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Abstract

We study the discrete tomography problem in Experimental Fluid Dynamics – To-
mographic Particle Image Velocimetry (TomoPIV) – from the viewpoint of compressed
sensing (CS). The CS theory of recoverability and stabilityof sparse solutions to underde-
termined linear inverse problems has rapidly evolved during the last years. We show that
all currently available CS concepts predict an extremely poor worst case performance, and
a low expected performance of the TomoPIV measurement system, indicating why low
particle densities only are currently used by engineers in practice. Simulations demon-
strate however that slight random perturbations of the TomoPIV measurement matrix
considerably boost both worst-case and expected reconstruction performance. This find-
ing is interesting for CS theory and for the design of TomoPIVmeasurement systems in
practice.

AMS Subject Classifications: 65F22, 68U10

Keywords:compressed sensing, underdetermined systems of linear equations, positivity constraints in
ill-posed problems, sparsest solution, TomoPIV

1 Introduction

1.1 TomoPIV

Our research work is motivated by the work [21]. The authors introduced a new 3D technique,
calledTomographic Particle Image Velocimetry (TomoPIV)for imaging turbulent fluids with
high speed cameras. The technique is based on the instantaneous reconstructions of parti-
cle volume functions from few and simultaneous projections(2D images) of tracer particles
within the fluid. The reconstruction of the 3D image from 2D images employs a standard
algebraic reconstruction algorithm [27].

TomoPIV can use only few projections due to both limited optical access to wind and water
tunnels and cost and complexity of the necessary measurement apparatus. As a consequence,
the reconstruction problem becomes severely ill-posed, and both the mathematical analysis
and the design of algorithms fundamentally differ from the standard scenarios of medical
imaging.

A crucial parameter for 3D fluid flow estimation from image measurements is particle den-
sity. This parameter also largely influences the tomographical reconstruction problem. Higher
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densities ease subsequent flow estimation and increase the resolution and measurement accu-
racy. However, higher densities also aggravate ill-posedness of the reconstruction problem.
A thorough investigation of this trade-off is lacking. Our objective is to address these this
problem taking into account relevant developments in applied mathematics.

TomoPIV adopts a simple discretized model for an image-reconstruction problem known
as thealgebraic image reconstructionmodel [1], which assumes that the image consists of
an array of unknowns (voxels), and sets up algebraic equations for the unknowns in terms
of measured projection data. The latter are the pixel entries in the recorded 2D images that
represent the integration of the 3D light intensity distribution I(z) along the pixels line-of-
sightLi obtained from a calibration procedure. Thus, thei-th measurement obeys

bi :≈
∫

Li

I(z)dz ≈
n∑

j=1

xj

∫

Li

Bj(z)dz =

n∑

j=1

xjaij ,

whereaij is the value of thei-th pixel if the object to be reconstructed is thej-th basis function.
The valuesaij depend on the choice of the basis function. Typically,Bj are cube-shaped
uniform basis functions, the classicalvoxels. For simplicity we will adopt this discretization
scheme and stress that other choices are possible, see e.g. [29].

The main task is to estimate the weightsxj from the recorded 2D images, corresponding
to basis functions and solveAx ≈ b. The matrixA has dimensions(# pixel =: m) ×
(# basis functions= n), wherem ≪ n. Since each row indicates those basis functions
whose support intersect with the corresponding projectionray the projection matrixA will be
sparse.

1.2 Compressed Sensing

We study the tomographic problem of reconstructing particle volume functions from the gen-
eral viewpoint ofCompressed Sensing, which is a central theme of current research in applied
mathematics. Compressed Sensing [10, 11, 17] is a new technique for acquiring a sparse
signalx∗ ∈ R

n by incomplete linear measurement

Ax = b , (1)

whereA ∈ R
m×n, m < n, and for reconstructingx∗ exactlyprovided that the signal is sparse

(or compressible in some basis), i.e.‖x∗‖0 :=
∣
∣{i | x∗

i 6= 0}
∣
∣≪ n.

Instead of considering the NP-hardℓ0-minimization problem

min ‖x‖0 s.t. Ax = b , (2)

it considers the convexℓ1-minimization problem

min ‖x‖1 s.t. Ax = b , (3)

and investigates the situations when the samex∗ solve both problems (2) and (3), coined as
ℓ0/ℓ1-equivalence.

A remarkable result of Candès and Tao [11] is that if, for example, the rows ofA are
randomly chosen Gaussian distributed vectors, there is a constantC such that if the signal
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sparsity level obeys‖x∗‖0 < Cm/ log( n
m

), the solution of (3) will be exactly the original
signalx∗ with overwhelming probability.

In fact, random measurement matrices are optimal [9, 19, 28,3] in the sense that for a
given sparsity levelk, the required number of samples is minimal such thatℓ0/ℓ1-equivalence
holds. On the other hand, for a given number of measurementsm the sparsity levelk of x∗

which allows recovery byℓ1-minimization is maximal. The different derivations ofℓ0/ℓ1-
equivalence are quite involved and are based on the notion ofRestricted Isometry Property
(RIP) [3], see Section 4.3, or on ”counting faces” of polytops [15,19, 16].

When the solution is known to be sparse and positive then under a similar assumption on
A, k andm all nonnegativek-sparse vectorsx∗ are the unique positive solution ofAx = Ax∗,
[7, 19].

Donoho and Tanner [16, 19] have computed sharp reconstruction thresholds for Gaussian
measurements, such that for any choice of sparsityk and signal sizen, the required number
of measurementsm to recoverx∗ can be determined precisely.

Recent trends [4, 5, 24] tend to replace random dense matrices by adjacency matrices of
”high quality” unbalanced expander graphs. Here, the measurement matricesA are sparse
binary matrices.

1.3 Stylized Problem

Likewise, we will concentrate on a particular binary measurement matrix. We consider a 3D
imageI with a cubic domainV discretized ind3 voxels. Three cameras, withd2 pixels (Li

rays) each, keep the volume under investigation in focus from three orthogonal directions,
compare Fig. 1.3 (left). According to Section 1.1 each entryof the measurement matrixA
will be

aij =

∫

Li

Bj(x)dz = 1 ,

if the line of sightLi of the i-th pixel intersects thej-th voxelBj , or aij = 0 if not. By
numbering voxels and pixels according to Fig. 1.3 (left) matrix A can be written in closed
form as

A =





1
⊤
d ⊗ Id ⊗ Id

Id ⊗ 1
⊤
d ⊗ Id

Id ⊗ Id ⊗ 1
⊤
d



 , (4)

where⊗ denotes the Kronecker product, see [22]. Notice thatA is the adjacency matrix of a
bipartite graph with regular left degree3 and regular right degreed, compare Fig. 1.3 (right).
The left variable nodes of which there aren := d3 correspond to the voxels in thed3 cube and
thus to the entries ofx. The right nodes (or measurement nodes) of which there arem := 3d2

correspond to the camera pixel. In a bipartite graph connections within the variable nodes and
within the right nodes do not occur. The existing edges between the left nodes and right nodes
are represented by ourm × n matrixA from (4). In particular,

aij =

{

1, if j-th ray intersectsi-th voxel,

0, otherwise,

for all i ∈ {1, . . . , n}, j ∈ {1, . . . , m}.
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Figure 1:Left: Discretization of thed × d × d volume and corresponding3d2 rays for the 3
orthogonal projections.Right: A is the adjacency matrix of a bipartite graph with regular left
degree3 and regular right degreed.

Throughout this paper we denote byx∗ the indicator vector corresponding to original the
particle distribution and assume that our measurements based on the sampling matrixA are
exact, i.e.b = Ax∗. Moreover, we assume thatx∗ is positiveandsparse.

We investigate the sparsity level ofx∗ up to which the the sparsest solution ofAx = Ax∗ is
unique. Furthermore, we are interested in recoveringx∗ as minimizer of theℓ1-minimization
problem (3) or, as minimizer of the linear program

min1
⊤x , Ax = b, x ≥ 0 . (5)

1.4 Contribution and Organization

We provide a detailed study of the TomoPIV problem from the viewpoint of compressed
sensing. We assess the worst-case and average performance of this severely ill-posed recon-
struction problem of discrete tomography, based on convexℓ1-regularization and on a range
of recently established theoretical results.

The critical parameter both in theory and in practice is the particle density of the imaged
fluid, that in mathematical terms corresponds to the sparsity of the vector to be reconstructed
from observed measurements. Of particular interest are phase transitions of this parameter
below of which unique reconstructions can be assumed to holdin practice – an essential
requirement for subsequent processing steps for, e.g., estimating fluid flow velocity from a
sequence of reconstructed volume functions. On the other hand, using as large as possible
particle densities is important in practice too, in order toimprove the spatio-temporal resolu-
tion of observed fluid structures.

After establishing basic properties of the measurement matrix (4) in Section 2, we clar-
ify in Sections 3 and 4 the relationship between the regularized reconstruction problems (2),
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(3) and (5) and assess the worst-case and average performance by applying recently estab-
lished results from the theory of compressed sensing to the TomoPIV problem. Taking into
account that sparse volume functions generate sparse observations, we provide in Section 5
a probabilistic analysis of TomoPIV reconstructions basedon systems (1) that have beenre-
ducedaccordingly in a preprocessing step. Finally, we discuss inSection 6 the statistics of
numerical simulations based on slightly and randomly perturbed measurement matricesA.

In a nutshell, we show that the TomoPIV problem is quite degenerate from the viewpoint
of compressed sensing, thus leading to poor performance guarantees (Sections 3, 4). On
the other hand, the probabilistic analysis of Section 5 yields average performance bounds
that back up current rules of thumb of engineers for choosingparticle densities in practice.
Finally, Section 6 indicates a dramatic performance boost based on only slightly modified
measurement systems, raising novel problems for theory andimplications for the improved
design of real TomoPIV measurement systems.

While Section 3 is based on established theoretical concepts, all remaining sections – and
Section 3 too – contain novel material from the specific viewpoint of TomoPIV and also from
the more general viewpoint of discrete tomography. In particular, our papers aims at pointing
out connections between the fields of compressed sensing anddiscrete tomography in order
to stimulate further research.

1.5 Notation

|X| denotes the cardinality of a finite setX. We already introduced the pseudo-norm‖x‖0 =
|{i | xi 6= 0}| and denote the set ofk-sparse vectors byRn

k = {x ∈ R
n | ‖x‖0 ≤ k}. The sup-

port of a vectorx ∈ R
n, supp(x) ⊆ {1, 2, . . . , n}, denotes the set of indices of nonvanishing

components ofx. With I+(x) = {i | xi > 0}, I0(x) = {i | xi = 0} andI−(x) = {i | xi < 0},
we havesupp(x) = I+(x) ∪ I−(x) and‖x‖0 = |supp(x)|.

If S denotes a finite set thenN (S) denotes the union of all neighbors of elements ofS,
where the corresponding relation (graph) should be clear from the context.

A•,i denotes thei-th column vector of a matrixA. For given index setsI, J , matrix AIJ

denotes the submatrix ofA with rows and columns indexed byI andJ , respectively.Ic, Jc

denote the respective complement sets. Similarly,bI denotes a subvector ofb.
E[·] denotes the expectation operation applied to a random variable.

2 Preliminaries

The objective of this section is an examination of the properties of the system (1) for this
simple prototype of data-collection geometry. Such properties will be also relevant for other
regular imaging geometries, e.g. when additionaly using a fourth camera (projection direc-
tion).

By the nature of the problem the coefficient matrixA is very sparse, in contrast to most
compressed sensing measurement ensembles. This together with the sparsity of the original
signalx∗ induces a sparsity also in the measurement vectorb which in more classic scenarios
is not given. As a consequence, we can remove equations with zero right-hand side leading
us to a feasible set of reduced dimensionality as will be detailed next.
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Consider the feasible polyhedral set with respect toA andb

F := {x | Ax = b, x ≥ 0} , (6)

where all entriesaij in A are nonnegative. Let us introduce the following partitionsof the
right and left nodes

I := I0(b) = {i ∈ {1, . . . , m} | bi = 0} and Ic ,

J := N (I) = {j ∈ {1, . . . , n} | ∃i ∈ I : aij > 0} and Jc .

Further define
Fred := {x | AIcJcx = bIc , x ≥ 0}. (7)

Then we can make the simple, compare [29, Prop.1], but important observation.

Proposition 2.1.LetA ∈ R
m×n, b ∈ R

m have all nonnegative entries andF andFred defined
as in(6) and (7) respectively. Then

F = {x ∈ R
n | xJ = 0 andxJc ∈ Fred}. (8)

Remark2.1. Assume that for a particular measurement vectorb, which induces the partitions
I, Ic andJ , Jc of the right and left nodes as defined above, we obtained an overdetermined
and full rank submatrixAIcJc. Then the vectorx∗

Jc is the unique solution ofAIcJcx = bIc and
x∗ ∈ R

n, wherex∗
J = 0, is the the unique positive solution ofAx = b.

Clearly, when the above situation occurs solving theℓ0-problem (2) amounts to solve a
feasibility problem. Moreover, any method which solves

min
x∈F

f(x)

for an arbitrary objective functionf will lead to the samecorrect result.
Let us assume for the time being that we have a sufficiently sparse vectorx∗ and a suffi-

ciently sparse measurement vectorb = Ax∗ such thatAIcJc is overdetermined, i.e.

|N (I0(b))| − |I0(b)| ≥ n − m .

The rank ofAIcJc will equal the rank ofAJc, while the latter cannot be full if it contains a
subset of linearly dependent columns.

This observation motivates us to find an upper bound to the maximal numbers of columns
such that alls (or less) column combinations are linearly independent. Anuseful tool for
achieving this task, which is in general of combinatorial nature, is to investigate the nullspace
of A.

Proposition 2.2. Letd ∈ N, d ≥ 3, A from (4) andN ∈ R
d3×(d−1)3 defined as

N :=

(
−1

⊤
d−1

Id−1

)

⊗
(

−1
⊤
d−1

Id−1

)

⊗
(

−1
⊤
d−1

Id−1

)

. (9)

Then the following statements hold
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A basis forker(A)

Figure 2: MatrixA from (4) for d = 5 (left) along with asparsebasis for its nullspace, the
columns ofN from (9) (right).

(a) AN = 0, with A from (4).

(b) Every column inN has exactly8 nonzero elements.

(c) N is a full rank matrix andrank(N) = (d − 1)3.

(d) rank(A) = 3d2 − 3d + 1.

(e) ker(A) = span{N}, i.e. the columns ofN provide a basis for the nullspace ofA.

(f)
∑n

i=1 vi = 0 holds for allv ∈ ker(A).

Proof. See appendix.

3 Unique Sparsest Solution

In order to studyℓ0/ℓ1-equivalence forA from (4) we decompose this problem in two separate
conditions:

1. ℓ0-unique-optimality:x∗ is the unique optimum of (2) ;

2. ℓ1-unique-optimality:x∗ is the unique optimum of (3) .

In this section we investigate the first subproblem, while the second one will be addressed in
the next section.

3.1 Spark

Besides being one of the classical NP-hard problems, see [25] for this NP-hardness result,
problem (2) has a highly nonconvex objective function and thus many local optima may occur.
Fortunately previous work has shown that if a sparse enough solution to (2) exists than it will
be necessarily unique. The analysis in [20] involves the measurespark(A) which equals the
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minimal number of linearly dependent columns ofA, see [18, 20]. In contrast torank(A),
spark(A) is NP-hard to compute. Fortunately bounds on this measures can be derived, [18]
and Section 4.2.

The following result is surprisingly elementary and can be found in [18].

Theorem 3.1. (Uniqueness) Letx∗ be a solution of(1) with ‖x∗‖0 < spark(A)
2

. Thenx∗ is the
unique solution of(2).

Clearly,2 ≤ spark(A) ≤ rank(A) + 1. Again, Gaussian matricesA ∈ R
m×n, m < n, are

optimal in the sense thatspark(A) is maximal and equalsrank(A)+1 = m+1. Unfortunately,
with A from (4) we come off badly.

Proposition 3.2. For all d ∈ N, d ≥ 3 the minimal number of linearly dependent columns of
matrixA from (4) equals8, i.e. spark(A) = 8.

Proof. See appendix.

Hence, Thm. 3.1 and Prop. 3.2 yieldguaranteeduniqueness ofevery3-sparse vectorx∗

only. This bound is tight, since we can construct two4-sparse solutionsx1 andx2 such that
Ax1 = Ax2, compare Fig. 3.

3.2 Signature

In [20] Elad adopts a probabilistic point of view to study uniqueness of sparse solutions of
(2) beyond the worst-case scenario based on thesignatureof a matrixA ∈ R

m×n. This is
defined as the discrete functionsigA(k) ∈ [0, 1], for k ∈ {2, . . . , n}, that equals the number
of k column combinations inA which arelinearly dependentdivided by the number of allk
columns from then existing ones. By definitionsigA(k) = 0, for all k < spark(A).

Theorem 3.3. [20, Th. 6,Th. 5] Letσ := spark(A) ≤ rank(A) =: r andx∗ be a solution
Ax = b. Assume the locations of the nonzero entries inx∗ are chosen at random with equal
and independent probability. If1/2σ ≤ ‖x∗‖0 =: k ≤ r, then the probability thatx∗ is the
sparsest solution ofAx = b is 1 − sigA(k) and the probability to find a solution ofAx = b of
the same cardinalityk is

(a)
∑k−σ

j=0 (k − j)(n − k + j)

(
k
j

)

sigA(k − j) or lower, if ‖x∗‖0 ≥ σ;

(b) 0, if 1/2σ ≤ ‖x∗‖0 < σ.

Hence uniqueness of the sparsest solution with cardinalityless thenspark(A) can be
claimed with probability 1.

An upper bound on the signature was derived via arguments from matroid theory [6],
under the assumption that the spark is known.

Theorem 3.4. [20, Th. 7] LetA ∈ R
m×n with the signature functionsigA, spark(A) = σ and

rank(A) = r. Then

sigA(k) ≤ 1 −
∑σ−1

i=1

(
n−r+i−1

i

)(
r−i
k−i

)

(
n
k

) , 0 ≤ k ≤ r.
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To compute the signature seems even harder then computing the spark. However, the
signature will be close to zero fork small enough, but growing with the dimension ofA.
If spark(A) = 8 it does not necessarily mean that everyk column combination are linearly
dependent. In fact, only a limited number ofk column combinations can be dependent without
violating rank(A) = 3d2 − 3d + 1. It turns out that this number is tiny for smallerk when
compared to

(
n
k

)
. As k increases this number also grows and equals one only whenk > r,

compare Fig. 6.1 and Fig. 7 (left). Numerical experiments suggest that most0.9d2 column
combinations inA are linearly independent.

4 Unique Positive Solution

This section might seem useless from a practical point of view sinceℓ0/ℓ1-equivalence cannot
be claimedfor all k-sparse vectors whenk exceeds3 in view of the nonuniqueness of the
ℓ0-minimizer in this case. However, we trace relevant conditions yieldingℓ0/ℓ1-equivalence,
review known connections between different concepts and attempt to establish some new ones.

4.1 Relations between problems(3) and (5)

Most Compressed Sensing results explore conditions under which the minimum of theℓ1-
minimization problem (3) is unique (and identical to theℓ0-minimization problem (2)). We
note in this section that if the measurement matrixA has equal column sum and if a positive
solutionx∗ to Ax = b exists, then a uniqueℓ1-minimizer must equalx∗. Conversely, if the
solution of (5)x∗ is unique then also theℓ1-minimizer must be unique.

Proposition 4.1. If x∗ solvesAx = b with A from(4) whereas1⊤x∗ =: c then for all solutions
x of (1) the entries sum equalsc, i.e. 1⊤x = c.

Proof. Follows directly from Prop. 2.2 (f).

Lemma 4.2. Assume there is a positive solutionx∗ to Ax = b with A from (4). Thenx∗ solves
theℓ1-minimization problem(3).

Proof. Denote byx1 a solution to theℓ1-minimization problem (3). In view of Prop. 4.1 we
obtain

1
⊤x∗ = 1

⊤x1 ≤ ‖x1‖1 ≤ 1
⊤x∗ ,

where the last inequality holds sincex∗ is feasible. Thus equality must hold.

This immediately implies

Proposition 4.3. Assume there is a positive solutionx∗ to Ax = b, with A from (4) and letx1

be the unique solution of theℓ1-minimization problem(3). Thenx1 must equalx∗.

On the other hand, we have

Proposition 4.4. ConsiderA from (4) and assume that the positive solutionx∗ to Ax = b is
unique. Thenx∗ will be also the unique minimizer of theℓ1-minimization problem(3).
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Proof. Note that ifx∗ is the unique minimizer of (5) thenx∗ is necessarilyk-sparse for some
k < n. Otherwise, it cannot be unique since forx∗ with no vanishing entriesx∗ + tv will
also solve (5) fort sufficiently small andv ∈ ker(A). HenceS := I0(x∗) 6= ∅. Moreover,
S ∩ I−(v) 6= ∅ or Sc ∩ I−(v) 6= ∅ hold for allv ∈ ker(A) \ {0}, in view of the uniqueness of
x∗. From

∑

i∈S vi +
∑

i∈Sc vi = 0 we now obtain

|
∑

i∈Sc

sign(x∗
i )vi| = |

∑

i∈Sc

vi| <
∑

i∈S

|vi| ,

for all v ∈ ker(A)\{0}. This is a well known condition for the uniqueness of theℓ1-minimizer,
see e.g. [26].

Note, that the above results hold for all matricesA with equal column sum.

4.2 Mutual incoherence

The mutual coherence of a matrixA, denoted byµ(A), is defined as the maximal absolute
scalar product between two different normalized columns ofA,

µ(A) = max
i,j
i6=j

〈A•,i, A•,j〉
‖A•,i‖‖A•,j‖

. (10)

It measures the similarity between the matrix’s columns. For an orthogonal matrixA, µ(A) =
0. For anm < n we necessarily haveµ(A) > 0. Uniqueness of the sparsest solution and
exact recovery ofx∗ via ℓ1-minimization can be guaranteed [18] if

‖x∗‖0 ≤ 0.5

(

1 +
1

µ(A)

)

.

Hence, there is an interest in matrices with as small as possibleµ(A). µ(A) = 1 implies the
existence of two ”parallel” columns, and this causes confusion in the construction of a sparse
representation of the measurement vectorb. In [30] it was shown that for a full rank matrix of
sizem × n

µ(A) ≥
√

n − m

m(n − 1)

and equality is obtained for a family of matrices calledGrassmanian frames.
The mutual coherence is often use to lower bound the spark, since the following relation-

ship always holds

spark(A) ≥ 1 +
1

µ(A)
.

In [7], nonnegativity is taken into account. Here a one-sided coherence is considered

ν(A) = max
i,j
i6=j

〈A•,i, A•,j〉
‖A•,i‖2

. (11)

The authors obtained the following result.
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Theorem 4.5. [7, Thm. 2] LetA ∈ R
m×n be a matrix with nonnegative entries such that

all solutions ofAx = b satisfy1⊤x = c, wherec is some constant. If there is anonnegative
sparse solutionx∗ to this system with‖x∗‖0 < 0.5(1 + 1

ν(A)
), then it is a unique solution of

this problem.

For our particular matrixA we obtain

Proposition 4.6. For all d ∈ N, d ≥ 3 andA defined in(4)

µ(A) = ν(A) =
1

3
.

Proof. Since every column contains exactly3 ones we obtain‖A•,i‖2 = 3 for all i ∈ {1, ..., n}.
Thusµ(A) = ν(A). Since two different voxels can both be intersected by at most one ray
the maximal common support of two different columns is one. This immediately implies the
result.

However, recovery bounds based on this bound are too pessimistic since, due to the above
result we obtain guaranteed recovery viaℓ1-minimizationfor all k-sparse vectors ifk < 2,
which is (needless to say) useless. Derivation of stronger results that refer to specific matrices
and bypass the use of the mutual coherence should be attempted.

4.3 Restricted Isometry Property

In order to prove that there exist matricesA with only m = O(k log(n/k)) rows such that
for all k-sparsex ℓ0/ℓ1-equivalence holds Candès and Tao [10] introduced a concept that
outranks the coherence measureµ(A). A matrix A is said to have theRestricted Isometry
PropertyRIP2,δ,k if for any k-sparse vectorx, the following expression is verified

(1 − δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 , δ ∈ (0, 1) . (12)

This property implies that every submatrixAS formed by combining at mostk-columns
in A has its nonzero singular values bounded above by1+ δ and below by1−δ. In particular,
(12) implies that a matrixA cannot satisfyRIP2,δ,k if k ≥ spark(A).

Candès has shown, see [8, Thm. 1.1], that ifA ∈ RIP2,δ,2k with δ <
√

2 − 1 all x ∈ R
n
k

solve both (2) and (3). Moreover, there exists sensing matricesA ∈ R
m×n which satisfy e.g.

theRIP2,1/4,k, wherek can be as large asO(m/ log(m/n)). This class includes matrices with
i.i.d standard Gaussian or±1 entries, random submatrices of the Fourier transform or other
orthogonal matrices.

It has been shown recently [12] that binary matrices cannot satisfy RIP2,k,δ, unless the
numbers of rows isΩ(k2). Note that the best known explicit construction of (binary)com-
pressed sensing matrices due to DeVore [14] yieldsΩ(k2) measurements, which is worse than
the boundm = O(k log(n/k)).

Theorem 4.7. [12, Thm. 1] LetA ∈ R
m×n be any0/1-matrix that satisfiesRIP2,k,δ. Then

m ≥ min

{(
1 − δ

1 + δ

)2

k2,
1 − δ

1 + δ
n

}

.
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For our particularA defined in (4) withspark(A) = 8 we therefore obtain takingm = 3d2

into account

Corollary 4.8. Let δ ∈ (0, 1). Then a necessary condition forA to satisfy theRIP2,k,δ for all
k-sparse vectors is that

k ≤ min

{√
3

2
· 1 + δ

1 − δ
d, 7

}

.

However, we cannot be sure thatA possesses theRIP2,7,
√

2−1, unless we compute all
singular values of allAS, |S| ≤ 7 matrices. In case of a positive result we obtainℓ0/ℓ1-
equivalence forall less then3-sparse particle distributions, even in case of observation errors,
sinceRIP also impliesstablerecovery, provided that the observation error is small enough,
compare [8, Thm. 1.2] for the ”noisy” version result.

4.4 Binary Matrices with RIP1,k,δ

In [4] it is shown that a particular class ofbinary measurement matricesA ∈ {0, 1}m×m,
namely adjacency matrices of expander graphs, see the following Def. 4.1, satisfy a different
form of restricted isometry property, the so-calledRIP1,k,δ

∀x ∈ R
n
k , (1 − δ)‖x‖1 ≤ ‖Ax‖1 = (1 + δ)‖x‖1 , δ ∈ (0, 1) . (13)

Definition 4.1. A (k, ǫ)-unbalanced expander is a bipartite simple graphG = (A, B, E) with
left degreeℓ such that for anyX ⊂ A with |X| ≤ k, the set of neighborsN (X) ⊂ B of X
has size|N (X)| ≥ (1 − ǫ)ℓ|X|.

The existence of expander graphs can be shown using the probabilistic method without
explicitly constructing them, see [4, 24] and the references therein.

Conversely, any binary matrix withℓ ones in each column and satisfyingRIP1,k,δ must be
the adjacency matrix of an unbalanced expander graph, compare [4, Thm. 2].

The significance ofRIP1,k,δ is the following performance guarantee when reconstructing
anarbitrary (not necessarilyk-sparse) vectorx by solving (3).

Theorem 4.9. [4, Thm. 3] LetA ∈ {0, 1}m×n be the adjacency matrix of an unbalanced
(2k, ǫ)-expander. Letα(ǫ) = (2ǫ)/(1 − 2ǫ). Consider any two vectorsx, x∗ such thatAx =
Ax∗ and‖x‖1 ≤ ‖x∗‖1. Then

‖x∗ − x‖1 ≤
2

(
1 − 2α(ǫ)

)‖x∗ − xk‖1 ,

wherexk ∈ R
n
k .

Proposition 4.10.Let beA the adjacency matrix of an arbitrary bipartite graph with regular
left degreeℓ and denoteσ = spark(A). ThenA is the adjacency matrix of an(σ − 1, 1− 1

ℓ
)–

unbalanced expander.

Proof. Let X ⊂ {1, . . . , n} and|X| = k ≤ σ − 1. ThenAX is a overdetermined full rank
matrix. In particular, there existk linearly independent rows inAX , each of them having at
least one nonzero entry. Hence|N (X)| ≥ |X| = ℓ(1 − (1 − 1

ℓ
))|X|.
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The above proposition implies thatA from (4) is the adjacency matrix of an(7, 2
3
)–

unbalanced expander. As a consequence we obtain exact recovery for every3-sparse particle
distribution in view of Thm. 4.9 and Prop. 4.1.

4.5 Neighborly Polytopes

Donoho and Tanner [15, 19] explained theℓ0/ℓ1-equivalence phenomenon from the view point
of convex neighborly polytopes. In contrast to sufficient conditions for exact recovery, this
theory provides necessary conditions additionally.

We first summarize some terminology from convex polytopes theory and refer to [23] and
[19] for more details. A linear inequalityc⊤x ≤ d is calledvalid for a polytopeP ∈ R

n if
it is satisfied for allx ∈ P . A subsetF ⊆ P is called afaceof P if F = ∅ or F = P (the
improperfaces), or

F = P ∩ {x|c⊤x = d}
for some valid inequalityc⊤x ≤ d. Faces of dimensionk are calledk-faces. Vertices, the
extreme points ofP , are the0-faces. A polytopeP is said to beoutwardlyk-neighborlyif
every subset ofk vertices not including0 span a(k − 1)-face, see [19], thus a outwardlyk-
neighborly polytope behaves like a simplex, at least from the viewpoint of it’s lowdimensional
faces (not including0), since everyp-dimensional face (not including0) is simplicial, for
0 ≤ p < k.

The main result in [19] connects outward neighborliness to the question of uniqueness
of anyk-sparse nonnegative vector. Such ak-sparse vectorx∗ will ”live” on a k-face of the
convex hull of the standard simplex inRn and the origin, denoted by∆n−1

0 . If Ax∗ will
”survive” on ak-face ofA∆n−1

0 = conv{A•,1, . . . , A•,n, 0} then it will be the unique positive
solution satisfyingAx = Ax∗. If Ax∗ falls ”inside” the ”transformed” polytopeA∆n−1

0 then
x∗ cannot be recovered by (5). For a outwardlyk-neighborly polytopeAT n−1

0 this will never
happen.

We will extend this result by the following simple observation.

Theorem 4.11.Let A ∈ R
m×n be an arbitrary matrix. Then the following statements are

equivalent:

(a) Everyk-sparse nonnegative vectorx∗ is the unique positive solution ofAx = Ax∗.

(b) The the convex polytope defined as the convex hull of the columns inA and the zero
vector, i.e.conv{A•,1, . . . , A•,n, 0} is outwardlyk-neighborly.

(c) Every nonzero nullspace vector has at leastk + 1 negative entries.

Proof. The equivalence of (a) and (b) is the main result in [19, Thm. 1].
(c) ⇒ (a): Now, let x∗ be ak-sparse vector. Any other (different) positive solution of
Ax = Ax∗ must be of the formx∗ + v such thatx∗ + v ≥ 0 andv ∈ ker(A) \ {0}. Hence
I−(x∗ + v) = ∅. This contradicts|I−(x∗ + v)| ≥ 1 as claimed by (c).
(a) ⇒ (c): Conversely, lets assume that there exist a nonzero nullspace vectorv with |I−(v)| ≤
k. We now define two nonnegative vectorsx1 andx2 in the following way

x1
i =

{

vi, if i /∈ I−(v)

0, otherwise

13



Figure 3: Two differentnon unique4-sparse ”particle” distributions in a3 × 3 × 3 volume,
based on the construction in the proof of Thm. 4.11. Both configurations (represented by red
and blue dots) yield the identical projections in all three directions.

and

x2
i =

{

−vi, if i /∈ I−(v)

0, otherwise .

Sincex1−x2 = v 6= 0 we obtain two different solution toAx1 = Ax2 althoughx2 isk-sparse.
This completes the proof.

From Prop. 2.2 we know the existence of nullspace vectors with only 4 negative entries.
This together with Thm 4.11 now yields

Corollary 4.12. The convex hull of the columns in matrixA defined in(4) and the zero vector,
i.e. conv{A•,1, . . . , A•,n, 0} is outwardly3-neighborly.

Hence, the maximal sparsity levelk such thatℓ0/ℓ1-equivalence holdsfor all k-sparse

nonnegative vectors holds is3. Indeed, in ad × d × d volume there are
(

d
2

)3
4-sparse vector

pairs with equal projections, compare Fig. (3).

4.6 Nullspace Property

Similar to the our simple observation in the previous section the authors in [13] derived sparse
recovery conditions based on properties of the nullspace ofA. In particular, they say that a
matrixA has theNull Space Property1 of orderk for k > 0 for γ > 0 if

‖vS‖1 ≤ γ‖vSc‖1 , (14)

for all setsS of cardinality less thenk andv ∈ ker(A). In [13, Thm. 4.3] it is shown that
if A has the nullspace property of order≥ k andγ < 1 it is guaranteed that everyk-sparse
vector is the uniqueℓ1-minimizer of (3). The nullspace property is a weaker version of the

1For convenience we slightly modified the original definitionof the Null Space Property given in [13].
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restrictedℓ2-isometry property. Indeed, Cohen et al showed [13, Lem. 4.1] that if A satisfies

theRIP2,3k,δ thenA satisfies the nullspace property of order2k andγ =
√

2
2

√
1+δ
1−δ

.

In independent work, Zhang [31] used the general concept ofk-balancenessto study
uniqueness of theℓ1-minimizer. A subspaceX is k-balanced (inℓ1-norm) if for anyS with
|S| ≤ k

‖vS‖1 ≤ ‖vSc‖1

holds for allv ∈ X. X is calledstrictly k-balanced if the strict inequality holds. Hence, strict
k-balanceness of the nullspace ofA implies the nullspace property of orderk with γ < 1, thus,
exact recovery. In fact, the author shows in [31] thatk-balanceness ofker(A) is equivalent
to conv{±A•,1, . . . ,±A•,n, 0} being (outwardly)k-neighborly. The latter is the analogous
sufficient and necessary condition for recovery of allk-sparse vector when the vector might
have different signs, compare [15].

In the nonnegative case Zhang showed [32] the equivalence ofthe (outwardly)k-neighborliness
of the polytopeconv{A•,1, . . . , A•,n, 0} and the notion ofhalf k-balancenessof the nullspace
of A. A subspaceX is halfk-balanced (inℓ1-norm) if for anyS with |S| ≤ k

∑

i∈S

vi ≤ ‖vSc‖1

holds for allv ∈ X. X is calledstrictly half k-balanced if the strict inequality holds. Hence,
this different form of nullspace property for nonnegative vectors turns out to be sufficient and
necessary condition for uniqueness of everyk-sparse nonnegative vector, in view of the first
part of Thm. 4.11. However, testing the nullspace property conditions on generic matrices
is potentially harder than solving the combinatorialℓ0 problem in (2) as it implies solving
a combinatorial problem to computeγ. However, we can conclude thatA from (4) has the
nullspace property of order3 with γ < 1, due to the previous observations. This ends the
series of highly pessimistic conclusions concerning our particularA.

5 Most Probably Unique Positive Solution

5.1 Weak Equivalence

The concept ofℓ0/ℓ1 equivalence demands that for a given measurement matrixA, equiv-
alence forall instances(A, b) generated byany k-sparse vector holds. A weaker form of
equivalence considers equivalence formostproblem instances(A, b). In [19] it is shown that
a weaker form of neighborliness implies weak equivalence. The authors define a polytopeP
to be(k, ǫ)-weakly (outwardly) neighborly if, among allk-subsets of vertices (resp. among
those not including0), all except a fractionǫ spank − 1-faces ofP .

The columns ofA are ingeneral positionif all subsets of m columns ofA are linearly
independent, thusspark(A) = m + 1. It is shown in [19] that if the columns ofA are in
general position, weak neighborliness ofA∆n−1

0 = conv{A•,1, . . . , A•,n, 0} is the same thing
as saying thatA∆n−1

0 has at least(1 − ǫ)-times as many(k − 1)-faces as∆n−1
0 . Thm. 2

in [19] shows the equivalence between(k, ǫ)-weakly (outwardly) neighborliness and weak
equivalence, i.e. uniqueness of all except a fractionǫ of k-sparse nonnegative vectors.
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However, the columns ofA from (4) are not in general position. Besides, counting faces
of polytopes is again a combinatorial problem.

To overcome this difficulty we appeal to the observation already made in Section 2. If
the matrix obtained by reducing zero measurements and corresponding adjacent voxels is
overdetermined and of full rank then the underlying solution which generated the sparse mea-
surement vector must be unique. This is also a criterion of individual equivalence for a given
problem instance(A, b). Moreover, a critical sparsity levelk yielding weak equivalence for
A of most k-sparse nonnegative vectors can be derived by estimating the probability that
k-columns are linearly independent with probability close to one, i.esigk(A) ≈ 0, and esti-
mating the probability that the induced reduced matrix is overdetermined.

5.2 Probability of mred(k) ≥ nred(k)

Sparse vectorsx give rise to sparse vectorsb = Ax. Based on the zero components ofb
corresponding rows and columns can be removed fromA, leading to areduced matrixAred ∈
R

mred(k)×nred(k). In this section, we estimate the expected dimension of the reduced matrix
depending on the sparsityk of x.

Lemma 5.1.Letx ∈ {0, 1}d3

be a uniformly drawnk-sparse binary vector. Then the expected
number of zero measurements in any of the there projection images approximately is

E[k, d] :=
1

d2k

d2

∑

r=0

r

(
d2

r

)

(d2 − r)! Sk,d2−r , (15)

whereSn,k denotes the Stirling number of the second kind.

Proof. Let p : K → R be any of the three projection directions considered as a function
mapping|K| = k particles onto|R| = d2 pixels. We wish to determine the probability thatr
pixels, corresponding tor rows in the measurement vectorb, remain “empty”.

This probability is given by|Ωr|/|Ω|, whereΩ denotes the set of all projectionsp, i.e.|Ω| =
|R||K|, and whereΩr ⊂ Ω contains functionsp mappingk particles to|R| − r pixels.

Assumer “empty” pixels are fixed. Then onlysurjectivemappingsp assignk particles to
all remaining|R| − r pixels without leaving any additional pixel empty. The sizeof this set is
(|R| − r)! Sk,|R|−r is [2]. Because there are

(|R|
r

)
ways to locate ther zero pixels, we obtain

|Ωr| =

(|R|
r

)

(|R| − r)! Sk,|R|−r . (16)

Clearly, |Ω| =
∑|R|

r=0 |Ωr|, and the expected number of zero pixels isE[k, d] =
∑|R|

r=0 r |Ωr|
|Ω| .

Remark5.1. We point out that (15) is an approximation only, because we ignored the de-
pendencies between particles due to the third dimension. Consequently, the numbers (17)
determined below as a function ofE[k, d] are approximations as well.
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Proposition 5.2. Let x ∈ {0, 1}d3

be a uniformly drawnk-sparse binary vector. Then the
expected values of the dimension of the reduced matrixAred approximately are:

mred(k) ≈ m − 3E[k, d] , (17a)

nred(k) ≈ d3 − 3E[k, d] · d + 3
E[k, d]2

d
−
(

E[k, d]

d2

)3

d3 . (17b)

Figure 4 illustrates that these estimates are reasonably tight.

Proof. The estimate (17a) is based on our assumption thatx is uniformly distributed. We
simply subtract from the total number of pixels (rows) the expected number of zero measure-
ments in all three projections due to Lemma 5.1, thus obtaining the expected number of zero
components of the observed vectorb.

Concerning (17b), any zero component of the vectorb marks voxels in the volume along
the corresponding projection ray, and corresponding columns in A, to be removed fromA.
nred(k) is the number of voxels (columns)not removed by any projection. To estimate the
expected value of this number, we have to take into account that projection rays intersect.

Based on the expected numberE[k, d] of zero pixels in any of the three projections – see
(15), we compute:

1. Eachsingle projectionremovesE[k, d] · d voxels.

2. Consider apair of projections, e.g. thex/z-projection and they/z-projection. Fix the
commonz-coordinate. There areE[k, d]/d zero pixels in each of the two corresponding
rows of the two projection images, eliminating together(E[k, d]/d)2 voxels because all
projection rays corresponding to the two sets of zeros mutually intersect. As there are
d possible values ofz, it follows that each pair of projections removesd(E[k, d]/d)2 =
(E[z])2/d voxels.

3. The probability that any fixed voxel projects to a zero in any fixed projection isE[k, d]/d2,
due to Lemma 5.1. Consequently, the expected number of voxels removed byall three

projectionsis
(

E[k,d]
d2

)3

d3.

nred(k) corresponds to the number of voxels for which all three conditions above donothold,
which due to the inclusion-exclusion principle is given by (17b).

Comparing (17a) and (17b) shows that more columns are removed than rows, depending
on the expected numberE[k, d] of vanishing components ofb = Ax. Hence for a sufficiently
k-sparse vectorx the reduced matrixAred leads to anoverdetermined system withmred(k) ≥
nred(k). Solving the polynomialmred(k) = nred(k) according to (17) in the variableE[k, d]
for the root in the admissible interval[1, d2], we find that this will hold on the average for
k-sparse vectorsx that generate at least

E[k, d] ≈
(

1 −
√

3

d

)

d2 (18)
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Figure 4: Left: Expected number of zero components of the measurement vector b = Ax,
generated by ak-sparse random vectorx. The blue curve shows3E[k, d]/m as a function ofk

d3

due to (15). These numbers are related to the expected numbermred(k) of rows of the reduced
matrixAred by (17a). The red curve shows the corresponding empirical means computed for
d = 8, i.e. for the matrixA ∈ R

192×512, and 1000 trials for each value ofk. The dashed curve
shows the asymptotic1 − k

m
for small values ofk. Right: Expected number ofcolumns of

the reduced matrixAred. The blue curve showsnred(k)
n

as a function ofk
n
, with nred(k) given

by (17b). The red curve shows the corresponding empirical curve obtained by simulations as
described above.

zero entries in each projection. Figure 5 shows the corresponding critical values of the sparsity
parameterk = k(d), numerically determined by solvingmred(k) = nred(k) resp. (18), as a
function of the problem sized. The log-log plot in the right panel of Figure 5 indicates quite
accurately the power law

k(d) ≈ 3.54d1.34 . (19)

6 Towards an improvement – Perturbation ofA

6.1 Increasing Spark

Having the previous results in mind we further address the question of improving the proper-
ties ofA from (4) with respect to the overall objective:ℓ0/ℓ1-equivalence. The weak perfor-
mance ofA rests upon the small spark ofA. In order to increase the maximal numbers of
columns such that alls (or less) column combinations are linearly independent we add to the
entries ofA a small perturbation.

We will keep in mind the following result which might be well known.

Lemma 6.1. Let B ∈ R
m×n be any matrix of rankr, σ1 ≥ σ2 ≥ · · · ≥ σr > 0 its singular

values andB = UΣV ⊤ is singular value decomposition, where

Σ =

(
Σr 0
0 0

)

18



Figure 5: Left: Critical value ofk/d3, for d = 8, below of which the reduced matrixAred

satisfiesmred(k) ≥ nred(k) with high probability. The blue curve shows the estimate based
on Prop. 5.2. The red curve shows the empirical probability based on simulations as described
in the caption of Fig. 4.Right: Critical value ofk/d3 = k(d)/d3 as a function of the problem
sized, according to (17). The log-log plot indicates the power law(19).

with Σr = diag(σ1, . . . , σr). If ‖E‖ < σr thenrank(B + E) ≥ rank(B). Moreover, if we
denote by

U⊤EV =:

(
E11 E12

E21 E22

)

then
rank(B + E) = rank(A) + rank(S) (20)

whereS is the Schur complementE22 − E21(Σr + E11)
−1E12 of

(
Σr + E11 E12

E21 E22

)

.

Proof. In view of our assumption we also have‖E11‖ < σr sinceU, V ⊤ are orthogonal.
Hence‖Σ−1

r E11‖ < 1 holds, which also implies the nonsingularity ofΣr + E11. By writing
(

I 0
−E21(Σr + E11)

−1 I

)(
Σr + E11 E12

E21 E22

)(
I −(Σr + E11)

−1E12 I
0 I

)

=

(
Σr + E11 0

0 S

)

we obtain he desired result (20).

We stress that the above result holds for every matrixE. However, we are interested in
matricesE having the same sparsity structure likeA.

We conjecture that the rank of every perturbed submatrixA will grow by a factorO(1). By
perturbingA we will ”eliminate” all 8-column combinations (the column sets corresponding
to nonzero entries in the nullspace basis vectors inN , compare Prop. 2.2). By elimination
we meen that the perturbed8-tuples will have complete rank since the unperturbed clearly
have rank7 sincespark(A) = 8. Moreover, allk-linearly independent column sets ofA can
be obtained by combining linearly independent8-tuples. By a similar argument most such
k-dependent columns inA can be turned out in independent ones by simply perturbing their
entries. This suggests thatspark(Ã) will grow proportional to the rank ofA. The numerical
results in Section 7 suggest the power lawspark(Ã(d)) = O(d2), compare Fig. 7.
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Figure 6:1−sigk(A) versus perturbed1−sigk(Ã) for d = 10; Empirical probability obtained
from 100000 trials thatk columns are linearly independent.

Remark6.1. ForA ∈ R
m×n, let {σ1, σ2, . . . , σm} and{σ̃1, σ̃2, . . . , σ̃m} be all singular values

(nonzero as well as any zero ones) forA andÃ = A + E, respectively. Then

|σi − σ̃i| ≤ ‖E‖2 for each i = 1, 2, . . . , m .

By choosingE properly it seems possible to ”adjust” the singular values of A such thatÃ will
satisfy theRIP2 property. We intend to investigate this further in order to obtain recovery
results that are stable in the presence of errors in TomoPIV measurements.

6.2 How Neighborly will be the Perturbed Matrix?

In Section 4 we presented several concepts which quantify the recovery performance of a
given matrixA. Among thesek-neighborliness and the nullspace property of orderk are
necessary and sufficient conditions which guarantee uniqueness of everyk-sparse positive
vectors. In order to address the question of equivalence between (2) and (5) for̃A we consider
neighborliness of̃A∆n−1

0 .
Assume that by perturbing the nonnegative entries ofA we obtained an substantially in-

creased spark̃σ := spark(A + E). SetÃ := A + E and note that̃aij = 0 iff aij = 0.

Theorem 6.2. The convex hull of the columns in the matrix perturbed matrixÃ and the zero
vector, i.e.conv{Ã•,1, . . . , Ã•,n, 0} is at leastoutwardly( σ̃

3
− 1)-neighborly.

Proof. We will show that every nonzero nullspace vector hasat leastσ̃/3 negative entries.
Then Thm. 4.11 will provide the desired result. Letv ∈ ker(Ã) \ {0} and denote byS =
supp(v). Clearly,

|S| ≥ σ̃ , (21)

and
|N (S)| ≥ σ̃ , (22)

whereN (S) = {i ∈ {1, . . . , m}|ãij > 0, j ∈ S} indexes all neighbors ofS. In view of
S = I−1(v) ∪ I+(v) andv ∈ ker(Ã), we have

N (I−(v)) = N (I+(v)) = N (S) (23)

since it is not possible to find a voxel corresponding to a negative entry inv indexed byI−(v),
or a voxel corresponding to a positive entry inv indexed byI+(v), that is not connected to
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both sets of rowsN (I−(v)) andN (I+(v)), since otherwisẽAv 6= 0 in view of ãij ≥ 0.
Summarizing we obtain

|N (I−(v))| = |N (S)| ≥ σ̃ . (24)

On the other hand, since each voxel is connected to exactly3 rows we have

|N (I−(v))| ≤ 3|I−(v)| . (25)

Combining (24) and (25) we obtain the desired result.

This guarantees exact recovery by (5) viaÃ for at least all(σ̃/3 − 1)-sparse nonnegative
vectors.

We stress that is is possible to obtain a good upper bounds on the spark of an arbitrary
matrixA by computing first its row echelon (which can be done efficiently if A is sparse) and
then obtain a sparse nullspace vector from its row echelon.

6.3 Unique Solution of the Reduced System

Equivalence for most problem instances can be obtained by similar arguments as in Section
5.2. The critical value ofk such that ank-sparse vector with uniform distributed nonzero en-
tries induces a overdetermined reduced system is againk(d) ≈ 3.54d1.34. Then a lower bound
to the critical valuek such that ank-sparse nonnegative vector with uniformly distributed
nonzero entries is most probably unique if

k(d) ≥ min{3.54d1.34, 2.7d2} ,

where we assumed that2.7d2 or less columns combinations are most probably unique based
on the results in Fig. 7.

7 Numerical Experiments

7.1 Phase Transitions

In this section we inspect empirical bounds on the required sparsity that guarantee exact re-
construction and critical parameter values that yield a performance similar to the settings
considered in compressed sensing (e.g. [15, 19, 16]).

These parameter values allow us to answer the question how sparse a vector should be
(particle density) such thatℓ0-minimization can be solved byℓ1-minimization or simply by
the linear program (5).

In analogy to [16] we assess the so calledphase transitionρ as a function ofd, which is
reciprocally proportional to the undersampling ratiom

n
∈ (0, 1). We considerd ∈ {3, . . . , 55},

the corresponding matrixA ∈ R
3d2×d3

from (4) and it’s perturbed versioñA and the sparsity
as a fraction ofm = 3d2, k = ρm, for ρ ∈ (0, 1).

This phase transitionρ(d) indicates the necessary ratiom
n

to recover ak-sparse solution
with overwhelming probability. More precisely, if‖x‖0 ≤ ρ(d) · m, then with overwhelming
probability theℓ0-problem of finding thek-sparsest solution can be solved by the LP (5).
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For Gaussian matrices there are precise values ofρ(d), see [16, 19], which can be computed
analytically.

Relevant for TomoPIV is the settingd ≈ 1024. In the case of severe undersampling, i.e.
asd → ∞, astrong asymptotic thresholdρS(d) ≈ (2e log(2

√
πd/3)−1 andweak asymptotic

threshold

ρW (d) ≈ 1

2 log(d
3
)

(26)

holds for Gaussian matricesAG and nonnegative signals, where we have taken into account
AG ∈ R

3d2×d3

. The weak threshold says thatρW (d) · m-sparse nonnegative vectors aretypi-
cally the unique solutions ofAx = b while for the strong one equivalence between (2) and (5)
holdsfor all ρS(d) · m-sparse signals.

In view of Section 4, the strong threshold forA from (4) equals3 for all d, while for the
perturbed matrix we can lower bound the strong threshold according to Thm. 6.2 by

ρS(d) ≥ spark(Ã(d))

3
− 1 .

Sincespark(Ã) will grow with d, we obtain an improvement over the constant strong thresh-
old for the unperturbed matrixA. Verifying the strong threshold for̃A empirically would be
NP-hard. However, it is possible to verify the weak thresholds empirically by running tests on
a random set of examples.

7.2 Numerical Results

For eachd ∈ {3, . . . , 55} we generatedA according to (4) and̃A by slightly perturbing it’s
entries.Ã has the same sparsity structure asA, but random entries drawn from the standard
uniform distribution on the open interval(1, 1.001). We have tried different perturbation
levels, all leading to similar results. Thus we adopted thisinterval for all presented results.

Then forρ ∈ [0, 1] aρm-sparse binary vector was generated to compute the right hand side
measurement vector and for each(d, ρ)-point 100 random problem instances were generated.

The empirical probability thatk = ρm columns ofA or Ã are linearly independent for
each parameter combination is presented in Fig. 7, while theprobability that ak = ρm-sparse
vector can be recovered by the LP (5) is illustrated in Fig. 8,Fig. 9 and Fig. 10. Two slices
of a phase transition plot ford = 50 andd = 100 are presented in Fig. 11. A threshold-effect
is clearly visible in all figures exhibiting parameter regions where the probability of exact
reconstruction is close to one. We refer to the figure captions for detailed explanations.

8 Conclusion and Further Work

The reconstruction of particle volume function from few projections can be modeled as finding
the sparsest solution of an underdetermined linear system of equations, since the original
particle distribution can be well approximated with only a very small number of active basis
functions relative to the number of possible particle positions in a 3D domain. In general
the search for the sparsest solution is intractable (NP-hard), however. The newly developed
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theory of Compressed Sensing showed that one can compute viaℓ1-minimization or linear
programming the sparsest solution for underdetermined systems of equations provided that
the coefficient matrix (also called measurement ensemble) satisfies certain conditions. Testing
these conditions on generic matrices is often harder than solving the combinatorialℓ0-problem
in (2) as it also implies solving a combinatorial problem which is intractable given the huge
dimensionality of the measurement matrix within the TomoPIV setting. However, we showed
in the present work that all currently available recovery conditions predict an extremely poor
performance of the TomoPIV measurement ensemble when we restrict to a simple but realistic
setup geometry. On average, such matrices perform approximately five to ten times worse
then Gaussian matrices which allow for maximal sparsity such that for all less sparse vectors
exact recovery is still guaranteed. However, when we slightly perturb the entries of such an
degenerate measurement matrix we can boost both worst case and expected reconstruction
performance. Then the particle density can be increased by afactor of three while preserving
the number of measurements. The theoretical analysis within this work suggests that a similar
procedure can applied to an arbitrary sparse matrix with badreconstruction performance.
We will investigate this issue further for adjacency matrices of expander graphs with bad
expansion property.
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Figure 7: Top: Probability thatρm column combinations ofA are linearly independent.
Bottom: Probability thatρm column combinations of the perturbed matrix̃A are linearly
independent. The black curve depicts the scaled rank of matrix A as a function ofd. The
lower plot suggests that most3 · 0.9d2 = 2.7d2 column combinations of the perturbed matrix
Ã are linearly independent with probability one. On the otherhand, this can be claimed only
for three times less columns ofA.
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Figure 8: Results for matrixA from (4). Top: Probability of correct recovery by linear
programming of a random particle distribution that can be expressed with exactlyk = ρm
basis functions as a function ofd. The solid black curve depicts0.2ρW (d) and the dashed one
0.1ρW (d), whereρW is the weak phase transition (26) of linear programming, butfor Gaussian
random matrices. The results indicate thatA from (4) performes ten times worse in recovering
mostsparse nonnegative signals.Middle: Probability that the reduced matrixA obtained by
eliminating zero measurements and corresponding adjacentvoxels is overdetermined along
with the estimated critical sparsity level3.54d1.34 relative to the number of measurements as
a function ofd (solid black line), see (19). Ten times the dashed line equals the solid one.
Bottom: Probability that a randomk = ρm particle distribution induces an overdetermined
and full rank reduced matrix. The results not only indicate that the reason for successful
recovery in case ofA are full rank overdetermined reduced matrices, but also that solving
just an overdetermined linear system might be more stable than linear programming, when
the solution is known to be nonnegative. Here, the solid and dashed black curve depict again
0.1ρW (d) and0.2ρW (d).
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Figure 9: Results for the perturbed matrix̃A. Top: Probability of correct recovery of ak =
ρm sparse binary vector as a function ofd. The solid black curve depicts1.18d−0.66, compare
(19) and middle figure.Middle: Probability that the reduced matrixAred is overdetermined
along with the estimated relative critical sparsity level1.18d−0.66 (solid black line) which
induces overdetermined reduced matricesÃred. Bottom: Probability that a randomk = ρm
particle distribution induces an overdetermined and full rank reduced matrix along with the
black curve1.18d−0.66. In case of the perturbed matrix̃A exact recovery is possiblebeyond
overdetermined reduced matrices.
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Figure 10: Recovery viaA from (4) (top) versus recovery via the perturbed matrixÃ (bottom).
Top: Success and failure empirical phase transition forA along with0.1ρW (d) (dashed) and
0.2ρW (d) (solid). Bottom: Success and failure empirical phase transition for the perturbed
matrix Ã along with0.5ρW (d) (dashed) andρW (d) (solid), compare (26). The results indicate
thatÃ performs three times better in recoveringρm sparse vectors by the LP (5).
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(a)d = 50, A (b) d = 50, Ã
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(c) d = 100, A (d) d = 100, Ã
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Figure 11: Slices through the contourplots Fig. 8 (top) and Fig. 9 (top);A versus the perturbed
matrix Ã for d = 50 andd = 100. The blue line depicts the probability (as function ofρ)
that aρm-sparse binary vector is recovered exactly by the LP (5). Thered line illustrates the
probability that aρm-sparse binary vector induces an overdetermined reduced matrix of full
rank while the black line plots the probability that the reduced matrix is just overdetermined
and not necessary of full rank. Here againÃ performs three times better.
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Appendix

Proof of Proposition 2.2

Proof. (a) Note first that1⊤
d

(
−1

⊤
d−1

Id−1

)

= 0 and compute

AN =





1
⊤
d ⊗ Id ⊗ Id

Id ⊗ 1
⊤
d ⊗ Id

Id ⊗ Id ⊗ 1
⊤
d





((
−1

⊤
d−1

Id−1

)

⊗
(

−1
⊤
d−1

Id−1

)

⊗
(

−1
⊤
d−1

Id−1

))

=











(

1
⊤
d

(
−1

⊤
d−1

Id−1

))

⊗
(

−1
⊤
d−1

Id−1

)

⊗
(

−1
⊤
d−1

Id−1

)

(
−1

⊤
d−1

Id−1

)

⊗
(

1
⊤
d

(
−1

⊤
d−1

Id−1

))

⊗
(

−1
⊤
d−1

Id−1

)

(
−1

⊤
d−1

Id−1

)

⊗
(

−1
⊤
d−1

Id−1

)

⊗
(

1
⊤
d

(
−1

⊤
d−1

Id−1

))











= 0,

using the mixed product rule(B1 ⊗ C1)(B2 ⊗ C2) = (B1B2) ⊗ (C1C2), compare [22].

(b) Every column inN from (9) contains exactly8 = 23 nonzero entries since every column

in

(
−1

⊤
d−1

Id−1

)

has exactly 2 nonzero entries.

(c) According to [22, Thm. 4] the rank of the Kronecker product of two matrices is the product
of the ranks of the matrices and thus

rank(N) = rank

(
−1

⊤
d−1

Id−1

)

rank

(
−1

⊤
d−1

Id−1

)

rank

(
−1

⊤
d−1

Id−1

)

= (d − 1)3 .

(c) Rewrite

A =





1
⊤
d ⊗ Id ⊗ Id

Id ⊗ 1
⊤
d ⊗ Id

Id ⊗ Id ⊗ 1
⊤
d



 =





Id2 Id2 · · · Id2

e1
d ⊗ 1

⊤
d ⊗ Id e2

d ⊗ 1
⊤
d ⊗ Id · · · ed

d ⊗ 1
⊤
d ⊗ Id

e1
d ⊗ Id ⊗ 1

⊤
d e2

d ⊗ Id ⊗ 1
⊤
d · · · ed

d ⊗ Id ⊗ 1
⊤
d



 ,

whereei
d denote the canonical basis vectors inR

d. Define

L =





Id2 0 0
−e1

d ⊗ 1
⊤
d ⊗ Id Id2 0

−e1
d ⊗ Id ⊗ 1⊤d 0 Id2




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and compute the product

LA =





Id2 Id2 · · · Id2

0 −e1
d ⊗ 1

⊤
d ⊗ Id + e2

d ⊗ 1
⊤
d ⊗ Id · · · −e1

d ⊗ 1
⊤
d ⊗ Id + ed

d ⊗ 1
⊤
d ⊗ Id

0 −e1
d ⊗ Id ⊗ 1

⊤
d + e2

d ⊗ Id ⊗ 1
⊤
d · · · −e1

d ⊗ Id ⊗ 1
⊤
d + ed

d ⊗ Id ⊗ 1
⊤
d





=





Id2 Id2 · · · Id2

0 (−e1
d + e2

d) ⊗ 1
⊤
d ⊗ Id · · · (−e1

d + ed
d) ⊗ 1

⊤
d ⊗ Id

0 (−e1
d + e2

d) ⊗ Id ⊗ 1
⊤
d · · · (−e1

d + ed
d) ⊗ Id ⊗ 1

⊤
d





=











Id2 1
⊤
d−1 ⊗ Id2

0

(
−1

⊤
d−1

Id−1

)

⊗ 1
⊤
d ⊗ Id

0

(
−1

⊤
d−1

Id−1

)

⊗ Id ⊗ 1
⊤
d

︸ ︷︷ ︸

:=Ā











=

(
Id2 1

⊤
d−1 ⊗ Id2

0 Ā

)

.

SinceL is a regular matrix

rank(A) = rank(LA) = rank(Id2) + rank(Ā) = d2 + rank(Ā). (27)

We further investigate the rank of̄A. By dropping the first and(d + 1)-th row in Ā we obtain
a new matrix

Ã :=

(
Id−1 ⊗ 1

⊤
d ⊗ Id

Id−1 ⊗ Id ⊗ 1
⊤
d

)

whereas
rank(Ā) = rank(Ã) (28)

holds. It is well known that
rank(Ã) = rank(ÃÃ⊤). (29)

Further, we compute

G :=

(
dId−1 ⊗ Id Id−1 ⊗ 1

⊤
d ⊗ 1d

Id−1 ⊗ 1d ⊗ 1
⊤
d dId−1 ⊗ Id

)

=

(
dId(d−1) Id−1 ⊗ (1d1

⊤
d )

Id−1 ⊗ (1d1
⊤
d ) dId(d−1)

)

.

By analogy toL we define

L̃ :=

(
Id(d−1) 0

−1
d
Id−1 ⊗ (1d1

⊤
d ) Id(d−1)

)

,

as the product of the firstd(d − 1) Frobenius matrices respective toG and compute

L̃G =

(
dId(d−1) Id−1 ⊗ (1d1

⊤
d )

−1
d
dId−1 ⊗ (1d1

⊤
d ) + Id−1 ⊗ (1d1

⊤
d ) −1

d
Id−1 ⊗ (1d1

⊤
d )2 + dId(d−1)

)

=








dId(d−1) Id−1 ⊗ (1d1
⊤
d )

0 Id−1 ⊗
(

−1

d
(1d1

⊤
d )2 + dId

)

︸ ︷︷ ︸

:= ˜̃A








. (30)
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In order to determine the rank of̃̃A, we first note that there exists a orthonormal matrixQ ∈
R

d×d such that

(1d1
⊤
d ) = Q








d 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0








Q⊤.

Hence

˜̃A = −1

d
(1d1

⊤
d )2 + dId = −1

d
Q








d 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0








Q⊤Q
︸ ︷︷ ︸

Id








d 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0








Q⊤ + dId

= −1

d
Q








d2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0








Q⊤ + Q








d 0 · · · 0
0 d · · · 0
...

...
. . .

...
0 0 · · · d








Q⊤

= −1

d
Q








0 0 · · · 0
0 −d · · · 0
...

...
. . .

...
0 0 · · · −d








Q⊤

andrank ˜̃A = d − 1 holds. Combining this with (29) and (30) we obtain

rank(Ã) = rank(Id(d−1)) + rank( ˜̃A) = d(d − 1) + (d − 1)2. (31)

From (27), (28) and (31) we finally get

rank(A) = d2 + d(d − 1) + (d − 1)2 = 3d2 − 3d + 1.

(e) Using the dimension formula together with (d) we obtain

dim(ker(A)) = d3 − rank(A) = d3 − 3d2 + 3d − 1 = (d − 1)3.

Now (a) implies (e).

(f) Follows directly from (e) and the definition (9) ofN .
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Proof of Proposition 3.2

Proof. In view of Prop. 2.2 (b), there are8 columns inA which are linearly independent.
Thusspark(A) ≤ 8.

We index each entry of the matrixA in (4) by two triples

A(ik,jk,lk),(p,q,r) , (32)

where all indices range over{0, 1, . . . , d−1} except fori1 = j2 = l3 = 0. The first triplets in-
dex rows (projection rays) corresponding to the three matrices (projection directions) stacked
together, fork = 1, 2, 3. The second triplets index columns (voxels).

For a fixed column, we read off from (4) the three non-zero entries

δj1,qδl1,r , δi1,pδl1,r , δi1,pδj1,q . (33)

Consequently, pairs of indices(q, r) , (p, r) , (p, q) represent nonvanishing entries of columns
(p, q, r), and we represent each column by the triangleK3 havingp, q, r as vertices – see
Fig. 12a. The intersection of edges sets corresponds to the common support of column vectors.
We show that at least 8 columns are necessary so as to have no edge that does not intersect
with any other edge.

Consider two columns (triangles). They must differ in at least a single vertexp, q or r,
hence in at least two edges. Assume(p, q) is the common edge. Then the two remaining
vertices arer, r′ with r′ 6= r which cannot form the vertices of a third triangle (only triplets
(p, q, r) do). We conclude that any third triangle adjoined cannot share more than a single
common edge, and that four triangles with maximally intersecting edge sets are arranged as
shown in Fig. 12b.

The four non-intersecting edges in Fig. 12b generate non-vanishing entries in any linear
combination of four columns. Because all of them have the form (p′, q′′), the same reasoning
as above shows that no two of them can be edges of another triangle. Hence four other
triangles are needed to cover their support. We generate them with a single additional vertex
– Fig. 12c – in order to combine them to a minimal dependent set– Fig. 12d.

32



(a) (b)

(c) (d)

Figure 12: (a) The triangleK3 representing a column of the matrixA indexed by(p, q, r).
Edges represent the three non-vanishing entries.(b), (c) Two minimal configurations of 4
columns combined in(d) give a minimal dependent set.
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