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Abstract / Zusammenfassung:

On the numerical simulation of advection dominated accretion flows
In accreting systems of low accretion rate (< 1% Eddington rate) the accretion is
dominated by advection rather than by radiation or thermal convection. This type
of accretion flow is assumed to cause the observational signatures of quiescent galax-
ies, X-ray binaries in the low-hard state and other compact objects. The motor that
maintains the transport of angular momentum and accretion is the magnetorota-
tional instability fed by the shearing of the magnetic field in the differential rotation
of the disc. Direct observation of these objects is difficult due to their small size and
because they are often hidden behind accreting matter. Therefore simulating the
equations of ideal magnetohydrodynamics is necessary to investigate the structure
and dynamics of these accretion flows.
We carried out direct numerical simulations of an accreting torus around a black
hole. By performing tests varying the initial magnetisation, the size and position of
the torus and the geometry of the magnetic field, we found the crucial parameters
that determine accretion and ejection. The results show that the initial geometry of
the magnetic field is of almost no relevance for the long term behaviour. However,
if the magnetic field strength is to small, no fast outflow arises. Also the presence
of radiative cooling will inhibit powerful ejections. Moreover we report retrograde
rotation of the jet with respect to the disc rotation.

Über die numerische Simulation advektionsdominierter Akkretionsflüsse
In akkretierenden Systemen niedriger Akkretionsrate (< 1% der Eddington-Rate)
wird der Akkretionsfluss durch Advektion dominiert und nicht durch Wechsel-
wirkung mit Strahlung oder thermischer Konvektion. Dieser Akkretionstyp wird
gemeinhin für die beobachteten Eigenschaften von inaktiven Galaxien, Röntgen-
Doppelsternen im ”Low-Hard-State“ und anderen kompakten Objekten verant-
wortlich gemacht. Der Mechanismus, der den Drehimpulstransport und damit die
Akkretion aufrechterhält, ist die Magnetorotationsinstabilität. Diese wird durch die
Scherung des Magnetfeldes in der differenziell rotierenden Scheibe erzeugt. Die di-
rekte Beobachtung dieser Objekte ist schwierig aufgrund ihrer geringen Größe und
weil sie häufig hinter dem akkretierenden Material verborgen sind. Daher ist es
notwendig, magnetohydrodynamische Simulationen dieser Objekte zu erstellen, um
ihre Dynamik und Struktur zu erforschen.
Wir haben direkte numerische Simulationen eines Akkretionstorus durchgeführt, in
denen wir verschiedene Anfangszustände getestet haben. Durch Variation der Po-
sition und Größe des Torus, seiner Magnetisierung und der Geometrie des Magnet-
feldes, konnten wir die wesentlichen Parameter für die globale Struktur ausmachen.
Es zeigt sich, dass die Geometrie des anfänglichen Magnetfeldes irrelevant für die
Langzeitentwicklung der Simulation ist. Wenn das Magnetfeld jedoch zu schwach ist,
wird kein schneller, Jet-artiger Materiefluss gebildet. Kühlung durch Abstrahlung
verhindert ebenfalls starke Ausflüsse. Außerdem fanden wir retrograde Rotation
des Jets bezüglich der Scheibenrotation.





God is always there. But you got to do the footwork.
Mike ‘Flea’ Balzary





Contents

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Accretion physics in the 20th century . . . . . . . . . . . . . 2
1.2 The physics behind accretion . . . . . . . . . . . . . . . . . . 9
1.3 Jets and Winds . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Essential theory of the magnetohydrodynamics in accretion discs 17
2.1 Spherical accretion . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . 19
2.4 Magnetorotational instability . . . . . . . . . . . . . . . . . . 28
2.5 Numerical MHD . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Numerical set-up . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 The model case 39
3.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Test case without initial magnetic field . . . . . . . . . . . . . 42
3.3 General structure of accretion and outflows . . . . . . . . . . 44
3.4 Simulation in three dimensions . . . . . . . . . . . . . . . . . 50
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Variations of the model case and their consequences 53
4.1 Position and size of the torus . . . . . . . . . . . . . . . . . . 53
4.2 Magnetic field strength of the plasma . . . . . . . . . . . . . . 57
4.3 Magnetic field topology . . . . . . . . . . . . . . . . . . . . . 60
4.4 Cooled accretion flows . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ix



5 Summary and conclusions 75

6 Outlook 79

A Symbols and Constants 81

B Useful equations 83

References 85

Acknowledgments 95

x



List of Figures

1.1 Quasar 3C 273 . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Illustration of the standard model of AGN . . . . . . . . . . . 4
1.3 Artistic illustration of an X-ray binary . . . . . . . . . . . . . 5
1.4 Spectra of black hole binary GRO J1655-40 . . . . . . . . . . 6
1.5 Illustration of the spectral states of black hole accretion discs 7
1.6 Schematic of our simplified model for the jet-disc coupling in

black hole binaries . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Illustration of the MRI . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Branches of the MHD modes . . . . . . . . . . . . . . . . . . 31
2.2 Growth rate of the MRI . . . . . . . . . . . . . . . . . . . . . 32

3.1 Effective potential . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Setup of case QUAD . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Density and radial velocity of case NONMAG . . . . . . . . . . . 42
3.4 Accretion rate for NONMAG, QUAD and QUAD_3D . . . . . . . . . 43
3.5 Density and velocity of the inner region of case QUAD after

1000 lct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Density and magnetic pressure of case QUAD after 4000 lct . . 45
3.7 Schematic of the accretion flow structure for case QUAD . . . . 45
3.8 Accretion rate and wind rate for case QUAD . . . . . . . . . . 46
3.9 Density and radial velocity for case QUAD after 10000 lct . . . 47
3.10 Recurring events of retrograde rotation in the fast outflow . . 49

4.1 Set-ups of the simulations QUAD, QUAD_15_23, QUAD_20_32,
QUAD_30_42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Accretion rates for different initial torus positions . . . . . . . 55
4.3 Smoothed accretion rates for different initial torus positions . 55
4.4 Outflow rates for different initial torus positions . . . . . . . . 56
4.5 Most unstable MRI modes of the simulations QUAD_BETA1.5

and QUAD_BETA3 . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Accretion rates for different initial magnetic strength . . . . . 58
4.7 Density and radial velocity after 5000 lct for different initial

magnetic strength . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8 Mass flux after 5000 lct for different initial magnetic strength 60

xi



4.9 Magnetic set-ups of cases DIP, QUAD, SEXT, OCT, QUAD_MULT
and MULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Accretion rates for different initial magnetic fields . . . . . . . 63
4.11 Smoothed accretion rates for different initial magnetic fields . 64
4.12 Accreted mass for different initial magnetic fields . . . . . . . 65
4.13 Accretion rate and luminosity for case QUAD_SYN . . . . . . . 67
4.14 Accretion rate and luminosity for case QUAD_SYN . . . . . . . 67
4.15 Temperature and density for case QUAD_SYN . . . . . . . . . . 68
4.16 Power spectra of accretion and luminosity . . . . . . . . . . . 69
4.17 Synchrotron emission map of case QUAD_SYN . . . . . . . . . . 70
4.18 Accretion and wind rate for case QUAD_SYN . . . . . . . . . . 70
4.19 Event of fast jet in case QUAD_SYN . . . . . . . . . . . . . . . 71

xii



List of Tables

1.1 Summary of the simulation set-ups . . . . . . . . . . . . . . . 16

3.1 Set-up of the simulations QUAD, NONMAG and QUAD_3D . . . . . 40

4.1 Set-up of the simulations QUAD_15_23, QUAD_20_32, QUAD_30_42 54
4.2 Set-up of the simulations QUAD_BETA1.5 and QUAD_BETA3 . . 57
4.3 set-up of the simulations DIP, SEXT, OCT, QUAD_MULT and MULT 60

A.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xiii



xiv



Black hole sun
won’t you come
to wash away the rain.

— Chris Cornell

1
Introduction

Gravity was the first of the four forces known to mankind. Soon after its
basic laws were discovered by Kepler and Galilei, a theory of the forma-

tion of the solar system was put forward by Descartes (1664). He supposed
that an ‘universal fluid’ formed vortices around stars. In these rotating ob-
jects, more vortices formed giving rise to planets and their satellites . This
is probably the first scientific mention of an accretion1 process. The idea
of accretion discs was born when Kant (1755), using Newtonian mechanics,
showed that a collapsing gas cloud would flatten.

Also the fact that accreting matter would gain internal energy which is
eventually emitted was addressed as a possible solution to the problem of the
sun’s energy. 1854 Hermann von Helmholtz held a speech On the interactions
of the natural forces and the newest investigations relating to proposing that
gravitational energy freed by compression could account for the origin of the
sun’s heat (von Helmholtz, 1896). This hypothesis was soon disapproved by
palaeontological findings which indicated that the earth and therefore the
sun was much older than predicted by Helmholtz’ contraction theory; but it
is the first reference of accretion as a dissipating process.

The discovery of nuclear forces and especially of the mechanism of nuclear
fusion (Bethe and Critchfield, 1938) marked the preliminary end of the sci-
entific exploration of accretion physics. Since then fusion of mostly hydrogen
nuclei was thought to be the direct or indirect source of any emission of light
in the universe.

1from Latin accretio: growth, increase
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1 Introduction

Figure 1.1 – Quasar 3C 273. The panels show radio, optical and X-ray im-
ages of 3C 273 and its jet taken by MERLIN, HST (NASA/STScI) and Chandra
(NASA/CXC/SAO) respectively.

1.1 Accretion physics in the 20th century

In the late 1950’s quasi stellar radio sources (‘Quasars’) were discovered.
1963, Schmidt reported that 3C 273(fig. 1.1), a quasar discovered in 1959, had
a redshift of z = 0.158. He interpreted that either 3C 273 was a compact star
and the redshift was due to gravity or it was the nuclear region of a distant
galaxy whose emission lines showed cosmological redshift. The former case
was incompatible with the occurrence of permitted and forbidden lines with
the same redshift so the author favoured the latter explanation.

For that case he concluded: ‘The distance would be around
500 megaparsecs, and the diameter of the nuclear region would have to be
less than 1 kiloparsec. This nuclear region would be about 100 times brighter
optically than the luminous galaxies which have been identified with radio
sources so far. . . The total energy radiated in the optical range at constant
luminosity would be of the order of 10 59 ergs’

Today we know that assuming isotropic emission, the luminosity of 3C 273
is of the order of 1047 erg/s (Ulrich, 1981), resulting in an absolute magnitude
of −26.7. We could not ascertain why Schmidt misjudged the luminosity by
12 orders of magnitude.

The most simple and by now widely accepted explication of this high
luminosity from such small regions is that energy is emitted due to accretion
of matter by a compact object at its centre (Salpeter, 1964). The time scales
of periodic variations give upper limits for the size of this object, giving
strong evidence that it is a blck hole.

The efficiency of accretion onto a compact object, i.e. the energy emit-
ted per mass m is several orders of magnitude higher than that of nuclear
processes such as fusion. The nucleosynthesis of 4 hydrogen nuclei to one
helium nucleus occurs with an efficiency of

ηfusion =
∆E4H→He

4mc2
=

4mp −mα

4mp
≈ 0.007.

2



1.1 Accretion physics in the 20th century

The efficiency obtained by accretion on the other hand depends on the com-
pactness of the central object:

ηaccretion =
∆Egrav

mc2
=
GMm

R∗mc2
=
Rg

R∗
,

where
Rg = GM/c2

is the gravitational radius of a black hole of mass M and R∗ is the surface
or horizon of the accreting object. This is just an estimate as time scales
on which both processes happen are not taken into account. Even for white
dwarfs for which ηfusion/ηaccretion ≈ 50, accretion can be an important source
of observed radiation (Frank et al., 1985).

In the following sections we will take a closer look at the different observed
astronomical objects which are referred to as accreting objects.

1.1.1 Active galactic nuclei

Active galactic nuclei (AGN) are centres of galaxies emitting over the en-
tire range of the light spectrum and representing the most luminous steady
sources of radiation in the universe. They can reach an absolute luminosity
of 1047 erg/s which is emitted from a region with a diameter of the order of
a light-day (≈ 102 AU)2. This power corresponds to the Eddington lumi-
nosity of an accretor of 109 M�. The accretion rate needed to achieve this
luminosity is of the order of 1 M�/yr .

A whole zoo of astronomical objects is referred to as AGN: Quasars (quasi-
stellar radio sources), Seyfert galaxies (radio quiet AGN with weak jets) and
Blazars (centres of elliptical galaxies with high-energetic gamma emission)
just to name a few. Apparently all of these objects can be unified to a
standard model put forward by Begelman (1986); Lawrence (1987); Urry
and Padovani (1995) and others which is illustrated in figure 1.2. According
to this model all AGN consist of

1. a supermassive rotating black hole at the centre of a host
galaxy. The compactness of the light emitting region (derived from
variability timescale studies) and the luminosity and energy of the emit-
ted light points strongly to a black hole with a mass of more than
108 M� as the central object. As interstellar matter is accreted during
the active phase, the black hole is expected to spin up quickly.

2. an accretion disc around the central black hole. As matter is
dragged into the black hole by gravitational forces, its angular mo-
mentum is forcing it to form a disc. Turbulent processes and winds

2AU = astronomical unit ≈ 1.5 · 1013 cm

3



1 Introduction

Figure 1.2 – Illustration of the
standard model of AGN. The uni-
fied model for radio loud (upper half)
and radio quiet (lower half) AGN
is shown (Urry and Padovani, 1995,
based on fig. 1). The constituents
of the AGN are denoted in white
(ADAF: advection dominated accre-
tion flow, BLR: broad line region,
NRL: narrow line region), while lines
of sight and the apparent astronomical
object are typed in red (NLRG: nar-
row line radio galaxy, BLRG: broad
line radio galaxy, Sey 1/2: Seyfert
galaxy of type 1/2). Figure by
J. Aragón and S. Brinkmann.

transport angular momentum outwards, allowing matter to fall further
inwards.

3. an opaque dust torus at approximately 104 Rg. This is the mass
reservoir for accretion and can contain up to 5·106 M� (Hatziminaoglou
et al., 2008). It is composed of warm (10 K < T < 1500 K) dust which
will absorb most of the UV–, X– and γ- radiation emitted by the central
region and emit this energy in the infrared band mainly as thermal
black body radiation.

Arising from the accretion action all AGN show more or less powerful jets,
well collimated, highly relativistic, bipolar beams of matter. Jets are either
observed directly (type FR-I) or indirectly due to their bow shock (type
FR-II) as classified by Fanaroff and Riley (1974).

The spectra of AGN are continuous with so called bumps in the infrared
band due to star formation and the dust torus, in the blue band (‘Big Blue
Bump’) due to multicolour black body radiation from the accretion disc and
in the high energy regions of the spectrum above 1 keV caused by reflection
at the hot inner accretion disc and due to inverse Compton scattering of
photons by high energy electrons.

1.1.2 X-ray binaries

X-ray binaries (fig. 1.3) are binary stars with a pronounced emission in the
X-ray band. They were discovered in 1962 after launching three Geiger
counters to a height of 225 km and observing the X-ray sky for less than

4



1.1 Accretion physics in the 20th century

Figure 1.3 – Artistic
illustration of an X-
ray binary. The com-
pact companion to the
right is hidden inside
a (tilted) accretion disc
(in dark blue) and a hot
corona (orange). Cour-
tesy of I. Brinkmann.

6 minutes (Giacconi et al., 1962). Soon after, Shklovskii (1967) proposed
a theoretical model widely accepted today: they consist of a white dwarf,
neutron star or black hole which accretes from a main sequence or giant
companion star. The high-energy radiation is produced in a hot region close
to the accreting companion referred to as the corona. The exact location
of the corona remains unclear. The most common assumption is that it
is located above and below the accretion disc and contains hot (&109 K)
plasma.

X-ray binaries radiate at luminosities of 1033 − 1038 erg/s and are mainly
located close to the galactic plane. All the sources are found to be highly
variable on timescales ranging from milliseconds to years and both random
and periodic patterns are observed (Shapiro and Teukolsky, 1983).

Cygnus X-1 for instance – probably one of the most studied X-ray sources
in the sky – exhibits the whole range of variability timescales, a very promi-
nent one being its 1ms-bursts (Oda, 1977). This sets an upper limit to the
active region of r . 300 km. This corresponds to about 20 Rg for an assumed
mass of approximately 8 M�. As the maximum mass for a stable neutron
star is of the order of 2 M� Cygnus X-1 is considered to be almost certainly
a black hole.

X-ray binaries have much in common with their huge relatives, the AGN,
which is why they are also called microquasars. They show a similar con-
tinuous spectrum with a pronounced high energy bump. Depending on the
presence or absence of the most energetic arm (> 10 keV) and the overall X-
ray luminosity of the object, X-ray binaries are divided into different states
(figure 1.4, Remillard and McClintock (2006)). (1) thermal or high-soft-state:
dominant black-body component, shifted only in the high energy regime by
non thermal emission. (2) low-hard– and very hard state: dominant non
thermal component, weak thermal component. The exponent of the spectral

5



1 Introduction

Figure 1.4 – Spectra of black hole binary GRO J1655-40. The left hand
panels show sample spectra for the steep power law(SPL also referred to as ‘very
high state’), the thermal (=high-soft) and the (low-)hard state. The energy dis-
tributions are decomposed into the main components: thermal (solid red), power-
law (blue dashed) and relativistically broadened Fe Kα line (dotted black). The
right panels plot the power density spectrum. Figure by Remillard and McClintock
(2006)

6



1.1 Accretion physics in the 20th century

Figure 1.5 –
Illustration of
the spectral states of
black hole accretion
discs. The figure shows
the different spectral
states found in X-ray
binaries and AGN.
The right axis gives an
approximate scale of
the accretion rate in
terms of the Eddington
accretion limit. Figure
by Müller (2004).

power law in the very hard state is α < −1. This state is therefore also
referred to as steep power law state.

The widely accepted explication for the different spectral states is based
in the presence or absence of two types of accretion discs: an optically thick
disc at large radii heats up as matter falls inwards. When the temperature
is high enough (> 105 K), the medium is ionised and becomes optically thin.
This makes efficient cooling by black body radiation impossible. The disc
expands and forms an optically thin accretion torus close to the black hole.
In this regime, magnetic fields are a dominant dynamic component of the
fluid. Whether the thick disc or the thin torus is dominant and at which
radius the transition from one to the other occurs determines the spectral
state of the accretor (figure 1.5).

These states are not permanent properties of the X-ray binaries. They
rather change their state in a periodic manner. Fender et al. (2004) unified
the observations of the changing spectra of X-ray binaries into one model
illustrated in figure 1.6. In this picture, an initially weakly emitting object in
the low-hard-state increases its luminosity by enhanced accretion. Reaching
a critical point, the object emits an outburst in the radio and X-ray band.
This is associated with a powerful event in the jet such as an internal shock.
Subsequently the radio emission decreases steeply and the object passes to
the high-soft state which eventually transforms into a low-soft-state when
the accretion rate decreases again.

7



1 Introduction

Figure 1.6 – Schematic of our simplified model for the jet-disc coupling in
black hole binaries. The upper central box panel represents an X-ray hardness-
intensity diagram (HID); ‘HS’ indicates the ‘high/soft state’, ‘VHS/IS’ the ‘very
high/intermediate state’, and ‘LS’ the ‘low/hard state’. In this diagram, X-ray
hardness increases to the right and intensity upwards. The lower panel indicates
the variation of the bulk Lorentz factor γ of the outflow with hardness — in the LS
and hard VHS/IS the jet is steady with an almost constant bulk Lorentz factor γ <
2, progressing from state i to state ii as the luminosity increases. At some point —
usually corresponding to the peak of the VHS/IS — γ increases rapidly, producing
an internal shock in the outflow (state iii) followed in general by cessation of
jet production in a disc-dominated HS (state iv). At this stage fading optically
thin radio emission is only associated with a jet/shock which is now physically
decoupled from the central engine. As a result the solid arrows indicate the track
of a simple X-ray transient outburst with a single optically thin jet production
episode. The dashed loop and dotted track indicate the paths that GRS 1915+105
and some other transients take in repeatedly hardening and then crossing zone
iii — the ‘jet line’ — from left to right, producing further optically thin radio
outbursts. The sketches around the outside illustrate our concept of the relative
contributions of jet (blue), ‘corona’ (yellow) and accretion disc (red) at these
different stages. Figure and description by Fender et al. (2004).

8



1.2 The physics behind accretion

1.1.3 Young stellar objects

Interstellar molecular hydrogen clouds, mainly located in the spiral arms,
eventually collapse under the influence of their own gravity if the cloud ex-
ceeds the Jeans mass

MJ =
1
√
ρ

(
πRT
µG

)3/2

. (1.1)

The central core heats up adiabatically to a few thousand K and the molec-
ular hydrogen dissociates. After the core contracts and forms a hydrostatic
protostar and the shocked infalling material heats its surface up to 106 K.
Due to the angular momentum conservation the accreted material forms a
ring with a mean radius of

R = 10 AU
(

`

1020 cm2/s

)2(M�
M∗

)
, (1.2)

M∗ being the mass of the protostar and ` the specific angular momentum.
Typical accretion rates are of the order of 10−8M�/yr (Hartmann et al.,
1998; Muzerolle et al., 2005).

At that stage the protostar is hidden behind cold gas (≈ 10 K). They are
only visible in the radio band and are referred to as class 0 objects. After
about 105 yr the stellar wind has sweeped the environment. Now the hot dust
and the disc become visible in the infrared band (class I objects). About a
million years later the hot dust has been blown away by the stellar wind and
only the star and its disc are visible. At this stage protostars are named
after the first observed star of this type T Tauri star or class II.

In T Tauri stars deuterium burning has started and they produce a strong
wind which completely cleans the surroundings of the star so that it is visible
optically.

1.2 The physics behind accretion

In section 1.1 we pointed out the discoveries which led to the insight that
accretion was responsible for the brightest sources in the universe. However
the question why matter accretes, i.e. how angular momentum is carried
outwards remains unanswered.

Microscopic viscosity was ruled out early (von Weizsäcker, 1943, 1948;
Lüst, 1952), because the resulting timescales exceed the Hubble time. At age
24, Velikhov (1959) explored the criteria for stability of rotating conducting
fluids. The contrary interpretation as an instability that could enhance an-
gular momentum transport was not taken into account. Also Chandrasekhar
(1960, 1961) published the effect which as we now know strongly expedites
accretion as a condition for stability. The hydromagnetic instability was but

9



1 Introduction

(a) (b)

Figure 1.7 – Illustration of the MRI. Two fluid elements orbit with their Kep-
lerian velocities connected by a magnetic field line (a). The inner one (1, blue) will
advance due to its larger velocity (b). If the magnetic field is weak, it will resist
the shearing by accelerating the outer (2, yellow) and decelerating the inner parti-
cle. Therefore the outer particle gains angular momentum, while the inner one looses
angular momentum. They separate radially which repeats and enhances the procedure.

a merely academic case of the equations of magnetohydrodynamics (MHD)
to coaxially rotating cylindrical flows of magnetised fluids. However the case
of differentially rotating cylinders is the only case of magnetorotational insta-
bility (MRI) which was proven to exist in laboratory experiments (Rüdiger
et al., 2006).

In 1991 Balbus and Hawley assumed a perturbed vertical magnetic field
in a Keplerian disc and found that the growth rate of the unstable modes is
of the order of the local orbital frequency. Although this discovery is closely
related to the stability criteria described by Velikhov and Chandrasekhar, it
must be accounted an independent merit.

The effect of magnetic fields on a rotating plasma is twofold: on one hand,
perturbations are enhanced exponentially by linear instability of the slow
magnetosonic mode. This causes turbulence which can transport angular
momentum locally (e.g. Bodo et al., 2008) and globally (Mikhailovskii et al.,
2008). An analytical introduction to MRI is given in section 2.4. On the
other hand radial-azimuthal magnetoviscous stress appears as a source of
angular momentum transport The latter is often also referred to as MRI or
mixed up with the actual instability. It is not an instability though.

Before the exact theory of the action of magnetic fields on accretion discs
is derived in section 2.4, we will give an intuitive picture of how magnetoro-
tational instability acts.

Assume two adjacent fluid elements (henceforth also referred to as par-
ticles) of a magnetised fluid in differential rotation (dΩ/dr < 0) as usually
found in astrophysical accretion discs. They reside on the same magnetic

10



1.3 Jets and Winds

field line. One can show that in the case infinite conductivity, the magnetic
flux through the surface of a virtual tube comoving with the fluid vanishes
(Biskamp, 1997). That means that the particles will tend to stay on their
magnetic field line. In real plasmas it can happen, that a perturbation leads
to a small radial separation of the fluid elements (fig. 1.7,(a)).

In that case the inner element will have a slightly distinct angular momen-
tum than the outer one, assuming Keplerian rotation everywhere. Therefore,
the inner particle rotates faster than its former companion and will advance
azimuthally (fig. 1.7,(b)). The magnetic field by which they still are coupled
will resist against this radial-azimuthal separation in two ways: on one hand
magnetic field lines resist stretching which reverses the separation and thus
has a stabilising effect. For strong magnetic fields, this effect dominates. On
the other hand, the field lines resist shearing which results in an effective
angular momentum gain of the outer particle and a loss of angular momen-
tum for the inner particle. This leads to further radial separation of the fluid
elements since the particels will tend to move towards an orbit according
to their new angular momentum. This is a self-enhancing mechanism, and
therefore an instability.

1.3 Jets and Winds

Angular momentum is carried away not only radially close to the equator but
also vertically through winds and jets (Blandford and Payne, 1982; Casse,
2008). The existence of accretion discs on one hand and of outflows on the
other hand seem to be tightly coupled. All of the known accreting systems
present fast collimated outflows as well as slow spherical winds.

Depending on the compactness of the object, jets fall in one of two cate-
gories:

1. Jets from compact objects: Neutron stars and black holes (star
sized X-ray binaries as well as AGN) exhibit fast jets with Lorentz
factors of a few to hundreds. They are less dense than their ambient
medium and reach out into space orders of magnitude further than the
size of the originating system. For instance, the jet of 3C273 (figure
1.1) extends over approximately 57 kpc (Uchiyama et al., 2006) while
variability studies of the source indicate typical time scales of 10−1 to
1 yr which point to an approximate size of the ejection region of the
order of 10−1 pc (Soldi et al., 2008).

2. Jets from protostellar sources: Jets from early stage stars (Herbig-
Haro objects) are denser than their surroundings and propagate at
speeds of 102 to 103 km/s. Due to their moderate temperatures they
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are observable via line emission giving information about the motion
along the line of sight.

Whether these two types of jets are ejected by the same mechanisms is still
unclear. The presented work aims at gaining insight into the first type as
we are not simulating cool, optically thick discs as present in the vicinity of
protostars.

Also one has to keep in mind that the angular resolution of observations is
of the order of milliarcseconds (using ‘Very Large Baseline Interferometry’,
VLBI). This corresponds to about 1000 Rg for the size and distance of M87,
a prominent, well-studied AGN in the Virgo cluster. This is of the order of
the simulated region in this work. Therefore few conclusions concerning the
further propagation, i.e collimation and acceleration of the jet can be drawn
from these simulations. We will nevertheless refer to fast outflows in our
simulations as jets for the sake of simplicity.

1.4 State of the art

The compactness of accreting objects make their direct observation impos-
sible. And not only that the apparent size of the accretors and their sur-
roundings is unresolvable by present (and near future) telescopes; also they
are either inactive or hidden behind thick clouds of dust and luminous coro-
nae. Either way the regions where accretion actually happens are invisible.
That makes numerical simulation the only possible way to ‘observe’ accretion
in action.

Years before the structure of accretion flows and the underlying physi-
cal processes were understood, numerical simulations of these objects have
already been carried out. The dynamics of accretion was investigated by
n-body simulations (Lin and Pringle, 1976), as well as grid based codes
(Sørensen et al., 1975). Today the pile of publications on the subject goes far
beyond the scope of this work. Nevertheless we will try and give an overview
over the recent progress in numerical accretion physics.

Gracia et al. (2003) performed 1D simulations including radiative cooling
and convective heat flux of the region where the optically thick stan-
dard disc turns into the optically thin advection dominated accretion
flow (ADAF), the truncation radius. They found a quasi-periodic mod-
ulation of the mass flux in the domain and interpret their results as
a possible explanation of the observed high frequency quasi periodic
oscillations (HFQPO).

Turner et al. (2005) in continuation of their former work (Turner et al.,
2003), extended a Newtonian MHD code with a flux limiting scheme
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treating radiative feedback in an optically thick medium as diffusion.
They simulated a local patch of a geometrically thin accretion disc
and found the previously predicted photon bubble instability (Arons,
1992). The effect of photon bubbles on the disc dynamics could not be
greater; the disc collapses and cools in much less than a dynamical time
scale. The global effects of this instability are still to be investigated,
since MRI was suppressed by rigid rotation of the simulated patch.

Klahr and Kley (2006) applied the flux limited diffusion method to a hy-
drodynamic code to investigate the case of protoplanetary discs. They
found that treating the thermodynamics correctly leads to pressure
supported bubbles around the protoplanets rather than a thin circum-
planetary disc.

Hawley et al. (2007) as a continuation of their former work (De Villiers
and Hawley, 2003) described the dynamics of a torus made unstable
by weak magnetic fields in GRMHD3 simulations. They found an en-
hancement of the Maxwell stress due to the MRI even close to the black
hole, where the standard disc model predicts an almost empty plunging
region inside the radius of the marginally stable orbit at rms = 6GM/c2.
Also they showed that accretion and jet emission are more efficient at
higher spin of the black hole.

Fragile et al. (2007) also applied a GRMHD code but set up a tilted rotat-
ing black hole with respect to the axis of rotation of the accretion disc.
It turns out that concerning most features, such as the dynamics of the
plunging region close to the black hole, the tilted black hole behaves
like a non tilted one with less spin. Apart from that there are effects
which are rooted in the tilted black hole axis; the ejected jet precesses
with a frequency of a few Hz per black hole mass (measured in solar
masses). This is proposed to be an explication of the low frequency
QPOs4 observed in black hole accretion systems. As the jet axis pre-
cesses it crosses the line of sight of the observer resulting in frequent
changes in the luminosity.

Zanni et al. (2007) employed a Newtonian code including resistivity and
proved that jets can be accelerated by the magnetocentrifugal mecha-
nism (Blandford and Payne, 1982) provided certain conditions of the
magnetic resistivity and the initial field configuration are satisfied.

Goldston et al. (2005) used data from a non radiative simulation of a ra-
diatively inefficient accretion flow by Igumenshchev et al. (2003) and

3GRMHD = general relativistic magnetohydrodynamics
4QPO = quasi periodic oscillation
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post-process the synchrotron emission. They pose that their results
are ‘self-consistent because energy loss via radiation is negligible and
does not modify the basic dynamics or structure of the accretion flow.’.
This statement is going to be reassessed here.

Romanova et al. (2008) used a Newtonian code on e ‘cubed sphere grid’
investigated the interaction of a magnetised rotating star with an ac-
cretion disc. They found two distinct modes of accretion onto the
star: (1) the unstable mode which results in stochastic accretion paths
and (2) the stable mode where matter accretes along ordered streams
showing a periodic behaviour.

McKinney and Blandford (2009) performed 3D GRMHD simulations of
accretion discs and followed the jet out to 1000 Rg. They tested a
dipolar and a quadrupolar initial magnetic field and found that in the
quadrupole case no strong jet (γ & 3) is produced. Apart from a mainly
dipolar field they find a large spin parameter a of the black hole to be
crucial for jet production. This work is tightly related to the works of
McKinney and Gammie (2004), McKinney (2006) and Beckwith et al.
(2008).

1.5 Motivation

To gain insight in to the innermost regions of accreting object one has to
rely on numerical simulations. Observations give hints about the structure
and dynamics of the accretion discs via light curves and spectra but cannot
resolved the region of interest. Another observational problem is that the
accreting object is often hidden behind accreting matter.

Therefore many questions remain unanswered. To solve some of them we
will carry on the previous work done by other researchers as well as our own
(Brinkmann, 2004; Brinkmann et al., 2008a,b) and simulate an advection
dominated accretion torus around a black hole. Questions we aim to answer
include:

• Is it the effect of the instability or of the stress that is responsible for
accretion? Magnetic fields have two prominent effects on differentially
rotating matter. (1) It enhances perturbations via the MRI and quickly
leads to turbulence. Turbulence can transport angular momentum. (2)
It transports angular momentum via magnetic stress in the r-φ-plane.
These effects are tightly connected as they are direct results of the
equations of MHD in rotating media. We will try and distinguish both
effects in our results to give an answer to the posed question.
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• Under which circumstances does an accretion flow result in a (fast)
outflow? On the one hand, outflows are tightly coupled to the accre-
tion process since they provide the channel of carrying away angular
momentum. On the other hand, quiescent sources are observed which
in their spectra show evidence for accretion discs but not for jets, as
the radio-quiet quasars. We will aim to produce simulations with and
without fast outflows to explore the physical origin of these.

• Is there periodic behaviour such as oscillations or recurring features?
In most sources in the sky which are believed to be black hole accre-
tors, periodic and quasi periodic changes in the luminosity have been
found (van der Klis, 2000, 2005). The origin of these oscillations re-
mains unknown. Therefore, we will check for periodic behaviour in our
simulations.

• Are the commonly used set-ups too artificial? Will small variations,
specially towards more realistic initial configurations alter the result
of a simulation? The widely used set-ups of accretion discs resemble
analytical models emulating ideal cases. These do not exist in nature.
We want to test for how long the effects of the initial configuration
determine the simulation results.

• What is the effect of cooling on the accretion flow? Most of the sim-
ulations in the literature do not implement interaction of radiation of
any kind. We want to test the reliability of non radiative simulation.

1.6 Outline

In chapter 2 we will give an introduction to the theoretical bases which are
needed for the investigation of accretion. This includes an introduction to
the theory of accretion, the derivation of the governing equations and a their
numerical treatment.

We will then focus on the numerical experiments we carried out. In chap-
ter 3 the model case QUAD is described in section 3. It evolves an accretion
flow close to the equatorial plane, slow spherical winds and a fast jet-like
outflow. The fast outflow showed an unexpected periodical retrograde ro-
tation. These features will be studied in detail. In chapter 4 we will alter
single parameters of the setup to investigate their influence on the observed
properties of the fluid in the simulated domain. Mainly the strength of the
magnetic field and the implementation of a cooling term have a strong im-
pact on the the presence or absence of the fast outflow and the efficiency of
accretion.

In chapter 4.5 we will finally summarise our results and point out appli-
cations to open questions concerning microquasars and AGN.
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An overview of the simulations is given in table 1.1.

name description section
QUAD model case: quadrupole field, rin = 20,

rρmax = 30, β = 102, axisymmetry
3

DIP like QUAD but with dipole field 4.3
MULT like QUAD but with arbitrary multipole

field
4.3

NONMAG like QUAD but without magnetic field 3
QUAD_15_23 like QUAD but with rin = 15 and

rρmax = 23
4.1

QUAD_20_32 like QUAD but with rin = 20 and
rρmax = 32

4.1

QUAD_30_42 like QUAD but with rin = 30 and
rρmax = 42

4.1

QUAD_3D like QUAD but with resolution r × θ ×
φ = 256× 84× 42

3

QUAD_BETA1.5 like QUAD but with β = 101.5 4.2
QUAD_BETA3 like QUAD but with β = 103 4.2
QUAD_MULT like QUAD but with several radially

stacked quadrupole fields
4.3

QUAD_SYN like QUAD but with a energy sink term
emulating synchrotron cooling

4.4

OCT like QUAD but with octupole field 4.3
SEXT like QUAD but with sextupole field 4.3

Table 1.1 – Summary of the simulation setups. rin and rρmax denote the location
of the inner brink and density maximum of the torus and β is the plasma parameter
and equals 8πpgas/B

2

.
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All energy flows according to the whims
of the Great Magnet.

— Raoul Duke

2
Essential theory of the

magnetohydrodynamics in
accretion discs

We will now lay down the basics for understanding accretion and the
physical processes leading to it. An analytic approach to predict ac-

cretion processes was made by Bondi and Eddington for spherical steady
accretion flows. Their theories are introduced in section 2.1.

Soon it was understood that accreting matter will form discs and models
for optically thick and optically thin discs were put forward. The most
prominent ones, the so called standard disc and the advection dominated
accretion flow (ADAF), are explained in section 2.2.

These discs need a potent way to remove angular momentum. Since vis-
cous friction is ruled out due to its large time scale, turbulence was assumed
to achieve the required angular momentum transport. The instability leading
to the turbulence in the disc was soon found to be of magnetohydrodynamic
nature. Therefore after deriving the equations of ideal MHD in the Newto-
nian as well as the relativistic frame in section 2.3, we can finally explore the
magnetorotational instability MRI in section 2.4.

In order to perform numerical simulations of MHD, one has to discretise
the governing system of equations. This can be done in numerous ways. In
section 2.5 will present the bases of numerical MHD and introduce PLUTO,
the code applied in this work.
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2 Essential theory of the magnetohydrodynamics in accretion discs

Finally we will sum up the numerical set-up used for the simulations in
section 2.6 and give examples for scaling our results to microquasars and
AGN.

2.1 Spherical accretion

Accretion is the infall of matter onto a central object due to gravity1. The
most simple set-up consists of a point mass in a homogeneous, non rotat-
ing, infinite cloud of perfect gas. For this case (Bondi, 1952) found a set
of solutions for different values of the mass accretion

.

M . Only one solu-
tion is realistic as the others lead to singularities in the flow outside the
horizon of the central object (Shapiro and Teukolsky, 1983). The physically
relevant solution leads to a radial velocity increasing from 0 at r = ∞ to
vr = (2GM/r)1/2 for small radii. This leads to a constant mass flux which
means

dM

dt
≡

.

M = 4πr2ρvr = constant

holds for every radius.
Bondi’s solution does not take into account any feedback from radiation

which is necessarily produced as gravitational energy is freed during the infall
of matter.

A simple approach to include radiative feedback has earlier been done by
Eddington (1925). He assumed Thompson scattering of photons on free elec-
trons to provide an effectively outwards directed pressure which equilibrates
gravitational pressure. Balancing these two forces on a neutral fluid element
of mass mp +me ≈ mp gives a limit on the luminosity, the Eddington limit

LEdd =
4πGMmpc

σT
≈ 1.3 · 1038

(
M

M�

)
erg

s
,

where σT is the Thompson cross section. Assuming that matter falls from
infinity to the horizon of a black hole one finds the accretion rate limit, the
Eddington accretion rate

.

MEdd =
LEdd

ηc2
≈ 1.4 · 1017

(
M

M�

)
g

s
≈ 2.2 · 10−9

(
M

M�

)
M�
yr

,

where η is the accretion efficiency. Typical values for η range between 0.01
and 0.5. Accretion rates and luminosity of accreting astrophysical objects
are often measured in terms of the Eddington limits.

1This definition reflects the astrophysical meaning of accretion. Universally speaking any
attracting force can lead to accretion. Also there are other meanings in the geologic,
atmospheric and financial sciences.
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2.2 Discs

2.2 Discs

In contrary to the assumption made in section 2.1 realistic gas clouds are
neither homogeneous nor non rotating or infinite. Therefore as matter ac-
cretes, angular momentum will become dominant, while radial and vertical
(i.e. parallel to the spin vector) velocities cancel out. The result is the forma-
tion of a disc, a fact first declared by Kuiper (1941). Once the matter moves
on Keplerian orbits it needs to loose angular momentum to move further in-
wards. In other words, angular momentum has to be transported outwards.
Momentum transport is usually done by some kind of viscosity. Nevertheless
the microscopic viscosity is far to inefficient especially when the plasma is
thin and hot (von Weizsäcker, 1943, 1948; Lüst, 1952).

A year after Kuiper proposed the existence of discs, a first hint to the
solution of the angular momentum problem can be found in the literature:
In his article ‘On the Cosmogony of the Solar System’ Alfvén (1942) stated
that

‘It is found that ions and electrons within the limits of the planetary system
are affected very much more by the sun’s general magnetic field than by solar
gravity. . . .

The fact that the main part of the rotational momentum of the solar system
belongs to the outer planets and not to the sun has constituted a crucial
difficulty all cosmogonies of a Laplacian type. It is shown that this difficulty
is removed if electromagnetic forces are introduces into the theory.

The study of the motion of ions and electrons in the sun’s general magnetic
field leads to a cosmogony of a new type’.

For several decades the physical effect leading to angular momentum trans-
port remained unclear. Shakura and Sunyaev (1973) proposed that tur-
bulence could achieve an effective removal of angular momentum through
the disc. The nature of the turbulence was not specified. Almost 20 years
later, Balbus and Hawley (1991) discovered the magnetorotational instability
(MRI). It requires a weakly magnetised medium to be differentially rotating,
two requisites present in probably all accreting systems.

To gain insight in the the processes leading to the MRI we will derive the
equations of MHD in the following.

2.3 Magnetohydrodynamics

The mechanics of conducting fluids such as plasmas are governed by the MHD
equations. In this section we will derive the equations of non relativistic and
relativistic MHD. Our goal is to write the formulae in a form in which their
conservative character is visible, i.e. following this scheme:

∂tU +∇F (U) = Sphys(U) + Sgeo(U). (2.1)
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Here U is a conserved variable, F (U) is the flux of this variable, Sphys(U) is
a term describing physical sources and sinks (radiation, viscosity, resistivity)
and will vanish in the ideal case by definition. Sgeo(U) is a source term
resulting from the choice of coordinates.

2.3.1 Ideal non relativistic MHD

The MHD equations arise from the combination of the equation of continuity,

∂tρ+∇ · (ρv) = 0, (2.2)

the Navier-Stokes-equations of fluid dynamics

∂t(ρv) +∇ · (ρv⊗ v + p1) = 0, (2.3)

(⊗ denotes the dyadic product, see equation B.1 and 1 is the unit matrix)
and the Maxwell equations describing the macroscopic electric and magnetic
fields E and B

∇ ·E = 4πρ (2.4a)
∇ ·B = 0 (2.4b)

∇×E = −1
c
∂tB (2.4c)

∇×B =
1
c
∂tE +

4π
c

J, (2.4d)

J being the total current density. which for non relativistic plasmas is given
by Ohm’s law:

J = σ(E + v×B).

The continuity equation (2.2) is valid without modification because mass
is conserved independently of the presence or absence of magnetic fields:

∂tρ+∇ · (ρv) = 0.

MHD: continuity equation

(2.2)

The momentum balance (2.3) has to be replenished by the electromag-
netic forces acting on the fluid, namely the The Lorentz force

FL = qE +
J
c
×B.

It can be shown that the ratio of electric to magnetic force is ∼ (v/c)2. Thus
for the non relativistic case v � c, the electric force density qE and the
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displacement current ∂tE can be neglected and making use of equation (2.4b)
and (2.4d) the electromagnetic force density yields

FL =
1

4π
(∇×B)×B

=
1

4π
(B · ∇)B−∇

(
B2

8π

)
= ∇ ·

(
1

4π
B⊗B− B2

8π
1
)

Defining the total pressure pt = p+ B2

8π we can summarise the momentum
equation of MHD:

∂t(ρv) +∇ ·
(
ρv⊗ v + pt1−

1
4π

B⊗B
)

= 0.

MHD: momentum equation

(2.5)

To derive the equation governing the dynamics of the magnetic field,
we replace J in equation (2.4d) using Ohm’s law (Jackson, 1975)

J = σ
(
E +

v
c
×B

)
(σ stands for the plasma conductivity) and, neglecting the displacement cur-
rent, we get

∇×B =
4πσ
c

(
E +

v
c
×B

)
. (2.6)

Computing the curl of equation (2.6) and replacing the∇×E term with equa-
tion (2.4c) we can solve for ∂tB and get the sought-after induction equation

∂tB = ∇× (v×B)−∇× (η∇×B). (2.7)

Here η = c
4πσ is the magnetic diffusivity which in ideal MHD is neglected so

that using equation (B.5) the ideal induction equation yields

∂tB +∇ · (v⊗B−B⊗ v) = 0.

MHD: induction equation

(2.8)

The total energy density of a magnetised fluid consists of the sum of
the internal energy, the mechanical energy and the magnetic energy:

Et = ε+
ρv2

2
+
B2

8π
.
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As the only source of heat in ideal MHD is compression the equation of
internal energy evolution is

∂tε+∇ · (εv) = −p∇ · v. (2.9)

For the mechanical and magnetic parts we calculate the dot product of
the momentum equation (2.5) with v and combine the result with the dot
product of the induction equation (2.8) with B. Using the continuity equa-
tion (2.2) we find after some algebra

∂t

(
ρv2

2
+
B2

8π

)
+∇ ·

[
v
(
ρv2

2
+ p

)
+

1
4π

B× (v×B)
]

= p∇ · v (2.10)

With the use of equation (B.2) and summing up equations (2.9) and (2.10)
we find the total energy balance for ideal MHD:

∂tE +∇ ·
(

v(E + pt)−
1

4π
(v ·B)B

)
= 0.

MHD: total energy equation

(2.11)

In summary we can write down the eight coupled, non-linear differ-
ential equations of ideal magnetohydrodynamics as a vector equation
of the form (compare to equation 2.1):

∂t


ρ
ρv
E
B

+∇ ·


ρv
ρv⊗ v + pt1− 1

4πB⊗B
v(Et + pt)− 1

4π (v ·B)B
v⊗B−B⊗ v

 = 0.

equations of ideal MHD

(2.12)

This system of equations has to be completed by an equation of state re-
lating the internal energy ε to the pressure p. The conservation of div B is
not assured by these equations. A divergence-free magnetic field has to be
assured separately.

2.3.2 The angular momentum balance

For later use we will point out the axisymmetric equation of angular momen-
tum. It is derived from the general momentum equation (equation 2.12, see
also Balbus (2004)),

∂t(Rρvφ) +∇ · (〈ρvp〉R2Ω) = −∇ · (〈ρ〉RWp). (2.13)

The poloidal (r, θ) component of the stress tensor

W = 〈δv ⊗ δv − B⊗B
4πρ

〉, (2.14)
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yields

Wp = 〈δvφδvp −
BφBp

4πρ
〉. (2.15)

Angle brackets 〈〉 denote the volume average of a value; the index p denotes
the poloidal part of a vector or tensor.

2.3.3 Ideal relativistic MHD

The system of special relativistic MHD will consist of the same ingredients
as the non relativistic set of equations: conservation laws for mass, energy
and momentum and an induction equation describing the dynamics of the
magnetic field. For a detailed derivation refer to Anile (1990). Please note
that we chose to omit factors of c for better readability.

Due to special relativity we will apply the Minkowski metric which, with
the use of the metric tensor ηαβ = diag (−1,+1,+1,+1) and the coordinates
xα = (t, x1, x2, x3) is given by 2

ds2 = ηαβdx
αdxβ.

Indices are lowered and raised by applying the metric:

xα = ηαβx
β. (2.16)

Continuity of mass in covariant form is equivalent to the non relativistic
case:

∂α(ρuα) = 0,

uα being the relativistic four-velocity. We will derive the equations in the
local rest (≡ comoving) frame.

Conservation of energy and momentum is usually combined to one
tensor equation

∂αT
αβ = 0.

The energy momentum tensor Tαβ will consist of an hydrodynamic and an
electro-magnetic part.

Tαβ = TαβHD + TαβEM.

For an ideal gas the hydrodynamic part can be rewritten directly from the
Newtonian case (equation (2.3)):

TαβHD = (e+ p)uαuβ + pηαβ,

where e and p are the total energy density and the pressure, both measured
in the local rest frame.

2Einstein’s sum notation is used: aαb
α ≡

P
α aαb

α. Greek indices run from 0 to 3
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For the electromagnetic part TαβEM we will need the Maxwell equation which
in a relativistic treatment can be summed up using the electromagnetic field
tensor (Faraday tensor) (Jackson, 1975):

Fαβ =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 ,

where E and B are the electric and magnetic field strength, respectively.
Now one can write the Maxwell equations as follows:

∂αF
αβ = 4πJβ

∂αFβγ + ∂γFαβ + ∂βFγα = 0, (2.17)

where Jα = (cρ, j) is the charge current four-vector.
In the ideal case the electric conductivity σ is infinite and from Ohm’s law

Jα = ρuα + σFαβuβ we get the condition Fαβuβ = 0. Now we can express
the electric field E with the magnetic field B (similarly to E = −v×B in
the Newtonian limit) by

Eα = εαβγuβBγ

and a simpler expression for the Faraday tensor can be written as:

Fαβ = εαβγδBγuδ, (2.18)

where ε is the Levi-Civita symbol.
Finally, assuming locally vanishing and minimal entropy flux (Dixon, 1978)

one identifies the electromagnetic component as:

TαβEM =
1

4π
(−BαBβ +

1
2
BγB

γηαβ +BγB
γuαuβ)

Thus the energy momentum tensor of relativistic magnetohydrodynamics
can be written as

Tαβ = (e+ p+
1

4π
B2)uαuβ + (p+

1
8π
B2)ηαβ − 1

4π
BαBβ.

To find the induction equation will use equation (2.17) and extract the
magnetic part of the field tensor using (2.18) and get

∂α(uαBβ −Bαuβ) = 0.

In summary, the equations of relativistic magnetohydrodynamics are

∂α(ρuα) = 0

∂α

(
(e+ p+

1
4π
B2)uαuβ + (p+

1
8π
B2)gαβ − 1

4π
BαBβ

)
= 0

∂α(uαBβ −Bαuβ) = 0.

equations of ideal relativistic MHD

(2.19)

(2.20)

(2.21)
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Applying the Lorentz transformation and renormalising the magnetic field
with 1√

4π
B → B we can rewrite these equations in the laboratory frame and

get the equations actually implemented in PLUTO:

∂t


D
m
e
B

+∇ ·


Dv
wtγ

2v⊗ v− b⊗ b + ptot1
m
v⊗B−B⊗ v

 = 0.

equations of ideal relativistic MHD in the laboratory frame

(2.22)

with γ = (1− v2)−1/2 being the Lorentz factor and using the new variables
D (density in the laboratory frame), m (momentum density) and e (total
energy including rest mass):

D = γρ

m = wtγ
2v− b0b

e = wtγ
2 − b0b0 − ptot

b0, b, wt and pt have the following meaning:

b0 = γv ·B
b = B/γ + γ(v ·B)v

wt = ρh+ B2/γ2 + (v ·B)2

ptot = p+
B2/γ2 + (v ·B)2

2
.

h is the specific enthalpy defined by

h = 1 + E +
p

ρ
, (specific internal energy E =

ε

ρ
) (2.23)

which has to be determined by a closure relation.

2.3.4 Source and sink terms in MHD

The system of ideal MHD equations is homogeneous which in a physical
context means that the dynamic variables are conserved. As pointed out in
section 2.3 the choice of a curvilinear coordinate system or physical processes
make it necessary to expand the equations by source terms. These are terms
that cannot be written as the flux of a physical quantity and therefore cannot
appear on the left hand side of eq. (2.1).

In the following we will discuss terms which will be used in our simulations.
Other common sources and sinks of energy, momentum and mass such as
viscosity, resistivity, and chemical or nuclear reactions will not be discussed
as they are not taken into account in the presented simulations.
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2 Essential theory of the magnetohydrodynamics in accretion discs

Gravity

In principal in an accreting system there are two sources of gravity: the cen-
tral object and the disc itself. The latter is referred as self-gravity. Due to
the low mass of the disc compared to the central object, in the case stud-
ied here, we neglect self-gravity. Denser discs exist e.g. around protostars
were (self-)gravitational instabilities are believed to lead to the formation of
planets.

The centre of accretion in an X-ray-binary is a neutron star or a black hole,
i.e. a relativistic object. Therefore, to treat this case correctly we would
have to apply a general relativistic magnetohydrodynamics (GRMHD) code.
These codes exist since a few years. But still the treatment of non ideal terms
(e.g. radiation) is under development by the international community, so for
the sake of versatility we chose to use a special relativistic code and emulate
the gravitational effects of the central object by the use of a so called pseudo
potential .

A pseudo potential defines the gravitational potential on a flat time space.
Thus it can be used in conjunction with a Newtonian or special relativistic
numerical scheme. The disadvantage is that it will not reproduce every
feature of the correct relativistic potential. Different pseudo potentials have
been proposed in the literature. The one used in this work is presented in
the following.

Pseudo Schwarzschild potential by Paczynsky & Wiita In order to repro-
duce the relativistic properties of the inner disc, Paczynsky and Wiita (1980)
proposed a pseudo Newtonian potential which is able to reproduce the radii
of a black hole’s marginally stable orbit at rms = 6 Rg and of the marginally
bound orbit at rmb = 4 Rg. It follows a simple form:

ΦPW = − 1
r − 2

(2.24)

It is not capable of emulating the effects of black hole spin which become
more and more dominant at radii of r < 10Rg.

Radiative cooling

It turns out that of all possible cooling mechanisms, non thermal synchrotron
radiation is the most officiants one when magnetic fields are present and
matter is hot. so for the application of optically thin accretion tori in the
vicinity of a black hole, it is a good approach to implement a sink term
emulation synchrotron losses in the energy balance of ideal MHD.

In the following we will derive the needed equation of energy loss rate due
to synchrotron radiation.

26



2.3 Magnetohydrodynamics

Synchrotron cooling For an electron in a uniform magnetic field the emit-
ted power integrated over all frequencies ν becomes (Shu, 1991)

Pem = 2(γ2 − 1)cσTPmag sin2 α,

where γ is the Lorentz-factor, σT = 8πr2
e/3 is the Thomson cross section

(with re = e2/mec
2 being the classical electron radius) and Pmag = B2/8π is

the magnetic pressure or energy density. Assuming isotropy and averaging
over all angles the emission of one particle is given by

〈Pem〉 =
4
3

(γ2 − 1)cσTPmag.

This may for a single electron differ from the total received power 〈P 〉 due to
relativistic motion of the electron toward or away from the observer. But the
average power of an isotropic collection of electrons must equal the average
received power, thus 〈P 〉 = 〈Pem〉.

The luminosity results from integration over all γ and the source volume
as

L =
∫
V
dV ρj,

=
∫
V
dV

∫ ∞
1

dγ 〈P (γ)〉ne(γ),
(2.25)

where ρj is the emission coefficient, defined as the energy emitted sponta-
neously per time, angle and volume3, given by

ρjν =
∫ ∞

1
dγ 〈Pν(γ)〉ne(γ). (2.26)

ne(γ) represents the electron number density, which is in a first approach
approximated by a gauge value n0 weighted by the relativistic Maxwell dis-
tribution (Wardziński and Zdziarski, 2000):

f(γ) =
γ(γ2 − 1)1/2

ΘK2(1/Θ)
e−

γ/Θ, (2.27)

with
Θ =

kT

mec2

being the dimensionless plasma temperature (me is the electron mass) and
K2 the second modified Bessel function. Since electrons are fast (γ � 1) and
hot (Θ� 1) equation (2.27) can be approximated as

f(γ) =
γ2

2Θ3
e−

γ/Θ,

3In Radiative Processes in Astrophysics (Rybicki and Lightman, 1979) this quantity is
denoted as j. The emissivity here written as jν is there indicated as εν .
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2 Essential theory of the magnetohydrodynamics in accretion discs

using (Abramowitz and Stegun, 1972)

K2(1/Θ) ≈ 2Θ2 for 1/Θ→ 0

The Luminosity, i.e. the radiated power from a volume V , averaged over
all electrons and integrated over all frequencies is then found to be

L =
∫
V
dV

∫ ∞
1

dγ 〈P (γ)〉n0f(γ)

=
2
3
cσTn0Pmag

∫
V
dV

∫ ∞
1

dγ
γ4

Θ3
e−

γ/Θ

=
2
3
cσT

∫
V
dV
[
n0Pmag·

Θ−2e−1/Θ(24Θ4 + 24Θ3 + 12Θ2 + 4Θ + 1)
]
.

(2.28)

For volumes V sufficiently small to be treated as homogeneous concerning
n0, Pmag and Θ and (again) Θ > 1 equation (2.28) simplifies to

L = 16cσTV n0PmagΘ2e−
1/Θ (2.29)

The approximation of the Θ-term suits a relative error of less than 0.021 for
Θ = 0.65 (i.e. T = 3.85 · 109K) and decreases rapidly with larger Θ.

As the electron number density calculates as follows

n0 =
ρ

mp
(2.30)

equation (2.29) becomes

L = 16cσTV
ρ

mp
PmagΘ2e−

1/Θ (2.31)

Consequently the rate at which internal energy density in a simulation di-
minishes is given by

∂tSsynchrotron = 16cσT
ρ

mp
PmagΘ2e−

1/Θ. (2.32)

2.4 Magnetorotational instability

In section 1.2 we gave an intuitive introduction to the basic mechanisms
behind MRI. In this section we will describe this instability on an analytical
base.

First we will treat the ideal case of vanishing resistivity and no interaction
with radiation. The derivation of the ideal dispersion relation is loosely
based on the review by Balbus and Hawley (1998). In the 2nd section we will
summarise how radiation and finite conductivity alter the ideal results.
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2.4 Magnetorotational instability

2.4.1 MRI in ideal fluids

To derive the dispersion relation of MHD in a rotating medium we will use
cylindrical coordinates. These are more suitable than spherical coordinates
(which will be used for the simulations) because they contain a uniform, non
curved dimension (z) in which we will apply the perturbation needed for
the linear analysis. Cartesian coordinates are not the optamal choice either
because we are seeking dependencies on the rotation which is a movement
in the coordinate φ.

We consider a weakly magnetised medium all the variables of which are
perturbed locally by linear disturbances of the form ei(k·r−ωt). k is the wave
vector of the perturbation, r denotes the position of the perturbed fluid
element, ω is the angular frequency of the perturbation and t is the time.
For the sake of simplicity we assume the radial magnetic field to vanish. A
radial component would lead to a time dependence of Bφ which would have
little effect on a weak-field axisymmetric instability. Also we restrict the
perturbations to k = kez.

The perturbed equations of ideal non relativistic MHD can be written in
Matrix form:

0 =



−ω
ρ 0 0 0 k 0 0 0

0 0 iω 2Ω 0 ikBz
4πρ 0 0

0 0 κ2

2Ω 0 −iω 0 − ikBz
4πρ 0

0 k
ρ 0 0 −ω 0 kBφ

4πρ 0
0 0 kBz 0 0 ω 0 0
0 0 0 ikBz −ikBφ dΩ

d lnR iω 0
−γρ 1

P 0 0 0 0 0 0
0 0 0 0 0 0 0 1


·



δρ

δP

δvr

δvφ

δvz

δBR

δBφ

δBz


≡ A · δU

(2.33)
The perturbation amplitudes are denoted by a δ, U is the state vector of the
fluid and κ is the epicycle frequency. Non linear perturbations, i.e. terms
quadratic in one perturbed variable (∝ (δU)2) are neglected.

The dispersion relation is obtained by computing the determinant of A
and setting it to 0:

det A = 0

With the use of the speed of sound in an ideal gas

c2
s = γ

p

ρ
,

the definition of the Alfvén speed in the z and φ direction

v2
Az/φ =

B2
z/φ

4πρ
,
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2 Essential theory of the magnetohydrodynamics in accretion discs

one obtains after of some algebra the dispersion relation of MHD in rotating
media:

ω6 + ω4 ·
(
− 2k2v2

Az − k2v2
Aφ − κ2 − k2c2

s

)
+ ω2 ·

(
2k4c2

sv
2
Az + k2c2

sκ
2 − 2k2v2

AzΩ
dΩ

d lnR

+ k4v4
Az + k2v2

Aφκ
2 + k4v2

Aφv
2
Az

)
+
(

2k4c2
sv

2
AzΩ

dΩ
d lnR

− k6c2
sv

4
Az

)
= 0.

MRI: dispersion relation of MHD in rotating media

(2.34)

Examining the case of Keplerian rotation

Ω ∝ R3/2 ,
dΩ

d lnR
= −3

2
Ω =

1
2Ω

dΩ2

d lnR
,

the epicycle frequency becomes

κ = Ω

and equation (2.34) yields

ω6 + ω4 · (−2k2v2
Az − k2v2

Aφ − Ω2 − k2c2
s )

+ ω2 · (2k4c2
sv

2
Az + k2c2

s Ω2 − 3k2v2
AzΩ

2

+ k4v4
Az + k2v2

AφΩ2 + k4v2
Aφv

2
Az)

+ (3k4c2
sv

2
AzΩ

2 − k6c2
sv

4
Az) = 0.

(2.35)

In the non rotating case (Ω = 0) equation (2.34) simplifies to

ω6 + ω4 · (−2k2v2
Az − k2v2

Aφ − k2c2
s )

+ ω2 · (2k4c2
sv

2
Az + k4v4

Az + k4v2
Aφv

2
Az)

− k6c2
sv

4
Az = 0.

(2.36)

Equation (2.36) is the general dispersion relation for MHD in a non moving
medium. Naming θ the angle between B and k and assuming either cs � vA,
vA � cs or cos θ ≈ 0, we find three solutions to this equation, representing
the three wave modes present in magnetised fluids:

ω2
A = k2v2

A cos2 θ Alfvén mode, (2.37)

ω2
+ = k2(v2

A + c2
s ) fast (magnetosonic) mode, (2.38)

ω2
− =

k2v2
Ac

2
s cos2 θ

v2
A + c2

s

slow mode. (2.39)
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2.4 Magnetorotational instability

Figure 2.1 – Branches of the MHD modes.

It can be easily shown that ω2
+ > ω2

A > ω2
− > 0 for the non rotating

case. Thus there are no unstable modes which require ω2 < 0. Not so in
the rotating case. To show the effects of Keplerian rotation, we will fix the
values of kvAz = 1, kvAφ = 2 and ka = 5 (i.e. we scale all quantities to
units of kvAz) and plot the angular frequency of the perturbation ω2 versus
the angular frequency of the fluid Ω2 (figure 2.1). The slow branch becomes
unstable for Ω2 > 1

3 kvAz.
To find the fastest growing wave we will use the Boussinesq approximation

which consists in neglecting the inertia variations of a fluid, i.e. assuming a
uniform density except in terms which describe the effect of gravity. Because
sound is transmitted via inertia variations, formally the sound speed reaches
infinity (i.e. cs → ∞). In this case we can divide equation (2.34) by c2

s and
neglect terms proportional to 1/c2s :

ω4 − ω2 · (κ2 + 2k2v2
Az) + k2v2

Az

(
k2v2

Az + 2Ω
dΩ

d lnR

)
= 0 (2.40)

Equation (2.40) can be interpreted as a wave equation for the perturbations
of the fluid and thus will be stable only if

k2v2
Az > −2Ω

dΩ
d lnR

. (2.41)
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2 Essential theory of the magnetohydrodynamics in accretion discs

Figure 2.2 – Growth rate of the MRI.

This means that for a sufficiently small k the medium is always unstable
unless

dΩ
d lnR

> 0 (2.42)

which is virtually never true for astrophysical plasmas.
Equation (2.40) also is a quadratic in ω2 (figure 2.2) which yields a maxi-

mum unstable growth rate

ωmax =
1
2

∣∣∣∣ dΩ
d lnR

∣∣∣∣
and a maximum unstable wave number

k2
max = − 1

v2
Az

(
1
4

+
κ2

16Ω2

)
dΩ2

d lnR
,

which for the case of Keplerian rotation result in

ωmax =
3
4

Ω

kmax =
√

15
4 v2

Az

Ω.

MRI: fastest growing modes

(2.43)

(2.44)

Equation (2.43) indicates that the typical growth rate, i.e. the time in which
a perturbation growth by a factor of e, is of the order of an orbital period.
This makes MRI an extremely fast operating instability.

Equation (2.44) gives upper and lower limits for the magnetic field to allow
the MRI to act on the fluid. For a magnetic field that is too strong, kmax is
too small, which means that the fastest growing wave mode will not fit into
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2.4 Magnetorotational instability

the disc. Thus the height of the disc gives an upper limit for the magnetic
field strength.

One the other hand when the magnetic field is too weak, the unstable
wave modes will have a wavelength of the microscopic scale or in the case
of numerical simulation of the size of a grid cell. In both cases diffusion
(physical or numerical, respectively) will inhibit the growth of perturbations.
This results in a lower boundary to the magnetic field strength.

2.4.2 MRI in the radiative case

Starting from the ideal linear theory of the MRI one can extend the analysis
to more general cases. For the presented work the most interesting effect not
covered by ideal MHD is radiation. A well studied approximation is the flux
limited diffusion approach. Radiation is treated as diffusing photons. To
assure the diffusion velocity to be less than the speed of light, a flux limiter
λ is introduced into the diffusion equation:

Fphot ∝ −
(
cλ

χ

)
∇ephot,

where Fphot is the photon flux, χ the total extinction coefficient and ephot is
the energy density of the radiative field.

Adding additional equations for the photon energy and flux to the MHD
equations enables the treatment of both optically thick and thin media. The
disadvantages of this approach are that (1) the regime of intermediate optical
thickness must be modelled with the use of further assumptions, (2) radiation
is assumed to be isotropic and always diffusion from hot to cold regions, which
is not the case in optically thin regions where non local irradiation is present
and (3) spectral information is neglected.

In spite of the deficiencies one can redo the linear analysis of the MRI
with radiation. The result is that the interaction of an optically thick gas
with radiation is twofold (Flaig et al., 2009): on the one hand, vertical MRI
modes (which are the fastest growing ones) are damped while on the other
hand non vertical modes are enhanced. As mentioned in section 1.4, more
investigation and global simulations are needed to explore the interaction of
the MRI and the effects of radiation with respect to the global disc dynamics.
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2 Essential theory of the magnetohydrodynamics in accretion discs

2.5 Numerical MHD

As we showed in section 2.3 the equations of MHD can be written as a set
of coupled conservation laws of the form

∂tU +∇F (U) = S(U).

where U = U(x, t) is the conserved variable and a function of space and
time, F (U) the respective flux function and S(U) is the sum of source terms.
In order to obtain information about future states, the equations have to be
evolved in time; a closed analytical solution of the equations of MHD does
not exist due to their non linear character. One way to evolve the system of
equations in time relies on discretising it in space and time4. This is done
by evaluating the variables on a spatial grid and at discrete time levels.

The variables are defined at the cell centres and the flux function describes
the flux across the cell faces. At each time step the fluxes and sources have
to be calculated and the physical variable is updated. This corresponds to
solving the dynamical behaviour of a discontinuity in the variables, which is
commonly referred to as the ‘Riemann problem’ (Toro, 2008). By summing
up the fluxes at all interfaces of a cell, this method (called Riemann solver
or finite volume method) assures the correct evolution of the variables as
required by the conservation laws. Another important property of Riemann
solvers for our purposes is the stability at shocks (large gradients) which is
not guaranteed by finite difference methods which formally are a subset of
finite volume methods of first order (Toro, 2009). In finite volume methods
additional techniques (such as limiters) assure the capability of resolving
shocks correctly. Therefore these methods are also called shock capturing
methods.

The change of the physical values in every cell depends on the characteristic
wave modes (hereafter characteristics) travelling in the fluid, the motion of
the fluid and the discontinuity itself. In MHD the characteristics are the fast
mode, the Alfvén mode, the slow mode, the hydrodynamic sound speed and
the displacement speed of the discontinuity.

Depending on which characteristics are taken into account to evaluate the
flux function and on the method to compute the derivatives, a number of
Riemann solvers have been proposed in the literature and implemented in
numerical codes. Since we are interested in the MRI, we need a solver which
evaluates the slow mode of MHD (see section 2.4). Mignone et al. (2009)
developed a solver named HLLD5 with these properties and implemented it
in their code PLUTO (Mignone et al., 2007). We use this freely available

4Another technique, the spectral method discretises the equations in the Fourier space,
i.e. in frequencies and wave numbers.

5HLLD = Harten-Lax-van Leer solver with discontinuity treatment
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code for the option of applying this HLLD solver, its versatility and its user-
friendliness.

2.5.1 The code: PLUTO

PLUTO is a versatile code by Mignone et al. (2007) which provides several
modules to solve the equations of Newtonian and relativistic HD and MHD
with different Riemann solvers one can choose of. It is possible to initialise
uniform and non uniform grids in Cartesian, cylindrical and spherical coor-
dinates.

There is a number of codes available solving the equations of MHD on a
grid. In principle one can perform the simulations presented in this work
with any of these codes. However there are differences which require the
evaluation of the advantages and disadvantages of every code to chose the
one which will be best suited for the purpose. In the following we will give
a short overview over some other available codes.

ATHENA (Stone et al., 2008), is a code very similar to PLUTO. It includes
high-order spatial reconstruction, the flux constraint transport (FCT,
see below) technique to assure a divergence-free magnetic field and
MHD solver in 3 dimensions. It does not include higher-order time
stepping algorithms and is not as versatile concerning the details of
the numerical implementation as PLUTO. We tested different time
stepping methods with PLUTO and found that a 2nd order scheme
has a significant higher accuracy then the first order (Euler) method
implemented in ATHENA.

FLASH (Dubey et al., 2009), is probably one of the most used codes in astro-
physical simulations. It features different solvers and physics modules
and is highly customisable by a modular architecture. However it is
not possible to simulate MHD on a spherical grid which is needed for
our simulations.

ZEUS (Hayes et al., 2006) is a widely-used code whose first implementations
date back to 1980. It uses a finite difference scheme which, as men-
tioned before, do not solve the equations fluid dynamics correctly in
the vicinity of shocks. Also ZEUS does not simulate the linear phase of
the MRI as accurate as PLUTO with the HLLD solver (Flock, 2008).

Finally, PLUTO is the only freely available code which implements the
equations of MHD in a special relativistic formulation. As we expect to find
regions of small density and strong magnetisation, i.e. a Alfvén speed close
to the speed of light, the use of a relativistic code is crucial for simulating
black hole accretion flows. In a Newtonian code the Alfvén speed will exceed
the speed of light which causes the simulation to eventually stall due to
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2 Essential theory of the magnetohydrodynamics in accretion discs

the small time step needed to resolve the propagation of the Alfvén waves
(Brinkmann, 2004).

2.6 Numerical set-up

In this section we will describe the basic numerical set-up of the simulations.
As illustrated before, PLUTO enables the user chose from a wide variety of
solvers, time stepping algorithms, spatial reconstruction schemes etc. The
algorithmic set-up is given as a list with references (section 2.6.1) since a
detailed description is beyond the scope of this work. When no references
are given, details can be found in the standard literature on numerical fluid
dynamics such as the books by Toro (2009) or LeVeque (2002).

Detailed information is given about the set-up of the grid (section 2.6.2),
the boundary conditions (section 2.6.3)and the treatment of magnetic
monopoles (section 2.6.4).

2.6.1 Algorithmic setup

Solver: As a solver we used HLLD for the relativistic MHD physics module
(Mignone et al., 2009). This solver takes into account the characteristic
speeds of the fast magnetosonic wave, the discontinuity and the slow
mode of MHD. The latter is important for the simulation of the MRI
as it is the slow mode that is unstable (see section 2.4).

Spatial reconstruction: The reconstruction of the cell centred variables at
the cell faces was done in a linear (2nd order) manner.

Time stepping: Also time stepping was set to be of 2nd order (Runge-Kutta
integrator).

Equation of state: As the closure relation for the system of MHD equations
we used Taub’s equation of state(Mignone et al., 2009)

(h− 4
p

ρ
)(h− 1

p

ρ
) = 0,

where h is the specific enthalpy defined in equation 2.23.

Electromotive forces: For the reconstruction of the electromotive forces at
the cell faces we chose a a two dimensional Riemann solver based on a
four-state HLL flux function as described by Del Zanna et al. (2003).
A reconstruction scheme is needed due to the use of the FCT method
(see below).
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2.6.2 Grid

The simulations were carried out on a spherical uniform grid consisting of
Nr × Nθ × Nφ = 768 × 256 × 1 cells, spanning from rmin = 5 Rg to rmax =
150 Rg, θmin = 0.05 to θmax = π− 0.05 and φmin = 0 to φmax = 2π. The grid
spacings were chosen such that the grid cells have equal extension in r and
θ at a radius of ≈ 15 Rg.

The model case was simulated with the same grid resolution (cells/physical
length) but with an radially extended domain reaching out to rmax = 800 Rg.
In the 3D case we initialised the grid with 256×84×42 and let the azimuthal
dimension of the simulation range from φmin = 0 to φmax = π/2.

2.6.3 Boundary conditions

Boundary conditions in the azimuthal direction are periodic; in the poloidal
direction we applied axisymmetric boundaries which means that at the
boundary, vector components parallel to the axis and scalar values are set to
be equal to the value next to the boundary; other vector components are set
to 0. The outer radial boundary consists of two zones. A layer of 35 logarith-
mically scaled cells ranging from the outer boundary rmax to rmax + 35 Rg

surrounds the computational domain. The equations of MHD are evaluated
in the same manner as inside the domain. Actually it is implemented as
a part of the domain but will not be taken into account for analysis. Its
only purpose is to omit reflection of waves and numerical problems at the
outer boundary. The 2nd zone is the actual numerical boundary which en-
ables matter to flow in and out freely (commonly called zero-gradient, within
PLUTO outflow), but the density is set to the atmospheric value for inflow.
For the inner boundary we implemented a real outflow condition assuring
the matter to have a radial velocity vr ≤ 0 at the inner face of the boundary
cells.

2.6.4 Avoiding magnetic monopoles

In a numerical implementation of the equations of MHD, the magnetic field
can suffer from an increasing divergence. Additional techniques are required
to prevent div B from growing. PLUTO includes three different approaches
to this task, namely (1) the constraint transport Balsara and Spicer (1999)
(described below), (2) the eight-wave method by Powell et al. (1999) in
which div B is treated as a conserved 8th free variable of the system and (3)
the divergence cleaning method by Dedner et al. (2002) in which numerical
divergence of the magnetic field is advected to the boundaries and damped
at the same time.

In our set-up the conservation of div B is assured by use of flux constrained
transport (FCT) algorithm developed by Balsara and Spicer (1999). In this
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scheme, the magnetic field components are define on the cell faces instead
of the cell centres. This minimises the error when calculating the magnetic
flux (which is computed on the faces).

An initially divergence-free magnetic field distribution is set up by provid-
ing a vector potential A and then calculating B = ∇×A.

2.6.5 Physical scaling

All simulations except for case QUAD_SYNC can be scaled to any black hole
mass and initial torus density because there are no microscopic physics in
the equations of ideal MHD.

The code units for length and time are given by:

Rg =
MG

c2
≈ 1.48 · 105

(
M

M�

)
cm

lct =
MG

c3
≈ 4.92 · 10−6

(
M

M�

)
s.

For the radiative case the absolute value of density is of importance. In that
case and for application of our results to real objects we set the code unit
for density to

ρ0 = 10−7 g/cm3.

All other quantities can be calculated by these three units, e.g. the charac-
teristic velocity is given by Rg/lct = c.

For better comparability to the two known classes of black hole accretors
we will provide the characteristic length and time scales for a typical AGN
and microquasar.

AGN (M = 109 M�):

Rg ≈ 1.48 · 1014 cm ≈ 9.9 AU

lct ≈ 4.92 · 103 s ≈ 1 h 22 min.

Microquasar (M = 10 M�):

Rg ≈ 1.48 · 106 cm ≈ 14.8 km

lct ≈ 4.92 · 10−5 s ≈ 49.2µs.
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I’m slow to finish but I’m quick to start.

— Anthony Kiedis

3
The model case

The model case QUAD described in this chapter represents the basis of the
different tests presented in the following. It consists of a hydrodynami-

cally stable torus in the effective potential well given by the Keplerian angular
momentum and gravitational forces. The magnetic field is purely poloidal
and consists of to vertically stacked loops forming a quadrupole.

This configuration or variations of it are widely used to set-up advection
dominated accretion discs. As the simulation progresses it shows all of the
features of an accretion flow we are interested in: A turbulent torus body, a
structured accretion flow that forms channels and a fast outflow.

We let this simulation run for longer time than the cases presented in
chapter 4 to test the long term behaviour of the accretion flow. The domain
was extended radially to obtain information about the dynamics of ejected
material at larger radii. Also a hydrodynamic simulation was performed to
test for the stability of the set-up.

Furthermore, a three dimensional simulation was carried out to test a
major deficiency of two-dimensional simulations: treating a system which
is unstable to MRI in an axisymmetric manner leads to an enhanced ‘two-
channel-solution’ of poloidal MRI (Hawley and Balbus, 1992), which tends to
exhibit long lasting radial filaments along which angular momentum can be
carried away (Bodo et al., 2008). These structures are destroyed by toroidal
modes of parasitic instabilities in the full 3D treatment (Goodman and Xu,
1994). Another known problem of 2D simulations of MRI is that magnetic
turbulence will fade due to the absence of dynamo modes. While the latter
is only important on a much larger time scale than those of the simulations
presented here, we will have to live with the former when performing axi-
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3 The model case

name Nr Nθ Nφ rmin [Rg] rmax [Rg] θmin θmax ∆φ
QUAD 4096 256 1 5 800 0.05 π − 0.05 2π
NONMAG 768 256 1 5 150 0.05 π − 0.05 2π
QUAD_3D 256 84 42 5 150 0.05 π − 0.05 π/2

Table 3.1 – Set-up of the simulations QUAD, NONMAG and QUAD_3D. Nr,θ,φ denote
the number of cells in each spatial dimension, rmin,max indicate the inner and outer
boundary of the domain, θmin,max the upper and lower limit of the poloidal angle and
∆φ denotes the extension of the domain in the azimuthal direction.

symmetric simulations, since the rate at which these parasitic instabilities
act is proportional to the amplitude of the magnetic perturbations.

To check hydrodynamic stability and the effect of axisymmetry we per-
formed two tests (see table 3.1):

NONMAG: Same as QUAD but magnetic field vanishes.

QUAD_3D: Three dimensional simulation with magnetic field.

In the following we will describe the general set-up (section 3.1) and the
results of the non magnetised case NONMAG (section 3.2), the basic quadrupole
simulation QUAD (section 3.3), the 3D simulation QUAD_3D (section 3.4) and
discuss the results in section 3.5.

3.1 Set-up

The computational domain was initialised containing a torus in the well of
the effective potential (Igumenshchev et al., 1996):

Φeff = ΦPW +
∫ ∞
r

L2(r′)
r′3

dr′. (3.1)

ΦPW is the pseudo potential proposed by Paczynsky and Wiita presented in
section 2.3.4. For a constant angular momentum L, the integral can be solved
analytically. The isocontours of the effective potential then determine the
shape of the torus. In figure 3.1 the effective potential is shown for different
values of the angular momentum L (left panel) and as a contour plot (right
panel). The contour chosen for our simulations is printed with a bold line.
This results in a torus which on the equatorial plane extends from 20 Rg to
60 Rg (Rg = MG/c2). Its density and pressure maximum then reside at a
distance of 30 Rg from the centre of gravitation on the equatorial plane.

The density of the atmosphere is 10−4 in code units where the maximum
density of the torus is defined to be of unity. Initially the pressure was
calculated assuming an isothermal plasma with a constant speed of sound of
approximately 5% of the speed of light.
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3.1 Set-up

a) b)

Figure 3.1 – Effective potential. The left panel shows the gravitational pseudo po-
tential ΦPW, the angular momentum potential ΦL, and the resulting effective potential
Φeff for different values of the angular momentum L (solid curves). Lmb and Lms
mean the angular momentum at the marginally bound and the marginally stable orbit,
respectively. The right panel shows contour lines of Φeff,L=1.47 which is the angular
momentum used for the simulations of this work. The bold contour line indicates the
surface of the resulting torus the density maximum is marked with a cross.

Figure 3.2 – Setup of case
QUAD. Colours indicate the
plasma β ≡ 8πpgas/B

2, field
lines show the magnetic field.
The contours (white) marks
β = 100.
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3 The model case

Figure 3.3 – Density
and radial velocity of
case NONMAG. Density
is shown on the left
panel in a logarithmic
scale in code units (ini-
tial density maximum =
1). The right panel
shows radial velocity in
linear colour scale in
units of c. The snap-
shot was taken after
5000 lct from a sim-
ulation without initial
magnetic field. Mi-
nor turbulence occurs
but the torus persists.

The torus rotates with constant angular momentum around the axis, the
atmosphere is not rotating. The velocity field was perturbed randomly by
1% of its original value.

The magnetic field was initialised setting the vector potential A = Aφeφ
proportional to the density and a sine functions in the θ and r direction:

Aφ ∝ ρ sin(f(θ)) sin(g(r)).

Well-directed use of the functions f(θ) and g(r) makes it possible to get the
desired number and arrangement of the magnetic loops. For this case we set
up two vertically stacked poloidal loops resulting in a quadrupole (fig. 3.2).
After determining the geometry of the magnetic field, its strength was set
to satisfy β ≡ 8πpgas/B

2 = 100 on average. For the non magnetised case
NONMAG, Aφ was set to 0 and the same solver (RMHD/HLLD) (see section 2.5)
was used.

An overview of the set-ups is given in table 3.1.

3.2 Test case without initial magnetic field

In the absence of a magnetic field, the torus was tested to be stable in the
axisymmetric set-up (figure 3.3). In full 3D simulations it would be subject
to hydrodynamic instabilities (Papaloizou and Pringle, 1983), but the typical
time scale of 3D hydrodynamic instabilities is several orders of magnitude
larger than the integration times of the simulations presented here.

In fact the torus is subject to some turbulence fringing at its surface. Also
small amounts of matter flow radially outwards mainly along the equatorial
plane. The former can be explained by numerical noise, minor deviations
from the stationary solution due to the finite resolution of the grid and
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3.2 Test case without initial magnetic field

Figure 3.4 – Accretion rate for NONMAG, QUAD and QUAD_3D. Mass flux at the inner
boundary for the cases NONMAG, QUAD and QUAD_3D. We assumed an accretion efficiency
of η = 0.1 for the Eddington scale at the right vertical axis. As an application to ac-
cretion on a stellar black hole we assumed MBH = 10M� and ρmax = 10−7 g/cm3.
‘NONMAG lower ρfloor’ is the result of a test similar to case NONMAG but with the atmo-
spheric density and numerical floor value for the density set to 10−6, i.e. 2 orders of
magnitude lower than in the other cases.

mostly from friction with the non rotating atmosphere. The latter, matter
loss at the back of the torus, is caused by the flat potential at large radii
which makes it easy for matter to escape.

As seen in figure 3.4 accretion occurs also in the non magnetic case. This
is expected, because the atmosphere is set up to be non rotating. Thus grav-
itational pull is not equilibrated by centrifugal forces. Therefore a stationary
mass inflow as according to (Bondi, 1952) builds up.

This infall of matter sets off much slower than in the magnetised case but
finally reaches the same value as in the case of the magnetised torus when
the minimum density is set to 10−4 in code units. To check whether the
saturation value of the accretion rate is determined by the density in the
atmosphere, we simulated the NONMAG set-up with a lower floor value (and
initial atmospheric value) of 10−6 in code units. Figure 3.4 shows that the
accretion rate drops even more than two orders of magnitude. This indicates
that accretion is a mere result of the non rotating atmosphere filled with low
density matter.

The velocity map (figure 3.3) for case NONMAG also indicates that mass
inflow takes place only in the atmosphere, while the radial velocity in the
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3 The model case

Figure 3.5 – Density and ve-
locity of the inner region of
case QUAD after 1000 lct. Den-
sity is shown in a logarithmic
colour scale in code units (initial
density maximum = 1). Arrows
indicate the direction of velocity
and the contours mark vr = 0,
i.e. separates outflow from inflow
regions. The snapshot was taken
after 1000 lct.

torus remains close to zero. In the atmosphere, density was set to the minimal
allowed density of 10−4 in code units to avoid numerical problems in the
presence of magnetic fields. Setting the density lower we would get less
accretion for the non magnetic case and in the limit of an absolute vacuum
(which is impossible to be simulated with the applied numerical scheme) the
accretion rate would vanish.

Accretion through the atmosphere does not alter the results for the mag-
netic cases because as we will see below, accretion in these cases happens
close to the equatorial plane, while the atmosphere is filled with outflowing
material.

3.3 General structure of accretion and outflows

3.3.1 Accretion flow

Due to the weak magnetisation and differential (Keplerian) rotation the torus
is unstable to the magnetorotational instability. The MRI enhances pertur-
bations within 4/3 of a local orbital period (compare to equation (2.43))
inside the torus. This corresponds to 562 lct at the inner edge of the initial
torus. Since the MRI and the magnetic tension cause angular momentum to
be transported outwards, matter starts to accrete (see fig. 3.4).

Shortly after the onset of the simulation, matter concentrates in two re-
gions located in the centres of the magnetic loops. Matter accretes along two
paths having their origin in these regions (fig. 3.5). This pattern is disrupted
at small radii after few orbits. Nevertheless, the primary structure of two
accretion channels persist at larger radii. Matter keeps concentrating inside
magnetic loops where magnetic pressure is low and avoids regions with large
magnetic pressure (fig. 3.6). In figure 3.7 a schematic illustrates the global
structure of an accretion flow with an initial quadrupole field.
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3.3 General structure of accretion and outflows

Figure 3.6 – Density and magnetic pressure of case QUAD after 4000 lct. On
the left hand side density is shown in logarithmic colour scale in code units (initial
density maximum = 1), the contour line marks ρ = 0.1. On the right hand side the
magnetic pressure is plotted in logarithmic colour scale in code units with a contour
line at 10−4. The snapshots were taken after 4000 lct.

Figure 3.7 – Schematic of the
accretion flow structure for case
QUAD. Lines denote magnetic field
and arrows symbolise radial velocity.
Please note that the θ-component of
the velocity was not taken into ac-
count for the sake of clarity. Re-
gion I (chequerboard pattern) and II

(grey) are regions of high and low
density, respectively.
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3 The model case

Figure 3.8 – Accretion and wind for case QUAD. The upper panel shows accretion
rate (like in fig. 3.4) and rate of mass flow at 150 Rg. During the first 1200 lct, mass
falls in at that radius and is not plotted. With fast wind we denote winds with a radial
velocity > 0.2 c.

3.3.2 Coronal winds

Most of the torus’ matter forms a coronal wind that sets off approximately
1300 lct after the beginning of the simulation (fig. 3.8), which forms directly
above and below the torus and at the outer edge of the initial torus (fig. 3.5).
The loss rate of matter due to the coronal wind is 10 to 100 times larger
than the rate of accreted matter. An analysis of the total energy in the
corona indicates that the wind is energetically unbound. Therefore it can be
interpreted as the main transport channel for angular momentum.

We find a notable coupling between the rate of mass loss by winds and the
accretion rate: small rises in the wind rate are often followed by a sharply
augmented accretion. This supports the hypothesis that winds are an essen-
tial component of an accreting system.

3.3.3 Fast winds

Close to the inner boundary (r < 10Rg) a fast, narrow, tenuous outflow is
ejected. This outflow forms at approximately 1300 lct simultaneously with
the slow wind (fig. 3.8) and propagates at an angle of θ . 30◦ measured from
the axis of rotation. Its matter has its origin some Rg above and below the
equatorial plane. Radially it arises from a zone between the zone of accretion
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3.3 General structure of accretion and outflows

Figure 3.9 – Density and radial velocity for case QUAD after10000 lct. The
panels show the density (left) and the radial component of the velocity (right) in loga-
rithmic and linear colour scale, respectively. The contours in the velocity map indicate
vr = 0.

(on and adjacent to the equatorial plane) and the region from which the slow
wind arises (at radii greater than 20 Rg) (see figure 3.5).

It carries almost no angular momentum due to its low density, which is
close to the numerical floor value, and due to its relatively small distance
from the axis of rotation. Nevertheless it is rotating as described in detail in
section 3.3.4 The rate at which mass is ejected through this jet-like outflow
is about an order of magnitude lower than the accretion rate (figure 3.8).
A closing interpretation of the mass flux through the fast wind is difficult
because choosing a smaller numerical floor value for the density will certainly
result in a lower rate for the fast wind. This could not be tested however,
because a smaller floor value results in a higher Alfvén speed causing a
dramatically smaller time step which makes it impossible to reach even a few
hundred light crossing times. Furthermore the applied numerical scheme is
not stable for the force free limit of low β plasmas.

3.3.4 Rotation patterns

While in the former sections we focused on the radial movement of the out-
flows we will now examine the azimuthal velocity structure. As expected,
the coronal winds corotate with the disc. This makes them a strong channel
for carrying angular momentum outwards.

In contrary to intuition, the fast jet-like winds show a different behaviour:
they show recurring events of retrograde rotation. They are launched with a
period of approximately 100 lct which corresponds to a frequency of 200 Hz

47



3 The model case

for a central black hole of M = 10M�. They reach the outer boundary and
we expect them to persist as long as the outflow, as they are energetically
unbound.

In fig. 3.10, we observe a strong correlation between the orientation of
the azimuthal magnetic field and the sense of rotation in the region of fast
outflow. The magnetic field seems to be responsible for turning around the
orientation of rotation.

In order to get insight into this behaviour, we inspect the toroidal com-
ponent of the induction equation (equation (2.7)) for the axisymmetric case
which is

∂tBφ = −(vp · ∇)Bφ +RBp · ∇Ω−Bφ∇ · v, (3.2)

where Bp denotes the poloidal part of B. The index p refers to the poloidal
part of a vector, R denotes the radius in cylindrical coordinates and Ω = v/R
is the angular velocity. The first term on the right hand side describes advec-
tion, the second term inserts a dependence on shearing and the last term is a
compression term. As a first approximation, we assume that compression is
of minor importance in the region of interest and neglect the this last term.

To investigate how the azimuthal velocity switches orientation, we suppose
Bφ is positive. Due to the Keplerian rotation of the disc, ∇Ω is negative and
mainly parallel to er (close to the black hole this holds for all angles θ). Bp

can have either sign and is, close to the central mass, also radially domi-
nated. In regions where Bp is positive, the second term becomes negative,
which leads to a decrease in Bφ. The azimuthal components of the magnetic
field and the velocity are coupled by the axisymmetric equation of angular
momentum which one derives from the general momentum equation (equa-
tion (2.5), see Balbus (2004) for details),

∂t(Rρvφ) +∇ · (〈ρvp〉R2Ω) = −∇ · (〈ρ〉RWp). (3.3)

The poloidal component of the stress tensor (given in equation (2.14)) yields

Wp = 〈δvφδvp −
BφBp

4πρ
〉.

From equation (3.3) we find – provided the Alfvén speed is of the order
of the kinetic velocity fluctuations – that magnetic fields will drag matter
along. That means that when Bφ becomes negative, it forces matter into a
negative rotation as well. Now the shearing term in equation (3.2) will switch
sign, because locally, ∇Ω becomes positive. This will invert the described
mechanism: Bφ increases until it becomes positive, vφ follows and the process
starts again.

The same scheme works at places where Bφ and Bp are both negative.

48



3.3 General structure of accretion and outflows

Figure 3.10 – Recurring events of retrograde rotation in the fast outflow The
upper set of panels show the azimuthal velocity in colour code and the poloidal velocity
as streamlines. The lower panels show the azimuthal component of the magnetic field
in colour code and the poloidal component as field lines. White contours mark vφ = 0
and Bφ = 0 respectively. Velocity is measured in units of c, magnetic field in cgs
(Gauss). The snapshots were taken with a frequency of 50 lct starting 4000 lct after
the beginning of the simulation.
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3 The model case

3.4 Simulation in three dimensions

A simulation in 3D was performed to check our axisymmetric set-up for
consistency. In three dimensions, matter starts to accrete about 100 lct later
and the initial peak of the accretion rate is a little bit lower than in case QUAD
(figure 3.4). After another hundred light crossing times the same mean value
of accretion is reached, but the fluctuations are somewhat smaller. These
differences can be explained by the lower resolution of the three dimensional
grid.

3.5 Discussion

The model set-up QUAD (magnetic field is a poloidal quadrupole, β = 100)
shows all features of interest for this work: a turbulent accretion body, spher-
ical wind production and a fast jet-like outflow along the axis of rotation.

A test with vanishing magnetic field strength and a another test in three
dimensions showed that the results of this set-up are quite reliable:

• It is the magnetic effect which drives turbulence and accretion, since
neither of them happen in the non magnetised case NONMAG.

• The non axisymmetric effects are minor, as the results of the 3D case
QUAD_3D and the model case QUAD resemble each other to a high de-
gree. Minor differences can be explained by the differences in poloidal
resolution of the grid.

Accretion sets off after approximately one orbital period at the density
maximum. This time scale of the magnetic fields acting on the torus is in
good accordance with other simulations (e.g. De Villiers and Hawley, 2003;
Beckwith et al., 2008).

Coronal winds form simultaneously with accretion due to the require-
ment of angular momentum to be transported outwards. The speed of the
wind is less than 0.1 c. It propagates spherically providing a mass flux 10–100
times higher than the accretion rate.

The fast outflow can be interpreted as the seed of a collimated jet further
out from the accreting system. Its radial and azimuthal velocity reach up to
60% of the speed of light, which is in very good agreement with measurements
of the jet of CYG-X1 (Stirling et al., 2001) and other observations. Other
observed jets from black hole accretors evince velocities ranging from about
0.1 c to 0.99 c.

The jet is energetically unbound (figure 3.9), which bears the possibility
that the outflow gets accelerated further out. Also physical mechanisms not
covered by these simulations can cause the collimation and speed observed
in real jets. Such a mechanism could be the gravitomagnetic forces of a
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3.5 Discussion

rotating black hole (Blandford and Znajek, 1977) or rotating large scale
magnetic fields seeded in the outer parts of the accretion disc (Blandford
and Payne, 1982).

The jet was found to rotate in retrograde direction recurrently. We
proposed an explanation by the coupling of angular momentum and az-
imuthal magnetic field in ideal MHD. This bulk movement of parts of the
jet can be interpreted as an extreme zonal flow as described by Johansen et
al. (2009). They simulated a high β plasma in shearing box simulations rep-
resenting a local patch of an accretion disc. In these simulations the found
zones of disc matter moving with alternating sub- and super-Keplerian veloc-
ity and explain this by the structure of the magnetic field. In our simulation
this effect could be enhanced due to the low plasma β which makes the
matter much more dependent on the magnetic field dynamics.

In order to investigate which property of the set-up causes, enhances or
inhibits the formerly described features, we need to systematically alter parts
of the set-up leaving all other the same. This will be done in the following
section. We will change the torus’ size and position (section 4.1), the strength
of the magnetic field (section 4.2), the topology of the poloidal magnetic field
(section 4.3) and finally add a cooling term to the algorithm (section 4.4).
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Nobody said it was easy.
No one ever said it would be this hard.

— Chris Martin

4
Variations of the model case and their

consequences

Numerical Simulations tend to be set up in a simplified manner. Partly
this is an intrinsic problem of the method. One needs to initialise the

domain with a well-defined state in order to grant comparability to other
works and to be able to extract the physical effect of interest. But we should
be aware that initial set-ups based on analytical solutions will always be
artificial. Experience shows that small changes in the setup can lead to big
differences in the results.

To avoid extrapolating results of one specific set-up to the general case,
we will vary different parameters of the set-up QUAD. In section 4.1 we will
initialise tori with different size and positions, in section 4.2 we simulate
tori with a stronger and weaker magnetic field, in section 4.3 we alter the
geometry of the magnetic field and in section 4.4 we add a sink term to the
energy equation emulating optically thin cooling by synchrotron radiation.

Apart from that we aim to answer which properties give rise to which
features. In detail we will investigate the onset of accretion, launching of
jet-like and slow outflows, rotation structures as well as turbulent behaviour
of the torus and its surroundings.

4.1 Position and size of the torus

We will present a series of simulations testing several geometric set-ups of
the torus. The parameters we will vary are the position of the inner border
of the torus rin and the location of the density maximum rρmax .
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4 Variations of the model case and their consequences

Figure 4.1 – Set-ups of the simulations QUAD, QUAD_15_23, QUAD_20_32,
QUAD_30_42. The panels show density maps of the initial configurations in logarith-
mic scale. The black contour marks ρ = 0.99ρmax hence indicating the location of the
density maximum.

4.1.1 Set-up

The quadrupole set-up (QUAD) was used as the base configuration. In this
configuration the inner edge of the torus lies at rin = 20 Rg and its pressure
and density maximum at rρmax = 30 Rg. We varied these two parameters to
investigate their effect on the torus’ evolution. The tested cases are shown in
table 4.1 and figure 4.1. We varied the radial position of the torus in cases

name rin [Rg] rρmax [Rg] τMRI at rin [lct] τMRI at rρmax [lct]
QUAD 20 30 562 1032
QUAD_15_23 15 23 365 693
QUAD_20_32 20 32 562 1137
QUAD_30_42 30 42 1032 1710

Table 4.1 – Set-up of the simulations QUAD_15_23, QUAD_20_32, QUAD_30_42.
The magnetic field is set up as described in section 3.1.

QUAD_15_23 and QUAD_30_42 and the size of the torus in case QUAD_20_32.
If accretion is coupled to the development of MRI we expect the onset of
accretion to be correlated to the local growth rate of MRI at either the radius
of the inner edge of the torus rin or the position of the density maximum
rρmax .

4.1.2 Results

The accretion rates for the tested cases are shown in figure 4.2. The onset of
accretion seems to be a function of the radial position of the density maxi-
mum rρmax rather then of the inner edge. For better visibility we plotted the
smoothed accretion data scaling the time axis to the orbital period of rρmax

(figure 4.3). The hypothesis proves true as the steep rise of the accretion rate
happens for all cases after approximately one orbit at the density maximum.

All cases show a similar overall structure and dynamics when scaled to
the appropriate orbital periods. The fast wind sets off after approximately
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4.1 Position and size of the torus

Figure 4.2 – Accretion rates for different initial torus positions. The mass
flux across the inner boundary of the simulated domain is plotted for the different
magnetic set-ups. We assumed an accretion efficiency of η = 0.1 for the Eddington
scale at the right vertical axis. As an application to accretion on a stellar black hole
we assumed MBH = 10M� and ρmax = 10−7 g/cm3 for the scale on the left vertical
axis. The accretion rate of case QUAD is plotted dashed in every panel for comparison.

Figure 4.3 – Smoothed accretion rates for different initial torus positions.
Same as figure 4.2 but with smoothed data. The smoothing length is 100 lct. The plot
were scaled to the orbital period of the radius of maximum density for each model.
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4 Variations of the model case and their consequences

Figure 4.4 – Outflow rates for different initial torus positions. The rate of
mass flux through the outer boundary is plotted for the discussed set-ups. The upper
panel shows the flux integrated over the whole outer boundary. The data of the lower
panel was only integrated over boundary cells where vv > 0.2. Units are as described
in figure 4.2.

1.3 orbital periods in all cases (figure 4.4). Interestingly that is not the case
for the total wind; the first set-up to start an outflow is case QUAD_20_32.
Also this wind is the one transporting most mass outwards. There are two
possible reasons for that: a) The back of the torus is located at 80 Rg, which
is further out than any other set-up, b) the torus is thicker and thus contains
more mass than any other. If a) was the case, the next set-up to produce
a wind should be QUAD_30_42, but this is not the case. Hence we assume
that the larger volume and mass account for the stronger wind. Nevertheless
the wind of case QUAD_20_32 is not as stable as the others, as we observe a
net inflow during the 3rd orbit. The next set-up to produce a wind is case
QUAD_20_32. We hold the torus’ proximity to the black hole responsible for
that.
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4.2 Magnetic field strength of the plasma

Figure 4.5 – Most unstable MRI modes of the simulations QUAD_BETA1.5 and
QUAD_BETA3. The colour maps show the fastest growing perturbation wavelength in
units of Rg in logarithmic scale for case QUAD_BETA1.5 (left), QUAD (middle) and
QUAD_BETA3 (right) Contours are drawn at the typical wavelength (see table 4.2).

4.2 Magnetic field strength of the plasma

The strength of the magnetic field can be measured in unit of the pressure
by using the plasma parameter β = 8πpgas/B

2. Without magnetic fields
(i.e. β = ∞) accretion is inhibited and the torus remains as initialised (see
section 3.2). It is subject to hydrodynamic instabilities but not to MRI.
Large β tori will be unstable to perturbations of small wavelengths and vice
versa. Natural limits on β are given by the size of the torus and the grid
resolution.

We test the onset and the further behaviour of the accretion flow and the
ejection of matter for several values of beta.

4.2.1 Set-ups

The starting point and reference again is the simulation QUAD. The inner
border of the torus is located at 20Rg, the density maximum at 30Rg. The
magnetic field forms a quadrupole.

name description typical λmax[Rg]
QUAD reference, β = 102 10
QUAD_BETA1.5 like QUAD but with β = 101.5 ≈ 31.6 20
QUAD_BETA3 like QUAD but with β = 103 4

Table 4.2 – Set-up of the simulations QUAD_BETA1.5 and QUAD_BETA3. All prop-
erties of the torus except for the plasma β are as described in section 3.1.

4.2.2 Results

The most unstable MRI mode can be resolved and fits into the torus in all
cases. Therefore, from an analytical point of view, MRI should work about
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4 Variations of the model case and their consequences

Figure 4.6 – Accretion rates for different initial magnetic strength. The mass
flux across the inner boundary of the simulated domain is plotted for the different
magnetic set-ups. We assumed an accretion efficiency of η = 0.1 for the Eddington
scale at the right vertical axis. As an application to accretion on a stellar black hole
we assumed MBH = 10M� and ρmax = 10−7 g/cm3. The accretion rate of case QUAD

is plotted dashed in every panel for comparison.

the same in all three cases. But the results of the simulations differ strongly
as the value of the plasma β changes (figure 4.7).

For the less magnetised case of β = 101.5 ≈ 31.6 we find accretion and
ejection very similar to case QUAD. The fast winds are not as fast as in the
model case and the torus gets disrupted more quickly. This can be explained
by the higher magnetic pressure which literally pushes matter away. Why
the jet-like outflows are a little bit slower than in QUAD can not be explained.
But as the difference is not more than a few percent it could as well be a
random result due to dynamic changes is the outflow speed.

For the less magnetised case of β = 103 we find the torus much more intact
as in the other cases. It resides in its hydrodynamical equilibrium state as
initialised. As opposed to the non magnetised case NONMAG an accretion
channel on the equatorial plane builds up (figure 4.8). But instead of a fast
outflow we also find accretion around the axis of rotation. Also the accretion
rate does not expose a steep rise but it does show turbulent fluctuations.

This set-up is the only one that results in accretion via an equatorial disc
but no jet-like outflow.
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4.2 Magnetic field strength of the plasma

Figure 4.7 – Density and radial velocity after 5000 lct for different initial
magnetic strength. Density (logarithmic) and velocity (linear) are shown for the
cases QUAD, QUAD_BETA1.5 and QUAD_BETA3 after 5000 lct.
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4 Variations of the model case and their consequences

Figure 4.8 – Mass flux after 5000 lct for different initial magnetic strength.
Mass flux is shown for the cases QUAD, QUAD_BETA1.5 and QUAD_BETA3 after 5000 lct.
Negative values denote infall.

4.3 Magnetic field topology

Magnetic fields initiate and enhance accretion action. They are the crucial
ingredient which causes angular momentum to be transported. Therefore it
is reasonable to assume that the exact constitution of the magnetic field also
determines the development and evolution of the disc and its outflows. We
will experiment with the magnetic set-up to investigate how the accretion
flow behaves under its influence.

4.3.1 Set-ups

We tested six different magnetic configurations shown in figure 4.9 and de-
scribed in table 4.3. The average of the plasma β is approximately 100 in
all simulations. That implies that in magnetic configurations of higher or-
der (with more loops) the maxima and minima of magnetisation are more
pronounced than in the low order configuration.

name description
DIP one poloidal loop
QUAD two poloidal loops with contrary helicity
SEXT three poloidal loops with alternating helicity
OCT four poloidal loops with alternating helicity
QUAD_MULT four radially stacked quadrupoles with alternating he-

licity
MULT an arbitrary mixture of modes resembling a turbulent

field

Table 4.3 – set-up of the simulations DIP, QUAD, SEXT, OCT, QUAD_MULT and
MULT. The mean plasma β is 102 in all set-ups. All other properties are as described
in section 3.1.
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4.3 Magnetic field topology

Figure 4.9 – Magnetic set-ups of cases DIP, QUAD, SEXT, OCT, QUAD_MULT and
MULT. Plasma β is shown in logarithmic colour scale ranging from 10 to 1000. Black
lines with arrows indicate the magnetic field (density of the lines or alike does not
reflect field strength). White lines indicate β = 100.
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4 Variations of the model case and their consequences

4.3.2 Results

The structure of the accretion flow initially depends on the magnetic field
setup. After the onset of accretion, matter concentrates in the centres of
the magnetic loops, corresponding to region I in fig. 3.7. In that region,
density, pressure and temperature are higher than in the surrounding area,
while magnetic pressure is lower. Therefore, MRI is enhanced and matter
is able to accrete. In fact, in the simulations we find that matter does not
accrete mainly along the equatorial plane except for case DIP; it rather forms
accretion channels of higher density and temperature as their surroundings.
For case QUAD (SEXT, OCT), 2 (3, 4) channels form. After several 1000 lct
these patterns are disrupted after being mixed heavily by turbulence.

The set-ups with a magnetic field of higher order lead to faster and more
powerful accretion. We explain this by the fact that the wavelengths of
the perturbations in the magnetic field determines the time scale on which
MRI enhances them. The wavelength of the fastest growing wave in the
centre of the torus is of the order of a few Rg, while the torus’ thickness
is approximately 40 Rg radially and vertically. In the case of the octupole,
each magnetic loop has a vertical extension of about 10 Rg, which makes this
configuration more unstable to MRI than the others.

Furthermore, we find another explanation for the enhanced accretion in
the cases with higher order magnetic geometry inspecting the mechanism of
accretion; angular momentum is transported radially by the action of the
r-φ-component of the stress tensor W, which is the sum of Reynolds and
Maxwell stresses (equation (2.14)):

W = 〈δv ⊗ δv − B⊗B
4πρ

〉,

where the angle bracketed variables denote mean values, δ stands for the fluc-
tuation of a value and ⊗ is the dyadic product. For higher order magnetic se-
tups, there is more magnetic energy in the radial component of the magnetic
field as the loops are stacked vertically and their helicity alternates. Dif-
ferential rotation will transform radial field lines into toroidal modes, which
enhances accretion due to MRI.

Also, the higher order fields accrete along various paths, while in the dipole
case matter accretes only along the equatorial plane. This enables more mass
to flow inwards.

During the accretion phase, the rate fluctuates around a constant value of
approximately 10−10 M�/yr for the case of a microquasar of 10 M�). The
fluctuations have an amplitude of about two orders of magnitude. Case DIP,
which lasted longer in enhancing its accretion, shows a somewhat higher
accretion rate in the later phase of the simulation (figure 4.11). Looking at
the integrated accretion rate (i.e. the so far accreted mass) in figure 4.12,
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4.3 Magnetic field topology

Figure 4.10 – Accretion rates for different initial magnetic fields. The mass
flux across the inner boundary of the simulated domain is plotted for the different
magnetic set-ups. We assumed an accretion efficiency of η = 0.1 for the Eddington
scale at the right vertical axis. As an application to accretion on a stellar black hole
we assumed MBH = 10M� and ρmax = 10−7 g/cm3.
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4 Variations of the model case and their consequences

Figure 4.11 – Smoothed accretion rates for different initial magnetic fields.
Same as figure 4.10 but with smoothed data. The smoothing length is 200 lct.

one finds that case DIP ‘catches up’ with the other simulations in terms of
accreted mass. All of the setups accrete ≈ 4·1015 g during the simulated time.
This is equivalent to ≈ 10% of the initial torus mass. Thus the accretion
rate appears to be also a function of the mass which is still in the torus.
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4.3 Magnetic field topology

Figure 4.12 – Accreted mass for different initial magnetic fields. The accretion
rate was integrated over the elapsed time resulting in the total mass loss through the
inner boundary. We assumed a black hole mass of 10 M� and an initial maximum
density of 10−7 g/cm3
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4 Variations of the model case and their consequences

4.4 Cooled accretion flows

Due to the presence of strong magnetic fields and hot (=fast) electrons, the
most powerful cooling mechanism is non thermal synchrotron radiation. This
emission will cool down parts of the disc and thus alter the overall dynamics.
Therefore we expect the results to differ significantly from the model case
QUAD.

To get reliable results on how much energy is emitted, where it is emitted
and whether and how emission is correlated to accretion we implemented a
energy sink emulating cooling via the synchrotron process (see section 2.3.4).
Radiation is assumed to be radiated isotropically and integrated over all
photon energies. Further interaction with matter is neglected as we are
simulating the optically thin regime.

4.4.1 Set-ups

We used case QUAD as the basis and added a sink to the energy equation of
the form (see equation (2.32)):

Ssynch = ∂tesynch = 16cσTtTS
%

mp
PmagΘ2e−

1/Θ.

All other properties of the fluid are identical to case QUAD. This new set-up
is referred to as QUAD_SYN.

4.4.2 Results

Also in the cooled case, matter starts to accrete soon after the beginning
of the simulation (figure 4.13). The fact that it starts a few hundreds light
crossing times earlier than in the non radiative case can be explained by the
cooling down of the torus matter. As the parts of the torus where strong
magnetic field occur cool down to < 108 K the torus is compressed, which en-
hances accretion (figure 4.15). The accretion rate does not fluctuate as strong
as in case QUAD. This is also reflected in the power spectrum (figure 4.16)
which is somewhat smaller in the radiative case.

The emitted synchrotron radiation is tightly correlated to the accretion
rate. It follows the shape of the accretion not only on large time scales
(figure 4.13) but also on short scales figure 4.14). We note that a rise in
accretion is always preceded by a rise of synchrotron emission. The lapse
between the maxima is only a few light crossing time. That means that
most of the radiation must be emitted within few gravitational radii of the
inner boundary. The emission map (figure 4.17) proves that the energy is
only emitted from regions with sufficiently high density and mostly within
10 Rg from the centre of accretion. Also the emission is concentrated close to
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4.4 Cooled accretion flows

Figure 4.13 – Accretion rate and luminosity for case QUAD_SYN. The plot
shows accretion rate and synchrotron flux integrated over the whole domain for
case QUAD_SYN. As an application to accretion on a stellar black hole we assumed
MBH = 10M� and ρmax = 10−7 g/cm3 for the left scale. The accretion rate of case
QUAD is shown for comparison.

Figure 4.14 – Accretion rate
and luminosity for case
QUAD_SYN. The plot shows a part
of figure 4.13. Vertical lines
indicate the local maxima of the
accretion curve.
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4 Variations of the model case and their consequences

Figure 4.15 – Temperature and density for case QUAD_SYN. The colour maps show
temperature (upper panels) and density (lower panels) in logarithmic scale for case
QUAD_SYN. Case QUAD is shown on the left hand side for comparison. The snapshots
were taken after 800 lct when accretion already started in the radiative case but did
not in the non radiative case.
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4.4 Cooled accretion flows

Figure 4.16 – Power spec-
tra of accretion and lumi-
nosity. The power spectra of
the accretion rate of cases QUAD

and QUAD_SYN and of the inte-
grated synchrotron flux for case
QUAD_SYN are plotted. The power
was multiplied by ν5/3 so that a
horizontal spectrum means a de-
crease with ν−5/3 as predicted in
the case of turbulence. The spec-
tra have been smoothed over half
an order of magnitude for bet-
ter readability. Also the steep
parts at the beginning and end
of the light curve (figure 4.13)
have been removed before process-
ing the spectrum as they altered
the high frequency part of the
spectrum significantly without be-
ing of scientific interest.

the equator which means that different lines of sight will result in different
observational features.

The power spectrum of the integrated emission (figure 4.16, short dashed)
exhibits a very flat shape over almost 2 orders of magnitude. The decrease
towards higher frequencies is less pronounced than in the accretion spectrum.
That reflects that not all of the emission comes from the region close to the
inner boundary (compare results of case QUAD in section 3.3.1). In the emit-
ting regions of the torus the turbulent dynamics of the medium dominates
the emission process, in contrast to the inner regions where the orbital revo-
lution is determining dynamics. Thus turbulent motion is present on smaller
scales when occurring further away from the black hole. That explains the
rather large power of high frequencies in the emission power spectrum.

A surprising result is the absence of continuous winds (figure 4.18). While
accretion behaves in almost the same manner as in the non radiating case,
winds are totally different. Outflows at the outer boundary only occur
episodically (only three events during 4000 lct) and fast winds are even less
frequent. There is only one event observed after ≈ 2500 lct (figure 4.19).
This fast outflow is only present on side of the accretion disc.
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4 Variations of the model case and their consequences

Figure 4.17 – Synchrotron
emission map of case
QUAD_SYN. The plot shows energy
loss per time and volume of the
inner region of the simulated
domain. Black indicates values
< 1032 while transparent regions
do not expose any emission at
all due to a vanishing magnetic
field. The snapshot was taken
after 800 lct

Figure 4.18 – Accretion and wind rate for case QUAD_SYN. The plot shows mass
fluxes through the inner (accretion) and outer (winds) boundary for case QUAD_SYN.
For the physical units we assumed MBH = 10M� and ρmax = 10−7 g/cm3.
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4.5 Discussion

Figure 4.19 – Event of fast
jet in case QUAD_SYN. Radial ve-
locity is plotted in linear colours
coding. Black contours sepa-
rate inflow from outflow regions.
The plot shows a snapshot after
2800 lct.

4.5 Discussion

We performed several numerical experiments to sort out the initial param-
eters of advection dominated accretion discs relevant for the observed fea-
tures. These are the onset of turbulence in the torus, accretion rates and the
ejection of spherical winds and fast jet-like outflows.

Effect of changing position and size of the torus. We altered position
and size of the initial torus. The point in time where the accretion rates rise
steeply, i.e. the onset of accretion is strongly correlated to the local orbital
period at the density maximum. Since the characteristic time scale of MRI
is proportional to and of the order of the orbital period, which suggests MRI
as the dynamically dominant process in accretion. The formation of slow
and fast winds and the onset of turbulence are identical to the model case
QUAD.

Stronger and weaker magnetic field. In the model case QUAD the ratio of
gas to magnetic pressure β = 8πpgas/B

2 is set to average 102. The relative
magnetic field strength β was varied in order to test its influence on the
accretion dynamics.
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4 Variations of the model case and their consequences

• QUAD_BETA3: For β = 3 (i.e. less magnetised torus matter) we get a
result combining properties of the model case (β=100) and the non
magnetised case (β =∞):

– Accretion does occur on the equatorial plane as torus matter
looses angular momentum and spherically from the atmosphere.
The accretion rate reaches the quasi-stationary value of case QUAD
more than 1000 lct later than in the model case. No steep increase
of accretion is observed.

– Winds are much less pronounced than in the other cases. Fast
winds are not present making accretion from the atmosphere pos-
sible, as described previously.

The fastest growing unstable MRI mode has a wavelength of λmax ≈
4 Rg so turbulence induced by MRI is possible in principle. Stronger
perturbations than in the non magnetised case are present.

Hence, fast outflows may be absent even if MRI drives turbulence and
accretion is present.

• QUAD_BETA1.5: This case is quite similar to the model case QUAD. The
jet-like outflow appears slower and a little bit more irregular but the
differences are within the scope of the intrinsic variations from one
orbit to the other for example.

Different magnetic field topologies. The six magnetic set-ups behave very
similar. During the first 2000 lct we observed radial channels formed by
accreting torus material. In the case of a dipole (DIP) there was one channel,
in QUAD two, in SEXT three and so forth. These structures are destroyed soon
by the turbulent action in the domain.

Accretion starts stronger and faster when smaller magnetic loops are
present. These higher order magnetic fields appear to be more unstable
to MRI than larger loops. A possible reason is that the loops, acting as seed
perturbations are of the size of the fastest growing wavelength in the cases
OCT, MULT and QUAD_MULT while the dipole loop in DIP is somewhat larger.

Influence of radiative cooling. Cooling has a strong effect on the accreting
torus. It cools the torus matter down to less than 108 K. In the non cooled
model case QUAD it remains around 1010 K. This causes the inner parts of
the torus to contract. Density rises by a factor of a few while the vertical
and radial extension of the torus decreases.

As accretion starts, the fluctuations are not as pronounced an in case QUAD.
Integrating the synchrotron emission over the whole domain and comparing
the achieved light curve the accretion rate one notes that an event of en-
hanced accretion is always preceded by a small rise in the light curve. This
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4.5 Discussion

is due to the fact that most of the synchrotron radiation is emitted close to
the horizon of the black hole where the density is high and magnetic fields
are strong.

Nevertheless the power spectra of accretion and luminosity indicate that
emission is subject to faster variations than accretion. This reflects that the
emission is also determined by the turbulence in the torus and not only by
the dynamical time scales at the inner boundary as the accretion rate.

Outflows are suppressed strongly by the cooling mechanism. Slow occur
occasionally but do not reach the same rates as in the non radiative case.
Fast collimated outflows are even more scarce. Only one weak event was
observed during 4200 lct of simulated time.

The fact that major differences exist between the results of non radia-
tive simulations (case QUAD) and radiatively inefficient simulations (case
QUAD_SYN) indicates that post-processing the data in order to obtain in-
formation about the radiative properties of the disc (e.g. Goldston et al.,
2005) will give unreliable results.
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4 Variations of the model case and their consequences
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Ja und nein und beides nicht,
so wie Du es meinst.

— Das Südliche Orakel

5
Summary and conclusions

We performed spherical axisymmetric (2.5D) and 3-dimensional simula-
tions of advection dominated accretion flows (ADAF). The applied

code, PLUTO3.01, solves the equations of ideal magnetohydrodynamics us-
ing a conservative scheme based on the Harten-Lax-van Leer solver. Gravity
was included as a pseudo Newtonian potential emulating a non rotating black
hole.

These investigations can be applied to accreting black hole systems such as
AGN and X-ray binaries. All set-ups except for the one including radiative
cooling can be scaled to any black hole mass and initial torus density due to
the absence of microscopic terms in the solved equations.

We investigated the influence of several modifications in the initial set-up:
(1) the size and position of the torus (2) the strength and (3) the geometry
of the magnetic field and (4) adding a synchrotron loss term to the energy
equation. In doing so we attempt to get closer to realistic simulations ruling
out the effects of too artificial, idealised set-ups.

The model case and basis for comparison was the case QUAD. It consisted of
a torus with its density maximum at 30 Rg. The magnetic field was initialised
as a poloidal quadrupole field.

Set-up and hydrodynamic stability. The torus was set up to lie in the
potential well of a effective potential, which is the sum of the gravitational
potential and the potential arising from the Keplerian angular momentum
of the matter. The torus rotated with its local Keplerian orbital period; the
atmosphere was not rotating. The velocity field was perturbed with random
noise of an amplitude of 0.01 c throughout the whole domain.
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5 Summary and conclusions

The set-up was proven to be hydrodynamically stable over the simulated
time of 104 lct which corresponds to 10 orbits at the density maximum. In the
absence of a magnetic field the torus remained at its original position being
only perturbed a little bit on its surface. We explained these perturbation
by friction with the non rotating atmosphere and as reactions to the initial
random noise which has been added to the initial velocity field.

Accretion happens also in the hydrodynamic case. But instead of building
up a quiet narrow accretion flow close to the equator of the disc, matter was
falling in spherically from the atmosphere. A constant mass flow forms, only
perturbed by the presence of the torus. This was in good agreement to the
Bondi solution of spherical accretion.

Accretion. We found accretion in the magnetised case to start within ap-
proximately one orbital period at the density maximum. It reached a quasi
stationary level instantly after the onset of accretion. The accretion rate cor-
responded to 109 M�/yr for a black hole of 10 M� and an initial maximum
density of 10−7 g/cm3 or 0.1

.

MEdd, assuming an accretion efficiency of 10%.
The characteristic timescale of the accretion was verified with simulations

in which the torus resides at different radii. Since the local orbital period
was the characteristic timescale for MRI, this gives a strong argument in
favour of MRI being the cause for the accretion.

The power of accretion was also influenced by the ratio of gas pressure
to magnetic pressure (β) and the geometry of the magnetic field. For larger
values of β accretion lasts longer to evolve but reaches the same value finally.
In the case of smaller magnetic loops in the initial torus we found a faster
onset of accretion.

Other differences in the structure of the accretion flow or its surroundings
were soon smeared by the turbulent motion of the fluid.

Outflows. Two types of outflows were observed:

1. Slow dense winds: Torus matter was streaming spherically into the
atmosphere from the surface of the torus except for its inner cusp. The
velocity of this displacement was much smaller than the dynamical
velocity of the torus. The atmosphere was filled partly with matter
about twice as dense as the atmospheric value. Angular momentum
was carried away mainly by this wind.

2. Fast tenuous jet-like outflows: Within an angle of 20◦ around the
axis of rotation a fast outflow formed with a velocity of up to 0.6 c. This
velocity is in excellent agreement with observations of microquasar jets.
The density in this outflow region equalled the numerical floor value.
The Alfvén speed reached the speed of light. Due to the opening angle
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of ≈ 40◦ and the velocity significantly smaller than the speed of light,
it could not be interpreted as a jet. Nevertheless it might be the seed
of one getting accelerated and collimated further outwards and/or by
general relativistic effects of the rotation of the black hole not included
in the simulations presented here.

The slow coronal wind formed in every tested set-up. Two configuration
lacked a fast jet-like outflow:

• The less magnetised torus of case QUAD_BETA3: This case could give a
hint at the answer of two unresolved questions in astrophysics:

1. What is the nature of the radio quiet quasars? Since the main
source of radio emission in quasars is assumed to have its origin
in the jet, the question can be reworded to: Why do some quasars
not have jets? The answer we proposed on the base of the test
performed here is: Because matter is not magnetised enough to
eject them.

2. Why do X-ray binaries have outbursts when passing from the hard
to the soft state? The hard state consists of a weakly magnetised
ADAF, which has no jet or a very weak one. Synchrotron emission
is produced by the dense hot parts of the torus and hardened via
inverse Comptonisation. Thereafter high density matter is falling
in from outer regions. This matter radiates the soft spectrum
of a multi coloured black body. Before it replaces the ADAF
totally, the inner thin gas of the ADAF is confronted with the
piled up magnetic field from the denser outer matter. During
this phase a fast jet can be produced as there is an abundance of
magnetic energy striking low density matter. This configuration
also favours the emission of synchrotron radiation which will rise
for a short period before matter has cooled down and becomes
optically thick due to the arriving infalling matter from further
out.

• The cooled case including synchrotron emission QUAD_SYN:

The absence of a fast outflow in the simulations including synchrotron
cooling posed a more difficult problem to interpret. We assumed that
configurations can be found which incorporate cooling and result in the
ejection of jets. Further work is required here. At this point we can
however state definitely that processing spectra, light curves and alike
after simulating without taking into account radiative losses even from
optically thin discs (e.g. Goldston et al., 2005) will lead to unreliable
results.
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5 Summary and conclusions

Retrograde rotation of the jet. In the fast outflows recurring events of
counter-rotation, i.e. rotation in the opposite direction as the disc, were
found. These occurred with an approximate mean frequency of 200 Hz and
propagated outwards with the speed and in the direction of the fast outflow.
We explained this counter-rotation by the interaction of the shearing term in
the induction equation RBp ·∇Ω and the dependence of angular momentum
transport on the Maxwell stress BφδBp/4πρ. Bended magnetic field lines
will seek relaxation. In the jet this can be achieved in the direction of the
disc rotation as well as in the contrary direction. The direction seems to
alternate periodically dragging along the jet matter. As the density is very
low in the fast outflow, the magnetic field dominates the dynamics which
leads to the observed counter-rotation.

This phenomenon can be interpreted as an extreme zonal flow, a ‘low β
version’ of the zonal flows described by Johansen et al. (2009), who found
zones of deviant rotation speed in shearing box simulations.

Unfortunately this rotation can not be observed easily in black hole jets.
They do not exhibit line emission which would enable observers to test known
jets for rotational motion.

By contrast, YSO-jets show line emissions which enable the measurement
of intrinsic relative movement such as rotation. In spite of the differences
between YSO jets and black hole jets, the process of ejection may be quite
similar (Camenzind, 1990). Both require an at least partially ionised accre-
tion disc what indicates a coupling to the magnetic fields in the disc in either
case. Coffey et al. (2004, 2007) and Woitas et al. (2005) have carried out
spectroscopic observations using the Hubble space telescope imaging spectro-
graph (HST/STIS) of the jets of TH28, RW Aur, LkHα 321, DG Tau, CW
Tau and HH 30. They interpreted asymmetries found in the measured ve-
locities as an indication for rotation of the jet. Our simulations affirmed the
assumption that rotation is present in jets. Also retrograde rotation as found
by Cabrit et al. (2006) in RW Aur could be caused by the mechanism we
described. Arguments against the interpretation of the velocity profiles as a
sign of rotation as put forth by Soker (2007) have to be revised considering
the results presented here.
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Look on, look on, look on!

— John Frusciante

6
Outlook

During the progress of this work we found that some initial properties of
a simulation set-up are crucial for the further development of the disc

and its outflows while others do not have any effect or the effect is cancelled
by the turbulent evolution of the disc. In future works we will focus on the
properties that do alter the disc dynamics durably. The following points
require further detailed studies:

• The dependence on the strength of the magnetic field: Radial changes
of the magnetisation could lead to a dynamic triggering of the fast
jet-like outflow. Also the launching of jets in the case of very strong
magnetic fields (β ≤ 10) could give further insight into the switch-
ing between the low-hard and the high-soft state observed in X-ray
binaries.

• The durability of the retrograde rotation of the jet: The exact mech-
anism leading to this unexpected feature remains unclear. Both ana-
lytical and numerical work is required to solve this problem.

• The absence of a jet-like outflow when including radiative losses in the
simulations: Altering the magnetic field strength and other parameters
could make the launching of a jet possible even in radiative simulations.

In a way, this work is also a collection of hints for future projects as every
answer yields several questions.
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6 Outlook
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A
Symbols and Constants

Symbols and constants used in this work are listed and explained below.
They apply as far as no differing meaning is given in the text. Bold symbols
(v) describe vectors, cursive symbols scalars (v).

Table A.1 – Symbols

symbol meaning cgs
(Gaussian)

MKSA

l, h length, height cm 10−2 m
λ wavelength
r spherical radius
R cylindrical radius
Rg gravitational radius (GM/c2)
RS Schwarzschild radius

(2GM/c2)
m, M mass g 10−3 kg
t time s s

lct light crossing time (GM/c3)
ρ mass density g/cm3 103 kg/m3

Ω angular frequency of a rotation 1/s 1/s

ω angular frequency of a pertur-
bation

κ epicyclic angular frequency

continued on the next page...
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A Symbols and Constants

symbol meaning cgs
(Gaussian)

MKSA

v, v velocity m/s 10−2 m/s

cs speed of sound
vA Alfvén velocity

L specific angular momentum cm2/s 10−4 m2/s

g gravitative acceleration cm/s 10−2 m/s2

p gas pressure ba 0.1 Pa = 0.1 kg/m s2

pmag magnetic pressure
E, Eα electric field statV/cm 2.99792458 · 104 V/m

J total current density esu/s 3.33564 · 10−10 A
q electric charge esu 3.33564 · 10−10 C
E energy erg = gcm2/s2 10−7 J = 10−7 kg m2/s2

ε internal energy
E specific internal energy erg/g 10−4 J/kg

e energy density erg/cm3 10−1 J/m3

S source/sink of energy density erg/s m3 10−1 J/s m3

P power erg/s 10−7 J/s

L luminosity
Φ gravitational potential erg/g 10−4 J/kg

B magnetic flux density G 10−4 T = 10−4 kg/A s2

Table A.2 – Constants

Constant Meaning cgs (Gaussian) MKSA

G gravitational constant 6.67259·10−8 cm3/g s2 6.67259 ·10−11 m3/kg s2

c speed of light in vacuum 2.99792458·1010 cm/s 2.99792458 · 108 m/s

µ0 magnetic permeability 4π 4π · 10−7 H
m

[
=̂ kg m

A2s2

]
M� solar mass 1.989 · 1033 g 1.989 · 1030 kg
R universal gas constant 8.31447 · 107 erg/K mol 8.31447 J/K mol

σT Thompson cross section
( 8πe4

3c4m2
e
)

6.6524 · 10−25 cm2 6.6524 · 10−29 m2
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B
Useful equations

Some useful relations used in the main text that do not appear in most
collections are listed below. It is not intended to give a complete list as there
are numerous text books doing so (a good formulary is Diver (2001)).

Please note that in this chapter, f and g are arbitrary scalars and u, v
and w are arbitrary 3-dimensional vectors.

u⊗ v =

u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

 (B.1)

u× (v×w) = v(u ·w)−w(u · v) (B.2)

with the use of ∂tρ = ∇ · (ρv) :

ρ(∂t
f

ρ
+ (v · ∇)

f

ρ
) = ∂tf +∇ · (fv) (B.3)

∇ · (u⊗ v) = (∇ · u)v + (u · ∇)v (B.4)

∇ · (v⊗ u− u⊗ v) = ∇× (u× v) (B.5)
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Indications of Jet Rotation in New Ultraviolet and Optical Hubble Space
Telescope STIS Spectra. ApJ, 663:350–364, July 2007.

J.-P. De Villiers and J. F. Hawley. Global General Relativistic Magnetohy-
drodynamic Simulations of Accretion Tori. ApJ, 592:1060–1077, August
2003.
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masse. I. Lösungen der hydrodynamischen Gleichungen mit turbulenter
Reibung. Zeitschrift für Naturforschung, 7a:87–98, 1952.

J. C. McKinney and R. D. Blandford. Stability of relativistic jets from
rotating, accreting black holes via fully three-dimensional magnetohydro-
dynamic simulations. MNRAS, 394:L126–L130, March 2009.

J. C. McKinney and C. F. Gammie. A Measurement of the Electromagnetic
Luminosity of a Kerr Black Hole. ApJ, 611:977–995, August 2004.

J. C. McKinney. General relativistic magnetohydrodynamic simulations of
the jet formation and large-scale propagation from black hole accretion
systems. MNRAS, 368:1561–1582, June 2006.

89



References

A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni, and
A. Ferrari. PLUTO: A Numerical Code for Computational Astrophysics.
ApJS, 170:228–242, May 2007.

A. Mignone, M. Ugliano, and G. Bodo. A five-wave Harten-Lax-van Leer
Riemann solver for relativistic magnetohydrodynamics. MNRAS, pages
114–+, February 2009.

A. B. Mikhailovskii, J. G. Lominadze, R. M. O. Galva˜O, A. P. Churikov,
O. A. Kharshiladze, N. N. Erokhin, and C. H. S. Amador. Nonlocal mag-
netorotational instability. Physics of Plasmas, 15(5):052109–+, May 2008.

A. Müller. Black hole astrophysics: magnetohydrodynamics on the Kerr ge-
ometry. PhD thesis, PhD Thesis, Combined Faculties for the Natural Sci-
ences and for Mathematics of the University of Heidelberg, Germany. VI
+ 129 + XXXVIII pp. (2004), December 2004.

J. Muzerolle, K. L. Luhman, C. Briceño, L. Hartmann, and N. Calvet. Mea-
suring Accretion in Young Substellar Objects: Approaching the Planetary
Mass Regime. ApJ, 625:906–912, June 2005.

M. Oda. CYG X-1 - A candidate of the black hole. Space Science Reviews,
20:757–813, September 1977.

B. Paczynsky and P. J. Wiita. Thick accretion disks and supercritical lumi-
nosities. A&A, 88:23–31, August 1980.

J. C. B. Papaloizou and J. E. Pringle. The time-dependence of non-planar
accretion discs. MNRAS, 202:1181–1194, March 1983.

K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw.
A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics.
Journal of Computational Physics, 154:284–309, September 1999.

R. A. Remillard and J. E. McClintock. X-Ray Properties of Black-Hole Bina-
ries. Annual Review of Astronomy and Astrophysics, 44:49–92, September
2006.

M. M. Romanova, A. K. Kulkarni, and R. V. E. Lovelace. Unstable Disk
Accretion onto Magnetized Stars: First Global Three-dimensional Magne-
tohydrodynamic Simulations. ApJ, 673:L171–L174, February 2008.
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