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Abstract

We study the discrete tomography problem in ExperimentaldADynamics — To-
mographic Particle Image Velocimetry (TomoPIV) — from thewpoint of compressed
sensing (CS). The CS theory of recoverability and stahilityparse solutions to underde-
termined linear inverse problems has rapidly evolved dyiie last years. We show that
all currently available CS concepts predict an extremebyr poorst case performance, and
a low expected performance of the TomoPIV measurementrays$telicating why low
particle densities only are currently used by engineergactice. Simulations demon-
strate however that slight random perturbations of the Telvianeasurement matrix
considerably boost both worst-case and expected recaotistriyperformance. This find-
ing is interesting for CS theory and for the design of TomoRI®asurement systems in
practice.

AMS Subiject Classifications: 65F22, 68U10

Keywords:compressed sensing, underdetermined systems of lineati@ug) positivity constraints in
ill-posed problems, sparsest solution, TomoPIV

1 Introduction

1.1 TomoPIV

Our research work is motivated by the work [21]. The author®duced a new 3D technique,
calledTomographic Particle Image Velocimetry (TomoPf¥f) imaging turbulent fluids with
high speed cameras. The technique is based on the instantarexonstructions of parti-
cle volume functions from few and simultaneous projecti(#i3 images) of tracer particles
within the fluid. The reconstruction of the 3D image from 2Daiges employs a standard
algebraic reconstruction algorithm [27].

TomoPI1V can use only few projections due to both limited cgitaccess to wind and water
tunnels and cost and complexity of the necessary measut@mpparatus. As a consequence,
the reconstruction problem becomes severely ill-posed,barth the mathematical analysis
and the design of algorithms fundamentally differ from th@ndgard scenarios of medical
imaging.

A crucial parameter for 3D fluid flow estimation from image @@ ments is particle den-
sity. This parameter also largely influences the tomogaineéconstruction problem. Higher
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densities ease subsequent flow estimation and increasestbletion and measurement accu-
racy. However, higher densities also aggravate ill-posssiof the reconstruction problem.
A thorough investigation of this trade-off is lacking. Ourjective is to address these this
problem taking into account relevant developments in agdpthathematics.

TomoPIV adopts a simple discretized model for an imagesrsizaction problem known
as thealgebraic image reconstructiomodel [1], which assumes that the image consists of
an array of unknowns (voxels), and sets up algebraic equ&far the unknowns in terms
of measured projection data. The latter are the pixel eninghe recorded 2D images that
represent the integration of the 3D light intensity digitibn /(z) along the pixels line-of-
sight L; obtained from a calibration procedure. Thus, #tlk measurement obeys

bi S / I(Z)dZ ~ Z.TJ/ Bj(Z)dZ = ijaij,

whereq,; is the value of the-th pixel if the object to be reconstructed is thth basis function.
The valuess;; depend on the choice of the basis function. Typicaly,are cube-shaped
uniform basis functions, the classicaixels For simplicity we will adopt this discretization
scheme and stress that other choices are possible, se2%.g. [

The main task is to estimate the weightsfrom the recorded 2D images, corresponding
to basis functions and solvéx ~ b. The matrixA has dimension$# pixel =: m) x
(# basis functions= n), wherem < n. Since each row indicates those basis functions
whose support intersect with the corresponding projectgrihe projection matrixd will be
sparse.

1.2 Compressed Sensing

We study the tomographic problem of reconstructing patclume functions from the gen-
eral viewpoint ofCompressed Sensinghich is a central theme of current research in applied
mathematics. Compressed Sensing [10, 11, 17] is a new tpehior acquiring a sparse
signalz* € R™ by incomplete linear measurement

Ar =0, (1)

whereA € R™*", m < n, and for reconstructing* exactlyprovided that the signal is sparse
(or compressible in some basis), ile:*||o := |[{i |z} # 0}| < n.
Instead of considering the NP-hafg@minimization problem

min [|z]lp s.t. Az =b, (2)
it considers the convek-minimization problem
min [|z]}; s.t. Az =0, (3)

and investigates the situations when the safnsolve both problems (2) and (3), coined as
¢y /¢1-equivalence.

A remarkable result of Candes and Tao [11] is that if, forregke, the rows ofA are
randomly chosen Gaussian distributed vectors, there isyata@otC' such that if the signal
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sparsity level obeygz*||o < Cm/log(), the solution of (3) will be exactly the original
signalz* with overwhelming probability.

In fact, random measurement matrices are optimal [9, 193PB) the sense that for a
given sparsity levet, the required number of samples is minimal such that, -equivalence
holds. On the other hand, for a given number of measuremertse sparsity levek of z*
which allows recovery by;-minimization is maximal. The different derivations &f/¢; -
equivalence are quite involved and are based on the notidtesfricted Isometry Property
(RIP)[3], see Section 4.3, or on "counting faces” of polytops [19, 16].

When the solution is known to be sparse and positive thenrundenilar assumption on
A, k andm all nonnegativeé-sparse vectorg* are the unique positive solution dfr = Ax*,
[7,19].

Donoho and Tanner [16, 19] have computed sharp reconginuttiesholds for Gaussian
measurements, such that for any choice of spaksapnd signal size, the required number
of measurements: to recoverz* can be determined precisely.

Recent trends [4, 5, 24] tend to replace random dense matrnicadjacency matrices of
"high quality” unbalanced expander graphs. Here, the nreasent matrices! are sparse
binary matrices.

1.3 Stylized Problem

Likewise, we will concentrate on a particular binary measuent matrix. We consider a 3D
image with a cubic domairl/ discretized ind® voxels. Three cameras, with pixels (L;
rays) each, keep the volume under investigation in focus flaree orthogonal directions,
compare Fig. 1.3 (left). According to Section 1.1 each enfrthe measurement matrix
will be

if the line of sightL; of the i-th pixel intersects thg-th voxel B;, or a;; = 0 if not. By
numbering voxels and pixels according to Fig. 1.3 (left) nxal can be written in closed
form as
1, @1;® I,
A=| Lel)el; |, (4)
Li®lL;®1)

where® denotes the Kronecker product, see [22]. Notice tha the adjacency matrix of a
bipartite graph with regular left degr@eand regular right degre& compare Fig. 1.3 (right).
The left variable nodes of which there are= d* correspond to the voxels in th# cube and
thus to the entries af. The right nodes (or measurement nodes) of which there.are 3d°
correspond to the camera pixel. In a bipartite graph comrestvithin the variable nodes and
within the right nodes do not occur. The existing edges betwvike left nodes and right nodes
are represented by our x n matrix A from (4). In particular,

1, if j-th ray intersectsg-th voxel
QAij = .
! 0,  otherwise

foralli e {1,...,n},je{l,...,m}.



2d2 —

Figure 1:Left: Discretization of thel x d x d volume and correspondirgy/? rays for the 3
orthogonal projectionRight: A is the adjacency matrix of a bipartite graph with regular lef
degree3 and regular right degreé

Throughout this paper we denote bythe indicator vector corresponding to original the
particle distribution and assume that our measurementdb@s the sampling matriX are
exact, i.eb = Az*. Moreover, we assume that is positiveandsparse

We investigate the sparsity levelgf up to which the the sparsest solutionbf = Ax* is
unique. Furthermore, we are interested in recoverings minimizer of the/;-minimization
problem (3) or, as minimizer of the linear program

minl'z, Ar=b2z>0. (5)

1.4 Contribution and Organization

We provide a detailed study of the TomoPIV problem from thewgoint of compressed
sensing. We assess the worst-case and average perfornidhiseseverely ill-posed recon-
struction problem of discrete tomography, based on cohveggularization and on a range
of recently established theoretical results.

The critical parameter both in theory and in practice is thdiple density of the imaged
fluid, that in mathematical terms corresponds to the spao$ithe vector to be reconstructed
from observed measurements. Of particular interest arseptransitions of this parameter
below of which unique reconstructions can be assumed to inofifactice — an essential
requirement for subsequent processing steps for, e.gnatstg fluid flow velocity from a
sequence of reconstructed volume functions. On the othed,hasing as large as possible
particle densities is important in practice too, in ordeiniprove the spatio-temporal resolu-
tion of observed fluid structures.

After establishing basic properties of the measurementixn@) in Section 2, we clar-
ify in Sections 3 and 4 the relationship between the regegdrreconstruction problems (2),

4



(3) and (5) and assess the worst-case and average perfaiarapplying recently estab-
lished results from the theory of compressed sensing to @#neoPIV problem. Taking into
account that sparse volume functions generate sparsevabeas, we provide in Section 5
a probabilistic analysis of TomoPIV reconstructions basedystems (1) that have been
ducedaccordingly in a preprocessing step. Finally, we discusSdaation 6 the statistics of
numerical simulations based on slightly and randomly pbeid measurement matricds

In a nutshell, we show that the TomoPIV problem is quite degate from the viewpoint
of compressed sensing, thus leading to poor performancemgas (Sections 3, 4). On
the other hand, the probabilistic analysis of Section 5dgedverage performance bounds
that back up current rules of thumb of engineers for choopangjcle densities in practice.
Finally, Section 6 indicates a dramatic performance boastt on only slightly modified
measurement systems, raising novel problems for theoryraplications for the improved
design of real TomoPIV measurement systems.

While Section 3 is based on established theoretical coacalpremaining sections — and
Section 3 too — contain novel material from the specific vielwpof TomoPIV and also from
the more general viewpoint of discrete tomography. In paldir, our papers aims at pointing
out connections between the fields of compressed sensindisecréte tomography in order
to stimulate further research.

1.5 Notation

| X | denotes the cardinality of a finite s&t We already introduced the pseudo-ndfm|, =

|{i| z; # 0}| and denote the set éfsparse vectors b} = {x € R"| ||z|lo < k}. The sup-
port of a vectorr € R”, supp(x) C {1,2,...,n}, denotes the set of indices of nonvanishing
components of. With I (z) = {i|z; > 0}, I°(z) = {i|x; = 0} and I~ (z) = {i|z; < 0},

we havesupp(x) = I (z) U I~ (z) and||z||o = |supp(x)|.

If S denotes a finite set thek((S) denotes the union of all neighbors of elementsof
where the corresponding relation (graph) should be clean the context.

A, ; denotes thé-th column vector of a matrixl. For given index set$, J, matrix A, ;
denotes the submatrix of with rows and columns indexed biyand ./, respectively./¢, J¢
denote the respective complement sets. Similaflgenotes a subvector of

E[-] denotes the expectation operation applied to a randombleria

2 Preliminaries

The objective of this section is an examination of the proeerof the system (1) for this
simple prototype of data-collection geometry. Such progemwill be also relevant for other
regular imaging geometries, e.g. when additionaly usinguathh camera (projection direc-
tion).

By the nature of the problem the coefficient matrixs very sparse, in contrast to most
compressed sensing measurement ensembles. This togétinénevsparsity of the original
signalz* induces a sparsity also in the measurement véotdrich in more classic scenarios
is not given. As a consequence, we can remove equations githright-hand side leading
us to a feasible set of reduced dimensionality as will beildetaext.



Consider the feasible polyhedral set with respect indb
F:={x| Az =b,x >0}, (6)

where all entries;; in A are nonnegative. Let us introduce the following partitiohghe
right and left nodes

I=1°)={iec{l,...,m}|b; =0} and I,
J=N{I)={je{l,....n}|Fiel:a;>0} and Je.

Further define
Fred = {{L’ | A[CJCZE = b[c,l’ Z 0} (7)

Then we can make the simple, compare [29, Prop.1], but irapbadbservation.

Proposition 2.1.Let A € R™*" b € R™ have all nonnegative entries atfdland %, ., defined
as in(6) and (7) respectively. Then

F={zeR"|z;=0andx; € F..q}. (8)

Remark2.1. Assume that for a particular measurement vettovhich induces the partitions
I, I¢andJ, J¢ of the right and left nodes as defined above, we obtained amlewgmined
and full rank submatrixi . ;.. Then the vector?. is the unique solution ofi;c jex = b, and
z* € R", wherex” = 0, is the the unique positive solution dfr = b.

Clearly, when the above situation occurs solving thg@roblem (2) amounts to solve a
feasibility problem. Moreover, any method which solves
min f(z)
for an arbitrary objective functioyi will lead to the sameorrectresult.

Let us assume for the time being that we have a sufficientlgsspaector:* and a suffi-
ciently sparse measurement vedict Az* such thatd . ;. is overdetermined, i.e.

N IP@)] = [1°(B)] = —m.

The rank ofA;. ;. will equal the rank ofA4 ., while the latter cannot be full if it contains a
subset of linearly dependent columns.

This observation motivates us to find an upper bound to them@xiumbers of columns
such that alls (or less) column combinations are linearly independent. udeful tool for
achieving this task, which is in general of combinatoriglne, is to investigate the nullspace
of A.

Proposition 2.2. Letd € N, d > 3, A from (4) and N € R**(@-1° defined as

—1! —1! —1!
N :— d-1 d—1 d-1 ) 9
(o )e (e )e (o) ©

Then the following statements hold



A basis forker(A)

Figure 2: MatrixA from (4) ford = 5 (left) along with asparsebasis for its nullspace, the
columns of N from (9) (right).

(@) AN =0, with A from (4).

(b) Every column inV has exactl\8 nonzero elements.

(c) N is a full rank matrix andrank(N) = (d — 1)3.

(d) rank(A) = 3d* — 3d + 1.

(e) ker(A) = span{ N}, i.e. the columns oV provide a basis for the nullspace df

() >°r_, v; = 0 holds for allv € ker(A).

Proof. See appendix. O

3 Unique Sparsest Solution

In order to study, /¢,-equivalence for from (4) we decompose this problem in two separate
conditions:

1. /p-unique-optimality:z* is the unique optimum of (2) ;
2. (1-unique-optimality:x* is the unique optimum of (3) .
In this section we investigate the first subproblem, whikegbcond one will be addressed in

the next section.

3.1 Spark

Besides being one of the classical NP-hard problems, sgdd2this NP-hardness result,
problem (2) has a highly nonconvex objective function ang timany local optima may occur.
Fortunately previous work has shown that if a sparse enoolgiien to (2) exists than it will
be necessarily unique. The analysis in [20] involves thesuesapark(A) which equals the
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minimal number of linearly dependent columnsAfsee [18, 20]. In contrast tewnk(A),
spark(A) is NP-hard to compute. Fortunately bounds on this measared®e derived, [18]
and Section 4.2.

The following result is surprisingly elementary and candend in [18].

Theorem 3.1. (Uniqueness) Let* be a solution of(1) with [|2* ||, < 2254 Thenz* is the
unique solution of2).

Clearly,2 < spark(A) < rank(A) + 1. Again, Gaussian matrices € R™*", m < n, are
optimal in the sense thapark(A) is maximal and equalsnk(A)+1 = m—+1. Unfortunately,
with A from (4) we come off badly.

Proposition 3.2. For all d € N, d > 3 the minimal number of linearly dependent columns of
matrix A from (4) equalsg, i.e. spark(A) = 8.

Proof. See appendix. O

Hence, Thm. 3.1 and Prop. 3.2 yigldaranteeduniqueness oévery3-sparse vector*
only. This bound is tight, since we can construct tveparse solutions' andz? such that
Azt = Az?, compare Fig. 3.

3.2 Signature

In [20] Elad adopts a probabilistic point of view to study gueness of sparse solutions of
(2) beyond the worst-case scenario based orsitpeatureof a matrix A € R™*"™, This is
defined as the discrete functieig 4 (k) € [0,1], for k € {2,...,n}, that equals the number
of k£ column combinations i which arelinearly dependendlivided by the number of alt
columns from the: existing ones. By definitiosig 4 (k) = 0, for all & < spark(A).

Theorem 3.3.[20, Th. 6,Th. 5] Letr := spark(A) < rank(A) =: » andz* be a solution
Ax = b. Assume the locations of the nonzero entries*imre chosen at random with equal
and independent probability. If/20 < [|z*[|p =: k& < r, then the probability that™ is the
sparsest solution ofix = bis 1 — sig 4 (k) and the probability to find a solution ofz = b of
the same cardinality is

(@ Zf;g(k: —)(n—k +j)( ? )sigA(k — j) or lower, if ||z*||o > o;

(b) 0,if1/20 < ||z*]|p < o.

Hence uniqueness of the sparsest solution with cardinEgy thenspark(A) can be
claimed with probability 1.

An upper bound on the signature was derived via argumenis fmatroid theory [6],
under the assumption that the spark is known.

Theorem 3.4.[20, Th. 7] LetA € R™*™ with the signature functiosig ,, spark(A) = o and
rank(A) = r. Then

o—1 (n—r+i—1\ (r—i
>l G [ R

(%) -
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To compute the signature seems even harder then compugngptirk. However, the
signature will be close to zero fdr small enough, but growing with the dimension 4f
If spark(A) = 8 it does not necessarily mean that evérgolumn combination are linearly
dependent. In fact, only a limited numberiofolumn combinations can be dependent without
violating rank(A) = 3d* — 3d + 1. It turns out that this number is tiny for smallerwhen
compared to(’;) As k increases this number also grows and equals one only whenr,
compare Fig. 6.1 and Fig. 7 (left). Numerical experimentpygst that mosh.9d? column
combinations in4 are linearly independent.

4 Unique Positive Solution

This section might seem useless from a practical point of giace(, /¢,-equivalence cannot
be claimedfor all k-sparse vectors wheh exceeds3 in view of the nonuniqueness of the
lo-minimizer in this case. However, we trace relevant condgiyielding/,/¢;-equivalence,
review known connections between different concepts aedgit to establish some new ones.

4.1 Relations between problemg3) and (5)

Most Compressed Sensing results explore conditions undehwhe minimum of the/;-
minimization problem (3) is unique (and identical to theminimization problem (2)). We
note in this section that if the measurement mattikas equal column sum and if a positive
solutionz* to Ax = b exists, then a uniqué-minimizer must equat*. Conversely, if the
solution of (5)z* is unique then also thg-minimizer must be unique.

Proposition 4.1. If z* solvesAz = bwith A from(4) whereasl "z* =: ¢ then for all solutions
z of (1) the entries sum equalsi.e. 1’z = c.

Proof. Follows directly from Prop. 2.2 (f). O

Lemma 4.2. Assume there is a positive solutiohto Ax = b with A from(4). Thenz* solves
the ¢;-minimization probleng3).

Proof. Denote byz! a solution to the/;-minimization problem (3). In view of Prop. 4.1 we
obtain
1TSL’* — lTJJl S HxIHI S lTJJ* 7

where the last inequality holds singéis feasible. Thus equality must hold. O
This immediately implies

Proposition 4.3. Assume there is a positive solutiohto Az = b, with A from (4) and letx!
be the unique solution of thig-minimization probleng3). Thenz! must equal*.

On the other hand, we have

Proposition 4.4. ConsiderA from (4) and assume that the positive solutiohto Az = b is
unique. Therx* will be also the unique minimizer of tifg-minimization probleng3).



Proof. Note that ifx* is the unique minimizer of (5) then' is necessarily:-sparse for some
k < n. Otherwise, it cannot be unique since forwith no vanishing entries* + tv will
also solve (5) for sufficiently small ands € ker(A). HenceS := I°(z*) # (). Moreover,
SNI~(v)#QorSc NI (v)=#0holdforallv € ker(A)\ {0}, in view of the uniqueness of
z*. Fromy . v+ > . .q. v; = 0 We now obtain

| > sign(zi)ul =)l <) luil,

1€S°¢ 1€S°¢ €S

forallv € ker(A)\{0}. Thisis a well known condition for the uniqueness of theninimizer,
see e.g. [26]. O

Note, that the above results hold for all matricksvith equal column sum.

4.2 Mutual incoherence

The mutual coherence of a matrix denoted byu(A), is defined as the maximal absolute
scalar product between two different normalized columng of
<A',iv A',j>

1 A = max — 0 . (10)
) = AL TAL

It measures the similarity between the matrix’s columns.gfoorthogonal matri®, p(A) =
0. For anm < n we necessarily have(A4) > 0. Uniqueness of the sparsest solution and
exact recovery of* via /;-minimization can be guaranteed [18] if

la*lly < 0.5 <1 + ﬁ) |

Hence, there is an interest in matrices with as small as lplessiA). u(A) = 1 implies the
existence of two "parallel” columns, and this causes caonfus the construction of a sparse
representation of the measurement veatdn [30] it was shown that for a full rank matrix of

sizem X n
n—m
> -

and equality is obtained for a family of matrices call@chssmanian frames
The mutual coherence is often use to lower bound the sparte she following relation-
ship always holds

1
spark(A4) > 14+ —— .

1(A)
In [7], nonnegativity is taken into account. Here a one-dideherence is considered
<Ao Iz Ao ])
V(A) = max ~—=—2= (11)
i || Aaill?

i#j

The authors obtained the following result.
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Theorem 4.5.[7, Thm. 2] LetA € R™ "™ be a matrix with nonnegative entries such that
all solutions of Az = b satisfyl" 2 = ¢, wherec is some constant. If there isrnnegative
sparse solutiorr* to this system withjz*||, < 0.5(1 + ﬁ), then it is a unique solution of
this problem.

For our particular matrixd we obtain

Proposition 4.6. For all d € N, d > 3 and A defined in(4)

Proof. Since every column contains exacllpnes we obtaifjA, ;||* = 3foralli € {1,...,n}.
Thusu(A) = v(A). Since two different voxels can both be intersected by attrons ray
the maximal common support of two different columns is onleisTmmediately implies the
result. O

However, recovery bounds based on this bound are too pesisisince, due to the above
result we obtain guaranteed recovery ¥jaminimizationfor all k-sparse vectors it < 2,
which is (needless to say) useless. Derivation of stroregiits that refer to specific matrices
and bypass the use of the mutual coherence should be attempte

4.3 Restricted Isometry Property

In order to prove that there exist matricdaswith only m = O(klog(n/k)) rows such that
for all k-sparser ¢,/¢,-equivalence holds Candés and Tao [10] introduced a corthap
outranks the coherence measufel). A matrix A is said to have th&estricted Isometry
Property RI P, s, if for any k-sparse vectar, the following expression is verified

(1= 0)[ll* < lAz|]* < 1+ 9)||=]*, b€ (0,1). (12)

This property implies that every submatrtits formed by combining at mosgt-columns
in A has its nonzero singular values bounded above-by and below byl — §. In particular,
(12) implies that a matrixl cannot satisfyR1 P s, if k£ > spark(A).

Candes has shown, see [8, Thm. 1.1], that i€ RIP,;0, With§ < v/2 — 1 allz € R}
solve both (2) and (3). Moreover, there exists sensing oegtl € R”™*" which satisfy e.g.
the RIP, 1,4, Wwherek can be as large &3(m/ log(m/n)). This class includes matrices with
i.i.d standard Gaussian dfl entries, random submatrices of the Fourier transform oceroth
orthogonal matrices.

It has been shown recently [12] that binary matrices canatisfg R/ P, 5, unless the
numbers of rows i$2(k?). Note that the best known explicit construction of (binacgn-
pressed sensing matrices due to DeVore [14] yiidg) measurements, which is worse than
the boundn = O(klog(n/k)).

Theorem 4.7.[12, Thm. 1] LetA € R™*" be any0/1-matrix that satisfie$/ P, ;, 5. Then
1-6\° —
m > min 0 k2, L-0 n, .
140 140
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For our particulard defined in (4) withspark(A) = 8 we therefore obtain taking = 3d?
into account

Corollary 4.8. Letd € (0,1). Then a necessary condition fdrto satisfy theRI P, 5 for all

k-sparse vectors is that
/{:<m1n{\/_ 1tgd 7}

However, we cannot be sure thdtpossesses th&/ P, , 5 ;, unless we compute all
singular values of aldg, |S| < 7 matrices. In case of a positive result we obt&jn/, -
equivalence foarll less ther8-sparse particle distributions, even in case of obsemaioors,
sinceRI P also impliesstablerecovery, provided that the observation error is small ghou
compare [8, Thm. 1.2] for the "noisy” version result.

4.4 Binary Matrices with RI P, j; 5

In [4] it is shown that a particular class binary measurement matrice$ € {0, 1}"*™,
namely adjacency matrices of expander graphs, see thaviojdef. 4.1, satisfy a different
form of restricted isometry property, the so-calledr; ; s

veeRy, (1=l <[[Azlly = (1 +0)[lxl, d€(0,1). (13)

Definition 4.1. A (k, €)-unbalanced expander is a bipartite simple gréph (A, B, E') with
left degree’ such that for anyX € A with | X| < k, the set of neighbor&/(X) C B of X
has sizg V' (X)| > (1 — e)(| X|.

The existence of expander graphs can be shown using thehplistia method without
explicitly constructing them, see [4, 24] and the refersrberein.

Conversely, any binary matrix withones in each column and satisfyiRg P , s must be
the adjacency matrix of an unbalanced expander graph, aenypalrhm. 2].

The significance ofR1 P, i, s is the following performance guarantee when reconstrgctin
anarbitrary (not necessarily-sparse) vectar by solving (3).

Theorem 4.9.[4, Thm. 3] LetA € {0,1}™*" be the adjacency matrix of an unbalanced
(2k, e)-expander. Letv(e) = (2¢)/(1 — 2¢). Consider any two vectors, z* such thatdx =
Az* and||z|; < ||z*|;. Then

lo* = llx < [

2
(1 —2a(e))
wherez* € RY.

Proposition 4.10. Let be A the adjacency matrix of an arbitrary bipartite graph witrgudar
left degree’ and denoter = spark(A). ThenA is the adjacency matrix of afr — 1,1 — ¢ )—
unbalanced expander.

Proof. Let X C {1,...,n}and|X| = k < o — 1. ThenAy is a overdetermined full rank
matrix. In particular, there exigt linearly independent rows id x, each of them having at
least one nonzero entry. Henge'(X)| > | X| = ¢(1 — (1 — 3))|X]. O
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The above proposition implies that from (4) is the adjacency matrix of afY, %)—
unbalanced expander. As a consequence we obtain exacergdowevery3-sparse particle
distribution in view of Thm. 4.9 and Prop. 4.1.

4.5 Neighborly Polytopes

Donoho and Tanner [15, 19] explained theé/, -equivalence phenomenon from the view point
of convex neighborly polytopes. In contrast to sufficienbhditions for exact recovery, this
theory provides necessary conditions additionally.

We first summarize some terminology from convex polytopesity and refer to [23] and
[19] for more details. A linear inequality’ = < d is calledvalid for a polytopeP € R™ if
it is satisfied for alle € P. A subsetF’ C P is called afaceof P if FF = () or I' = P (the
improperfaces), or

F=Pn{zlc'z=d}
for some valid inequality:"z < d. Faces of dimensioh are calledk-faces. Vertices the
extreme points o, are the0-faces. A polytopeP is said to beoutwardly k-neighborlyif
every subset of vertices not including span &k — 1)-face, see [19], thus a outwardly
neighborly polytope behaves like a simplex, at least froevibwpoint of it's lowdimensional
faces (not including)), since everyp-dimensional face (not including) is simplicial, for
0<p<ek.

The main result in [19] connects outward neighborlinessh dquestion of uniqueness
of any k-sparse nonnegative vector. Such-aparse vector* will "live” on a k-face of the
convex hull of the standard simplex IR* and the origin, denoted b, ~*. If Az* will
"survive” on ak-face of AA} ™ = conv{A,. 1, ..., A.,, 0} then it will be the unique positive
solution satisfyingdz = Ax*. If Az* falls "inside” the "transformed” polytopel A}~ then
z* cannot be recovered by (5). For a outwarkhipeighborly polytoped 7'~ this will never
happen.

We will extend this result by the following simple obsereati

Theorem 4.11.Let A € R™*" be an arbitrary matrix. Then the following statements are
equivalent:

(a) Everyk-sparse nonnegative vectot is the unique positive solution dfr = Az*.

(b) The the convex polytope defined as the convex hull of thenos in A and the zero
vector, i.e.conv{A4, 1, ..., As,, 0} is outwardlyk-neighborly.

(c) Every nonzero nullspace vector has at |€ast 1 negative entries.

Proof. The equivalence of (a) and (b) is the main resultin [19, Thin. 1

(¢) = (a): Now, let z* be ak-sparse vector. Any other (different) positive solution of
Az = Ax* must be of the formx* + v such thatz* + v > 0 andv € ker(A) \ {0}. Hence
I~ (z* + v) = (). This contradict$/~(z* + v)| > 1 as claimed by (c).

(a) = (c): Conversely, lets assume that there exist a nonzero naéisfcton with |17 (v)| <

k. We now define two nonnegative vectarsandz? in the following way

. {v if i ¢ I~ (v)

! 0, otherwise

13
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Figure 3: Two differennon uniquel-sparse “particle” distributions in & x 3 x 3 volume,
based on the construction in the proof of Thm. 4.11. Both gonditions (represented by red
and blue dots) yield the identical projections in all thréections.

and

! otherwise .

9 —;, if i ¢ I~ (v)
0,

Sincezr! — 2% = v # 0 we obtain two different solution tdz! = Ax? althoughz? is k-sparse.
This completes the proof. O

From Prop. 2.2 we know the existence of nullspace vectolis ety 4 negative entries.
This together with Thm 4.11 now yields

Corollary 4.12. The convex hull of the columns in matrdefined in(4) and the zero vector,
i.e.conv{A,1,..., A, 0} is outwardly3-neighborly.

Hence, the maximal sparsity levelsuch that/,//;-equivalence holdor all k-sparse

nonnegative vectors holds3s Indeed, in a x d x d volume there arég)3 4-sparse vector
pairs with equal projections, compare Fig. (3).

4.6 Nullspace Property

Similar to the our simple observation in the previous sedt@ authors in [13] derived sparse
recovery conditions based on properties of the nullspacé. dh particular, they say that a
matrix A has theNull Space Propertyof orderk for & > 0 for v > 0 if

1, (14)

[os[ls < ~lvse

for all setsS of cardinality less thek andv € ker(A). In [13, Thm. 4.3] it is shown that
if A has the nullspace property of orderk and~ < 1 it is guaranteed that evekysparse
vector is the uniqué;-minimizer of (3). The nullspace property is a weaker versib the

For convenience we slightly modified the original definitmfrthe Null Space Property given in [13].

14



restricted/,-isometry property. Indeed, Cohen et al showed [13, Len.th4t if A satisfies

the R1 P» 31 s then A satisfies the nullspace property of ordérandy = §1 /}%g.

In independent work, Zhang [31] used the general concept-ludlancenesso study
uniqueness of thé -minimizer. A subspac« is k-balanced (ir/;-norm) if for any.S with
S| <k

[os]l < [lvse]lx

holds for allv € X. X is calledstrictly k-balanced if the strict inequality holds. Hence, strict
k-balanceness of the nullspacehimplies the nullspace property of ordewith v < 1, thus,
exact recovery. In fact, the author shows in [31] thdialanceness dfer(A) is equivalent
to conv{tA,,...,£tA.,,0} being (outwardly)k-neighborly. The latter is the analogous
sufficient and necessary condition for recovery ofiafiparse vector when the vector might
have different signs, compare [15].

In the nonnegative case Zhang showed [32] the equivalertbe ¢dutwardly)-neighborliness
of the polytopeconv{A, 1, ..., A.,, 0} and the notion ohalf k-balancenessf the nullspace
of A. A subspaceX is half k-balanced (irf;-norm) if for any.S with |S| < &

Do < losells

€S

holds for allv € X. X is calledstrictly half k-balanced if the strict inequality holds. Hence,
this different form of nullspace property for nonnegatieetors turns out to be sufficient and
necessary condition for uniqueness of eviergparse nonnegative vector, in view of the first
part of Thm. 4.11. However, testing the nullspace propestyditions on generic matrices
is potentially harder than solving the combinatoriglproblem in (2) as it implies solving

a combinatorial problem to compute However, we can conclude thdtfrom (4) has the
nullspace property of orde¥ with v < 1, due to the previous observations. This ends the
series of highly pessimistic conclusions concerning outi@aar A.

5 Most Probably Unique Positive Solution

5.1 Weak Equivalence

The concept of,/¢; equivalence demands that for a given measurement mafrequiv-
alence forall instances A, b) generated byany k-sparse vector holds. A weaker form of
equivalence considers equivalencerfwostproblem instancegA, b). In [19] it is shown that

a weaker form of neighborliness implies weak equivalende duthors define a polytoge

to be (k, €)-weakly (outwardly) neighborly if, among all-subsets of vertices (resp. among
those not including), all except a fractior spank — 1-faces ofP.

The columns of4 are ingeneral positionf all subsets of m columns ofA are linearly
independent, thuspark(A) = m + 1. It is shown in [19] that if the columns ofl are in
general position, weak neighborlinessaf\] ! = conv{A4, 1, ..., A, ,, 0} is the same thing
as saying thatlAl~' has at leastl — ¢)-times as manyk — 1)-faces asA . Thm. 2
in [19] shows the equivalence betweg@n ¢)-weakly (outwardly) neighborliness and weak
equivalence, i.e. uniqueness of all except a fractiohk-sparse nonnegative vectors.
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However, the columns ofl from (4) are not in general position. Besides, countinggace
of polytopes is again a combinatorial problem.

To overcome this difficulty we appeal to the observationaayemade in Section 2. If
the matrix obtained by reducing zero measurements andspameing adjacent voxels is
overdetermined and of full rank then the underlying solutidich generated the sparse mea-
surement vector must be unique. This is also a criteriondi’idual equivalence for a given
problem instancéA, b). Moreover, a critical sparsity levél yielding weak equivalence for
A of most k-sparse nonnegative vectors can be derived by estimategrbbability that
k-columns are linearly independent with probability closene, i.esig,(A) ~ 0, and esti-
mating the probability that the induced reduced matrix isrdetermined.

5.2 Probability of m,..q(k) > npeq(k)

Sparse vectors give rise to sparse vectobls= Axz. Based on the zero componentsbof
corresponding rows and columns can be removed fAigheading to aeduced matrix4,., €
Rmreak)xnrea(k) |0 this section, we estimate the expected dimension ofétdaaed matrix
depending on the sparsityof x.

Lemmab.1. Letz € {0, 1}d3 be a uniformly drawrk-sparse binary vector. Then the expected
number of zero measurements in any of the there projectiagesiapproximately is

= 2kZ ( )d _T‘Sk:d2—r7 (15)

wheresS,, . denotes the Stirling number of the second kind.

Proof. Let p: K — R be any of the three projection directions considered as atifum
mapping| K| = k particles ontd R| = d? pixels. We wish to determine the probability that
pixels, corresponding torows in the measurement vectgremain “empty”.

|R|/¥!, and wherd), c Q contains functiong mappingk particles to|R| — r pixels.
Assumer “empty” pixels are fixed. Then onlgurjectivemappings assignk particles to

all remaining| R| — r pixels without leaving any additional pixel empty. The si¢his set is

(|R| = r)! Sk, r—r is [2]. Because there ar(éf') ways to locate the zero pixels, we obtain

0, = ('R‘)<|R| ) S (16)

Clearly, || = E'R‘O |©2,|, and the expected number of zero pixel&ig, d] = E'R‘

Remark5.1 We point out that (15) is an approximation only, because werigd the de-
pendencies between particles due to the third dimensioms&pently, the numbers (17)
determined below as a function Bfk, d] are approximations as well.
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Proposition 5.2. Letz € {0, 1}d3 be a uniformly drawrk-sparse binary vector. Then the
expected values of the dimension of the reduced matgixapproximately are:

Myea(k) ~m — 3E[k, d] , (17a)

2 3
Nyea(k) ~ d® — 3E[k, d] - d + 3E[k0’ld] - <E[§2’ d]) & (17b)

Figure 4 illustrates that these estimates are reasonajbily ti

Proof. The estimate (17a) is based on our assumptionthatuniformly distributed. We
simply subtract from the total number of pixels (rows) thpested number of zero measure-
ments in all three projections due to Lemma 5.1, thus obtgithe expected number of zero
components of the observed vector

Concerning (17b), any zero component of the veatorarks voxels in the volume along
the corresponding projection ray, and corresponding cokim A, to be removed fromA.
n..a(k) is the number of voxels (columnspt removed by any projection. To estimate the
expected value of this number, we have to take into accoanptiojection rays intersect.

Based on the expected numligk;, d] of zero pixels in any of the three projections — see
(15), we compute:

1. Eachsingle projectiorremovesE|k, d| - d voxels.

2. Consider gair of projections e.g. ther/z-projection and they/z-projection. Fix the
commonz-coordinate. There at@[k, d|/d zero pixels in each of the two corresponding
rows of the two projection images, eliminating togettiglk, d]/d)* voxels because all
projection rays corresponding to the two sets of zeros nllytudersect. As there are
d possible values of, it follows that each pair of projections remowé&E|k, d|/d)? =
(E[z])?/d voxels.

3. The probability that any fixed voxel projects to a zero ipfixed projection i€k, d] /d?,
due to Lemma 5.1. Consequently, the expected number of voaeloved byall three

3
projectionsis (E[C’;d]) 3.

n..4(k) corresponds to the number of voxels for which all three cionas above dmot hold,
which due to the inclusion-exclusion principle is given hyf). O

Comparing (17a) and (17b) shows that more columns are refritba® rows, depending
on the expected numb@&lk, d| of vanishing components éf= Axz. Hence for a sufficiently
k-sparse vectar the reduced matrix, .., leads to aroverdetermined system withu,..q(k) >
nyea(k). Solving the polynomiahn,.q(k) = n..q(k) according to (17) in the variablg[k, d]
for the root in the admissible interval, ¢%], we find that this will hold on the average for
k-sparse vectors that generate at least

E[k, d] ~ (1 - %) d? (18)
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Figure 4: Left: Expected number of zero components of the measurementrveetoAxr,
generated by &-sparse random vecter The blue curve showsE[k, d]/m as a function of;
due to (15). These numbers are related to the expected numbgk) of rows of the reduced
matrix A,.q by (17a). The red curve shows the corresponding empiricansmeomputed for
d = 8, i.e. for the matrixA € R!92*512 and 1000 trials for each value bf The dashed curve
shows the asymptotit — % for small values ofc. Right: Expected number afolumns of
the reduced matrix,.;. The blue curve show%"“eg—(’“) as a function o%, with n,..q(k) given
by (17b). The red curve shows the corresponding empiriaafecabtained by simulations as
described above.

zero entries in each projection. Figure 5 shows the corredipg critical values of the sparsity
parametet: = k(d), numerically determined by solving,...(k) = n..q(k) resp. (18), as a
function of the problem sizé. The log-log plot in the right panel of Figure 5 indicatestqui
accurately the power law

k(d) ~ 3.54d™* (19)

6 Towards an improvement — Perturbation of A

6.1 Increasing Spark

Having the previous results in mind we further address thestjon of improving the proper-
ties of A from (4) with respect to the overall objectivé;//,-equivalence. The weak perfor-
mance ofA rests upon the small spark gf. In order to increase the maximal numbeof
columns such that aH (or less) column combinations are linearly independentdekta the
entries ofA a small perturbation.

We will keep in mind the following result which might be wekh&wn.

Lemma 6.1. Let B € R™*™ be any matrix of rank, o1 > 0, > --- > o, > 0 its singular
values andB = ULV T is singular value decomposition, where

S 0
= (i o)
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Figure 5: Left: Critical value ofk/d?, for d = 8, below of which the reduced matri, .4
satisfiesm,..q(k) > n..q(k) with high probability. The blue curve shows the estimatesdas
on Prop. 5.2. The red curve shows the empirical probabiégell on simulations as described
in the caption of Fig. 4Right: Critical value ofk/d* = k(d)/d® as a function of the problem
sized, according to (17). The log-log plot indicates the power (a8).

with ¥, = diag(oy,...,0,.). If |E| < o, thenrank(B + E) > rank(B). Moreover, if we

denote by
Ey FE
UTEV = 11 12)
(EZI Ea

then
rank(B + F) = rank(A) + rank(.S) (20)

whereS is the Schur complemenit, — Fy( (X, + Eip) 1 Ey, of

Y+ En Ep
E Ey ) -

Proof. In view of our assumption we also haViéZ;;|| < o, sinceU, VT are orthogonal.
Hence|| X' Ey; || < 1 holds, which also implies the nonsingularity®f + FEy;. By writing

1 0\ (S, +FEn Ewn\ (I —(S+FEn)'En I\ (S, +E5 0
—Egl (27« -+ Ell)_l I E21 E22 0 1 N 0 S

we obtain he desired result (20). O

We stress that the above result holds for every mdtrix-However, we are interested in
matricest’ having the same sparsity structure like

We conjecture that the rank of every perturbed submatmiull grow by a factorO(1). By
perturbingA we will "eliminate” all 8-column combinations (the column sets corresponding
to nonzero entries in the nullspace basis vectord jrcompare Prop. 2.2). By elimination
we meen that the perturbedtuples will have complete rank since the unperturbed Glear
have rank? sincespark(A) = 8. Moreover, allt-linearly independent column sets dfcan
be obtained by combining linearly independé&riuples. By a similar argument most such
k-dependent columns iA can be turned out in independent ones by simply perturbieig th
entries. This suggests thﬁtark(fl) will grow proportional to the rank ofi. The numerical
results in Section 7 suggest the power kpark(A(d)) = O(d?), compare Fig. 7.
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Figure 6:1 —sig, (A) versus perturbeti—sig, (A) for d = 10; Empirical probability obtained
from 100000 trials that columns are linearly independent.

Remark6.1 For A € R™", let{oy,03,...,0,}and{c, s, ...,5,} be all singular values
(nonzero as well as any zero ones) foand A = A + F, respectively. Then

lo; —a;] < ||F|s foreach i=1,2,...,m.

By choosingE properly it seems possible to "adjust” the singular valufed such that4 will
satisfy theRI P, property. We intend to investigate this further in order biaon recovery
results that are stable in the presence of errors in TomoRi&sorements.

6.2 How Neighborly will be the Perturbed Matrix?

In Section 4 we presented several concepts which quantfyebovery performance of a
given matrix A. Among these:-neighborliness and the nullspace property of ordere
necessary and sufficient conditions which guarantee un&gseof every:-sparse positive
vectors. In order to address the question of equivaleneedeet (2) and (5) forl we consider
neighborliness oflA? 1,

Assume that by perturbing the nonnegative entried efe obtained an substantially in-
creased spark := spark(A + E). SetA := A + F and note thai,;; = 0 iff a;; = 0.

Theorem 6.2. The convex hull of the columns in the matrix perturbed matrand the zero
vector, i.e.conv{A, 1, ..., A, ,, 0} isat leasputwardly(Z — 1)-neighborly.

Proof. We will show that every nonzero nullspace vector hateasts /3 negative entries.
Then Thm. 4.11 will provide the desired result. ket ker(A) \ {0} and denote bys =
supp(v). Clearly,

S| =a, (21)

and
INV(S)| =5, (22)

where N'(S) = {i € {1,...,m}|a; > 0,5 € S} indexes all neighbors af. In view of
S =TI"v)UI*(v)andv € ker(A), we have

NI~ (v)) = N(I"(v)) = N(S) (23)

since itis not possible to find a voxel corresponding to a tiegantry inv indexed byl ~ (v),
or a voxel corresponding to a positive entry:inindexed byl " (v), that is not connected to
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both sets of rowsV (I~ (v)) and N'(I*(v)), since otherwiselv # 0 in view of a; > 0.
Summarizing we obtain

NI (v)| = IN(S)[ = 5. (24)

On the other hand, since each voxel is connected to exactiyws we have
V(I ()] <317 (v)] . (25)
Combining (24) and (25) we obtain the desired result. O

This guarantees exact recovery by (5) viidor at least all(5/3 — 1)-sparse nonnegative
vectors.

We stress that is is possible to obtain a good upper boundseospark of an arbitrary
matrix A by computing first its row echelon (which can be done effidjeifitA is sparse) and
then obtain a sparse nullspace vector from its row echelon.

6.3 Unique Solution of the Reduced System

Equivalence for most problem instances can be obtainedmiyasiarguments as in Section
5.2. The critical value ok such that ark-sparse vector with uniform distributed nonzero en-
tries induces a overdetermined reduced system is agdjn~ 3.54d'-34. Then a lower bound
to the critical valuek such that ank-sparse nonnegative vector with uniformly distributed
nonzero entries is most probably unique if

k(d) > min{3.54d***,2.7d*} ,

where we assumed thatrd? or less columns combinations are most probably unique based
on the results in Fig. 7.

7 Numerical Experiments

7.1 Phase Transitions

In this section we inspect empirical bounds on the requipsdssty that guarantee exact re-
construction and critical parameter values that yield doperance similar to the settings
considered in compressed sensing (e.g. [15, 19, 16]).

These parameter values allow us to answer the question hasesp vector should be
(particle density) such that-minimization can be solved b§;-minimization or simply by
the linear program (5).

In analogy to [16] we assess the so calpddhse transitiorp as a function ofi, which is
reciprocally proportional to the undersampling rdfias (0, 1). We consider € {3, ..., 55},
the corresponding matrix € R3**?’ from (4) and it's perturbed versioa and the sparsity
as a fraction ofn = 3d?, k = pm, for p € (0, 1).

This phase transitiop(d) indicates the necessary ratfbto recover a-sparse solution
with overwhelming probability. More precisely, fifc||o < p(d) - m, then with overwhelming
probability the/y-problem of finding thek-sparsest solution can be solved by the LP (5).
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For Gaussian matrices there are precise valuegdf see [16, 19], which can be computed
analytically.

Relevant for TomoPIV is the setting~ 1024. In the case of severe undersampling, i.e.
asd — oo, astrong asymptotic thresholek(d) ~ (2¢log(2+/7d/3)~" andweak asymptotic

threshold ]

- 210g(%)

holds for Gaussian matrice&; and nonnegative signals, where we have taken into account
Ag € R¥*@ The weak threshold says that (d) - m-sparse nonnegative vectors &ypi-
cally the unique solutions ofl.z = b while for the strong one equivalence between (2) and (5)
holdsfor all ps(d) - m-sparse signals.

In view of Section 4, the strong threshold farfrom (4) equals3 for all d, while for the
perturbed matrix we can lower bound the strong thresholdradarg to Thm. 6.2 by

pw (d) (26)

spark(A(d))

Sincespark(A) will grow with d, we obtain an improvement over the constant strong thresh-
old for the unperturbed matrix. Verifying the strong threshold fad empirically would be
NP-hard. However, it is possible to verify the weak threds@mpirically by running tests on

a random set of examples.

7.2 Numerical Results

For eachd € {3,...,55} we generated! according to (4) andl by slightly perturbing it's
entries. A has the same sparsity structure4sut random entries drawn from the standard
uniform distribution on the open interval, 1.001). We have tried different perturbation
levels, all leading to similar results. Thus we adopted ititisrval for all presented results.
Thenforp € [0, 1] apm-sparse binary vector was generated to compute the rigltdida
measurement vector and for egehp)-point 100 random problem instances were generated.
The empirical probability that = pm columns ofA or A are linearly independent for
each parameter combination is presented in Fig. 7, whilpribleability that & = pm-sparse
vector can be recovered by the LP (5) is illustrated in Figri§, 9 and Fig. 10. Two slices
of a phase transition plot fer = 50 andd = 100 are presented in Fig. 11. A threshold-effect
is clearly visible in all figures exhibiting parameter reggowhere the probability of exact
reconstruction is close to one. We refer to the figure captiondetailed explanations.

8 Conclusion and Further Work

The reconstruction of particle volume function from few jeions can be modeled as finding
the sparsest solution of an underdetermined linear systeagumations, since the original
particle distribution can be well approximated with onlyerywsmall number of active basis
functions relative to the number of possible particle posg in a 3D domain. In general
the search for the sparsest solution is intractable (NB}hapbwever. The newly developed
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theory of Compressed Sensing showed that one can compute-maimization or linear
programming the sparsest solution for underdeterminettsysof equations provided that
the coefficient matrix (also called measurement ensematisfigs certain conditions. Testing
these conditions on generic matrices is often harder thiamgdahe combinatoriaf,-problem

in (2) as it also implies solving a combinatorial problem ghis intractable given the huge
dimensionality of the measurement matrix within the Tomogetting. However, we showed
in the present work that all currently available recovergditions predict an extremely poor
performance of the TomoPIV measurement ensemble when wietésa simple but realistic
setup geometry. On average, such matrices perform appateiynfive to ten times worse
then Gaussian matrices which allow for maximal sparsityhgbat for all less sparse vectors
exact recovery is still guaranteed. However, when we diygteerturb the entries of such an
degenerate measurement matrix we can boost both worst ndsexpected reconstruction
performance. Then the particle density can be increaseddmtar of three while preserving
the number of measurements. The theoretical analysisnihis work suggests that a similar
procedure can applied to an arbitrary sparse matrix with leadnstruction performance.
We will investigate this issue further for adjacency masiof expander graphs with bad
expansion property.
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Figure 7: Top: Probability thatpm column combinations oA are linearly independent.
Bottom: Probability thatpm column combinations of the perturbed matrixare linearly
independent. The black curve depicts the scaled rank ofbmatas a function oti. The
lower plot suggests that mast 0.9d> = 2.7d* column combinations of the perturbed matrix
A are linearly independent with probability one. On the otemd, this can be claimed only
for three times less columns df
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Figure 8: Results for matrixd from (4). Top: Probability of correct recovery by linear
programming of a random patrticle distribution that can bpregsed with exactly = pm
basis functions as a function @f The solid black curve depicts2py, (d) and the dashed one
0.1pw (d), wherepyy, is the weak phase transition (26) of linear programmingfduGaussian
random matrices. The results indicate tAdtom (4) performes ten times worse in recovering
mostsparse nonnegative signaMiddle: Probability that the reduced matrik obtained by
eliminating zero measurements and corresponding adjacaets is overdetermined along
with the estimated critical sparsity leveb4d!* relative to the number of measurements as
a function ofd (solid black line), see (19). Ten times the dashed line exqted solid one.
Bottom: Probability that a randormh = pm particle distribution induces an overdetermined
and full rank reduced matrix. The results not only indicdtat tthe reason for successful
recovery in case ofl are full rank overdetermined reduced matrices, but alsbgblzing
just an overdetermined linear system might be more stalle fihear programming, when
the solution is known to be nonnegative. Here, the solid ashed black curve depict again
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Figure 9: Results for the perturbed matrix Top: Probability of correct recovery of & =
pm sparse binary vector as a functiondfThe solid black curve depicis18d~°%, compare
(19) and middle figureMiddle: Probability that the reduced matri,., is overdetermined
along with the estimated relative critical sparsity level8d—°5¢ (solid black line) which
induces overdetermined reduced matrides;. Bottom: Probability that a randorh = pm
particle distribution induces an overdetermined and faik- reduced matrix along with the
black curvel.184-%66. In case of the perturbed matrik exact recovery is possibleeyond
overdetermined reduced matrices.
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Top: Success and failure empirical phase transition4along with0.1py, (d) (dashed) and
0.2pw (d) (solid). Bottom: Success and failure empirical phase transition for theupeet

matrix A along with0.5p (d) (dashed) angy (d) (solid), compare (26). The results indicate
that A performs three times better in recoverimg sparse vectors by the LP (5).
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Figure 11: Slices through the contourplots Fig. 8 (top) aigd & (top); A versus the perturbed
matrix A for d = 50 andd = 100. The blue line depicts the probability (as function®f
that apm-sparse binary vector is recovered exactly by the LP (5). réddine illustrates the
probability that gom-sparse binary vector induces an overdetermined reducéikroffull
rank while the black line plots the probability that the reeld matrix is just overdetermined
and not necessary of full rank. Here agaiperforms three times better.
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Appendix

Proof of Proposition 2.2

1T
Proof. (a) Note first thatl | < Ild—l ) = 0 and compute
d—1
1;—®Id®]d _1T _1T _1T
o= (BSEE) (e (5)e ()
1T _1;{—1 ® _1[;'——1 ® _1[;'——1
d Id—l ]_Ifl—l Id;_l
_1d—1 T _1d—1 _1d—1
= (29 1 (29 = ()7
_1d—1 _1d—1 T _1d—1
® ®|1
Iy ( Iy C\ o

using the mixed product rulg3; ® C1)(Bs ® Cy) = (B1Bs) ® (C1Cs), compare [22].
(b) Every column inV from (9) contains exactly = 23 nonzero entries since every column
T

in ( _Ild—l ) has exactly 2 nonzero entries.
d—1

(c) According to [22, Thm. 4] the rank of the Kronecker protdofdwo matrices is the product
of the ranks of the matrices and thus

~15 ~14 ~14 3
rank(N) = rank rank rank =(d—-1).
Ly Iy Iy

(c) Rewrite

1}®Id®fd 1z ‘ 1 1
A= | Lol |=|egeljeohlaeljol, - aeljel |,
LelL;®1) elel®1) |l - ol

wheree!, denote the canonical basis vector®ih Define

I |0 0
L= —eo1;,@;|1z 0
—el@ ;@1 | 0 Ip
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and compute the product

Ip Ip Ip
LA = 0 |-eloljelL+201,®1; - —-eeljel+el®l)®I,

0| -eelLel)+eej®l) - —elol®l] +tedxl;®1])
Ip Ip Ip

= 0 [(—el+eH)oljel; - (—e+e)ol) ol
0 |(—et+e)liel] - (—et+edh@l;1)
Ip 1;—1®Id2
0 Ly ®1; @I

o ]d 1 d ¢ o ( ]dz ‘ 1}_1®Id2 )
0 1d1 RL;®1] 0‘ A

SincelL is a regular matrix
rank(A) = rank(LA) = rank(Iz) + rank(A4) = d* + rank(A). (27)

We further investigate the rank af. By dropping the first andd + 1)-th row in A we obtain

a new matrix
G (faa® 1, ®1,
= T
Ii 1 ®1;®1,
whereas .
rank(A) = rank(A) (28)
holds. It is well known that . o
rank(A) = rank(AA"). (29)

Further, we compute

a - < dlgi®l; | L. ®1] @1y ) _ ( dlya—y | Lo @ (141]) )
' 1 ®1;,01, | dli i ®I4 I ® (Lgly) | dlga-y) '

By analogy tol we define

P ( Iy | 0 )
' _éId—l ® (141,) ‘ Ta@a-1y )’

as the product of the firgk(d — 1) Frobenius matrices respectivedoand compute

i = < dlqga-1) | Lo @ (1417) )
_édld_l ® (1d1;lr) + Id—l ® (1d1;7> ‘ _éId_l ® (1d1;7)2 + dId(d—l)
g | Ii @ (141))
1
= 0 |1e1® (—a(ldlgf + dId> . (30)

g
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In order to determine the rank of, we first note that there exists a orthonormal mafix
R%4 such that

d 0 - 0
o0 --- 0
(La1,) = @Q Co e Q.
Hence
d 0 0 d 0 0
~ 1 1 00 -0 00 -0
A = -1 +dla=--Q| . . | Sletel ... QT +dly
d d - .o S~~~ o S
00 0/ ™ \oo - 0
> 0 0 d 0 - 0
1 0 0 0 0 d - 0
= —Q : e+ : Q"
0 0 - 0 00 - d
0 0 0
1 0 —d 0 T
A 5 .| @
0 0 —d
andrank/:l = d — 1 holds. Combining this with (29) and (30) we obtain
rank(A) = rank(Iyq 1)) + rank(A) = d(d — 1) + (d — 1)2. (31)

From (27), (28) and (31) we finally get
rank(A) = d* + d(d — 1) + (d — 1)* = 3d* — 3d + 1.
(e) Using the dimension formula together with (d) we obtain
dim(ker(A)) = d* — rank(A) = d* — 3d* +3d — 1 = (d — 1),

Now (a) implies (e).

(f) Follows directly from (e) and the definition (9) o¥. O
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Proof of Proposition 3.2

Proof. In view of Prop. 2.2 (b), there argé columns inA which are linearly independent.
Thusspark(A) < 8.
We index each entry of the matrik in (4) by two triples

A(ik,jk7lk)7(p,q,7") ) (32)

where all indices range ové, 1,...,d—1} except fori; = jo = I3 = 0. The first triplets in-
dex rows (projection rays) corresponding to the three edr(projection directions) stacked
together, fork = 1,2, 3. The second triplets index columns (voxels).

For a fixed column, we read off from (4) the three non-zeroiestr

6j1,q6l1,r ) 5i1,p611,r ) 6i1,p6j1,q . (33)

Consequently, pairs of indicég, ), (p,r), (p,q) represent nonvanishing entries of columns
(p,q,r), and we represent each column by the trianlehaving p, ¢, » as vertices — see
Fig. 12a. The intersection of edges sets corresponds t@theon support of column vectors.
We show that at least 8 columns are necessary so as to havgedhad does not intersect
with any other edge.

Consider two columns (triangles). They must differ in atstea single vertey, ¢ or r,
hence in at least two edges. Assufpeq) is the common edge. Then the two remaining
vertices are-, ' with »’ £ r which cannot form the vertices of a third triangle (only keis
(p,q,r) do). We conclude that any third triangle adjoined cannotesihaore than a single
common edge, and that four triangles with maximally intetiogy edge sets are arranged as
shown in Fig. 12b.

The four non-intersecting edges in Fig. 12b generate noiskiang entries in any linear
combination of four columns. Because all of them have thenfgr, ¢”), the same reasoning
as above shows that no two of them can be edges of anothegl&iatience four other
triangles are needed to cover their support. We generate whth a single additional vertex
— Fig. 12c — in order to combine them to a minimal dependent §ég. 12d. ]
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(€) (d)

Figure 12:(a) The triangleK; representing a column of the matrikindexed by(p, q, ).
Edges represent the three non-vanishing entr{}. (c) Two minimal configurations of 4
columns combined ifd) give a minimal dependent set.
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