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Existenceof Solution for aModel of Film Condensationand Crystalli zation

Martin Heida

Institute of Applied Mathematics University of Heidelberg - ImNeuenheimer Feld 294- D-60120Heidelberg - Germany
martin.heida@iwr.uni-heidelberg.de

Abstract

A model for vapor transport with condensation and evaporation onasolid-air interfaceis set up. It consists
of a convection-diffusion equation describing vapor transport, an ordinary equation describingcondensation
and a Stefan-type equation onwith convection describing energy transport. The proof of existence of a
solution is based on a method used by J.F. Rodriguez in several publications on the convective Stefan
problem. The new part in this system is a lower-dimensional Stefan problem on the air-solid interfacethat
describespossible freezing of the condensed water. TheModel described in thisarticle could also be applied
to crystalization problems.

Keywords: Stefan Problem, Convection, Condensation, Dissolution, Crystalli zation

1. Introduction

The model analyzed in this paper rises up in modeling processes like condensation or crystalli zation
on a solid surface. In the first case, we assume vapor transported by an air velocity field to condensate at
the boundary of a solid material due to over saturation in the gaseous phase. In the secondcase it may be
assumed that some material transported by water crystalli zes at the surfaceof solid matter. In both cases,
for simplicity the temperature field is assumed to be continuous acrossthe interface. The condensation or
crystalli zation film isassumed to be very thin and therefore isassumed to be two-dimensional.

Thus, the domain Ω ⊂ R
3 in which all these processes take place can be divided into threeparts of

interest: Thesolid domainΩ1, in which only heat transport has to be considered, the air/water domainΩ2 in
which all the dynamical processes take place and the interfaceΓ. The model equations for vapor transport
and condensation read as follows:

∂tc− div (K∇c) + div (wc) = 0 onΩ2 (1)

(wc− K∇c)ν2 = j on∂Ω2 (2)

∂cΓ = j onΓas (3)

whereas the equations for heat transport are given by

∂tu(ϑ) − div (K1∇ϑ) = 0 onΩ1 (4)

∂tu(ϑ) − div (K2∇ϑ) + div ((wc− K∇c)mc(ϑ)) + div (wm2(ϑ)) = 0 onΩ2 (5)

∂tu(ϑ) − ((wc− K∇c)mc(ϑ) − wm2(ϑ) − K2∇ϑ + K1∇ϑ) = 0 onΓas (6)

In the first set of equations, the variable c denotes the vapor concentration in the air phase, cΓ the amount
of condensed water, w is the air velocity and fulfills div w = 0, i.e. the air phase is assumed to be incom-
pressible. Furthermore, K is some positive constant and j is the condensation rate on the boundary. In the
Preprint submitted to Elsevier August 11, 2009
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secondset of equations, u denotes the inner energy density of thesystem which isassumed to be afunction
of the temperature ϑ as well as of c and cΓ. In particular, u(ϑ) = m2(ϑ) + cmc(ϑ) onΩ2, u(ϑ) = m1(ϑ) on
Ω1 and u(ϑ) = cΓmcΓ(ϑ) on Γas. In this context, K1 and K2 are positive constants and mi, i as an arbitrary
index, are strongly monotone increasing functions with mi(0) = 0. As an additional degreeof freedom, the
functions mcΓ and m1 need not to be continuous but may have jumps.

Evidently, thisproblem isclosely related to theStefan problem andwewill shortly summarizewhat has
been done in this direction: The abstract Stefan problem usually is expressed by ∂ta(ϑ) − div (∇b(ϑ)) = 0,
∂ta(ϑ) − b(∆ϑ) = 0, a(∂tϑ) − div (∇b(ϑ)) = 0 or similar equations. A broad overview over different types
of Stefan problems and the corresponding literature can be found in the book of Visintin [14]. Alt and
Luckhaus [1] treated theproblem

∂ta(ϑ) − div (a(ϑ,∇ϑ)) = f (ϑ)

in great generality. In chapter 4 of [15], Rodriguez developed a method to treat the Stefan problem with
a convective term and nonlinear Neumann boundary conditions. He successfully applied this method in
[9, 10] together with Urbano to aStefan-convection problem coupled with StokesandDarcy flow fields. Di
Benedetto and O’Leary [4] and Blanchard and Porretta [2] considered a (nonlinear) convection-diffusion
problem coupled with the Stefan equation for energy. Further work on Stefan-convection Problems can be
founde.g. in [16, 17, 12]. This list isnot surely not complete but rather reflects the author’s reading.

There are several papers dealing with crystalli zation coupled with reaction kinetics on the boundary
[5, 13, and references therein] but not involving heat transfer. Some numerical scheme for such problems
can be foundin [3]. In contrast to present article, they deal with aset valued condensation term of the form
∂tcΓ ∈ j(c, ϑ, cΓ). Such an approach would come up with even more difficulties than the present one and
may beovercome by some further approximation or by some new techniques.

The challenge of thepresented model li es in its condensation boundary condition coupled with aStefan
problem on the same interface. To the authors knowledge no Stefan problem coupled with an additional
lower dimensional Stefan problem has been treated in literature analytically. The analysis of the system is
based onthe method of Rodriguez [15, 9, 10] together with an approximation ansatz and Schauders Fixed
Point Theorem. The reason for this approach will be given in section 4.

Thisarticle isorganized as follows: in section 2somebasic tools that will benecessary for the analysis
of the problem will be introduced. In section 3 the weak formulation of the problem will be derived and
in section 4 a more easy to solve approximated problem will be formulated. In 5 to 7 the approximated
problem is solved by solving convenient decoupled equations and combining them using Schauders fixed
point theorem. In the last section, it will beshown that the approximations can bedropped andasolution to
the initial problem isobtained.

2. Mathematical tools

We will start by constructing some important Hilbert spaces and citing or proving some results on
embedding properties which arevalid for these spaces.

Theorem 2.1. [8]
Let B0 ⊂ B ⊂ B1, threeBanach spaces such that B0 andB1 are reflexive. Suppose also that the injection

B0 ֒→ B iscompact and define

W =

{
v | v ∈ Lp0(a, b; B0),

∂v
∂t
∈ Lp1(a, b; B1)

}
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with 1 < p0, p1 < +∞. Then W isa Banach spacewith respect to the norm of the graph defined by

‖u‖W = ‖u‖Lp0(a,b;B0) +

∥∥∥∥∥
∂u
∂t

∥∥∥∥∥
Lp1(a,b;B1)

andthe injection W ֒→ Lp0(a, b; B) is compact.

Lemma 2.2. Let Ω ⊂ R
n be bounded of classC1, 0 < T < ∞, Q := (0,T) × Ω, Σ := (0,T) × ∂Ω and

B0 := H1(Ω), it ispossible to choose B := Hs(Ω), 0 ≤ s< 1 andtherefore also B = L2(Q) or B = L2(Σ).

Lemma 2.3. AssumeΩ,K ⊂ R
3 are open and bounded with Ω ⊂⊂ K. There exists a continuous operator

T : H1(Ω)→ H1
0(K) such that Tu(x) = u(x) for all x ∈ Ω and∆Tu ≡ 0 on K\Ω.

This iseasily proved bysolving the corresponding partial differential equation.

Lemma 2.4. [7]
AssumeΩ ⊂ R

3 is open, bounded andthe boundary has bounded first and second order derivatives.
Then there existsC > 0 such that

‖u‖W2,2(Ω) ≤ C ‖∆u‖L2(Ω) ∀u ∈W2,2(Ω) ∩W1
0(Ω)

This lemma gives rise to the assumption, that we could expect some similar result for u ∈ W2,2(Ω).
However, we would need at least H

3
2 ,2(∂Ω) estimates of the boundary values in order to proof ‖u‖W2,2(Ω) ≤

C (‖∆u‖L2(Ω) + ‖u‖H
3
2 ,2(∂Ω)

). But we can state the following

Lemma 2.5. Let Ω be an open bounded C0,1-domain in R
n. Define

‖u‖W1,2
∆,∂

(Ω) := ‖u‖H1(Ω) + ‖∆u‖L2(Ω) + ‖∂νu‖L2(∂Ω) ∀u ∈W2,2(Ω)

W1,2
∆,∂

(Ω) := W2,2(Ω)
‖•‖

W1,2
∆,∂

(Ω)

Then W1,2
∆,∂

(Ω) ֒→W1,2(Ω) andthe embedding iscompact.

Proof.
For any weak converging series un ⇀ u in W1,2

∆,∂
(Ω) and wn ⇀ w in W1,2(Ω) calculate

ˆ

Ω

(unwn + ∇un∇wn) =

ˆ

Ω

unwn −

ˆ

Ω

wn∆un +

ˆ

∂Ω

∂νunwn

→

ˆ

Ω

(uw− w∆u) +
ˆ

∂Ω

∂νuw =
ˆ

Ω

(uw+ ∇u∇w)

Where the limit follows from the strong convergence of wn → w in L2(Ω) and L2(∂Ω) and the weak
convergenceof (un,∆un, ∂νun) ⇀ (u,∆u, ∂νu) in L2(Ω) × L2(Ω) × L2(∂Ω).

�

Furthermore, wedefine the following space according to Temam [11]

‖u‖E(Ω) :=

(
ˆ

Ω

(u2 + (div u)2)

) 1
2

∀φ ∈ H1(Ω)n

E(Ω) := H1(Ω)n
‖·‖E(Ω)
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Lemma 2.6. (Temam: [11, Theorem 1.2.] )
Let Ω be an open bounded set of class C2. Then there exists a linear continuous operator γν ∈

L(E(Ω),H−
1
2 (∂Ω)) such that

γνu = uν for every u ∈ D(Ω)

The following generalized Stokes formula is true for all u ∈ E(Ω) andw ∈ H1(Ω):
ˆ

Ω

u∇w+
ˆ

Ω

wdivu =
ˆ

Γ

(γνu) w

Lemma 2.7. Let Ω be an open, bounded set with C1,1-boundary. For any sequence (un)n∈N ⊂ H1(Ω)n such
that un ⇀ u weakly in H1(Ω)n holds unν ⇀ uν weakly in H

1
2 (∂Ω), where ν is the outer normal vector of

∂Ω. For (un)n∈N ⊂ E(Ω) such that un ⇀ u weakly in E(Ω) and un → u strongly in L2(Ω)n holds unν → uν
strongly in H−1/2(∂Ω).

Proof.
For any w̃ ∈ H

1
2 (∂Ω), choose afunction w ∈ H1(Ω) such that w

∣∣∣∣
∂Ω
≡ w̃ and∆w = 0 inΩ and calculate:

lim
n→∞

ˆ

∂Ω

unwdσ = lim
n→∞

(
ˆ

Ω

un∇wdx+
ˆ

Ω

wdiv un dx

)

=

ˆ

Ω

u∇wdx+
ˆ

Ω

wdiv u dx =
ˆ

∂Ω

uwdσ

in the secondcase do the same calculation for aweakly convergent sequence w̃n ⇀ w̃ in H1/2(∂Ω). �

Remark that asimilar result holdsalso in the caseof un ⇀ u in L2(0,T; E(Ω)), un→ u in L2(0,T; L2(Ω)n)
and sequences wn ⇀ w in L2(0,T; H1(Ω)) with wn→ w in L2(0,T; L2(Ω)).

We will also need some results about sequences of bounded functions and Lipschitz continuous func-
tions evaluated with bounded L2-functions. Additionally, as we are dealing with set valued functions and
inclusions, weneed some results about the limit behavior of such sequences.

Lemma 2.8. For a measure space (Ω, σ, µ) with finite measure µassume that for a converging sequenceof
functions (un)n∈N ⊂ L2(Ω, µ) with u= limn→∞ un holds−∞ < c1 ≤ un ≤ c2 < +∞ µ-almost surely inΩ for
all n. Then c1 ≤ u ≤ c2 µ- almost surely.

Proof.
Define an := max {c1,min {c2, un}} with an → u in L2(Ω, µ). It holds for a sub sequence that an(x) →

u(x) point wise for µ-almost every x. Therefore c1 ≤ u ≤ c2 µ-almost surely.

�

Lemma 2.9. [14]
For a finitemeasurespace(Ω, µ) and amaximal monotonegraphm : R→ R such that |m(x)| ≤ C(1+|x|)

for some constant C, let (un)n∈N ⊂ L2(Ω, µ) be a converging sequence with limit u such that m(un) ⇀ m∗

weakly in L2(Ω, µ). Then m∗ ∈ m(u).
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Lemma 2.10. Assume γ1, γ2 : X → R are two Lipschitz continuous mappings on a normed space X with
Lipschitz constants C1,C2 andthat ‖γ1(x)‖ + ‖γ2(x)‖ ≤ C3 for all x ∈ X. Then x 7→ γ1(x)γ2(x) is Lipschitz
continuous with Lipschitz constant C3 (C1 +C2).

For (Ω, σ, µ) a measure space and aLipschitz continuous function j : R
m → R which is monotone

in any argument consider sequences (αi
j) j∈N ⊂ L2(Ω) such that αi

j → αi in L2(Ω) for i = 1, . . . ,m and

|α
j
i | < ai < ∞ a.s.. Then j(α1

j , . . . , α
m
j )→ j(α1, . . . , αm) in L2(Ω).

Proof.
For m= 2 find

∣∣∣∣ j(α1
j , α

2
j ) − j(α1, α2)

∣∣∣∣ ≤
∣∣∣∣ j(α1

j , α
2
j ) − j(α1

j , α
2)
∣∣∣∣ +

∣∣∣∣ j(α1
j , α

2) − j(α1, α2)
∣∣∣∣. �

Wefinally cite the following version of Schauder’s Fixed Point Theorem:

Theorem 2.11. (Schauder’s second fixed point theorem)[18]
Suppose that

1. X is a reflexive, separable Banach space
2. The map T : M ⊂ X → M is weakly sequentially continuous, i.e., if xn ⇀ x as n → ∞, then also

T(xn)→ T(x)
3. Theset M is nonempty, closed, bounded andconvex

Then T has a fixed point.

3. Formulating the Mathematical Problem

In thefollowing,
´

Γ
φ with Γ beinga(n−1)-dimensional Manifold denotes the integral of φ with respect

to the (n− 1)-dimensional Hausdorff measureHn−1(· ∩ Γ) onΓ.
L2(Ω ∪ Γas ∪ ∂Ω) denotes the spaceof all square-integrable functions with respect to the measure

µ(A) := L(A∩Ω)+Hn−1(A∩ (Γas∪ ∂Ω)) which isasum of theLebesgue measureonΩ and theHausdorff
measure onΓas∪ ∂Ω.

´

Ω∪Γas∪∂Ω
has to be understood in this context.

SupposeweweregivenΩ ⊂ R
n bounded and open with C2-boundary. SupposeΩ = Ω1∪Ω2∪Γas with

Ω1,Ω2 being open setswith piecewiseC2,1-boundary andΩ1∩Ω2∩Γas = ∅. In Particular, Γas = ∂Ω1∩∂Ω2

and is a piecewise smooth (n − 1)-dimensional manifold. For the rest of this section, we define ν2 as the
outer normal vector of Ω2.

The transport and condensation equations read as follows:

∂tc+ div j = 0 in Ω2

c ≡ 0 in Ω1

j := jw = −K∇c+ wc

j ν2 = jw,Γ(c, ϑ, cΓ) in Γas

j
∣∣∣∣
∂Ω∩∂Ω2

ν2 = jw,∂Ω(c, ϑ)



(7)

∂tcΓ = jw,Γ(c, ϑ, cΓ) in Γas (8)
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whereas the energy transport can be described by the following set of equations:

∂tu+ div ju = 0 in Ω2 ∪ Ω1 (9)

ju =


j2u := −K2∇ϑ + j mc(ϑ) + wm(ϑ) in Ω2

j1u := −K1∇ϑ in Ω1

∂tu− ( j2u − j1u)ν2 = 0 onΓas

∂tu+ g(ϑ) = juνΩ on∂Ω

u1(x, t, ϑ) = u
∣∣∣
Ω1

(x, t, ϑ) ∈ m1(ϑ) (10)

u2(x, t, ϑ) = u
∣∣∣
Ω2

(x, t, ϑ) ∈ m2(ϑ) + c(x, t) mc(ϑ) (11)

uΓ(x, t, ϑ) = u
∣∣∣
Γ
(x, t, ϑ) ∈ cΓ(x, t)mcΓ(ϑ) (12)

u∂Ω(x, t, ϑ) = u
∣∣∣
∂Ω

(x, t, ϑ) = 0 (13)

Assume that
jw,∂Ω2(c, ϑ, cΓ) = j0(c, ϑ) j1(cΓ)

where j0(c, ϑ) = j̃0(c − c0(ϑ)) with c0, j̃0, j1 and j1(•)
•

are Lipschitz continuous monotone increasing
functions (with Lipschitz-constants C0, J̃0, J1, J1,∗), c0 ≥ 0 andc0 and j̃0 being bounded bysome constants
C0,max and J̃0max and j̃0(0) = j1(0) = 0 with Lipschitz-constant J1. Furthermore c0 may be strongly
continuous. Evidently, for every −∞ < ϑkrit < ϑ

krit < +∞, there are−∞ < ckrit < ckrit < +∞ such that

j0(c, ϑ)


≤ 0 if (c, ϑ) ∈ (−∞, ckrit ] × [ϑkrit , ϑ

krit ] ∪ [ckrit , ckrit ] × [ϑkrit ,∞)

≥ 0 if (c, ϑ) ∈ [ckrit ,∞) × [ϑkrit , ϑ
krit ] ∪ [ckrit , ckrit ] × (−∞, ϑkrit ]

On [ckrit , ckrit ] × [ϑkrit , ϑ
krit ] j0 is bounded bysome constant J0 and |∂tcΓ| < J0J1 a.s..

Furthermore, H∗(Ω) denotes the dual spaceof H1(Ω) andψ ∈ L2(0,T; H∗(Ω)) means:

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

ψφ ≤ C‖φ‖H1(Ω) ∀φ ∈ H1(Ω)

In connection with this definition, we call H−1(Ω) the dual spaceof H1
0(Ω), H−2(Ω) the dual spaceof

H1
0(Ω) ∩ H2(Ω) and H−1(Ω2) and H−2(Ω2) respectively.

Testing the equations (7) and (9) with some φ ∈ C1(Ω), partial integration and inserting the boundary
conditions yields

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

∂tu(ϑ)φ −
ˆ T

0

ˆ

Ω

ju∇φ +
ˆ T

0

ˆ

∂Ω

g(ϑ)φ = 0 (14)

ˆ T

0

ˆ

Ω2

∂tcφ +

ˆ T

0

ˆ

Ω2

(K∇c− wc)∇φ +
ˆ T

0

ˆ

∂Ω2

jw,∂Ω2(c, ϑ, cΓ) = 0 (15)

while equality (8) should hold in the sense of L2(Γas)

∂tcΓ = jw,Γ(c, ϑ, cΓ) in L2(Γas) (16)

6



Inserting the explicit form of ju in equation (14) and partial integration of the convective term in space
yields asecond possible formulation of the problem:

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

∂tu(ϑ)φ +
ˆ T

0

ˆ

Ω

∇ϑ∇φ +

ˆ T

0

ˆ

Ω2

∇ ( j mc(ϑ) + wm2(ϑ)) φ

−

ˆ T

0

ˆ

Γas

jw,Γ(c, ϑ, cΓ) mc(ϑ)φ +
ˆ T

0

ˆ

∂Ω

(
g(ϑ) − jw,∂Ω(c, ϑ) mc(ϑ)

)
φ = 0 (17)

Thiswill be the basic ansatz to show L∞ estimates onϑ.

Problem 3.1. Assume c̃0 ∈ H1(Ω2), ϑ̃0 ∈ H1(Ω), c̃Γ0 ∈ L∞(Γas), ũ0 ∈ L2(Ω ∪ Γas ∪ ∂Ω) with constants
+∞ > ϑkrit > ϑkrit > −∞, ckrit := c−1

0 (ϑkrit ), ckrit := c−1
0 (ϑkrit ), ϑkrit ≥ ϑ̃0 ≥ ϑkrit , ckrit ≥ c̃0 ≥ ckrit ≥ 0 almost

surely, c̃Γ0 ≥ 0almost surely and(c̃0, ϑ̃0, c̃Γ,0, ũ0) satisfyingequations (10)- (13) almost surely. Furthermore,
g = g(ϑ, x, t) is assumed to be bounded andLipschitz in ϑ with a Lipschitz constant independent on (x, t),
g(ϑ, x, t) ≥ 0 for ϑ > ϑkrit and g(ϑ, x, t) ≤ 0 for ϑ < ϑkrit for all (x, t) ∈ ∂Ω × (0,T).

Find c ∈ L2(0,T; H1(Ω2)) ∩ H1(0,T; H−1(Ω2)), ϑ ∈ L2(0,T; H1(Ω)), ϑ ∈ H1(0,T; H−1(Ω2)), ϑ ∈
H1(0,T; L2(A)) ∀A ⊂⊂ Ω1, cΓ ∈ H1(0,T; L∞(Γas)), u ∈ L2(0,T; L2(Ω ∪ Γas ∪ ∂Ω)) ∩ L∞((0,T) × Ω),
∂tu ∈ H∗(Ω) such that u satisfies equations (10) - (13) and (c, ϑ, cΓ, u) satisfies (14) - (16) with c(0) = c̃0,
ϑ(0) = ϑ̃0, cΓ(0) = c̃Γ0 and u(0) = ũ0 andthe essential boundednessconditions ϑkrit > ϑ ≥ ϑkrit , ckrit ≥ c ≥
ckrit .

4. An Approximated Problem

The energy equation onΩ2 is the most difficult in the system of equations. It seems evident, that
the coefficients have to be smoothed out if one wants to overcome problems in terms like ∂t(cmc(ϑ)) or
div ( j mc(ϑ)) which is not in L2 or even in H−1 as long as it is not known that ϑ is essentially bounded.
However, if we smooth out the coefficients in the energy equations by a Diracsequence and take the limit,
weak convergence of j in L2 would not be enoughto get sufficient convergence behavior of the boundary
conditions. To this aim, an other approach is introduced giving more regularity of the vapor concentration
c.

The first step is to modify the system describing vapor transport by changing the boundary condition
into

jν2 = jw,Γ(c, ϑ, cΓ) + δ∂tc

this will l ead to an L2-estimate on ∂tc. The limit δ → 0 seems very delicate in this context and it will t urn
out to bethe last step in the approximation procedure. The crucial point is, that the introduction of this term
does not change the type of the equation, i.e. the equation remains of parabolic type.

We assume that c ∈ H1(Ω2) and choose an extension of c on (−1,T + 1) × K with some balls K and K̃
satisfyingΩ ⊂⊂ K̃ ⊂⊂ K, by extending it harmonically on K according to Lemma2.3 such that c|

∂K̃ ≡ ckrit

and c|∂K ≡ 0. By the weak maximum principle, ckrit ≥ c ≥ ckrit still holds in K̃ almost surely and we extent
this function on(0,T) constant on (−1,T + 1). Smoothing with η ∈ C∞0 (R ×R

n) such that η ≥ 0 , ‖η‖L1 = 1
and supp(η ∗ χ(0,T)×Ω) ⊂ (−0.5,T + 0.5) × K̃ yields two functions:

c∗ := (η ∗ c) ∈ C∞0 (R × R
n) (18)

j1 := (η ∗ (−K∇c+ wc)) ∈ C∞0 (R × R
n) (19)

7



such that c∗ still satisfies ckrit ≥ c∗ ≥ ckrit on (0,T) ×Ω2 almost surely. Now solve:

∂tc
∗ + div j1 − ∆ψ = 0 ψ ∈ H1

0(Ω2) (20)

Proposition 4.1. For thesolution of equation (20) holdsψ ∈ C∞(Ω2) ∩ H2,2(Ω2) and

‖ψ‖L2(0,T;H2,2(Ω2)) ≤ C(Ω2)
(
‖∂tc

∗‖L2(0,T;L2(K)) + ‖div j1‖L2(0,T;L2(K))

)

For Ω2 ∈ C2+m, weget

‖ψ‖L2(0,T;Hm,2(Ω2)) ≤ C(Ω2)
(
‖∂tc

∗‖L2(0,T;L2(K)) + ‖div j1‖L2(0,T;L2(K))

)

Proof.
The existence of ψ and the C∞(Ω)-regularity follows from standard results (see [6]), the H2,2(K)-

estimate from Lemma2.4 aswell as the higher estimates from [6]. �

Note that the mapping c 7→ j∗ := −∇ψ + j1 as a mapping L2(0,T; H1(Ω2)) ∩ H1(0,T; L2(Ω2)) →
L2(0,T; H1(Ω2)n) is continuous.

The equations for (u, ϑ) are changed the following way:

ju =


−K2∇ϑ + j∗mc(ϑ) + wm2(ϑ) in Ω2

−K1∇ϑ in Ω1
(21)

u1(x, t, ϑ) = u
∣∣∣
Ω1

(x, t, ϑ) = m1(ϑ) (22)

u2(x, t, ϑ) = u
∣∣∣
Ω2

(x, t, ϑ) = m2(ϑ) + c∗(x, t) mc(ϑ) (23)

uΓ(x, t, ϑ) = u
∣∣∣
Γ
(x, t, ϑ) = mΓ(ϑ) + cΓ(x, t)mcΓ (ϑ) (24)

u∂Ω(x, t, ϑ) = u
∣∣∣
∂Ω

(x, t, ϑ) = m∂Ω(ϑ) (25)

Remark that we introduced the functions mΓ and m∂Ω which will be needed to get an L2-control of ∂tϑ. It
will beone of the last steps of the considerations below to get rid of these two terms.

Problem 4.1. Keep the assumptions on jw,∂Ω2(c, ϑ, cΓ), c̃0, ϑ̃0, c̃Γ0 and ũ0 as in Problem 3.1 but with
(ũ0, ϑ̃0) now satisfying equations (22)-(25)

Find (c, ϑ, cΓ) ∈ Y, u ∈ L2(0,T; L2(Ω ∪ Γas ∪ ∂Ω)) ∩ L∞((0,T) × Ω), ∂tu ∈ H∗(Ω) such that equations
(22)- (25) are satisfied and

0 =

ˆ T

0

ˆ

Ω2

∂tcφ +
ˆ T

0

ˆ

∂Ω2

δ∂tcφ −
ˆ T

0

ˆ

Ω2

jw∇φ +
ˆ T

0

ˆ

∂Ω2

jw,∂Ω2(c, ϑ, cΓ)φ

0 = cΓ −
ˆ T

0
jw,Γas(c, ϑ, cΓ)

0 =

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

∂tu(ϑ)φ +
ˆ T

0

ˆ

Ω2

∇
(
j∗mc(ϑ) + wm(ϑ)

)
φ

+

ˆ T

0

ˆ

Ω

∇ϑ∇φ −

ˆ T

0

ˆ

Γas

jw,Γ(c, ϑ, cΓ) (mc(ϑ) −mcΓ(ϑ))φ

+

ˆ T

0

ˆ

∂Ω

(
g(ϑ) − jw,∂Ω(c, ϑ) mc(ϑ)

)
φ −

ˆ T

0

ˆ

Γas

∂tcΓmcΓ (ϑ)φ

with c(0) = c̃0, ϑ(0) = ϑ̃0, cΓ(0) = c̃Γ0 and u(0) = ũ0.
8



The hope is, that the sequence of solutions to this problem will converge to a solution of the original
problem if η is replaced by a Dirac-sequence and the additional terms tend to zero in a reasonable sense.
Remark that due to the reformulation with the additional boundary terms, one of the critical questions will
bewhether j∗ → jw,Γ(c, ϑ, cΓ) in a reasonable space can beshown.

The strategy to obtain a solution of the approximated system looks as follows: in section 7, the system
above will be decomposed into three appropriate equations. In each of the equations, two variables will be
considered asparameters and the last one is the freevariable. Then, the equations will be extended bysome
terms depending onthe solutions and the parameters. These terms will cancel out in case the parameters
and the solutions coincide. The system is then solved using Schauder’s secondFixed Point Theorem. The
threetypes of equations which are analyzed in the following two sections have to be understoodas general
form of the equations arising from the decomposition in section 7.

5. The Transport and the Condensation Equation

It iseasy to seethat

|cΓ(t)| ≤ exp(J0J1t) cΓ(0) and (26)

∂t(cΓ 1 − cΓ 2) ≤ J0(cΓ 1 − cΓ 2) + |( j0(c1, ϑ1) − j0(c2, ϑ2))| cΓ 2

or after multiplying with ∆cΓ := (cΓ 1 − cΓ 2):

1
2

d
dt
|∆cΓ|

2 ≤ C(J0, J1,T, cΓ(0))
(
|∆cΓ |

2 + | j0(c1, ϑ1) − j0(c2, ϑ2)|2
)

which yields by Gronwall ’s lemma after integrating in space‖cΓ 1 − cΓ 2‖L∞(0,T;L2(Γas)) → 0 as ‖( j0(c1, ϑ1) −
j0(c2, ϑ2))‖L2(0,T;L2(Γas)) → 0. Therefore by the explicit form of ∂tcΓ: ‖cΓ 1 − cΓ 2‖H1(0,T;L2(Γas)) → 0. Note
that cΓ(T) > 0 whenever cΓ(0) > 0.

Proposition 5.1. For every (c, ϑ) ∈ L2(0,T; H1(Ω2))2 with ckrit ≤ c ≤ ckrit andϑkrit ≤ ϑ ≤ ϑ
krit a.s. onΓas

there isa unique solution cΓ ∈ H1(0,T; L2(Γas)) to

∂tcΓ = jw,∂Ω2(c, ϑ, cΓ)

with ‖cΓ‖H1(0,T;L2(Γas)) ≤ C with C independent on (c, ϑ). cΓ depends Lipschitz continuously on c, ϑ ∈
L2(0,T; L2(Γas)).

For the Transport equation, the following theorem can be obtained

Theorem 5.2. For c̃0 ∈ H1(Ω2) with ckrit ≥ c̃0 ≥ ckrit almost surely and j : [0,T] × ∂Ω2 × R such that j
is uniformly Lipschitz continuous in the last variable with j(t, x, c) ≥ 0 for c ≥ ckrit and j(t, x, c) ≤ 0 for
c ≤ ckrit there is a unique solution c ∈ H1((0,T) × Ω2) ∩ H1(0,T; L2(∂Ω2) with c(t, x) ≥ 0 almost surely in
spaceandtime to the problem

ˆ T

0

ˆ

Ω2

∂tcφ +
ˆ T

0

ˆ

∂Ω2

δ∂tcφ −
ˆ T

0

ˆ

Ω2

jw∇φ +
ˆ T

0

ˆ

∂Ω2

j(c)φ = 0 (27)

∀φ ∈ H1((0,T) ×Ω2) with c(0, ·) = c̃0 and anestimate

‖c‖L2(0,T;H1(Ω2)) + ‖∂tc‖L2(0,T;H∗(Ω2)) ≤ C(T,Ω2, c̃0)
9



where the constant C does not depend onϑ or cΓ and

‖∂tc‖L2(0,T;L2(Ω2)) + ‖∆c‖L2(0,T;L2(Ω2)) ≤ C(T,Ω2, c̃0, δ)

Furthermore, ckrit ≥ c ≥ ckrit almost surely.

Proof.
Take an complete orthonormal system (vn)n∈N of H1(Ω2) and define Hm(Ω2) := span(v1, . . . , vm) for

every m∈ N. Weshow that there iscm ∈ Hm(Ω2) such that

ˆ T

0

ˆ

Ω2

∂tcmφ +

ˆ T

0

ˆ

∂Ω2

δ∂tcmφ −

ˆ T

0

ˆ

Ω2

jw∇φ +
ˆ T

0

ˆ

∂Ω2

j(cm)φ = 0

for every φ ∈ Hm(Ω2). To this aim, set

cm :=
m∑

i=1

ξi(t)vi

Inserting this ansatz yields a system of equations

Aξ′(t) = F(ξ)

with ξi(0) =
´

Ω2∪∂Ω2
c̃0vi , Lipschitz continuous function F and

A = (ai, j ) = (B(vi , v j)) :=
ˆ

Ω2

vi v j + δ

ˆ

∂Ω2

vi v j

Since B is a strongly positive bi li near form on H1(Ω2), A ∈ R
n×n is invertible and there exists a unique ξ

satisfying the ODE above.
By standard arguments, testing with cm yields:

d
dt

(
ˆ

Ω2

c2
m+ δ

ˆ

∂Ω2

c2
m

)
+

ˆ

Ω2

|∇cm|
2 ≤

ˆ

∂Ω2

| j| · |cm| +

ˆ

Ω2

|w| |cm| |∇cm|

and byasimple calculation

sup
t∈[0,T]

‖cm(t)‖L2(Ω2∪∂Ω2) + ‖∇cm‖L2(0,T;L2(Ω2)) < C

Testing with ∂tc yields
ˆ

Ω2

(∂tcm)2 + δ

ˆ

∂Ω2

(∂cm)2 +
d
dt

ˆ

|∇cm|
2 ≤

ˆ

∂Ω2

| j| · |∂tcm| +

ˆ

Ω2

|w| |∂tcm| |∇cm|

which isagain easy to handle and yields

‖∂tcm‖L2(0,T;L2(Ω2∪∂Ω2) + sup
t∈[0,T]

‖∇cm(t)‖L2(Ω2) < C

Passage to the limit yields asolution to theproblem satisfying the claimed regularities on ‖c‖L2(0,T;H1(Ω2)) +

‖∂tc‖L2(0,T;H∗(Ω2)) and on‖∂tc‖L2(0,T;L2(Ω2∪∂Ω2)) + ‖∆c‖L2(0,T;L2(Ω2)). Remark that the last estimate stems from
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the fact that ∂tc− ∆c+ v∇c = 0 a.s.. For two solutions c1, c2 with identical initial values, it can be checked
quickly that

d
dt

(
ˆ

Ω2

(c1 − c2)2 + δ

ˆ

∂Ω2

(c1 − c2)2
)
+

ˆ

Ω2

|∇(c1 − c2)|2

≤

ˆ

∂Ω2

J0J1C0(c1 − c2)2 +

ˆ

Ω2

|w| |c1 − c2| |∇(c1 − c2)|

which yields uniquenessof c by application of Gronwall ’s inequality.
To check the independenceof the estimates’ constants form theparameterscΓ andϑ, just remember that

according to the definitions in 5 we calculate | j0(c1, ϑ) − j0(c2, ϑ)| ≤ J0|c1 − c0(ϑ) − c2 + c0(ϑ)| to seethat
theLipschitz constant of jw,∂Ω2 is independent on the choiceof ϑ and byequation (26) also cΓ. �

6. The Energy equation

Problem 6.1. For given u0 ∈ L2(Ω ∪ Γas∪ ∂Ω) andϑ0 ∈ H1(Ω) with u0(x) ∈ u(x, 0, ϑ0) where u isdefined
as below andϑkrit > ϑ0 > ϑkrit almost surely, find u ∈ L2(0,T; L2(Ω ∪ Γas ∪ ∂Ω)), ∂tu ∈ L2(0,T; H∗(Ω))
ϑ ∈ H1(0,T; L2(Ω,L + µΓ)) ∩ L2(0,T; H1(Ω)) such that:

ˆ T

0

ˆ

Ω

∂tu(ϑ)φ +
ˆ T

0

ˆ

Ω

∇ϑ∇φ +

ˆ T

0

ˆ

Ω2

∇
(
j∗mc(ϑ) + wm2(ϑ)

)
φ + . . .

· · · −

ˆ T

0

ˆ

Γas

∂tcΓmcΓ(ϑ) +
ˆ T

0

ˆ

Γas∪∂Ω

(∂tu(ϑ) + g(x, t, ϑ))φ = 0 (28)

where ju is given by equation (21) and (22)-(25) are satisfied. Suppose ϑ(0) = ϑ0, c∗ ∈ C2,1([0,T] × Ω2),
j∗ ∈ C2,1([0,T] ×Ω2)n such that ∂tc∗ +div j∗ = 0. Furthermorew ∈ L∞(0,T;Ω2)n, divw = 0, v

∣∣∣
∂Ω2
≡ 0 and

cΓ ∈ H1(0,T; L2(Γas))∩ L∞((0,T)×Γas). g = g(ϑ, x, t) isassumed to bemonotone increasing andLipschitz
inϑ with aLipschitzconstant independent on (x, t), g(ϑ, x, t) ≥ 0 for ϑ > ϑkrit and g(ϑ, x, t) ≤ 0 for ϑ < ϑkrit

.
Finally, m1, m2, mc, mcΓ ,m∂Ω and mΓ are maximal monotone graphs with 0 ∈ mi(0), mi(s) = bi(s) +

αiHi(s), bi ∈ C1(R), αi ∈ R
+,∞ > b∗ ≥ b′i (s)∀i, b′i (s) ≥ b∗ > 0 for i = 1, 2, Γ, α2 = αc = 0 and

Hi(s) :=



0 s< hi

[0, 1] s= hi

1 s> hi

with hi being arbitrary positive constants.

Theorem 6.1. Assume that m1, m2, mc, mcΓ , m∂Ω and mΓ above are in C1,1(R), strongly monotone with
bounded derivatives, i.e.

0 < b∗ < m′1,m
′
2,m

′
Γ,m

′
c,m

′
cΓ ,m

′
∂Ω < b∗ < ∞

, andc∗ ≥ 0 as well as cΓ ≥ 0. Then Problem 6.1 has a unique solution which satisfies the estimate:

‖ϑ‖L∞(0,T;H1(Ω)) + ‖ϑ‖H1(0,T;L2(Ω∪Γas∪∂Ω)) ≤ C

with C = C(T, b∗, b∗, ‖cΓ‖H1(0,T;L∞(Γas)), ‖ j
∗ + w‖L∞((0,T)×Ω2), ϑ(0)) only depending onthese constants and

ϑkrit ≤ ϑ ≤ ϑ
krit almost surely.
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Proof.
1. Step: Galerkin Approximation

Take an orthonormal Basis (vi)i∈N of H1(Ω) and defineHm(Ω) := span(v1, . . . , vm) for every m ∈ N. The
first step is to show that there isasolutionϑm ∈ C1([0,T]; Hm(Ω)) to the system

0 =
ˆ T

0

ˆ

Ω

∂tu(ϑm)vi d(L +H) −
ˆ T

0

ˆ

Ω

ju(ϑm)∇vi

+

ˆ T

0

ˆ

Γas∪∂Ω

(∂tu(ϑm) + g(ϑm) − ∂tcΓmcΓ(ϑm))vi for i = 1, . . . ,m

(29)

with ϑm(0) =
∑m

i=1 〈ϑ0, vi〉 vi . To this aim use the ansatz:

ϑm =

m∑

i=1

ξi(t)vi

and get a system of equations:

m∑

j=1

(
ˆ

Ω

(m′1,2(ϑm) + c∗m′c(ϑm))ξ′j(t)viv j +

ˆ

Γ

(cΓm
′
cΓ(ϑm) +m′Γ(ϑm))ξ′j(t)viv j

)
= F(ξ, t) i = 1, . . . ,m

which can be written in the form:
A(ξ, t) ξ′(t) = F(ξ, t) (30)

with the corresponding initial conditions. Here, A is a linear mapping R
m → R

m and F is Lipschitz-
continuous in ξ. There is a locally unique Solution on(0, t0) with t0 ≤ T, if the matrix inverse A(ξ, t)−1

exists and isLipschitz continuous in ξ since

A(ξ1, t)
−1F(ξ1, t) − A(ξ2, t)

−1F(ξ2, t) =
(
A(ξ1, t)

−1 − A(ξ2, t)
−1

)
F(ξ1, t) + A(ξ2, t)

−1 (F(ξ1) − F(ξ2)) (31)

It holds |F(ξ)| < C|ξ| by definition and the relation |ξ|2 ≤ C(T) will follow from equation (37). Wetherefore
assume for the moment t0 = T.

Now, A−1 exists, sinceHm is isomorphic to R
m and

B(φ, ψ) :=
ˆ

Ω

(m′(ϑm) + c∗m′c(ϑm))φψ +
ˆ

Γ

(cΓm
′
cΓ(ϑm) +m′Γ(ϑm))φψ

is a continuous bi li near form with B∗‖φ‖2Hm
≥ B(φ, φ) ≥ B∗‖φ‖2Hm

with B∗ and B∗ being constants indepen-
dent onmandϑm. By theLax-Milgram-Lemma, theMatrix representing B is invertible and from abovewe
seethat thismatrix is A. A depends Lipschitz-continuous onξ and A 7→ A−1 is locally Lipschitz-continuous
with aLipschitz constant depending on‖A‖.

2. Step: A Priory Estimates andLimit
Define

a(x, t, ϑ) :=
ˆ ϑ

0
u(x, t, s)ds (32)
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for arbitrary ϑ, the following simple equation holds:
ˆ T

0

ˆ

Ω∪Γas∪∂Ω

∂tu(ϑ)ϑ =
ˆ

Ω

(
(u(ϑ(t))ϑ(t) − a(ϑ(t)))

∣∣∣∣
T

0

)
+

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

at(ϑ) (33)

Sinceu takes the abstract form u(ϑ) = m(ϑ) one gets with M(ϑ) :=
´ ϑ

0 m(s)ds:

1
2

b∗ϑ2 ≥ u(ϑ)ϑ − a(ϑ) = m(ϑ)ϑ − M(ϑ) =
ˆ ϑ

0
m′(s)sds≥

1
2

b∗ϑ
2

furthermore, one gets for the last term in equation (33):
ˆ T

0

ˆ

Ω∪∂Ω∪Γas

at(ϑ) =
ˆ T

0

(
ˆ

Ω

∂tc
∗Mc(ϑ) +

ˆ

Γas

∂tcΓMcΓ(ϑ)

)
(34)

In order to get apriory estimates, takeϑm as avalid test function:

0 =
ˆ T

0

ˆ

Ω

∂tu(ϑm)ϑm +

ˆ T

0

ˆ

Ω

|∇ϑm| −

ˆ T

0

ˆ

Ω2

( j∗mc(ϑm) + wm2(ϑm))∇ϑm

+

ˆ T

0

ˆ

Γas∪∂Ω

(
∂tu(ϑm)ϑm − ∂tcΓmcΓ(ϑm)ϑm + g(ϑm)ϑm

)

Weneed to estimate the third term on the right hand side:
ˆ T

0

ˆ

Ω2

div ( j∗mc(ϑm)+wm2(ϑm))ϑm = −

ˆ T

0

ˆ

Ω2

( j∗mc(ϑm)+wm2(ϑm))∇ϑm+

ˆ T

0

ˆ

∂Ω2

j∗ν2mc(ϑm)ϑm

= −

ˆ T

0

ˆ

Ω2

( j∗∇Mc(ϑm) + w∇M2(ϑm)) +
ˆ T

0

ˆ

∂Ω2

j∗ · ν2mc(ϑm)ϑm

= −

ˆ T

0

ˆ

∂Ω2

j∗ · ν2 (Mc(ϑ) −mc(ϑm)ϑm) +
ˆ T

0

ˆ

Ω2

div j∗Mc(ϑm) (35)

We see from equations (35) and (34) that the sum of terms including ∂tc∗ and div j∗ vanish and get by
c∗ ≥ 0:

1
2

b∗

ˆ

Ω∪∂Ω∪Γas

ϑ2
m +

ˆ T

0

ˆ

Ω

|∇ϑm|
2 <

ˆ T

0

ˆ

Γas

∂tcΓ(mcΓ (ϑm)ϑm− McΓ(ϑm)) +C

ˆ

Ω∪Γas∪∂Ω

ϑm(0)2

+

ˆ T

0

ˆ

∂Ω2

| j∗| (Mc(ϑm) +mc(ϑm)ϑm) (36)

SinceMcΓ(ϑ) ≤ 1
2b∗ϑ2, Mc(ϑ) ≤ 1

2b∗ϑ2, Gronwall ’s lemma applied to this inequality yields:
ˆ

Ω∪Γas∪∂Ω

ϑ2
m(T) +

ˆ T

0

ˆ

Ω

|∇ϑm|
2 ≤ C(b∗, b

∗, ϑ(0), cΓ)
(
1+C T exp(C T)

)
(37)

and this yields together with equation (31) by |ξ|2 ≤ C(1+ T exp(CT)) the global existence and uniqueness
in (0,T). In asecondstep, we choose ∂tϑm as a test function and make use of

∂tu1(ϑm) = m′1(ϑm)∂tϑm

∂tu2(ϑm) = m′2(ϑm)∂tϑm+ ∂tc
∗mc(ϑm) + c∗m′c(ϑm)∂tϑm

∂tuΓas(ϑm) = m′Γ(ϑm)∂tϑm+ ∂tcΓmcΓ(ϑm) + cΓm
′
cΓ(ϑm)∂tϑm

∂tu∂Ω(ϑm) = m′∂Ω(ϑm)∂tϑm
13



The convective term turns into:

+

ˆ

Ω2

div ( j∗mc(ϑm) + wm2(ϑm))∂tϑm =

ˆ

Ω2

(
div j∗mc(ϑm)

)
∂tϑm+

ˆ

Ω2

( j∗m′c(ϑm) + wm′2(ϑm))∇ϑm∂tϑm

So one obtains:
ˆ

Ω2

(m′2(ϑm) + c∗m′c(ϑm))(∂tϑm)2 +

ˆ

Ω1

m′1(ϑm)(∂tϑm)2 +

ˆ

Γas

m′Γ(ϑm)(∂tϑm)2

+

ˆ

Γas

cΓm
′
cΓ(ϑm)(∂tϑm)2 +

ˆ

∂Ω

m′∂Ω(ϑm)(∂tϑm)2 +
d
dt

ˆ

Ω

(∇ϑm)2

≤ ‖ j∗ + w‖∞b∗‖∇ϑm‖L2(Ω2)‖∂tϑm‖L2(Ω2) +C‖g‖∞‖∂tϑm‖L2(∂Ω2)

+C‖ j∗‖L∞(∂Ω)‖mc(ϑm)‖L2(∂Ω)‖∂tϑm‖L2(∂Ω)

(38)

where mc(ϑ)ϑ and mcΓ(ϑ)ϑ were estimated by b∗ϑ2, m′2,m
′
1,m

′
Γ
,m∂Ω > b∗, c∗ ≥ 0 and m′

Γ
,m′c ≥ 0. Gron-

wall ’s lemmayields:

ˆ T

0

ˆ

Ω∪∂Ω∪Γas

(∂tϑm)2 + sup
0≤t≤T

ˆ

Ω

(∇ϑm)2 ≤ C(ϑ(0),T, j∗,w, cΓ, b∗, b
∗) (39)

Choosing any test functionφ ∈ H1(Ω) finally yields:

‖∂tu(ϑm)‖L2(0,T;H∗) ≤ C(‖( j∗ + w)‖∞)
(
‖∇ϑm‖L2(Ω) +C‖ϑm‖L2(∂Ω∪Γas)

)
(40)

For ϑm and u weget the following convergences for asub sequence:

ϑm ⇀ ϑ in L2(0,T; H1(Ω))

∂tϑm ⇀ ϑt in L2(0,T; L2(Ω ∪ Γas∪ ∂Ω))

∂tu(ϑm) ⇀ ut in L2(0,T; (H∗))

Which yields by Lions Theorem

ϑm→ ϑ in L2(0,T; L2(Ω ∪ Γas∪ ∂Ω)) ∂tϑ = ϑt

Sinceu depends by someLipschitz-continuous terms onϑ,

u(ϑm)→ u(ϑ) in

strongly in L2(0,T; L2(Ω ∪ Γas∪ ∂Ω)) and
¨

utφ
m→∞
←−−−−

¨

∂tu(ϑm)φ = −
¨

u(ϑm)∂tφ
m→∞
−−−−→ −

¨

u(ϑ)∂tφ

for suitable test functions with zero boundary values in time. Sinceu(ϑ) ∈ H1(0,T; L2(Ω ∪ Γas∪ ∂Ω)), we
have ut = ∂tu(ϑ)

Using all the above convergences , equation (28) holds for (u, ϑ).
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3. Step: Essential Boundedness
The basic ideato show the essential boundednessof ϑ, is testing the equation with (ϑ − ϑkrit )+, where

x+ = χR+ (x) x. In this context, it can first beobserved, that
ˆ

∂Ω2

g(x, t, ϑ)(ϑ − ϑkrit )+ ≥ 0

by definition of g. Therefore, the term will beneglected in the calculations below.
Following Rodriguez[9, 10] define M := ϑkrit and calculate

βM,i(r) :=



´ r
0 (m−1

i (s) − M)+dr if r > mi(M)

0 if r ≤ mi(M)

Remark, that βM,i(mi(ϑ(0))) = 0 for all i. Choose (ϑ − M)+ as avalid test function and calculate:

ˆ T

0

ˆ

Ω2

∂tu2(ϑ)(ϑ − M)+ =
ˆ T

0

ˆ

Ω2

(
∂tβM,2(m2(ϑ)) + ∂tc

∗mc(ϑ)(ϑ − M)+ + c∗∂tβM,c(mc(ϑ))
)

=

ˆ T

0

ˆ

Ω2

∂tc
∗ (mc(ϑ)(ϑ − M)+ − βM,c(mc(ϑ))

)
+

ˆ

Ω2

(
c∗(T) βM,c(ϑ(T)) + βM,2(m2(ϑ(T)))

)

ˆ T

0

ˆ

Ω1

∂tu1(ϑ)(ϑ − M)+ =
ˆ T

0

ˆ

Ω1

∂tβM,1(m1(ϑ))

ˆ T

0

ˆ

Γas

(∂tuΓ(ϑ) − ∂tcΓmcΓ(ϑ))(ϑ − M)+ =
ˆ T

0

ˆ

Γas

cΓ∂tβM,cΓ (mcΓ(ϑ)) +
ˆ T

0

ˆ

Γas

∂tβM,Γ(mΓ(ϑ))

=

ˆ

Γas

cΓβM,cΓ (mcΓ(ϑ))
∣∣∣∣∣
T

0
−

ˆ T

0

ˆ

Γas

(
∂tcΓβM,cΓ (mcΓ(ϑ)) − ∂tβM,Γ(mΓ(ϑ))

)

ˆ T

0

ˆ

∂Ω

∂tu∂Ω(ϑ)(ϑ − M)+ =
ˆ T

0

ˆ

∂Ω

∂tβM,∂Ω(m∂Ω(ϑ))

ˆ T

0

ˆ

Ω2

div ( j∗mc(ϑ))(ϑ − M)+ =
ˆ T

0

ˆ

Ω2

(
div j∗mc(ϑ)(ϑ − M)+ + j∗∇βM,c(mc(ϑ))

)

=

ˆ T

0

ˆ

Ω2

(
div j∗mc(ϑ)(ϑ − M)+ − div j∗ βM,c(mc(ϑ))

)
+

ˆ T

0

ˆ

Γas∪∂Ω

j∗βM,c(mc(ϑ))

From the transformation theorem for Integrals follows

0 ≤ βM,i(mi(ϑ)) = =

ˆ mi(ϑ)

0
(m−1

i (s) − M)+ds
ˆ ϑ

0
(m−1

i (mi(s)) − M)+m′i (s) ds

=



´ ϑ

0 (s− M)+m′i (s) ds if ϑ > M

0 if ϑ ≤ M

and from the boundednessof the derivatives of the m′i follows the existenceof Ci, j for each couple i, j such
that

βM,i(mi(ϑ)) ≤ Ci, jβM, j(mj(ϑ))
15



therefore, the estimate onβM,i(mi(ϑ)) reads as follows:

ˆ

Ω2

βM,2(m2(ϑ(t))) +
ˆ

Ω1

βM,1(m1(ϑ(t))) +
ˆ

Γas

βM,Γ(mΓ(ϑ(t))) +
ˆ

∂Ω

βM,∂Ω(m∂Ω(ϑ(t)))

≤ C
ˆ t

0

(
ˆ

Ω2

βM,2(m2(ϑ)) +
ˆ

Ω1

βM,1(m1(ϑ)) +
ˆ

Γas

βM,Γ(mΓ(ϑ)) +
ˆ

∂Ω

βM,∂Ω(m∂Ω(ϑ))

)

for every t ∈ [0,T] and therefore the expression onthe left hand side is zero for all t. This implies ϑ ≤ M.
In the sameway it can beshown that ϑ ≥ ϑkrit .

4. Step: Uniqueness
Assume the test function φ having ∆φ ∈ H∗(Ω) and ∂ttφ ∈ H∗(Ω) and φ(T) ≡ 0. Take two solutions

(u1, ϑ1) and (u2, ϑ2) with (u1(0), ϑ1(0)) = (u2(0), ϑ2(0)) of the problem:

ˆ T

0

ˆ

Ω

(ϑ1 − ϑ2)(−α∂tφ − ∆φ − β∇φ) +
ˆ T

0

ˆ

Γas∪∂Ω

(ϑ1 − ϑ2)(−α∂tφ + [∇φ] + δφ)

=

ˆ

Ω

(u1(0) − u2(0))φ(0) = 0

with α = (u1−u2)
(ϑ1−ϑ2) onΩ andΓ ∪ ∂Ω respectively,

β := χΩ2 · ( j∗(mc(ϑ1) −mc(ϑ2)) + w(m2(ϑ1) −m2(ϑ2)))/(ϑ1 − ϑ2)

δ := βν2

∣∣∣
∂Ω2
+

(
(g(ϑ1) − g(ϑ2)) − cΓ(mcΓ (ϑ1) −mcΓ(ϑ2))

)
/(ϑ1 − ϑ2)

and [∇φ] :=
(
∇φ|Ω2 − ∇φ|Ω1

)
ν2 is a term which enters due to jumps of ∇φ at the interfaceΓas. Note, that

|α| ≥ b∗.
We insert asolution to the problem:

ε∂2
t φ − α∂tφ − ∆φ − β∇φ = (ϑ1 − ϑ2) inΩ (41)

ε∂2
t φ − α∂tφ + δφ = −[∇φ] + (ϑ1 − ϑ2) onΓas∪ ∂Ω (42)

φ(T) ≡ 0 (43)

∂tφ(T) ≡ 0 (44)

with the apriory estimate (45) from Lemma6.2 to obtain for u1(0) = u2(0):

ˆ T

0

ˆ

Ω∪∂Ω∪Γas

(ϑ1 − ϑ2)2 ≤

∣∣∣∣∣∣

ˆ T

0

ˆ

Ω∪∂Ω∪Γas

(ϑ1 − ϑ2)ε∂2
t φ

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

ˆ

Ω∪∂Ω∪Γas

(ϑ1 − ϑ2)ε∂tφ
∣∣∣T
0

∣∣∣∣∣∣ + ε
∣∣∣∣∣∣

ˆ T

0

ˆ

Ω∪∂Ω∪Γas

∂t(ϑ1 − ϑ2)∂tφ

∣∣∣∣∣∣

wherethefirst term ontheright handsideof thelast inequality vanishesdueto thefact that ϑ1(0) = ϑ2(0)and
∂tφ(T) = 0. By the boundednessof ∂t(ϑ1 − ϑ2)and∂tφ in L2(0,T; L2(Ω ∪ ∂Ω ∪ Γas)) weget

ˆ T

0

ˆ

Ω∪∂Ω∪Γas

(ϑ1 − ϑ2)2 ≤ 0

�
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Lemma 6.2. Let α ∈ L∞(Ω ∪ Γas ∪ ∂Ω), β ∈ L∞(Ω), δ ∈ L∞(Γas ∪ ∂Ω) with α ≥ α∗ > 0.For every
f ∈ L2(Ω∪ ∂Ω∪ Γas,L+H) there exists a solutionφ ∈ H1(0,T; L2(Ω∪ ∂Ω∪ Γas))∩ L2(0,T; H1(Ω)) with
∆φ, ∂2

t φ ∈ L2(0,T; H∗(Ω)) to the problem

ε∂2
t φ − α∂tφ − ∆φ − β∇φ = f inΩ

ε∂2
t φ − α∂tφ + δφ = −[∇φ] + f onΓas∪ ∂Ω

φ(T) ≡ 0

∂tφ(T) ≡ 0

where [∇φ] :=
(
∇φ|Ω2 − ∇φ|Ω1

)
ν2, that satisfies the following a priory estimates:

ˆ

Ω∪∂Ω∪Γas

(∂tφm)2 +

ˆ

Ω

(∇φm)2 +

ˆ

Γas∪∂Ω

(φm)2 ≤ C
(
‖ f ‖2L2(Ω)

)
(45)

where the constant C depends only onΩ, α∗, β, δ.

Note that an important condition in this lemma is the strict positivity of α.
Proof. Perform the transformation t  −t. Using the Galerkin approximation with spaces Hm(Ω) as in

theprevious proof, weget the existenceof asolution φm ∈ H2(0,T; Hm(Ω)) to the problem
ˆ T

0

ˆ

Ω∪∂Ω∪Γas

f ψ =

ˆ T

0

ˆ

Ω

(
ε∂2

t φmψ + α∂tφmψ + ∇φm∇ψ − β∇φmψ
)

+

ˆ T

0

ˆ

Γas∪∂Ω

(
ε∂2

t φm + α∂tφm+ δφm

)
ψ ∀ψ ∈ H1(0,T; Hm(Ω))

Choosing ∂tφm as a test function, the following estimates can beobtained:

d
dt

(
ˆ

Ω∪Γas∪∂Ω

ε(∂tφm)2 +

ˆ

Ω

(∇φm)2 +

ˆ

Γas∪∂Ω

(φm)2
)
+

ˆ

Ω∪∂Ω∪Γas

α(∂tφm)2

≤
(
‖ f ‖L2(Ω) + ‖β‖L∞(Ω)‖∇φm‖L2(Ω)

)
‖∂tφm‖L2(Ω)

+ (‖δ‖L∞(Γas∪∂Ω) + 1)‖φm‖L2(Γas∪∂Ω)‖∂tφm‖L2(Γas∪∂Ω)

sinceα is bounded from below 0 < α0 ≤ α, it can be seen by absorbing the terms including ∂tφm on the
right hand side, that:

d
dt

(
ˆ

Ω∪∂Ω∪Γas

ε(∂tφm)2 +

ˆ

Ω

(∇φm)2 +

ˆ

Γas∪∂Ω

(φm)2
)
+

ˆ

Ω∪∂Ω∪Γas

(∂tφm)2

≤ C

(
‖ f ‖2L2(Ω) + ‖∇φm‖

2
L2(Ω) + ‖φm‖L2(Γas∪∂Ω) +

ˆ

Ω∪∂Ω∪Γas

ε(∂tφm)2
)

and therefore
ˆ T

0

ˆ

Ω∪∂Ω∪Γas

(∂tφm)2 + ε

ˆ

Ω∪∂Ω∪Γas

(∂tφm)2 +

ˆ

Ω

(∇φm)2 +

ˆ

Γas∪∂Ω

(φm)2 ≤ C
(
‖ f ‖2L2(Ω)

)

The H∗-estimates on ∂2
t φm and ∆φm are trivial. An estimate on ‖φm‖L2(Ω∪Γas∪∂Ω) can be obtained by

φm(x,T) = φm(x, 0) +
´ T

0 ∂tφ(x, s)ds and Jensen’s inequality.

�
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Lemma 6.3. Let A ⊂⊂ (0,T) × Ω1, H1
∞(Ω) := H1(Ω) ∩ L∞(Ω) with ‖ · ‖H1

∞
:= ‖ · ‖H1 + ‖ · ‖L∞, H1

∞,0(Ω) :=

H1
0(Ω)∩L∞(Ω) andH1∗

∞ , H1∗
∞,0 be the corresponding dual spaces. Thesolutionϑ fromTheorem6.1 satisfies

the estimates:

‖∇ϑ‖L2(0,T;L2(Ω)) + ‖∂tu‖L2(0,T;H1∗
∞ (Ω)) + ‖∂tϑ‖L2(0,T;H1∗

∞,0(Ω2)) ≤ C

‖∂tϑ‖L2(0,T;L2(A)) ≤ CA

whereC only depends on b∗, b∗, ϑ(0), cΓ,T, ‖ j∗‖L2(0,T;L2(Ω2)), ϑ
krit , ϑkrit andCA additionally depends on A.

Proof.
Using the result above and testing the problem with φ ∈ L2(0,T; H1

∞(Ω)) yields
∣∣∣∣∣∣

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

∂tuφ

∣∣∣∣∣∣ ≤
(
‖∇ϑ‖L2(0,T;L2(Ω)) +C‖ j∗‖L2(0,T;L2(Ω))

)
‖∇φ‖L2(0,T;L2(Ω))

+

ˆ T

0

ˆ

∂Ω2

j∗mc(ϑ)φ

sinceϑ, φ ∈ L2(0,T; H1
∞(Ω)) and mc is differentiable follows mc(ϑ)φ ∈ L2(0,T; H1

∞(Ω)) and
∣∣∣∣∣∣

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

∂tuφ

∣∣∣∣∣∣ ≤ C
(
‖ϑ‖L2(0,T;H1(Ω)), ‖ j

∗‖L2(0,T;L2(Ω)), ϑ
krit , ϑkrit

)
‖φ‖L2(0,T;H1

∞(Ω))

Testing again with ϑ and using the fact that mc(ϑ)ϑ ∈ H1
∞(Ω) equations (33) to (37) yield the estimate

ˆ T

0

ˆ

Ω

|∇ϑ|2 ≤ C
(
b∗, b

∗, ϑ(0), cΓ,T, ‖ j
∗‖L2(0,T;L2(Ω2)), ϑ

krit , ϑkrit

)

To get the estimates on ∂tϑ, choose any φ ∈ H1
0(Ω2) ∩ H1

∞(Ω) and test the equation with ψ := φ(c∗m′c(ϑ) +
m′2(ϑ))−1 with ‖ψ‖L2(0,T;H1(Ω)) ≤ C ‖φ‖L2(0,T;H1(Ω))‖ϑ‖L2(0,T;H1(Ω)) to calculate:

ˆ T

0

ˆ

Ω2

∂tϑφ ≤

∣∣∣∣∣∣

ˆ T

0

ˆ

Ω2

∂tuψ

∣∣∣∣∣∣ +
∣∣∣∣∣∣

ˆ T

0

ˆ

Ω2

∂tc
∗mc(ϑ)ψ

∣∣∣∣∣∣
≤ C(‖∂tc

∗‖L2(0,T;H∗(Ω2))) ‖φ‖H1
∞(Ω2)

For any set A ⊂⊂ (0,T) ×Ω1 take someφ ∈ C∞0 ((0, 1) ×Ω1) with φ ≡ 1 onA andφ ≥ 0 to calculate:

b∗

ˆ

A
(∂tϑ)2 ≤

ˆ T

0

ˆ

Ω1

m′1(ϑ)(∂tϑ)2φ2 ≤

∣∣∣∣∣∣

ˆ T

0

ˆ

Ω1

|∇ϑ|2φ∂tφ

∣∣∣∣∣∣
≤ CA‖∇ϑ‖L2(0,T;L2(Ω1))

�

Thenext theorem gives unique existencefor the general classof coefficients.

Theorem 6.4. Problem 6.1 has a unique solution which satisfies the estimate:

‖ϑ‖L∞(0,T;H1(Ω)) + ‖ϑ‖H1(0,T;L2(Ω∪Γas∪∂Ω)) ≤ C

with C = C(T, b∗, b∗, ‖cΓ‖H1(0,T;L∞(Γas)), ‖ j
∗ + w‖L∞((0,T)×Ω2), ϑ(0)) only depending onthese constants and

ϑkrit ≤ ϑ ≤ ϑ
krit almost surely.
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Proof.
The maximal monotone graphs mi (i = 1, 2, Γ, c, cΓ, ∂Ω) can be approximated by monotone functions

mε
i satisfying the conditionsof Theorem 6.1 such that the corresponding functionsuε(ϑ) convergeuniformly

in ϑ. Remark that we can choose the mε
i such that 0 < b∗ < mε

1
′ < mε

2
′ < mε

c
′ < mε

cΓ
′ < mε

Γas

′ < mε
∂Ω
′

independent on the approximation and taking a look at equation (36) it is evident that the constants in (37)
can be chosen independent on mε

i . The same holds for the inequaliti es (38) and (39) and the boundedness
of ‖∂tuε(ϑε)‖L2(0,T;H∗(Ω)) in equation (40).

Asε→ 0 the following convergences hold for asub sequenceof the solutions (uε, ϑε):

ϑε ⇀ ϑ in L2(0,T; H1(Ω))

∂tϑ
ε ⇀ ϑt in L2(0,T; L2(Ω ∪ Γas∪ ∂Ω)) (46)

∂tu
ε(ϑε) ⇀ ut in L2(0,T; (H∗(Ω))

Which yields by Lions Theorem

ϑε → ϑin L2(0,T; L2(Ω) ∩ L2(Γas)) ∂tϑ = ϑt (47)

So far, one canarguethesameway asfor Theorem 6.1. Theweak convergenceuε(ϑε) ⇀ u(ϑ) in L2(Ω∪∂Ω∪
Γas) can beshown by theboundedness|uε(ϑε)| ≤ c(1+ |ϑε|) which showsuε(ϑε) ⇀ u∗ in L2(Ω∪ ∂Ω∪ Γas).
The relation u∗ ∈ u(ϑ) follows from the fact, that for any φ ∈ H1(Ω) with ζ := u(φ) holds:

ˆ T

0

ˆ

Ω∪∂Ω∪Γas

(
uε(ϑε) − ζ

) (
ϑε − (uε)−1(ζ)

)
≥ 0

and bythe convergences (46), (47) and theuniform convergenceof (uε)−1(·) on the interval (ϑkrit , ϑ
krit), the

limit inequality reads:
ˆ T

0

ˆ

Ω∪∂Ω∪Γas

(
u∗ − ζ

) (
ϑ − u−1(ζ)

)
≥ 0

like in [15] Chapter 4 Proposition 4.1 substituting ζ = u∗ + λξ for someλ ∈ R and ξ ∈ L∞(Ω ∪ ∂Ω ∪ Γas)
yields:

ˆ T

0

ˆ

Ω∪∂Ω∪Γas

ξ(ϑ − u−1(u∗)) = 0 ∀ξ ∈ L∞(Ω ∪ ∂Ω ∪ Γas)

and wehave:
¨

utφ
m→∞
←−−−−

¨

∂tu
ε(ϑε)φ = −

¨

uε(ϑε)∂tφ
m→∞
−−−−→ −

¨

u(ϑ)∂tφ

for suitable test functions and therefore ut = ∂tu(ϑ).
Theuniquenessfollows again by considering the equation:

ˆ T

0

ˆ

Ω

(ϑ1 − ϑ2)(−αm∂tφ − ∆φ − β∇φ) +
ˆ T

0

ˆ

Γas∪∂Ω

(ϑ1 − ϑ2)(−αm∂tφ + [∇φ] + δφ)

=

ˆ T

0

ˆ

Ω∪∂Ω∪Γas

((u1 − u2) − αm(ϑ1 − ϑ2)) ∂tφ
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whereαm ∈ L∞(Ω ∪ ∂Ω ∪ Γas) with |αm| ≤ m andαm(ϑ1 − ϑ2) → (u1 − u2) in L2(0,T; L2(Ω ∪ ∂Ω ∪ Γas)).
φ is asolution to

ε∂2
t φ − αm∂tφ − ∆φ − β∇φ = (ϑ1 − ϑ2) inΩ

ε∂2
t φ − αm∂tφ + δφ = −[∇φ] + (ϑ1 − ϑ2) onΓas∪ ∂Ω

φ(T) ≡ 0

∂tφ(T) ≡ 0

Since‖∂tφ‖L2(0,T;L2(Ω∪Γas∪∂Ω)) < C with C independent onm, it follows that

ˆ T

0

ˆ

Ω∪∂Ω∪Γas

(ϑ1 − ϑ2)2 ≤

ˆ T

0

ˆ

Ω∪∂Ω∪Γas

((u1 − u2) − αm(ϑ1 − ϑ2)) ∂tφ + ε

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

∂2
t φ(ϑ1 − ϑ2)

which implies by the convergenceof the first term in m and the convergenceof the secondterm in ε

ˆ T

0

ˆ

Ω∪∂Ω∪Γas

(ϑ1 − ϑ2)2 = 0

The result u1 = u2 follows from the uniqueness of the evolution operator. The boundedness can be
shown the same way as for Theorem 6.1. Alternatively, ϑ inherits the boundednessfrom theϑε by Lemma
2.8.

�

7. Solving the approximated system

The existenceof asolution to theoriginal coupled system can beshown byan application of Schauder’s
fixed point theorem in Y:

Y := V1 × V2 × V3 (48)

V1 := H1((0,T) × Ω2) ∩ L2(0,T; W1,2
∆,∂

(Ω2)) (49)

V2 := L2(0,T; H1(Ω)) ∩ H1(0,T; L2(Ω ∪ Γas∪ ∂Ω)) (50)

V3 := H1(0,T; L2(Γas)) (51)

Theorem 7.1. There existsat least onesolution (c, ϑ, cΓ) ∈ Y and acorresponding function u∈ L2(0,T; L2(Ω∪
Γas∪ ∂Ω)) to the coupled problem 4.1.

Proof.
Define the set

K : =

{
(c, ϑ, cΓ) ∈ Y

∣∣∣∣
ckrit ≤ c ≤ ckrit , ϑkrit ≤ ϑ ≤ ϑ

krit , ‖cΓ‖V3 ≤ CcΓ , ‖c‖V1 ≤ Cc, ‖ϑ‖V2 ≤ Cϑ,

c(0, ·) = c̃0, ϑ(0, ·) = ϑ̃0, cΓ(0, ·) = c̃Γ,0, ‖∂tcΓ‖∞ ≤ J0J1, cΓ ≥ 0 a.s.

}

Where CcΓ , Cc, Cϑ are the constants from Proposition 5.1, Theorem 5.2 and Theorem 6.4. Then, K ⊂ Y is
anonempty, closed, bounded and convex subset.
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Consider the following map from K onto itself: For agiven triple (c1, ϑ1, cΓ,1) ∈ K calculate the unique
solution to

∂tcΓ = jw,∂Ω2(c1, ϑ1, cΓ), cΓ(0) = c̃Γ0

according to Proposition 5.1. Define

ja(c, ϑ, cΓ) := jw,Γ(c, ϑ, cΓ) c−1
Γ = j0(c, ϑ)

j1(cΓ)
cΓ

Due to the assumptions on j1, ja is abounded locally Lipschitz continuous function onR
3.

Calculate c as the unique solution to theproblem

ˆ T

0

ˆ

Ω2

∂tcφ + δ
ˆ T

0

ˆ

∂Ω2

∂tcφ −
ˆ T

0

ˆ

Ω2

jw∇φ +
ˆ T

0

ˆ

∂Ω2∩∂Ω

jw,∂Ω(ϑ, c)φ +
ˆ T

0

ˆ

Γas

ja(c, ϑ1, cΓ)cΓ,1φ = 0

(52)
for all φ ∈ H1((0,T) ×Ω2) with c(0) = c̃0 by Theorem 5.2.

Finally, findϑ as thesolution to theproblem

ˆ T

0

ˆ

Ω

∂tu(ϑ)φ +
ˆ T

0

ˆ

Ω

∇ϑ∇φ +

ˆ T

0

ˆ

Ω2

∇
(
j∗mc(ϑ) + vm2(ϑ)

)
φ

+

ˆ T

0

ˆ

Γas∪∂Ω

(∂tu(ϑ) + g̃(x, t, ϑ))φ −
ˆ T

0

ˆ

Γas

∂tcΓ,1mcΓ(ϑ)φ = 0

wherec∗ and j∗ are calculated from c1 and

g̃(x, t, ϑ) :=



j0(x, t, ϑ)mc(ϑ) + g(x, t, ϑ) on∂Ω ∩ ∂Ω2

g(x, t, ϑ) on∂Ω\∂Ω2

− ja(c1, ϑ, cΓ)cΓ,1(x, t)(mc(ϑ) −mcΓ (ϑ)) onΓas

(53)

Remember, that mc(ϑ) ≥ mcΓ(ϑ) for all ϑ. If it is assumed in (53) that mc(ϑ) = const and mcΓ(ϑ) = const
onR\[ϑkrit , ϑ

krit ], g̃ isLipschitz continuous according to Lemma2.10and byTheorem 6.4 there isaunique
solution to the problem above that satisfies ϑkrit ≥ ϑ ≥ ϑkrit . Then, due to the upper and lower essential
bound onϑ, the assumption onmc and mcΓ can be madew.l.o.g..

It only remains to show that themapping (c1, ϑ1, cΓ,1) 7→ (c, ϑ, cΓ) isweakly sequentially continuous on
K. Schauder’s secondFixed Point Theorem 2.11 will t hen yield the existenceof a solution to problem 4.1
by the simple remark that ∂tcΓ = jw,Γ(c, ϑ, cΓ) = ja(c, ϑ, cΓ)cΓ.

To provetheweakly sequentially continuity of (c1, ϑ1, cΓ,1) 7→ (c, ϑ, cΓ) take anysequence(cn
1, ϑ

n
1, c

n
Γ,1) ∈

Y such that (cn
1, ϑ

n
1, c

n
Γ,1) ⇀ (c1, ϑ1, cΓ,1) weakly in Y. Evidently, cn

1 → c1 in L2(0,T; H1(Ω)) andϑn
1 → ϑ1

strongly in L2(0,T; Hs(Ω2)) for s ∈ (0, 1). Therefore cn
1 → c1 strongly in L2(0,T; L2(∂Ω2)) and ϑn

1 → ϑ1

strongly in L2(0,T; L2(Γas∪ ∂Ω)).
First observe that Proposition 5.1 states the strongconvergenceof cn

Γ
→ cΓ in V3.

The Lipschitz-continuity of ja yields ja(cn
1, ϑ

n
1, c

n
Γ
) → ja(c1, ϑ1, cΓ) strongly in L2(0,T; L2(Γas)). It

follows
ˆ T

0

ˆ

Γas

ja(cn, ϑn
1, c

n
Γ)c

n
Γ,1φ→

ˆ T

0

ˆ

Γas

ja(c, ϑ1, cΓ)cΓ,1φ ∀φ ∈ C1((0,T) ×Ω2) ∩ H1((0,T) ×Ω2)

and the limit c is the unique solution to (52).
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For a sub sequence of the associated solutions holds ϑn ⇀ ϑ weakly in V2. Therefore, strongconver-
genceof ja(cn

1, ϑ
n, cn
Γ
)→ ja(c1, ϑ, cΓ), mc(ϑn)→ mc(ϑ) and dueto boundednessalso of ja(cn

1, ϑ
n, cn
Γ
)mc(ϑn)→

ja(c1, ϑ, cΓ)mc(ϑ) in L2(0,T; L2(Γas)) areobtained. By theweak convergenceof cn
Γ,1 ⇀ cΓ,1 in L2(0,T; L2(Γas))

follows
ˆ T

0

ˆ

Γas

ja(cn
1, ϑ

n, cn
Γ)c

n
Γ,1 mc(ϑ

n)φ →

ˆ T

0

ˆ

Γas

ja(c1, ϑ, cΓ)cΓ,1 mc(ϑ)φ ∀φ ∈ C∞(Ω)

ˆ T

0

ˆ

Γas

ja(cn
1, ϑ

n, cn
Γ)c

n
Γ,1 mcΓ(ϑ

n)φ →

ˆ T

0

ˆ

Γas

ja(c1, ϑ, cΓ)cΓ,1 mcΓ(ϑ)φ ∀φ ∈ C∞(Ω)

and sincethe right hand side can be considered as a linear functional onφ ∈ H1(Ω), the Banach-Steinhaus
Theorem yields convergence of the latter limit for all such φ. Since cn

1 → c1 strongly in L2(0,T; H1(Ω))
and the extension operator is continuous as well as the folding operator, we get j∗,n → j∗ strongly in
L2(0,T; H1(Ω2)). Theweak convergenceof cn

Γ,1 ⇀ cΓ,1 in H1(0,T; L2(Γas)) finally yields

ˆ T

0

ˆ

Γas

∂tc
n
Γ,1 mcΓ(ϑ

n)φ→
ˆ T

0

ˆ

Γas

∂tcΓ,1 mcΓ(ϑ)φ ∀φ ∈ C∞(Ω)

Sinceun ∈ L2(0,T; L2(Ω ∪ Γas ∪ ∂Ω)) is bounded by (cn
1, ϑ

n, cn
Γ,1), un ⇀ u∗ weakly in L2(0,T; L2(Ω ∪

Γas ∪ ∂Ω)). It’s easy to see that m2(ϑn) → m2(ϑ) and mc(ϑn) → mc(ϑ) in L2((0,T) × Ω2) as well as
mΓ(ϑn) → mΓ(ϑ) in L2((0,T) × Γas) and m∂Ω(ϑn) → m∂Ω(ϑ) in L2((0,T) × ∂Ω). By Lemma 2.9, m1(ϑn) ∋
un

1 ⇀ u1 ∈ m1(ϑ) weakly in L2(0,T; L2(Ω1)).
To see that un

Γ
⇀ uΓ ∈ mΓ(ϑ) + cΓmcΓ(ϑ) in L2((0,T) × Γas), remember that for every function ξ ∈

L∞(0,T; L∞(Γas)) holds

ˆ T

0

ˆ

Γas

(un
Γ − cn

Γξ −mΓ(m
−1
cΓ (ξ))) (ϑn −m−1

cΓ (ξ)) ≥ 0 (54)

and therefore also
ˆ T

0

ˆ

Γas

(uΓ − cΓξ −mΓ(m
−1
cΓ (ξ))) (ϑ −m−1

cΓ (ξ)) ≥ 0

by the strongconvergenceof ϑn and the weak convergenceof un
Γ

and cn
Γ
. It follows from monotonicity, that

uΓ ∈ mΓ(ϑ) + cΓmcΓ(ϑ).
The last convergences show that

lim
n→∞

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

unφ =

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

uφ ∀φ ∈ C2([0,T] ×Ω)

with u∗ = u ∈ u(ϑ) and bytheboundednessof u for all φ ∈ L2(0,T; H1(Ω)). It iseasy to seethat ∂tun ⇀ ∂tu
in L2(0,T; H∗(Ω)) andtherefore the limit functionϑ is identical with theuniquesolution to theheat transfer
problem with parameters (c1, cΓ,1). �
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Sincethe relation ∂tcΓ = jw,Γ(c, ϑ, cΓ) = ja(c, ϑ, cΓ)cΓ holds, the problem takes the following form:

0 =

ˆ T

0

ˆ

Ω2

∂tcφ +
ˆ T

0

ˆ

∂Ω2

δ∂tcφ −
ˆ T

0

ˆ

Ω2

jw∇φ +
ˆ T

0

ˆ

∂Ω2

jw,∂Ω2(c, ϑ, cΓ)φ

0 = cΓ −
ˆ T

0
jw,Γas(c, ϑ, cΓ)

0 =

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

∂tu(ϑ)φ +
ˆ T

0

ˆ

Ω

∇ϑ∇φ +

ˆ T

0

ˆ

Ω2

∇
(
j∗mc(ϑ) + wm(ϑ)

)
φ

−

ˆ T

0

ˆ

Γas

jw,Γ(c, ϑ, cΓ) mc(ϑ)φ +
ˆ T

0

ˆ

∂Ω

(
g(ϑ) − jw,∂Ω(c, ϑ) mc(ϑ)

)
φ

8. Solving the original Problem

Theorem 8.1. There is at least one solution to problem 3.1.

Proof.
To show existenceof asolution of theoriginal system, someuniform estimateson(c, ϑ, cΓ) independent

on the approximation c∗ = c ∗ η, mΓ and m∂Ω are needed. The estimates on c and cΓ from Theorem 5.2 and
Proposition 5.1 only depend onϑkrit and ϑkrit so there is only need for some new estimates on ϑ. To this
aim write the heat transport equation in the following way:

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

∂tu(ϑ)φ +
ˆ T

0

ˆ

Ω

∇ϑ∇φ −

ˆ T

0

ˆ

Ω2

(
j∗mc(ϑ) + wm2(ϑ)

)
∇φ

+

ˆ T

0

ˆ

∂Ω

g̃(x, t, ϑ)φ +
ˆ T

0

ˆ

∂Ω2

j∗mc(ϑ)φ = 0

with g̃ :=



g(ϑ) − jw,∂Ω(c, ϑ)mc(ϑ) on∂Ω ∩ ∂Ω2

g(ϑ) on∂Ω\∂Ω2

− jw,Γ(c, ϑ, cΓ)mc(ϑ) onΓas

Weremember the estimates from Lemma6.3:

‖∇ϑ‖L2(0,T;L2(Ω)) + ‖∂tu‖L2(0,T;H1∗
∞ (Ω)) + ‖∂tϑ‖L2(0,T;H1∗

∞,0(Ω2)) ≤ C

‖∂tϑ‖L2(0,T;L2(A)) ≤ CA

whereC andCA do not depend on our approximation but CA depends on A ⊂⊂ (0,T) ×Ω1.

First Limit Problem with fixed δ, mΓ andm∂Ω

Assume

c∗,ε := (ηε ∗ cε) ∈ C∞0 (R × R
n)

jε1 := (ηε ∗ (−K∇cε + wcε)) ∈ C∞0 (R × R
n)
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with ηε being the standard molli fier such that ηε
ε→0
−−−→ δ0 in sense of distribution. Let ψε and j∗,ε be the

corresponding sequences according to (20). For every ε, there is a solution (cε, cε
Γ
, ϑε, uε) and we obtain

from the estimates above

ϑε ⇀ ϑ in L2(0,T; H1(Ω))

∂tϑ
ε ⇀ ϑt in L2(0,T; H1∗

∞,0(Ω2))

∂tϑ
ε ⇀ ϑt in L2(0,T; L2(A)) for A⊂⊂(0,T)×Ω1

∂tu
ε(ϑε) ⇀ ut in L2(0,T; H1∗

∞ (Ω))

cε ⇀ c in H1(0,T; H1(Ω2)) ∩ L2(0,T; W1,2
∆,∂

(Ω2))

Which yields by Lions Theorem

ϑε → ϑ in L2(0,T; H1(Ω)) ∂tϑ = ϑt

cε → c in L2(0,T; H1(Ω2)) cε → c in L2(0,T; L2(∂Ω2))

In the same way as for Proposition 5.1 follows

cε
Γ

⇀ cΓ in V3

cεΓ → cΓ in L2(0,T; L2(Γas))

Therefore also jw(cε, ϑε, cε
Γ
) = j0(cε − c0(ϑε))cε

Γ
converges weakly in L2(0,T; L2(Γas)) to jw(c, ϑ, cΓ).

From these convergences follows immediately:

ˆ T

0

ˆ

Ω2

∂tcφ + δ
ˆ T

0

ˆ

∂Ω2

∂tcφ +
ˆ T

0

ˆ

Ω2

(∇c− v c)∇φ +
ˆ T

0

ˆ

∂Ω2

jw(θv, ϑ, cΓ)φ = 0 (55)

∂tcΓ = jw(c, ϑ, cΓ) (56)

for the limit functions.
Similar to the approximated problem, it can beseen that u ∈ u(ϑ). This isevident for u1, u2, u∂Ω and for

uΓ remember inequality (54):

ˆ T

0

ˆ

Γas

(uεΓ − cεΓξ −mΓ(m
−1
cΓ (ξ))) (ϑε −m−1

cΓ (ξ)) ≥ 0

to obtain uΓ ∈ cΓmcΓ(ϑ) +mΓ(ϑ).
Thestrongconvergencecε → c in L2(0,T; H1(Ω2)) yields jεw→ jw strongly in L2(0,T; L2(Ω2))n aswell

as jε1 → jw strongly in L2(0,T; L2(Ω2))n. Since∂tc∗,ε ⇀ ∂tc weakly in L2(0,T; L2(Ω2)), jε1 ⇀ jw weakly
in E(Ω2) and ψε ⇀ ψ for some ψ weakly in L2(0,T; H1

0(Ω2) ∩ H2(Ω2)) with ∆ψ = 0, we conclude from

Lemma2.4 that ψ = 0 andfrom Lemma2.7 that ∇ψεν2 ⇀ 0 in L2(0,T; H
1
2 (∂Ω2). Dueto the argumentation

after Lemma2.7 follows
ˆ T

0

ˆ

∂Ω2

j∗,εφε →

ˆ T

0

ˆ

∂Ω2

( jΓas
w (θv, ϑ, cΓ) + δ∂tc)φ
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for all φε ⇀ φ weakly in L2(0,T; H1(Ω2)) withφε → φ strongly in L2(0,T; L2(Ω∪Γas∪∂Ω)). Wetherefore
finally get asa limit equation for (uε, ϑε):

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

∂tu(ϑ)φ +
ˆ T

0

ˆ

Ω

∇ϑ∇φ −

ˆ T

0

ˆ

Ω2

jwmc(ϑ)∇φ

+

ˆ T

0

ˆ

∂Ω

g(ϑ)φ +
ˆ T

0

ˆ

∂Ω2

δ∂tcmc(ϑ)φ = 0

For all φ ∈ L2(0,T; H1(Ω) ∩C∞(Ω)) and bythe regularity of the terms for all φ ∈ L2(0,T; H1(Ω))

SecondLimit Problem with fixed δ

Fixing δ and choosing a sequence of functions (mn
Γ
)n∈N, (mn

∂Ω
)n∈N with mn

Γ

n→∞
−−−−→ 0, mn

∂Ω

n→∞
−−−−→ 0

uniformly on [ϑkrit , ϑ
krit ] for the corresponding sequenceof functions (ϑn, un) holds:

ϑn ⇀ ϑ in L2(0,T; H1(Ω))

∂tϑ
n ⇀ ϑt in L2(0,T; H1∗

∞,0(Ω2))

∂tϑ
n ⇀ ϑt in L2(0,T; L2(A)) for A⊂⊂(0,T)×Ω1

∂tu
n(ϑn) ⇀ ut in L2(0,T; H1∗

∞ (Ω))

cn ⇀ c in H1(0,T; H1(Ω2)) ∩ L2(0,T; H2(Ω2))

Which yields by Lions Theorem

ϑn → ϑ in L2(0,T; Hs(Ω)) ∂tϑ = ϑt

cn → c in L2(0,T; H1(Ω2)) cn→ c in L2(0,T; L2(∂Ω2))

for some s∈ (1
2 , 1) by the local strongconvergenceof the sequence. Furthermore

We have cn
Γ
⇀ cΓ in V3 and cn

Γ
→ cΓ in L2(0,T; L2(Γas)) and therefore also jw(cn, ϑn, cn

Γ
) = j0(cn −

c0(ϑn))cn
Γ

converges weakly in L2(0,T; L2(Γas)) to jw(c, ϑ, cΓ). From these convergences follows immedi-
ately (55) and (56) for the limit functions.

Similar to the approximated problem, it can be seen that u ∈ u(ϑ). This is evident for u1, u2, u∂Ω
(actually, u∂Ω2 → 0). For uΓ remember inequality (54):

ˆ T

0

ˆ

Γas

(un
Γ − cn

Γξ −mΓ(m
−1
cΓ (ξ))) (ϑn −m−1

cΓ (ξ)) ≥ 0

and use mΓ → 0 to obtain uΓ ∈ cΓmcΓ(ϑ).
Wetherefore finally get as a limit equation for (un, ϑn):

ˆ T

0

ˆ

Ω∪Γas∪∂Ω

∂tu(ϑ)φ +
ˆ T

0

ˆ

Ω

∇ϑ∇φ −

ˆ T

0

ˆ

Ω2

jwmc(ϑ)∇φ

+

ˆ T

0

ˆ

∂Ω

g(ϑ)φ +
ˆ T

0

ˆ

∂Ω2

δ∂tcmc(ϑ)φ = 0

For all φ ∈ L2(0,T; H1(Ω) ∩C∞(Ω)) and bythe regularity of the terms for all φ ∈ L2(0,T; H1(Ω)).
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TheLimit δ→ 0
In order to get rid of the δ-terms, choose asequenceδ→ 0 and test the equation

ˆ T

0

ˆ

Ω2

(∂tcφ + (K∇c− w)∇φ) +
ˆ T

0

ˆ

∂Ω2

(δ∂tc+ j(c, ϑ, cΓ))φ = 0

with φ ∈ H1
0(Ω2) to obtain ‖∂tc‖L2(0,T;H−1(Ω2)) ≤ C with C independent on δ. Furthermore, use the estimates

from Proposition 5.1, Theorem 5.2 and Lemma6.3 to obtain sequences

ϑδ ⇀ ϑ in L2(0,T; H1(Ω))

∂tϑ
δ ⇀ ϑt in L2(0,T; H1∗

∞,0(Ω2))

∂tϑ
δ ⇀ ϑt in L2(0,T; L2(A)) for A⊂⊂(0,T)×Ω1

uδ ⇀ u in L2(0,T; L2(Ω ∪ Γas))

∂tu
δ(ϑδ) ⇀ ut in L2(0,T; H1∗

∞ (Ω))

cδ ⇀ c in H1(0,T; H−1(Ω2)) ∩ L2(0,T; H1(Ω2))

cδΓ ⇀ cΓ in V3

which implies

ϑδ → ϑ in L2(0,T; Hs(Ω)) ∂tϑ = ϑt

cδ → c in L2(0,T; Hs(Ω2)) for s∈ (
1
2
, 1)

cδ
Γ
→ cΓ in L2(0,T; L2(Γas))

For any φ ∈ H1(0,T; L2(∂Ω2)) with φ(T) ≡ 0, ashort calculation yields by theboundednessof c

ˆ T

0

ˆ

∂Ω2

δ∂tc
δφ = δ

ˆ

∂Ω2

cδ(0)φ(0) − δ
ˆ T

0

ˆ

∂Ω2

cδ∂tφ

→ 0 as δ→ 0

and the other convergences are evident from the above calculations. Therefore, there exists at least one
solution to the problem with the claimed regularity. �
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