuel-to-oxidizer ratio).
In the context of the method proposed in this work, these parameters gen-
erally enter the problem formulation (5.1) as equality constraints

T = pT.

p = pp

ξ = pξ,

(7.3)

i.e. an additional parameter pT, pp or pξ enters the parametric optimization
family of variational boundary value problems, for the parametrization by
temperature, pressure and mixture-fraction respectively.
The only difference for the parametrization by pressure as opposed to the
parametrization by temperature lies in the reaction mechanism parser, which
is required to be able to treat pressure-dependent reactions, e.g. by the Troe
formalism from [29, 87].
The mixture fraction parametrization is a way to express changes in the
systems element composition (e.g. in the constants C1 and C2 of the conser-
vation laws of the mechanisms in Sections A.2 and A.4) in one parameter,
the fuel-oxidizer-ratio. This expression is possible if the configuration under
consideration can be treated as coflow between fuel and oxidizer as e.g. for
simple nonpremixed flames. The fuel-oxidizer-ratio is commonly written as
the mixture fraction ξ, which is defined as

ξ =
Zi − Zi2
Zi1 − Zi2

, (7.4)

where

Zi :=

S∑

j=1

µijwj (7.5)

is the element mass fraction of the i-th element, computed as the sum of
the species mass fractions wj, weighted by µij, the mass proportion of the
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element i in species j. Zi1 and Zi2 denote the element mass fractions of the
two streams. For equal diffusivities the mixture fraction is independent of
the choice of the element i, i = 1, ...,M . More details on the mixture fraction
parametrization can be found for example in [95].

Fast Manifold For practical computational fluid dynamics simulations,
transport processes drive the physical states away from those on the SIM.
Hence, not only the SIM itself is needed there, but also a way of projecting
states back on the SIM (see [83]). In [11], Bykov et al. present a method
suitable for these projections, if the directions of fast motion towards the
SIM are known. It is conceivable that this method can be coupled with the
method derived in this work if a trajectory-based optimization approach can
be modified in such a way that the fast directions are computed.

Large-Scale Model Reduction

A method that is suitable for large-scale model reduction needs to be able to
compute reduced descriptions for a large set of parameters in as little time
as possible. Good strategies for continuation, storage and parallelization of
the computation of reduced descriptions can help to achieve this goal.

Continuation A continuation strategy for trajectory-based model reduc-
tion is described in [73] and in this work, Section 5.1.2. As the basis of the
model reduction approach lies in the optimization of trajectories, founding a
continuation strategy in parametric optimization is self-evident.

Storage The efficient storage of computed manifolds is a field on its own
that is not addressed here. However, it should be noted that in the presented
approach one trajectory can serve as a representation for multiple points on
the low-dimensional manifold.
For more details on the storage of tables of reduced chemistry, the reader is
referred to [64, 71, 80].

Parallelization A parallelization strategy for the trajectory-based opti-
mization approach can generally be similar to parallelization strategies used
for the tabulation of ILDM-reduced chemistry, e.g. the parallelization pro-
posed in [80]. There a master-slave approach is chosen – a master processor
administers lists of already computed reduced descriptions and those param-
eter sets that have to be computed. The slave processors receive parameter
sets and initial values from the master and carry out the actual computations
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of single reduced descriptions. The storage of the table is also carried out by
the master.



Appendix A

Test Problems and Reaction
Mechanisms

A.1 The Davis-Skodje Problem

In [16], Davis and Skodje presented a test example for the generation of low-
dimensional slow manifolds. This example, which has also been applied in
[83] is particularly useful, as an exact slow manifold can be calculated for it.
The model of a spatially homogeneous premixed reactor that consists of a
two-dimensional system is given by

dy1

dt
= −y1

dy2

dt
= −γy2 +

(γ − 1)y1 + γy2
1

(1 + y1)2
,

(A.1)

where γ > 1 is a measure of stiffness for the system. Stiffness is increased by
increasing γ.
The exact slow invariant manifold is given by

y2 =
y1

1 + y1
(A.2)

and the system has a stable equilibrium point at y1 = y2 = 0.
Furthermore an analytical description of the ILDM (see Section 2.1.2) can
be explicitly calculated as

y2 =
y1

1 + y1
+

2y2
1

γ(γ − 1)(1 + y1)3
(A.3)

for this system.
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A.2 Model Hydrogen Combustion Mechanism

One mechanism used for the calculations in this work is the following six-
species reaction mechanism

H2

k±1

⇌ 2 H, k1 = 2.0, k−1 = 216.0

O2

k±2

⇌ 2 O, k2 = 1.0, k−2 = 337.5

H2O
k±3

⇌ H + OH, k3 = 1.0, k−3 = 1400.0

H2 + O
k±4

⇌ H + OH, k4 = 1000.0, k−4 = 10800.0

O2 + H
k±5

⇌ O + OH, k5 = 1000.0, k−5 = 33750.0

H2 + O
k±6

⇌ H2O, k6 = 100.0, k−6 = 0.7714

(A.4)

or its kinetic model given by

dcH2

dt
= − k1cH2 + k−1c

2
H2

− k4cH2cO + k−4cHcOH

− k6cH2
cO + k−6cH2O

dcH
dt

= 2k1cH2
− 2k−1c

2
H2

+ k3cH2O − k−3cHcOH

+ k4cH2cO − k−4cHcOH − k5cO2cH + k−5cOcOH

dcO2

dt
= − k2cO2 + k−2c

2
O − k5cHcO2 + k−5cOcOH

dcO
dt

= 2k2cO2 − 2k−2c
2
O − k4cH2cO + k−4cHcOH

+ k5cHcO2 − k−5cOcOH − k6cH2cO + k−6cH2O

dcH2O

dt
= − k3cH2O + k−3cHcOH + k6cH2cO − k−6cH2O

dcOH

dt
= k3cH2O − k−3cHcOH + k4cH2cO − k−4cHcOH

+ k5cHcO2 − k−5cOcOH.

(A.5)

Together with the conservation relations

2 cH2 + 2 cH2O + cH + cOH = C1

2 cO2 + cH2O + cO + cOH = C2

(A.6)

this mechanism yields a system with four degrees of freedom.
For the results in Section 6.1.1 and 6.1.2 computed for this mechanism C1 =
2.0 and C2 = 1.0 have been chosen.
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A.3 Detailed Ozone Combustion Mechanism

The following mechanism from [61] is a small, but realistic reaction mecha-
nism for the combustion of ozone. The Arrhenius parameters are given in
Table A.1.

Reaction A [cm,mol, s] b Ea [ kJ
mol

]

O + O + M → O2 + M 2.9 × 1017 −1.0 0.0
O2 + M → O + O + M 6.81 × 1018 −1.0 496.0
O3 + M → O + O2 + M 9.5 × 1014 0.0 95.0
O + O2 + M → O3 + M 3.32 × 1013 0.0 −4.9
O + O3 → O2 + O2 5.2 × 1012 0.0 17.4
O2 + O2 → O + O3 4.27 × 1012 0.0 413.9

Table A.1: Ozone Combustion Mechanism from [61]. Rate coefficient
k = AT b exp(−Ea/RT ). Collision efficiencies in reactions including M:
fO = 1.14, fO2 = 0.40, fO3 = 0.92.

Together with the element conservation law

cO + 2cO2 + 3cO3 = C, (A.7)

this mechanism yields a system with two degrees of freedom. Without loss
of generality, C = 1 can be chosen.

A.4 Detailed Hydrogen Combustion Mecha-

nism

The reaction mechanism presented here consists of 8 species and 60 reactions
(counting both forward and reverse reactions as well as counting third-body
reactions as three reactions – once for each third-body). In Table A.2, the
Arrhenius parameters A,Ea, b are shown for the forward reactions only. The
parameters for the reverse reactions can be computed as follows: For two
different temperatures T1, T2, the equilibrium constant K(T ) is computed by
(3.39). Using (3.20), the equations

k
(r)
i =

k
(f)
i

K(Ti)
, i = 1, 2

are obtained. As b is identic for the forward and reverse reaction, these
equations state a two-dimensional equation system with two unknowns.
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Reaction A [cm,mol, s] b Ea [ kJ
mol

]

H + O2 ⇋ O + OH 2.060 × 1014 −0.10 62.85
O + H2 ⇋ H + OH 3.820 × 1012 0.00 33.26
O + H2 ⇋ H + OH 1.020 × 1015 0.00 80.23
OH + H2 ⇋ H + H2O 2.170 × 108 1.52 14.47
2 OH ⇋ O + H2O 3.350 × 104 2.42 −8.06
2 H + M1 ⇋ H2 + M1 1.020 × 1017 −0.60 0.00
2 O + M1 ⇋ O2 + M1 5.400 × 1013 0.00 −7.40
H + OH + M2 ⇋ H2O + M2 5.560 × 1022 −2.00 0.00
H + O2 ⇋ HO2 2.650 × 1017 −2.20 0.56
H + O2 ⇋ HO2 2.730 × 1017 −2.20 0.07
H + HO2 ⇋ 2 OH 4.460 × 1014 0.00 5.82
H + HO2 ⇋ O2 + H2 1.050 × 1014 0.00 8.56
H + HO2 ⇋ O + H2O 1.440 × 1012 0.00 0.00
O + HO2 ⇋ OH + O2 1.630 × 1013 0.00 −1.86
OH + HO2 ⇋ O2 + H2O 9.280 × 1015 0.00 73.25
2 HO2 ⇋ H2O2 + O2 4.220 × 1014 0.00 50.14
2 HO2 ⇋ H2O2 + O2 1.320 × 1011 0.00 −6.82
2 OH ⇋ H2O2 6.400 × 1017 −1.80 4.13
H + H2O2 ⇋ HO2 + H2 1.690 × 1012 0.00 15.71
H + H2O2 ⇋ OH + H2O 1.020 × 1013 0.00 14.97
O + H2O2 ⇋ OH + HO2 4.220 × 1011 0.00 16.63
O + H2O2 ⇋ O2 + H2O 4.220 × 1011 0.00 16.63
OH + H2O2 ⇋ HO2 + H2O 1.640 × 1018 0.00 123.04
OH + H2O2 ⇋ HO2 + H2O 1.920 × 1012 0.00 1.78

Table A.2: Reaction mechanism for the combustion of hydrogen. Rate
coefficient k = AT b exp(−Ea/RT ). Collision efficiencies in reactions
including M1: fH2 = 1.0, fH2O = 6.5, fO2 = 0.4. Collision efficiencies in
reactions including M2: fH2 = 1.0, fH2O = 2.55, fO2 = 0.4.

The conservation equations for this reaction mechanism are given by

cH + cOH + cHO2 + 2cH2O2 + 2cH2 + 2cH2O = C1 (A.8)

cO + cOH + 2cHO2 + 2cH2O2 + 2cO2 + cH2O = C2. (A.9)

Using only the 8 species H,O,OH,HO2,H2O2,O2,H2 and H2O, the mecha-
nism in Table A.2 describes the combustion of hydrogen in pure oxygen. By
adding the inert species N2, the mechanism can also be used for the com-
bustion of hydrogen in “clean” air (79% of N2 and 21% of O2). Nitrogen has
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to be included in the computations of the third-bodies M1 and M2 with a
collision efficiency of fN2 = 0.4.
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Efficient Multiple Shooting Based Reduced SQP Strategy for Large-
Scale Dynamic Process Optimization. Part II: Software Aspects and
Applications”. Comput. Chem. Eng., vol. 27, pp. 167–174, 2003.

[58] U. Maas. “Coupling of Chemical Reaction with Flow and Molecular
Transport”. Appl. Math., vol. 40, pp. 249–266, 1995.

[59] U. Maas. “Efficient Calculation of Intrinsic Low-Dimensional Man-
ifolds for the Simplification of Chemical Kinetics”. Computing and
Visualization in Science, vol. 1, pp. 69–81, 1998.

[60] U. Maas and S. B. Pope. “Simplifying Chemical Kinetics: Intrinsic
Low-Dimensional Manifolds in Composition Space”. Combust. Flame,
vol. 88, pp. 239–264, 1992.

[61] U. Maas and J. Warnatz. “Simulation of Thermal Ignition Processes
in Two-Dimensional Geometries”. Z. Phys. Chem. NF, vol. 161, pp.
61–81, 1989.

[62] L. Michaelis and M. L. Menten. “Die Kinetik der Invertinwirkung”.
Biochem. Z., vol. 49, pp. 333–369, 1913.

[63] A. H. Nguyen and S. J. Fraser. “Geometrical picture of reaction in
enzyme kinetics”. J. Chem. Phys., vol. 91, pp. 186–193, 1989.

[64] H. Niemann. “Niedrigdimensionale Modellierung Dynamischer Sys-
teme am Beispiel reduzierter Reaktionsmechanismen”. Ph.D. thesis,
University of Heidelberg, 2002.

[65] J. Nieto-Villar, R. Quintana, and J. Rieumont. “Entropy Production
Rate as a Lyapunov Function in Chemical Systems: Proof”. Physica
Scripta, vol. 68, pp. 163–165, 2003.

[66] J. Nocedal and S. M. Wright. Numerical Optimization. Springer Verlag,
New York, 1999.



BIBLIOGRAPHY 119

[67] J. A. van Oijen and L. P. H. de Goey. “Modelling of Premixed Laminar
Flames using Flamelet-Generated Manifolds”. Combust. Sci. Technol.,
vol. 161, pp. 113–137, 2000.

[68] M. S. Okino and M. L. Mavrovouniotis. “Simplification of Mathemat-
ical Models of Chemical Reaction Systems”. Chem. Rev., vol. 98, pp.
391–408, 1998.

[69] V. Petrov, E. Nikolova, and O. Wolkenhauer. “Reduction of nonlinear
dynamic systems with an application to signal transduction pathways”.
IET Syst. Biol., vol. 1(1), pp. 2–9, 2007.

[70] K. J. Plitt. “Ein superlinear konvergentes Mehrzielverfahren zur direk-
ten Berechnung beschränkter optimaler Steuerungen”. Master’s thesis,
University of Bonn, 1981.

[71] S. B. Pope. “Computationally efficient implementation of combustion
chemistry using in situ adaptive tabulation ”. Combustion Theory Mod-
elling, vol. 1, pp. 41–63, Mar. 1997.

[72] M. Powell. “A Fast Algorithm For Nonlinearly Constrained Optimiza-
tion Calculations”. In A. Dold and B. Eckmann, eds., “Numerical Anal-
ysis”, Lecture Notes in Mathematics, vol. 630, pp. 144–157. Springer-
Verlag Berlin, 1978.

[73] V. Reinhardt, M. Winckler, and D. Lebiedz. “Approximation of slow
attracting manifolds in chemical kinetics by trajectory-based optimiza-
tion approaches”. J. Phys. Chem. A, vol. 112(8), pp. 1712–1718, 2008.

[74] V. Reinhardt, M. Winckler, J. Warnatz, and D. Lebiedz. “Kinetic
Mechanism Reduction by Trajectory-Based Optimization Methods”.
In “Proceedings of the Third European Combustion Meeting”, ECM,
2007.

[75] Z. Ren and S. Pope. “Species reconstruction using pre-image curves”.
In “Proceedings of the Combustion Institute”, vol. 30, pp. 1293–1300,
2005.

[76] Z. Ren, S. B. Pope, A. Vladimirsky, and J. M. Guckenheimer. “The
Invariant Constrained Equilibrium Edge Preimage Curve Method for
the Dimension Reduction of Chemical Kinetics”. J. Chem. Phys., vol.
124, p. 114 111, 2006.



120 BIBLIOGRAPHY

[77] M. R. Roussel and S. J. Fraser. “Accurate Steady-State Approxima-
tions: Implications for Kinetics Experiments and Mechanism”. J. Phys.
Chem., vol. 95, pp. 8762–8770, 1991.

[78] M. R. Roussel and S. J. Fraser. “Invariant Manifold Methods for
Metabolic Model Reduction”. Chaos, vol. 11, pp. 196–206, 2001.

[79] M. R. Roussel and T. Tang. “The functional equation truncation
method for approximating slow invariant manifolds: A rapid method
for computing intrinsic low-dimensional manifolds”. J. Chem. Phys.,
vol. 125, p. 214 103, 2006.

[80] B. Schramm. “Automatische Reduktion chemischer Reaktionsme-
chanismen am Beispiel der Oxidation von höheren Kohlenwasserstoffen
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versity of Heidelberg, 2003.

[81] S. Shahshahani. “A new mathematical framework for the study of
linkage and selection”. Mem. Am. Math. Soc, vol. 17(211), 1979.

[82] O. Shaik, J. Kammerer, J. Gorecki, and D. Lebiedz. “Derivation of
a quantitative minimal model from a detailed elementary-step mecha-
nism supported by mathematical coupling analysis”. J. Chem. Phys.,
vol. 123, p. 234 103, 2005.

[83] S. Singh, J. M.Powers, and S. Paolucci. “On slow manifolds of chem-
ically reactive systems”. J. Chem. Phys., vol. 117(4), pp. 1482–1496,
2002.

[84] R. H. Snow. “A Chemical Kinetics Computer Program for Homo-
geneous and Free-Radical Systems of Reactions”. J. Phys. Chem.,
vol. 70(9), pp. 2780–2786, 1966.

[85] W. Squire and G. Trapp. “Using Complex Variables to Estimate
Derivatives of Real Functions”. SIAM Rev., vol. 40(1), pp. 110–112,
1998.

[86] J. Stoer and R. Bulirsch. Introduction to numerical analysis. Springer,
New York, 1996.

[87] J. Troe. “Theory of Thermal Unimolecular Reactions in the Fall-off
Range. I. Strong Collision Rate Constants.” Ber. Bunsenges. Phys.
Chem., vol. 87, pp. 161–169, 1983.



BIBLIOGRAPHY 121
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