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Abstract. In dissipative ordinary differential equation systems different time scales cause
anisotropic phase volume contraction along solution trajectories. Model reduction methods exploit
this for simplifying chemical kinetics via a time scale separation into fast and slow modes. The
aim is to approximate the system dynamics with a dimension-reduced model after eliminating the
fast modes by enslaving them to the slow ones via computation of a slow attracting manifold. We
present a novel method for computing approximations of such manifolds using trajectory-based op-
timization. We discuss Riemannian geometry concepts as a basis for suitable optimization criteria
characterizing trajectories near slow attracting manifolds and thus provide insight into fundamental
geometric properties of multiple time scale chemical kinetics. The optimization criteria correspond
to a suitable mathematical formulation of “minimal relaxation” of chemical forces along reaction tra-
jectories under given constraints. We present various geometrically motivated criteria and the results
of their application to three test case reaction mechanisms serving as examples. We demonstrate
that accurate numerical approximations of slow invariant manifolds can be obtained.

Key words. Model reduction, chemical kinetics, slow invariant manifold, optimization, Rie-
mannian geometry, curvature

AMS subject classifications. 37N40, 37M99, 80A30, 92E20

1. Introduction. The need for model reduction in chemical kinetics is mainly
motivated by the fact that the computational effort for a full simulation of reactive
flows, e.g. of fluid transport involving multiple time scale chemical reaction processes,
is extremely high. For detailed chemical reaction mechanisms involving a large number
of chemical species and reactions, a simulation in reasonable computing time requires
reduced models of chemical kinetics [48].

However, model reduction is often also of general interest for theoretical purposes
in mathematical modeling. Reduced models are intended to describe some essential
characteristics of dynamical system behavior while fading out other issues. There-
fore, they often allow a better insight into complicated reaction pathways, e.g. in
biochemical systems [29], and their nonlinear dynamics.

In dissipative ordinary differential equation systems modeling chemical reaction
kinetics different time scales cause anisotropic phase volume contraction along solution
trajectories. This leads to a bundling of trajectories near “manifolds of slow motion”
of successively lower dimension as time progresses, illustrated in Figure 1.1. Many
model reduction methods exploit this for simplifying chemical kinetics via a time scale
separation into fast and slow modes. The aim is to approximate the system dynamics
with a dimension-reduced model after eliminating the fast modes by enslaving them
to the slow ones via computation of slow attracting manifolds.

Very early model reduction approaches like the quasi steady-state (QSSA) and
partial equilibrium assumption (PEA) [48] performed “by hand”, have set the course
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Fic. 1.1. Ilustration of trajectories relaxing successively onto a 2-D manifold and a 1-D mani-
fold before converging to equilibrium. Figure courtesy of A.N. Al-Khateeb, J.M. Powers, S. Paolucci
(private communication).

for modern numerical model reduction methods that automatically compute a reduced
model without need for detailed expert knowledge of chemical kinetics by the user.
Many of these modern techniques are explicitly or implicitly based on a time-scale
analysis of the underlying ordinary differential equation (ODE) system with the pur-
pose to identify a slow attracting manifold in phase space where — after a short initial
relaxation period — the system dynamics evolve. For a comprehensive overview see
e.g. [21] and references therein.

In 1992 Maas and Pope introduced the ILDM-method [33] which became very
popular and widely used in the reactive flow community, in particular in combustion
applications. Based on a singular perturbation approach, a local time-scale analysis is
performed on the Jacobian of the system of ordinary differential equations modeling
chemical kinetics. Fast time scales are assumed to be fully relaxed and after a suitable
coordinate transformation fast variables are computed as a function of the slow ones by
solving a nonlinear algebraic equation system. For recent developments and extensions
of the ILDM method see e.g. [8] and references therein.

Another popular technique is computational singular perturbation (CSP) method
proposed by Lam in 1985 [26, 27]. The basic concept of this method is a represen-
tation of the dynamical system in a set of “ideal” basis vectors such that fast and
slow modes are decoupled. In contrast to ILDM and CSP some iterative methods
came into application that are not based on explicit computation of a time scale
separation, but rather an evaluation of functional equations suitably describing the
central characteristics of a slow attracting manifold, for example invariance and sta-
bility. Examples are Fraser’s algorithm [11, 17, 37] and the method of invariant grids
[9, 20, 21]. Other widely known and successful methods are the constrained runs algo-
rithm [18, 50], the rate-controlled constrained equilibrium (RCCE) method [23], the
invariant constrained equilibrium edge preimage curve (ICE-PIC) method [41, 42],
and flamelet-generated manifolds [12, 47]. In [35] finite time Lyapunov exponents and
vectors are analyzed for evaluation of timescale information. Mitsos et al. formulated
an integer linear programming problem explicitely minimizing the number of species
in the reduced model subject to a given error constraint [36].

It is obvious that non-local information on phase space dynamics has to be taken
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into account to get accurate approximations of slow attracting manifolds in the gen-
eral case. Reaction trajectories in phase space that are solutions of the ODE system
describing chemical kinetics and uniquely determined by their initial values bear such
information. Based on Lebiedz’ idea to search for an extremum principle that distin-
guishes trajectories on or near slow attracting manifolds, we apply an optimization
approach for computing such trajectories [28, 30]. Various optimization criteria have
been suggested [40], systematically investigated and the trajectory-based approach
has been extended to the computation of manifolds of arbitrary dimension via pa-
rameterized families of trajectories.

This paper derives and comprehensively discusses various geometrically motivated
objective criteria for computing trajectories approximating slow attracting manifolds
in chemical kinetics as a solution of an optimization problem. The corresponding
objective functionals are supposed to implicitly incorporate essential characteristics
of slow attracting manifolds related to a minimal remaining relaxation of chemical
forces along trajectories on these manifolds. We consider the picture of abstract “dis-
sipative chemical forces” imagined to drive the single elementary reaction steps [24].
Due to energy dissipation these forces successively relax while the chemical system is
approaching equilibrium. The successive relaxation of these forces causes curvature
in the reaction trajectories (in the sense of velocity change along the trajectory). A
slow 1-D manifold in this picture would correspond to a minimally curved reaction
trajectory along which the remaining relaxation of chemical forces is minimal while
approaching chemical equilibrium.

In particular, we propose and motivate an optimization criterion suitably measur-
ing curvature which is rooted in a thermodynamically motivated Riemannian geome-
try specifically defined for chemical reaction kinetics and based on the Second Law of
Thermodynamics. This metric provides the phase space of chemical reaction kinetics
with a geometry specifically capturing the structure of chemical kinetic systems [22].

The proposed model reduction method is automatic. The user has to provide
only the desired dimension of the reduced model and the range of concentrations of
the reaction progress variables supposed to parameterize the reduced model. For the
application examples presented in this work, the numerical optimization algorithm
shows fast convergence independent of the initial values chosen for numerical ini-
tialization. The optimization problems seem to be convex for the example systems
presented in this paper (see “optimization landscapes” in Section 3.1.3 and 3.3.3) and
would then have a unique solution corresponding to a global minimum of the objec-
tive functional. An advantage of the presented trajectory optimization approach over
local time scale separation methods like QSSA and ILDM is the fact that it produces
smooth manifolds and whole 1-D manifolds (trajectories) as a solution of a single
run of the optimization algorithm. Methods based on explicit local time scale sepa-
ration might yield non-smooth manifolds when the fast-slow spectral decomposition
changes its structure. Furthermore, the formulation as an optimization problem as-
sures results even under conditions where the time scale separation is small and many
common model reduction methods fail or numerical solutions are difficult to obtain.

2. Trajectory-based optimization approach. As described in the introduc-
tion, the key of the method presented here is the exploitation of global phase space
information contained in the behavior of trajectories on their way towards chemi-
cal equilibrium. This information can be used within an optimization framework for
identifying suitable reaction trajectories approximating slow invariant and attracting
manifolds (SIM). A suitable formulation as the numerical solution of an optimiza-
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tion problem assures the existence of a reduced model irrespective of assumptions
on the time scale spectrum, its structure and the dimension of the reduced model
and sophisticated optimization software can be used for the numerical solution of the
problem. The central idea behind our approach is that the optimization criterion
for the identification of suitable trajectories should represent the assumption that
chemical forces are — under the given constraints — already maximally relaxed along
trajectories on the slow attracting manifold. From the opposite point of view this
means that the remaining relaxation of chemical forces along the trajectories is min-
imal while approaching chemical equilibrium. This means that the velocity change
caused by chemical force relaxation is minimal which is intuitively close to the notion
of a slow manifold. Various ideas for the formulation of suitable optimization criteria
are conceivable.
Mathematically the basic problem can be formulated as

rcr%gl/o D (c(t)) dt (2.1a)

subject to
de(t)
P AC Q) (2.1b)
0=g(c(0)) (2.1c)
Ck(O) = 627 ke Iﬁxed- (21(1)

The variables ¢, denote the concentrations of chemical species, and Igyeq is an index
set that contains the indices of variables with fixed initial values (the so-called reaction
progress variables) chosen to parameterize the reduced model, i.e. the slow attracting
manifold to be computed. Thus, those variables representing the degrees of freedom
within the optimization problem are the initial value concentrations of the chemical
species ¢, (0),k & Ifxea. The process of determining ¢, k & Ifyea from cg, k € Ifxea
is known as “species reconstruction” and represents a function mapping the reaction
progress variables to the full species composition by determining a point on the slow
attracting manifold. In our approach, species reconstruction is possible locally, i.e.
without being forced to compute the slow attracting manifold as a whole. The system
dynamics (chemical kinetics determined by the reaction mechanism) are described by
(2.1b) and enter the optimization problem as equality constraints. Hence an optimal
solution of (2.1) always satisfies the system dynamics of the full ODE system. Chemi-
cal element mass conservation relations that have to be obeyed due to the law of mass
conservation are collected in the linear function g in (2.1c). The initial concentrations
of the reaction progress variables are fixed via the equality constraint (2.1d).

When asymptotically approaching the equilibrium point ¢®*?, which is a stable
fixed point attractor in a closed chemical system, the system dynamics become in-
finitely slow and equilibrium will never be reached exactly. By approximating the
equilibrium point within a surrounding of small radius € > 0 for the concentration
of chemical species (e.g. the reaction progress variables) by an additional constraint
ek (te) — ¢ < e (equilibrium composition: ¢°1), the free final time ¢; can be auto-
matically determined within the optimization problem assuring that this additional
inequality constraint is fulfilled. However, in practical applications it is usually suf-
ficient to choose t; large enough for the final point of the integration to be close to
equilibrium. The objective functional ®(c(t)) in (2.1a) characterizes the optimization
criterion which will be discussed later in detail.
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The key idea of our approach to model reduction in chemical kinetics is found
in the fact that suitable trajectories can be used to span slow attracting invariant
manifolds. The approximated SIM can then be used as a reduced model of the un-
derlying ODE model, for example via a look-up table for points on the slow manifold.
This reduced model is parametrized by the reaction progress variables (coordinate
axes) which find a fully natural realization in our formulation as trajectory initial
concentrations (2.1d).

2.1. Numerical Methods: Multiple Shooting in a Parametric Optimiza-
tion Setting. The optimization problem (2.1) can be solved as a standard nonlinear
optimization problems (NLP), for example via the sequential quadratic programming
(SQP) method [39]. However, one has to decide how to treat the differential equation
constraint and the objective functional. The easiest way is a decoupled iterative ap-
proach, a full numerical integration of the ODE model with the current values of the
variables subject to optimization. This is called the sequential (or single shooting)
approach since it fully decouples simulation of the model and optimization. However,
it is often beneficial to have an “all at once” approach that couples simulation and
optimization via discretization of the ODE constraint. This simultaneous approach
has the advantage of introducing more freedom into the optimization problem since
the differential equation model does not have to be solved exactly in each iteration
of the optimization. A beneficial approach to couple the ODE constraint to the opti-
mization is the multiple shooting method. Here, the time interval is subdivided into
several multiple shooting intervals and additional degrees of freedom are introduced
at the initial points of each interval. On each multiple shooting interval an indepen-
dent initial value problem is solved via numerical integration. Additional “matching
condition”-equality constraints at the level of the optimization problem assure conti-
nuity of the final solution trajectory between the multiple shooting subintervals. For
all results in this paper the multiple shooting approach introduced by Bock and Plitt
[6, 7] is used.

The SQP method basically can be interpreted as Newton’s method applied to the
Karush-Kuhn-Tucker (KKT) necessary optimality conditions of the NLP (see e.g.
[38]) and requires the computation of derivatives. For the numerical approximation
of these derivatives by finite difference methods, along with the nominal ODE solution
trajectory n perturbed trajectories have to be computed, where n is the dimension of
the ODE system. To avoid the dependence of the resulting derivative on the adaptive
discretization schemes of these trajectories provided by an automatic step size control
in the numerical integration routine, the perturbed trajectories are evaluated on the
same grid as the nominal trajectory. This approach is called internal numerical dif-
ferentiation (IND) [5]. As the systems considered here are chemical reaction systems
which are usually stiff systems, the integration itself is performed by DAESOL [2, 3],
a multistep backward differentiation formula (BDF) differential algebraic equation
(DAE) solver. For all computations presented in the results section of this paper, the
software package MUSCOD-II [7, 31, 32] has been used.

For the computation of slow attracting manifolds of dimension larger than one,
a sequence of problems of type (2.1) has to be solved for different initial values of
the reaction progress variables in (2.1d). For this purpose, we use a parametric op-
timization framework, where neighboring problems are efficiently initialized with the
previous optimal solution. Through this continuation method embedding the prob-
lem into a parametric family of optimization problems, the computation of a family
of optimal trajectories spanning a higher-dimensional manifold can be significantly
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accelerated.

Such embedding strategy was originally developed and implemented into the pack-
age MUSCOD-II by Diehl et al. in [13, 14] for fast online optimization, especially
real-time optimal control. A variant of this implementation has been used for the
results presented in this paper.

2.2. Optimization criteria. Naturally, the choice of the criterion ®(c(t)) cru-
cially affects both success and degree of accuracy of the computed approximations
of the slow attracting manifold. A useful criterion ®(c¢(t)) should at least fulfill the
following three requirements:

(i) ® should be physically motivated and describe in a suitable sense the extent
of relaxation of “chemical forces” or “dynamical modes” in the evolution of reaction
trajectories towards equilibrium.

(ii) @ should be computable from easily accessible data contained in standard
models of chemical reaction mechanisms (e.g. reaction rates, chemical source terms
and their derivatives, thermodynamic data).

(iii) @ should be twice continuously differentiable along reaction trajectories.
Another desirable but not necessary property, which is related to the invariance of
a manifold is the following consistency property. If a criterion is consistent in the
sense of Def. 2.1, the manifold computed as a solution of the optimization problem is
positively invariant which means that trajectories starting on the manifold at time #,
will stay on the manifold for all ¢ > tg.

DEFINITION 2.1 (Consistency property). Suppose an optimal trajectory ¢(t) has
been computed as a solution of (2.1). Take the concentrations of the progress variables
é(ty) at some time t; > 0 as new initial concentrations for (2.1d) and solve (2.1)
again. If ¢(t) = &(t + t1) holds for the resulting optimal trajectory ¢(t), we call the
optimization criterion ® consistent.

The consistency property, illustrated in Fig. 2.1, can be used as an accuracy test
for the computed manifold, because the correct attracting SIM should be invariant
by definition. However, it poses a strong demand that is not a priori incorporated
into the problem formulation (2.1) and will not be fulfilled in general for solutions
of the optimization problem. Nevertheless, an invariant manifold can in principle be
constructed in our approach even without a consistent criterion by solving (2.1) for
initial values ¢, k € Ifxea on the boundary of a desired domain and spanning the
low-dimensional manifold by the resulting trajectories.

2.2.1. Curvature-based Relaxation Criteria. As pointed out before, a suit-
able optimization criterion ®(c(t)) should characterize the extent of relaxation of
“chemical forces”. Fundamentally rooted criteria of this type can be derived on the
basis of the concept of curvature of trajectories in phase space measured in a suitable
metric. From a physical point of view curvature is closely related to the geometric
interpretation of a force and its action on the system dynamics. This picture has a
long historical tradition.

One of the most popular examples is Einstein’s general theory of relativity [16]
which proposes the idea that gravitational force is replaced by a “geometric picture”.
Einstein’s general theory of relativity relates the special theory of relativity and New-
ton’s law of universal gravitation with the insight that gravitation can be described by
curvature of space-time. Space-time is treated as a four-dimensional manifold whose
curvature is due to the presence of mass, energy, and momentum.

But even long before Einstein, the concept of curvature has already been related
to the concept of force in physics. In 1687 Sir Isaac Newton published the laws of
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F1a. 2.1. Illustration of the consistency property: An optimization problem has been solved for
a fized value (=2.0 here) for the progress variable. Its solution is the trajectory &(t) starting from
the black circle and converging towards equilibrium (here the coordinate origin). At a later point in
time t1 > 0, the progress variable is fixed to the value on the trajectory ¢ (t) (=1.0 here), k € Ifixed,
and the optimization problem is solved again. If the new solution é(t) coincides with the remaining
part of the previous one such as the trajectory starting at the blue circle, we call the criterion (2.1a)
consistent, otherwise (e.g. the trajectory starting at the red circle) it is called inconsistent.

motion in his work “Philosophiae Naturalis Principia Mathematica”. In a differential
formulation Newton’s second law can be stated as

F=m-a,

where m is mass, a is acceleration, and F' is force. Since the acceleration a is the second
derivative of the state variable x(t) with respect to time, a = &, and thus contains
information about the curvature of x, Newton’s law is the first one to directly relate
force to curvature.

In this context it is important to remark that equations of motion in classical
mechanics can also be described by a variational principle, Hamilton’s principle of
least action. In Lagrange-Hamilton mechanics [19], the trajectory of an object is
determined in such a way that the action (which is defined as the integral of the
Lagrangian over time, where the Lagrangian is the difference of kinetic energy and
potential energy) is minimal.

A central issue in this paper is to transfer the principle of “force = curvature”
to the field of chemical systems and look for a corresponding variational principle
characterizing the kinetics along a slow attracting manifold. In chemical systems
dissipative forces are active. The different time scales of dynamic modes result in an
anisotropic force relaxation in phase space. This force relaxation changes the reaction
velocity.

Inspired by an analogy observation with Newton’s geometric interpretation of a
force as a second derivative of a trajectory with respect to time, we regard the second
time-derivative of the chemical composition ¢(t) characterizing the rate of change of
reaction velocity through relaxation (dissipation) of chemical forces:
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) . de de de
¢= f(o), C—E—&'E—Jf(c)'f (2:2)
We consider the tangent (reaction velocity) vectors ¢(t) = f(c(t)) of reaction

trajectories. The relaxation of chemical forces results in a change of ¢(t) along a
trajectory on its way towards chemical equilibrium. This change along the trajectory
may be characterized by taking the directional derivative of the tangent vector of the

curve ¢(t) with respect to its own direction v := TG = ”]fuz
Mathematically this can be formulated as
Dyélt) = S f(elt) + )| = Jyle) - L
we(t) = - fle av)| _ =Jyle G

with Jy(c) being the Jacobian of the right hand side f evaluated at c(t) and | - ||2
denoting the Euclidian norm. Hence, we may choose the optimization criterion

1) 1
HE

in the formulation (2.1a). This criterion bears some resemblance to the recently
published method of stretching-based diagnostics [1] and its application for model
reduction (SBR-method). The authors use an expression closely related to criterion
(2.3) which measures the stretching of vector fields in the tangent bundle of manifolds.

The natural way for the evaluation of criterion (2.3) in the formulation of the
objective functional (2.1a) would be a path integral along the trajectory towards
equilibrium

Pa(c) (2.3)

U(tr)
| et a),
1(0)

where [(t) is the Euclidian length of the curve ¢(t) at time ¢ given by

t
1) = [ et ar
This results in the reparametrization
dit) = [le() . dt. (2.4)
The objective used in (2.1a) would be

/0 75 12 dt. (2.5)

Using (2.2) this is equivalent to

te
/O lell» dt. (2.6)

However, an alternative norm for the evaluation of ||J¢(c) f|| might be taken
into account, which has already been used by Weinhold in [49] and is motivated from
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thermodynamics. This norm is also known as Shashahani norm [43] and is employed
for model reduction purposes in [22]. In this norm the criterion adapted from (2.3)
can be written as

_ Il J¢(c) fllw _ (fTJ?(c) -diag(1/¢;) - Jf(C)f)1/2 o
”fHW (fT . diag(l/q) ] f)1/2 .

with W = diag(1/¢;) being the diagonal matrix with diagonal elements 1/¢;. This cri-
terion brings thermodynamic considerations into play and represents the Riemannian
geometry induced by the second differential of Gibbs free enthalpy G

(I)B(C)

G= Zci[ln(ci/ciq) —1], W = Hess(G).

It measures the thermodynamic anisotropy of the phase space by weighting the co-

ordinate axis corresponding to species ¢ with the gradient ‘g’c‘f = Hess(G);,; of the

chemical potential u; = % of species ¢ in that direction. The corresponding metric
has been discussed in the context of an entropic scalar product [22]. The correspond-
ing objective function in the general optimization problem (2.1) for the W-norm would
be

/0 75e) fllw dt. (2.8)

Interestingly, from a different point of view the objective functionals (2.5) and
(2.8) can also be interpreted as minimizing the length of a trajectory in a suitable
Riemannian metric. For any continuously differentiable curve «(t) on a Riemannian
manifold, the length L of ~ is defined as

L(y) = / oo G0,4(0) dt (2.9)

with g, ;) being a scalar product defined on the tangent space of the curve in each
point. The Riemannian metric g, ;) might be chosen as

Gy (. f) = FTTF () - A-Jp(e) f = T¢(0) fIIA, (2.10)

for a positive definite matrix A. The “length-minimizing” objective functional equiv-
alent to criterion (2.1a) is now

min L(7). (2.11)

subject to constraints (2.1b)—(2.1d). With the solution trajectory of this problem,
the “minimum distance from equilibrium in a kinetic sense” can be formulated in
an explicit mathematical form based on concepts from differential geometry. In [40],
a heuristic choice for a matrix A was made based on the entropy production rate.
However, the results achieved using the norm proposed in (2.7) yield more accurate
results for the computation of slow attracting manifolds in chemical kinetics.

Another heuristic interpretation of (2.6) is possible based on the fact that the
time-integral over a rate of change of velocity is time-averaged velocity whose mini-
mum is intuitively related to the notion of a slow manifold.
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2.2.2. Geometric curvature of curves in space. In the face of our central
aim to relate the principle “force equals curvature” to model reduction for chemical
kinetics we refer to some mathematical definitions and properties of curvature in this
section. Various concepts and corresponding definitions of curvature of manifolds
and curves in R™ can bee found in general literature on differential geometry as e.g.
(4, 15, 25].

Let ¢ : J = (0,L) — R™ be a curve defined on an open interval J C R and
parameterized by arc length s, meaning

e

(|| - [|2 denoting the Euclidian norm). The value of

H ds2

is a measure for the rate, how rapidly the curve pulls away from its tangent in a
neighborhood of &(s). That leads directly to the following definition.

DEFINITION 2.2 (Curvature). Let ¢ : J — R™ be a curve parametrized by arc
length s € J. The number

H d52

is called curvature of a curve ¢ at s (or at &(s)).

However, in general trajectories in chemical composition space regarded as curves
in vector space are not parameterized in arc-length, but e.g. time t. We want to
compute the curvature for the case of an arbitrary parametrization t. Let ¢: I — R”
be a regular curve, I, J C R open, ¢ : J — I the diffeomorphism resulting in ¢ := cogp
being parametrized in arc length with w.l.o.g. p(s) > 0 Vs € J. Then

d_ d d

el = e et (2.12)
and
0 = e (5500)) + el g 21

hold. As ¢ is parametrized in arc length (2.12) leads to

For the second derivative of ¢, that appears in (2.13), the application of the chain
rule yields (with (-, )2 being the Euclidian scalar product)

a (ae(els). ghele(s)

——p(s) = — Z,
" [etaeteto],
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Bringing the last two formulae together with (2.13) and ¢ = ¢(s) we arrive at the
formula for the curvature of ¢(t):

é(t) o é(t)

. —(&(t), é(t))2 =7
le@®)l3 lleelI3
Recalling the discussions in the last section, an alternative optimization crite-

rion for (2.1a) could be the curvature (2.14). In this context the total (integrated)
curvature should be the objective function in (2.1):

U(te)
Ktot i= / K(s)ds,
10)

K(t) = De(c(t)) =

. (2.14)

which can be expressed in time-parameterization as

fior = [ wl0)]e(0)
0

_ / ()

T — (€(t),E(t))2
lle()]]2
with k(t) as in equation (2.14).

Intuitively, the local curvature of a trajectory on its way to equilibrium in phase
space should have a peak each time it relaxes onto a lower dimensional manifold.
Therefore, also this criterion is related to the relaxation of chemical forces in some
sense.

(2.15)

2.2.3. Evaluation of the Objective Functional. From a practical perspec-
tive, the computation of the Jacobian for the expression of the different criteria is not
necessary, as

Et) = Jy(c(t) f(c(t) (2.16)

simply is a directional derivative of the ODE vector field with respect to its own
direction.

This directional derivative could be evaluated using classical difference quotients
[46], but a more appealing alternative is found in [45].

Instead of using the central difference formula

F(xog+9) — F(xzo—9)

F’ ~
(20) o

(2.17)

for the approximation of the derivative of the real valued function F(z), Squire and
Trapp [45] suggest replacing § with id (i =+/—1). If F' is an analytic function, (2.17)
then reads

S[F(xo +19)]

F' =~
5 )

(2.18)
with $(z) being the imaginary part of z. This is called complez-step derivative ap-
proximation.

This result is especially appealing, as (2.18) does not contain a subtraction and
hence eliminates cancellation errors. Therefore § can be chosen very small, hence
making higher-order terms in the Taylor expansion negligible.
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For the directional derivative ¢ at a point ¢ with ¢ from ¢ = f(¢), (2.18) reads

o~ .
8oy ~ M. (2.19)

Compared to the use of the full Jacobian, the complexity for the evaluation of
¢ can be reduced from O(n?) to O(n) using this complex variable approach. At the
same time a high accuracy is guaranteed by the possibility of using an extremely small
d.

However, a numerical difficulty occurs for the evaluation of the objectives (2.8)
and (2.15). In case of (2.8) the weights for the W-norm are obtained as inverted species
concentrations. Especially for radical species the denominator becomes generally very
small near chemical equilibrium resulting in numerical instabilities. The case of (2.15)
is even more difficult, as negative exponents > 1 occur for the norm of the reaction
rates. Near the equilibrium point the reaction rates become infinitesimally small and
this results in severe numerical problems. A remedy for this problem is an additional
equality constraint. Instead of fixing the final time ¢; at a large value, it can be left
free in the optimization determined by an end point constraint

1 (c(te))ll2 = € (2.20)

with a sufficiently large € keeping the end point of the trajectory away from equilib-
rium.

3. Results. In this section, results for our model reduction method based on
trajectory optimization are presented. We choose three different chemical reaction
mechanisms to demonstrate its application: the Davis—Skodje model system, a sim-
plified reaction mechanism for the combustion of Hy, and a realistic temperature
dependent mechanism for ozone decomposition. For these three mechanisms all pre-
viously discussed objective functionals (2.5), (2.8), and (2.15) in the general problem
(2.1) are tested for the purpose of numerically computing approximations of slow
attracting manifolds. The results are compared and discussed.

3.1. The Davis—Skodje Test Problem. The well-known Davis—Skodje mech-
anism is our first test case [11, 44].

dyi _

dr Y1

d — Dy1 +y3
v 0= Bt
de (1+wy1)

where v > 1 is a measure for the spectral gap or stiffness of the system. Typically
model reduction algorithms show a good performance for large values of v, which
represent a large gap between the time scales of fast and slow modes. Small values of
~ impose a significantly harder challenge on the computation of slow attracting man-
ifolds. For reasons of adjustable time scale separation and analytically computable
slow invariant manifold and ILDM, the Davis—Skodje model is widely used for testing
numerical model reduction approaches.

3.1.1. Results for Different Optimization Criteria. In Figures 3.1, 3.2, and
3.3 results for criteria (2.5), (2.8), and (2.15) respectively are depicted.

We will refer to criterion (2.3) as criterion A in the following. The dependence
of the accuracy of the computed slow attracting manifold on the stiffness parameter
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Results

The red curve is the analytically computed SIM. The black
dashed curve represents the analytic Maas—Pope-ILDM. The blue curves are trajectories numerically
integrated from those initial points that are solutions of our optimization problem.
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F1G. 3.2. Results for the Davis—Skodje problem with (2.8) as objective functional. Again, results
for different values of v are shown together with the SIM (red) and the Maas—Pope-ILDM (black,

dashed).
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F1G. 3.3. Results for the Davis—Skodje problem with (2.15) as objective function. Only results
for v = 6.0 are shown, cf. the discussion in the next section including Figures 3.5 and 3.6.

~ becomes obvious. In all cases, the value of y; is fixed as reaction progress variable.
The optimization problem is solved repeatedly for different values for y;. For large
and moderate values of the stiffness parameter, good approximations of the SIM (red)
are achieved. For v = 1.2 the results become more inaccurate. For comparison the
Maas—Pope-ILDM is plotted as dashed black line, it can be computed analytically for
the Davis—Skodje model [11]. The computational effort for one solution of the opti-
mization problem is on average about twelve SQP-iterations (cf. Section 2.1) which
takes about ten seconds in total on a single core Intel® Pentium® 4 (3 GHz)-machine
with 2 GB memory. Of course, the convergence time (not the result) depends on the
initial values chosen to start the numerical algorithm. We use a non-equidistant mul-
tiple shooting grid with twenty intervals. The number of evaluations of the function
f is of order 10°, the order of the number of matrix factorizations is 10*. Due to the
parametric optimization strategy and application of initial value embedding [13, 14]
pointed out in Section 2.1, every follow-up solution of a neighboring problem with
slightly different values for the reaction progress variables needs only three to five
SQP-iterations.

For the second criterion (2.8) — denoted B in the following — the results look very
similar (see Fig. 3.2). As in the Davis-Skodje model the values for the variables y;
and ys are of the same order, this is obvious considering the scaling in criterion (2.7).

Results for criterion C (2.15), the total curvature, are shown in Figure 3.3. With
this criterion, we could not obtain reasonable results for values of v < 6.0 which will
be further explained in the next section.

3.1.2. Accuracy and Consistency Analysis. As dicussed in the previous
section the results are not consistent in the sense of Definition 2.1. In this section the
(consistency) error is analyzed.

In general, for testing accuracy of model reduction approaches it is very difficult
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to provide qualitative and quantitative measures of accuracy of numerical results. The
reason for this is the nonavailability of (analytical) expressions for a SIM. Commonly
we consider “eye inspection” of trajectory bundling behavior as well as consistency
(invariance) as a qualitative measure of accuracy. As mentioned before, in case of the
Davis—Skodje mechanism the situation is different, as here an analytic expression for
the SIM exists. In this case we are able to provide a quantitative measure of accuracy.

In Figure 3.4 different measures of the error are shown for the results in Fig. 3.1(a)
and (b). The first qualitative error err}, | is the distance (as a function of the reaction
progress variable) between the SIM to an optimal solution trajectory provided by our
method, here shown for the optimal solution trajectory for y;(0) = 2.0 fixed. This
error can be considered as the error of a computed one-dimensional manifold. The
second absolute error err?, | is the distance of the SIM to the initial values of the
free variables of all computed trajectories for a range of fixed values of the progress
variables.

The third error err,q is the invariance error of the method. It is the (Euclidian)
distance of the initial values of the free variables of all computed trajectories to the
special trajectory computed for errl, . Its maximum value err™®* can be used as

rel

quantitative measure of invariance. The value of err™ for criterion A is 1.38 x 10~!
(a), 5.70 x 1072 (b), 1.33 x 1072 (c), and 5.74 x 10~3 (d), for criterion B: 1.42 x 10~}
(a), 6.02 x 1072 (b), 1.38 x 1072 (c), and 5.89 x 10~3 (d), and for criterion C (only

v =6.0) 1.88 x 1072.

0.18 0.07
- 1 _ 1
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0.16} —EeIT o ——eIT,
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Fi1G. 3.4. The three different errors for the two cases depicted in Fig. 3.1(a) and (b). The

mazimum of the black curve err[3?* can be seen as quantitative measure of invariance.

3.1.3. Optimization Landscapes. Since the Davis—Skodje test problem con-
sists of only two variables, the structure of optimization landscapes can easily be
visualized. To compute these landscapes, the initial values of both variables are var-
ied over a fixed range and for the trajectories starting in each of these pairs of initial
values, the values of (2.5), (2.8), or (2.15) respectively are calculated. These objective
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Fic. 3.5. Optimization landscape for the Davis—Skodje-model corresponding to results depicted
in Fig. 8.3 (v = 6.0). The integrated (total) curvature (2.15) is plotted on the z-azis and coded
in color for illustration reasons. The analytically computed SIM (red) and the analytically given
Maas—Pope-ILDM (black) are projected onto the landscape.

functional values are depicted as a function of the initial values of the corresponding
trajectories. Calculations are performed and plots are generated using MATLAB®.

For the Davis—Skodje problem, we restrict ourselves to the illustration of crite-
rion C, where we did not achieve satisfying results for small values of + (see previous
subsection). In Figure 3.5 the results for v = 6.0 are shown. Additionally the SIM
(red) and the ILDM (black) are projected onto the optimization landscape. Remem-
ber, that in our approach for a fixed value of y; the minimum of the objective value
identifies the corresponding initial value of ys.

An optimization landscape for v = 2.0 and criterion C is shown in Figure 3.6.
In this case, the criterion fails. No minimum can be found in the neighborhood of
the SIM. The reason for this is that obviously for small time scale separation the
relation between geometric and kinetic properties of the trajectories pointed out in
Section 2.2.2 becomes weaker and linear segments of trajectories are preferred in the
optimization objective functional against a slow attracting manifold (see “valley” in
Fig. 3.6). As explained in Section 2.2.2; criterion C measures the curvature generated
through relaxation of a trajectory onto a slow attracting manifold. Thus, if relaxation
is weak, the criterion becomes inaccurate.

3.2. Model Hydrogen Combustion Reaction Mechanism. In this section
we consider a small test mechanism, which has been used for model reduction purposes
in [10, 22, 40]. It consists of six chemical species involved in six (in each case forward
and backward) elementary reactions involving two element mass conservation relations
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Fic. 3.6. Results for the computations as in Figure 3.5 with v = 2.0. No minimum near the
SIM can be found.

for hydrogen and oxygen:

k
H, = 2H
kio
02 — 20
ki3
H,0 = H+OH (31)
; .
Hy+ O = H+OH
k
0,+H = O0+OH

Hs + o = HQO

With the rate constants

ki = 2.0, k_1 = 216.0
ks = 1.0, k_o = 337.5
ks = 1.0, k_s = 1400.0

k4 = 1000.0, k_4 = 10800.0
ks = 1000.0, k_5 = 33750.0
ke = 100.0, k_g = 0.7714

and the mass conservation relations

2CH2+2CHQO+CH+COH:01
2 co, + cn,0 +co +con = Cs

this mechanism yields a system with four degrees of freedom. For our computations
C1 =2.0 and Cy = 1.0 were chosen.
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F1c. 3.7. Results for the hydrogen combustion mechanism with criterion A. The free variables
and the integrand of the objective functional are plotted versus the reaction progress variable cy,0 -
For different values of cu,o the optimization problem is solved and the evolution of the resulting
trajectories (blue curves) towards equilibrium (red dot) is shown. Especially for the radical species
concentrations cy and co criterion A turns out to be inconsistent.

3.2.1. One-dimensional Manifolds. We first present results for the computa-
tion of one-dimensional manifolds in composition space. The value of cy,o serves as
reaction progress variable. It is varied between 0.05 and 0.65. We present and compare
results for the three different optimization criteria introduced in Section 2.2.1.

In Figure 3.7, results for criterion A are shown. The values of the free variables
computed in the optimization are plotted versus the value of cm,0. Especially for
the radical species concentrations cg and co criterion A turns out to be inconsis-
tent to some extent in the sense of Definition 2.1. Figure 3.8 shows the results for
the weighted criterion B. A significant improvement towards better consistency is
achieved. The third criterion C which failed in case of the Davis—Skodje test problem
here performs best, cf. Figure 3.9. The results are nearly consistent. For criterion C
the additional equality constraint (2.20), proposed in Section 2.2.3 has been used to
prevent numerical instabilities near the equilibrium point. The computational effort
for a 1-D manifold is in the order of seconds.

3.2.2. Two-dimensional Manifolds. As the hydrogen combustion model has
four degrees of freedom, also two-dimensional manifolds can be constructed. In the
presented examples, cp,0 and cp, serve as reaction progress variables. We present
consistency tests plotted in two dimensions and finally show three-dimensional plots
of the computed two-dimensional manifold and the relaxation of trajectories started
from arbitrary initial values onto this 2-D manifold.

Figure 3.10 refers to criterion A. The resulting trajectories are plotted. After
some time t; the values of the progress variables are fixed and the problem is solved
again for testing consistency by eye inspection which turns out to be quite accurate.
For criterion B (see Fig. 3.11), comparably good consistency is observed.
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F1c. 3.8. Results for the hydrogen combustion mechanism with criterion B.
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Fic. 3.9. Results for the hydrogen combustion mechanism with criterion C.

Results for the third criterion C are depicted in Figure 3.12. Here the peaks
in the curvature during relaxation onto a lower-dimensional manifold mentioned in
Section 2.2.2 become obvious.

For visualization of the two-dimensional manifold, three-dimensional cuts of six-
dimensional composition space are plotted in Figure 3.13. The remaining free variables
are plotted versus the reaction progress variables. Arbitrary trajectories relax on the
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Fi1c. 3.10. Results for a two-dimensional manifold for the hydrogen combustion mechanism
with criterion A. The values of the progress variables are fized to 0.05 and 0.2 in case of cn,o0 and
to 0.05 in case of cy,. Consistency tests are performed.

2-D manifold spanned by the computed trajectories. The computational effort for a
2-D manifold is in the order of some minutes.

3.3. Ozone Decomposition Reaction Mechanism. Our last test case is a

three component ozone decomposition mechanism (see Table 3.1) taken from [34]. It
has been chosen to demonstrate the performance of our method taking temperature
dependence via Arrhenius kinetics into account. Many model reduction approaches
explicitly based on time scale separation fail when the spectral gap between fast and
slow modes becomes too small which is often the case for low temperatures.

TABLE 3.1

Ozone decomposition mechanism from [34]. Rate coefficient k = AT exp(—Ea/RT). Collision
efficiencies in reactions including M: fo = 1.14, fo, = 0.40, fo, = 0.92.

Reaction A / cm,mol, s b E./ Iﬁ—il
0O+0+M — O+M 2.90 x 107 —~1.0 0.0
O + M - 0+0+M 6.81 x 10'® —1.0 496.0
03 + M — 040, +M 9.50 x 104 0.0 95.0
O+0,+M — O5+M 3.32 x 1013 0.0 —4.9
O+ O3 — Oy + Oy 5.20 x 1012 0.0 17.4
Oz + 02 — 0+ O3 4.27 x 1012 0.0 413.9

The ozone decomposition mechanism involves the element mass conservation re-

lation

Co+2002—|—300320
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Fi1c. 3.11. Results for a two-dimensional manifold for the hydrogen combustion mechanism
with criterion B. The results are comparable to the results for criterion A, cf. Figure 3.10.

leaving a system with two degrees of freedom. We choose without loss of generality
Cc=1.

3.3.1. Results for Different Optimization Criteria. The ozone decomposi-
tion model has two degrees of freedom and we compute one-dimensional manifolds.
The results for different temperatures are compared. Consistency tests are performed
as in the previous sections. For criterion A at T'= 1000 K (3.14), a short relaxation
phase of the computed trajectories can be observed, indicating inconsistency. The
other criteria yield more consistent results and seem to be of comparable quality for
approximation of a slow attracting manifold.

For a lower temperature of 7' = 500 K (Figure 3.15), criterion A obviously fails
for the “relatively small” absolute values of co,, whereas criteria B and C yield good
approximations of the SIM.

For T = 350 K, the effects observed in Figure 3.15 amplify. However, according
to the results shown in Figure 3.16 criteria B and C still perform reasonably well in
this low-temperature region.

3.3.2. Comparison with ILDM. For the ozone decomposition mechanism we
make a comparison of our results at ' = 1000 K with the ILDM method [33]. We
numerically compute ILDM-points for a range of co, values. Figure 3.17 depicts the
results. A comparison of Figure 3.17(b) with the lower row of Figure 3.14 demonstrates
a significantly better performance of our trajectory optimization method. The ILDM
points do not lie close to the slow attracting manifold.

3.3.3. Optimization Landscapes. We compute optimization landscapes for
the ozone decomposition model which has two degrees of freedom. Initial values for
co, and co, are varied within the physically allowed range. The value of the objective
function is computed for trajectories corresponding to tuples of initial values and
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Fic. 3.12. Results of the two-dimensional manifold for the hydrogen combustion mechanism
using criterion C.

0.5
2 0.4
15 o3
T C 0.2
O ., ©
0.5
0.1
0 0.5 /
0 0.5 0 c H 0 T T T T
1 2 0 02 04 06 08 C H
CH,O CH ,O 2
0.2
0.15
1 as
O o1
Oos ©
Q 1 0.05
05
oO 0
C T T T T
c 05 10 H%Hg ® 02 04 06 08 1
H->O CH ;0

Fic. 3.13. Three-dimensional plots of the two-dimensional manifold for the hydrogen com-
bustion mechanism. The free variables are plotted versus the progress variables. The manifold is
spanned by trajectories (blue) computed for initial fized values c% with criterion C as objective func-
tional. Arbitrary trajectories (red) fulfilling the element mass conservation are computed to visualize
their relaxation onto the manifold.
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Fi1G. 3.14. Results for the ozone decomposition mechanism at a temperature of T' = 1000 K with
the three different criteria A (left), B (middle), and C (right). The free variables are plotted versus
co, as reaction progress variable. The optimization problem is solved several times with different
values of co,(0) (z-marks depicting the initial values of the optimal solution trajectories). The
solution trajectories starting at the blue z-marks are shown on their way to equilibrium (ceoq2 =0.5).
All criteria work reasonably well, but criterion A is worse concerning consistency.

depicted via color coding in a logarithmic scale. We compare these optimization
landscapes for T'= 1000 K and T = 350 K.

Figure 3.18 shows the optimization landscape computed for criterion A (T =
1000 K). The other criteria, B and C, give rise to a much more distinct minimum of
the objective function, cf. Figure 3.19 and 3.20.

In the case of T' = 350 K criterion A fails, cf. Fig. 3.21, no minimum near the SIM
is found. The distinct minima for criteria B and C become shallow but still allow for
an optimal solution close to the SIM. Figures 3.22 and 3.23 correspond to criteria B
and C respectively and visualize the results of the optimization problem presented in
Section 3.3.1.

4. Summary and Discussion. We present various geometrically motivated cri-
teria for the numerical computation of trajectories approximating slow (attracting)
invariant manifolds (SIM) in chemical reaction kinetics. The key idea of our approach
is to approximately span the SIM by trajectories being solutions of an optimization
problem for initial values of these trajectories. The objective functional is supposed to
characterize the extent of relaxation of chemical forces (being minimal in the optimal
solution) along a reaction trajectory on its way towards equilibrium. Three different
criteria are proposed and motivated. Whereas the first two criteria use the direc-
tional derivative with respect to its own direction of the tangent vector field of the
kinetic ODE system evaluated in a suitable norm, the third criterion uses a classical
differential geometric definition of curvature of trajectories regarded as curves in R"”.

These criteria are tested with three different chemical reaction mechanisms: the
Davis—Skodje problem [11], a six-species kinetic model for hydrogen combustion, and
a realistic ozone decomposition mechanism including temperature dependence via
Arrhenius kinetics. In all cases the quality of the results are evaluated and compared.
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Fi1G. 3.15. Results for the ozone decomposition mechanism at a temperature of T = 500 K
with the three different criteria arranged as in Figure 3.14. Criteria B and C perform well, whereas
criterion A obuviously fails.
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Fic. 3.16. Results for the ozone decomposition mechanism at a temperature of T = 350 K.

Comparisons with the widely used ILDM-method [33] show that our method bears
promise for improvements of slow manifold computations in applications. Even though
our optimization criteria do not guarantee invariant manifolds in general, the solutions
in our test examples are close to invariance. It would be possible to compute invariant
approximations of 1-D manifolds by computing an optimal trajectory for reaction
progress variable values far from equilibrium und regard the resulting trajectory as a
whole as a SIM approximation. Then the manifold would be invariant by definition
as a trajectory of the ODE system. For the example of a kinetic model for the
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Fi1G. 3.17. Results of the ILDM computation for the ozone decomposition mechanism at a
temperature of T = 1000 K. The z-marks depict the ILDM-points. They have been computed with
the code used in [29], accuracy tolerance 10~° for the solution of the ILDM-equation via Newton’s
method. The computation of ILDM points is initialized with the solution points of the optimization
method using criterion B, cf. Fig. 3.14. Blue lines: trajectories started in the z-marks.

temperature-dependent ozone decomposition it is demonstrated that our approach
also works reasonably well in low-temperature regions 7' < 1000 K where the ILDM
largely fails.
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Fic. 3.18. Optimization landscape for the ozone decomposition mechanism at T = 1000 K: The
computed value of (2.5) for pairs of trajectory initial values is depicted in color with the numerical
value corresponding to the logarithmically scaled colorbar. The value of co, is also logarithmically
scaled. A trajectory (red) close to the SIM is shown.
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Fic. 3.19. Optimization landscape for the ozone mechanism at T = 1000 K: The color repre-
sents the value of (2.8) for criterion B.
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Fic. 3.20. Optimization landscape for the ozone mechanism at T = 1000 K: The color repre-

sents the value of (2.15) for criterion C.
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Fi1a. 3.21. Optimization landscape for the ozone mechanism at T = 350 K: criterion A.
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