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Zusammenfassung:
Das Aktin-Zytoskelett, ein aus dem Biopolymer Aktin aufgebautes Filamentsystem,
bestimmt maßgeblich die mechanischen Eigenschaften von biologischen Zellen. Ander-
erseits wird das Aktin-Zytoskelett selbst durch mehrere biochemische Signaltransduk-
tionspfade reguliert. Um das theoretische Verständnis dieser Kopplung von Mechanik
und Biochemie voranzutreiben, wird hier ein Modell für Stressfasern entwickelt, die
die typische Morphologie des Aktin-Zytoskeletts bei starker Zelladhäsion darstellen.
Die Mechanik einer Stressfaser wird durch eine Kette von viskoelastischen Elementen
beschrieben, die zudem lokal kontrahieren können. Das zunächst diskrete Modell wird
durch einen Kontinuumslimes in eine partielle Differentialgleichung überführt. Die
biochemische Regulation wird durch ein System von Reaktions-Diffusions-Gleichungen
beschrieben die über die Kontraktionsaktivität an die Mechanik koppeln.

Zunächst wird die mechanische Stressfaser-Gleichung analytisch gelöst und ins-
besondere der komplexe Modulus exakt berechnet. Das Modell wird dann zur Auswer-
tung experimenteller Daten verwendet, die von Kooperationspartnern beim Laserschnei-
den von Stressfasern gewonnen wurden. Dabei zeigt sich, dass Stressfasern in ihrer Um-
gebung verankert sind und dass die Lokalisierung bestimmter mechanosensitiver Pro-
teine genau der theoretisch vorhergesagten Kraftverteilung folgt. Schließlich wird das
Gesamtmodell angewandt, um Zellverhalten auf elastischen Substraten zu modellieren.
Mittels einer Bifurkationsanalyse werden experimentell überprüfbare Vorhersagen ab-
geleitet, insbesondere sagt das Model Bistabilität und Hysterese in der Zelladhäsion
voraus.

Abstract:
The actin cytoskeleton, which is a filament system made of actin biopolymers, mainly
determines the mechanical properties of biological cells. In turn, the actin cytoskeleton
is itself regulated by various biochemical signaling pathways. To advance the theoretical
understanding of this coupling between mechanics and biochemistry, we developed a
model for stress fibers which constitute the typical morphology of the actin cytoskeleton
in mature cell adhesion. The mechanics of a stress fiber is described by a chain of
viscoelastic elements that in addition may locally contract. The initial discrete model
is transformed to a partial differential equation by performing a continuum limit. The
biochemical regulation is modeled by a system of reaction diffusion equations that
couple to the mechanics via the contractile activity along the fiber.

In the first part of this thesis, the mechanical stress fiber equation is solved ana-
lytically and in particular the complex modulus is exactly calculated. The model is
then used for the analysis of experimental data, measured by collaborators in experi-
ments on stress fiber laser nanosurgery. It turns out that stress fibers are considerably
crosslinked to their environment and that the localization of certain mechanosensitive
proteins correlates with the theoretically predicted stress distribution within the actin
cytoskeleton. Finally, the complete model is used to describe cellular behavior on elas-
tic substrates. By performing a bifurcation analysis theoretical predictions are derived
that can be tested in future experiments, in particular, the model predicts bistability
and hysteresis in cell adhesion.





Contents

List of Figures iii

List of Tables v

List of Symbols vi

1 Introduction 1

1.1 A sense of touch on the single cell level . . . . . . . . . . . . . . . . . . 3
1.2 Cell adhesion: a mechano-chemically coupled system . . . . . . . . . . 5
1.3 Experimental techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Previous theoretical work . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Outline and main results . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Viscoelastic fiber model: definition and solution 15

2.1 A model for stress fibers . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 The discrete stress fiber model . . . . . . . . . . . . . . . . . . . 15
2.1.2 Relations between 1D and 3D viscoelastic constants . . . . . . . 18
2.1.3 The continuum stress fiber model . . . . . . . . . . . . . . . . . 20

2.2 Solution of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Solution of the discrete model . . . . . . . . . . . . . . . . . . . 24
2.2.2 Solution in the continuum limit . . . . . . . . . . . . . . . . . . 30
2.2.3 Solution by inverse Laplace transform . . . . . . . . . . . . . . . 32

2.3 Retardation time spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Stress fiber tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Damped oscillations without inertia . . . . . . . . . . . . . . . . . . . . 40
2.6 The complex modulus of the fiber model . . . . . . . . . . . . . . . . . 42

2.6.1 Recursion for the complex modulus . . . . . . . . . . . . . . . . 42
2.6.2 Closed solution from continuum limit . . . . . . . . . . . . . . . 46
2.6.3 Analytical solution by Laplace transform . . . . . . . . . . . . . 48

2.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Quantification of stress fiber contraction dynamics 53

3.1 Data analysis yields model parameters . . . . . . . . . . . . . . . . . . 55
3.1.1 Correlations between model parameters . . . . . . . . . . . . . . 61

3.2 Total contraction length . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Zyxin dynamics upon laser surgery . . . . . . . . . . . . . . . . . . . . 65



ii CONTENTS

3.3.1 Zyxin dynamics at focal adhesions . . . . . . . . . . . . . . . . . 67
3.3.2 Zyxin dissociation from stress fibers . . . . . . . . . . . . . . . . 69
3.3.3 Zyxin recruitment at tensed crosslinks . . . . . . . . . . . . . . 71

3.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Coupling of mechanics and biochemistry 77

4.1 Biochemical signaling at focal adhesions . . . . . . . . . . . . . . . . . 78
4.2 Description of inhibition experiments . . . . . . . . . . . . . . . . . . . 81
4.3 Reaction diffusion model for the Rho-pathway . . . . . . . . . . . . . . 83
4.4 The altered stress fiber model . . . . . . . . . . . . . . . . . . . . . . . 90
4.5 The coupled feedback system . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Cellular response to stiffness 103

5.1 Bifurcation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.1 State diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Probing hysteresis in cell adhesion . . . . . . . . . . . . . . . . . . . . . 110
5.2.1 Cyclic varying stiffness . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Spreading and linear softening . . . . . . . . . . . . . . . . . . . 114
5.2.3 Using biochemical stimulation . . . . . . . . . . . . . . . . . . . 116
5.2.4 Experimental realization . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Appendices 123

6.1 Introduction to linear viscoelasticity . . . . . . . . . . . . . . . . . . . . 123
6.1.1 Relaxation modulus and creep compliance . . . . . . . . . . . . 123
6.1.2 Stress-relaxation and creep integral . . . . . . . . . . . . . . . . 125
6.1.3 Sinusoidal deformation . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Proofs for eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . 130
6.3 Uniform convergence of first derivative . . . . . . . . . . . . . . . . . . 134
6.4 Solution by inverse Laplace transform . . . . . . . . . . . . . . . . . . . 137

Bibliography 143

Acknowledgements 156



List of Figures

1.1 Durotaxis and tissue growth guidance . . . . . . . . . . . . . . . . . . . 4
1.2 Focal adhesions, stress fibers and myosin minifilaments . . . . . . . . . 6
1.3 Sketch of the mechano-chemical coupling in cell adhesion . . . . . . . . 7
1.4 Retraction of stress fibers after laser nanosurgery . . . . . . . . . . . . 9

2.1 Discrete stress fiber model . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Stress fiber model in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Model sketch with symmetric boundary conditions . . . . . . . . . . . . 25
2.4 Comparison of analytical and numerical model solution . . . . . . . . . 32
2.5 Retardation time spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Fiber tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 Damped oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.8 Iterated complex modulus . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.9 Analytical complex modulus . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Laser nanosurgery of stress fibers . . . . . . . . . . . . . . . . . . . . . 54
3.2 Fit of stress fiber contraction dynamics in an actin transfected cell . . . 56
3.3 Fit of stress fiber contraction dynamics in an α-actin transfected cell . 57
3.4 Model parameter distributions . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Correlations between model parameters . . . . . . . . . . . . . . . . . . 62
3.6 Total contraction length of stress fibers . . . . . . . . . . . . . . . . . . 64
3.7 Zyxin dynamics upon laser nanosurgery . . . . . . . . . . . . . . . . . . 66
3.8 Correlation between mechanical stress and zyxin intensity . . . . . . . 68
3.9 Kymograph of fiber and crosslink tension compared to zyxin intensity . 70

4.1 The integrin adhesome interaction map . . . . . . . . . . . . . . . . . . 79
4.2 Regulation of GTPases at focal adhesions . . . . . . . . . . . . . . . . . 80
4.3 Drug inhibition experiments . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 The Rho-GTPase pathway . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Spatial variation of active myosin fraction over time . . . . . . . . . . . 90
4.6 Sketch of altered stress fiber model . . . . . . . . . . . . . . . . . . . . 91
4.7 Time course of boundary force and displacement . . . . . . . . . . . . . 92
4.8 Boundary force and active myosin fraction upon drug stimulation . . . 96
4.9 Stress fiber distortion upon stimulation with calyculin . . . . . . . . . . 97
4.10 Time course of mean pattern bandwidth at center and periphery . . . . 98
4.11 Double sniffer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



iv LIST OF FIGURES

5.1 Sketch of stress fiber model with soft boundaries . . . . . . . . . . . . . 104
5.2 Bifurcation diagrams for boundary force and substrate deformation . . 105
5.3 Three dimensional bifurcation diagram . . . . . . . . . . . . . . . . . . 108
5.4 Bifurcation diagram at infinite stiffness and stability diagram . . . . . . 109
5.5 Time course of boundary force for cyclic varying stiffness . . . . . . . . 111
5.6 Single force trajectory and area of hysteresis cycle . . . . . . . . . . . . 112
5.7 Time course of substrate deformation for cyclic varying stiffness . . . . 112
5.8 Comparison of input and response functions . . . . . . . . . . . . . . . 113
5.9 Boundary force for spreading and linear softening . . . . . . . . . . . . 114
5.10 Substrate deformation for spreading and linear softening . . . . . . . . 115
5.11 Buildup of boundary force and substrate deformation . . . . . . . . . . 117
5.12 Probing the hysteresis cycle by using a contractile drug . . . . . . . . . 118
5.13 Experimental realizations . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1 Solution by inverse Laplace transform . . . . . . . . . . . . . . . . . . . 142



List of Tables

3.1 Fit values for stress fiber model parameters . . . . . . . . . . . . . . . . 60

4.1 Description of biochemical reaction components . . . . . . . . . . . . . 85
4.2 Complete system of mechano-chemical model equations . . . . . . . . . 86
4.3 Summary of chemical and mechanical model parameters . . . . . . . . 89

6.1 Basic viscoelastic models and their moduli . . . . . . . . . . . . . . . . 126



List of Symbols

a length of sarcomeric unit page 16

aN length of elementary unit in N -th iteration step page 21

Aface cross section area of stress fiber page 19

Atop surface of sheared material page 19

d width of sheared material page 19

D diffusion constant page 89

E Young’s modulus page 18

F force page 19

Fb force exerted to the boundary page 95

Fm molecular motor force page 37

Fmn
molecular motor force of the n-th element page 16

Fs stall force of molecular motor page 17

△F force loss at focal adhesions page 67

G shear modulus page 19

G∗ complex modulus page 128

G′ storage modulus page 129

G′′ loss modulus page 129

G∗ non-dimensional complex modulus page 45

G ′ non-dimensional storage modulus page 45

G ′′ non-dimensional loss modulus page 45

h hight of sheared material page 19

I factor of inhibition page 89

J creep compliance page 123

J∗ complex creep compliance page 128

J ∗ non-dimensional complex creep compliance page 45



LIST OF SYMBOLS vii

kb boundary stiffness page 104

kint internal stress fiber stiffness page 16

kext external stiffness page 16

kN,int internal stress fiber stiffness in N -th iteration step page 21

K Michaelis constant page 89

L stress fiber length page 16

△L total contraction length page 63

Melas matrix containing elastic constants page 25

Mvisc matrix containing viscous constants page 25

r rate constant page 89

Sm amplitude of the m-th retardation time page 34

T period time page 110

u displacement page 16

un displacement of the n-th node page 16

uss displacement in the steady state page 23

uij strain tensor page 18

U matrix of eigenvectors page 27

v contraction velocity page 17

v0 zero force velocity page 17

vn contraction velocity of n-th element page 17

~vl l-th eigenvector page 26

V maximum velocity page 89

w sarcomere length page 96

~y relative coordinates page 26

γint internal stress fiber viscosity page 16

γ̃int effective internal viscosity page 17

γext external viscosity page 16

Γ ratio of external over internal viscosity page 23

δ free contraction length page 22

κ ratio of external over internal stiffness page 22

λl l-th eigenvalue page 26

ν Poisson’s ratio page 18



viii LIST OF SYMBOLS

ρ correlation coefficient page 61

σ rope tension or stress within fiber page 37

σ0 stress within fiber before cut page 38

σij stress tensor page 19

τ time scale associated with effective internal viscosity page 22

τǫ time scale associated with external viscosity page 22

τm m-th retardation time page 30

τm,N m-th retardation time in the N -th iteration step page 29

φN scaling factor in N -th iteration step page 21

ω angular frequency page 43

˜ denotes non-dimensional quantities scaled with a or τ page 23

¯ denotes Laplace-transformed quantities page 33



Chapter 1

Introduction

Any living organism is exposed to a diverse set of physical factors like temperature,
light or mechanical cues as well as to many chemical factors like nutrients or odors.
The efficient perception of this information and its subsequent processing and conver-
sion into an accurate response are critical for the survival of each individual creature.
The traditional five senses in higher organisms to perceive these environmental cues are
taste, smell, vision, touch and hearing. Taste and smell are examples for chemorecep-
tion, vision is an example for photoreception and touch and hearing are examples for
mechanoreception. The sensation is realized by specialized organs in higher organisms,
like the nose, the tongue, the eye or the ear.

As physical factors, especially mechanical ones, play such a significant role for higher
organisms, evolution has brought up a diverse set of other mechanisms for mechanosen-
sation. For example, the gravitational force guides plant shoots towards the sky and
their roots deeper into the soil. Bats have developed a sonar organ based on ultra sonic
waves to actively sense their environment. Most types of fish are equipped with the so
called lateral line organ which spans along their length. It allows them to sense subtle
changes in the pressure field to coordinate swarming or chase after prey. In general
these mechanical cues are transduced into a chemical or electrical signal. This process
is termed mechanotransduction and is realized molecularly in many different ways [1].
Among the well characterized mechanisms is for example the tension-induced opening
of ion channels which transduce external mechanical forces into influx of ions [2, 3].

From our every day notion we know that the behavior of higher multicellular organ-
isms is influenced by environmental cues. However, it is equally important to under-
stand how single cells respond to extracellular stimuli. Thereby, the signal processing
and the response of a single cell has to be fundamentally different and much simpler
than in higher organisms but still reliable and robust. For example, cellular motion
can be directed by external stimuli. Unicellular green algae swim towards or away from
light (phototaxis) [4]. Tissue cells can sense electric fields and crawl towards the catho-
dal end of the field (galvanotaxis) [5]. Another very well studied example is chemotaxis.
Motile bacteria like Escherichia coli have developed sophisticated strategies to follow
shallow gradients of nutrients or to escape from noxious chemicals. This chemically
guided movement can be found also in multicellular organisms. The most prominent
examples are the chase of neutrophils after pathogens, the search of sperm cells after
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the egg and, subsequent to fertilization, directed cell migration during development.
Beside chemical stimuli, also many mechanical cues, like the rigidity of the cellular

surrounding or mechanical stress, determine the behavior of certain tissue cells [6–9].
In principle, to sense mechanical cues in their environment, cells need to establish
a physical connection to their surrounding as well as a force producing mechanism
that allows active probing of the mechanical environment. The buildup of cellular
connections, that is also necessary to form tissue, is in general called cell adhesion and
is usually mediated by specialized transmembrane receptor proteins. These receptor
proteins determine the architecture and the chemical compositions of the cellular“glue”
in the contact area and mediate specific binding to other cells or macromolecules in their
environment. Cellular contractile forces are established by molecular motor proteins
that reside in muscle like structures that can contract upon consumption of chemical
energy. The best studied example of such contractile structures are so called actin
stress fibers. The cellular forces are transmitted through the cellular contacts to the
extracellular environment. Interestingly, the chemical composition of these contacts,
their growth and the biochemical signals that are initiated there, depend on the exerted
mechanical stress. The resulting signals have an influence on many cellular processes
but in particular also effect the contractile cellular forces. In this way a tight mechano-
chemical feedback cycle is formed that is essential to perform the mechanotransduction
for example of the rigidity of the cellular environment.

In cell adhesion, such mechano-chemical regulatory feedback mechanisms affect es-
sential processes like tissue development and repair but also disease-related processes
like growth and migration of cancer cells [10–12]. However, theoretical models describ-
ing the mechano-chemical feedback are still rare. This thesis aims at filling this gap
and we want to show how models for the coupling of biochemistry and mechanics can
be devised in a meaningful way and thereby provide further insight into such complex
systems.

In the following, we will briefly discuss some recent experiments on single cells
demonstrating that, in adhesion-related processes, cellular behavior is indeed not only
controlled by biochemical cues, but also involves many physical determinants especially
the geometry and the rigidity of the cellular environment as well as the mechanical
stress in the tissue [1, 13–15]. The sensation of these mechanical cues depends on the
capability of cells to actively probe their environment with cellular contractile forces
and to convert this mechanical process into a biochemical signal. This is the onset of a
complex mechano-chemical feedback mechanism that will be further elucidated below.
Finally, we will specify some common experimental and modeling techniques used in
this field and conclude the introduction with an outline of this thesis.
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1.1 A sense of touch on the single cell level

Traditionally, the investigation of determining factors of single cell decision making or
function in tissue, like cell differentiation or proliferation, has been strongly focused
on chemical aspects, including detailed models for signal transduction [16, 17]. During
recent years, however, it has become increasingly clear that there also exist a “sense
of touch” on the single cell level which enables the cells to recognize the mechanical
properties of their environment. By integrating this mechanical information they do
adapt better to their environment. For example it has been shown that fibroblasts,
these are cells derived from connective tissue, can sense a stiffness gradient in their
environment and start to move towards the stiffer region, called durotaxis (Latin durus,
hard). The experimental results by Lo et al. [6] are illustrated in Fig. 1.1. The stiffness
gradient was produced by synthesizing two polyacrylamide gels of different stiffness.
When cells reached the interfacial region coming from the softer side, they migrated
over to the stiff substrate. In contrast, when cells approached the interface from the
stiff side, they turned around to stay on the stiff substrate. It has also been shown that
these cells better adhere on stiff substrates which is expressed by a decrease in motility,
an increase in spread area and higher contractile forces exerted to stiffer environments
[6–9].

The discrimination between soft or rigid substrates seems to be reduced on the
single cell level as soon as cells form cell to cell contacts [6, 9]. Interestingly, Saez
et al.[18] showed that monolayer tissue-patches formed by a few Madin-Darby canine
kidney (MDCK) epithelial cells still orient along the axis of highest rigidity, see Fig. 1.1.
In these experiments, substrates of anisotropic stiffness have been realized by micro
arrays of elastic polymer pillars with elliptic cross section, see also Tan et al. [19]. The
impact of stiffness on tissue organization was also shown by measuring the distribution
of traction forces exerted on the micro pillars. Exerted traction forces were deduced
from pillar deflection and were found to be maximal at the poles of the patch indicating
that contraction mainly occurs along the axis of highest rigidity. Thus, the experiments
by Saez et al. suggest that the rigidity of the cellular environment is indeed important
also for tissue development.

Most strikingly, even fundamental cellular processes, like stem cell differentiation,
are co-regulated by the stiffness of the environment. This has been shown by Engler
et al. [20] plating naive mesenchymal stem cells (MSCs) derived from bone marrow on
polyacrylamide substrates of different stiffness. On stiff substrates (25 − 40 kPa), that
mimic the mechanical properties of crosslinked collagen of not yet calcified bone tissue,
these cells differentiate to osteoblasts (bone cells). In contrast, on very soft substrates
(0.1 − 1 kPa), that mimic the mechanical environment of brain tissue, cells transform
to neurons (brain cells). Finally, within an intermediate stiffness range (8 − 17 kPa),
that corresponds to the stiffness of striated muscle, MSCs adopt the morphology of
myoblasts (muscle cells). These experiments demonstrate, that the tissue stiffness alone
is sufficient to guide MSCs differentiation into a cell type that is appropriate for the
given mechanical environment. These findings have obviously far reaching consequences
for artificial tissue engineering and stem cell therapy. Moreover, it has been shown by
shutting down motor activity by appropriate drugs that the elasticity dependent lineage
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Figure 1.1: (A-B) Discovery of a “sense of touch” on the single cell level. Increase in
substrate stiffness from left to right is visualized as a decease in density of embedded
fluorescent beads (bright spots in (A-D)). (A,B) Cell migrates from the soft over to the
stiff substrate and shows a subsequent increase in spread area. (C,D) When cells approach
the interfacial region coming from the stiff side, they turn around in order to stay on
the rigid substrate. The observed migration, directed by substrate rigidity, was termed
durotaxis. Figures (A-D) were taken from [6]. (E-F) Saez et al. [18] employed micro
arrays of elastic polymer pillars with elliptic cross section to investigate the impact of
anisotropic elasticity on tissue organization. Patches of MDCK epithelial cells elongate
preferentially along the axis of highest rigidity. (E) Shows the envelope of the patch
(scale bar: 10 µm). (F) Color map of the traction force measured by pillar displacement.
Highest values are reached at the two poles of the patch indicating an anisotropic stress
distribution within the tissue. Figures (E,F) were taken from [18].

specification of MSCs necessitates cellular contractility. This is evidence for the fact,
that cells need to have a force producing mechanism in order to actively sense their
mechanical environment.

Beside the stiffness of the environment, also the application of mechanical stress
to the cellular environment has an impact on cell behavior. In fact it can be argued
that both high stiffness and increased prestress have the same effect on the energy
investment required for cells to pull on their substrates [21]. By pulling or pushing the
substrate in the proximity of a cell using a microneedle, Lo et al. [6] could provoke
cell reorientation and migration into the direction where the strain in the substrate
has been increased. Similarly, cells align parallel to the axis of applied strain when the
substrate is statically or quasi statically stretched [22, 23]. In contrast, when cyclic
strain of high frequency is applied, cells rather tend to orient away from the direction of
strain [24, 25]. The cell reorientation can be partially explained either by assuming that
cells tend to minimize the disruption of their intracellular scaffolds [26] or by assuming
that cells reorient to actively maintain an optimal stress in their environment [27].
Since many tissue cells are subject to cyclic strain in their physiological environment,
like in the heart, the vessel walls or in the gut, further understanding of the cellular
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response to externally applied stress is essential in order to gain insight into the cellular
self-assembly of these organs.

There is also increasing evidence that mechanotransduction plays an important role
in many severe diseases, including asthma, osteoporosis, atherosclerosis and diabetes
[28]. Increased rigidity might also constitute a barrier for regeneration in scar tissue,
as it occurs in heart or brain strokes. Furthermore, cancer tissue is in most cases stiffer
than normal tissue. This might correspond to an increase in cellular contractility and
subsequent malfunction of mechanical induced signaling pathways [29]. At the same
time, the increased rigidity of the environment was also shown to impact on cancer cell
migration [12].

1.2 Cell adhesion: a mechano-chemically coupled

system

In order to sense mechanical cues of their environment, cells need to establish a physical
connection to the surrounding mechanical scaffold. In tissue, cells can either hook up
among each other or reach out for the extracellular matrix (ECM). The latter mainly
consists of collagen but in addition comprises a diverse set of other macromolecules that
are all produced and secreted locally by specialized cells from the fibroblast family. This
includes osteoblasts that form bone tissue by also calcifying the matrix [30]. Direct cell
to cell connections are called adherens junctions and are based on the transmembrane
receptor cadherin that mediates homophilic binding. The cell to ECM connections in
culture are called focal adhesions and are based on the transmembrane receptor integrin
that recognizes certain binding motives in the ECM, in particular the tripeptide Arg-
Gly-Asp sequence or briefly RGD-sequence. Although these two connection types differ
in molecular composition, they both form large protein plaques on the cytoplasmic side
that connect them to actin filaments.

The actin filaments are part of the cytoskeleton which also comprises other biopoly-
mers, namely, microtubules and intermediate filaments. These three types of biopoly-
mers constitute the intracellular mechanical scaffold and play together in order to main-
tain the mechanical integrity of the cell. They are also involved in various mechanical
processes, like intracellular transport or the positioning and separation of chromosomes
during mitosis. Regarding mechanosensing, the actin cytoskeleton is of particular im-
portance. Its network morphology is intimately regulated by various proteins which
control nucleation, branching, capping, polymerization as well as crosslinking of the
fibers. In addition, actin filaments are polar structures with the two ends exhibiting
different polymerization kinetics. The so called plus end is growing quickly while the
minus end is rather growing slowly. If the main crosslinker proteins are α−actinin and
the molecular motor protein myosin II, then the actin filaments bundle to so called
actin stress fibers [33] that usually terminate in focal adhesions, see Fig. 1.2(A) or
Fig. 1.3 for a schematic representation. It has been found that albeit being less or-
dered than striated muscle on the level of electron microscopy, stress fibers do exhibit
a similar periodic organization. This can be shown experimentally by fluorescent la-
belling of α-actinin and myosin. These two proteins arrange sequentially along the
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Figure 1.2: (A) Fluorescent micrograph of an adherent fibroblast. The green bundles
are stress fibers that terminate at focal adhesions, shown in red. Figure was adopted
from [30]. (B) Stress fibers in fibroblasts also have a sarcomeric like substructure similar
to striated muscle. Fluorescently labelled proteins are α-actinin (in green) and myosin
light chain (in red). These two components arrange sequentially along stress fibers and
thereby form these regular striation patterns. Figure was taken from Peterson et al. [31].
(C) Electron micrograph of metal-shadowed myosins. Myosin is a dimer (upper right
corner) and bundles to so called myosin minifilaments. Figure has been reproduced from
data published by Trybus et al. [32]. (D) Myosin II is a dimer of two heavy chains, that
form the tail and the two head domains. In addition, four light chains of two different
kinds are present at the head domains while each head carries one chain of each kind.
Myosin light chain regulates myosin binding to actin. Figure was adopted from [30].

fiber and thereby form a quite regular striation pattern, visualized in Fig. 1.2(B)[31].
The green regions correspond to the actin crosslinker α-actinin while the red regions
correspond to myosin II molecular motors. Non-muscle myosin II is a dimer with two
head domains and known to assemble into bipolar minifilaments consisting of 10-30
myosins. These minifilaments can be assembled in vitro and then visualized by elec-
tron microscopy, illustrated in Fig. 1.2(C)[32] and schematically shown in the cartoon
of a stress fiber in Fig. 1.3. Each head domain of the myosin dimer also carries two
different myosin light chains that regulate the binding of the head domain to actin
filaments, see Fig. 1.2(D)[30]. If myosin light chain is phosphorylated, then the head
domain is activated and can bind to the actin filaments. Under consumption of chem-
ical energy, myosin goes through a force producing cycle and walks towards the plus
end of the actin filament, hydrolyzing one ATP for each step. Since the actin filaments
are arranged in antiparallel order, the bipolar myosin minifilaments thereby cause a
contraction of the sarcomere like units, see Fig. 1.3.

This actomyosin contractility is the basic mechanism of force generation that en-
ables cells to actively sense the mechanical properties of their environment and to
convert this mechanical information into a biochemical signal. The mechanotransduc-
tion takes place preferentially at focal adhesions which are located at the mechanical
interface between the extracellular and intracellular load-bearing scaffolds. Mechan-
otransduction might also occur all along stress fibers which is a quite new perspective
and strongly supported through results presented within this thesis [34].

The mechanosensitivity of integrin mediated cell-matrix connections has been demon-
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Figure 1.3: Cells adhere to the extracellular matrix by integrin-mediated contacts called
focal adhesions. These contacts are the anchor points of stress fibers, which are actin
filament bundles held together by the crosslinker molecule α-actinin and myosin II molec-
ular motors. The myosins are assembled in myosin mini-filaments. Due to myosin motor
activity stress fibers are under tension and exert forces to focal adhesions. This mechani-
cal stimulus initiates biochemical signals (Rho-signal) that originate from focal adhesions
and propagate into the cytoplasm, altering in turn myosin activity. Therefore the sys-
tem of focal adhesions and stress fibers are connected by a biochemical and mechanical
positive feedback loop (inset).

strated by varies types of experiments including biochemical stimulation with drugs or
micro mechanical devices. By using optically trapped micro beads, it has been shown
that nascent integrin connections mechanically fortify in dependence on the rigidity
of the environment [35]. These initial connections that comprise only a few integrin
molecules can develop to larger, dot like structures that are called focal complexes.
As the size of focal complexes is about 1µm they can be visualized by fluorescence
microscopy and are usually found at the cell periphery [36]. Focal complexes can fur-
ther mature to several microns large focal adhesions [36, 37] that on their cytoplasmic
side recruit more than 90 components, mostly proteins, which physically reside in the
adhesion structure [38], see also Fig. 4.1. However, the growth of the protein plaque
requires actomyosin contractility. By applying shear stress to the cell with a micronee-
dle, Riveline et al. [39] could show that the needed actomyosin contractility can be
substituted by externally applied shear stress. Moreover, it has been shown that the
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size of focal adhesions is proportional to the applied stress [40]. These experiments
have demonstrated that focal adhesions are mechanosensitive protein aggregates and
that their growth is strongly dependent on mechanical stress.

Molecularly, the precise mechanism of mechanotransduction at focal adhesions still
has to be determined. However, some possibilities are lively discussed, for example,
force induced conformational changes of single proteins or protein complexes into a
high or low affinity state to possible binding partners. Recently, evidence along these
lines has been reported for talin [41, 42] and integrin [43]. In a similar way forces could
alter the enzymatic activity of kinases or phosphatases that are located in the adhesion
contact [44].

In this way, focal adhesions have to be understood as localized spots where chemical
as well as mechanical information is processed collectively. The outgoing signals then
contribute to various signaling pathways. In particular, many up and down regulators
of the two Rho-GTPases, Rac and Rho, have been found to be associated with focal
adhesions. Rac and Rho are themselves the main regulators of the actin cytoskeleton.
In many situations, Rac and Rho can be regarded as antagonists switching the actin
cytoskeleton between different structural states [45]. Rac is known to stimulate the
formation of focal complexes and lamellipodia which is a rather isotropic actin fila-
ment meshwork at the cell periphery [46], whereas Rho induces the formation of focal
adhesions and stress fibers [47]. The Rho-pathway targets, among other things, the
regulatory myosin light chain. By enhancing myosin light chain phosphorylation, more
myosin heads along the myosin minifilaments can bind to actin fibers and perform their
force producing cycle. Thus, activation of the Rho-pathway at focal adhesions leads
to an increase in actomyosin contractility along stress fibers. The altered actomyosin
forces are then transmitted back to the adhesion and change the biochemical signaling,
presumably also the Rho signaling. In this way, a biochemical and mechanical feed-
back loop is formed that regulates the maturation of focal adhesions and the assembly
of stress fibers. The investigation of this mechano-chemically coupled system of force
induced biochemical signaling at focal adhesions on the one hand and the biochemical
regulation of stress fiber contraction mechanics on the other hand is the focus of this
thesis.

1.3 Experimental techniques

In order to investigate this mechano-chemically feedback in cell adhesion one can use
experimental techniques that either interfere with the biochemical signaling pathway or
with the mechanics of the actin cytoskeleton. The effect of the chemical or mechanical
perturbation is then often visualized by fluorescence microscopy. Thereto, the proteins
of interest are labelled with a fluorescent dye. This can be realized in several ways. If
one is not interested in resolving the cellular response over time, then it is sufficient
to fixate and thereby kill the cells after perturbation and stain the protein of interest
with a fluorescently labelled antibody that is specific for this protein. However, if one
is interested in live cell imaging during perturbation then it is necessary to transfect
the cells with a DNA construct which codes for a fluorescently modified version of the
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(A) (B) (C) (D)

Figure 1.4: UV laser pulses can be used to dissect stress fibers. The mechanical per-
turbed cell was transfected to express fluorescently labelled α-actinin which forms a
striation pattern. (A) Actin cytoskeleton before cut. (B) 1 s, shortly after cut. (C)
During contraction phase, 4 s after cut. (D) After mechanical re-equilibration, 45 s after
cut. Retraction is due to actomyosin contractility. α-actinin pattern can be used as an
intrinsic ruler to analyze the retraction dynamics quantitatively. This is one subject of
this thesis [34]. Courtesy of Julien Colombelli.

protein of interest. The transfection, that is the introduction of the genetic information
into the cell, can be accomplished for example by electroporation [48], viral vectors
[49] or liposomes [50]. The additional genetic information is then at least transiently
expressed by the cell and the fluorescent copies of the protein can be visualized by
fluorescence microscopy. Fluorescent proteins that are commonly used for transfections
are green fluorescent protein (GFP), yellow fluoerescent protein (YFP), an engineered
mutant of GFP, and more recently also the red dye called “cherry”, originally derived
from Discosoma sp. fluorescent protein “DsRed” that has been improved over many
steps [51–53].

Perturbation of the biochemical signaling at focal adhesions can be performed by
transfecting the cells with certain constantly active or inactive mutants of signaling
proteins that usually reside in the adhesion plaque and various other techniques. Con-
cerning the scope of this thesis, the most important possibilities are chemical drugs
which alter directly or indirectly the activity of myosin II molecular motors. A chemical
drug which is directly and specifically inhibiting myosin II activity is blebbistatin [54].
A more indirect way to affect myosin activity is by interfering with the Rho-signaling
pathway. Here, common drugs are lysophosphatidic acid (LPA) [55] or calyculin A
that both stimulate actomyosin contractility. Calyculin, for example, is an inhibitor of
myosin light chain phosphatase and thereby enhances the phosphorylation of myosin
light chain and subsequently myosin activity [56, 57]. The effect of this drug on stress
fiber contraction dynamics will be studied in silico within this thesis [58].

Mechanical perturbations of cell adhesion can also be performed in many different
ways. Passively, cells can be disturbed by plating them on soft substrates made of dif-
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ferent polymer systems like polydimethylsiloxane (PDMS), polyacrylamide (PA) and
hydrogels made from hyaluronic acid (HA). Such substrates are essential in order to
study the rigidity sensing of cells. Actively, cells can be perturbed by substrate stretch-
ing [22–25] and a divers set of micro mechanical devices, including microneedles, elastic
polymer pillars, optical and magnetic tweezers or AFM tips. These micromanipulators
have already been applied in order to measure the micro-rheological properties of the
actin cytoskeleton or to perturb the mechanical tension within the cytoskeleton and
subsequently measure the response of focal adhesions [34, 35, 39, 59, 60]. In principle,
all of these techniques also allow to measure the forces applied to cells.

Another method to perturb the mechanical stress within the cytoskeleton is nano-
surgery of filaments by UV laser pulses. The energy deposition and the resulting
disruptive effect of the laser pulse is mediated by the formation of a plasma. The
plasma is initiated by thermal emission or by multiphoton ionization of electrons. Once
a free electron is produced, it can absorb further photons by inverse Bremsstrahlung

absorption while interacting with other charged particles. When its kinetic energy
exceeds a certain threshold, the electron can generate another free electron via impact
ionization which finally leads to an ionization avalanche and plasma formation [61].
Laser-induced plasma-mediated ablation has a long tradition in medicine as well as
cell biology [61, 62]. Very recently, laser nanosurgery has been applied to dissect
stress fibers to study their mechanical properties as well as the mechanosensitivity of
zyxin, a protein which resides in focal adhesions and stress fibers [63, 64]. An essential
contribution of this thesis is to support a mechanical model that allows to further
quantify these processes [34], see Fig. 1.4.

1.4 Previous theoretical work

Several aspects of cell adhesion have been addressed by theoretical models. Especially
the mechanics of the actin cytoskeleton has attracted the interest of many physicists.
However, as the actin cytoskeleton is very dynamic and interacts with many different
molecular factors, including actin-associated proteins and molecular motors, it is very
difficult to model its mechanical properties in a general way. Modeling becomes feasible
if one focuses on one of the well-characterized states of the actin cytoskeleton, for
example the lamellipodium or stress fibers. Because here we are mostly interested in
mature cell adhesion in culture, we will focus on the latter case. Modeling stress fibers
can be approached from different perspectives. An obvious starting point are their
common characteristics with muscle fibers, which is a linear sequence of sarcomeres,
each containing around 300 myosin II molecular motors working collectively together as
they slide the actin filaments relatively to each other. This field has been pioneered by
the Huxley-model [65], which later has been modified in many regards, e.g. in regard
to filament extensibility [66] or by a detailed modeling of the myosin II hydrolysis cycle
[67]. In contrast to muscle fibers, stress fibers are more disordered and a complete
description therefore requires a model for their assembly process from polar filaments
interacting through molecular motors. Such a description has been achieved in the
framework of a phenomenological theory which however does not model the details of
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the underlying motor activity [68, 69]. This theory does predict different dynamical
states of the system, including a stationary state of isometric contraction as observed
in stress fibers.

The positive feedback loop between contractility and growth of adhesions has been
modeled before in the framework of kinetic equations, but without addressing the de-
tails of force generation and its regulation by signaling pathways [70]. Similar kinetic
equations have been used to model the antagonistic roles of Rho and Rac in cell adhe-
sion, but again without addressing the details of force generation and regulation [71].
Recently, force generation has been addressed in more detail in a model for whole cell
contractility and stress fiber formation [72, 73]. However, no details of the signaling
pathway have been modeled except for an unspecified activation signal.

An essential part of the mechano-chemical feedback loop is the force induced growth
of focal adhesion, which recently has been the subject of different modeling approaches
[74–80], reviewed in [81]. However, these models have focused mainly on the mechan-
ical and thermodynamic aspects of the growth process, neglecting the interaction of
mechanics and biochemical signaling.

1.5 Outline and main results

A detailed understanding of most cell-adhesion related processes requires a model that
accounts for the mutual interaction between the mechanics of the actin cytoskeleton
and the biochemical regulation at focal adhesions. While several cell-adhesion phe-
nomena have been approached from either direction, probably due to the conceptual
differences between the two disciplines, theoretical models that describe the interac-
tion of mechanics and chemistry are still rare in the literature. The ultimate goal of
this thesis is to fill this gap and to build up a model that accounts for the complete
mechano-chemical feedback cycle in cell adhesion. To achieve this goal we develop a
model for stress fibers as well as model for the biochemical feedback with a focus on the
Rho-pathway and finally demonstrate how mechanics and signaling can be coupled to
each other. A major part of this thesis is also assigned for testing the complete model as
well as model components by comparison with experimental data. Most importantly,
we have used our mechanical model to analyze stress fiber contraction dynamics upon
laser nanosurgery which lead to new insights into the mechanosensitivity of the protein
zyxin. In the following we give a brief outline for each chapter.

In Chapter 2 we develop an one dimensional viscoelastic model for stress fibers
which is then solved for the boundary conditions that are appropriate to describe
stress fiber contraction dynamics induced by laser release. We first introduce a dis-
crete model which is inspired by the sarcomeric substructure of stress fibers. The fiber
itself is described by a linear chain of Kelvin-Voigt bodies which, in addition, inter-
acts viscoelasticly with its surrounding. Actomyosin contractility is accounted for by
incorporating a contractile element into each Kelvin-Voigt body. This discrete model
can be solved analytically for the displacements of an arbitrary number of sarcomeric
units. Having this discrete model solution we then perform the continuum limit of
the model. We obtain a partial differential equation as well as its continuum solution
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describing stress fiber contraction dynamics. The continuum model later provides the
opportunity to analyze experimental data. The solution in the continuum limit is then
discussed thoroughly. It turns out that the contraction dynamics can be regarded as a
retardation process but the associated spectrum of retardation times exhibit positive
as well as negative amplitudes. Within a certain parameter range this can also lead
to damped oscillation of inner fiber sections. Beside the time course of the tension in
the fiber, we also calculate the complex modulus of the stress fiber model using three
different approaches. These model predictions could be tested by future microrheology
measurements.

In Chapter 3 we apply our stress fiber model to quantify stress fiber contraction
dynamics after laser nanosurgery. This project evolved from a tight collaboration
with the experimental biophysics group of Ernst Stelzer at the European Molecular
Biology Laboratory (EMBL) at Heidelberg. The experimental data presented within
this chapter has been acquired by Julien Colombelli who designed and performed the
stress fiber nanosurgery experiments. Quantification of the contraction dynamics by
means of our model is utilized by resolving the displacement field along the fiber with
high resolution in space and time. The innovation is to use the natural pattern of stress
fibers as an intrinsic ruler during the contraction phase. We find excellent agreement
between experimental data and our stress fiber model which can reproduce the complete
displacement field in space and time.

By fitting the theory to the data we obtain values for the four model parameters,
that is, the parameter that measures the degree of crosslink of the fiber, the average free
contraction length of a sarcomeric unit as well as the typical equilibration times asso-
ciated with internal and external friction. This analysis has been performed separately
for stress fibers dissected in cells transfected to express either fluorescently labelled
actin (n = 86) or α-actinin (n = 34). By comparing the parameter distributions from
these two samples we can show that the crosslinker α-actinin not only connects actin
filaments within stress fibers but also plays an essential role in crosslinking stress fibers
to surrounding mechanical scaffolds. Moreover, we can discriminate between the im-
portance of the effective fiber-internal viscosity and the viscosity of the surrounding
cytosol. In regard to stress fiber contraction dynamics, we demonstrate that the latter
seems to play a minor role. From the extracted model parameters we can also deduce
a typical length scale over which mechanical perturbations decay along the fiber. It is
also this length scale which impacts on the total contraction length of fibers, reached
after mechanical re-equilibration as well as on the loss of force acting on connected
focal adhesions.

Finally, we use our model to quantify the mechanosensitivity of zyxin. The model is
thereby used to calculate the change in mechanical stress within the cytoskeleton upon
laser release which is otherwise not accessible experimentally. The change in stress
is then compared with the change in zyxin intensity. We find that zyxin intensity
at focal adhesions and along stress fibers strongly correlates with mechanical stress.
Furthermore, our study suggests that zyxin also relocalizes at intermediate crosslinks
to the substrate that are set under high mechanical tension by the retracting fibers
[34]. We hypothesize that these newly formed zyxin spots are the onset of nascent focal
adhesions and that their formation might play an essential role during the intracellular
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repair of the laser caused damage.
In Chapter 4 we develop the model for the biochemical signaling cascade that

is initiated at focal adhesions and is propagated along stress fibers through diffusion.
Our study focuses on the Rho-pathway. We have performed an extensive literature
research and compiled a list of the known rate and diffusion constants in such a way
that they can be used for mathematical modeling. The developed system of reaction
diffusion equations is then coupled to the contraction dynamics of stress fibers through
the force-velocity relationship of myosin molecular motors. Vice versa, the resulting
myosin forces are coupled back into the biochemical reactions by treating them similar
to an enzyme that promotes Rho-signaling. The obtained mechano-chemically coupled
system can be solved numerically. We find that the system is bistable. One stable
state can be identified with a highly contractile cell whereas the other stable state cor-
responds to an inactive cell that failed to establish actomyosin contractility. As a first
application of the model we address it to recent experiments by Peterson et al.[31].
They show that the striation pattern along stress fibers in yet unperturbed cells are
wider at the center compared to the cell periphery. Upon induction of a uniformly dis-
tributed contractile drug, the bands at the periphery contract while the bands at the
center surprisingly expand, amplifying the spatial differences. By simulating this drug
experiment in silico we can reproduces the found spatial gradients in myosin activity
and the resulting inhomogeneous distortion of stress fibers in qualitative agreement
with experiments [58]. Most importantly, we also demonstrate that the positive bio-
chemical and mechanical feedback has to be taken into account, in order to explain the
experimental findings.

In Chapter 5 we use our model to address cell behavior. In particular, we focus
on the ability of cells to establish contractile forces on differently stiff substrates. The
cellular contractile stress or the substrate deformation are considered as state variable
of the model system. The substrate stiffness and a reaction parameter that accounts
for the effect of a contractile drug are employed as control parameters in the bifurcation
analysis. We find that bistability is not a universal feature of the model. There also
exist parameter regions where either the contractile or the non-active state are the only
stable fixed points. This gives rise to a threshold of substrate stiffness below which cells
are not able to build up contractile forces. On stiffer substrates cells adopt a contractile
state but the reached steady state forces depend only weakly on the substrate stiffness.
These findings might contribute to the understanding of rigidity sensing of cells as well
as to tensional homeostasis in tissue. Furthermore, we hypothesize that the potential
bistability in the system gives rise to hysteresis in cell adhesion. To substantiate these
ideas, we simulate cellular behavior on substrates of time dependent stiffness. The
most idealized example is a cyclic varying boundary stiffness. Finally, we give some
suggestions how substrates of time dependent stiffness could be realized experimentally.
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Chapter 2

Viscoelastic fiber model: definition

and solution

In this chapter we develop the basic concepts of our one dimensional viscoelastic stress
fiber model. We first introduce a discrete model which is inspired by the sarcomeric
substructure of stress fibers. The considered boundary conditions represent the sit-
uation that the fiber is released at one end and start to contract due to actomyosin
contractility. The discrete model can be solved analytically for an arbitrary number
of sarcomeric units. Subsequently, we perform a continuum limit of the model which
results in a partial differential equation and its solution for the displacement field. The
continuum description is superior for analyzing data and for coupling the model later on
with the biochemical signaling. The continuum model solution is discussed by means
of the spectrum of retardation times. Interestingly, within a certain parameter range,
the inner sections of the fiber can exhibit damped oscillations. Finally, we calculate
the stress profile along the fiber, as well as the complex modulus of the fiber model
using several different approaches.

2.1 A model for stress fibers

2.1.1 The discrete stress fiber model

In spirit with the regular striation pattern of stress fibers we first introduce a discrete
stress fiber model which is in its structure similar to the Kargin-Slonimsky-Rouse model
(KSR model [82–84] reviewed in [85]) for long polymers in dilute solutions. The KSR
model played an important role in the history of polymer physics. It proved that a
retardation time spectrum can be generated by a polymer model with simple periodic
structure and is not necessarily evidence for structural complexity of the polymer [85].
The model presented here is similar in its periodicity to the models suggested by Kargin
and Slonimsky [82, 83] but differs in the composition of its elementary units as well as
in its boundary conditions. In our model the mechanical response of each sarcomeric
unit of length a is described by the Kelvin-Voigt model for viscoelastic material [86].
It consists of a dashpot with viscosity γint and a spring of stiffness kint connected in
parallel. These two modules represent the viscous and elastic properties of the ma-
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Figure 2.1: Illustration of the discrete stress fiber model. The fiber is modeled as
a linear chain of Kelvin-Voigt bodies, each consisting of a spring of stiffness kint and
dashpot of viscosity γint. Actomyosin contractility is described by a contractile element
added to each Kelvin-Voigt body along the chain. Fmn represents the contractile force of
the n-th molecular motor. Each element of length a represents one sarcomeric unit. Local
viscoelastic interactions between the fiber elements with their surrounding are described
by an additional set of external Kelvin-Voigt bodies with stiffness kext and viscosity γext.
The total length of the fiber is L. The fiber is clamped at x = 0 and free at x = L. un

denotes the displacement of the n-th node.

terial, respectively. In stress fibers, the actin scaffold can be regarded as the elastic
component. Viscous friction may arise from relative actin filament sliding, movement
of solvent or bond breaking within the fiber. The Kelvin-Voigt body is the simplest vis-
coelastic model which in the stationary state is determined by elasticity, in contrast to
the Maxwell model, which flows in the stationary limit. Thus the Kelvin-Voigt model
is the appropriate choice for stress fibers, which can carry load at constant deformation
over a long time. In order to cope with the contractile behavior of stress fibers, we
introduce into these Kelvin-Voigt bodies a further contractile element that represents
the activity of motor proteins. Its properties are given by the specific force-velocity
relation of the molecular motors. A stress fiber of total length L is then represented by
a linear chain of N = L/a such viscoelastic and contractile elements, compare Fig. 2.1.
Experimental observations [34] suggest that stress fibers do not contract unhindered
within the cytoplasm upon laser dissection but interact locally with their surrounding.
These interaction, e.g. mechanical crosslinks to the surrounding cytoskeleton or to
intermediate contacts with the substrate, impose shear forces to the stress-fiber that
counteract the retraction. In our one-dimensional model we account for these viscoelas-
tic shear forces by additional external Kelvin-Voigt bodies each composed of a spring
of stiffness kext and dashpot of viscosity γext. The spring represents elastic interconnec-
tions to cytoplasmic components, whereas the dashpot accounts for the viscous drag
within the cytosol. These external Kelvin-Voigt bodies exert forces whenever a fiber
element is displaced (sheared) with respect to its initial position. The internal Kelvin-



2.1 A model for stress fibers 17

Voigt bodies build up forces whenever a fiber element changes elongation. At each site
n these external and internal forces as well as the contractile motor forces, Fm, have to
balance:

0 = γint(u̇n+1 − u̇n) − γint(u̇n − u̇n−1) + kint(un+1 − un)

−kint(un − un−1) − γextu̇n − kextun + Fmn+1 − Fmn

(2.1)

The first four terms originate from the internal Kelvin-Voigt bodies. The internal
frictional forces, the first two terms, arise when a sarcomeric unit changes elongation,
i.e. these forces depend on the temporal change of relative displacements of neighboring
sites (u̇n+1 − u̇n). The third and the fourth term account for elastic forces within
the stress fiber and are proportional to the elongation of a sarcomeric unit, which
is given by the relative displacement of neighboring sites (un+1 − un). The fifth and
the sixth term originate from the external Kelvin-Voigt bodies. The contributions from
external viscous drag depend on the local retraction velocity u̇n. The external harmonic
restoring forces depend on the local displacement un of the considered site. The last
two terms account for the contractile forces resulting from molecular motor activity
which we model by a linearized force-velocity relationship [87]:

Fmn
= Fs(1 − vn

v0

) = Fs +
Fs

v0

(u̇n − u̇n−1) (2.2)

Fmn
is the actual force exerted by the n-th motor moving with velocity vn. v0 is the

zero-load velocity and Fs is the stall force of the motor. In the final relation we have
used that the contraction velocity, vn, of the n-th motor, can be related to the temporal
change in displacement of neighboring sites according to∗: vn = −(u̇n − u̇n−1). For the
moment being we assume that the stall force of motors is constant along the length of
the fiber. In general, however, this is not the case. In chapter 4 we will argue that the
motor activity is regulated by biochemical signals that effectively alter the stall force
of the motors. In this way Fs becomes spatially dependent. Eq. (2.2) can now be used
to specify the motor contributions in Eq. (2.1).

0 = γ̃int(u̇n+1 − u̇n) − γ̃int(u̇n − u̇n−1) + kint(un+1 − un)

−kint(un − un−1) − γextu̇n − kextun

(2.3)

Here, we have introduced the effective internal viscosity γ̃int = γint + Fs/v0 which now
contains motor contributions. At this point it is worth mentioning that, due to the
linearized force velocity relation, the motor contribution Eq. (2.2) decomposes into two
parts. On the one hand it effectively alters the internal viscosity γ̃int and thus will
slow down the equilibration process. On the other hand, the constant contribution Fs

cancels out at each node within the string and will only enter the boundary conditions.
The upper equation holds for all nodes 0 < n < N , where N is the total number of
sarcomeric units. At the left end, n = 0, and at the right end, n = N , the boundary
conditions have to be adopted according to the considered situation. In the following

∗An arguable factor of 1/2 in this relation which depends on the definition of the motor velocity
could be absorbed in the parameter v0.
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we will focus on the boundary conditions appropriate for the stress fiber laser cutting
experiments. Here, one end of the fiber terminates at focal adhesions and thus can
be considered as stationary. At the end where the stress fiber is released by the laser
pulse all forces have to be balanced. From now on we will refer to the situation at the
stationary end as clamped boundary whereas the situation at the cut we will call a free

boundary. Throughout this manuscript we will choose the coordinate system such that
the clamped end is always at the left and the free end is at the right. In total we have
the following system of N + 1 equations:
Clamped boundary at n = 0:

u0 = 0 (2.4)

For n = 1, . . . , N − 1:

γ̃int(u̇n+1 − 2u̇n + u̇n−1) + kint(un+1 − 2un + un−1) − γextu̇n − kextun = 0 (2.5)

Free boundary at n = N :

− γ̃int(u̇N − u̇N−1) − kint(uN − uN−1) − γextu̇N − kextuN = Fs (2.6)

The last equation can be deduced from Fig. 2.1 by balancing all internal and external
viscoelastic forces as well as the motor forces at the terminating node, n = N . By
examining the upper system of equations one finds that the contractile motor forces
enter explicitly only at the free boundary at n = N . This is a direct result of assuming
that the stall force of the molecular motors is uniform along the fiber. Otherwise, one
would obtain additional terms Fsn+1 − Fsn

in the equations n = 1, . . . , N − 1. The
system of coupled first order linear differential equations (2.4)-(2.6) can be solved for
the discrete displacements un(t). In section 2.2.1 we show that there exist a closed
analytical solution for an arbitrary number, N , of sarcomeric units. However it is also
helpful to perform a continuum limit on the discrete model system. This results in a
partial differential equation which will be derived in section 2.1.3 and its exact solution
will be provided in section 2.2.2.

2.1.2 Relations between 1D and 3D viscoelastic constants

Before we perform the continuum limit of the discrete model described above, we first
want to relate the parameters from the one-dimensional model to three dimensional
quantities. In doing so we focus on the elastic constants. For the viscous constants cor-
responding relations follow immediately and are given at the end of this section. The
presented one dimensional model accounts only for two elastic deformation modes, that
is homogeneous uniaxial extension of the sarcomeric units or shear of the surrounding
medium. These two deformation modes are depicted for one sarcomeric unit in Fig. 2.2.
The deformation of an isotropic and linear elastic body exposed to homogeneous uni-
axial stress, σxx = F/Aface, is determined by the Young’s modulus E and the Poisson’s
ratio ν. Given this simple form of the stress tensor, the strain tensor follows as [88]:

uxx = σxx/E =
F

EAface

and uyy = uzz = −νuxx (2.7)
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Figure 2.2: (a) A three dimensional simplistic illustration of a stress fiber. Our model
accounts for two deformation modes: (b) Uniaxial extension induced by the uniform
stress σxx = F/Aface. Here, the elongation of the sarcomeric unit is denoted by ∆u =
u(a)−u(0). (c) Pure shear of the surrounding medium induced by the stress σxz = F/Atop.
u(h) denotes the displacement of the top at height h in the x-direction. In both cases F
is an arbitrary force pointing in x-direction.

All off-diagonal components of the strain tensor vanish. Since our model is one-
dimensional it can only account for the strain in the x-direction. The strain is ho-
mogenous, thus we can write:

uxx =
∂ux

∂x
=

ux(a) − ux(0)

a
=

F

EAface

(2.8)

Where ux(x) is the displacement in the x-direction (arguments (y, z) have been dropped).
The upper force-extension relation can now be compared with the one-dimensional ver-
sion to obtain a relation between the internal spring stiffness kint of the one dimensional
model and the Young’s modulus:

ux(a) − ux(0) =
a

EAface

F =
1

kint

F ⇒ kint =
EAface

a
(2.9)

Similarly we can deduce a relation between the external spring stiffness kext and the
shear modulus G of the surrounding medium. Here, the pure shear stress is given by
σxz = F/Atop. The resulting strain is given by [88]:

uxz =
σxz

2G
=

F

2GAtop

(2.10)
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All other components of the strain tensor vanish, in particular the component uzz =
∂uz

∂z
= 0. Therefore the z-component of the displacement has to be constant along

the z-direction: uz(x, y, z) = f(x, y). Since at the bottom, z = 0, the displacement
vanishes, uz(x, y, 0) = 0 at all position (x, y), the function f(x, y) has to be identical
zero and the z-component of the displacement, uz, also vanishes. Then it follows:

uxz =
1

2

(
∂ux

∂z
+

∂uz

∂x

)

=
1

2

∂ux

∂z
=

1

2

ux(h) − ux(0)

h
=

1

2

ux(h)

h
=

F

2GAtop

(2.11)

Where in the upper equation ux(z) is the displacement in the x-direction at height z
(arguments (x, y) have been dropped) and h is the thickness of the sheared layer. The
substitution of the derivative ∂ux/∂z by the simple difference quotient holds true, since
strain is uniform. It has also been used that the displacement at the bottom is zero,
ux(0) = 0. The upper final equation can now be used to derive a relation between the
external spring stiffness kext of the one dimensional model and the shear modulus G:

ux(h) =
h

GAtop

F =
1

kext

F ⇒ kext =
GAtop

h
=

Gda

h
(2.12)

Where d is the width of the sheared layer, compare Fig. 2.2. So far we have only
discussed the elastic constants. However, similar relations follow immediately for the
viscous parameters. The internal viscosity, γint, can be set in relation to the extensional

viscosity analogous to Eq. (2.9) whereas the external viscosity, γext and the shear vis-

cosity fulfill a relation analogous to Eq. (2.12). At this point we want to stress that the
quantity a in Eqs. (2.9), (2.12) is in principle an arbitrary length scale. The entities
kint and kext then represent the elastic properties of a fiber fragment of length a. A
convenient definition is a = 1 µm which corresponds to the average length of a sarcom-
eric unit 1.01± 0.14 µm†[34]. The Young’s modulus of stress fibers has been measured
by Deguchi et al. [89]. Using the value that they found for small deformations we
can estimate the internal fiber stiffness to be kint ≈ 45 nN/a. This value together with
our fit values for the model parameters summarized in Tab. 3.1 and Eqs. (2.9), (2.12),
(2.20) can be used to give rough estimates for the extensional viscosity of the fiber and
for the shear modulus and shear viscosity of the surrounding medium.

2.1.3 The continuum stress fiber model

The discrete model described in section 2.1.1 can be transformed to a continuum equa-
tion by considering the limit for a large number of elementary units N . In this limiting
process, the total length L of the stress fiber will be subdivided into incremental smaller
pieces of length aN = L/N . Thereby it has to be ensured that the effective viscoelastic
properties of the whole chain are conserved, i.e. in each iteration step the discrete
model should reflect a fiber with a certain Young’s modulus E embedded in a medium
with shear modulus G. This is accomplished by re-scaling the viscoelastic constant

†If not denoted otherwise, experimental measures are given as mean ± standard deviation
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(kN,int, γN,int, kN,ext, γN,ext) in each iteration step according to Eq. (2.9) and Eq. (2.12):

kN,int =
EAface

aN

=
aN

L

EAface

a
= φNkint

kN,ext =
GAN,top

h
=

GdaN

h
=

L

aN

Gad

h
=

kext

φN

(2.13)

Here, we have introduced the scaling factor φN = a
aN

= Na
L

. It ensures that by dividing
the chain into more and more smaller pieces, the effective Young’s and shear modulus
of the model is conserved. The stiffness kN,int represents the stiffness of an aN = L/N
long piece of the fiber and increases linearly with the number of partitions N , whereas
kint is the stiffness of a fiber fragment of length a. In principle a is an arbitrary length
scale that we have chosen to be a = 1 µm such that it corresponds to the typical length
of a sarcomeric unit of a stress fiber, compare also the discussion at the end of the
previous section. While kN,int increases linearly with the number of partitions, kN,ext

decreases according to 1/N . Similarly it follows that the viscous parameter γN,int and
γN,ext scale as kN,int and kN,ext, respectively. In total one finds:

kN,int = φNkint and γN,int = φNγint

kN,ext =
kext

φN

and γN,ext =
γext

φN

(2.14)

These conditions on the viscoelastic constants prepare the ground for the continuum
limit of Eqs. (2.4)-(2.6). To begin with the limiting procedure we first introduce the
continuous spatial variable x = naN , denoting the position of the n-th node within the
yet discrete chain. Then Eq. (2.5) can be reformulated as:

γ̃N,int(u̇(x + aN) − 2u̇(x) + u̇(x − aN)) − γN,extu̇(x) + . . .

+kN,int(u(x + aN) − 2u(x) + u(x − aN)) − kN,extu(x) = 0
(2.15)

Substitution of the viscoelastic parameters (kN,int, γN,int, kN,ext, γN,ext) which depend
on the refinement N , by the appropriate scaling relations given in Eq. (2.14) and
conducting the limit N → ∞ yields:

a2γ̃int lim
N→∞

(
u̇(x + aN) − 2u̇(x) + u̇(x − aN)

aN
2

)

− γextu̇(x) + . . .

+a2kint lim
N→∞

(
u(x + aN) − 2u(x) + u(x − aN)

aN
2

)

− kextu(x) = 0

(2.16)

Since aN is a sequence which converges to zero, the limits define the second derivative
of u with respect to x. The continuum limit of the upper equation results in a partial
differential equation for the displacement u(x, t). The highest order term will contain
mixed derivatives in x and t, namely, ∂2

xu̇. Similarly, the limiting process can be
performed for the boundary condition at the free end. Note that at this point the
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spatial variable evaluates to x = NaN = L:

aγ̃int lim
N→∞

(
u̇(L) − u̇(L − aN)

aN

)

+ lim
N→∞

aN

a
γextu̇(L) + . . .

+akint lim
N→∞

(
u(L) − u(L − aN)

aN

)

+ lim
N→∞

aN

a
kextu(L) = −Fs

(2.17)

In each line of the equation, the first limit gives the first derivative of u with respect
to x evaluated at x = L and the second limit in each line vanishes as aN converges to
zero. Consequently, in the continuum representation, the stresses which originate from
shearing the environment can not contribute to this boundary condition. However, note
that the stresses exerted by the motors, Fs, on the boundary are unaffected during the
limiting process and do contribute. Eventually our continuum model for stress fibers
can be formulated in the following boundary value problem:

γ̃inta
2∂2

xu̇ + kinta
2∂2

xu − γextu̇ − kextu = 0 (2.18)

With the boundary conditions:

u(0, t) = 0 and γ̃inta∂xu̇(L, t) + kinta∂xu(L, t) + Fs = 0 (2.19)

The appropriate initial conditions for the stress fiber dissection experiments are zero
displacement before the cut, namely u(x, 0) = 0. Note that the terms on the left
hand side of the boundary condition at x = L denote the stress within the fiber. In
our one-dimensional model the elastic stress is simply proportional to the strain in
x-direction, ∂xu, viscous stress is proportional to the rate of strain ∂xu̇ and the total
stress is completed by the contractile forces exerted by molecular motors Fs. Thus, the
boundary conditions mean that the total stress within the fiber has to vanish at the
position of the cut, i.e. these three components of the stress have to balance internally.
The structure of the model equations allows us to eliminate one parameter which we
have chosen to be kint. So essentially, our model has only the following four parameters:

κ =
kext

kint

; δ =
Fs

kint

; τ =
γ̃int

kint

=
γint

kint

+
Fs

v0kint

; τǫ =
γext

kint

(2.20)

The ratio of external and internal stiffness κ is a non-dimensional parameter which
can be regarded as a measure for the degree of crosslink of the fiber. The parameter δ
can be understood as the free contraction length of a sarcomeric unit of initial length
a = 1µm. The parameters τ and τǫ represent two distinct equilibration times associated
with internal and external processes, respectively. It is worth mentioning that the
parameters (κ, δ) are, similar to the previous viscoelastic parameters, normalized to
the length of one sarcomeric unit a, whereas the parameters (τ, τǫ) are invariant under
the scaling of a. To see this in the case of τ , note that the zero-force velocity of the
motors scales like vN,0 = v0/φN . Formulated in terms of the parameter set depicted in
Eq. (2.20), the model equation and the boundary condition at the free end are given
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as:

τa2∂2
xu̇ + a2∂2

xu − τǫu̇ − κu = 0 and τa∂xu̇(L, t) + a∂xu(L, t) + δ = 0 (2.21)

The boundary condition at x = 0 and the initial conditions remain unchanged. We use
this continuous model equation comprising the set of the four parameters (κ, δ, τ, τǫ)
to describe the contraction dynamics of stress fiber after UV laser cutting. By fitting
the model to the data we are able to extract values for these parameters. In the
following section we will derive the solution of the stress fiber model. Thereby it is
quite convenient to non-dimensionalize the model equations. We do this by introducing
the non-dimensional spatial variable x̃ = x/a, non-dimensional time t̃ = t/τ and the
non-dimensional ratio of the two time scales Γ = τǫ/τ . In this way the model equations
adopt the simple form:

∂2
x̃u̇ + ∂2

x̃u − Γu̇ − κu = 0 and ∂x̃u̇(L̃, t̃) + ∂x̃u(L̃, t̃) + δ = 0 (2.22)

We will either use the non-dimensional formulation given in Eq. (2.22) or switch to the
dimensional model equation Eq. (2.21) with parameters (κ, δ, τ, τǫ) depending on which
one is more convenient in the considered situation.

Before we start to derive the general solution of the presented model we discuss the
special case where κ = Γ. This case is easy to solve and gives preliminary insight into
how the solution for the displacement roughly looks like. Substitution of the ansatz
h = u̇ + u into the partial differential equation Eq. (2.22) yields the following ordinary
differential equation for h:

∂2
x̃h − κh = 0 (2.23)

and the boundary conditions transform to: h(0) = 0 and ∂x̃h(L̃)+δ = 0. Solution of this
ordinary differential equation for h(x̃) and subsequent solution of the inhomogeneous
ordinary differential equation for the displacement u̇ + u = h with the initial condition
u(x̃, 0) = 0 yields the final solution:

u(x̃, t̃) = − δ√
κ

sinh(x̃
√

κ)

cosh(L̃
√

κ)

(

1 − e−t̃
)

⇒ uss(x̃) = − δ√
κ

sinh(x̃
√

κ)

cosh(L̃
√

κ)
(2.24)

The assumption κ = Γ leads to a simple retardation process with a single retardation

time τ . This term, retardation time, is derived from rheology where it is associated with
viscoelastic creep, in contrast to the term, relaxation time, which is rather associated
with the relaxation of viscoelastic stress. In this thesis, we will sometimes refer to τ
also as the typical equilibration time of a stress fiber.

The stationary solution is denoted as uss(x̃). The largest, always negative dis-
placement given by − δ√

κ
occurs at x = L, that is where the fiber was released. The

magnitude of the displacement decreases exponentially with increasing distance from
this point. The typical length scale of this decay is given by a/

√
κ. It is important

to note that the general case with arbitrary κ and Γ evolves to the same stationary
solution given in Eq. (2.24). However, the dynamics during the retraction phase are
more complicated for the general case. In the next section we will show that the general
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solution is a superposition of infinitely many discrete retardation times. The associ-
ated retardation time spectrum is spatially dependent and may have positive as well
as negative amplitudes. Under certain conditions, this even leads to solutions for the
local displacements that are not monotonically decreasing in time, compare section 2.3.

2.2 Solution of the model

2.2.1 Solution of the discrete model

The discrete stress fiber model developed in section 2.1.1 constitutes a coupled system
of first order linear differential equations in the displacements un at nodes n = 0 . . . N .
It is straight forward to solve these equations for a certain small number of nodes.
However, it is quite challenging to find a closed solution for a general number of degrees
of freedom N . Still, finding such a solution is quite appealing since it allows not only
exhaustive analysis of the discrete model. Execution of the continuum limit described in
the previous section will carry the discrete solution over to the solution of the continuum
model described by the partial differential equation Eq. (2.18). The closed solution
then also provides a simple tool for other groups to analyze their data on stress fiber
experiments, since the tedious implementation of a numerical procedure to solve the
boundary value problem given by Eq. (2.18) and Eq. (2.19) is no longer necessary.

Because of the unequal boundary conditions at the two ends, the derivation of the
model solution is more complicated. It turned out to be fruitful to first symmetrize the
problem by considering a string of length 2N +1 with free boundary conditions at both
ends (see Eq. (2.6)), that is, at each end the contractile motor forces are balanced by the
internal and external viscoelastic forces, see Fig. 2.3. The solution for this boundary
value problem, that is the displacements along the string, has to be an antisymmetric
function with respect to the center of the string. This is because the contractile forces
equally pull both terminating nodes inwards. Consequently, the displacement at the
center has to be zero. The solution for the symmetric problem with 2N + 1 units thus
comprises the solution for a fiber with N units with one free and one clamped end, the
actual problem of interest.

The symmetric problem for a slightly simpler model has been analyzed in great de-
tail by Gotlib and Volkenshtein [90]. Their calculations paved the way for the following
derivation. In exact accordance with our considerations in section 2.1.1 we can write
down the force balance equations at each node j = 1, . . . , 2N + 1 of the string shown
in Fig. 2.3(a) and Fig. 2.3(b). The resulting 2N + 1 first order differential equations
are given by:
For j = 1:

γ̃int(u̇2 − u̇1) − γextu̇1 + kint(u2 − u1) − kextu1 = −Fs (2.25)

For j = 2, . . . , 2N :

γ̃int(u̇j+1 − 2u̇j + u̇j−1) − γextu̇j + kint(uj+1 − 2uj + uj−1) − kextuj = 0 (2.26)
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Figure 2.3: Sketch of the model with symmetric boundary conditions. (a) Stress fiber
with two free ends. Viscoelastic constants and contractile motor forces are as in Fig. 2.1.
(b) Lower figure illustrates the counting of the two indices n and j. The index n starts
counting at the central node highlighted in red. The index j starts counting at the node
which terminates the fiber at the left. Upper figure is a schematic drawing of the solution
for the displacements of the nodes assuming that both ends of the fiber are free. Since the
contractile forces pull both terminating nodes inwards, the solution for the displacements
has to be antisymmetric about the central node. For the same reason the central node
has to be stationary. In this way, the nodes at n = 0 . . . N obey the actually boundary
conditions of interest: clamped at n = 0 and free at n = N .

For j = 2N + 1:

− γ̃int(u̇2N+1 − u̇2N) − γextu̇2N+1 − kint(u2N+1 − u2N) − kextu2N+1 = Fs (2.27)

Here, we have again used the abbreviation for the effective internal viscosity γ̃int =
γint + Fs/v0. By subtracting from each equation the subsequent one and introducing
the relative coordinates yj = uj+1 − uj, we can rewrite the upper system of equations
in the following compact form:

Mvisc~̇y + Melas~y = ~F (2.28)

with the 2N × 2N matrix:

Mvisc =










2γ̃int + γext −γ̃int 0 0 · · ·
−γ̃int 2γ̃int + γext −γ̃int 0 · · ·

0 −γ̃int 2γ̃int + γext −γ̃int · · ·
0 0 −γ̃int 2γ̃int + γext · · ·
...

...
...

...
. . .










(2.29)

The matrix Melas has exactly the same form as Mvisc but the viscous constants have to
be replaced by the corresponding elastic constants. That is, γ̃int has to be substituted
by kint and similarly, γext by kext. In addition we have defined the 2N -dimensional
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vectors:

~y(t) =










y1

y2
...

y2N−1

y2N










and ~F =










−Fs

0
...
0

−Fs










(2.30)

In the following we will solve Eq. (2.28) for the relative coordinates yj(t). At the end,
the displacements un(t) can be recovered from Eq. (2.46) once the dynamics of the
relative coordinates have been determined. The force vector on the right hand side of
Eq. (2.28) renders the differential equation to be inhomogeneous. In preparation for the
general inhomogeneous solution of Eq. (2.28), as usual, first consider the homogeneous
equation

Mvisc~̇y + Melas~y = 0 (2.31)

Let λl be an eigenvalue and let ~vl be the associated eigenvector that obeys the eigenvalue
problem:

(Melas − λlMvisc)~vl = 0 (2.32)

It turns out that Eq. (2.31) is solved by ~yl(t) = ~vle
−λlt which can be easily proven

by inserting this ansatz into Eq. (2.31). Since the differential equation is linear the
superposition principle holds and the general homogeneous solution is given by:

~y(t) =
2N∑

l=1

cl~yl(t) =
2N∑

l=1

cl~vle
−λlt (2.33)

The upper solution is primarily valid only if there are exactly 2N distinct eigenvalues,
but we will find that this is indeed true in the considered case. A similar but slightly
simpler eigenvalue problem has been treated by Gotlib and Volkenshtein [90]. The set
of eigenvalues and eigenvectors appropriate for our model is given by:

λl =
kext + 4kint sin2 πl

2(2N+1)

γext + 4γ̃int sin2 πl
2(2N+1)

and ~vl =













sin πl
2N+1

sin π2l
2N+1

sin π3l
2N+1
...

sin π2Nl
2N+1













(2.34)

It is now straight forward to show by insertion that Eq. (2.34) is indeed the solution
to the eigenvalue problem defined by Eq. (2.32). For the sake of completeness and to
not distract the reader from the main course of the calculation, we have removed this
proof from the main text and shifted to appendix 6.2. In this appendix we also proof
that the 2N eigenvalues are distinct, positive and non-zero and that the eigenvectors
are orthogonal and their length is given by vl =

√

(2N + 1)/2. The fact that the
eigenvalues are distinct affirms the form of the homogeneous solution given in Eq. (2.33).
Later on we will also take advantage of the listed properties of the eigenvectors. In
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order to determine the solution of the inhomogeneous equation Eq. (2.28) we make the
common ansatz:

~y(t) =
2N∑

l=1

cl(t)~vle
−λlt (2.35)

The coefficients cl(t) which still have to be determined are now taken to be time de-
pendent. Setting the ansatz into the inhomogeneous Eq. (2.28) yields 2N conditions
defining the coefficients cl(t):

∑

l

ċl(t)Mvisc~vle
−λlt +

∑

l

cl(t)e
−λlt (Melas~vl − λlMvisc~vl) = ~F (2.36)

The second sum on the left hand side vanishes since its summands just constitute
the previously solved eigenvalue problem: (Melas~vl − λlMvisc~vl) = 0. Evaluation of
the product Mvisc~vl and rewriting the 2N equations componentwise, for j = 1, .., 2N ,
yields:

∑

l

ċl(t)

(

−γ̃int sin
πl(j − 1)

2N + 1
+ (γext + 2γ̃int) sin

πlj

2N + 1
+ . . .

−γ̃int sin
πl(j + 1)

2N + 1

)

e−λlt = Fj

(2.37)

Application of appropriate addition theorems converts the trigonometric terms to the
concise expression, j = 1, .., 2N :

∑

l

ċl(t) sin
πlj

2N + 1

(

γext + 4γ̃int sin2 πl

2(2N + 1)

)

e−λlt = Fj (2.38)

The sin-factor which has been pulled out of the parenthesis in the upper equations
can be identified with the j-th component of the l-th eigenvector. In order to rewrite
the upper equation in a simple form it is convenient to define the 2N × 2N matrix of
normalized eigenvectors,

U =

√

2

2N + 1
(v1, v2, . . . , v2N) ⇔ Uj,l =

√

2

2N + 1
sin

πlj

2N + 1
(2.39)

The remaining terms within the sum of Eq. (2.38) only depend on the index l not on

j. By defining the 2N -dimensional vector ~b with components

bl(t) =

√

2N + 1

2
ċl(t)

(

γext + 4γ̃int sin2 πl

2(2N + 1)

)

e−λlt (2.40)

Eq. (2.38) can be rewritten as:

U~b(t) = ~F (2.41)

This upper system of 2N equations has to be solved for ~b, the solution for the coeffi-
cients cl(t) then follows by integration. Solution of Eq. (2.41) is simple because of the
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special properties of the matrix U. By definition, U is built up by the normalized and
orthogonal eigenvectors, thus U

T
U = I. Moreover, since U is obviously symmetric it

even follows that U = U
T = U

−1, which means that the matrix U constitutes its own
inverse. With these considerations the solution of Eq. (2.41) is simply given by:

~b(t) = U~F (2.42)

The only non-zero components of ~F are the first and the last one, F1 = F2N = −Fs.
Accordingly, only the first and the last column of U contributes to the result of the
product with ~F . The solution for ~b is then given by:

bl(t) =

√

2

2N + 1

(

sin
πl

2N + 1
+ sin

π2Nl

2N + 1

)

(−Fs)

= −Fs

√

2

2N + 1

(
1 + (−1)l+1

)
sin

πl

2N + 1

(2.43)

It turns out that all even-numbered components of~b vanish and only the odd-numbered
components contribute. The coefficients of interest, cl(t), now result from a simple
integration of Eq. (2.40).

cl(t) =







0 if l even

− 4

2N + 1

sin πl
2N+1

γext + 4γ̃int sin2 πl
2(2N+1)

∫ t

0

Fs(t
′)eλlt

′

dt′ if l odd

(2.44)

Here, we have considered the more general case that the forces Fs might vary in time.
This will become particularly important in conjunction with the complex modulus of
the stress fiber model where we have to account for oscillating boundary forces. The
final solution for the relative coordinates is given by Eq. (2.35):

yj(t) = − 4

2N + 1

2N∑

l=1,3,5,...

sin πl
2N+1

sin πlj
2N+1

γext + 4γ̃int sin2 πl
2(2N+1)

∫ t

0

Fs(t
′)e−λl(t−t′)dt′ (2.45)

The actual displacements uj(t) are recovered from the relative coordinates by evaluating
the telescoping sum:

u2N+1 − u1 = (u2N+1 − u2N)
︸ ︷︷ ︸

+ (u2N − u2N−1)
︸ ︷︷ ︸

+ . . . + (u2 − u1)
︸ ︷︷ ︸

= y2N + y2N−1 + . . . + y1

=
2N∑

j=1

yj

(2.46)

Since the solution has to be antisymmetric with respect to the center point at j =
N + 1, compare Fig. 2.3(b), it must hold true that u2N+1 = −u1 and more generally
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u2N+1−k = −u1+k, such that for k = 0, . . . , N − 1, the displacements are given by:

u2N+1−k =
1

2

2N−k∑

j=1+k

yj

=
1

2

2N−k∑

j=1

yj −
1

2

k∑

j=1

yj

=
1

2

2N∑

l=1,3,5,...

cl(t)e
−λlt

(
2N−k∑

j=1

sin
πjl

2N + 1
−

k∑

j=1

sin
πjl

2N + 1

)

(2.47)

In the last step, we have plugged in the solution for the relative coordinates given
by Eq. (2.45) and have subsequently reversed the order of summation in both terms.
The two sums in parenthesis can be further simplified by rewriting the sin-functions in
terms of exponential functions. The resulting geometric sums can be evaluated, since
summation is finite and convergence is guaranteed. For a derivation see appendix 6.2,
here, we only provide the identity:

n∑

j=0

sin(jα) =
1

2

(

cot(α/2) − cos(α(n + 1/2))

sin(α/2)

)

(2.48)

Using this identity to simplify the upper expressions yields

u2N+1−k =
1

2

2N∑

l=1,3,5,...

cl(t)e
−λlt

cos πl(k+1/2)
2N+1

sin πl
2(2N+1)

(2.49)

The index of u in the upper equation runs, according to the range of k, from (N+1)+1 ≤
(2N+1)−k ≤ (2N+1). The node (N+1) just denotes the center and the node (2N+1)
terminates the chain at its right end. In the next step we transform the index of u
such that it now runs from n = 1, . . . , N and the node n = 1 corresponds to the node
(N +1)+1 in the previous counting, compare figure 2.3(b). The proper transformation
is n = N−k. Moreover, we exchange the index of summation by l = 2m−1 and obtain
the final solution of the discrete model:

un(t) = − 2

2N + 1

N∑

m=1

(−1)m−1

sin π(2m−1)
2(2N+1)

sin πn(2m−1)
2N+1

sin π(2m−1)
2N+1

γext + 4γ̃int sin2 π(2m−1)
2(2N+1)

∫ t

0

Fs(t
′)e

− t−t′

τm,N dt′ (2.50)

with the retardation times (see page 23 for an explanation of this terminology):

τm,N =
1

λ2m−1,N

=
γext + 4γ̃int sin2 π(2m−1)

2(2N+1)

kext + 4kint sin2 π(2m−1)
2(2N+1)

(2.51)

It is important to note that Eq. (2.50) gives the correct result for n = 0, that is u0 = 0.
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For this reason we can extend the range of validity of Eq. (2.50) to n = 0 . . . N . With
this solution several aspects of our stress fiber model can be investigated analytically.
For example in section 2.6 we will assume cyclic boundary forces in order to study the
complex modulus of the stress fiber model. For the following, however, we consider our
initial problem of a freely contracting stress fiber that has been released at one end. In
this case the force exerted on the boundary is the constant stall force of the molecular
motors and the solution simplifies to:

un(t) = − 2Fs

2N + 1

N∑

m=1

(−1)m+1

sin π(2m−1)
2(2N+1)

sin πn(2m−1)
2N+1

sin π(2m−1)
2N+1

kext + 4kint sin2 π(2m−1)
2(2N+1)

(

1 − e
− t

τm,N

)

(2.52)

2.2.2 Solution in the continuum limit

In section 2.1.3, we have discussed how the system of discrete model equations can
be converted to a continuum boundary value problem by performing the appropriate
continuum limit. Thereby we have assumed that the total length L of the fiber is
maintained constant while the fiber itself has been subdivided into an increasing number
N of shorter pieces of length aN = L/N . Moreover, in order to maintain the effective
modulus of the macroscopic fiber we had to re-normalize the viscoelastic constants
according to Eq. (2.14).

kN,int = φNkint and γN,int = φN γ̃int

kN,ext =
kext

φN

and γN,ext =
γext

φN

(2.53)

with the scaling factor φN = Na
L

. In addition we have introduced the spatial variable
x = L n

N
for the position of the n-th node. The same continuum limit can be performed

on the solution for the discrete model Eq. (2.52) and we will finally obtain the solution
of the continuum boundary value problem Eq. (2.22). To start with the continuum
limit we apply it to the retardation times:

τm,N =
γN,ext + 4γN,int sin2 π(2m−1)

2(2N+1)

kN,ext + 4kN,int sin2 π(2m−1)
2(2N+1)

= τ
ΓL2 + 4a2N2 sin2 π(2m−1)

2(2N+1)

κL2 + 4a2N2 sin2 π(2m−1)
2(2N+1)

(2.54)

Where we have used the parameters κ = kext/kint, τ = γ̃int/kint, Γ = γext/kint/τ ,
defined in section 2.1.3. Evaluation of the retardation times in the limit N → ∞
yields:

τm := τ
4ΓL2 + (aπ(2m − 1))2

4κL2 + (aπ(2m − 1))2
(2.55)

Since 1 ≤ m ≤ ∞ the upper relation defines infinitely many discrete retardation times.
The resulting range is bounded by the extreme values τ1 and τ∞:

τ ≤ τm ≤ τ
4ΓL2 + a2π2

4κL2 + a2π2
or τ

4ΓL2 + a2π2

4κL2 + a2π2
≤ τm ≤ τ (2.56)
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The first relation holds if κ < Γ, whereas the second holds if κ > Γ. For comparison,
our quantification of stress fiber retraction dynamics yields the ratio Γ/κ = 0.037 for
actin transfected cells, see section 3.1. Therefore, the latter relation in Eq. (2.56) seems
to be valid for stress fibers. In the special case, κ = Γ, the finite range of possible values
collapses to the single retardation time τ which leads to the largely simplified form of
the analytical solution, discussed early in section 2.1.3, see Eq. (2.24). In general, the
infinitely many retardation times give rise to a discrete spectrum of retardation times
further discussed below. The limiting procedure applied in Eq. (2.54) can be carried
out similarly on the remaining N -dependent terms of the discrete solution given in
Eq. (2.52). The result is the solution for the continuous boundary value problem
outlined in section 2.1.3:

u(x, t) = −8aδL
∞∑

m=1

(−1)m+1 sin πx(2m−1)
2L

4κL2 + (aπ(2m − 1))2
(1 − e−t/τm) (2.57)

First note that the sum in Eq. (2.57) is uniformly convergent for all x ∈ [0, L] and
t ∈ [0,∞], a majorant and convergent series is given e.g. by

∑∞
m=1

1
(aπ(2m−1))2

. One is

now tempted to set the found solution into the partial differential equation Eq. (2.21)
in order to check if the solution indeed obeys the boundary value problem. However,
verification is not straight forward. While differential operators with respect to time
can be dragged into the sum without any difficulties, one has to be cautious by ex-
changing the order of summation and spatial differentiation. The difficulties arise from
the fact that each differentiation with respect to x increases the power of m of the sum-
mands and convergence worsens. As a result, only the first derivative can be derived
in this way, higher derivatives can not be dragged into the sum. For the first deriva-
tive we show in appendix 6.3 that the resulting series is still uniformly convergent‡ for
x ∈ [0, L− ǫ] for all ǫ > 0. While higher derivatives are of no particular interest in the
problems we consider it is quite fortunate that the first derivative can be calculated
directly. For instance, in section 3.3.2 we will make use of the closed expression for
the first derivative in order to calculate the tension along the stress fiber which we also
compare to experimental data. Since the second spatial derivative is not accessible,
direct verification of the solution by substituting it into the partial differential equa-
tion is not feasible. At least, it is possible to validate the analytical solution Eq. (2.57)
by comparing it with the numerical solution of the boundary value problem derived
within the Matlab PDE-toolbox. Fig. 2.4 shows three resulting curves for the analytical
solution where the infinite sum has been approximated by 5, 10 and 1000 terms, respec-
tively. For comparison, the direct numerical solution of the boundary value problem
is given as a benchmark. Fig. 2.4(a) shows the time dependent displacement u(t) at
constant positions x ∈ {0, 9 µm, 12 µm, L = 15 µm} and Fig. 2.4(b) shows the spatial
dependence of the displacement u(x) for certain time points t ∈ {0, 1 s, 5 s,∞}. In the

‡Uniform convergence of both, the original and of the piecewise differentiated series, is a sufficient
condition for exchanging summation and differentiation. The badly convergent part of the resulting
series after differentiation has essentially the form

∑∞
m=1

z
m

m
= − ln(1 − z) with z = eiπ(1+ x

L
). The

explicit result in terms of the logarithm is valid for |z| < 1 and can be extended to |z| = 1 for all z 6= 1
on the unit circle. This constraint just excludes the case x = L, also compare appendix 6.3.
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Figure 2.4: Comparison of the numerical solution from the Matlab PDE toolbox (unum,
solid lines) with the analytical solution calculated by Eq. (2.57). The analytical solution
has been approximated by 5, 10 and 1000 terms (u5

ana dashed lines, u10
ana dotted lines

and u1000
ana marked by dots, respectively). (a): Plot of the time dependent displacement

u(t) at constant positions x ∈ {0, 9 µm, 12 µm, L}. (b): Plot of the spatial variations of
the displacement u(x) at certain time points t ∈ {0, 1 s, 5 s,∞}. Used parameter values
are (κ, τ, τǫ, δ) = (0.1, 5 s, 0.75 s, 0.6 µm) and the length of the fiber was taken to be
L = 15µm.

latter plot, the oscillating curves for the analytical solution, approximated by only 5
or 10 terms, highlight the fact that the spatial dependence of the displacement results
from a superposition of trigonometric functions, compare Eq. (2.57). These oscillations
smooth out when increasing the number of considered terms which is computational
not very costly. For example, conducting the sum up to a 1000 terms yields an accurate
approximation of the solution and is still considerably faster than the direct numerical
solution of the partial differential equation in the Matlab PDE-Toolbox.

2.2.3 Solution by inverse Laplace transform

There is yet another possibility to derive an analytical solution for the displacement
field by solving an inverse Laplace transform. The resulting analytical expression is
quite cumbersome and complicated to evaluate numerically. Since the concise solution
given in Eq. (2.57) is superior in many aspects we only briefly sketch the alternative
derivation and refer the interested reader to the detailed calculations presented in
appendix 6.4.

The simple initial conditions of vanishing displacements at t = 0 enables the Laplace
transform of the boundary value problem given in Eq. (2.22). The partial differential
equation is thereby simplified to an ordinary second order differential equation which
is straight forward to solve. The solution for the Laplace-transformed displacement is
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given by:

ū(x̃, s̃) = −δ · 1

s
sech

(

L̃

√
Γs̃ + κ√
1 + s̃

)

︸ ︷︷ ︸

·
sinh

(

x̃
√

Γs̃+κ√
1+s̃

)

s̃
√

1 + s̃
√

Γs̃ + κ
︸ ︷︷ ︸

=: ḡ1(s̃) =: ḡ2(x̃, s̃)

(2.58)

Here, ū denotes the Laplace transform of the displacement which is defined by the
integration ū(x̃, s̃) =

∫∞
0

u(x̃, t̃)e−s̃t̃dt̃. In the following, overbars always denote the
Laplace-transformed quantities. The variable s̃ = γ+iω̃ is in general a complex variable
with real part γ and imaginary part ω̃. The above solution for ū has been decomposed
into the product of the two functions ḡ1(s̃) and ḡ2(x̃, s̃). The inverse Laplace transform
can be performed on each factor separately, the inversion of the product is then given
by the convolution theorem. The inversion formula for the Laplace transform is in
general given by the Bromwich integral:

f(t̃) = L−1[f̄(s̃)](t̃) =
1

2πi

∫ γ+i∞

γ−i∞
es̃t̃f̄(s̃)ds̃ (2.59)

The constant γ has to be chosen such that all singularities of the function f̄(s̃) are
on the left hand side of the integration path. For the special case where t̃ > 0 and
in addition the contour may be closed by an infinite semicircle in the left half-plane
enclosing all singularities of f̄(s̃) then the residue theorem is applicable and (see [91]):

f(t̃) =
∑

m

res(es̃t̃f̄(s̃), s̃m) (2.60)

where s̃m are the singularities of the function f̄(s̃). It can be checked that Eq. (2.60) is
applicable for the functions ḡ1 and ḡ2 that have to be inverted. The inversion problem
is thus reduced to finding the residues of the two functions es̃t̃ḡ1(s̃) and es̃t̃ḡ2(s̃) at all
occurring singularities. The function ḡ1 has a simple pole at s̃ = 0 and infinitely many
simple poles at the roots of the hyperbolic cosine located at:

s̃m = −4L̃2κ + (π(2m − 1))2

4L̃2Γ + (π(2m − 1))2
(2.61)

In order to avoid double counting of the poles, in the upper formula, the index m runs
from m = 1, . . . ,∞. The residues at these simple poles are derived in appendix 6.4,
here we solely give the final solution for the inversion according to Eq. (2.60):

g1(t̃) = sech(L̃
√

κ) +
∞∑

m=1

(−1)m+116L̃2π(2m − 1)(Γ − κ)

(4L̃2Γ + (π(2m − 1))2)2

et̃s̃m

s̃m

(2.62)

In the equation above, the first term originates from the pole at s̃ = 0 and the in-
finite sum accounts for the poles at s̃ = s̃m. The inversion of the function ḡ2(s̃) is
more involved. It has a removable singularity at s̃ = −κ/Γ which gives no contri-
bution. However, at s = −1 it has an essential singularity. The associated residue,
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res(es̃t̃ḡ2(s̃),−1), is derived in appendix 6.4, here we again solely give the result for the
inversion:

g2(x̃, t̃) = e−t̃

∞∑

j=0

t̃j

j!

∞∑

n=0

(
n + j

j

)
x̃2(n+j)+1

(2(n + j) + 1)!
Γn(κ − Γ)j (2.63)

The final solution for the displacement is then given by means of the convolution
theorem as:

u(x̃, t̃) = −δ

∫ t̃

0

g1(t̃
′)g2(t̃ − t̃′)dt̃′ (2.64)

This expression which results from Eq. (2.62) to Eq. (2.64) is more difficult to evaluate
than the solution previously presented in Eq. (2.57). In particular, many terms in the
infinite series have to be taken into account in order to get a satisfying approximation for
the solution at large x and t. In appendix 6.4, we compare the upper result numerically
with the solution derived from the Matlab-PDE toolbox, see Fig. 6.1. Although little
further insight to the contraction dynamics can be gained from the upper result, it is
still interesting to compare the two different solutions given by Eqs. (2.62) to (2.64)
and by Eq. (2.57). It turns out that the retardation times in the first derivation are,
except for the signs, identical with the position of the poles in the last derivation.
Thus, in both expressions there appear identical time-dependent exponential factors.
However, in Eq. (2.64) there are in addition polynomial contributions in t which make
it difficult to extract the retardation spectrum like we present it below by means of the
other solution. Because of the functional complexity of the expressions it is not feasible
to show that the two analytical solutions are indeed identical. Still, the convolution
integral in Eq. (2.64) can be evaluated and the limit t → ∞ can be performed. The
resulting expression for the stationary solution, can be compared to the equivalent
expressions found in Eq. (2.24) which yields several non-trivial mathematical identities.
The interested reader is referred to appendix 6.4.

In the following, we will stick to the more concise solution given by Eq. (2.57) in
order to discuss the contraction dynamics of the fiber.

2.3 Retardation time spectrum

The solution for the displacement u(x, t) given in Eq. (2.57) can be understood as a
spatial dependent creep function of the stress fiber model. It describes the shortening
of the fiber as response to the contractile motor forces. From this point of view, the
m-th coefficient in Eq. (2.57) constitutes the amplitude of the retardation time τm.
The resulting discrete spectrum of retardation times is then given by the following
parametric equations in, m = 1, . . . ,∞:

Sm = −8aδL
(−1)m+1 sin πx(2m−1)

2L

4κL2 + (aπ(2m − 1))2
with τm = τ

4ΓL2 + (aπ(2m − 1))2

4κL2 + (aπ(2m − 1))2
(2.65)
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It is not very useful to eliminate the parameter m in the upper equations in order to get
the explicit dependence of the amplitudes S on the retardation times τm. This is only
convenient in the special case, x = L, where this relationship turns out to be linear:

S(τm) = −2aδ

Lτ

τ − τm

κ − Γ
(2.66)

Since the range of possible retardation times is bounded according to Eq. (2.56), it
follows that the spectrum for x = L has only negative amplitudes and the resulting
solution for the displacement at x = L is always a monotonically decreasing function.
However, for arbitrary x this holds not true. Inspection of Eq. (2.65) yields that in
general negative as well as positive amplitudes appear simultaneously. For example,
Fig. 2.5(a) and Fig. 2.5(b) show the discrete retardation spectrum at position x = 12 µm
and x = 9 µm, respectively. The spectrum at x = L is included in both figures as
a reference. Since x = L evaluates the numerator in Eq. (2.65) at its maximum,
the resulting spectrum constitutes a lower bound for the negative amplitudes of the
spectra with x 6= L. Similarly, the absolute value of Eq. (2.66) gives an upper bound
for all positive amplitudes (not shown in the figures). Thus, the retardation spectra
with x 6= L oscillate around zero within an envelope for the amplitudes that decays
linearly towards zero. The appearance of amplitudes with different signs gives rise to a
potentially overshooting solution. Such a situation is depicted in Fig. 2.5(c). Here, the
time-dependent solutions for the displacements at x = 9 µm and x = 12 µm overshoot
before they approach their steady state values and thereby form a minimum. These
characteristics turn out to be persistent for all displacements at x 6= L if and only if κ >
Γ. This is difficult to proof rigorously but in the following we will give some plausible
arguments. Consider the retardation spectrum for x = 9 µm in Fig. 2.5(b) and the
corresponding solution for the displacement highlighted in Fig. 2.5(d). One finds that
the smallest retardation time, m = 1, has the largest negative amplitude. Evidently
this term equilibrates much faster than all the remaining ones and because of its large
amplitude, it quickly overshoots the stationary value of the full solution, compare the
dash-dot curve in Fig. 2.5(d) with the green curve representing the full solution. The
next two terms, m = 2, 3 equilibrate considerably slower than the first term and have
positive but smaller amplitudes. Hence, the sum of these three terms must exhibit a
minimum at an intermediate time point, see black solid curve in Fig. 2.5(d). Together,
the first three terms already give an astonishingly accurate approximation of the full
solution, especially for small time scales. The remaining terms of larger retardation
times with further decreasing amplitudes can be considered as corrections to the long
term dynamics. The overshooting in the upper example is thus a consequence of the fact
that the amplitudes decrease with increasing retardation times. It is now important
to note that this feature is only given if κ > Γ. Then, according to Eq. (2.56) the
retardation times increase with m towards their maximal value τ while the envelope
of the amplitudes decreases with 1/m2. If the opposite is true, κ < Γ, then the
retardation times approach τ from above and the largest amplitudes are associated with
the largest retardation times. In this case, the solution for the displacements are always
monotonically decreasing functions exemplified in Fig. 2.4(a) where Γ/κ = 1.5. In
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Figure 2.5: (a) Discrete spectrum of retardation times for x = 12µm. The discrete
amplitudes are indicated by blue dots, the first three, m = 1, 2, 3, are numbered explicitly.
The discrete spectrum for x = L = 15µm is included as a reference, shown in red. The
inset shows a magnification of the spectra close to τm ≈ τ for m ≥ 10. The first
amplitudes m = 10, 11, 12, are numbered for clarity. (b) Same spectrum analysis as
(a) but for x = 9µm. The spectrum for x = L is again included as a reference. On
sees from (a) and (b) that the spectra for x = L constitutes a lower bound for all
negative amplitudes. Similarly, the absolute value of Eq. (2.66) gives an upper bound
for the positive amplitudes (not shown). (c) Shows the time-dependent solution for the
displacement of the fiber at x ∈ {9 µm, 12 µm, L}. The solutions for x 6= L overshoot their
finally approached stationary values and thereby form a minimum highlighted by dashed
lines. These characteristics are specific for x 6= L when Γ/κ < 1, for comparison see
Fig. 2.4 where Γ/κ = 1.5 and all solutions are monotonically decreasing. (d) Comparison
of the full solution for the displacement at x = 9µm (green line) with the first term
m = 1 (black dash-dot line), sum of second and third term m = 2, 3 (black dashed line)
and the sum of the first three terms m = 1, 2, 3 (black solid line). The first term causes
the overshoot, the subsequent terms turn it back to the finally approached stationary
value and thereby form the minimum. Used parameter values are identical to the values
used for Fig. 2.4, except for τǫ = 0.005 s which yields the ratio Γ = τǫ/τ = 0.001 ≪ 1.
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addition to the more technical arguments above we can also give a physical explanation
for the overshooting solutions. For that purpose it is instructive to consider the time
course of the viscoelastic stress or the tension along the fiber for the two extreme cases,
κ ≪ Γ or κ ≫ Γ. These considerations will be carried out below, in the next section.

To conclude the discussion of the retardation time spectrum we finally compare
our model to the KSR-model. The emergence of a discrete retardation spectrum in
our model is in contrast to the continuous spectrum obtained in the KSR-model for
macromolecules [90] which considers a different continuum limit. There, the viscoelastic
properties and the length a of the elementary units are kept constant while the number
of units increases, similar to a polymer where the properties of each monomer are
conserved. This leads to an infinitely long chain L = Na → ∞. The spatial coordinate,
however, remains discrete as it is a multiple of the finite length a. The two continuum
limits intend to describe two different situations and thus also differ in their results. The
essential differences are in summary, that the limit presented here yields a continuous
spatial coordinate x with a discrete spectrum of retardation times, whereas the limit
considered in the KSR-model yields a continuous spectrum of retardation times but
the spatial coordinate remains discrete.

2.4 Stress fiber tension

The calculation of the viscoelastic stress within the actin cytoskeleton will play an
essential role in understanding the dynamics of the mechanosensitive protein zyxin at
focal adhesions and along stress fibers. This tight comparison of our model with ex-
perimental data will be subject of section 3.3. Also, the occurrence of overshooting
solutions for the displacements presented above can be understood thoroughly by con-
sidering the time course of viscoelastic stress within the fiber. To further elucidate
these issues, we will first explain how the viscoelastic stress within the fiber can be
calculated and then we will discuss the time course of internal stresses for the two
extreme cases Γ → 0 and Γ → ∞. Since our model is purely one-dimensional, the
viscoelastic stress within the fiber is equivalent to a rope tension. It is given by:

σ(x, t) = γinta∂xu̇(x, t) + kinta∂xu(x, t) + Fm(x, t) (2.67)

The first and the second term account for the internal viscous and internal elastic
stresses, respectively. Since our model is one-dimensional the elastic stress is simply
proportional to the strain in x-direction, ∂xu, whereas viscous stress is proportional to
the rate of strain, ∂xu̇. The last term results from the contractile motor forces, also
compare Fig. 2.1. The latter can be expressed in terms of the continuum analog to
Eq. (2.2), that is, Fm(x, t) = Fs + aFs

v0
∂xu̇(x, t). The time dependent contributions of

the motor forces are thus absorbed by the viscous term in the equation above changing
the coefficient again to the effective internal viscosity γ̃int = γint + Fs

v0
. Before cutting,

we assume that the fiber is unperturbed u(x, 0) ≡ 0. Therefore the initial tension is
constant along the fiber and given by the stall force of the motors σ0 = Fs. It is now
convenient to normalize the tension by its initial value before cutting, leading to the
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equation:
σ(x, t)

σ0

= τ
a

δ
∂xu̇(x, t) +

a

δ
∂xu(x, t) + 1 (2.68)

where τ , δ are the model parameters defined in Eq. (2.20). The expression for the
normalized tension above can be calculated from the analytical solution for the dis-
placements given by Eq. (2.57). For that purpose, we have shown in appendix 6.3 that
the first spatial derivative of the solution can be derived by simply exchanging the
order of differentiation and summation. Also derivatives with respect to time do not
cause any problems, see appendix 6.3 for a detailed discussion. There is yet another
possibility to derive the tension within the fiber. Since inertia is neglected in our model,
the tension at a certain position after cutting is also determined by the sum over all
external forces that pull on this piece of the fiber. This is quite similar to a tug of war
where the tension in the rope is given by the sum over the manpower:

σ(x, t) = −1

a

∫ L

x

kextu(x, t)dx − 1

a

∫ L

x

γextu̇(x, t)dx (2.69)

The first term constitutes the sum over all elastic forces mediated by the crosslinks
and the second term accounts for the viscous friction forces exerted by the surrounding
cytosol. The integration runs over the length of the considered piece of the fiber. It
is a pure matter of taste to choose between the two alternatives either Eq. (2.68) or
Eq. (2.69).

In the following, we use Eq. (2.68) to discuss the time course of the normalized
tension for different ratios of Γ/κ. We start with the special case Γ/κ = 1. In this case
the solution for the displacement u is particularly simple. Using Eq. (2.24) yields for
the time course of tension:

σ(x, t)

σ0

= 1 − cosh x
√

κ
a

cosh L
√

κ
a

=
σss(x)

σ0

(2.70)

Interestingly, for this special case, the tension is not time dependent. This means
that at each position along the fiber the tension drops to its final steady state value
immediately after cutting. At t = 0 only the molecular motors and the viscous stress
contributes to the tension. In the steady state the viscous forces vanish and their
initial contribution is finally exactly substituted by the elastic stress. Thus, in the case
Γ = κ, this turnover from viscous to elastic stress is at each time point and at each
position along the fiber exactly balanced. In the moment of cutting, each fiber element
is subject to a one-step stress history, from a constant high stress level before cutting,
down to a lower constant stress level after cutting. The height of the step, however,
is dependent on the position along the fiber. This one-step stress history results in a
simple creep response of each segment along the fiber and the length as well as the
displacement of each segment will thus change monotonically in time. This can also be
read off directly from the solution, given in Eq. (2.24).

Next we discuss the case Γ/κ → ∞ which is equivalent to τ → 0. In this case it
is sufficient to study the tension shortly after cut at t = 0. Since here, τ is negligible,
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Figure 2.6: Time course of tension at certain position x ∈ {0, 6, 9, 12, 13.5}µm along
the fiber. (a) Shows the case Γ ≪ κ. Used parameter values are (κ, τ, τǫ, δ) =
(0.1, 5 s, 0 s, 0.6 µm) which means Γ = 0. (b) Shows the case Γ ≫ κ. Used parame-
ter values are (κ, τ, τǫ, δ) = (0.1, 0.0 s, 0.5 s, 0.6 µm) which means Γ → ∞. The length of
the fiber was taken to be L = 15µm in both cases.

the viscous stress term in Eq. (2.68) cancels out. The initial elastic stress also vanishes
since the initial strain is zero according to the imposed initial conditions. Thus, the
stress shortly after cut is still given by the stall force of the motors. In other words,
the time course of tension upon cut is continuous. After cutting, the stress decreases
monotonically to its steady state value, illustrated in Fig. 2.6(b). Since the stress
within each fiber segment decreases monotonically, also the change of length as well
as the displacements of each segment will change monotonically in time. In the more
general case of finite ratios with 1 < Γ/κ < ∞, the time course of stress exhibits a
discontinuity at the moment of cut, similar to the case where Γ = κ. But in contrast
to the latter case, here, the sudden down step in stress does not immediately reach the
steady state value. This remaining difference in stress then relaxes monotonically in
time. For the same reasons as discussed before, also the displacements along the fiber
then change monotonically in time. The preservation of a certain amount of stress
shortly after cut is essentially due to the high external friction that arrests the fiber
elements at their initial position and thereby prevents the perturbation of the cut to
instantly propagate along the fiber.

The last case to discuss is 0 ≤ Γ/κ < 1. To gain some intuition about the tension
dynamics for this range it is instructive to study again the extreme case Γ/κ = 0 shortly
after cut, at t = 0. According to the imposed initial conditions the elastic stress term
again vanishes at t = 0 and the viscous stress term can be evaluated by applying the
solution for the displacements given in Eq. (2.57):

a
τ

δ
∂xu̇(x, 0) = − 4

π

∞∑

m=1

(−1)m+1 cos (2m−1)πx
2L

2m − 1

= − 2

π

(
arctan(eiπ x

2L ) + arctan(e−iπ x
2L )
)

= −1

(2.71)
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In the first step we used the solution for the displacements, carried out the derivatives
and set Γ = 0. To perform the second step we have expressed the cosine by exponential
functions. The result can be identified with the Taylor series of the inverse tangent.
The last step follows by using the definition of the inverse tangent in terms of the
natural logarithm. To evaluate the arguments we have used that 0 ≤ π x

2L
< π

2
. The

resulting viscous stress is constant along the fiber and just cancels the contributions of
the contractile motor forces. Thus, at the moment of cut, the total stress drops to zero
all along the fiber. As a consequence, shortly after cut, all fiber segments are subject
to the full contractile motor force, as if they were contracting independently from
each other. While the fiber retracts, restoring forces are built up by tensed crosslinks
and the tension within the fiber starts to approach its steady state value from below,
illustrated in Fig. 2.6(a). The non-monotonic stress history, namely the first instant
loss of tension and the subsequent recovery of the steady state tension from below
causes each fiber segment to contract to a large extend at first and then relax to its less
contracted steady state length. This also results in the overshooting solutions for the
displacements, discussed beforehand and illustrated in Fig. 2.5(c). These overshooting
solutions are a persistent characteristic for all segments along the fiber given that
0 ≤ Γ/κ < 1. The only exception takes place at x = L where the tension drops to
zero after cut and remains there due to the imposed boundary conditions. In the more
general case where the ratio is finite, 0 < Γ/κ < 1, the initial loss of tension along the
fiber is not complete. In this case, the external friction does not vanish completely and
can sustain a certain amount of tension which is increasing with distance from the cut.
Still, if Γ/κ < 1 the final steady state tension is then approached from below and the
solutions for the time course of strain as well as for the displacements will exhibit the
overshooting characteristics. Interestingly, the approach to the steady state tension is
even not monotonic after the first local minimum. This is indicated by the time course
of tension at x = 0 in Fig. 2.6(a) which exhibits a pronounced second extremum before
it further approaches steady state. This is the onset of damped oscillations discussed
below.

2.5 Damped oscillations without inertia

In the previous sections we have shown that there exist overshooting solutions for the
displacements of inner fiber segments, if Γ/κ < 1. These overshooting solutions are at
the beginning of damped oscillations about the approached steady state. This can be
demonstrated by plotting the residual displacement, that is, the difference between the
actual displacement and its steady state value, u(t) − uss, at x < L, shown in Fig. 2.7
as an inset. Two periods can be traced easily, but the amplitude decays quickly over
time. In order to see how these oscillations proceed we plot the absolute value of the
residual displacement in a log-log-plot, see Fig. 2.7. To ensure that these oscillations are
not simply due to numerical inaccuracy we show the numerical solution, derived from
the Matlab PDE toolbox and compare it to the analytical solution, calculated from
Eq. (2.57) where the infinite sum has been approximated by the leading 105 terms.
Both solutions oscillate and show 5 periods before they diverge at around t ≈ 50 s.
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Figure 2.7: In the case of Γ < κ, the displacements of inner fiber segments exhibit
damped oscillations around their final steady state. Here, we plot the time course of
the absolute difference |u(x, t) − uss(x)| on a logarithmic scale. The chosen position
is x = 1µm. To assure that the oscillations are not due to numerical inaccuracy we
compare the numerical solution (red line) to the solution calculated from Eq. (2.57)
where the infinite sum has been approximated by the leading 105 terms (black dots).
The oscillations are reliable up to t ≈ 50 s where the two solutions begin to diverge.
In addition, we also give the difference u(x, t) − uss(x) on a normal scale as an inset.
For clarification we included the counting of the extremal values. Used parameters are
(κ, τ, τǫ, δ) = (0.1, 5 s, 0 s, 0.6 µm) which yields Γ/κ = 0. The fiber length was chosen to
be L = 100µm.

For longer times, both solutions are not reliable any more but it is expected that a
further increase in numerical precision reveals more oscillations. From the plot it can
be deduced, that the amplitude decays quickly and the period time increases over time.

These oscillations are also found when plotting the viscoelastic stress. By comparing
the viscoelastic stress with the strain within the fiber we find that strain lags behind
stress as it is expected for a viscoelastic material exposed to cyclic forces.

As mentioned before, the oscillations occur only at inner fiber segments but the
total length of the fiber decreases monotonically over time as it is expected for an
over damped system. The fact that the oscillations occur at the inner segments is still
surprising as the fiber is model in an over damped limit, that is, inertia is neglected. So
far, we have no simple physical argument for the onset of these fiber internal oscillations.
But according to our model these oscillations should be observed experimentally when
a viscoelastic fiber under prestress is released in an elastic medium. Elastic, because
Γ/κ ≪ 1 essentially means that the external viscosity can be neglected and that the
surrounding of the fiber rather appears to be purely elastic.

By fitting our model to stress fiber contraction dynamics after laser release we find
that these conditions are likely fulfilled for stress fibers. Results are reported in the
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next chapter. The cytoplasm which surrounds the stress fibers is indeed viscoelastic but
the effective internal fiber viscosity is so large that Γ/κ ≪ 1 seems to be fulfilled, see
the last line in Tab. 3.1. But it is worth mentioning, that the activity of the molecular
motors contribute to the fiber internal viscosity. As the motor activity can be regulated
by the cell, the condition, Γ/κ < 1, has not to be fulfilled for every single stress fiber.

In general, these oscillations will be hard to measure experimentally, since they only
occur at the inner fiber segments where the displacements are very small and hard to
resolve experimentally. But there is few experimental data that at least indicate the
first overshoot. For example, compare Fig. 3.2(b). Here, the inner bands, no.3 (green)
and no.4 (pink) fairly follow the overshooting model solutions for the displacement.

2.6 The complex modulus of the fiber model

The mechanical properties of the cytoskeleton are intensively studied with many differ-
ent experimental setups, including passive microrheology with immersed micrometer
sized beads [92, 93] or active measurements like micropipette aspiration [94, 95], atomic
force microscopy [96], optical or magnetic tweezers [97–100], all reviewed in [60]. With
the latter techniques forces can be applied to the cytoskeleton and the resulting me-
chanical deformation can be measured. In case of cyclic forces, stress and strain are
connected by the complex modulus, see appendix 6.1. The complex modulus of the
cytoskeleton as a function of frequency has been measured in detail using magnetic
tweezers [99, 100]. So far, experimental measurements have been concentrated on
isotropic actin networks as it is organized for example in lamellipodia. However, little
experimental or theoretical work has been performed on single actin stress fibers [89].

In the following, we will calculate the complex modulus for our stress fiber model
taking three different approaches: Firstly, by a recursion rule deduced from the discrete
model, secondly, by solving the continuum model for cyclic boundary forces and finally,
by solving the Laplace-transformed model equation to obtain the Laplace-transformed
creep compliance.

2.6.1 Recursion for the complex modulus

Appendix 6.1 provides all necessary tools to derive the complex modulus for the dis-
crete set of springs and dashpots shown in Fig. 2.1. The needed relations are briefly
recapitulated and thereby adapted to the present problem. Finally, repeated applica-
tion of these relations yields an iteration rule that determines the complex modulus of
the stress fiber model up to arbitrary high numbers of sarcomeric units.

The main tools to calculate the viscoelastic moduli of more complicated networks
are the summation rules given by Eq. (6.10) and Eq. (6.12): When two elements
are connected in series then the effective creep compliance is the sum of the individ-
ual creep compliances. And conversely, when two elements are connected in parallel
their relaxation moduli are additive. Obviously, these relations hold true for their
Laplace-transformed quantities, too. Multiplying the Laplace-transformed Eq. (6.12)
and Eq. (6.10) by s and performing the limit according to Eq. (6.25) and Eq. (6.27)
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yields equivalent relations for the complex compliance and the complex modulus:

J∗→→
tot (ω) = J∗

1 (ω) + J∗
2 (ω) and G∗⇉

tot (ω) = G∗
1(ω) + G∗

2(ω) (2.72)

The symbol →→ means that elements are connected in series and ⇉ denotes parallel
alignment. Once, either G∗(s) or J∗(s) has been determined for a certain setup, the
other entity can be calculated from Eq. (6.28), for example:

G∗(ω) =
1

J∗(ω)
(2.73)

Eqs. (2.72)-(2.73) are now used to set up an iteration rule to determine the complex
modulus of the discrete stress fiber model up to arbitrary high numbers of sarcomeric
units. The picture Fig. 2.1 illustrates that the stress fiber model is built up by con-
necting internal Kelvin-Voigt bodies with external Kelvin-Voigt bodies alternating in
series and in parallel. The most simple model for the stress fiber, containing only one
sarcomeric unit, is a combination of a single internal Kelvin-Voigt body with complex
modulus G∗

int(ω) and complex compliance J∗
int(ω) connected in parallel with an exter-

nal Kelvin-Voigt body with complex modulus G∗
ext(ω) and complex compliance J∗

ext(ω).
The complex modulus G∗

1(ω) for the whole sarcomeric unit is according to Eq. (2.72):

G∗
1(ω) = G∗

ext(ω) + G∗
int(ω) (2.74)

and Eq. (2.73) directly yields the complex compliance of the first unit:

J∗
1 (ω) =

1

G∗
1(ω)

=
1

G∗
ext(ω) + G∗

int(ω)
(2.75)

A further refinement of the model by an additional sarcomeric unit requires two inter-
mediate steps: at first, an internal Kelvin-Voigt body has to be connected in series and
secondly an external Kelvin-Voigt body has to be connected in parallel. According to
Eq. (2.72) the effective complex compliance J∗

1.5 after the first half step, is the sum of
the individual complex compliances:

J∗
1.5(ω) = J∗

int(ω) + J∗
1 (ω) (2.76)

After this half step the complex modulus G∗
1.5 can be calculated from J∗

1.5 by means of
Eq. (2.73)

G∗
1.5(ω) =

1

J∗
1.5(ω)

=
1

J∗
int(ω) + J∗

1 (ω)
(2.77)

In order to complete a full iteration step an additional external Kelvin-Voigt body has
to be connected in parallel. In a parallel setup, the complex moduli are additive and
the effective complex modulus G∗

2 of a stress fiber with two sarcomeric units is thus
given by

G∗
2(ω) = G∗

ext(ω) + G∗
1.5(ω) = G∗

ext(ω) +
1

J∗
int(ω) + J∗

1 (ω)
(2.78)
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Figure 2.8: Iterated non-dimensional storage modulus G′(ω̃) = G′/kint (blue curves)
and loss modulus G′′(ω̃) = G′′/kint (red curves) calculated from Eq. (2.85). The fre-
quency ω̃ = ωτ is also non-dimensional. Curves are shown for the iteration steps
N ∈ {5, 10, 25, 50, 100}. Used parameter values are L/a = 30, κ = 0.1 and Γ = 0.0005.
As a reference, analytical solutions for G′ and G′′ calculated from Eq. (2.95) are shown
as dash-dot and dashed black lines.

Repeated application of the relation given by Eq. (2.73) yields the complex compliance
J∗

2 for a stress fiber with two sarcomeric units

J∗
2 (ω) =

1

G∗
2(ω)

=
1

G∗
ext(ω) + 1

J∗
int(ω)+J∗

1 (ω)

(2.79)

The presented iteration scheme can be applied for arbitrary numbers of sarcomeric
units. The appropriate recursion rule for the complex compliance J∗

N of a stress fiber
with N sarcomeric units is given by:

J∗
N(ω) =

1

G∗
ext(ω) + 1

J∗
int(ω)+J∗

N−1(ω)

with J∗
1 (ω) =

1

G∗
ext(ω) + G∗

int(ω)
(2.80)

Similarly, the recursion rule for the complex modulus is given by:

G∗
N(ω) = G∗

ext(ω) +
1

J∗
int(ω) + 1

G∗
N−1(ω)

with G∗
1(ω) = G∗

ext(ω) + G∗
int(ω) (2.81)

In both cases, the recursion rule describes a terminating continued fraction. Note that
G∗

int(ω) appears only in the initial conditions. The aim of this section is to derive the
complex modulus for the continuous stress fiber model. The continuum description is
appropriate when the stress fiber is composed of many sarcomeric units, say N → ∞.
Simple application of this limiting procedure in Eq. (2.81), however, would not lead to
the correct result. In fact, the viscoelastic constants of the springs and dashpot have
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to be re-scaled during the limiting procedure according to Eq. (2.14) in order to ensure
that the effective viscoelastic properties of the whole chain are conserved, compare also
the discussion in section 2.1.3. For convenience we again summarize the appropriate
scalings of the viscoelastic constants below.

kN,int = φNkint and γN,int = φNγint

kN,ext =
kext

φN

and γN,ext =
γext

φN

(2.82)

Where the scaling factor φN = a
aN

= Na
L

has been introduced again. As a consequence,
also the moduli of the internal and external Kelvin-Voigt bodies have to be re-scaled.
In particular, when aiming at the continuum limit, the recursion rule given in Eq. (2.81)
should be rewritten as:

G∗
N(ω) = G∗

N,ext(ω) +

(

1

J∗
N,int(ω) + 1

G∗
N,ext

(ω)+...

)

N−1

... + G∗
N,int(ω) (2.83)

The fraction in parentheses is continued periodically (N − 1)-times and terminates
with G∗

N,int(ω). Here, the index N denotes that the complex modulus and the complex
compliance of the Kelvin-Voigt bodies now become dependent on the iteration step
N . For example, substituting the scaled elastic constants given in Eq. (2.14) into the
expression for the complex modulus of a Kelvin-Voigt body, see Tab. 6.1, yields:

G∗
N,ext = kN,ext+iωγN,ext =

1

φN

(kext+iωγext) =
kint

φN

(κ+iωτǫ) =
kint

φN

(κ+iω̃Γ) =
kint

φN

G∗
ext

Where the non-dimensional external complex modulus G∗
ext has been introduced. Sim-

ilarly, the other moduli can be calculated.

G∗
N,int = kintφNG∗

int with G∗
int(ω) = 1 + iωτ = 1 + iω̃

J∗
N,int =

1

kintφN

J ∗
int with J ∗

int(ω) =
1 − iωτ

1 + ω2τ 2
=

1 − iω̃

1 + ω̃2

G∗
N,ext =

kint

φN

G∗
ext with G∗

ext(ω) = κ + iωτǫ = κ + iω̃Γ

J∗
N,ext =

φN

kint

J ∗
ext with J ∗

ext(ω) =
κ − iωτǫ

κ2 + ω2τ 2
ǫ

=
κ − iω̃Γ

κ2 + ω̃2Γ2

(2.84)

Substituting these expressions into Eq. (2.83) yields the recursion rule for the complex
modulus G∗

N(ω̃) of the stress fiber in terms of the model parameters a, L, κ, Γ:

G∗
N(ω̃) =

G∗
ext(ω̃)

φN

+






1
J ∗

int(ω̃)

φN
+ 1

G∗
ext

(ω̃)

φN
+...






N−1

... + φNG∗
int(ω̃) (2.85)
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Note that G∗
N(ω̃) is non-dimensional since it is scaled by the stiffness kint of one sar-

comeric unit of length a. The first term
G∗

ext(ω̃)

φN
which accounts for the last external

linkage at the right boundary in Fig. 2.1 vanishes for increasing N according to 1/N .
Thus in the limit of large N one obtains the same result compared to a model where
this terminating linkage is missing (the considered term is just cancelled out in the
recursion formula). One can now use either recursion rule to numerically approximate
the continuum value for the complex modulus G∗(ω̃) of the stress fiber model up to
arbitrary high precision. Numerical calculations reveal that regarding the speed of
convergence neither approach is superior to the other. Noteworthy, their arithmetic
sum (obtained by reducing the first term in Eq. (2.85) by half), however, converges
considerably faster. To illustrate the results, the complex valued function is decom-
posed numerically into its real part, the storage modulus G ′(ω̃) and its imaginary part,
the loss modulus G ′′(ω̃). The results for the iteration scheme Eq. (2.85) are illustrated
in Fig. 2.8 for several iteration steps. The curves for the storage modulus are shown
in blue whereas the curves for the loss modulus are shown in red. Used parameter
values are given in the figure caption. For comparison, the analytical results for the
storage and loss modulus, derived in the following section, are highlighted as dash-dot
and dashed black line, respectively. Convergence is slow but the numerical solution for
N = 100 iteration steps approximate the analytical results within a relative error of
about 5%.

2.6.2 Closed solution from continuum limit

In the previous section a straight forward derivation of the the complex modulus for
the stress fiber model was presented. However, the resulting iteration rule leads to
poor convergence. Moreover, numerical evaluation of the continued fractions is quite
time consuming. The presented iteration scheme is in some sense also very similar to
the derivation of our model solution. We first calculated the complex modulus for a
certain number N of sarcomeric units and subsequently performed the continuum limit.
Instead of repeating this procedure one can of course also use the found model solution
to derive a closed form of the complex modulus. For this purpose one has to slightly
adapt the boundary conditions of the model. Instead of the tension free boundary
conditions used so far, in the present situation, one has to impose a cyclic boundary
force: Fb(t) = f0e

iωt. This time dependent boundary force can be substituted into the
general solution of our discrete model Eq. (2.50):

un(t) =
2f0

2N + 1

N∑

m=1

(−1)m−1

sin π(2m−1)
2(2N+1)

sin πn(2m−1)
2N+1

sin π(2m−1)
2N+1

γext + 4γ̃int sin2 π(2m−1)
2(2N+1)

∫ t

0

eiωt′e
− t−t′

τm,N dt′ (2.86)

It is straight forward to evaluate the integration and subsequently perform the contin-
uum limit in the same way as presented in section 2.1.3. The imposed cyclic boundary



2.6 The complex modulus of the fiber model 47

force then results in the following solution for the displacements along the fiber:

u(x, t) = 8aδ0L

∞∑

m=1

(−1)m+1 sin πx(2m−1)
2L

4κL2 + (aπ(2m − 1))2

1

iωτm + 1

(
eiωt − e−t/τm

)
(2.87)

where we have defined δ0 = f0/kint. Inspection of the time dependent terms yields that
the solution for the displacements approaches a harmonic oscillation. The deviations
decay exponentially in time, according to e−t/τm . Note that the retardation times
τm > 0 for all m. As a consequence, in the limit for large times, the fiber displacements
also oscillates with the same frequency ω as the force input but the constant phase
shift between displacements u(x, t) and Fb(t) might vary spatially along the fiber. In
the following, we are only interested in the response of the fiber as a whole, that is, we
focus only on the displacement at x = L. With the above arguments, we find in the
limit for large times:

u(L, t) =

(

8aL

∞∑

m=1

1

4κL2 + (aπ(2m − 1))2

1

iωτm + 1

)

︸ ︷︷ ︸

· δ0e
iωt

= 1/G∗(ω)

(2.88)

By comparing the upper result with Eq. (6.24) one can simply read off the complex
modulus. As in the previous section we scale it with the internal spring stiffness kint.
For comparison with the previous results it is also convenient to switch to the non-
dimensional variables. The upper expression for the complex modulus can be separated
into real and imaginary part, the storage and the loss modulus, respectively. We find

G∗(ω̃) =
p(ω̃)

p2(ω̃) + q2(ω̃)
︸ ︷︷ ︸

+ i
q(ω̃)

p2(ω̃) + q2(ω̃)
︸ ︷︷ ︸

= G ′(ω̃) = G ′′(ω̃)

(2.89)

with

p(ω̃) = 8L̃
∞∑

m=1

1

4κL̃2 + π2(2m − 1)2

1

ω̃2τ̃ 2
m + 1

q(ω̃) = 8L̃
∞∑

m=1

1

4κL̃2 + π2(2m − 1)2

ω̃τ̃m

ω̃2τ̃ 2
m + 1

(2.90)

Where we have defined τ̃m = τm/τ . Despite the fact that this expression for the complex
modulus looks more complicated than its definition given by the continued fraction in
Eq. (2.85), it is easier to evaluate. Another great advantage is that this solution is
already split into its real and imaginary part. In the following we will present an even
more concise solution for the complex modulus. However, in this case, the storage and
loss modulus can not be given explicitly.
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Figure 2.9: Log-log plot of the storage modulus (blue) and the loss modulus (red). The
plotted moduli G′ = G′/kint and G′′ = G′′/kint as well as the frequency ω̃ = ωτ are non-
dimensional quantities. The scaling at low and high frequencies is illustrated for both
storage modulus (dashed black lines) and loss modulus (dash-dotted black lines). Curves
were calculated from Eq. (2.95) with parameters: L̃ = 30, κ = 0.1 and Γ = 0.0005.

2.6.3 Analytical solution by Laplace transform

In this section, the complex modulus is derived more elegantly by solving the stress
fiber model equation directly for the Laplace-transformed creep compliance. This is
feasible since the Laplace-transformed stress fiber equation together with the appro-
priate boundary conditions can be solved analytically. The calculation finally yields
an analytical expression for the complex modulus which could be easily used to fit ex-
perimental data. Starting point of the derivation is the continuum stress fiber model,
Eq. (2.22), expressed in non-dimensional quantities x̃ = x/a and t̃ = t/τ

∂2
x̃u̇(x̃, t̃) + ∂2

x̃u(x̃, t̃) − κu(x̃, t̃) − Γu̇(x̃, t̃) = 0 (2.91)

In general, to determine the creep compliance, the viscoelastic body under consideration
is exposed to a sudden force application. Measurement of the resulting deformation
then determines the creep compliance. In terms of the one dimensional stress fiber
model this means that the boundary conditions have to reflect the sudden application of
an external force. Solution for u(L, t) then provides the creep compliance. To illustrate
the appropriate boundary conditions assume the following mind experiment: Prior to
cutting an external mechanical manipulator, like a magnetic bead or a cantilever, is
tightly glued to the stress fiber at position x = L. Then at t = 0 the stress fiber is
cut right next to the external manipulator. To hold the fiber fragment in its initial
position the external pulling force has to balance the contractile inward directed motor
forces. However, to deform the fiber, the externally applied force, fext, has to exceed
the stall force of the motors by a certain amount, fext = Fs + f0. The suddenly applied
and unbalanced part of the external force f0 will cause the stress fiber to elongate
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according to u(L, t) = f0J(t), where J(t) is the creep compliance of the stress fiber.
The boundary conditions at the perturbed end are given by the force balance of the
internal viscoelastic and contractile forces of the stress fiber and the externally applied
forces.

∂x̃u̇(L̃, t̃) + ∂x̃u(L̃, t̃) − δ0 = 0 (2.92)

Where the abbreviation δ0 = (fext − Fs)/kint = f0/kint has been introduced and L̃ =
L/a. The appropriate boundary condition at the left end is u(0, t̃) = 0 and the initial
condition is given by u(x̃, 0) = 0. Obviously, the additional external force does not
further complicate the boundary value problem discussed in the previous sections.
Laplace transform of the equations leads to a second order differential equation (also
see appendix 6.4) which can be solved for the Laplace-transformed displacement:

ū(x̃, s̃) = δ0

sech
(

L̃
√

Γs̃+κ√
1+s̃

)

sinh
(

x̃
√

Γs̃+κ√
1+s̃

)

s̃
√

1 + s̃
√

Γs̃ + κ
(2.93)

The solution for x̃ = L̃ is of particular interest since comparison with ū(L̃, s̃) = δ0J̄ (s̃)
yields the Laplace-transformed creep compliance, non-dimensionalized with the internal
spring stiffness: J̄ (s̃) = J̄(s̃)kint. Overbars denote Laplace-transformed quantities.
One finds:

J̄ (s̃) =
tanh

(

L̃
√

Γs̃+κ√
1+s̃

)

s̃
√

1 + s̃
√

Γs̃ + κ
(2.94)

The complex modulus directly follows from the Laplace-transformed creep compliance
using Eq. (6.23) and Eq. (6.25):

G∗(ω̃) = lim
γ→0

1

s̃J̄(s̃)
=

√
1 + iω̃

√
iΓω̃ + κ

tanh
(

L̃
√

iΓω̃+κ√
1+iω̃

) (2.95)

Unfortunately, it is not feasible to decompose the found complex modulus in general
into its real and imaginary parts, the storage modulus G ′(ω̃) and the loss modulus
G ′′(ω̃), respectively. However, this is possible for the special case when Γ/κ = 1.
Then, the expression for the complex modulus largely simplifies to G∗(ω̃) = (1 +
iω̃)

√
κ/ tanh(L̃

√
κ). The storage modulus becomes a constant, and the loss modulus

is linearly dependent on the frequency. These are the simple characteristics of a single
Kelvin-Voigt body! The more the ratio Γ/κ differs from unity the larger are the devi-
ations from these simple characteristics. To further discuss the frequency dependence
for the general case κ/Γ 6= 1, consider the limits ω̃ → 0 and ω̃ → ∞. In both limits,
the stress fiber model again exhibits the characteristics of a Kelvin Voigt body, that is
a constant storage modulus and a loss modulus linearly dependent on the frequency.
The explicit values for the limit ω̃ → 0 are:

G ′
0 =

√
κ coth(L̃

√
κ)

G ′′
0 (ω̃) =

1

4κ
csch2(L̃

√
κ)
(

2L̃κ(κ − Γ) +
√

κ(κ + Γ) sinh(2L̃
√

κ)
)

ω̃

(2.96)
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For small frequencies, the magnitude of the constant storage modulus only depends on
κ. The slope of the loss modulus, however, depends on both κ and Γ. By estimating
the lower bound sinh(x) ≥ x, it follows that the slope of the loss modulus at low
frequencies is always positive, irrespective of the precise values for Γ and κ. Similar
relations are found for the limit, ω̃ → ∞:

G ′
∞ =

1

4Γ
csch2(L̃

√
Γ)
(

2L̃Γ(Γ − κ) +
√

Γ(Γ + κ) sinh(2L̃
√

Γ)
)

G ′′
∞(ω̃) =

√
Γ coth(L̃

√
Γ)ω̃

(2.97)

For high frequencies, the magnitude of the storage modulus is dependent on both Γ
and κ but the slope of the loss modulus is fully determined by Γ. It is also here of
course true that G ′

∞ ≥ 0. Furthermore, it can be shown, that the saturation level of
the storage modulus for high frequencies is always larger than the value for very low
frequencies, G ′

∞/G ′
0 ≥ 1. Similarly, the slope of the loss modulus at very low frequencies

is always larger than the slope at very high frequencies, G ′′
0/G ′′

∞ ≥ 1. The differences
G ′
∞−G ′

0 and G ′′
0 −G ′′

∞ become minimal and vanish if and only if Γ = κ. This special case
where the stress fiber model exhibits the simple characteristics of a Kelvin-Voigt body
has been discussed beforehand, see section 2.1.3 and 2.3. The frequency dependence
of the storage modulus and the loss modulus are illustrated in Fig. 2.9. The scaling
behavior at low and high frequencies are shown as well. Parameter values are given in
the figure caption.

2.7 Summary and discussion

In this chapter we developed a viscoelastic model for stress fibers in a discrete and
a continuum description. Subsequently, we solved both versions analytically for the
displacement field along the fiber. Thereby, we imposed boundary conditions that
are appropriate to describe stress fiber dissection experiments. Explicit formulas have
been given for the time course of the viscoelastic stress within the fiber as well as an
analytical solution for the complex modulus of our stress fiber model. Furthermore, we
demonstrated that, within a certain parameter range, this viscoelastic model without
inertia exhibit damped oscillations of inner fiber segments. The results derived within
this chapter are the basis for the mechanical part of our mechano-chemically coupled
model.

By developing the stress fiber model we made strong modeling assumptions, for
instance we assumed that the elastic properties of stress fibers are isotropic and the
fiber mechanics can be described by linear elasticity theory. In addition, in a cellular
system there always exist other processes which are of potential relevance. For example,
it has been shown experimentally that the stress-strain relation of stress fibers, isolated
from vascular smooth muscle cells, becomes nonlinear for large fiber elongations [89].
Moreover, on large length scales, stress fibers might not resist in equal measure to
compressional as to tensile deformation. Lively discussed alternatives are cable-like
characteristics with tensile but vanishing compressional resistance [101] which would



2.7 Summary and discussion 51

make the material intrinsically nonlinear. The proposed model is also static in the
sense, that it does not account for (un-)binding of crosslinkers or (de-)polymerization
of actin filaments within the stress fiber. Interestingly, these processes can also be
expected to depend on the local mechanical stress within the fibers. Stress dependent
polymerization kinetics of actin filaments in stress fibers haven already been considered
theoretically [102]. We also neglect the exact three-dimensional geometry of the fibers.

Despite the mentioned drawbacks and limitations, the model is capable to capture
the main physical characteristics of contracting stress fibers after laser release indicat-
ing that most of the modeling assumptions are fulfilled on the time and length scale of
the measurement. For example, as the retraction occurs within a few second, polymer-
ization of the actin filaments might not be a major issue. Furthermore, as stress fibers
are much longer than their actual thickness, the precise geometry might play a mi-
nor role and the one-dimensional approximation might be well justified. The excellent
agreement between the model and experimental data encouraged us to use the model
to quantify stress fiber cutting experiments by Colombelli et al. [34]. The results of
this cooperation are reported in the next chapter.

One theoretical prediction of our model worth mentioning is the frequency depen-
dence of the complex modulus, derived analytically in section 2.6. To our knowledge,
the complex modulus of a single stress fiber has not been measured yet in a living cell
but there exist data on isotropic actin networks. The complex modulus of the cytoskele-
ton as a function of frequency has been measured over several orders of magnitudes
using magnetic tweezers [99, 100] applied on human airway smooth muscle cells. Up to
a frequency of about 10 Hz, the storage as well as the loss modulus obey a weak power
law ∼ ωz, with nearly the same exponent z = 0.2. While the storage modulus keeps
the power law dependence for higher frequencies, the loss modulus deviates from these
simple characteristics and approaches, but never quite attains, a power law exponent
of z = 1. The loss modulus also crosses the curve of the storage modulus from below
at very high frequencies. The latter value z = 1 for the loss modulus would be the
characteristics of a Newtonian viscosity. This frequency dependence of the storage and
loss modulus is very well described by the soft glassy rheology model [100, 103].

Our model predicts a different scaling behavior for stress fibers. For very low and
high frequencies, the model exhibits the simple characteristics of a Kelvin-Voigt body,
that is, a constant storage modulus, z = 0, and a loss modulus that is linear dependent
on the frequency, z = 1. At intermediate frequencies, there is a cross over region
between the two different Kelvin-Voigt bodies, see Fig. 2.9. In this region, the loss
modulus is expected to cross the storage modulus from below and approaches a power
law with z = 1. It is also this cross over region, ω̃ < 102, where we could expect good
agreement between our model and future measurements of the complex modulus§. That
such experiments on single stress fibers in living cells are in principle feasible, has been
demonstrated by Colombelli et al. [34]. In this study an AFM tip has been used to
pull cyclicly on a single stress fiber in order to measure the mechanosensitive response

§The stress fiber laser release experiments, which are well described by our model, have been
performed with a time resolution of f ∼ 1Hz. This yield a rough estimate for an upper bound of the
non-dimensional frequency ω̃ < 2πfτ ∼ 102. At least up to this frequency, our model should give
valuable predictions for the complex modulus of a single stress fiber.
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of zyxin. However, in this setup, the direction of the pulling force was along the axis of
the AFM cantilever and thus the exerted force could not be measured. By approaching
the AFM cantilever from a different angle, simultaneous force measurements could
be realized in the future. A more sophisticated solution would be to use zyxin as a
reporter of mechanical stress within the fiber, as soon as its mechanosensitive response
is understood in more detail.



Chapter 3

Quantification of stress fiber

contraction dynamics

In the previous sections we have developed a linear viscoelastic model for stress fibers.
In the continuum limit, the stress fiber is described by a linear partial differential
equation. The imposed boundary conditions for which we derived an analytical solution
correspond to the situation that the contractile fiber is released at time zero at one end,
whereas the other end of the fiber is hold steady at its initial position. These theoretical
considerations now prepare the ground for the quantitative analysis of experimental
data obtained from stress fiber contraction dynamics after pulsed UV laser cutting.
In the experiment performed by Colombelli et al. [34] stress fibers are dissected by
a pulsed UV laser at varying distances from focal adhesions where the stress fibers
are anchored to the glass substrate. The fiber fragment which has been cut apart
starts to contract because of acto-myosin tension within the fiber. The time-dependent
displacement of the fiber that is pointed towards the focal adhesion is recorded by
time-laps fluorescence microscopy. An essential advantage to former studies is that the
experimental setup by Colombelli et al. allows to spatially resolve the displacement
field along the fibers. This is in contrast to previous studies [63] that only recorded
the total contraction length of the fiber in time and thereby could not resolve essential
features of the retraction dynamics.

The spatial resolution along the fiber is achieved in two different ways yielding two
independent data sets that are analyzed separately. One approach takes advantage
of the natural striation pattern of stress fibers. The regular pattern emerge from the
sequential arrangement of myosin rich and α-actinin rich regions along stress fibers
[104]. In order to visualize this sarcomeric structure, mammalian epithelial Ptk-2 cells
are transfected to express the crosslinker α-actinin with a fluorescent label, the green
fluorescent protein (GFP). In this way the well separated α-actinin rich regions can
be tracked as bright spots under the fluorescence microscope while the fiber contracts.
The obtained spatial resolution is given by the period of the sarcomeric pattern which
was found to be 1.01 ± 0.14 µm for the studied Ptk-2 cells [34]. It is important to
note that this spacing of about one micron is close to the spatial resolution of the
fluorescence microscope of a few hundred nanometers. While the fibers contract it
becomes more and more challenging to resolve neighboring α-actinin bands that move
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Figure 3.1: Stress fiber contraction dynamics after laser nanosurgery illustrated for a
Ptk-2 cell transfected to express G-actin-EGFP. (A) Fluorescence microscopy picture of
the actin cytoskeleton before cut. Stress fibers appear as rather homogeneous bright bun-
dles. Dashed red lines indicate the bleaching pattern which is printed on the cytoskeleton
prior to cut. The stripes that are aligned perpendicular to the fiber axis have a periodic
spacing of 3µm. Position of the cut is highlighted by the blue line. (B) Re-equilibrated
actin cytoskeleton 120 s after laser surgery. Red arrow indicates the fiber which has been
picked for further analysis. Scale bar denotes 5µm. (C) Stress fiber before laser bleach-
ing. (D) Bleached fiber shortly after cut. (E) Contracted stress fiber 120 s after cut. (F)
Time-space kymograph reconstructed from fluorescence intensity profiles along the stress
fiber. Time dependent positions of the bright spots in (D) and (E) are given as green
curves in (F). The numbering of bands is illustrated on the right hand side of the figure.
Red lines show the result from the edge detection later on used to fit the model, shown in
Fig. 3.2. △L is the total contraction of the fiber after equilibration. Courtesy of Julien
Colombelli.

closer to each other. Especially the application of an automatized image processing
algorithm to reliably extract the position of the bands becomes increasingly difficult.

To circumvent these disadvantages an alternative technique has been developed to
extract the spatial information. In the second approach cells are transfected to express
the fluorescently labeled G-actin-EGFP. Accordingly, the stress fibers rather appear as
homogeneously fluorescent bundles. In order to extract spatial information during the
contraction phase, an artificial striation pattern is printed on the actin cytoskeleton
by means of laser photobleaching. An optimal trade-off between spatial resolution
and automatized processability of the achieved data was found to be a 3µm periodic
pattern printed perpendicular to the axis of the selected stress fibers before dissection.
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Since in the first case α-actinin transfected cells and in the second case actin trans-
fected cells are studied, the two experiments give independent data sets. The compari-
son of the two different results will give interesting insights into stress fiber mechanics.
In the first half of the quantitative data analysis presented below we focus on the
pure contraction dynamics of the fibers and thereby extract the distributions for the
parameter values of the suggested viscoelastic stress fiber model.

In the second half, we use our model to calculate the stress distribution within the
cytoskeleton and the forces that are exerted on focal adhesions that are not accessible
experimentally. We then perform a case-study on the dynamics of zyxin, a protein
which is localized in focal adhesions [105] as well as in stress fibers [106]. We find strong
correlations between the computed forces and the translocation dynamics of zyxin.
Especially the fast aggregation of zyxin at sites of increased mechanical stress suggests
that a zyxin binding partner is permanently embedded into the intracellular mechanical
scaffolds and that this protein changes its binding affinity to zyxin in response to
mechanical stress. One likely candidate to fulfill this mechanosensitive function is α-
actinin. It is the major crosslinker within stress fibers, and is furthermore an important
component in the linkage between stress fibers and focal adhesions.

3.1 Data analysis yields model parameters

Stress fiber nanosurgery was performed on mammalian epithelial Ptk-2 cells either
transfected to express α-actinin-EGFP or G-actin-EGFP. In the latter case, stress fibers
have been patterned by means of laser photobleaching prior to cut. The distortion of
the either natural or artificial striation pattern after laser surgery was recorded by
time-laps fluorescence microscopy. From the time-sequence of pictures for each stress
fiber a time-space kymograph of the retracting fluorescent bands was reconstructed.

This analysis revealed two remarkable features of stress fiber contraction dynamics.
It turned out that stress fibers contract most in the close vicinity to the laser cut
whereas sarcomeric units that are far away from the cut (more than 10µm) are rather
unaffected by the mechanical perturbations. Simultaneously, the re-equilibration of the
distant subunits were found to be much faster than the ones close to the cut, compare
e.g. Fig. 3.2.

In the next step an automatized edge detection was applied to the kymographs
in order to retrieve the time dependent positions of the fluorescent bands. This data
yields the displacement field u(x, t) along the stress fiber. The stress fiber model with
its solution given by Eq. (2.57) was fitted to the data to determine the free model
parameters (κ, δ, τ, τǫ) defined in Eq. (2.20). In general, the model reproduces very well
the non-uniform contraction along the whole fiber and over the whole observation time.
Fig. 3.2 and Fig. 3.3 show a comparison between the measured kymographs and the
fitted model curves for a stress fiber dissected in an actin and an α-actinin transfected
cell, respectively. For the same data sets, the corresponding displacements of the num-
bered bands as well as the time courses for the normalized subunit widths are included
in the figures. Here, normalized subunit width means the time dependent distance
between two neighboring fluorescent bands normalized by their initial spacing before
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Figure 3.2: Model fit to stress fiber contraction data for the actin transfected cell
previously shown in Fig. 3.1. (a) Time-space kymograph of retracting fiber, circles denote
experimental data. Counting of traced bands starts at the laser cut. Band numbers are
color-coded. Solid lines denote corresponding model curves. Spatial resolution of the
displacement field is dictated by the period of the bleaching pattern of 3µm. (b) Time
dependent displacement of the first five bands. Bands farther away from cut remain rather
unaffected, compare (a). (c) Time course of normalized subunit width, that is the distance
between neighboring bands (the subunit length) normalized by their initial spacing. This
quantity measures the percentile of contraction along the fiber. For example, the first
subunit contracts down to about 60% of its initial length within the first 120 s. Subunits
closest to cut contract most and equilibrate substantially slower than subunits far away
from cut. For the fitting, only the time course data of bands 1 to 4 have been considered.
Obtained fit values for the model parameters are (κ, δ, τ, τǫ) = (0.067, 0.58 µm, 52 s, 0.0 s).
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Figure 3.3: Same analysis for stress fiber contraction dynamics as in Fig. 3.2 but now
for an α-actinin transfected cell. (a) Time-space kymograph of retracting fiber. The
spatial resolution of the displacement field is about 1µm and thus three times higher
than for actin transfected cells. (b) Time course of bands displacement. (c) Time course
of normalized subunit width. For the fitting, only the time course data of bands 1 to
4 have been considered. Obtained fit values for the model parameters are (κ, δ, τ, τǫ) =
(0.082, 0.89 µm, 7.5 s, 0.21 s).

cut un(t)−un−1(t)
un(0)−un−1(0)

. The initial spacing is 3 µm in case of the actin data and roughly 1µm

for the intrinsic pattern visualized in α-actinin transfected cells, compare Fig. 3.2(a)
and Fig. 3.3(a). The plotted normalized subunit width also gives an approximation
for the local strain within the fiber. However, the approximation is quite rough for
actin transfected cells since the discretized gradient is an average over 3µm. For the
α-actinin data the spatial resolution is about 1µm which is considerably lower than the
typical length scale of about 3.6 µm over which the mechanical perturbation decays,
see below. In the latter case the discrete approximation is acceptable.

In the following quantitative analysis of the stress fiber contraction dynamics we
only considered the first three bands of the kymograph. In this way fitting was re-
stricted to a region within the first 10µm of the stress fiber where most of the con-
traction happens. Bands that are farther away from cut are rather stationary and do
not provide distinct information, see e.g. Fig. 3.2. As fit routine we used the function
”lsqnonlin” of the Matlab optimization-toolbox (version 1.0.4), which is a specialized
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algorithm to solve nonlinear least-squares data-fitting problems. To check for local
minima, we started the global optimization algorithm ten times with random initial
sets of positive parameter values (κ, δ, τ , τǫ). For virtually all stress fibers and all runs
the algorithm converged to the same fiber specific least-squares minimum defining one
set of parameter values (κ, δ, τ , τǫ).

In total we analyzed 86 stress fibers from actin transfected cells and 34 stress fibers
from α-actinin transfected cells. From fits to these data sets, we were able to deduce
the distributions of the four parameters for the two differently transfected cell types
separately. The distributions of parameters are visualized in terms of boxplots, see
Fig. 3.4. In addition, we performed an extensive statistical analysis of the parameter
distributions and compared the results found for the differently transfected cells. Mean
values and standard deviations are summarized in Tab. 3.1. We also give the median
and the interquartile range as well as the median absolute deviation about the median
(MAD) which are more robust measures for distributions with outliers as it is the
case for κ, τ and τǫ. The MAD, a robust measure of scale, is defined as MAD =
1.4826 median{|xi − median{xj}|}. The prefactor is chosen such that the MAD is
comparable with the standard deviation [107]. For the sake of clarity, however in the
text, we only present mean values and standard deviations for the model parameters.

For actin transfected cells we find an average stiffness ratio κ = 0.035± 0.034. The
average contraction length of a sarcomeric unit, of initial length a = 1 µm, is about
δ = (0.66 ± 0.36) µm. This means that a freely contracting uncrosslinked sarcomeric
unit would contract on average down to 340 nm. Interestingly, this obtained value
comes very close to the length of myosin minifilaments measured to be (393 ± 33) nm
for smooth muscle cells [32] which gives a natural lower bound for this minimal length
of a totally contracted sarcomeric unit. The typical timescale for contraction is dictated
by τ = (29 ± 27) s. It is associated to the effective internal friction forces to which,
for example, relative filament sliding as well as the molecular motors contribute, see
Eq. (2.20) for its definition. The timescale τ is considerably larger than the second
timescale τǫ = (0.13±0.23) s in the system. The latter is associated to external friction
resulting from viscous drag within the surrounding cytosol. The found parameter
values suggest that this model term can be regarded as a higher order correction,
further elucidated in the following.

The stress fiber model equation, written in non-dimensional from, is given by ∂2
x̃u̇+

∂2
x̃u − Γu̇ − κu = 0, compare Eq. (2.22). The last two terms, which originate from

viscoelastic interactions with the surrounding, bear the non-dimensional coefficients κ
and Γ = τǫ/τ , both are smaller than unity. Values for Γ, derived from the distributions
for τ and τǫ are also given in Tab. 3.1. Since the resulting distribution for Γ is strongly
skewed, that is, it has large positive outliers which distort the mean, we only give the
median and the MAD for this quantity. While the parameter κ is roughly of order
O(10−1) the parameter Γ is of order O(10−3), two orders of magnitude smaller than κ.
For the sake of completeness, the values for the median and the MAD of the ratio Γ/κ
are also itemized in Tab. 3.1. The median is as expected of order O(10−2) indicating
that the model term, which is proportional to u̇, plays a minor role and can be regarded
as a higher order correction term. In general, we find that a model which neglects this
term and thus has only the three parameters (κ, δ, τ) yield similar good fit results.
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Figure 3.4: Comparison of model parameter distributions for differently transfected
cells using boxplots. In total we analyzed 86 stress fibers from actin transfected cells
and 34 stress fibers from α-actinin transfected cells. Each stress fiber yields one set
of parameters (κ, δ, τ , τǫ). The red center line of the boxes gives the median of the
distribution, the lower hinge denotes the first quartile, the upper hinge denotes the third
quartile. The notches around the median denote a 95% confidence interval for the median.
The whiskers extend from the box out to the most extreme data value within 1.5 times
the interquartile range. Outliers that do not fall into this range are highlighted with
red crosses. By applying a Wilcoxon rank sum test or so called Mann-Whitney U-test
we find that the crosslink parameter κ is significantly higher (p = 0.000073) and the
time scale τ is significantly lower (p = 0.0054) for stress fibers observed in α-actinin
transfected cells compared to actin transfected cells. The remaining parameters seem to
be independent of the transfected protein. The distributions for the parameter τǫ are
strongly antisymmetric with a maximum close to zero and a long tail reaching out for
large positive values.
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actin α-actinin
parameter mean ± std mean ± std p-value (t-test)

κ [1] 0.035 ± 0.034 0.078 ± 0.059 0.0000014 yes
δ [µm] 0.66 ± 0.36 0.59 ± 0.33 0.35 no
τ [s] 29 ± 27 15 ± 11 0.0029 yes
τǫ [s] 0.13 ± 0.23 0.15 ± 0.27 0.72 no

(q25%, median, q75%) (q25%, median, q75%) p-value (U-test)
κ [1] (0.013, 0.026, 0.044) (0.027, 0.072, 0.12) 0.000073 yes
δ [µm] (0.37, 0.60, 0.89) (0.31, 0.54, 0.86) 0.40 no
τ [s] (7.8, 24, 43) (7.2, 10, 22) 0.0054 yes
τǫ [s] (0.0, 0.021, 0.21) (0.0, 0.01, 0.21) 0.55 no

median±MAD median±MAD p-value (U-test)
κ [1] 0.026 ± 0.023 0.072 ± 0.068 0.000073 yes
δ [µm] 0.60 ± 0.36 0.54 ± 0.40 0.40 no
τ [s] 24 ± 24 10 ± 8.7 0.0054 yes
τǫ [s] 0.021 ± 0.032 0.010 ± 0.015 0.55 no

Γ [10−3] 1.2 ± 1.7 0.42 ± 0.62 0.53 no

Γ/κ [1] 0.037 ± 0.055 0.012 ± 0.018 0.71 no

Table 3.1: Model parameter values obtained from fits to the data (86 fibers of
actin transfected cells and 34 fibers from α-actinin transfected cells). We give mean
and standard deviation in the first table, median and interquartile range in the sec-
ond table as well as median and the median absolute deviation about the median
(MAD = 1.4826 median{|xi − median{xj}|}) in the lowest table. For every model pa-
rameter we determine two separate distributions one for each transfected protein. To
compare the two distributions for each model parameter we applied a t-test for differ-
ences in the means as well as a Wilcoxon rank sum test or so called Mann-Whitney
U-test for differences in the medians. Both tests indicate that the crosslink parameter κ
is significantly higher and the time scale τ is significantly lower for α-actinin transfected
cells. The other two parameters δ and τǫ are rather independent of the transfected pro-
tein. In the last table we also included median and MAD for the derived non-dimensional
parameter Γ = τǫ/τ and Γ/κ. Note that Γ/κ ≪ 1. The Young’s modulus of stress fibers
measured by Deguchi et al. [89] and the values for τ, κ, τǫ can be used to also give rough
estimates for the extensional viscosity of the fiber, the shear modulus and shear viscosity
of the surrounding medium, respectively. See discussion in section 2.1.2.

Obtained parameter values for stress fibers cut in α-actinin transfected cells, also
summarized in Tab. 3.1, are of similar magnitude compared to actin-transfected cells.
However, the mean values of the two parameters κ and τ differ significantly from the
respective values obtained from actin-transfected cells.

In order to compare the parameter samples from the actin- and the α-actinin trans-
fected cells we applied a t-test for differences in the means as well as a Wilcoxon rank
sum test, or so called Mann-Whitney U-test, for differences in the medians. The U-test
is more appropriate for the present case of non-parametric distributions. Both tests
indicate that the crosslink parameter κ is significantly higher (U-test: p=0.000073; t-
test: p=0.0000014) and the time scale τ is significantly lower (U-test: p=0.0054; t-test:
p=0.0029) for the α-actinin transfected cells. The remaining parameters δ and τǫ seem
to be independent of the transfected protein.
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The differences for differently transfected cells regarding the crosslink parameter
κ are plausible. The transfection for α-actinin is definitely accompanied by an over-
expression of α-actinin∗. The α-actinin is known as crosslinker between actin filaments
not only within stress fibers but also between adjacent actin filaments. It also plays
an important role in the linkage between stress fibers and integrin mediated adhesion
clusters. Thus, transfection with α-actinin presumably increases the mechanical links
from stress fibers to their environment including the surrounding actin cytoskeleton as
well as integrin mediated contacts to the substrate. This higher degree of crosslink is
reflected by the significantly higher value of κ in α-actinin transfected cells compared
to actin-transfected cells.

The difference in the time scale τ = γint/kint + δ/v0, however, lacks such a straight
forward explanation. The contraction length of sarcomeric units δ is independent of the
transfection (compare values in Tab. 3.1). The same can be assumed for the maximal
velocity of the motors v0. Therefore, in terms of our simple model, we conclude that the
ratio of internal friction over stress fiber stiffness γint/kint is reduced when α-actinin is
over expressed. A change in the friction coefficient γint could come along with an over
expression of α-actinin if the latter simultaneously replaces other crosslinker proteins
within stress fibers with different binding and unbinding kinetics.

3.1.1 Correlations between model parameters

Studying the correlation between the two parameters τ and δ yield another opportunity
to test modeling assumptions. According to their definition the two model parameters
τ and δ are linear dependent:

τ =
γ̃int

kint

=
γint

kint

+
δ

v0

(3.1)

The relationship originated from the fact that the effective internal friction coefficient,
γ̃int = γint + Fs

v0
has contributions from motor activity, denoted by Fs

v0
. In this way the

motor activity contributes to the equilibration time τ . The above linear relationship
between τ and δ implies that these two parameters are correlated with a correlation
coefficient ρ(τ, δ) = 1 according to the model. The correlation coefficient is defined as:

ρ(τ, δ) =
Cov(τ, δ)

√

Cov(τ, τ)Cov(δ, δ)
(3.2)

where Cov(x, y) = 〈xy〉 − 〈x〉〈y〉 denotes the covariance of x and y. Fig. 3.5(a) and
Fig. 3.5(b) show a correlation plot of the parameters τ and δ for actin and α-actinin
transfected cells, respectively. The deduced values for the correlation coefficient are
ρ(τ, δ) = 0.40 for actin transfected cells and ρ(τ, δ) = 0.60 for α-actinin transfected
cells. In order to get an estimate of the variance of the correlation coefficient we
performed a bootstrap analysis of the data: From the given sample of (τ, δ), n=1000
random samples of the same length (N = 86 for actin and N = 34 for α-actinin

∗The transfected fluorescently labeled α-actinin is available additionally to the basal expression of
α-actinin.
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Figure 3.5: Correlation plot for the model parameters τ and δ for actin transfected
cells (a) and for α-actinin transfected cells (b). Figure (c) shows a bootstrap analysis
(1000 drawn samples) of the correlation coefficient ρ(τ, δ) for actin-transfected cells which
yields ρ = 0.40 ± 0.10, (d) same analysis for α-actinin transfected cells which yields
ρ = 0.59 ± 0.12.

transfected cells) are drawn by allowing repetitions. The correlation coefficient is then
calculated for each random sample and averaged over all samples. The average value
for the correlation coefficient is ρ(τ, δ) = 0.40 ± 0.10 for actin transfected cells and
ρ(τ, δ) = 0.59 ± 0.12 for α-actinin transfected cells. The results of the bootstrap
analysis are illustrated in Fig. 3.5(c) and Fig. 3.5(d). To obtain a p-value for testing
the hypothesis of no correlation (ρ = 0), the correlation coefficient is transformed to a
quantity that is distributed as Student’s t [107]:

t = ρ

√
ν

1 − ρ2
(3.3)

with ν = N − 2 degrees of freedom, where N is the number of measurements. For
actin transfected cells we find p = 0.00014 (with ρ = 0.40, N = 86) and for α-actinin
transfected cells we find p = 0.00024 (with ρ = 0.59, N = 34). The small p-values
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for both data sets (p ≪ 0.05) support the hypothesis that the two parameters τ and δ
are indeed correlated as expected from the model. However, due to the high variance
in the data the 86 and 34 parameter pairs from the differently transfected cells, still
do not provide a satisfactory statistical basis. Therefore, a clear statement can not
be made by means of the currently available data. A convincing proof would require
further measurements.

3.2 Total contraction length

Once cut and for times t ≫ τ the stress fiber approaches a new mechanical equilibrium.
To describe the stationary state, all time dependent model terms have to be neglected.
The resulting model simplifies to a second order ordinary differential equation that is
straight forward to solve. The solution for the stationary state displacement uss(x)
has been derived in the previous model chapter and is given below for convenience,
compare Eq. (2.24):

uss(x) = − δ√
κ

sinh(
√

κx/a)

cosh(
√

κL/a)
(3.4)

In the following we briefly discuss the properties of the solution for the two extreme
cases of a rather uncrosslinked fiber (small κ) and of a highly crosslinked fiber (large
κ). In the case of a rather uncrosslinked fiber it holds that a/

√
κ ≫ L and the spatial

dependence of the stationary displacement simplifies to uss(x) ≈ −δ x/a. Evidently,
this linear dependence in x means that the contraction becomes uniform along an un-
crosslinked stress fiber, each sarcomeric subunit contracts independently of all the other
units down to the same final equilibrium length. The percentage of final contraction is
simply given by δ/a. However, in the opposite case of a highly crosslinked fiber where
a/

√
κ ≪ L, the stationary solution Eq. (3.4) is well approximated by

uss(x) ≈ − δ√
κ
e−(L−x)

√
κ/a (3.5)

According to the approximation given above, the mechanical perturbation of cutting a
crosslinked stress fiber decays exponentially from the laser-released edge on a typical
length scale given by a/

√
κ. As a consequence, if the fiber fragment length L ≫ a/

√
κ,

then the part of the fiber close to the focal adhesions remains unaffected by the nano-
surgery, in particular the stress exerted by the stress fiber on the adhesion is rather
unchanged, see discussion below. Assuming κ = 0.035 and a = 1 µm we find that this
typical length scale amounts to a/

√
κ ≈ 5.4 µm for stress fibers in actin transfected

cells, and a/
√

κ ≈ 3.6 µm for stress fibers in α-actinin transfected cells. Eq. (3.4) also
provides the total contraction length of the stress fiber after equilibration as a function
of the initial fiber length L:

△L(L) = |uss(L)| =
δ√
κ

tanh(
√

κL/a) (3.6)
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Figure 3.6: Total contraction length △L in dependence on initial fiber length L of the
cut fragment. Small blue circles show 197 data points for stress fibers cut in actin-EGFP
transfected Ptk-2 cells. Large bold circles with bars in blue show mean and standard
deviation for the measured data. Each bin contains about 20 data points. Red solid
line denotes mean model curve calculated from Eq. (3.6) averaged over 86 parameter
pairs (κ, δ). Each parameter pair was obtained by fitting stress fibers dissected in actin-
transfected Ptk-2 cells, also used for Tab. 3.1. Red bars show standard deviation to the
model mean. Good agreement between experiment and model is found. Note that the
total contraction length quickly saturates for large fibers with L > 10 µm which can be
explained by stress fibers being crosslinked to their environment. For comparison, a few
model curves (red dashed lines) with κ ∈ {1, 0.005, 0.0025, 0.001, 0} are included. Here,
we assumed δ = 0.66 µm, the mean value taken from Tab. 3.1. The case κ = 0, which
results in a linear relationship between △L and L, corresponds to a freely contracting
stress fiber. The obtained mean model curve △L(L) would correspond to an average
κ ≈ 0.034.

Each parameter set (κ, δ, τ , τǫ) obtained from fits to kymographs provides one curve
△L(L). Of course, for this steady state analysis, the parameters τ and τǫ are irrelevant,
and each curve is readily defined by the parameter pair (κ, δ), which can be seen
explicitly in the above equation. In order to compare the model prediction with the
measured data we averaged the 86 curves derived from the previously described actin
sample. In Fig. 3.6 we show the sample average model curve 〈△L(L)〉actin in red.
Red bars denote standard deviation from the model mean. The model results are
compared to the measured contraction length of 197 stress fibers observed in actin
transfected Ptk-2 cells indicated as small blue circles in Fig. 3.6. In addition, large
bold circles with bars in blue show mean and standard deviation for the measured
data. A comparison yields that the model predictions agree very well with the measured
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data. We find that △L first increases with L and then saturates for longer fibers with
L ≫ a/

√
κ ≈ 5.4 µm, as suggested by the model. The value of the saturation level

is given by δ/
√

κ, according to the model see Eq. (3.6). A saturation level of about
(4.5 ± 2.5) µm deduced from the sample average model curve in Fig. 3.6 is also in
good agreement with the experimental data. The fact that the total contraction of the
fibers becomes independent of their length for large L can be attributed to their high
degree of crosslink, in our model measured by the parameter κ. For comparison, we
include the expected dependence of the total contraction length assuming a completely
uncrosslinked stress fiber, △L(L) = δ L/a, deduced from Eq. (3.6) when κ → 0, shown
as red dashed line in Fig. 3.6. In this special case, the contraction length △L is
expected to be proportional to the initial fiber length L which is clearly contradictory
to the found saturation. As a reference we additionally include model curves for some
intermediate values of κ, also shown as dashed red lines in Fig. 3.6.

The same analysis for the total contraction length has been performed for the α-
actinin data, reported in [34]. Consistent with the results for the actin data, we find
that also in α-actinin transfected cells the total contraction length of the fibers is rather
independent of their initial length. The saturation value for the contraction length of
about (2.4±1.3) µm was found to be lower compared to stress fibers in actin transfected
cells. This is consistent with the higher values for the crosslink parameter κ found for
the α-actinin sample. Note that the other relevant parameter δ is rather independent of
the transfected protein and thus does not contribute to the differences in the saturation
levels.

3.3 Zyxin dynamics upon laser surgery

In the following the proposed stress fiber model will be used to calculate the induced
changes of mechanical stress in the actin-cytoskeleton upon laser nanosurgery which
are hard to measure experimentally. The intention is to correlate these changes in
stress with changes in zyxin concentration easily measured by means of fluorescence
microscopy. For this purpose, we used Ptk-2 cells and 3T3 fibroblasts transfected with
zyxin EGFP and actin-cherry constructs. Fig. 3.7 shows typical stress fibers in a double
transfected Ptk-2 cell that has been cut sequentially in different locations. First, we
released a 14 µm long centerpiece by two simultaneous laser cuts along the same bundle
Fig. 3.7(a-b). After a 18 s contraction phase, we performed a second cut that dissected
the fragment in its middle as well as a neighboring control fiber, see Fig. 3.7(c-d). This
experiment revealed three distinct translocation processes of zyxin:

1. Zyxin quickly dissociates from focal adhesions after the corresponding stress fiber
has been cut. This can be seen by the naked eye comparing zyxin intensities at
the very left adhesions in Fig. 3.7(k-l).

2. Zyxin also dissociates from stress fibers where it co-localizes with α-actinin and
forms regular striation patterns, see Fig. 3.7(k). These zyxin striation patterns
fade away after laser release, compare Fig. 3.7(k-l).
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Figure 3.7: Analysis of zyxin dynamics in a Ptk-2 cell transiently transfected with zyxin-
EGFP (shown in green) and actin-cherry (shown in red) constructs. (a-e) Snapshots of
retracting fibers at 0 s, 6 s, 18 s, 24 s, and 48 s. Scale bar denotes 5 µm. (a) At first, two
simultaneous laser pulses (indicated by blue lines) release a 14 µm centerpiece. (c) After
18 s of contraction, this central fragment is cut a second time in its middle together with a
neighboring control fiber. (d)-(e) Show final equilibration. (f-j) And (k-o) show separate
actin and zyxin channel, respectively. Blue arrows highlight position of cuts, red arrows
indicate direction of fiber retraction. (p) Comparison of zyxin intensity along the stress
fiber before and after initial cuts showing that the striation pattern is quickly lost. (q)
Time course of zyxin intensity at focal adhesions FA1, FA2 and selected regions 1, 2, 3,
4 highlighted in (e) and (o). Results are discussed in the main text. Courtesy of Julien
Colombelli.
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3. In contrast to the previous two observations zyxin aggregates at distinct positions
along the fiber fragments preferentially close to the position of the cut. These
arising foci of high zyxin intensity are found to be stationary with respect to the
substrate and do not retract with the stress fiber, follow encircled areas (1-4)
highlighted in Fig. 3.7(o).

All of these observations can be explained consistently by assuming that zyxin is re-
cruited by a mechanical scaffold protein (e.g. like α-actinin) in a force dependent
manner. The dissociation of zyxin from focal adhesions and stress fibers are then re-
lated to a loss of exerted stress at focal adhesions and to a loss of mechanical tension in
the fibers upon laser release. The emergence of new foci of high zyxin intensity could be
explained by crosslinks that get increasingly tensed by the retracting fiber and then re-
cruit zyxin. The three observations listed above that exemplify the mechanosensitivity
of zyxin are further investigated in the following.

3.3.1 Zyxin dynamics at focal adhesions

Focal adhesions connected to a cut stress fiber experienced a quick loss of zyxin inten-
sity. This can be deduced from Fig. 3.7(q) showing the time course of the normalized
zyxin intensity at certain spots defined in Fig. 3.7(e,o). Zyxin intensity at focal adhe-
sion (FA2) connected to the cut fiber sharply drops after the first laser cut indicated
by the left blue arrow in Fig. 3.7(q). In contrast, zyxin intensity at the control focal
adhesion (FA1), which is not connected to the cut fiber, remains unaffected. We further
quantified this zyxin intensity loss in dependence on the distance, L, between cut and
associated focal adhesion. In total, we analyzed 71 fibers in Ptk-2 cells and 88 fibers
in 3T3 fibroblasts, shown in Fig. 3.8 as small blue circles and triangles, respectively.
Data points represent the zyxin intensity loss normalized by the initial intensity, I0, at
the focal adhesion before cut:

△I =
I0 − Iss

I0

(3.7)

In the equation above Iss denotes the zyxin intensity at focal adhesion in the stationary
state approached after cut and △I is the resulting normalized intensity loss. For both
cell lines we found that zyxin loss is about 40% when the fibers are dissected close to
the adhesions but losses turn out to be smaller if the cut is placed farther away from the
adhesion. For instance, loss was found to be below 10% for very large fiber fragments,
compare Fig. 3.8 for L > 30 µm. To test whether this intensity loss is related to a loss
of stresses exerted on the focal adhesions, we used our model to calculate the expected
normalized force loss at focal adhesions in dependence on the fiber fragment length L.
The normalized force loss △F is defined analogous to the intensity loss as:

△F =
F0 − Fss

F0

(3.8)

where F0 is the initial force exerted by the stress fiber on the adhesion prior to cut
and Fss denotes the force exerted in the new mechanical equilibrium after cut. We
assume that the stress fiber is in mechanical equilibrium before the cut, that is, all
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Figure 3.8: Normalized force loss at focal adhesions (red) compared to normalized
zyxin intensity loss at focal adhesions (blue). Both quantities are plotted as function
of the initial fiber length L. Zyxin loss at focal adhesions was measured for 71 fibers in
Ptk-2 cells transfected with zyxin-EGFP and actin-cherry constructs shown as small blue
circles and for 88 dissected fibers in 3T3 fibroblasts, transfected with the same constructs,
shown as small blue triangles. Same but large blue symbols with bars indicate mean
and standard deviation for bins of about 10 points of the respective data. Most zyxin
dissociates from focal adhesion if the cut is placed close to the adhesion (L is small).
Normalized force loss at focal adhesions has been calculated from Eq. (3.10) for the 86
values of κ, also used for Tab. 3.1. Averaged curve is shown as red solid line, red bars
denote standard deviation to the model mean. For comparison, a few model curves (red
dashed lines) with κ ∈ {1, 0.05, 0.005, 0.0025, 0.001} are included. This analysis suggests
that zyxin intensity in focal adhesions is correlated to the applied mechanical stresses.

motors operate at their stall force such that F0 ≡ Fs. The force exerted by the fiber on
the focal adhesion in the stationary state after cut has contributions from the elastic
stress within the fiber as well as contributions from the molecular motors. The viscous
forces, of course, vanish in the stationary state. Thus, Fss is given by, also compare
Eq. (2.68):

Fss = akint∂xuss(0) + Fs (3.9)

The first term is the elastic stress within the fiber evaluated at the focal adhesion and
the second term accounts for the contractile forces of the molecular motors that are
stalled in the stationary state. The stationary solution for the displacements uss is
given by Eq. (3.4). Eventually, the normalized force loss at the focal adhesion is found
to be:

△F (L) = sech(
√

κL/a) (3.10)
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The normalized force loss at the focal adhesion depends only on the crosslink parameter
κ and the initial length of the fiber fragment L. In accordance with Eq. (3.5) we find
that the mechanical integrity around the focal adhesion remains unperturbed when
L ≫ a/

√
κ. This typical length scale has been determined beforehand to be a/

√
κ ≈

5.4µm for actin transfected cells. In order to compare the model prediction with the
measured data we averaged over 86 curves for △F (L), each defined by one value for
κ. The 86 values for κ are taken from the previously described actin parameter sample
also used for Tab. 3.1. In Fig. 3.8 we show the sample average curve for the expected
normalized force loss, 〈△F (L)〉actin, compared with the measured normalized intensity
loss of zyxin at focal adhesions in Ptk-2 cells and 3T3 fibroblasts. The agreement
between model predictions and experimental data suggests a close relationship between
zyxin concentration in focal adhesions and the applied forces.

3.3.2 Zyxin dissociation from stress fibers

Along stress fibers zyxin co-localizes with α-actinin and thereby forms a regular stria-
tion pattern which can be seen in Fig. 3.7(a,k). The resulting intensity profile of zyxin
along the stress fiber is shown as red curve in Fig. 3.7(p). The striation pattern causes
the periodic intensity peaks at the middle of the fiber in the region of 10µm to 25µm.
These peaks in zyxin intensity are lost within 6 s after cut which can be deduced from
the corresponding intensity profile shown as blue line in Fig. 3.7(p). The fast disso-
ciation of zyxin along the released stress fiber fragment suggests a similar underlying
mechanism in stress fibers compared to focal adhesions. We propose that the loss in
zyxin is correlated to the loss of tension in the fiber. By means of our model, the
viscoelastic stresses within the fiber can be calculated. The tension σ within the fiber,
normalized by the initial tension before cut σ0, is given by Eq. (2.68). In the following,
we use this equation to calculate the normalized tension and compare it to the nor-
malized zyxin intensity along the fiber. Fig. 3.9(b) shows a color coded kymograph of
the normalized zyxin intensity along the laser released central stress fiber fragment of
Fig. 3.7. The corresponding color coded kymograph for the normalized tension along
the same fiber fragment, calculated from Eq. (2.68), is shown in Fig. 3.9(c). After cut,
the tension within the fiber fragment quickly drops to very low values. Simultaneously,
the zyxin-banding pattern along the stress fiber is exposed to a sharp intensity loss,
compare the regions marked with a (+) and a (−) sign in Fig. 3.9(b,c). The dynamic
response in zyxin intensity is remarkable fast and correlates qualitatively with the loss
in tension after cut. However, note that the zyxin response to cut is more complex
than a simple loss of intensity along the fiber. The emergence of new foci of high zyxin
intensity after cut marked by (∗) in Fig. 3.9(b) can not be explained by the above con-
siderations. We hypothesize that these new zyxin spots originate from crosslinks that
get highly tensed by the retracting fiber and thereby recruit zyxin in a force dependent
manner. It is only the superposition of all these effects that can reproduce the full
kymograph in Fig. 3.9(b).
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Figure 3.9: (a) Time space kymograph of the cut sequence shown in Fig. 3.7(a-e). Actin
is shown in red, zyxin is shown in green. Cuts are indicated by blue arrows. White dashed
lines mark the 1µm snap-back for one fiber fragment after the second cut, indicating the
relaxation of tension in crosslinks previously strained after the first cut. Scale bar denotes
5 µm horizontally and 10 s vertically. (b) Normalized zyxin intensity. Thin black lines
indicate the position of retracting fiber edges whereas thick black bars cover regions of
induced laser damage. Note that appearing zyxin spots lie preferentially behind the
retracting fiber and are stationary with respect to the substrate. (c) Tension within the
stress fiber, normalized by the tension before cut. Large loss of tension immediately after
cut compares to a simultaneous loss of zyxin intensity highlighted as (+) and (−) in (b,c),
respectively. (d) Traction forces exerted on the substrate by the crosslinks, normalized
by the maximal occurring value. The buildup of high traction forces close to the fiber
edges after the first cut corresponds to the emergence of zyxin spots of high intensity,
marked as (∗) in (b,d). Subsequently, the second cut releases tension in the strained
crosslinks followed by a decrease in zyxin intensity at the preformed clusters, denoted by
(×) in (b, d). Used model parameters are: (κ, δ, τ , τǫ)=(0.01, 0.70 µm, 5 s, 0.1 s).
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3.3.3 Zyxin recruitment at tensed crosslinks

In contrast to the loss of zyxin patterns on released fiber fragments, we observed that
zyxin relocalizes at random spots along the fiber axis, for example marked as regions
(1-4) in Fig. 3.7(e,o). Interestingly, these zyxin spots are immobile with respect to the
substrate which can be deduced from the image sequence Fig. 3.7(l-o). After forming
close to the fiber tips, their intensity steadily increases in time while the stress fiber
fragments retract. The respective time courses of the normalized zyxin intensities at
theses areas are shown as red and green curves in Fig. 3.7(q). After performing the
second cut on the central fiber fragment at 18 s, however, we observed a decreasing
intensity in areas (1,2). In contrast, the intensity further increased at the areas (3,4)
that obviously remained unaffected by the second cut, compare red and green curves
in Fig. 3.7(q).

All of these observations can be explained consistently by assuming that the new
zyxin spots originate at crosslinks that get highly tensed by the retracting fiber and
thereby recruit zyxin in a force dependent manner. The existence of such tensed
crosslinks that pull on the retracting fiber is also the most reasonable explanation
for the reversed movement of the two fiber fragments created after the second cut at
18 s. We highlight this remarkable snap back of the two central fragments by red arrows
in Fig. 3.7(i). It becomes even more evident in Fig. 3.9(a) showing the kymograph of
the cut sequence. The contours of the fiber fragments are shown in red (actin-cherry
signal). After the second cut, the fragments are pulled apart, indicated by an increas-
ing distance between the two wide red lines. Consistently, the center of mass of each
created fragment is displaced backwards. We also indicate this reversed movement over
a distance of about 1µm with a white arrow in Fig. 3.9(a). The snap back is very likely
caused by the relaxation of a tensed crosslink, but its nature remains elusive. Since it
can be stretched up to 1 µm, evidently, it can not be realized by a single protein but
rather a longer filament or biopolymer. For instance, a few single actin filaments that
are strongly coupled to the surrounding might be pulled out of the stress fiber and
serve as this micrometer long and highly tensed tether.

In order to correlate the zyxin dynamics with the change of tension in the crosslinks
along the stress fiber, we simulated the sequence of laser cuts with our model. Subse-
quently, we produced a kymograph of the traction forces transmitted by the crosslinks
to the substrate given by Ftrac(x, t) = −kextu(x, t), shown in Fig. 3.9(d) and compared
it to the measured kymograph of normalized zyxin intensity along the stress fiber frag-
ments, shown in Fig. 3.9(b). The thick black bars cover regions of laser damage. In
both figures, thin black lines indicate the position of the retracting fiber edges. The
time course of the fiber edges including the snap back of the fiber fragments after the
second cut are very well reproduced by our model.

Comparison of Fig. 3.9(b,d) also yields a remarkable correlation between the in-
crease of zyxin at regions (1,2) with an increase in crosslink tension upon the first cut,
highlighted with (∗) in Fig. 3.9(b,d). Subsequently, after the second cut, we can corre-
late the decrease of zyxin with the release of tension at the same location highlighted
with (×) in Fig. 3.9(b,d). The remarkable correlation of modeled crosslink tension
with zyxin translocation dynamics support our hypothesis that the emerging high in-
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tensity spots result from a mechanosensitive recruitment of zyxin at tensed crosslinks
presumably anchored to the underlying substrate.

Colombelli at al.[34] further investigated these new zyxin spots by correlative live
fluorescent and transmission electron microscopy [108] and convincingly showed that
zyxin localizes within the first 50 nm above the glass substrate. The new zyxin spots
were found to be strikingly similar to focal adhesions. For instance, the zyxin nucleation
points also recruit the protein vinculin, which is a core focal adhesion component.
Noteworthy, vinculin was not detected along stress fibers before dissection. These
observations suggest that the emerging zxin foci are the onset of new focal adhesion
sites along the retracting stress fiber induced by a force dependent mechanism.

3.4 Summary and discussion

In this chapter we studied stress fiber contraction dynamics induced by laser nanosurgery
with our stress fiber model. We find excellent agreement between experimental data
and the model which can reproduce the complete displacement field in space and time.
By fitting our model to the data we can extract the four model parameters (κ, δ, τ, τǫ)
summarized in Tab. 3.1. They reflect physical properties of stress fibers.

The parameter κ = 0.035, which is a measure for the degree of crosslink of the fibers,
sets a typical length scale a/

√
κ ≈ 5.4 µm over which the mechanical perturbation

propagates along the fiber. This length scale has an impact on the total contraction
length of short fibers as well as on the loss of force at connected focal adhesions.
This model term (proportional to κ) which accounts for elastic external interactions, is
essential to understand the nonhomogeneous contraction of the fibers, that is, strong
contraction close to the cut, and rather no contraction far away from the cut.

The parameter δ = 0.66 µm denotes the maximal free contraction length of a sar-
comeric unit of initial length 1µm. Thus, the resting length of the sarcomeric unit is
found to be 340 nm. This is in agreement with the natural lower bound given by the
length of myosin minifilaments of (393± 33) nm measured for smooth muscle cells [32].
The parameter δ together with the parameter κ also determines the saturation level
for the total contraction length of very long fibers to be δ/κ ≈ 4.5 µm.

Finally, we extracted the two time scales, τ = 29 s and τǫ = 0.13 s which are
associated with internal and external friction, respectively. Together, they determine
the dynamics of the retardation process. However, the ratio τǫ/τ = Γ ≪ 1 is very small
and thus the model term, which accounts for the external friction forces (proportional
to τǫ), can be neglected in good approximation. In regard to stress fiber contraction
dynamics, the viscosity of the surrounding cytosol thus plays only a minor role and
the time scale for contraction is solely given by fiber-internal friction. This friction
can be associated with relative filament sliding, movement of solvent within the fiber,
(un-)binding kinetics of fiber internal crosslinkers, and contributions from molecular
motors.

The retraction of stress fibers within the cytoplasm is actually a three dimensional
contact mechanics problem. By making reasonable assumptions for the geometry of
the fibers as well as for the interface to the surrounding viscoelastic medium, one could
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also use the parameters τ, κ, τǫ to give rough estimates for the expected extensional
viscosity of the fiber, the shear modulus and shear viscosity of the surrounding medium,
respectively. These considerations and the derivation of the needed relations are carried
out in section 2.1.2.

The parameter values summarized above have been obtained by analyzing stress
fibers in actin transfected cells. We performed the same analysis also on α-actinin
transfected cells. This enabled us to investigate the impact of an enhanced α-actinin
expression on stress fiber mechanics. The parameter distributions for both samples
have been tested for differences in the mean as well as for differences in the median.
We found that an increase in α-actinin expression leads to a significant increase in κ
and decrease in τ . The remaining two parameters are rather unaffected by α-actinin
over expression.

α-actinin is known as a crosslinker between actin filaments and also mediates the
connection between stress fibers and focal adhesions. Thus, the over expression of
α-actinin is likely to cause an increase of crosslinks between stress fibers and their
surrounding. In this way, it explains an increase in the crosslink parameter κ.

The significant change in the time scale τ lacks such a straight forward explanation.
A likely possibility is that other types of crosslinker proteins within the stress fiber are
substituted by α-actinin. Since the bulk concentration of α-actinin is enhanced in these
cells, this leads to a higher chemical potential of α-actinin in the cytosol. This in turn,
might promote the substitution process. If the replaced crosslinker and α-actinin have
different binding and unbinding kinetics then the exchange could lead to an alteration
of the fiber-internal viscoelastic properties. More specifically, in order to explain the
observations, the exchange must lead to a decrease of the internal friction coefficient
of the fiber.

The observations that (1) stress fibers contract only in the vicinity of the cut, (2) the
total contraction length saturates for long fibers and (3) the force loss at focal adhesions
is dependent on the length of the associated fiber fragment, all result from the fact that
stress fibers are considerably crosslinked to their surrounding. This degree of crosslink is
measured by the parameter κ. But what is the major mechanical scaffold to which stress
fibers are elastically crosslinked? Possible candidates are cytoskeletal components, in
particular neighboring actin filaments, or the underlying substrate. The latter case
is possible since the considered cells are very flat and the stress fibers are in close
contact with the plasma membrane. We hypothesize that the major contribution of the
elastic restoring forces acting on the retracting stress fibers arise from such intermediate
contacts to the glass substrate. These contacts might be mediated by small integrin
clusters that are still undetectable in fluorescence. This transmembrane linkage could
function in a similar way to what is observed in muscle cells, where costameres (α-
actinin rich protein complexes) connect sarcomeres with the extracellular matrix at
the z-disk. Thereby, traction forces are transmitted to the cellular environment [109].

Such a linkage could also explain our observation that retracting stress fibers ini-
tiate zyxin rich foci, which are stationary with respect to the substrate. We suggest
that these initial crosslinks to the substrate are stretched by the retracting fiber. The
increased tension in the crosslinks then causes a mechanosensitive response that re-
cruits zyxin. This protein recruitment is a reinforcement of the initially small integrin
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based contacts which then might mature to focal adhesions, in agreement with previous
studies [39, 59]. This hypothesis has been further tested by correlative live fluorescent
and transmission electron microscopy and Colombelli et al. [108] convincingly showed
that zyxin localizes within the first 50 nm above the glass substrate. The new zyxin
spots were also found to recruit the protein vinculin, which is a core focal adhesion
component.

The reinforcement of the mechanical anchor points can be regarded as a sophisti-
cated repair or healing process on subcellular scale. The laser dissection causes a me-
chanical instability within the cytoskeleton. This mechanical disequilibrium demands
quick repair to avert further damage to the cell. A force balance within the cytoskele-
ton is reestablished by reattaching the dissected fiber to the substrate. Thereby, the
underlying force dependent mechanism has to be much faster than the typical timescale
for stress fiber contraction, τ ≈ 29 s. The fast association and dissociation dynamics
of zyxin on a timescale below 6 s definitely fulfill this necessary condition.

To further discriminate between the importance of cytoskletal crosslinks and cross-
links to the substrate, we can suggest several control experiments for future studies.
One possibility would be a systematic measurement of the total contraction length in
dependence on the length of the cut across several neighboring stress fibers. If the fibers
are strongly connected to each other, one would expect that the retraction is largest in
the middle of the transverse cut and vanishes at the edges. The expected profile could
be calculated by a model that accounts for several parallel stress fibers which elastically
interact with their nearest neighbors. Another possibility would be the application of
microstructured substrates. They could be biofunctionalized in such a way that the cell
can form focal adhesions only on adhesive patches. However, the surface in between
these patches should be passivated such that the stress fibers can not interconnect to
the substrate by integrin mediated adhesion. If the intracellular cyoskeletal crosslinks
are indeed negligible, then, in terms of our model, the crosslink parameter is expected to
vanish. This would have the following consequences: (1) a homogenous contraction of
stress fibers all along their length, (2) the total contraction length would increase linear
with the fiber length and (3) the force loss at focal adhesions would be independent of
the position of the cut.

We also applied our model to further quantify the mechanosensitivity of zyxin. The
model is thereby used to calculate the change in mechanical stress within the cytoskele-
ton upon laser release which is otherwise not accessible experimentally. The change
in stress was then compared with the change in zyxin intensity at focal adhesions and
along stress fibers. In both situations we find that the localization of zyxin correlates
with tension. Moreover, Colombelli et al. [34] could show that the mechanosensitive
recruitment of zyxin is reversible by pulling cyclically on a stress fiber with an AFM
cantilever. Similar mechanosensitive responses of zyxin along stress fibers and focal
adhesions have also been reported in previous studies [64, 110, 111].

The question is, could there be a single mechanism underlying zyxin-recruitment
at focal adhesions and stress fibers? Moreover, which is the protein that resides in
the mechanical scaffolds and recruits zyxin in a mechanosensitive manner? A likely
candidate for this mechanosensitive protein is the crosslinker α-actinin. It serves as
main crosslinker in stress fibers and mediates also the linkage between stress fibers
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and focal adhesions. In both situations α-actinin is subject to the mechanical tension
and thus is predestined as a mechanosensor. Zyxin and α-actinin co-localize at focal
adhesions and along stress fibers and α-actinin is also the main binding partner of
zyxin [106, 112, 113]. Interestingly, the binding site on α-actinin involves two spectrin-
like subdomains [114] and an interaction occurs only when α-actinin dimerizes [113].
Notably, spectrin domains are known to have unique flexible properties [115]. The
flexibility of spectrins and their redundant organization along α-actinin (8 domains in
a dimer) could therefore serve as a docking platform, which mechanically regulates the
number and activity of zyxin binding sites. Further analysis of zyxin and α-actinin
binding partners will be necessary to determine the exact number of proteins involved
in the mechanosensitive recruitment of zyxin.

One possibility to further quantify the mechanosensitive recruitment of zyxin would
be to perform stress fiber laser surgery in cells plated on flexible substrates. The
contractile cellular stress, exerted through the focal adhesion on the substrate, could
then be determined by traction force microscopy [116, 117]. In this way, the change
of stress upon cut could be measured explicitly and could be compared to the model
predictions and to the induced zyxin dynamics. This would provide a further test
for our stress fiber model as well as a refined correlation between forces and zyxin
dynamics.
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Chapter 4

Coupling of mechanics and

biochemistry

In the previous chapter we developed a model for stress fibers. Thereby we assumed
that the viscoelastic properties of the fibers as well as the activity of the molecular
motors are uniform along the whole fiber length. The model has then been used to
study the pure mechanics of stress fiber contraction after laser release and by compar-
ing calculated stresses with zyxin intensity we found that the molecular composition
of focal adhesions is dependent on the applied stress. This is evidence for the widely
accepted notion that mechanical stresses are involved in determining the biochemical
signaling state of focal adhesions. The transduction of mechanical stress into a bio-
chemical signal could happen for example by a force induced conformational change of
single proteins or protein complexes into a high or low affinity state to possible binding
partners. In a similar way forces could alter the enzymatic activity of kinases or phos-
phatases that are located in the adhesion contact. Although the precise mechanism has
not yet been revealed some proteins that are probably involved in mechanotransduction
have been identified, for example talin [41, 42], p130Cas [118] and integrin [43]. In this
spirit, focal adhesions can be understood as localized spots where chemical as well as
mechanical information is processed collectively. Outgoing signals then contribute to
complex cellular processes like cell cycle control, apoptosis and the regulation of the
actin cytoskeleton. In particular, the Rho-pathway controls the activity of myosin II
molecular motors and thereby the contractility of stress fibers. The altered actomyosin
forces are then transmitted to the adhesion sites and change the biochemical signal-
ing. Consequently, focal adhesions and stress fibers are connected by a biochemical
and mechanical feedback loop which is the focus of our study in this chapter. Due
to the complexity of the signaling network at focal adhesions, which we briefly depict
in the first section, we constrain our biochemical modeling to the Rho-pathway. This
part of the signaling network has been studied thoroughly by experimentalists. We
conducted an extensive survey of the relevant literature and collected the measured
rate and diffusion constants in such a way that they now can be used for mathematical
modeling. The coupling between the biochemical signaling pathway and the mechan-
ical stress fiber model proceeds by introducing a spatially varying fraction of active
molecular motors. The local activation level is thereby determined by the outcome
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of the signaling pathway. The whole system of reaction-diffusion equations for the
signal transduction and the partial differential equation for the mechanical part can
be solved simultaneously. By feeding the force resulting from the mechanical model
back into the activation of the signaling pathway, we obtain for the first time a model
for the closed mechano-chemical feedback cycle. As a first application of our model,
we simulate a drug experiment in silico and we show that it predicts heterogenous
contraction of stress fibers in good agreement with experimental findings by Peterson
et al. [31]. Furthermore we study the case of cells embedded in soft tissues and make
valuable predictions for the capability of cells to establish stresses in soft environments.
These model predictions could be tested in future experiments. In general, our work
shows how models for the coupling of biochemistry and mechanics can be devised in a
meaningful way.

4.1 Biochemical signaling at focal adhesions

First evidence for localized adhesion spots between cultured fibroblasts and the sub-
strate was provided in the early seventies by electron microscopy [119]. At that time
focal adhesions were described as electron-dense plaques where the plasma membrane
comes 30 nm close to the substrate which compares to an average spacing of about
60 nm. Also filamentous structures connected to the adhesion plaque have been discov-
ered, the fingerprint of actin stress fibers. Subsequently, focal adhesions have been
investigated by interference reflection microscopy [120–122] which enabled live cell
imaging of focal adhesions. In motile cells they were found to be rather stationary
with respect to the substrate demonstrating their role as mechanical anchor points
to the extracellular matrix. The integrin receptor family, which mainly mediates this
transmembrane linkage between the extracellular matrix and the actin cytoskeleton,
has been recognized in the mid-eighties [123]. However, only few components like
vinculin [124–126], talin [127, 128] and α-actinin [104] were known to reside in the
intracellular dense protein plaque which mediates the connection between integrin and
actin filaments. In the following years the knowledge about the composition of integrin
mediated adhesion has been extended primarily by immunofluorescence studies. Till to
date the pace of discovery in this field of research has not slowed down. By 2001 about
50 proteins have been found either stably or transiently associated to integrin mediated
contacts [36, 129]. Within about six years the number of known components increased
to 90, reported by Zaidel-Bar et al. [38] after an extensive literature research also
including the usage of large protein-protein interaction databases such as BIND [130]
and HPRD [131]. In addition to these intrinsic components that physically reside in
the adhesion plaque another 66 external interaction partners have been identified that
can affect or conversely can be effected by the plaque proteins without being associated
to the mechanical scaffold. The entity of all 156 components together with their known
690 interactions has been termed integrin adhesome in obvious analogy to the genome.
Fig. 4.1 depicts the state-of-the-art interaction network between the 90 intrinsic ad-
hesion components. The links in the network represent either non-directional binding
interactions or directional signaling interactions. The latter are further subdivided into
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Figure 4.1: Interactions between all intrinsic components of the adhesome. Black lines
with full circles at their ends denote non-directional binding interactions, blue arrows
represent directional inhibition (for example, dephosphorylation, G-protein inactivation
or proteolysis) and red arrows represent directional activation (for example, phospho-
rylation or G-protein activation) interactions. The nodes are shape- and colour-coded
according to the function of the proteins. For more details, including a list of the periph-
eral components, see [38] where the figure and caption were taken from.

either activating or inhibiting interactions classified according to the performed molec-
ular modification, see [38]. Each component shown in Fig. 4.1 potentially interacts also
with external components (not included in the figure) that are in turn part of various
signaling pathways which regulate complex cellular processes such as differentiation,
cell cycle control, apoptosis as well as cell migration including the regulation of the
actin cytoskeleton. An illustrative overview of the outgoing signaling pathways at focal
adhesions is given for example by the KEGG database (Kyoto Encyclopedia of Genes
and Genomes) [132]. Due to the vast complexity of the resulting network a system-
wide quantitative model seems to be neither feasible nor reasonable at the present stage.
At this point it is worth mentioning that the links in the presented network describe
protein-protein interactions in a merely qualitative manner. Quantitative measure-
ments of the chemical rate constants for the respective enzymatic reactions have been
reported only in rare cases. It is mainly for this reason that we focus our biochemical
modeling on the Rho-pathway where most of the chemical reaction parameters such
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Figure 4.2: Regulation of GTPases at integrin mediated adhesions. The GTPases
(mainly RhoA and Rac1) are upregulated by guanine nucleotide exchange factors (GEFs,
yellow diamonds) and downregulated by GTPase-activating proteins (GAPs, yellow oc-
tagons). Regulators of GEFs and GAPs are mainly kinases shown at the top. The main
substrates of GTPases are shown at the bottom. This figure was taken from [38].

as rate and Michaelis-Menten constants have been measured. The important role of
Rho-GTPases in cell adhesion has been revealed in 1992 by Ridley and Hall. They
demonstrated by microinjection of the respective proteins into cells, that the assembly
of stress fibers and focal adhesions is regulated by a small GTPase called Rho [47].
Rho has many isoforms, but the one mainly associated with focal adhesions is RhoA,
which for simplicity in the following we refer to as Rho. In a companion paper of the
same year, Ridley and Hall showed together with coworkers that another small GTPase
called Rac stimulates the formation of lamellipodia as they appear in cell migration
[46]. The main isoform associated with focal adhesions is Rac1 which for simplicity
in the following we will refer to as Rac. While Rho mainly acts through activation of
actomyosin contractility, the main effect of Rac is activation of actin polymerization,
in particular activation of the actin nucleation factor Arp2/3. It has been reported
later that activation of Rac downregulates Rho, leading to disassembly of stress fibers
and focal adhesions [133]. In many situations, Rho and Rac can be regarded as an-
tagonists, switching the cytoskeleton between different structural states [45]. They are
part of a larger family of small GTPases, called the Rho-family, which for example also
includes Cdc42, which stimulates the formation of filopodia and maintains cell polarity
[134]. Apart from regulation of the actin cytoskeleton, the small GTPases from the
Rho-family have many other functions in the cell, for example in cell cycle control and
differentiation.

Although the small GTPases from the Rho-family are simple molecular switches,
they are regulated by many different factors. In general, GTPases are upregulated by
guanine nucleotide exchange factors (GEFs) which convert the inactive Rho-GDP form
to the active Rho-GTP form by exchanging GDP for GTP. They are downregulated
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by GTPase-activating proteins (GAPs), which stimulate Rho-GTPase activity, thus
leading to GTP-hydrolysis and transformation of the active Rho-GTP into the inactive
Rho-GDP. For the 20 members of the Rho-family, 60 different GEFs and 70 different
GAPs as well as more than 60 different downstream targets have been identified [135].
Fig. 4.2 illustrates this complex regulation network for GTPases at integrin mediated
adhesions. The GEFs (yellow diamonds) and GAPs (yellow octagons) are mainly
regulated by kinases of which the most important ones, FAK and SRC are bound to
the adhesion plaque. The various signals from GAPs and GEFs are gathered and then
compete at Rho-GTPases for activation or inhibition. Most of the integrin related
signaling is evidently carried out through RhoA and Rac1. The remaining GTPases
depicted in Fig. 4.2 seem to play only a minor role. Still, at the current stage of affairs,
there is no way how this complex network can be modeled in full detail. However,
certain parts of this network have been well characterized by biochemical assays, in
particular different parts of the Rho-mediated signal transduction pathway leading
from focal adhesions to actomyosin contractility.

In combination with our mechanical stress fiber model we focus on the role of Rho
as stabilizing factor for mature adhesion. During recent years, it has been shown that
Rho is the central component of a mechano-chemical feedback loop which regulates
mature adhesion. In detail, it has been shown that application of force on focal ad-
hesions triggers their growth in a Rho-dependent manner [39] (reviewed in [37, 45]).
Two main downstream targets of Rho leading to stress fiber formation have been iden-
tified. The formin mDia leads to actin polymerization, while the Rho-associated kinase
ROCK leads to phosphorylation of myosin light chain and thus to increased motor ac-
tivity. Together these effects lead to formation of and contractility in stress fibers and
therefore to increased force levels at focal adhesions. In this way, a positive feedback
loop is closed for upregulation of mature adhesion characterized by focal adhesions and
stress fibers. This mechano-chemical feedback loop is schematically depicted in Fig. 1.3.
An essential part of this feedback loop is the growth of focal adhesions under force,
which recently has been the subject of different modeling approaches [74–79] (reviewed
in [81]). However, these models have focused mainly on the mechanical and thermo-
dynamic aspects of the growth process, neglecting the interaction of mechanics and
biochemical signaling. Our biochemical reaction diffusion model for the Rho-pathway
will be developed in section 4.3. Next, we will give a summary of experiments by Peter-
son et al. [31] who used the drug calyculin A in order to interfere with this biochemical
signaling pathway.

4.2 Description of inhibition experiments

Although being less ordered than muscle on the level of electron microscopy, stress
fibers do exhibit a similar periodic organization of alternating α-actinin and myosin
II rich bands. The resulting striation pattern can be revealed under the microscope
by transfecting cells with fluorescently labelled proteins. Fig. 4.3(A-C) shows such
a gerbil fibroma cell, where the green regions correspond to the actin crosslinker α-
actinin while the red regions correspond to myosin II molecular motors. These striation
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patterns have been used as an intrinsic ruler in our previously presented study of laser
dissected stress fibers. In a similar manner, Peterson et al. [31] used these structures
to investigate the effect of biochemical drugs on stress fiber contraction dynamics. The
induced drug, calyculin A, is a serine/threonine phosphatase inhibitor that increases
the phosphorylation level of the myosin II regulatory myosin light chain (MLC) via
the Rho-pathway [56, 57] and thus increases stress fiber contractility. More details of
how the drug interferes with Rho-signaling are presented in the next section, see also
Fig. 4.4. The drug (5 nM) was put into the medium and subsequently got internalized
by the cells. It can be expected that the drug thereby was homogeneously distributed
within the cell body. Upon actomyosin stimulation, stress fibers contracted in total
length by 16% within 30-40 min after induction of the drug. However, measurements
of mean sarcomere lengths in α-actinin transfected 3T3 fibroblasts revealed that the
induced strain was not uniform along the fiber. This is a counterintuitive result given
a homogeneously distributed drug. At the cell periphery sarcomeres shortened by 30-
40% (average over 40 sarcomeres in 7 cells) but in contrast sarcomeres at the cell
center were simultaneously stretched by 50% (average over 20 sarcomeres in 4 cells).
Here, cell periphery was defined as the part of the fiber within 5-7 µm distance to
a focal adhesion and the center was defined as a 10µm segment on either side of
the fiber midpoint. The exact time courses of the mean striation width in the two
regions are shown in Fig. 4.3(D-E) for control and stimulation experiments, respectively.
Noteworthy, mean sarcomere widths already differed between the two regions prior
to stimulation. The differences then increased upon calyculin A induction. Similar
results have been reported for stimulation with LPA, another agent that also stimulates
MLC phosphorylation via the Rho-pathway. In order to check whether the strong
spatial gradients in the striation pattern result from a gradient in myosin activity,
Peterson et al. measured the fluorescence intensity of MLC as well as the fraction
of MLC phosphorylated on Ser19, both before and after stimulation. The degree of
MLC-phosphorylation is a measure for the local myosin activity. In general, they
found more MLC associated to peripheral compared to central parts of the fibers,
before as well as after drug stimulation. More importantly, they observed that more
phosphorylated MLC was localized at the cell periphery after stimulation. Furthermore,
they determined the ratio of fluorescence intensity of phosphorylated MLC to total
MLC in the respective regions and found that, after stimulation, this ratio was higher
in the periphery. Together these observations suggest that the nonuniform distortions
of the striation patterns indeed result from a gradient in MLC phosphorylation levels.
The emergence of this chemical gradient, however, is not coherent with the uniformly
distributed stimulus.

To resolve this inconsistency, we argue that the mechano-chemical coupling at fo-
cal adhesions has to be taken into account. According to our suggestion the chemical
gradient occurs due to the following mechanism: The induction of the drug first ho-
mogeneously increases the contractility along the stress fibers leading also to higher
boundary forces exerted on the focal adhesions located at the peripheral fiber tips.
Subsequently, the increased mechanical stress at focal adhesions triggers additional
Rho-signaling. The stimulating Rho-signal then diffuses back into the cell and thereby
gets degraded. Thus the part of the stress fiber close to the adhesion gets more stimu-
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Figure 4.3: (A) Peterson et al. [31] studied the deformation of stress fibers in fibroblasts
by using fluorescently labelled α-actinin (in green) and myosin light chain (in red). These
two components arrange sequentially along the stress fibers and thereby form regular
striation patterns. Myosin contractility was stimulated with the drug calyculin A. Then
an inhomogeneous striation pattern results: stress fibers contract at the cell periphery
(B) but expand at the cell center (C). These results were quantified by time course
measurements of the mean pattern bandwidths in the respective regions. Compared
with the control (D), stimulation of contractility leads to very strong spatial gradients
(E) on the time scale of tens of minutes.

lated in contrast to the central part which is hardly reached by the diffusive Rho-signal.
The strong motors at the periphery then contract the fiber at the expense of the weakly
contractile central fragment. In order to further quantify these ideas we developed a
model for the Rho-pathway, presented below, and showed how this biochemical model
can be coupled to our slightly altered stress fiber model. The whole coupled system of
reaction diffusion equations and the stress fiber equation can be solved simultaneously.
The numerical results for the in silico drug experiments are finally compared with the
experimental measurements.

4.3 Reaction diffusion model for the Rho-pathway

In Fig. 1.3 we introduce a coordinate system for our one-dimensional model: the stress
fiber extends along the positive x-direction and the endpoints at x = 0 and x = L corre-
spond to two focal adhesions. Because the two focal adhesions are treated as equivalent,
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Figure 4.4: Signaling pathway that controls myosin contractility depicted in its ap-
propriate spatial context: mechanical cues are transduced to various biochemical signals
at focal adhesions, however, the precise mechanisms have not been resolved yet. One
possible mechanism is that a Rho-GEF is activated by a mechanosensitive process at
focal adhesions. Rho-GEF then promotes Rho-GTP loading and subsequent complex-
ation with Rho-associated kinase (ROCK) which gets activated. Active ROCK is able
to phosphorylate myosin light chain phosphatase (MLCP) at its myosin-binding subunit
(MBS). MLCP and MLCP-P are freely diffusible in the cytoplasm and thus can reach
the myosins in the stress fibers. Increased phosphorylation of MLCP to MLCP-P by
ROCK effectively leads to increased phosphorylation of myosin light chain (MLC), thus
increasing myosin contractility.

our model has inflection symmetry around x = L/2. In Fig. 4.4, we schematically de-
pict the biochemical part of our model in the spatial context of the focal adhesion
at x = 0 (by symmetry, the same description applies to the one at x = L). Three
compartments have to be considered: the focal adhesion, the cytoplasm and the stress
fiber. In our model, each of these compartments corresponds to one or two important
biochemical components. The reaction pathway is a linear sequence of activating or
inhibiting enzyme reactions initiated at focal adhesions, transmitted through the cyto-
plasm by diffusion and resulting in spatially dependent myosin activation in the stress
fiber. In the following we discuss each reaction step in detail and show how these pro-
cesses are translated into reaction-diffusion equations. The abbrevations used for the
biochemical components are compiled in Tab. 4.1, together with a short description of
their functions. The model equations are summarized in Tab. 4.2.

Our modeling of the biochemical signaling pathway starts with the activation of
Rho at focal adhesions. The Rho-protein has a lipophilic end serving as an anchor for
lipid membranes [136]. Complexation with guanine nucleotide dissociation inhibitors
(GDIs) shields the hydrophobic parts of the Rho-protein and makes it inactive as well as
soluble in the cytoplasm [137]. It is expected that Rho is released from these complexes
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Abbreviation full name function

GDP/GTP guanosine diphosphate/
guanosine triphosphate

small molecule without and with
a third phosphate group, energy
source of conformational changes

GEF guanine nucleotide
exchange factor

activates GTPases by exchanging
GDP for GTP

GAP GTPase-activating protein stimulates GTP-hydrolysis, convert-
ing active GTPases (GTP-bound)
to their inactive (GDP-bound) form

GDI guanine nucleotide
dissociation inhibitor

binds to inactive form of GTPases,
the complex is soluble in the cyto-
plasm

MLC myosin light chain subunit of myosin II molecular mo-
tors, regulates myosin binding to
actin filaments

MLCK myosin light chain kinase phosphorylates MLC

MLCP myosin light chain phosphatase dephosphorylates MLC

MLCP-P phosphorylated MLCP inactive form of MLCP

MBS myosin-binding subunit subunit of MLCP whose phosphory-
lation makes MLCP inactive

ROCK Rho-associated kinase ROCK phosphorylates MLCP at its
myosin-binding subunit (MBS)

I effect of calyculin inhibits MLCP from dephosphory-
lating myosin, thus enhancing con-
tractility

Table 4.1: Abbreviations and full names of the biochemical components. For each
component, a short description of its function is given.

at focal adhesions. More importantly, focal adhesions are known to recruit different
Rho-GEFs, thus activating Rho at the focal adhesions, compare Fig. 4.2. The active
Rho is then able to bind Rho-associated kinase (ROCK) and thereby activate its kinase
activity [138]. Since the active ROCK is bound to Rho-GTP, we assume in our model
that these components are not diffusible but are localized to the focal adhesions. For
the same reason, we neglect the direct interaction of ROCK and myosin, which has
been reported to occur in vitro. Active ROCK phosphorylates the diffusible myosin
light chain phosphatase (MLCP) at its myosin-binding subunit (MBS). MLCP and
its antagonistic partner myosin light chain kinase (MLCK) are the main regulators of
myosin contractility in the context we are interested in. Both enzymes interact with
the regulatory myosin light chain subunit (MLC) of the myosins. Depending on the
respective activities, MLC gets either phosphorylated or dephosphorylated. MLC, in
turn, controls the myosin binding to actin filaments. Only if MLC is phosphorylated,
myosin is able to bind actin filaments and perform its ATPase cycle that converts
chemical energy into mechanical work, e.g. contraction of stress fibers [139]. By phos-
phorylating MLCP, ROCK effectively enhances the phosphorylation level of MLC. In
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Model equations

∂ROCK(t)

∂t
=

r1Fb(t)(ROCKtot − ROCK(t))

K1 + (ROCKtot − ROCK(t))
− V−1ROCK(t)

K−1 + ROCK(t)
(m1)

∂MLCP(x, t)

∂t
=

V−2MLCP-P(x, t)

K−2 + MLCP-P(x, t)
+ D

∂2MLCP(x, t)

∂x2
(m2)

∂MLCP-P(x, t)

∂t
= − V−2MLCP-P(x, t)

K−2 + MLCP-P(x, t)
+ Dp

∂2MLCP-P(x, t)

∂x2
(m3)

∂n(x, t)

∂t
=

V3 (1 − n(x, t))

K3 + (1 − n(x, t))
− r−3MLCP(x, t)n(x, t)

K−3I + n(x, t)
(m4)

(
∂

∂x
γ̃(x, t)

∂

∂x

∂

∂t
+

∂

∂x
k(x)

∂

∂x

)

u(x, t) = −1

a

∂

∂x
Fs(x, t) (m5)

Boundary conditions at x = 0, L

∂MLCP(x, t)

∂x
= ±R2

D

ROCK(t)MLCP(x, t)

K2 + MLCP(x, t)
(bc2)

∂MLCP-P(x, t)

∂x
= ∓R2

Dp

ROCK(t)MLCP(x, t)

K2 + MLCP(x, t)
(bc3)

u(x, t) = 0 stiff boundaries (bc5)

Abbreviations

Fs(x, t) = Fmax n(x, t)

γ̃(x, t) = γ(x) + Fs(x, t)/v0

Fb(t) = aγ̃(0, t)∂x∂tu(0, t) + ak(0)∂xu(0, t) + Fs(0, t)

Table 4.2: Summary of model equations. Eqs. (m1-m4) describe successive biochemical
signaling events: (m1) focal adhesion associated activation of ROCK; (m2) and (m3)
phosphorylation and diffusion of MLCP and dephosphorylation and diffusion of MLCP-
P; (m4) regulation of the active fraction of the myosins, which is identified with the
phosphorylated fraction of MLC. Eq. (m5) is the mechanical model equation for stress
fibers, where u(x, t) is the displacement along the fiber. The boundary conditions for the
partial differential Eqs. (m2), (m3), (m5) are given by (bc2), (bc3), (bc5), respectively. In
Eq. (bc2), (bc3), the upper (lower) sign is valid for the left x = 0 (right x = L) boundary.
For the sake of clarity, we have introduced the listed abbreviations for the stall force
Fs, the effective viscosity γ̃ and the force exerted on the boundary Fb. The presented
results have been derived with the assumptions that: (I) The diffusion properties of
the phosphorylated and unphosphorylated form of the phosphatase are the same, hence
D = Dp. (II) The viscoelastic properties of the stress fiber do not vary in space, therefore
k(x) → k and γ̃(x, t) → γ + Fmax n(x, t)/v0.
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this way, Rho-activation leads to increasing myosin contractility in stress fibers.

Our model for the biochemical reaction-diffusion system assumes that each enzyme
stimulation follows Michaelis-Menten kinetics [140]. In Michaelis-Menten kinetics, pro-
duction first increases linearly with educt concentration and then saturates at a maxi-
mal production velocity if educt concentration exceeds the value set by the Michaelis-
Menten constant. The precise molecular process corresponding to the conversion of
force into a biochemical signal at focal adhesions has not been identified yet. However,
it is expected that mechanical forces exerted on focal adhesions eventually initiate the
loading of Rho-GTP leading to ROCK activation. Due to the lack of information
we lump the focal adhesion associated processes into one equation that effectively de-
scribes the conversion of ROCK into its activated form (presumably complexed with
Rho-GTP). The mechanical force Fb that stimulates the activation is treated as an
enzyme in the framework of Michaelis-Menten kinetics:

∂ROCK(t)

∂t
=

r1Fb(t)(ROCKtot − ROCK(t))

K1 + (ROCKtot − ROCK(t))
− V−1ROCK(t)

K−1 + ROCK(t)
(4.1)

The variable ROCK denotes the activated form of ROCK and we assume that the
overall concentration of ROCK is constant at ROCKtot. The force exerted by the
stress fiber on the focal adhesion, Fb(t), stimulates the conversion of ROCK into its
activated form with maximum velocity r1Fb(t) and Michaelis-Menten constant K1. The
parameter r1 is equivalent to a rate constant but relates mechanical force to a chemical
reaction. For this reason the units of r1 are given as [nM/s nN]. The force Fb(t) will
depend on the stress fiber deformation. The second term accounts for the degradation
of activated ROCK to its inactive form, with maximum velocity V−1 and Michaelis-
Menten constant K−1. Since we expect ROCK in its active form to be associated with
focal adhesions, we omit diffusive contributions to this equation.

One main effector of ROCK is MLCP, which we regard as a diffusible compound
leading to a reaction-diffusion equation:

∂MLCP(x, t)

∂t
=

V−2MLCP-P(x, t)

K−2 + MLCP-P(x, t)
+ D

∂2MLCP(x, t)

∂x2
(4.2)

Here, the variables MLCP-P and MLCP denote the phosphorylated and unphosphory-
lated form of myosin light chain phosphatase, respectively. The first term accounts for
the dephosphorylation of MLCP-P with maximum velocity V−2 and Michaelis-Menten
constant K−2. The second term allows for the diffusion of the phosphatase with diffu-
sion constant D. The phosphorylation level of MLCP is also regulated by the active
form of ROCK which catalyzes the reverse reaction, that is the conversion of the phos-
phatase into its phosphorylated form. However, ROCK is only active in the vicinity
of focal adhesions located at each end of the stress fiber. Therefore this source term
can be incorporated into the boundary conditions for Eq. (4.2), in the sense that the
diffusive flux into the boundary has to balance the conversion into its inactive form:

D
∂MLCP(x = 0, t)

∂x
=

R2ROCK(t) MLCP(x = 0, t)

K2 + MLCP(x = 0, t)
(4.3)
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The same relation, but with opposite sign is valid at the other end at x = L, compare
Tab. 4.2. The reaction is again modeled with Michaelis-Menten kinetics, where R2 =
r2vb is the product of a rate constant r2 with an effective volume vb of the focal adhesion
in which the reaction takes place. K2 is the usual Michaelis-Menten constant. For the
phosphorylated form of the phosphatase (MLCP-P) equations similar to Eq. (4.2) and
Eq. (4.3) are valid, but with opposite signs of the source terms and a diffusion constant
which in principle can be different, see Tab. 4.2. MLCP together with MLCK regulate
the phosphorylation level of MLC. Since myosin in stress fibers form mini-filaments,
which are bound to actin filaments, we neglect diffusion of this compound, leading to
the rate equation for the phosphorylated fraction n of MLC:

∂n(x, t)

∂t
=

V3 (1 − n(x, t))

K3 + (1 − n(x, t))
− r−3MLCP(x, t)n(x, t)

K−3 I + n(x, t)
(4.4)

By allowing only the ratio of the phosphorylated fraction to vary, we assume that the
overall amount of myosin in the stress fibers is fixed. MLC is phosphorylated by MLCK
with a maximum velocity V3 = r3MLCK and respective Michaelis-Menten constant
K3. Here we assume that the concentration of MLCK is constant within the cell. The
kinase is antagonized by MLCP that dephosphorylates MLC with a rate constant r−3

and Michaelis-Menten constant K−3. The factor I is an inhibition parameter defined
below. Since MLCP has spatial dependent source terms and is diffusible, the inhibition
of MLC by the phosphatase will vary in space.

To complete the biochemical modeling we have to specify how the induction of
calyculin is treated in our model. Calyculin is an inhibitor of MLCP and thereby
enhances the phosphorylation level of MLC. We model the interaction of calyculin
with its target MLCP as a competitive inhibition leading to the additional factor I
in the last term of Eq. (4.4) [151]. In the presence of calyculin I > 1 (in absence of
the drug: I = 1) which effectively increases the Michaelis-Menten constant K−3 and
thus decreases the rate of MLC dephosphorylation. Hence more myosin motors will
be activated and cell contractility is stimulated. The induction of the drug is then
modeled by switching instantaneously the inhibition parameter from I = 1 to I = 3.
Thereby, we omit the time delay caused by the internalization of the drug.

The used parameter values for the reaction-diffusion system are based on an ex-
tensive survey of the literature and are summarized in Tab. 4.3. If a range of values
is reported in the literature, we chose an intermediate value for this parameter. If
no value could be found in the literature, we made reasonable assumptions based on
similar parameters in other systems. No attempt was made to fit the parameters to
some target function.

We first analyze the properties of this reaction diffusion system assuming that the
boundary force exerted on the focal adhesions is held at a constant level. This would
be the case if the myosin forces were in a stationary state and not regulated by the
biochemical signals emerging from focal adhesions. We impose artificial initial condi-
tions that all components (ROCK, MLCP-P and n) are at zero activation level but
set the boundary force to 5 nN, a typical force observed for fibroblasts [40]. This me-
chanical stimulation triggers the accumulation of active ROCK at focal adhesions, see
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Time dependent reaction variables
Abbreviation Meaning Used value Reference values Ref.
ROCK activated form of ROCK 0 . . . 5 nM & 1 nM [138]
MLCP unphosphorylated form of MLCP 0 . . . 1.2µM 1.2 ± 0.3µM [141]
MLCP-P phosphorylated form of MLCP 0 . . . 1.2µM 1.2 ± 0.3µM [141]
n fraction of active myosin 0 . . . 1 [MLC-P]/[myosin]

Reaction constants
MLCK myosin light chain kinase 0.1µM & 100 nM [142]
M myosin concentration 30µM 25 . . . 30µM [143]
K1 Michaelis constant 5 nM (no value)
K−1 Michaelis constant 4.7 nM (no value)
K2 Michaelis constant 0.1µM 0.10 ± 0.01µM [138]
K−2 Michaelis constant 15µM (no value)
K3∗M Michaelis constant 20µM 52.1 ± 7.1µM [144]

34.5 ± 2.8µM [138]
18µM [145]

7.7 . . . 96.0µM [146]
19 . . . 53µM [142]

20µM [147]
K−3∗M Michaelis constant 10µM 10µM [148]
r1 rate constant 0.3 nM/s nN (no value)
V−1 maximum velocity 1.8 nM/s (no value)
r2 rate constant 2.4 1/s 2.36 ± 0.10 1/s [138]
R2 maximum velocity 4.8µm/s r2 ∗ vb

V−2 maximum velocity 0.1µM/s (no value)
r3∗M rate constant 10 1/s 2.00 ± 0.36 1/s [144]

3.85 ± 0.095 1/s [138]
5.17 1/s [145]

7.37 . . . 171.3 1/s [146]
70 . . . 100 1/s [142]

4.64 1/s [147]
V3∗M maximum velocity 1.0µM/s r3∗MLCK∗M
r−3∗M rate constant 21 1/s 21 1/s [148]
D diff. const. of MLCP & MLCP-P 14µm2/s 10 . . . 100µm2/s [149]
vb effect. react. vol. of FAs 2.0µm (no value)
I inhibition parameter 1 → 3 (no value)

Parameters of mechanical model
Fmax stall force 50 nN (no value)
v0 maximum motor velocity 1.0µm/s ≈ 0.1 . . . 1µm/s [150]
a sarcomeric length 1.0µm 1.0µm [31]
k spring stiffness 45 nN/µm 45.7 nN/a [89]
γ viscosity 45 nN s/µm ≈ τk = 45.7 nN s/a [63, 89]
L fiber length 50µm ≈ 20 . . . 80µm

Table 4.3: Model parameters based on literature search. We have set the model pa-
rameters such that they fit into the reported range. The equation for the phosphorylated
fraction of MLC is normalized to the total myosin concentration denoted by M . In order
to make the involved reaction constants comparable to the literature values we give K3,
K−3, r3 ,r−3 and V3 scaled with M . Eq. (4.1) translates mechanical forces into biochem-
ical activation. For this reason the units of the rate constant r1 are given as [nM/s nN].
The typical equilibration time τ of stress fibers is of the order of a few seconds, see
Tab. 3.1. Therewith, we roughly estimate the viscosity value as γ ≈ τk, using τ = 1 s.
Myosin activation by calyculin is modeled as competitive inhibition of the phosphatase.
The inhibition parameter I is switched instantaneously from I = 1 to I = 3. Some of
the reported values have been measured for the interactions of protein fractions and not
for the native proteins. Furthermore, the experiments have been carried out on proteins
extracted from different species.
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Figure 4.5: Spatial dependence of the active myosin fraction n(x, t) at four different
time points t ∈ {30 s, 60 s, 120 s, 180 s} as well as for the steady state, nss(x): We solve
the biochemical model implying the artificial initial conditions that all components are
at zero activation level, but set the boundary force to 5 nN. Because of this mechanical
trigger at focal adhesions, MLC gets preferentially activated at the boundaries via the
Rho-pathway leading to a steady increase of the myosin activation level. Due to diffusible
compounds in the Rho-pathway, the increased activation level is smoothed out towards
the center of the cell.

Eq. (4.1), creating a sink for the active form of MLCP. Thus in those boundary regions
MLCK dominates and increases MLC phosphorylation. Closer to the center of the cell
MLC rather remains in its unphosphorylated form. The width of the interfacial region
of intermediate MLC-phosphorylation level is mainly determined by the competition
between diffusiveness and degradation of the phosphatase. The faster the diffusion,
the wider the intermediate region. On a typical timescale of a few minutes all com-
ponents equilibrate to their steady state concentration profile, where MLC is highly
phosphorylated at the boundaries, but is poorly activated at the center of the stress
fiber. In Fig. 4.5 we show the typical equilibration of the phosphorylated fraction of
MLC, n(x, t), as obtained from a solution of the full system of biochemical reaction-
diffusion equations. Below we will argue that this phosphorylation profile of MLC
implies a spatially varying myosin motor activation leading to an inhomogeneous stress
fiber contraction.

4.4 The altered stress fiber model

Stress fiber contraction dynamics upon stimulation with the drug calyculin will be
described by the model developed earlier in section 2.1.1. However, the model has to
be slightly modified to cope with the present situation. On the one hand, the myosin
motor activity can not be assumed to be constant along the fiber which will give rise to
spatially varying contractile myosin stresses. On the other hand, the fibers are clamped
at both ends by focal adhesions which prevents large displacements of fiber elements.
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Figure 4.6: We model a stress fiber as a string of viscoelastic and contractile elements
such that the spring stiffness kn, the viscosity γn and the motor force Fmn can vary
spatially. E.g. the latter will vary spatially due to different myosin activity at the
periphery compared to the center. The displacement of a certain site n is denoted by un.
In the following, we assume clamped ends as boundary conditions, namely u(0, t) ≡ 0
and u(L, t) ≡ 0 where L is the total length of the fiber.

This is in contrast to stress fiber laser surgery experiments where the fibers retract over
several micrometers and the external coupling, particularly the elastic crosslinks to the
surrounding, becomes important. In the present situation, due to the small absolute
displacements, we neglect these external viscoelastic interaction terms. Also because of
this simplification we no longer have to distinguish between the internal and external
viscoelastic properties of the fiber. Thus we can drop the lengthy indices and define
k = kint, γ = γint and γ̃ = γ̃int. Analog to the derivation presented earlier we start with
a discrete chain of Kelvin-Voigt bodies each of which contains an additional contractile
element. A schematic representation of the model is given in Fig. 4.6. At each site
n all spring forces, viscous drags and the forces built up by motor proteins have to
balance:

0 = γn+1(u̇n+1 − u̇n) − γn(u̇n − u̇n−1) + kn+1(un+1 − un)

−kn(un − un−1) + Fmn+1 − Fmn

(4.5)

In contrast to the previous discussion, we allow that the spring stiffness, the viscosity
as well as the motor force vary spatially. The continuum limit of the above equation
can be performed according to the scheme presented in section 2.1.3. The result is
given by:

a2

(
∂

∂x
γ(x)

∂

∂x

∂

∂t
+

∂

∂x
k(x)

∂

∂x

)

u(x, t) + a
∂Fm(x, t)

∂x
= 0 (4.6)
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Figure 4.7: (a) Time course of boundary force Fb(t). The solution of the Volterra
equation, Eq. (4.11), indicated by circles, was calculated by applying an iteration rule
further explained in the main text. The dashed line is the boundary force deduced from
direct numerical solution of Eq. (4.9), which we include for comparison. For the assumed
initial condition ∂xu(x, 0) ≡ 0, the boundary force increases from its non-zero value at
t = 0, given by Eq. (4.15) and quickly saturates at larger values. (b) We first analyze
the solution of the mechanical equation Eq. (4.9) by assuming a steady state myosin
activation level, nss(x), shown in Fig. 4.5. For this simplifying case where the myosin
activation level is not time dependent, Eq. (4.9) can be solved both numerically and
analytically. Fig. 4.7(b) shows the analytical solution Eq. (4.10), indicated by circles,
whereas the direct numerical solution of Eq. (4.9) is indicated by dotted lines. The
solution is given at time points t ∈ {0.1 s, 0.2 s, 0.5 s, 1.0 s, 3.0 s} as well as for the steady
state uss(x), assuming the initial condition ∂xu(x, 0) ≡ 0 and the boundary conditions
u(0, t) ≡ 0 and u(L, t) ≡ 0.

Note that the leading differential operator ∂x acts on γ(x) and u(x, t). The same holds
for the second term. If k did not vary spatially, it would simplify to the Laplacian
k∂2

x as it appeared in the previous chapter. The contractile force Fm can be described
again by a linearized force-velocity relation and in this way becomes depended on the
displacement u(x, t). The contraction velocity, which enters the force-velocity relation,
is given in the discrete picture as vn = −(u̇n − u̇n−1), see also the discussion in section
2.1.1. Accordingly, in the continuum limit the contraction velocity is determined by
v(x, t) = −a∂xu̇(x, t). This found expression for the contraction velocity is inserted
into the force-velocity relation Eq. (2.2) leading to:

Fm(x, t) = Fs(x, t)

(

1 +
a

v0

∂

∂x
u̇(x, t)

)

(4.7)

In contrast to Eq. (2.2), here the stall force is not constant but depends on the phospho-
rylated fraction n(x, t) of MLC along the stress fiber. This is due to the fact that along
a myosin minifilament and depending on MLC phosphorylation, a larger or smaller
fraction of myosin heads is able to bind to actin and perform ATP-cycles. The more
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myosin heads are active the larger the maximum force that the bundle can exert to the
actin filaments. In our model we regard the ensemble of myosins within a cross section
of a stress fiber as one large contractile unit with an effective stall force that depends
linearly on the active fraction n of myosin heads:

Fs(x, t) = Fmax n(x, t) (4.8)

The effective stall force, Fs(x, t), would reach the maximum force Fmax if all myosins
within this cross section would be working (n = 1). In the following we set Fmax =
50 nN which will result in boundary forces exerted by the fiber of about 5 nN which
corresponds to typical values observed in experiments [40]. Eq. (4.6) together with
Eq. (4.7) and Eq. (4.8) lead to the final model equation for the stress fiber

(
∂

∂x
γ̃(x, t)

∂

∂x

∂

∂t
+

∂

∂x
k(x)

∂

∂x

)

u(x, t) = −1

a

∂

∂x
Fs(x, t) (4.9)

where we have again introduced the effective viscosity γ̃(x, t) = γ(x)+Fs(x, t)/v0, sim-
ilar to proceedings in section 2.1.1, although here the effective viscosity varies spatially.
Interestingly, only the variation of the motor force appears on the right hand side of
the equation. As a consequence, a homogeneous motor activity will not contribute to
the displacements within the string. To obtain some intuition for this equation, assume
that the spatially varying stall force is given for example by the steady state solution
nss of the reaction diffusion system, depicted in Fig. 4.5, such that Fs(x) = Fmaxnss(x).
For this simplifying case where the stall force does not vary in time, Eq. (4.9) can be
integrated and the time dependent solution for u(x, t) is given by:

u(x, t) = u(0, t) +

∫ x

0

dx′
(

∂x′u(x′, t0)e
− t−t0

τ(x′) − Fs(x
′)

ak(x′)

(

1 − e
− t−t0

τ(x′)

)

+
1

aγ̃(x′)
e
− t−t0

τ(x′)

∫ t

t0

Fb(t
′)e

t′−t0
τ(x′) dt′

)

(4.10)

Here, we have set τ(x) = γ̃(x)/k(x), the typical equilibration time with which pertur-
bations decay at a certain position. For example the initial conditions ∂xu(x, t0) can be
regarded as perturbations to the steady state and they decay with exp(−t/τ(x)). The
three integration constants can be identified as the displacement at the left boundary
u(0, t), the force exerted to the left boundary Fb(t), and the initial strain along the
fiber, ∂xu(x, t0). They are determined by the boundary and initial conditions. Exper-
iments by Peterson et al. [31] are arranged with cells on stiff substrates to which the
ends of the stress fiber are connected by focal adhesions. Therefore, the appropriate
boundary conditions are clamped ends, namely u(0, t) ≡ 0 and u(L, t) ≡ 0. From the
second condition one is able to calculate the missing integration constant Fb(t) for any
initial condition ∂xu(x, t0). The force on the left boundary Fb(t) is given as solution of
an inhomogeneous Volterra equation of the first kind:

∫ t

t0

K(t − t′)Fb(t
′)dt′ = g(t) (4.11)
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with the kernel

K(t − t′) =

∫ L

0

dx′ 1

aγ̃(x′)
e
− t−t′

τ(x′) (4.12)

and the inhomogeneous part g(t) dependent on the initial condition ∂xu(x, t0):

g(t) =

∫ L

0

dx′
(

Fs(x
′)

ak(x′)

(

1 − e
− t−t0

τ(x′)

)

− ∂x′u(x′, t0)e
− t−t0

τ(x′)

)

(4.13)

In order to solve the integral equation Eq. (4.11) for Fb(t), we calculate its time deriva-
tive, leading to:

Fb(t) =
ġ(t)

K(0)
− 1

K(0)

∫ t

t0

K̇(t − t′)Fb(t
′)dt′ (4.14)

This equation yields an explicit expression for the initial force Fb at t = t0:

Fb(t0) =
ġ(t0)

K(0)
6= 0 (4.15)

By inspection of the kernel Eq. (4.12) and the inhomogeneous part Eq. (4.13) one finds
that the initial force on the boundary has a finite value, even for the initial condition
∂xu(x, t0) ≡ 0. Eq. (4.14) also yields an iteration rule for the time course of Fb(t), by
applying a quadrature, where Fb(t0) from Eq. (4.15) is used as a starting value. The
solution for Fb(t) is shown in Fig. 4.7(a). The boundary force is rising from its initial
value and then quickly saturates at about 4.8 nN. The result for Fb(t) can then be
set into the general solution (Eq. (4.10)) for the displacement u(x, t) along the fiber.
Fig. 4.7(b) shows this solution by using the steady state activation level for the myosins
(Fs(x) = Fmaxnss(x)), shown in Fig. 4.5, and assuming the initial condition ∂xu(x, t0) ≡
0 as well as the boundary conditions u(0, t) ≡ 0 and u(L, t) ≡ 0. Beside the analytical
solution, indicated by circles, we also included the direct numerical solution of Eq. (4.9)
for comparison. The numerical solution was derived by using the MATLAB algorithm
“pdepe”. The sinusoidal shape of the function u results from stronger contractile motors
close to the boundaries causing the fiber elements to displace into the direction of the
boundaries. Hence the displacement u is positive (negative) along the right (left) half
of the fiber. It is worth noting that the mechanical equilibration of the stress fiber
occurs within seconds in contrast to the biochemical system which equilibrates over
minutes.

4.5 The coupled feedback system

We already argued that the system of focal adhesions and stress fibers exhibits a closed
biochemical and mechanical positive feedback loop. Despite this fact the previous
results were derived under the assumption that the mechanically triggered biochemical
signals at FAs originate from a constant force. In order to model the full biological
system, the varying boundary forces have to be fed back into the equation describing
the mechanotransduction Eq. (4.1). Since the stress fiber model does not include any
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crosslinks (e.g. intermediate contacts to the substrate) the tension σ within the fiber
has to be constant and therefore equals the boundary forces:

Fb(t) = σ(x = 0) = aγ̃(0, t)∂x∂tu(0, t) + ak(0)∂xu(0, t) + Fs(0, t) (4.16)

This relation now connects the biochemical signaling to the mechanical deformation of
the stress fiber. Thus, the coupled system of reaction equations Eq. (4.1) to Eq. (4.4),
and the mechanical equation Eq. (4.9) have to be solved simultaneously. This can
be done numerically by using the MATLAB algorithm “pdepe”. The whole system of
equations and the used parameter values are summarized in Tab. 4.2 and Tab. 4.3,
respectively.

By performing a steady state analysis, described in great detail in chapter 5, we
find that this system of equations exhibits two stable steady states for the used param-
eter values: the first state is characterized by a generally low activation level nss(x) of
the myosin motors resulting in marginal boundary forces, whereas in the second state
myosin motors are non-uniformly activated and the exerted forces reach a few nN. This
bistability is characteristic for a positive feedback system [16]. The first “non-active”
state would correspond to cells that failed to establish mechanical stress whereas the
second “active” state corresponds to cells that are well adhered to the substrate. In
order to simulate the drug experiments by Peterson et al. [31], we start with the system
residing in this active state and then we perturb the system at t=0 by triggering the
stimulation with calyculin. This is modeled by instantaneously switching the inhibition
parameter from I = 1 to I = 3, thereby omitting the time delay caused by the internal-
ization of the drug. The stimulation with calyculin reduces the phosphatase activity
and elevates the myosin activation level everywhere leading to a quick increase in the
boundary forces exerted by the stress fiber. The time course of the force exerted on the
focal adhesions is shown in Fig. 4.8(a). Subsequently, the positive mechanical feedback
triggers additional signaling at focal adhesions activating myosin motors preferentially
at the cell periphery. This results in strong spatial gradients in myosin motor activity,
see Fig. 4.8(b). The strong peripheral motors then contract the fiber at the expense
of the central regions where the fiber has to elongate. This can be further analyzed
by using the numerical solution for the displacement u(x, t). The steady states of the
displacement uss before and after stimulation with calyculin are shown in Fig. 4.9(a).

The stimulation strongly increases the displacement along the fiber resulting in
substantial contraction of the fiber close to the boundaries but in expansion around
the cell center. This finding becomes more apparent in the shown striation pattern
calculated from the displacement after stimulation (upper string) compared to the
striation pattern of a completely undistorted fiber (lower string). The bands close to
the boundaries have been contracted whereas the bands around the center have been
expanded, compare Fig. 4.10. We have to stress the fact that the presented stress fiber
model is continuous, thus the model cannot distinguish between α-actinin bands or
MLC bands. The color code in Fig. 4.9(a) and Fig. 4.10 is therefore arbitrary. We also
derive the local relative change of density within the fiber which is given in general as
the negative trace of the strain tensor δρrel = (ρ − ρ0)/ρ0 = −tr(uij). Since the model
is one dimensional this simplifies to δρrel = −∂xu(x, t), plotted in Fig. 4.9(b). The
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Figure 4.8: (a) At t = 0 calyculin is added to the system. Then myosin motors
along the filament get activated and further increase the tension within the fiber. The
time course of the force Fb(t) transduced to the boundaries is shown. (b) Steady state
profile of the active myosin fraction before stimulation with the drug (dash-dotted line),
after stimulation including the mechanical feedback (solid line) and after stimulation
but neglecting the mechanical feedback (dashed line). For the latter case, homogeneous
induction of the drug causes an almost uniform elevation of myosin activity. Slight
differences between center and periphery persist but rather marginally extend, whereas
the closed feedback system results in an amplification of the spatial differences of myosin
activation.

local relative change of bandwidth at a certain position within the fiber, is then simply
given by: (w(x, t) − w0)/w0 = −δρrel(x, t) = ∂xu(x, t). The figure shows that the
inhomogeneous motor activity causes a contraction of the bands of about 55% close to
the fiber ends (the relative change in density is positive), whereas the pattern expands
up to 15% at the middle of the fiber (the relative change in density is negative).

The experimental time course data for the sarcomere length shown in Fig. 4.3 is
intrinsically averaged over a certain area in the peripheral and central regions of the
cell. In order to compare the model results with the experimental finding we therefore
define similar central (center ±10 µm) and peripheral (edges ±10 µm) regions of the
cell, indicated by vertical lines in Fig. 4.9(b). The expected sarcomere length at a
certain position along the fiber is given by

w(x, t) = w0+u(x+w0, t)−u(x, t) or w(x, t) = w0 (1 + ∂xu(x, t)) for w0 ≪ L (4.17)

In the following analysis this measure is averaged over the defined central and peripheral
regions, respectively. The deduced time courses for the mean pattern bandwidths in the
distinct regions are shown in Fig. 4.10. The expected steady state striation patterns are
illustrated as insets. Upon stimulation with calyculin, the peripheral mean bandwidth
shrinks from its initial value of about 0.97 µm down to 0.83 µm, whereas in the central
regions, the bands elongate from about 1.03 µm up to 1.13 µm. Interestingly the inital
mean bandwidth at the center and periphery yet differ in the initial unperturbed steady
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Figure 4.9: (a) Steady state solution of the displacement uss(x) along the fiber be-
fore (dashed line) and after (solid line) stimulation with calyculin. The stimulation
strongly increases the deformation of the fiber resulting in substantial distortion of the
expected striation pattern (upper line) compared to the striation pattern of a completely
undistorted fiber (lower line). The upper striation pattern was calculated from the dis-
placement data. The bands close to the boundaries have been contracted (about 55%)
whereas the bands around the center have been expanded (about 15%). (b) Relative
change in density along the fiber in the steady state before stimulation with the drug
(dashed-dotted line), after stimulation with the drug including the feedback (solid line)
and after stimulation but neglecting the mechanical feedback (dashed line). Positive val-
ues correspond to a compression of the fiber, whereas negative values indicate elongation.
In case of the closed feedback (solid line) the fiber strongly contracts close to the bound-
aries up to 55% but elongates at the center about 15%. In order to compare the model
results with the experimental findings, we arbitrarily define central (center ±10 µm) and
peripheral (edges ±10 µm) regions of the cell, indicated by vertical lines.

state of the cell (1.03 µm compared to 0.97 µm). This results from the fact that the
unperturbed fiber already exerts moderate forces on the focal adhesions which results
in slight spatial gradients in myosin activation. These gradients then sharpen upon
stimulation with calyculin, see Fig. 4.8(b) and Fig. 4.9(b). The model results agree
qualitatively with the experimental findings by Peterson et al. [31] and the quantitative
measurements are within the same order of magnitude, compare Fig. 4.3. It is worth
mentioning that the amplitude of contraction or elongation of the fiber scales inversely
with the fiber stiffness k: the softer the fiber, the stronger the mechanical deformation
will be. Thus, a lower k value would simply explain the reported higher values for
sarcomere contraction of about 30-40%. In our calculation we used k = 45 nN/µm,
a value reported by Deguchi et al [89]. The experimentally measured equilibration
time of the stress fiber upon stimulation is about 20 min (Fig. 4.3) which compares to
about 3 min for the model results. These quantitave difference originate from two model
simplifications. First, we lump the focal adhesion associated processes into one equation
and thereby shortcut the activation of ROCK and neglect prior activation steps of
e.g. Rho-Gef or Rho-GTPase. Considering these steps would cause an additional
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Figure 4.10: Time courses of the mean bandwidth of the fiber in the center (upper
curve) and in the periphery of the cell (lower curve). The shown values are averages of
the bandwidths at the center ±10 µm for the central region and at the edges ±10 µm for
the peripheral region. The defined intervals are also shown in Fig. 4.9(b). The expected
steady state striation patterns for the two distinct regions are shown as insets. These
results agree qualitatively with the experimental findings by Peterson et al., shown in
Fig. 4.3.

time delay. Secondly, the stimulation with calyculin happens instantaneously in the
model omitting the time delay caused by the internalization of the drug. Refining
the model and eliminating these simplifications will further decrease the differences in
equilibration times.

To highlight the importance of the mechanical feedback we also include the expected
results for a system neglecting this feedback shown as dashed lines in Fig. 4.8(b) and
Fig. 4.9(b). Here the homogeneous induction of the drug causes an almost uniform el-
evation of myosin activation within the cell. Slight differences between cell center and
cell periphery would persist but rather marginally extend (Fig. 4.8(b)). In fact stim-
ulation also here leads to amplified distortions of the striation pattern. However, the
changes in bandwidths are significantly smaller compared to the system incorporating
the feedback (Fig. 4.9(b)). Thus, the closed biochemical and mechanical feedback loop
is an essential feature required to describe the strong distortions of striation patterns
upon homogenous drug induction.

4.6 Summary and outlook

In this chapter, we presented for the first time a mathematical model for the closed
mechano-chemical feedback loop triggering the upregulation of focal adhesions and
stress fibers which is typical for cell culture on stiff substrates. In regard to the bio-
chemical part, we presented a reaction-diffusion model for Rho-signaling from focal
adhesions towards stress fibers. Our modeling is based on an extensive review of the
literature, which provides the list of diffusion and reaction constants summarized in
Tab. 4.3.

In regard to the mechanical part, we extended the stress fiber model presented in
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chapter 2, in order to take into account the spatial varying viscoelastic and contrac-
tile properties of the sarcomeric units. These variations result from spatial gradients
of the biochemical signal that regulates the myosin activity along stress fibers. The
biochemical signal couples into the stress fiber equations by altering the stall forces of
the molecular motors. The established actomyosin forces are transmitted back to focal
adhesions where they are treated similar to an enzyme that catalyzes Rho activation.

Combining the two model parts in the described way results in a complete model
for the mechano-chemical feedback loop of interest [58]. By solving the complete model
numerically, we can reproduce several experimental findings by Peterson et al. [31].
By means of our model, we can explain the slight differences in the mean pattern
bandwidth at the center and periphery of unperturbed cells, as well as the unexpected
sharpening of the spatial gradients upon stimulation with a homogenously distributed
drug. According to our model, the observed contraction of sarcomeric units at the
periphery, and their elongation at the center, result from a spatial gradient in myosin
activity, which is induced by the diffusive biochemical signal. Such spatial differences in
myosin light chain phosphorylation have indeed been found in experiments by Peterson
et al. [31]. Most importantly, we also demonstrate that the positive mechano-chemical
feedback has to be taken into account, in order to explain the experimental findings.

In general, our work shows how coupling of mechanics and biochemistry can be de-
vised in a meaningful way. Furthermore, our model can be addressed to other issues in
the context of cell adhesion. For example, we find that the described positive feedback
loop can lead to bistability between highly contractile cells and cells that fail to es-
tablish actomyosin contractility. The bistability in the model system will be discussed
thoroughly in the next chapter where we focus on cellular behavior on soft substrates
and implications for the rigidity sensing of cells.

In order to close the mechano-chemical feedback loop in a concise way we neglected
several aspects which might play a role in the considered system. They are discussed
below and should be regarded as starting points for future model refinements.

Although in principle possible, our model does not account for certain spatial vari-
ations in mechanical properties along stress fibers. For example, mDia, a down stream
target of Rho, regulates actin polymerization and thereby might locally change the
mechanical properties of stress fibers. The (de-)polymerization of actin filaments could
in addition depend on the local stress within the fiber [102]. As described above, Rho
also regulates the phosphorylation level of MLC and in this way controls binding of
myosin heads to actin filaments. Myosin, arranged in minifilaments, can be regarded
as a crosslinker of actin filaments when MLC is phosphorylated. Thus, a lower phos-
phorylation level of MLC, as it is found experimentally at the center of the cell, might
also locally change the rigidity of stress fibers.

Furthermore, myosins or crosslinkers can also unbind from actin filaments and dis-
sociate from stress fibers. In order to account for such processes, one would have to
consider further rate equations for the on- and off-kinetics of these proteins. Another
aspect which we have neglected in our presented model is the fact that, over long time
scales, focal adhesions are not stationary with respect to the substrate. It has been
shown that force induced growth of focal adhesions is preferentially in the direction
of the applied force, that is usually towards the center of the cell [39]. In addition,
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Figure 4.11: A brief outlook on the double sniffer model. (a) Suggestion for the reaction
network which regulates Rac and Rho activity during early cell spreading. Protein names
are included when reactions are known from the literature . The reaction network has
been implemented in Copasi [152] in terms of rate equations. (b) Best model fit to
the measured times courses of Rho-GTPase activity. Experimental time course of Rho-
activity has been reproduced from [153]. Del Pozo et al. [154] reported a transient
increase in Rac within 20 min after cell spreading. Model curves are given as solid lines
and are in agreement with the experimental data.

focal adhesions detach at their back end. This leads to an effective movement of focal
adhesions towards the center of the cell. Simultaneously, while the fiber is shortening,
tension is expected to be released in the stress fiber which in turn changes the initiation
of signals at focal adhesions.

The presented biochemical pathway can also be understood only as a first attempt
to account for one major aspect in cell adhesion, that is the maturation of focal ad-
hesions and contraction of stress fibers in a Rho dependent manner. As described
in the introduction of this chapter, the regulatory network at focal adhesions is far
more complicated as the considered Rho-GTPase pathway. For instance, it has been
shown, that not only Rho-GEFs are associated with the adhesion plaque but also cer-
tain GAPs, which deactivate Rho. This interplay between activating and deactivating
factors during early cell spreading leads to (1) an initial deactivation of Rho-activity,
(2) a subsequent increase in Rho-activity and (3) a downregulation of Rho-activity on
the long term [153], see Fig. 4.11(b). It remains elusive which of these processes are in-
duced by chemical signals or depend on mechanical stress. Rac-activation has also been
measured and shows a fast transient increase in early cell spreading [154]. The time
course of Rac and Rho-activation can be understood in terms of rate equations (no spa-
tial coordinate, no mechanics) assuming that Rac-activation as well as Rho-activation
can be described by a sniffer motive [16]. In addition, the fast Rac-sniffer presumably
inhibits the slow Rho-sniffer and causes the early decrease in Rho-activation. The re-
action network is illustrated in Fig. 4.11(a) and the best model fit to the data is shown
in Fig. 4.11(b).

This reaction network is a suggestion for a further refinement of the biochemical
signaling which originates at focal adhesions. However, before this network can be
incorporated in future studies of the mechano-chemical feedback system, detailed ex-
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perimental analysis is required. Such experiments should be aimed at (1) measuring
the missing reaction constants (reducing the number of free parameters) and (2) at
resolving the relative contributions from chemical or mechanical factors that lead to
Rho-GTPase activation.
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Chapter 5

Cellular response to stiffness

In the previous chapter we have developed a reaction diffusion system for the Rho-
GTPase pathway and presented how the biochemical signaling interacts with the stress
fiber contraction mechanics. The resulting mechano-chemically coupled system essen-
tially constitutes a positive feedback and we have demonstrated that accounting for this
simple regulatory motive is sufficient to understand the inhomogeneous contraction of
stress fibers upon stimulation with a drug. In general, positive feedback systems also
have the potential to show bistability. The emergence of bistability within our model
has been noted previously but now will be investigated in more detail. In contrast to
the previous chapter where we have focused on spatial and temporal variation of the
stress fiber deformation, here, we will focus on the boundary force as a state variable.
In this way we are able to perform a stability analysis of the model. As boundary force
we understand the force that the fibers exert at their terminating ends on the focal
adhesions. In addition, we will generalize our model to the case of deformable bound-
aries representing soft substrates. The substrate stiffness will then serve as a control
parameter in the stability analysis. Finally, we will discuss the consequences of the
intrinsic bistability and how it effects the capability of cells to establish a contractile
state on a soft substrate. Furthermore, we will point out several possibilities how the
model predictions could be tested in future experiments.

5.1 Bifurcation analysis

In this section we search for the different fixed points of the mechano-chemically coupled
system defined in the previous chapter. All equations and their coupling to each other
remain the same. We also reuse the parameter values presented in Tab. 4.3 except
that two values are marginally changed to K−1 = 7 nM (formerly 4.7 nM) and V−1 =
1.7 nM/s (formerly 1.8 nM/s). The values for these two parameters are not known
from the literature and are chosen to be within a reasonable range compared to similar
parameters in our model. More importantly, we introduce more general boundary
conditions for the mechanical stress fiber equations to account for the case that cells
are exposed to a soft substrate. In such a situation, at each fiber end, the viscoelastic
stress within the fiber has to be balanced by the elastic restoring forces from the
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Figure 5.1: Same fiber model as it was introduced in the previous chapter. The elasticity
of the substrate is accounted for by an additional spring of stiffness kb connected in series
at each end of the fiber. Other viscoelastic interactions of the fiber with its surrounding
will be neglected in this chapter.

substrate:

at x = 0, L : aγ̃∂xu̇(x, t) + ak∂xu(x, t) + Fs = ±kbu(x, t) (5.1)

In our one-dimensional model, the soft substrate is accounted for by an additional
harmonic spring kb connected in series at each end of the fiber, see Fig. 5.1. The upper
sign is valid for x = 0, the lower for x = L. These boundary conditions are similar to
the ones used to describe the stress fiber nanosurgery experiments. There, all internal
viscoelastic forces had to balance at the position of the cut. Such a situation is described
by a free boundary and obtained by setting kb = 0 in the above equation. In contrast,
a clamped boundary is obtained by performing the limit kb → ∞. In this way, all types
of boundary conditions used so far are contained in the upper formulation.

The boundary stiffness kb modeled by a simple spring accounts effectively for the
stiffness of the substrate. In general, one would have to solve the full contact mechanics
problem to obtain an accurate value for this effective stiffness kb. Not only the size, but
also the geometry of the adhesion plays an important role in these contact mechanics
problems [155]. However, given a certain geometry, the effective stiffness kb is expected
to be proportional to the substrate stiffness. The stiffness of the substrate should
be understood as the Young’s modulus, E, or the shear modulus, G, of an isotropic
elastic material. These two elastic moduli are proportional to each other G = E/(2 +
2ν). The proportional constant involves Poisson’s ratio ν which evaluates to 0.5 if the
material is incompressible. The latter is roughly true for most materials that are used
as substrates for cells. The measurement of either one thus determines the other. A
common material that is used for cell experiments is for example polydimethylsiloxane
(PDMS) whose mechanical properties are tunable during preparation. There exist also
standard techniques to finally measure the achieved shear or Young’s modulus of the
prepared substrates. In this spirit, the substrate stiffness can be used as a physical
parameter in a biological experiment that is easy to control and easy to measure.

These are the main reasons for choosing the non-dimensional ratio of substrate
stiffness over internal fiber stiffness, kb/k, as a control parameter in the following steady
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Figure 5.2: (a) Bifurcation diagrams for the exerted boundary force Fb reached
in the steady state. The varied parameter is the non-dimensional stiffness ratio
kb/k. Bifurcation diagrams are given for different values of the inhibiting factor
I ∈ {0.75, 0.82, 1.0, 1.5}. The stable upper branch (blue) corresponds to a highly con-
tractile cell, the stable lower branch (red) corresponds to a non-active cell. The unstable
branch is shown as dashed line. Saddle node bifurcation points are highlighted as black
dots. When decreasing I, first the lower bifurcation point and later also the upper bifurca-
tion point is lost within the considered window for the stiffness ratio. A three-dimensional
representation of this plot is given in Fig. 5.3. (b) Equivalent bifurcation diagrams for
the substrate deformation reached in the steady state. The color coding is as in (a).

state analysis of our model. The second parameter which we have chosen to vary is
the factor of inhibition, I, which we introduced previously to account for the inhibitory
effects of calyculin on myosin light chain phosphatase. Since calyculin inhibits the
phosphatase (I > 1) it effectively increases myosin light chain phosphorylation and
thereby enhances actomyosin contractility. As a consequence values for I > 1 (I < 1)
lead to higher (lower) myosin activity. I = 1 corresponds to the unperturbed system.
Compared to the substrate stiffness, however, this reaction parameter is much less
controllable in experiments.

In general, the stationary model solution comprises the complete displacement field
along the stress fiber as well as the concentration profiles of all biochemical components.
In order to have a simple measure of the approached steady state we introduce the
absolute value of the boundary force Fb as a state variable. This force is equivalent
to the tension within the fiber and can be calculated by using either side of Eq. (5.1).
Another interesting measure is the deformation of the substrate which is simply given
by the absolute value of displacements at the boundaries |u(0, t)| = |u(L, t)|. It is
important to note that in the steady state, the mapping from the complete solution
onto one of these two state variables is bijective. This is true because the boundary
force fully determines the steady state activation profile which in turn defines the
steady state deformation of the fiber. However, such a bijective mapping is of course
not possible during the equilibration process. Here, the same boundary force may
originate from differently deformed fibers.
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Fig. 5.2(a) shows the bifurcation diagram for the boundary force Fb. The upper
blue and the lower red branch represent the stable fixed points of the model for different
values of the stiffness ratio kb/k. The unstable branch is indicated as dashed line. It
connects to the stable branches at two saddle node bifurcation points, marked by black
dots. The stable upper branch corresponds to a highly contractile cell whereas the
stable lower branch corresponds to a non-active cell that fails to establish a contractile
state. Both branches increase monotonically with the substrate stiffness. Thus, the
stiffer the substrate the higher will be the exerted forces in the contractile or even in
the non-active state. However, it is important to note that the upper branch quickly
saturates at a certain force level for high stiffness ratios. The stiffness range between
the two bifurcation points (if both exist) defines the region of bistability. On softer
substrates the non-active state is the only stable fixed point whereas on stiffer substrates
all cells are forced into the contractile state.

We have calculated this bifurcation diagram for different values of the inhibiting
factor I. From Fig. 5.2(a) it can be deduced that for all considered values of the
inhibiting factor there exist a critical stiffness ratio below which the upper stable branch
vanishes. As a consequence, on very soft substrates, cells can not establish a highly
contractile state. This critical value, which depends on the inhibiting factor, is just
given by the stiffness ratio of the upper left bifurcation point. When the factor I is
decreased, both bifurcation points move to higher stiffness ratios. For I = 0.82 and
for lower values, the lower right bifurcation point is lost within the considered stiffness
window. The upper left bifurcation point will be also lost for slightly lower values of I
and the lower branch which corresponds to the non-active state is the only remaining
attractor. These results are not surprising since decreasing I leads to an increase in
phosphatase activity and subsequently to a decrease in myosin contractility. Thus, if
I is low, the positive feedback is suppressed.

Fig. 5.2(b) shows the bifurcation diagram for the substrate deformation. It essen-
tially contains the same information as the bifurcation diagram for the boundary force
since the substrate deformation is simply given by Fb/kb. Nevertheless, this represen-
tation reveals some notable features. For example, the upper stable branch exhibits
a maximum at an intermediate stiffness ratio. This is because on the one hand the
contractile forces sharply decrease with decreasing substrate stiffness as the left bifur-
cation point is approached, compare Fig. 5.2(a). Thus, also the resulting deformations
decrease in the vicinity of the left bifurcation point. On the other hand, the exerted
forces saturate for large stiffness ratios. As a consequence, the deformations roughly
decay proportional to 1/kb for high stiffness ratios.

This nicely depicts the dilemma experimentalists have to face when they perform
experiments with cells on soft substrates and want to measure the resulting substrate
deformations. They are “caught between a rock and a soft place”: On a very stiff
substrate, cells are able to build up high forces but since the substrate is so stiff the
caused displacements are very small and hardly measurable. On the other hand, if the
substrate is very soft, cells can not exert large forces, thus the substrate deformations
are also very small and hardly measurable. There is only a small window of suitable
substrate stiffness over which cells reach a contractile state and the substrate is still
soft enough to allow for measurable deformations.
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The bifurcation diagram for the substrate deformation has also been calculated
for different values of the inhibiting factor I. One can deduce from the figure that
the maximum of the upper branch is more pronounced when the factor of inhibition
is high. When I decreases also the maximum decreases and simultaneously shift to
higher stiffness ratios.

5.1.1 State diagram

In the previous section we have calculated the fixed points of our model and thereby
used the stiffness ratio kb/k as a control parameter. By simultaneously varying a second
parameter, the factor of inhibition I, we obtained the family of bifurcation diagrams
shown in Fig. 5.2(a) or Fig. 5.2(b). This analysis can be performed more thoroughly
by systematically sampling the two-dimensional parameter space (kb/k, I). The stable
and unstable branches then become surfaces defined over the parameter plane (kb/k, I)
illustrated in Fig. 5.3 from two different view points. Over a certain domain of the
parameter space this surface folds over on itself. If the system resides in the upper
branch and is pushed to the edge by an appropriate parameter change it is forced to
drop onto the lower branch. This large jump corresponds to a catastrophic change
of the system [156]. In the present situation the jump means the transition from the
contractile to the non-active state.

The two folds where the surface bends over just define the two bifurcation curves.
These curves are the parameterized positions of the two bifurcation points. Their
projections onto the parameter plane are illustrated as dashed lines in Fig. 5.3. This
projection yields the two-dimensional stability diagram for the model sketched up again
in Fig. 5.4(b). There, the position of the bifurcation point that terminates the lower
branch is shown in red. The curve for the other bifurcation point is shown in blue. The
two bifurcation curves divide the parameter plane (kb/k, I) into three regions. Each
region is labelled according to the existing fixed points. Both, in the lower and upper
regions there exists only one stable fixed point which corresponds to a non-active cell
or a contractile cell, respectively. In the region of intermediate values for I there exist
three fixed points two of which are stable and one is unstable. It is in this parameter
region where the model system becomes bistable and the two phases of contractile and
non-active cells coexist. In this parameter range, in principle, transition between these
two states could be provoked by a large enough perturbation from the steady state.

It is noteworthy that both bifurcation curves are bounded below. This can be shown
by calculating the bifurcation diagram for the case of an infinitely stiff substrate and
using the factor of inhibition I as the only control parameter. The resulting diagram is
shown in Fig. 5.4(a). Within a certain range of the parameter I the systems still exhibits
bistability. Thus, the position of the two bifurcation points in Fig. 5.4(a), more precisely
their I-coordinate, determines the asymptotes for the bifurcation curves in Fig. 5.4(b)
in the limit of high substrate stiffness. The found asymptotes, namely I = 0.68 ± 0.01
(blue) and I = 0.91± 0.01 (red), are given as dashed lines in Fig. 5.4(b). The fact that
the blue bifurcation curve is bounded below has the following consequences: There
exists a certain value of the inhibition factor, that is I = 0.68 ± 0.01, below which the
only stable fixed point is the non-active state irrespective of the substrate stiffness. This
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Figure 5.3: Three dimensional bifurcation diagram of the steady state boundary force
Fb depicted from two different view points (a) and (b). The varied parameters are the
factor of inhibition I and the stiffness ratio kb/k. The colored planes represent: the stable
upper branch (blue), the stable lower branch (red) and the unstable branch (grey). The
boarder line between the stable branches and the unstable branch defines two bifurcation
curves highlighted by red and blue solid lines. Projections of these two curves onto the
parameter plane are shown as dashed lines of respective color. The bifurcation curves
are bounded below at I = 0.68 ± 0.01 (blue) and I = 0.91 ± 0.01 (red).
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Figure 5.4: (a) Bifurcation diagram of the steady state boundary force Fb for the case of
an infinitely stiff substrate. The varied parameter is the factor of inhibition I. The stable
upper branch (blue) again corresponds to a highly contractile cell whereas the stable lower
branch (red) corresponds to a non-active cell. The unstable branch that connect the two
saddle node bifurcation points is shown as dashed line. The two bifurcation points (black
dots) are located at (0.68± 0.01, 2.36± 0.05) and (0.91± 0.01, 0.81± 0.01). (b) Stability
diagram: The two bifurcation curves divide the parameter plane into three regions. Each
region is labelled according to the existing fixed points. In the bistable region, there
exist three fixed points: one is unstable, and the other two correspond to the non-active
and the contractile state, respectively. Both bifurcation curves are bounded below, their
asymptotes are given by the position of the bifurcation points in (a) and are included as
dashed lines of respective color.

is due to the fact that decreasing I leads to an increase of the phosphatase activity and
subsequently to a decrease in myosin contractility. Thus, if I falls below this critical
value, the positive feedback is suppressed to such an extend that a contractile state is
no longer possible.

It can be deduced from Fig. 5.4(b) that for very low stiffness ratios, kb/k, the two
bifurcation curves seem to converge. However it is not clear if they simultaneously
diverge to infinity or if they mutually annihilate in a cusp point at a finite value for
I. In order to determine the location of a possible cusp point we steadily increased
the parameter I and subsequently screened for the two saddle-node bifurcations. The
highest value for the inhibiting factor that still allowed differentiation between the two
bifurcation points was I = 19.7 where the upper left bifurcation point (blue) was found
to be located at (kb/k, Fb) = (2.3463 · 10−3 ± 10−7, 1.13 ± 0.02) and the lower right
(red) at (kb/k, Fb) = (2.3464 · 10−3 ± 10−7, 1.06 ± 0.02). For even higher values of I
the two bifurcation points could no longer be separated and no bifurcation could be
detected. However, this might be simply due to insufficient numerical precision. On the
basis of our numerical study a clear statement cannot be made and a more thorough
investigation of the stationary system would be necessary to determine the location of
a possible cusp point.

So far we have studied the stability of our model only under variations of the
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two parameters kb/k and I. However, due to the simple structure of the biochemical
pathway, it is just a sequence of activating or inhibiting enzyme reactions, the above-
mentioned properties of the model seem to be qualitatively true for small variations in
every other reaction parameter. For example the role of I could also be taken over by
a parameter which in contrast inhibits the positive feedback. This would only invert
the I-axis but the qualitative shape of the surfaces would remain unchanged. We have
verified this explicitly for a small set of parameters.

5.2 Probing hysteresis in cell adhesion

The existence of bistability within a certain range of substrate stiffness gives rise to the
possibility of hysteresis in cell adhesion. In the following we suggest and analyze three
experiments that should allow to probe such a hysteresis cycle. Finally, we discuss how
these experiments could be realized.

5.2.1 Cyclic varying stiffness

In order to reconstruct a hysteresis cycle, the system has to be prepared initially in
one of the two stable states, say the highly contractile state. By reducing the substrate
stiffness sufficiently slowly, that the system can adapt and remain in a quasi steady
state, it will follow the upper stable branch until it reaches the bifurcation point. Here,
the upper branch becomes unstable and the system is forced into the non-active state.
When the control parameter is increased again, the system will stay on the lower branch
while it passes below the left bifurcation point. Subsequently, it will reach the right
bifurcation point, where the lower branch becomes unstable. Thus, the system is finally
forced again onto the upper branch and the hysteresis cycle is closed.

If one had full control over the system, a very well-defined experiment would be
to expose the cells to a cyclic varying substrate stiffness. Thereby, the range over
which the stiffness varies has to exceed the bistable region. Furthermore, the period
of the oscillation should be much larger than the typical equilibration time of the
system, if one wants to assure that the system essentially follows the stable branches
as the control parameter is varied over time. We have simulated this experiment with
COMSOL Multiphysics for a cyclic stiffness ratio of the following form:

kb(t)/k = 10−2 + 10

(
1

2
+

1

2
cos ωt

)

(5.2)

The upper function describes a sinusoidal oscillation of amplitude 5 with offset of 5
and angular frequency ω = 2π/T , where T is the period of the oscillation. At t = 0 it
starts at its maximum and reaches its minimum kb/k = 10−2 at t = T/2. The system
response to this cyclic mechanical input has been calculated for different periods T .
The resulting time course of the exerted boundary forces are illustrated in Fig. 5.5. As
expected, for very large periods, the system follows essential the bifurcation diagram,
see T = 1 d in Fig. 5.5. The area of the hysteresis cycle first increases with the angular
frequency and reaches a maximum for T = 4300 s, the red curve in Fig. 5.5. For
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Figure 5.5: Time course of contraction forces for a cyclic varying substrate stiffness
with period T ∈ {500 s, 2400 s, 4300 s, 4 h, 1 d}. The area of the hysteresis cycle reaches
its maximum at T = 4300 s±100 s highlighted in red. If the cycle has a very large period,
then the time course of the force approaches the stable branches of the bifurcation diagram
(black and fat lines). Arrows indicate the direction of rotation. The assumed factor of
inhibition is I = 1.0, representing a biochemically unperturbed system.

very high angular frequencies the hysteresis cycle tightens up again. The resulting
dependence of the encircled area on the period T is further illustrated in Fig. 5.6(b).
As noticed before, the function exhibits a clear maximum at T = 4300 s ± 100 s. For
very large T , the function is bounded below by the area encircled in the bifurcation
diagram (the quasi steady state cycle). In addition, the function also shows a faint
maximum for very small T . This is partially due to the fact that, in this regime, the
trajectories do not close up on itself after the first cycle, compare Fig. 5.6(a).

The maximum in encircled hysteresis area around T = 4300 s results from the inter-
play of different time scales. If the angular frequency is very low, both, the biochemical
environment, as well as the mechanical state of the fiber follow in a quasi steady state.
If the frequency increases, the biochemistry begins to lag behind the varying mechanical
input. For example, when the stiffness decreases in time, the biochemistry conserves
the passed activity and the system can maintain higher forces on the soft substrates
than actually appropriate. However, the overall exposure time to the soft environment
is large enough to cool the system down, close to the inactive state. Thus, a similar
lagging occurs when the stiffness subsequently increases in time. This is not the case,
if the angular frequency is high, T < 4300 s. Then, the exposure time to the soft
environment is not large enough to fully cool the system down. As a consequence it
can maintain an anomalous high contractile state even until it leaves again the soft
environment, see e.g. T = 500 s in Fig. 5.5. This is the reason why the hysteresis cycle
tightens again for further increasing frequencies.
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Figure 5.6: (a) Time course of the boundary force for two cycles in substrate stiffness
with period T = 240 s. The first cycle is not closed but the second cycle settles down to
the first trajectory. (b) Area of the first hysteresis cycle in the force in dependence on the
period T , compare also Fig. 5.5. The main maximum is reached for T = 4300 s ± 100 s.
The lower maximum is partially due to the fact that first cycles are not closed for small
periods, compare (a).
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Figure 5.7: Time course of the substrate deformation for a cyclic varying substrate
stiffness with periods as in Fig. 5.5. The curve highlighted in red corresponds to
the largest hysteresis cycle in the force diagram Fig. 5.5. In the cycles with T ∈
{2400 s, 4300 s, 4 h, 1 d}, the deformation reaches its maximum shortly before the stiffness
ratio passes through its minimum. Similar to the findings in Fig. 5.10, the deformation
curves for fast cycles exhibit large excursions to very high values. Arrows indicate the
direction of rotation.
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Figure 5.8: (a) Time course of the boundary force (red) for cyclic substrate stiffness
(black) with period T = 4300 s. The force response to the sinusoidal input is also a
periodic function but has a more complicated shape. (b) Time course of the deformation
(red) for the same mechanical input as in (a). The deformation response is again a
periodic function. It shows two extremal values. The main maximum is reached shortly
before the stiffness reaches its minimum. The faint second maximum, indicated by the
arrow, is reached when the system is forced onto the upper stable branch by the increasing
substrate stiffness.

For very high angular frequencies (not included in Fig. 5.5) another time scale comes
into play: If the softening of the boundaries is very quick, even the fiber mechanics are
not fast enough to follow the loosening boundaries. As a consequence, the contractile
motor forces are expended on working against the internal viscosity rather than on
deforming the external spring. The forces on the boundaries are thus low despite the
fact that the myosins are highly activated. An exemplary trajectory of the boundary
forces for such a high frequency is given in Fig. 5.6(a). Since the stiffening of the
boundaries is faster than the mechanical equilibration, the increase in stiffness causes an
additional tension in the fiber. This is the reason for the twist in the shown trajectory.

It is also instructive to analyze the trajectory of substrate deformations, shown in
Fig. 5.7 for the same angular frequencies as used for Fig. 5.5. Also here, the area of
the hysteresis cycle first increases with the angular frequency, reaches a maximum (not
necessarily at the same T -value as the force) and then decreases again with increasing
frequency. In the latter case, when the frequency is very high, the system maintains
anomalous high forces on soft substrates. This combination of high forces and low
stiffness leads to very large deformations. This can be deduced from the trajectories
for T < 4300 s which undergo large excursions away from the steady state branch. It
is also noteworthy that the deformation trajectories reach a maximum shortly before
the stiffness passes through its minimal value.

To conclude this section we finally compare the time course of the boundary forces
to the mechanical input. This comparison is shown in Fig. 5.8(a) for T = 4300 s. In
contrast to the input function, the force response is not a harmonic oscillation. This
is due to the non-linear reaction terms in the biochemical equations. If the model
was linear, the output could be expected to be also harmonic. Although the force
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response lags behind the stiffness input over most of the time, both functions reach
their minimum and maximum virtually in phase. This is different for the time course of
deformations shown in Fig. 5.8(b). As discussed earlier, the maximum in deformation
is interestingly reached shortly before the stiffness reaches its minimal value. To see
this, compare also Fig. 5.7. Beside this main maximum the time course of deformation
exhibit a second faint maximum. The latter occurs when the system is forced from the
non-active state to the contractile state during increasing stiffness.

5.2.2 Spreading and linear softening

The previously simulated experiment is very well defined theoretically but experimen-
tally difficult to realize as it presupposes accurate control over the substrate stiffness.
In the following we will model two different experiments. They require in some sense
only minimal control over the substrate stiffness but the combination of both still al-
lows to test for hysteresis in cell adhesion. These theoretical ideas can be realized
experimentally with available techniques, discussed in the last section.
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Figure 5.9: Simulation of two different experiments to probe the hysteresis cy-
cle. (1) Lower red curves simulate the buildup of force up to the time t ∈
{1200 s, 1500 s, 1600 s, 1800 s, 2700 s} for cells exposed to a constant but different substrate
stiffness. Cells are considered to be in a totally non-active state at t = 0. Depending
on the degree of stiffness, cells remain either in a non-active state or reach a contrac-
tile state. Red arrows indicate the direction of single cell trajectories. (2) Upper blue
curves depict the expected time course of the boundary forces if the substrate stiffness
is reduced linearly over the time span T ∈ {0.25 h, 2 h, 5 h, 24 h}. The starting point is
an active cell on a stiff substrate which is forced into a non-active state by the steadily
decreasing stiffness. Blue arrows indicate the direction of single cell trajectories in this
situation.
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Figure 5.10: Same analysis like in Fig. 5.9 but now illustrated for the substrate de-
formation. Upper blue curves describe the time course of the substrate deformation if
the substrate stiffness is reduced linearly over time. If the stiffness is reduced quickly,
anomalous high forces can be maintained on comparably soft substrates leading to large
deformations, see T ∈ {0.25 h, 2 h, 5 h}. If the mechanics change very slowly, then the
biochemistry has time to adapt and deformations rather follow the steady state curve, see
T = 24 h. Lower red curves, also enlarged in the inset, simulate the buildup of substrate
deformations up to the time t ∈ {1200 s, 1500 s, 1600 s, 1800 s, 2700 s} for cells exposed
to a constant but different substrate stiffness. Cells are considered to be in a totally
non-active state at t = 0. Depending on the degree of stiffness, cells remain either in a
non-active state or reach a contractile state. Blue and red arrows indicate the direction
of single cell trajectories.

To reproduce the presumed hysteresis cycle it is only essential to have an exper-
imental technique for reducing the substrate stiffness over time. This is because the
system has to be prepared initially in an active state on a stiff substrate in order to
explore the upper stable branch by subsequently softening the substrate. In contrast,
in order to explore the lower branch, one can simply take advantage of the fact that
initial cell spreading starts in a low contractile state. To reconstruct the lower stable
branch it is thus sufficient to prepare differently soft substrates and let the cells start to
adhere. On very soft substrates, the finally reached contractile forces will be bounded
above by the lower stable branch. Only on stiff substrates, where the contractile state
is the only stable fixed point, the upper branch will be reached.

This experiment has been simulated by means of our model. As initial condition,
we assumed that the biochemical components are all equilibrated for zero boundary
force. That is, we have set Fb(t) = 0 in Eq. (4.1) and let the biochemical components
evolve to their steady state. The resulting concentration profiles are then taken as
initial conditions for the subsequent simulation. This situation is meant to represent a
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cell, formerly in suspension where no forces could be built up, that starts to adhere to
the substrate at t = 0. The results are illustrated in Fig. 5.9. The red curves show the
expected boundary forces built up within the time t by cells seeded on differently stiff
substrates.

To clarify the course of the experiment, two single cell trajectories are illustrated by
red arrows. On a soft substrate, kb/k = 0.3, the system settles down in the non-active
state (left red arrow in Fig. 5.9). On a stiff substrate, kb/k = 3, the system is forced
onto the upper branch which is the only stable fixed point (series of red arrows on the
right hand side of Fig. 5.9). Thereby, the red curves indicate the time needed to reach
a certain boundary force. In other words, every red curve is reconstructed from an
ensemble of experiments each of which is performed on a differently stiff substrates.
The time courses of the established boundary forces on a certain substrate stiffness
are illustrated in Fig. 5.11(a). We find that the stiffer the substrate the faster is
the equilibration process and the higher is the force reached in the steady state. As
discussed earlier, cells on very soft substrate, (see kb/k = 0.46), can not establish high
contraction forces and are kept in the non-active state.

To explore the upper branch in Fig. 5.9, softening of the substrate is required as
the system resides in the contractile state. The most simple process would be a linear
decrease of substrate stiffness over time. This experiment has been simulated and the
results are shown as blue curves in Fig. 5.9. Each curve gives the trajectory of the
boundary force as the stiffness is reduced linearly form kb/k = 10 to kb/k = 10−2 over
the period T . Only if the stiffness is changed very slowly (T = 1 d), the trajectory
closely follows the stable branches in a quasi steady state. For this case, the hysteresis
cycle is found to be closed. If the decay in stiffness is fast, the system can conserve the
myosin activity and maintain higher forces. These findings are qualitatively similar to
the ones presented in the previous section.

We also calculate the corresponding substrate deformations, shown in Fig. 5.10. If
the stiffness is reduced quickly (blue curves), anomalous high forces can be maintained
on comparably soft substrates leading to large deformations, see curves for T ≤ 5 h. If
the stiffness is reduced slowly, then the deformation exhibit a maximum shortly before
the stiffness reaches its minimum, see T ≥ 5 h. Similar findings have been reported
for cyclic stiffness, see corresponding discussion in section 5.2.1. During cell spreading
(red curves) the deformations on each substrate are expected to increase monotonically
in time, see Fig. 5.11(b). However, the reached deformation at a certain time point, of
course, varies with the stiffness of the substrate. Interestingly, the deformation exhibits
a maximum for intermediate stiffness. This maximum then increases and shifts to
lower stiffness ratios with increasing time, compare e.g. the two curves t = 0.5 h and
t = 0.75 h in the inset of Fig. 5.10. In the steady state, the largest deformation is
reached on substrates that are slightly stiffer than the critical stiffness defined by the
lower right bifurcation point, compare also Fig. 5.11(b).

5.2.3 Using biochemical stimulation

All experiments discussed above require substrates of time dependent stiffness. Usage
of such substrates would allow to test bistability in cell adhesion by varying a well
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Figure 5.11: (a) Time course of the boundary forces established by cells on substrates
with different stiffness: kb/k ∈ {0.46, 1.00, 1.98, 5.04, 10}. The stiffer the substrate the
faster is the equilibration process and the higher is the force reached in the steady state.
Cells on the softest substrate, kb/k = 0.46, can not establish high contraction forces
and are kept in the non-active state. The reached steady state forces of cells in the
contractile state only differ within a few percent. (b) Time course of the substrate
deformation caused by cells on different rigidities. Stiffness ratios are the same as in
(a). The equilibration is also faster on stiffer substrates but the highest deformations
are reached on intermediately stiff substrates. Dashed line gives the y-coordinate of the
lower bifurcation point in both figures.

defined and accurately measurable physical quantity, e.g. the Young’s modulus of the
substrate. Here, we want to discuss a simple alternative to circumvent such elaborate
substrates by using a contractile drug like calyculin. The great disadvantage of such
an experiment is, however, that the precise value of the control parameter is difficult
to quantify.

In our model, the effect of calyculin is described by the factor of inhibition I which
essentially increases myosin activity. In section 5.1 and 5.1.1 we have shown that cells,
exposed to a high concentration of this drug, are expected to reach a contractile state
even on very soft substrates. This can now be used to explore the stable upper branch
of the bifurcation diagram in the chemically unperturbed situation. To reproduce the
complete bifurcation diagram for the unperturbed situation (I = 1.0), one has to per-
form two different experiments. In the first experiment, the spreading of unperturbed
cells on different rigidities has to be conducted. Thereby the reached steady state forces
have to be recorded. This experiment has been described in detail in the previous sec-
tion. It reveals the complete lower stable branch as well as parts of the upper stable
branch over the high stiffness regime. The discovered parts are indicated by the upward
pointing arrows in Fig. 5.12. The upper stable branch over the bistable region is the
only inaccessible part of the bifurcation diagram. To discover this part, is the subject
of the second experiment. Here, the cells are exposed to a high drug concentration
during spreading, that is e.g. I = 1.5. Thus, they will populate the stable branches
of the bifurcation diagram shown in Fig. 5.12 for I = 1.5. If the effect of the drug is



118 Chapter 5: Cellular response to stiffness

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

k
b
/k

F
b
 [

n
N

]
I=1.5

I=1.0

Figure 5.12: Probing the hysteresis cycle by using a contractile drug. Cells exposed
e.g. to calyculin are expected to reach a contractile state even on very soft substrates
(I = 1.5). When the effect of the drug is decreased again, they are expected to relax
to the unperturbed steady state (I = 1.0). In this way, the upper stable branch can be
probed within the bistable region. Downward pointing arrows indicate cell trajectories
when the effect of the drug is reduced. Upward pointing arrows indicate trajectories for
unperturbed cell spreading.

subsequently reduced, for example by washing it out, the cells will relax to the stable
states of the unperturbed situation, I = 1.0. The trajectories of cells on differently stiff
substrates are indicated by the downward pointing arrows in Fig. 5.12. Most impor-
tantly, cells plated on substrates of intermediate stiffness, kb/k ∈ [0.1, 0.4], will settle
down on the upper stable branch over the bistable region. If the initial stimulation with
the drug is strong enough, such that the lower right bifurcation point of the stimulated
system is left of the bistable region of the unperturbed system, then, combining the
results from both experiments should reproduce the complete bifurcation diagram of
the unperturbed system.

5.2.4 Experimental realization

To conclude this section, we will finally discuss how the experiments described above
can be turned into reality. There are at least two possibilities to mimic substrates of
time dependent stiffness. On the one hand, there exist certain polymer systems whose
stiffness can be tuned over time. On the other hand, micromanipulators can perform
a similar task if applied appropriately. Both methods will be briefly discussed below.

Polymer systems with time dependent stiffness

Typical polymer systems used as elastic substrates in cell adhesion experiments are for
example polydimethylsiloxane (PDMS), polyacrylamide (PA) and hydrogels made from
hyaluronic acid (HA). In contrast to PDMS or PA, the latter HA is a natural component
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Figure 5.13: (a) Development of the Young’s modulus E of PEG-DA crosslinked HA-
S hydrogels, polymerized at three different HA-S concentrations. Stiffness has been
measured with AFM. It increases over time due to auto-crosslinking of the remaining free
thiol groups. Saturation in stiffness is reached after 6 days. Figure and caption has been
taken from [160]. (b) Cell adhered to optical trapped micro beads. The stiffness of the
traps could be precisely controlled by varying the laser power. Also force measurements
could be performed with high precision. The severe drawback is, however, that the
maximal trap force of optical tweezers (≈ 100 pN) is roughly one order of magnitude
below cellular contraction forces (> 1 nN). Thus, it might be inevitable to substitute the
elegant optical traps by other mirco-manipulators in such an experiment.

of the extracellular matrix. HA is a linear polysaccharide of glucuronic acid and N-
acetylglucosamine. Its mechanical properties can be tuned by adding thiol groups to the
HA polymer (HA-S). This modification allows for crosslinks in between HA polymers
or to additives like polyethylene glycol diacrylate (PEG-DA) [157–160]. By varying the
concentrations of the two components, the stiffness of this polymer system is tunable
in the range of 0.1-150 kPa. It is also this polymer mixture, HA-S and PEG-DA,
which exhibits a well characterized time dependent change in the Young’s modulus.
It results from the progressive formation of disulfide bonds which in turn increase the
stiffness of the hydrogel over time. This process lasts for days and finally leads to
an overall increase in stiffness of about one order of magnitude. The development of
the substrate stiffness has been measured by atomic force microscopy [160]. Results
are illustrated in Fig. 5.13(a). More importantly, the stiffness can also be reduced
again by breaking up the previously formed crosslinks. The appropriate chemical agent
is dithiothreitol (DTT) which reduces the disulfide bonds (Florian Rehfeldt et al.,
personal communication). In addition, collagen type I can be attached to the surface
of this hydrogel in order to promote cell adhesion. Thus, this polymer mixture provides
all necessary features in order to perform the experiments described in section 5.2.1
and 5.2.2.
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Optical tweezers

Instead of using elaborated polymer mixtures as described above, one might also be
able to use micro-manipulators to tune the stiffness of the cellular environment. A
very convenient technique would be holographic optical tweezers. In a straight forward
setup, a cell would be caught by at least two trapped micro beads that are functionalized
appropriately for cell adhesion. The stiffness of the trap could be simply controlled
by the laser power and the forces exerted by the cells could be deduced from the
displacement of the beads from the center of the traps. Both, imposed stiffness and
cellular force response could be measured with high precision. However, there is this
severe problem that the force of optical tweezers is roughly 1 pN per 10 mW on micron
sized beads [161]. For a typical laser power of a few W this is still too low to resist
contractile stress fibers which exerts forces on the order of nN. In addition, the usage of
more than one trap splits up the laser power on different foci which further decreases
the stiffness of each trap. Still, there might be experimental solutions to the raised
concerns. For example one can think of an experimental setup where a single laser
trap is sufficient (one end of the cell is glued to a solid support, the other to the
trapped bead). This allows to focus the full laser power on a single bead. It might also
be possible to substitute the optical trap by other micro manipulators such as glass
micro needles or magnetic tweezers. Both techniques can exert forces in the nN range.
Moreover, the stiffness of the micro needle for example could be controlled by fixating
it at different lengths/positions.

5.3 Summary and discussion

In this chapter we applied our full mechano-chemical model to investigate cellular
behavior on soft substrates. In particular, we focused on the ability of cells to establish
contractile forces in dependence on substrate rigidity. Due to the positive feedback,
our model is potentially bistable. The two stable fixed points correspond to a highly
contractile and a non-active cell state, respectively. However, we find that bistability is
not a universal feature of the model. There also exist parameter regions where either
the contractile or the non-active state are the only stable fixed points. This gives
rise to a threshold of substrate stiffness below which cells are not able to build up
contractile stress. On stiffer substrates cells adopt a contractile state but the reached
steady state force depends only weakly on the substrate stiffness. Such a mechanism
might contribute to tensional homeostasis in tissue [162, 163], which denotes the process
when cells actively maintain a set level of prestress in their matrix. Finally, we also
hypothesized that the potential bistability in the system gives rise to hysteresis in
cell adhesion. To prove these predictions experimentally requires substrates of time
dependent stiffness and we made several suggestions how such experiments could be
realized in the future.

So far there are only few experiments reported in the literature that systematically
measured contractile forces of single cells over a wide range of stiffness. Saez et al. [8]
used micro arrays of elastic polymer pillars to measure the forces exerted by clusters
of 10-20 cells. The stiffness offered to the cells has been varied by changing the height
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or the radius of the pillars. This study showed that the forces exerted by cell clusters
are proportional to the pillar stiffness. This scaling behavior was observed over two
orders of magnitude. Although qualitatively in line with our theoretical predictions,
our model rather suggests a threshold in stiffness and a sharp transition from low
contractile forces to high contractile forces on stiff substrates. This discrepancy might
result from the fact that Saez et al. studied clusters of cells. Cells in close contact to
each other have been reported to respond less sensitive to substrate rigidity than single
cells [6, 9]. Thus, for cells in contact with each other, such a sharp transition might
be smoothed out, leading to the rather linear dependence between cellular forces and
substrate stiffness.

Several single cell experiments on flat substrates of varying stiffness have been per-
formed [7, 9] but in these studies no traction forces have been quantified. Instead,
morphology changes have been reported like the spread area or the detection of focal
adhesions and stress fibers under the light microscope. Yeung et al. [9] showed that
single fibroblasts and endothelial cells exhibit an abrupt change in spread area at a
Young’s modulus of around 3 kPa. In addition, no actin stress fibers are seen in fi-
broblasts on soft surfaces, and the appearance of stress fibers is abrupt and complete
also around 3 kPa. This sudden change in cellular response and presumably also in the
cellular stress is consistent with our model predictions. Interestingly, cells were also
found to spread faster on stiff substrates, which is also in agreement with our model
that predicts faster buildup of forces on stiff substrates. Nevertheless, future measure-
ments of the cellular traction forces are essential to further substantiate the agreement
between the model and experimental data.

An intriguing aspect of our model is the way in which different stress fibers might
cooperate inside a living cell. Conceptually it is easy to generalize our model to de-
scribe a system in which many stress fibers share the signaling input and many focal
adhesions share the mechanical output. Such a model might contribute to a further
understanding of cell orientation along the axis of highest rigidity on anisotropic sub-
strates. In connection with a model for cell motility this might also lead to a detailed
understanding of cellular durotaxis. However, this would require a theoretical descrip-
tion of the actin cytoskeleton which allows for both morphologies, Rho-induced actin
stress fibers as well as Rac-induced lamellipodia as they occur in motile cells. Detailed
modeling of the dynamics of such an actomyosin system remains a challenge for future
theoretical studies.
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Chapter 6

Appendices

6.1 Introduction to linear viscoelasticity

For the sake of completeness, we give in this appendix a brief introduction into linear
viscoelasticity theory. The course of derivation follows closely the lecture series by
Allen Pipkin [164]. Since we aim to model stress fibers that can be regarded as linear
strings we restrict the description for simplicity to one dimension. However, once the
theory is established in one dimension it can, in principle, be generalized to higher
dimensions.

6.1.1 Relaxation modulus and creep compliance

The stress in a pure elastic body at a certain time point, say t0, is given by the present
strain in the system. In contrast, it is important to note, that in a viscoelastic material
the current stress is a result of the full strain history for t < t0. In order to derive a
general relation between stress and strain in a viscoelastic body we first consider the
stress relaxation as response to a one-step strain history u(t) = u0θ(t) where u(t) is
the strain, θ(t) is the Heaviside unit step function θ(t < 0) = 0 and θ(t ≥ 0) = 1. The
constant u0 is the hight of the step. After a sudden application of the strain the stress
in the material will relax. For symmetry reasons (assuming the material is isotropic)
the imposed stress f(t) relaxes according to an asymmetric function:

f(t) = G(t)u0 + O(u3
0) (6.1)

Where the higher order terms can be neglected, assuming that the step size is small
enough such that linearization still holds. Similarly, if the material is subject to a
one-step stress history f(t) = f0θ(t), the strain will relax according to the asymmetric
function

u(t) = J(t)f0 + O(f 3
0 ) (6.2)

The time dependent coefficients G(t) and J(t) of the linear terms are called stress re-

laxation modulus and creep compliance, respectively. Their functional form will depend
on the properties of the underlying material.

One dimensional combinations of springs and dashpots provide simple models for
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viscoelastic materials. The relations derived above can be carried over by substituting
the strain (amount of shear) with the elongation of the element and the stress with the
applied force. The force extension relation of a spring is given by

f(t) = ku(t) (6.3)

Where k is the spring stiffness. When subject to a sudden elongation u(t) = u0θ(t) the
resistance force of the spring will be f(t) = kθ(t)u0. Comparison with Eq. (6.1) yields
the relaxation modulus of a spring:

G(t) = kθ(t) (6.4)

Vice versa, if the spring is subject to a sudden force f(t) = f0θ(t) it will elongate
according to u(t) = 1/kf(t) = 1/kθ(t)f0 and comparison with Eq. (6.2) yields the
creep compliance of a spring

J(t) =
1

k
θ(t) (6.5)

The resistance force of a dashpot is proportional to the rate of its elongation

f(t) = γu̇(t) (6.6)

Where γ is the viscosity of the dashpot. When subject to a sudden elongation u(t) =
u0θ(t) the resistance force of the dashpot will be f(t) = γδdirac(t)u0, where the time
derivative of the Heaviside function yields the Dirac-δ function. Comparison with
Eq. (6.2) yields the relaxation modulus of the dashpot

G(t) = γδdirac(t) (6.7)

To obtain a relation between the force and the elongation, Eq. (6.6) has to be integrated
u(t) = 1

γ

∫ t

−∞ f(τ)dτ . When subject to the force history f(t) = f0θ(t) the dashpot will

elongate according to u(t) = 1
γ

∫ t

−∞ f0θ(τ)dτ = t
γ
θ(t)f0. Comparison with Eq. (6.2)

yields the creep compliance of the dashpot

J(t) =
t

γ
θ(t) (6.8)

These basic relations can now be used as a starting point to calculate the relaxation
modulus or the creep compliance for more complicated models. When two elements
are connected in series, the applied tensile force f0 is the same in both elements and
the total elongation u→→

tot (t) is the sum of individual elongations.

u→→
tot (t) = u1(t) + u2(t) = J1(t)f0 + J2(t)f0 (6.9)

Here, the symbol →→ means that elements are connected in series. As a result the
effective creep compliance of two elements placed in series is the sum of the individual
creep compliances:

J→→
tot = J1(t) + J2(t) (6.10)
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In contrast, if two elements are connected in parallel their elongation u0 is identical
and the applied force f⇉

tot(t) is shared.

f⇉

tot(t) = f1(t) + f2(t) = G1(t)u0 + G2(t)u0 (6.11)

Here, the symbol ⇉ denotes parallel alignment of elements. Thus, the effective re-
laxation modulus of two elements connected in parallel is the sum of the individual
relaxation moduli:

G⇉

tot = G1(t) + G2(t) (6.12)

We will see later on that the Laplace transform of J(t) and G(t) are tightly coupled
to each other. It is due to this relation that, if one of the two quantities has been
determined, the missing one can be calculated, provided that the involved inversion of
the Laplace transform is feasible. The creep compliance and the relaxation modulus
for some simple models are illustrated in Tab. 6.1. In particular, the properties of the
Kelvin-Voigt body are of importance for this study.

6.1.2 Stress-relaxation and creep integral

In the previous paragraph the relaxation modulus G(t) and the creep compliance J(t)
were derived. The merit of these response functions in a certain viscoelastic problem
is comparable to the Greensfunction of a linear differential equation: Once, the single-
step response function G(t) or J(t) is known, one can calculate the response of the
system to an arbitrary strain or stress history. This results from the fact that any
physical strain or stress history can be approximated arbitrary well by a sum of step
functions. For example, let u(t) be the imposed strain history. Approximation by N
step functions yields:

u(t) ≈
N∑

i=1

θ(t − ti)∆ui (6.13)

Where ∆ui is the hight of the i-th step at time ti. Due to the linear approximation, the
total stress f(t) is the superposition of the N stresses caused by each discrete strain
step i.

f(t) ≈
∑

i

G(t − ti)∆ui =
∑

i

G(t − ti)
∆ui

∆ti
∆ti (6.14)

A large number of steps leads to the continuous stress-relaxation integral :

f(t) =

∫ t

−∞
G(t − t′)u̇(t′)dt′ (6.15)

An equivalent relation follows when a certain stress history is given from which the
strain has to be calculated. One finds the creep integral

u(t) =

∫ t

−∞
J(t − t′)ḟ(t′)dt′ (6.16)
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Table 6.1: Overview of generic viscoelastic models: spring, dashpot, Maxwell body and Kelvin-Voigt body. Respectively, the
relaxation modulus G(t), the creep compliance J(t), the same but Laplace-transformed quantities Ḡ(s) and J̄(s) as well as the
complex modulus G∗(ω) and the complex compliance J∗(ω) are given. For the sake of clarity the time scale τ = γ/k was
introduced. Knowing e.g. the relaxation modulus for the spring and the dashpot all other entries can be calculated from
Eqs. (6.10),(6.12),(6.19),(6.21),(6.23),(6.25) and (6.27).
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6.1.3 Sinusoidal deformation

A standard experiment for characterizing the viscoelastic properties of a material is
to set it under sinusoidal deformation. Measurement of the phase shift between stress
and strain as well as the ratios of their amplitudes determines the so called dynamic
modulus or complex modulus. In this paragraph the theory behind such an experi-
ment is described. But first we assume that the material is subject to an oscillating
deformation with an exponentially increasing amplitude

u(t) = u0e
γt+iωt = u0e

st (6.17)

where s is a complex variable with a positive real part γ > 0 and its positive imaginary
part denotes the radian frequency ω. The amplitude of the oscillation is exponentially
growing according to u0e

γt. Later, the limit γ → 0 recovers the sinusoidal deformation
with constant amplitude, the case we are actually interested in. The stress-relaxation
integral Eq. (6.15) determines the stress provoked in the material

f(t) =

∫ t

−∞
G(t − τ)u̇(τ)dτ = u0s

∫ t

−∞
G(t − τ)esτdτ

= u0s

∫ ∞

0

G(τ)es(t−τ)dτ

= sḠ(s)u0e
st

(6.18)

Where we abbreviated the Laplace transform of G(t) by Ḡ(s)

Ḡ(s) =

∫ ∞

0

G(t)e−stdt (6.19)

According to Eq. (6.18), the stress also oscillates with exponentially increasing ampli-
tude given by |sḠ(s)|u0e

γt and frequency ω but with the constant phase shift arg(sḠ(s))
to the strain. Similarly, if the stress was initially given by f(t) = f0e

st, then the strain
follows from the creep integral Eq. (6.16)

u(t) = sJ̄(s)f0e
st (6.20)

Where, J̄(s) is the Laplace transform of the creep compliance J(t).

J̄(s) =

∫ ∞

0

J(t)e−stdt (6.21)

Now assume we have initially started with the input: uin(t) = u0e
st. According to

Eq. (6.18) this provokes the stress fout(t) = sḠ(s)u0e
st in the material. It is now

legitimate to ask, what would be the expected strain regarding the stress fout(t) as the
input, that is fin(t) ≡ fout(t). Of course, the resulting strain has to be equivalent to
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the initial input uin(t)! From Eq. (6.20) we find

uout(t) = sJ̄(s)fin(t) = sJ̄(s)sḠ(s)u0e
st !

= uin(t) (6.22)

The last identity in the upper string of equations yields an important relation between
the Laplace transforms of the relaxation modulus and the creep compliance

sJ̄(s)sḠ(s) = 1 (6.23)

In principle, it allows to calculate e.g. G(t), given J(t), or vice versa, as long as the
involved Laplace transform and its inversion are feasible. In order to get a relation
between stress and strain for sinusoidal oscillations one has to perform the limit γ → 0
in Eq. (6.18). Then the applied strain becomes u(t) = u0e

iωt and the provoked stress
is given by

f(t) = G∗(ω)u(t) (6.24)

The complex constant G∗(ω) is called the complex modulus, defined through the lim-
iting process

G∗(ω) = lim
γ→0

sḠ(s) = lim
γ→0

(γ + iω)Ḡ(γ + iω) (6.25)

Similarly, if the stress is the input

u(t) = J∗(ω)f(t) (6.26)

Here, the complex constant J∗(ω) is called the complex compliance and equivalent to
the complex modulus it is defined through the limiting process:

J∗(ω) = lim
γ→0

sJ̄(s) (6.27)

With the same arguments as for exponentially increasing amplitudes of the input one
can derive a relation equivalent to Eq. (6.23) but now for the complex compliance and
complex modulus:

G∗(ω)J∗(ω) = 1 (6.28)

To see how the complex modulus G∗(ω) and the complex compliance J∗(ω) can be
related to measurable quantities, we write the complex modulus in polar form G∗(ω) =
|G∗(ω)|eiϕ. Then the relation between sinusoidal stress and strain, Eq. (6.24), becomes

f(t) = G∗(ω)u(t) = |G∗(ω)|u0e
iωt+iϕ (6.29)

Thus, in order to determine the absolute value of the complex modulus one has to
measure the amplitudes of stress and strain. The absolute value is then given by the
ratio of the amplitudes

|G∗(ω)| =
|f(t)|
|u(t)| (6.30)

The argument of the complex modulus can be determined by measuring the phase shift,
ϕ, between stress and strain. ϕ is also called the loss angle. Experimentally, it has
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been found that the strain always lags behind the stress, therefore 0 < ϕ < π/2. Once
G∗ has been constructed Eq. (6.28) delivers J∗ which can be expressed as:

J∗(ω) =
1

|G∗(ω)|e
−iϕ (6.31)

It is also convenient to divide the complex modulus into real and imaginary part

G∗(ω) = G′(ω) + iG′′(ω) (6.32)

The real part G′(ω) is called the storage modulus whereas the imaginary part G′′(ω) is
called the loss modulus. The names result from the fact that the first quantity amounts
the part of the energy that is elastically stored whereas the second gives is a measure for
the part of the energy that is dissipated by viscous friction. The total work performed
by a little change in strain is given by

dW (t) = f(t)du(t) = G∗(ω)u(t)du(t) = d

(
1

2
G′(ω)u2(t)

)

+

(
G′′(ω)

ω
u̇2(t)

)

dt (6.33)

The first term is a perfect differential and can be regarded as change of the stored
elastic energy whereas the second term amounts the energy that is dissipated in time
dt.
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6.2 Proofs for eigenvalues and eigenvectors

In section 2.2.1 we have used the eigenvalues and eigenvectors given by

λl =
kext + 4kint sin2 πl

2(2N+1)

γext + 4γ̃int sin2 πl
2(2N+1)

and ~vl =













sin πl
2N+1

sin π2l
2N+1

sin π3l
2N+1
...

sin π2Nl
2N+1













(6.34)

without proofing that this system indeed solves the eigenvalue problem (also compare
Eq. (2.29) and Eq. (2.30))

(Melas − λlMvisc)~vl = 0 (6.35)

In this appendix we first catch up on this proof and later on verify certain properties of
the eigenvalues and eigenvectors which we have claimed in the main text. These are:

(1) The eigenvalues are distinct, positive and non-zero.

(2) The eigenvectors are orthogonal and their length is given by vl =
√

(2N + 1)/2

In order to verify the given eigenvalues and eigenvectors we first rewrite the matrix
Melas − λlMvisc as:

Melas − λlMvisc =










2B − A −B 0 0 · · ·
−B 2B − A −B 0 · · ·
0 −B 2B − A −B · · ·
0 0 −B 2B − A · · ·
...

...
...

...
. . .










(6.36)

Where B = kint − λlγ̃int and A = −kext + λlγext. Now, one can use the expression for
the eigenvalues given in Eq. (6.34) to express A in terms of B. It turns out that

A = 4B sin2 πl

2(2N + 1)
(6.37)

This relation allows to pull out a factor B from the matrix given in Eq. (6.36) and
application of common addition theorems yields (cos 2α = 1 − 2 sin2 α):

Melas − λlMvisc = B








2 cos
(

πl
2N+1

)
−1 0 · · ·

−1 2 cos
(

πl
2N+1

)
−1 · · ·

0 −1 2 cos
(

πl
2N+1

)
· · ·

...
...

...
...

. . .








=: BMl

According to Eq. (6.35) it remains to be shown that the product Ml~vl vanishes for all
l = 1, . . . , 2N . The m-th component of the vector which results from this product is
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given below. It simplifies to zero after application of the common addition theorem:
2 cos α sin β = sin(α + β) + sin(β − α).

− sin

(
π(m − 1)l

2N + 1

)

+ 2 cos

(
πl

2N + 1

)

sin

(
πml

2N + 1

)

− sin

(
π(m + 1)l

2N + 1

)

= 0 (6.38)

In total we have shown that the system of eigenvalues and eigenvector Eq. (6.34) indeed
obeys the eigenvalue equation Eq. (6.35).

We go on to proof claim (1) that the eigenvalues are distinct, positive and non-zero.
The fact that the eigenvalues are positive and non-zero follows directly by inspection
of Eq. (6.34) and by noting that all viscoelastic constants are positive, negative values
would not be physical. It remains to be shown that there are no multiple eigenvalues.
This can be seen after reformulating the expression for the eigenvalues as:

λl =
kint

γ̃int

+ kint

kext

kint
− γext

γ̃int

γext + 4γ̃int sin2 πl
2(2N+1)

(6.39)

Since 1 ≤ l ≤ 2N , it holds for the argument of the sin-function that 0 < πl
2(2N+1)

< π
2
.

In this interval, the sin-function increases monotonically and is single-valued. For this
reason, the eigenvalues, λl, are also single-valued. The eigenvalues increase monoton-
ically with l if kext

kint
< γext

γ̃int
and decrease monotonically for increasing l if the opposite

inequality holds.

In the next step we deliver the proof for claim (2) that the eigenvectors are orthog-
onal and their length is given by vl =

√

(2N + 1)/2. To show this in a convenient way
we consider the matrix of normalized eigenvectors, U, which is also used in the main
text:

U =

√

2

2N + 1
(v1, v2, . . . , v2N) ⇔ Uj,l =

√

2

2N + 1
sin

πlj

2N + 1
(6.40)

By means of this matrix, the statement to be shown can be recapitulated as U
T
U =

I ⇔ (UU)k,m = δk,m. The second relation follows since U is obviously symmetric. In
the following we will evaluate the square of the matrix U componentwise:

(UU)k,m =
2N∑

j=1

Uk,jUj,m

=
2

2N + 1

2N∑

j=1

sin
πkj

2N + 1
sin

πjm

2N + 1

=
1

2N + 1

2N∑

j=1

(

cos
πj(k − m)

2N + 1
− cos

πj(k + m)

2N + 1

)

(6.41)
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The finite sums over the cos-functions can be evaluated. For an arbitrary angle α one
finds:

n∑

j=0

cos(jα) = ℜ
n∑

j=0

(cos(jα) + i sin(jα))

= ℜ
n∑

j=0

(
eiα
)j

= ℜ
(

1 − eiα(n+1)

1 − eiα

)

=
1

2

(

1 +
sin(α(n + 1/2))

sin(α/2)

)

(6.42)

Where ℜ(z) denotes the real part of the complex variable z. If instead the imaginary
part is taken, a similar relation is obtained for the sin-function which we also use in
section 2.2.1 of the main text:

n∑

j=0

sin(jα) =
1

2

(

cot(α/2) − cos(α(n + 1/2))

sin(α/2)

)

(6.43)

Application of Eq. (6.42) in order to simplify Eq. (6.41) finally yields:

(UU)k,m =
1

2(2N + 1)

(

sin ((k − m)π) cot
(k − m)π

2(2N + 1)
+ . . .

− sin((k + m)π) cot
(k + m)π

2(2N + 1)
+ cos((k + m)π) − cos((k − m)π)

) (6.44)

There are two cases, namely k = m and k 6= m, that have to be considered. At first,
assume that k = m. In this case, the last two terms in Eq. (6.44) just cancel out each
other. The sin-function in the second term evaluates to zero while the cotangent gives
a finite value: since 0 < (k+m)π

2(2N+1)
< π, the poles are just spared. Thus, also this term

vanishes. It is only the first term that gives a real contribution, it evaluates to:

(UU)k,k =
1

2(2N + 1)
lim
m→k

sin ((k − m)π)

sin (k−m)π
2(2N+1)

= lim
m→k

cos ((k − m)π)

cos (k−m)π
2(2N+1)

= 1 (6.45)

The upper equation constitutes that all diagonal components of U
2 are unity. Now

assume that k 6= m. In this case the first as well as the second term in Eq. (6.44)
vanish since the sin-function evaluates to zero while the co-tangent yields finite values.
The last two terms further simplify to:

(UU)k,m6=k =
1

2(2N + 1)

(
(−1)k+m − (−1)k−m

)

=
1

2(2N + 1)
(−1)k−m

(
(−1)2m − 1)

)
= 0

(6.46)
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The upper equation constitutes that all off-diagonal components of U
2 vanish. The

combination of Eq. (6.45) and Eq. (6.46) yields (UU)k,m = δk,m which was to be demon-

strated. In total we have shown that all eigenvectors are of length vl =
√

(2N + 1)/2
and form a complete orthogonal basis.
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6.3 Uniform convergence of first derivative

The calculation of the tension within the stress fiber requires the evaluation of the
first spatial derivative of the displacement, Eq. (2.57). In this appendix we deliver the
proof that this derivative can be calculated by changing the order of differentiation
and summation in Eq. (2.57). This change in order is in general not legitimate unless
the series obeys certain conditions. For instance, it is sufficient, if the series shows the
following properties:

Theorem 1: Let fm be continuously differentiable complex functions in D that obey
the following conditions:

(1) the series
∑∞

m=1 fm converges uniformly in D;

(2) the series
∑∞

m=1 f ′
m converges also uniformly in D.

Then, the function defined by f :=
∑∞

m=1 fm is differentiable in D and its derivative is
given by: f ′ :=

∑∞
m=1 f ′

m.

There exist sharper theorems that pose weaker conditions on the functions fm but
the given theorem is sufficient for our purpose. The series of interest that consti-
tutes the solution for the displacement, Eq. (2.57), is obviously uniformly convergent
for all x ∈ [0, L] and t ∈ [0,∞]. A majorant and convergent series is given e.g. by
∑∞

m=1
1

(aπ(2m−1))2
. However, it is more challenging to prove the uniform convergence of

the piecewise differentiated series with respect to the spatial variable x:

u′(x, t) = −4aπδ
∞∑

m=1

2m − 1

4κL2 + (aπ(2m − 1))2
︸ ︷︷ ︸

(−1)m+1(1 − e−t/τm) cos
πx(2m − 1)

(2L)
︸ ︷︷ ︸

=: fm =: am(x)

(6.47)

In order to proof the uniform convergence of this series, we apply the Dirichlet-Criteria
depicted in the following theorem:

Theorem 2 (The Dirichlet-Criteria): Let fm be real and let am be complex func-
tions on D that obey the following conditions for m ∈ N:

(1) fm(x) is monotonically decreasing for all x ∈ D;

(2) fm converges uniformly in D to zero;

(3) There exists an upper bound M such that ‖∑n
m=1 am‖D ≤ M for all n. Here, ‖g‖D

denotes the supremum norm of g with respect to D, that is ‖g‖D := sup{|g(x)|, x ∈
D}.

Then, the series
∑∞

m=1 amfm converges uniformly in D.

In Eq. (6.47) we have already separated the summands into the two factors fm and
am(x). The functions fm obviously fulfill the conditions (1) and (2) required by the
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Dirichlet-Criteria. The condition (3) on the functions am remain to be shown. The
domain, D, over which this is possible has to be limited to x ∈ [0, L−ǫ] with 0 < ǫ < L:

∥
∥
∥
∥
∥

n∑

m=1

am(x)

∥
∥
∥
∥
∥

D

=

∥
∥
∥
∥
∥

n∑

m=1

(−1)m+1(1 − e−t/τm) cos
πx(2m − 1)

2L

∥
∥
∥
∥
∥

x∈[0,L−ǫ]

≤
∥
∥
∥
∥
∥

n∑

m=1

(−1)m+1 cos
πx(2m − 1)

2L

∥
∥
∥
∥
∥

x∈[0,L−ǫ]

=
1

2

∥
∥
∥
∥
∥

n∑

m=1

eiπ(m+1)
(
eiπ x

2L
(2m−1) + e−iπ x

2L
(2m−1)

)

∥
∥
∥
∥
∥

D

≤ 1

2

∥
∥
∥
∥
∥

n∑

m=1

eiπm(1+ x
L

)

∥
∥
∥
∥
∥

D

+
1

2

∥
∥
∥
∥
∥

n∑

m=1

eiπm(1− x
L

)

∥
∥
∥
∥
∥

D

=
1

2

∥
∥
∥
∥

1 − eiπ(1+ x
L

)(n+1)

1 − eiπ(1+ x
L

)
− 1

∥
∥
∥
∥

D

+
1

2

∥
∥
∥
∥

1 − eiπ(1− x
L

)(n+1)

1 − eiπ(1− x
L

)
− 1

∥
∥
∥
∥

D

≤ 1

2

∥
∥
∥
∥
∥

1

sin
π(1+ x

L
)

2

∥
∥
∥
∥
∥

x∈[0,L−ǫ]

+
1

2

∥
∥
∥
∥
∥

1

sin
π(1− x

L
)

2

∥
∥
∥
∥
∥

x∈[0,L−ǫ]

≤ 1

2

∣
∣
∣
∣
∣

1

sin
(
π − πǫ

2L

)

∣
∣
∣
∣
∣
+

1

2

∣
∣
∣
∣

1

sin πǫ
2L

∣
∣
∣
∣

=
1

sin πǫ
2L

=: M

(6.48)

The very first inequality holds true since t and τm are both positive. The exponential
factor therefore varies within the bounds [0, 1]. In the second to last step the two
x-dependent terms have been evaluated at their maximal values within the domain D

which are reached at x = L − ǫ, respectively. The last line defines the upper bound
M which is neither dependent on x nor on n and thus fulfills the requirements (3)
of the Dirichlet-Criteria. In total we have shown that the first spatial derivative of
the displacement field u(x, t) can be calculated by piecewise differentiation within the
interval x ∈ [0, L − ǫ] with ǫ > 0. Note that for ǫ = 0 ⇔ x = L the upper bound M
diverges and the calculation breaks down. Therefore it is indeed necessary to constrain
the spatial variable to x ∈ [0, L − ǫ] with ǫ > 0. This constraint, however, is not
further hindering. The first spatial derivative is of interest only in connection with
the viscoelastic stress within the stress fiber. Eq. (6.47) allows to calculate the tension
for all x < L whereas the tension at x = L is set to zero by the imposed boundary
conditions. In this way, the tension can be calculated analytically along the whole
fiber. It is also noteworthy that the upper calculation breaks down for higher spatial
derivatives. Each differentiation step contributes an additional factor (2m − 1) to
the functions fm. Already in case of the second derivative the functions fm no longer
converge to zero and condition (3) of the Dirichlet-Criteria can not be fulfilled anymore.
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In contrast, derivatives with respect to time pose no problems because convergence of
the functions fm to zero is sustained.
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6.4 Solution by inverse Laplace transform

In the main text (see section 2.2.3) we have briefly discussed how an analytical ex-
pression for the displacements can be derived by solving an inversion problem. This
appendix complements the calculations presented in the main text and provides some
further derivation details. In the following we express all equations in terms of the
non-dimensional quantities x̃ = x/a, L = L/a, t̃ = t/τ , s̃ = s/τ and ω̃ = ω/τ . For the
sake of clarity, however, we omit to furnish the variables with the tilde.

The simple initial conditions of vanishing displacements at t = 0 enables the Laplace
transform of the boundary value problem given in Eq. (2.22). Transformation simplifies
the model equation to the following second order differential equation:

(1 + s)∂2
xū(x, s) − (κ + sΓ)ū(x, s) = 0 (6.49)

Here, ū(x, s) =
∫∞
0

u(x, t)e−stdt denotes the Laplace transform of the displacement.
In the following and throughout the manuscript, overbars always denote the Laplace-
transformed quantities. The variable s = γ + iω is in general a complex variable
with real part γ and imaginary part ω. Similarly, the boundary conditions transform
according to:

ū(0, s) = 0 and (1 + s)ū(L, s) +
δ

s
= 0 (6.50)

Eq. (6.49) and Eq. (6.50) describe an ordinary differential equation with appropriate
boundary conditions which is straight forward to solve. The solution for the Laplace-
transformed displacement is given by:

ū(x, s) = −δ · 1

s
sech

(

L

√
Γs + κ√
1 + s

)

︸ ︷︷ ︸

·
sinh

(

x
√

Γs+κ√
1+s

)

√
1 + s

√
Γs + κ

︸ ︷︷ ︸

=: ḡ1(s) =: ḡ2(x, s)

(6.51)

The solution in real space is now given by the inverse Laplace transform of the upper
equation. The inversion problem will be divided into two parts. The two functions,
ḡ1(s) and ḡ2(x, s) defined above, will be inverted separately. The inverse Laplace trans-
form of ū, the product of these two functions, is then given by the convolution theorem.
The inversion formula for the Laplace transform is in general given by the Bromwich
integral:

f(t) = L−1[f̄(s)](t) =
1

2πi

∫ γ+i∞

γ−i∞
estf̄(s)ds (6.52)

The constant γ has to be chosen such that all singularities of the function f̄(s) are
on the left hand side of the integration path. For the special case where t > 0 and
in addition the contour may be closed by an infinite semicircle in the left half-plane
enclosing all singularities of f̄(s) then the residue theorem is applicable and (see [91]):

f(t) =
∑

m

res(estf̄(s), sm) (6.53)
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Where sm are the singularities of the function f̄(s). It has to be checked that the
two functions, ḡ1 and ḡ2 fulfill the conditions mentioned above. Then, the inversion
problem is solved by finding the residues of the two functions estḡ1(s) and estḡ2(s) at
all occurring singularities. Since we are only interested in solutions for t > 0 it remains
to be shown, that the occurring singularities of the two functions can be encircled by
a closed contour. Thereby caution is in principle advised since the roots, occurring in
both functions, could necessitate the introduction of cut lines into the complex plane
that are not allowed to cross and potentially prohibit an enclosing contour. Fortunately,
for both functions, no cut lines have to be introduced which can be seen directly when
expressing the occurring hyperbolic functions by their Taylor series. The function ḡ1

contains a hyperbolic secant which is an even function, thus its Taylor series contains
only even powers. The roots which appear in the argument of the hyperbolic secant
are thus converted to polynomials with integer powers in s and essentially no roots
have to be calculated. Similar arguments hold true for the function ḡ2. The hyperbolic
sine is an odd function, its Taylor series contains only terms of odd powers. Since
the arguments of the hyperbolic sine contains roots, this term alone would require a
cut line. However, ḡ2 contains the same roots which appear in the argument of the
hyperbolic sine also as pre-factors. These pre-factors convert the half-integral powers
within the Taylor series to integer powers and no roots have to be calculated. Thus, for
both functions, no cut lines have to be introduced and the Laplace inversion of the two
functions ḡ1 and ḡ2 can be performed using residues calculus according to Eq. (6.53).
In the following, we will derive the inversion for the two functions separately and at
the end merge them by the convolution theorem to obtain the final solution for the
displacement.

The function ḡ1 has a simple pole at s = 0 with residue res(estḡ1(s), 0) = sech (L
√

κ).
In addition, every root of the hyperbolic cosine contributes a singularity. The roots rm

of the hyperbolic cosine are rm = i(2m − 1)π/2 with m ∈ Z. Therefore the poles of
the hyperbolic secant, sm are located at:

sm = −L2κ − r2
m

L2Γ − r2
m

= −4L2κ + (π(2m − 1))2

4L2Γ + (π(2m − 1))2
(6.54)

Notice that sm = s−m+1. In order to avoid double counting of the poles, in Eq. (6.54),
m has to be constraint to m = 1, . . . ,∞. To calculate the associated residues we
expand the hyperbolic cosine in the denominator about its roots sm. Expansion yields:

estḡ1(s) =
1

cosh
(

L
√

Γs+κ√
1+s

) · est

s

=
1

(−1)m+1(π2(2m−1)2+4L2Γ)2

16πL2(2m−1)(Γ−κ)
(s − sm) + O ((s − sm)2)

· est

s

=
16πL2(−1)m+1(2m − 1)(Γ − κ)

(π2(2m − 1)2 + 4L2Γ)2(s − sm)
︸ ︷︷ ︸

· 1

1 + O(s − sm)
· est

s
︸ ︷︷ ︸

simple pole at s = sm holomorphic

(6.55)
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The first factor on the right hand side of the upper equation is a function with a simple
pole at s = sm. It is multiplied with a function which is holomorphic at s = sm. In this
situation, the residue of the product is given by the residue of the function with the
simple pole, multiplied with the value of the holomorphic function at the singularity.
Thus, the residue at s = sm is given by:

res(estḡ1(s), sm) = 16πL2 (−1)m+1(2m − 1)(Γ − κ)

(π2(2m − 1)2 + 4L2Γ)2
etsm

sm
(6.56)

According to Eq. (6.53) the inverse of the function ḡ1(s) is now given by the sum over
all residues.

g1(t) = sech(L
√

κ) + 16πL2
∞∑

m=1

(−1)m+1(2m − 1)(Γ − κ)

(π2(2m − 1)2 + 4L2Γ)2
etsm

sm
(6.57)

The first term originates from the simple pole at s = 0 and the infinite sum accounts
for the residues at s = sm. Values for sm are given by Eq. (6.54). It is interesting
to note, that the position of the poles sm are, except for the signs, identical with the
eigenvalues that arise in the other derivation. The inverse of both give the retardation
times of the model. The inversion of the second function ḡ2 is a bit more involved since
ḡ2 has an essential singularity at s = −1. Note that the singularity at s = −κ/Γ is
removable and has not to be considered! It is convenient to first perform the variable
transformation s → s − 1 and calculate the residue of the function ḡ2(s − 1) at s = 0
instead. The final result is then obtained using the substitution rule of the Laplace
transform: g(t) = e−atL−1[ḡ(s − a)] where in the present case a = 1. The course of
the calculation is as follows: The hyperbolic sine and the exponential function will be
expressed in terms of their Taylor series. Subsequently, the product of these two series
will be reordered such that the terms of order s−1, which constitute the residue, can
be read off. The Taylor series of the hyperbolic sine is given by:

sinh(z) =
∞∑

n=0

z2n+1

(2n + 1)!
= z +

z3

3!
+

z5

5!
+

z7

7!
+ ... (6.58)

Performing the previously announced variable transformation s → s − 1 on ḡ2 and
evaluating the hyperbolic sine at its actual argument yields:

sinh

(
x
√

Γs + κ − Γ√
s

)

=
∞∑

n=0

x2n+1(Γs + κ − Γ)
2n+1

2

(2n + 1)!s
2n+1

2

(6.59)

To complete the function ḡ2 the additional pre-factors have to be taken into account.
They can be pulled into the series and the formerly half-integral powers cancel to
common polynomials in s:

ḡ2(s − 1) =
sinh

(
x
√

Γs+κ−Γ√
s

)

√
s
√

Γs + κ − Γ
=

∞∑

n=0

x2n+1(Γs + κ − Γ)n

(2n + 1)!sn+1

=
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n=0

x2n+1

(2n + 1)!sn+1

n∑

k=0

(
n

k

)

(Γs)n−k(κ − Γ)k

(6.60)
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In the last step, we have evaluated the polynomials by means of the binomial formula
which now allows to reorder the double sum and collect terms of the same powers in s:

ḡ2(s − 1) = +
x1
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(
0

0

)
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1

s
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In the equation above, terms of same power in s, are arranged column-wise. In the
following each column will be merged to a separate sum:

ḡ2(s − 1) =
1

s
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Where we defined the coefficients dj to short cut the calculation:

dj =
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(
n + j

j
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(2(n + j) + 1)!
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In order to calculate the proper residue, the series expansion for the function ḡ2 derived
above has to be multiplied with the exponential factor est. Collection of all terms of
order s−1 then yields the searched residue. Multiplication of the two series gives:
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(6.62)

The highlighted column determines the residue at s = 0 which constitutes the inverse
Laplace transform of the function ḡ2(s−1). The coefficients dj are given by Eq. (6.61).
To obtain the inverse Laplace transform of the unshifted function ḡ2(s) the substitution
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rule of the Laplace transform has to be applied:

g2(t) = L−1[ḡ2(s)] = e−tL−1[ḡ2(s − 1)] = e−t res(ḡ2(s − 1)est, 0)

= e−t
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j=0

tj
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dj = e−t
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n + j

j

)
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(2(n + j) + 1)!
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Eq. (6.57) and Eq. (6.63) give the inverse Laplace transform of the two functions ḡ1

and ḡ2. The inversion of the Laplace-transformed displacement, which is essentially
the product of ḡ1 and ḡ2, is then given by the convolution theorem as: u(x, t) =

−δ
∫ t

0
g1(t

′)g2(t − t′)dt′. Insertion of the derived functions g1 and g2 finally yields the
analytical solution for the displacement along the fiber:

u(x, t) = −δ
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[(
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(6.64)

The expression above can be evaluated numerically, however many terms of the infinite
series have to be taken into account to get a satisfactory approximation for the solu-
tion. Especially displacements at large x and intermediate time points t are difficult
to evaluate. Fig. 6.1 shows a pointwise comparison of the above solution with the nu-
merical solution obtained from the Matlab PDE-toolbox. Thereby, the upper limits of
the infinite series have been approximated by either 5, 10 or 50 yielding the solutions
u5

ana dashed lines, u10
ana dotted lines and u50

ana marked by dots, respectively. Calculation
of the solution by the above expression is much slower than by Eq. (2.57). The latter
turned out to be even faster than the numerical solution in the Matlab-PDE toolbox.

The convolution integral in Eq. (6.64) can be readily calculated after exchanging
the order of summation and integration. The occurring two integrals that have to be
solved are of the form:

∫ t

0
(t − t′)je−(t−t′−αt′)dt′ =

j!eαt

(1 + α)j+1
− e−t

j
∑

k=0

j!tj−k

(j − k)!(1 + α)k+1
(6.65)

In one integral α vanishes and in the other integral α = sm. Evaluation of the con-
volution in Eq. (6.64) finally yields an analytical expression that only contains infinite
series, that are straight forward to calculate. More importantly, the resulting solution
decomposes into a stationary and several time-dependent contributions which vanish
exponentially for large times. The remaining stationary contribution is given by:

uss(x) = −δ sech(L
√

κ)
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j=0

(κ − Γ)j
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n=0

(
n + j

j

)
x2(n+j)+1Γn

(2(n + j) + 1)!
(6.66)

The above result has to be mathematically identical with previously found expressions
for the stationary solution in Eq. (2.24) and Eq. (2.57). By comparing these results
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Figure 6.1: Comparison of the numerical solution from the Matlab PDE toolbox (unum,
solid lines) with the analytical solution calculated by Eq. (6.64). In the analytical solution
the upper limits of all infinite sums have been approximated by 5, 10 and 50 (u5

ana dashed
lines, u10

ana dotted lines and u50
ana marked by dots, respectively). (a) Plot of the time

dependent displacement u(t) at constant positions x ∈ {0, 9 µm, 12 µm, L}. (b) Plot of
the spatial variations of the displacement u(x) at certain time points t ∈ {0, 1 s, 5 s,∞}.
Used parameter values are identical with Fig. 2.4: (κ, τ, τǫ, δ) = (0.1, 5 s, 0.75 s, 0.6 µm)
and L = 15µm.

the following mathematical identities can be deduced:
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(6.67)

The last identity is particularly interesting. Note, that the right hand side of the last
equation depends on the parameter Γ in a complicated manner. The left hand side,
however, does not depend on Γ. The only assumptions made to derive this identity
were that the occurring parameters κ, Γ, x are all positive. Beside these constraints,
the given identity must hold true for all positive Γ. The identity is easy to verify for
the special case Γ = κ where only the j = 0 term survives. The remaining series is just
the Taylor series for the hyperbolic sine, compare Eq. (6.58). In addition the identity
has been checked numerically for a few different sets of non-trivial parameter values.
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Arbeitsatmosphäre und die netten Stunden in der Kaffeecke. Durch ihre Hilfsbere-
itschaft und ihre Offenheit zum wissenschaftlichen Austausch haben mich Christian
Korn, Carina Edwards, Jakob Schluttig, Julian Weichsel und Benedikt Sabass beson-
ders unterstützt.

Christian Korn, Christoph Larcher, Julian Weichsel und Tina-Sarah Auer danke ich für
das gründliche Korrekturlesen und für die vielen hilfreichen Vorschläge die wesentlich
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Hiermit erkläre ich, dass ich die vorgelegte Dissertation selbst verfasst und mich dabei
keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient
habe.

Heidelberg, den ................................... .....................................................

Achim Besser


	Titlepage
	Contents
	List of Figures
	List of Tables
	List of Symbols
	1 Introduction
	1.1 A sense of touch on the single cell level
	1.2 Cell adhesion: a mechano-chemically coupled system
	1.3 Experimental techniques
	1.4 Previous theoretical work
	1.5 Outline and main results

	2 Viscoelastic fiber model: definition and solution
	2.1 A model for stress fibers
	2.1.1 The discrete stress fiber model
	2.1.2 Relations between 1D and 3D viscoelastic constants
	2.1.3 The continuum stress fiber model

	2.2 Solution of the model
	2.2.1 Solution of the discrete model
	2.2.2 Solution in the continuum limit
	2.2.3 Solution by inverse Laplace transform

	2.3 Retardation time spectrum
	2.4 Stress fiber tension
	2.5 Damped oscillations without inertia
	2.6 The complex modulus of the fiber model
	2.6.1 Recursion for the complex modulus
	2.6.2 Closed solution from continuum limit
	2.6.3 Analytical solution by Laplace transform

	2.7 Summary and discussion

	3 Quantification of stress fiber contraction dynamics
	3.1 Data analysis yields model parameters
	3.1.1 Correlations between model parameters

	3.2 Total contraction length
	3.3 Zyxin dynamics upon laser surgery
	3.3.1 Zyxin dynamics at focal adhesions
	3.3.2 Zyxin dissociation from stress fibers
	3.3.3 Zyxin recruitment at tensed crosslinks

	3.4 Summary and discussion

	4 Coupling of mechanics and biochemistry
	4.1 Biochemical signaling at focal adhesions
	4.2 Description of inhibition experiments
	4.3 Reaction diffusion model for the Rho-pathway
	4.4 The altered stress fiber model
	4.5 The coupled feedback system
	4.6 Summary and outlook

	5 Cellular response to stiffness
	5.1 Bifurcation analysis
	5.1.1 State diagram

	5.2 Probing hysteresis in cell adhesion
	5.2.1 Cyclic varying stiffness
	5.2.2 Spreading and linear softening
	5.2.3 Using biochemical stimulation
	5.2.4 Experimental realization

	5.3 Summary and discussion

	6 Appendices
	6.1 Introduction to linear viscoelasticity
	6.1.1 Relaxation modulus and creep compliance
	6.1.2 Stress-relaxation and creep integral
	6.1.3 Sinusoidal deformation

	6.2 Proofs for eigenvalues and eigenvectors
	6.3 Uniform convergence of first derivative
	6.4 Solution by inverse Laplace transform

	Bibliography
	Acknowledgements

