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Abstract

A moded for vapor transport with condensation and evaporation ona solid-air interfaceis st up. It consists
of a onvedion-diffusion equation describing vapor transport, an ordinary equation describing condensation
and a Stefan-type equation onwith convedion describing energy transport. The proof of existence of a
solution is based on a method wsed by J.F. Rodriguez in several pulbicaions on the mnvedive Stefan
problem. The new part in this system is alower-dimensional Stefan problem on the dr-solid interfacethat
describes posgble freezng o the condensed water. The Model described in thisarticle could also be goplied
to crystalizaion problems.

Keywords. Stefan Problem, Convedion, Condensation, Dissolution, Crystalli zaion

1. Introduction

The model analyzed in this paper rises up in modeling processes like mndensation o crystdli zation
onasolid surface In the first case, we asume vapor transported by an air velocity field to condensate &
the boundxry of a solid material due to over saturation in the gaseous phase. In the second case it may be
asaumed that some materia transported by water crystalli zes at the surfaceof solid matter. In bah cases,
for smplicity the temperature field is assumed to be continuows aaossthe interface The condensation o
crystalli zation film is assumed to be very thin and therefore is assumed to be two-dimensional.

Thus, the domain Q < R3 in which al these processs take place ca be divided into three parts of
interest: The solid damain Q, in which orly hed transport hasto be considered, the dr/water domain Q5 in
which all the dynamicd processes take place ad the interfacel’. The model equations for vapor transport
and condensation read as foll ows:

oic—div(KVe) +div(we) = 0 onQ» D
(wc—KVev, = | 0ondQs ()]
dcr = j onTlas (3

whereas the equations for hea transport are given by

ou(®) —div(K{V9) = 0 onQ; (@]
ou(®) — div (KoV) + div ((we — KVe)me(9)) + div (wmp(3)) = 0 onQ; (5)
Ou®) — ((wec— Kve)me(9) —wmp(9) — KoV + KiVe®) = 0 onlgg (6)

In the first set of equations, the variable ¢ denates the vapor concentration in the ar phase, ¢r the anourt
of condensed water, w is the ar velocity and fulfills divw = 0, i.e. the dr phase is assumed to be incom-
pressble. Furthermore, K is some positive mnstant and j is the cmndensation rate on the boundxry. In the
Preprint submitted to Elsevier August 11, 2009



secondset of equations, u denates the inner energy density of the system which is assumed to be afunction
of the temperature ¥ aswell as of c and cr. In particular, u(#) = my(#) + cmg(¥) on Qo, u(@) = M(F) on
Qi and u(9) = cr mg.(9) onTgs. Inthis context, K; and K, are positive mnstants and my, i as an arbitrary
index, are strondy monaone increasing functions with my(0) = 0. As an additional degreeof freedom, the
functions me. and my need na to be ntinuows but may have jumps.

Evidently, this problem is closely related to the Stefan problem and we will shortly summarizewhat has
been dorein this diredion: The astrad Stefan problem usualy is expressed by d:a() — div (Vb(9)) = O,
oia(?) — b(A®) = 0, a(dy?) — div (Vb(¢)) = 0 or similar equations. A broad overview over different types
of Stefan problems and the correspondng literature can be foundin the book d Visintin [14]. Alt and
Luckhaus [1] treaed the problem

ra(d) — div (a(d, va)) = ()

in grea generdity. In chapter 4 of [15], Rodriguez developed a method to tred the Stefan problem with
a wonvedive term and norinea Neumann boundry condtions. He successully applied this method in
[9, 10] together with Urbanoto a Stefan-convedion problem couded with Stokes and Darcy flow fields. Di
Benedetto and O’ Leay [4] and Blanchard and Porretta [2] considered a (norinea) convedion-diffusion
problem couded with the Stefan equation for energy. Further work on Stefan-convedion Problems can be
founde.g. in[16, 17, 12]. Thislist isnot surely not complete but rather refleds the author’s reading.

There ae severa papers deding with crystalli zation couded with readion kinetics on the boundiry
[5, 13, and references therein] but not invalving hea transfer. Some numericd scheme for such problems
can befoundin [3]. In contrast to present article, they ded with a set valued condensation term of the form
ocr € j(c, 9, cr). Such an approach would come up with even more difficulti es than the present one and
may be overcome by some further approximation a by some new techniques.

The dchallenge of the presented modd li esin its condensation bounary condtion couged with a Stefan
problem on the same interface To the authors knowledge no Stefan problem couded with an additional
lower dimensional Stefan problem has been treaed in literature analyticdly. The analysis of the system is
based onthe method d Rodriguez[15, 9, 10] together with an approximation ansatz and Schauders Fixed
Point Theorem. The reason for this approach will be given in sedion 4

Thisarticleisorganized as foll ows:. in sedion 2some basic tod s that will be necessary for the analysis
of the problem will be introdwced. In sedion 3the wed formulation o the problem will be derived and
in sedion 4 a more ea&y to solve goproximated problem will be formulated. In 5to 7 the gproximated
problem is lved by solving convenient decouded equations and combining them using Schauders fixed
point theorem. In the last sedion, it will be shown that the goproximations can be dropped and a solution to
theinitial problem is obtained.

2. Mathematical tools

We will start by constructing some important Hilbert spaces and citing o proving some results on
embedding properties which are valid for these spaces.

Theorem 2.1. [8]
Let By c B c By, threeBanach spaces auch that By andB; arereflexive Suppae also that theinjedion
Bo — Biscompact and dfine

W = {v | ve LP(a, b; By), %’ € LP(ab; Bl)}
2



with 1 < pg, p1 < +o0. Then W isa Banach spacewith resped to the norm of the graph defined by

lullw = ul " Hau
wW = LPo(a,b; B, .
(a,b;Bo) at LPL(a.b:B1)

andtheinjedion W < L™(a, b; B) is compact.

Lemma2.2. Let Q c R" be boundd of classC, 0 < T < o0, Q := (0, T) x Q, £ := (0, T) x 4Q and
Bo := HY(Q), it ispassble to choose B := HS(Q), 0 < s < 1 andtherefore also B = L2(Q) or B = L(X).

Lemma2.3. Assime Q, K c R3 are open and bounéd with Q cc K. There exsts a continuous operator
T : HYQ) - H}(K) such that Tu(x) = u(x) for all x e Q@ andATu = 0onK\Q.

Thisis easily proved by solving the correspondng pertial differential equation.

Lemma24. [7]
Asaume Q c R3 is open, boundd andthe bounday has bounded first and second ader derivatives.
Then there exsts C > 0 such that

lullwezoy < CllAUllz) — Yu € WAH(Q) N Wo(Q)

This lemma gives rise to the asegjmption, that we aould exped some similar result for u € W22(Q).
However, we would need at least H22(9Q) estimates of the boundiry values in order to proof lullwez(q) <
C (llAull 2y + ||u||H2 200 ) But we can state the foll owing

Lemma2.5. Let Q be an open bounad C%1-domain in R". Define

U2y = lIullnyg) + 1AUllL 20y + [0y Ulli2ga0) Yu e W23(Q)

W@ = W) A

Then Wt (29(9) W2L2(Q) andthe embedding is compact.

Proof.
For any weak converging series un — uin Wy 2(Q) andw, — win W-2(Q) cdculate

/(Uan + VUnVWn) = / Uan /WnAUn / a Uan
Q

- /(uw WAu)+/ dyuw = /Q(uw+Vqu)

Where the limit follows from the strong convergence of w, — w in L%(Q) and L2(6Q) and the week
convergence of (Un, Aun, dyUn) — (U, Au, d,u) in L2(Q) x L2(Q) x L2(6Q).

Furthermore, we define the following space acording to Temam [11]

Ul ( /Q (& + (civ u)z))z Y6 € HYQ)"

[l

3
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Lemma2.6. (Temam: [11, Theorem 1.2.])
Let Q be an open bounad set of class C%. Then there exsts a linear continuows operator y, €
L(E(Q), H~2(Q)) such that
yyU = uy for evey u € D(Q)

The following generali zed Sokes formulaistruefor all u e E(Q) andw € HY(Q):

/qu+/wdivu:/(qu)w
Q Q r

Lemma2.7. Let Q bean open, bounded set with Ch1-bounday. For any sequence (Un)ney € H1(Q)" such
that u, — u weakly in HY(Q)" hdds u,y — uv weakly in H%((E)Q), where v is the outer normal vedor of
AQ. For (Unnen € E(Q) such that u, — uweakly in E(Q) and y, — u strondy in L2(Q)" halds u,y — uy
strongy in H=Y2(4Q).

Proof.
For any w e H%((?Q), chocse afunctionw € H(Q) such that W|aQ =wandAw = 0in Q and cdculate:

Iim/ Uwdo = Iim(/ unVde+/wdivundx)
n—oo BQ nN—oo Q Q

/qudx+/wdivudx: uwdo
Q Q o0Q

in the second case do the same cdculation for aweakly convergent sequence W, — W in H/2(6Q). g
Remark that asimil ar result hddsalsointhe caeof u, — uinL2(0, T; E(Q)), u, — uinL2(0, T; L2(Q)")
and sequences wy, — win L?(0, T; HY(Q)) with w, — win L%(0, T; L(Q)).
We will also nead some results about sequences of bounded functions and Lipschitz continuots func-
tions evaluated with bounad L2-functions. Additionally, as we ae deding with set valued functions and
inclusions, we need some results about the limit behavior of such sequences.

Lemma 2.8. For a measure space (Q, o, 1) with finite measure pasume that for a corverging sequence of
functions (Un)neny C© L2(Q, ) With U = limp_e Uy holds —co < €1 < Uy < o < +0o p-almost surely in Q for
al n. Thency < u < ¢ u- almost surely.

Proof.
Define a, := max {c1, min{cy, un}} with a, — uin L?(Q, x). It hads for a sub sequence that an(x) —
u(x) point wise for u-almost every x. Therefore ¢; < u < ¢, u-almost surely.

Lemma29. [14]

For a finite measure space(Q, 1) and amaximal monaone graphm : R — R such that |m(x)| < C(1+|x])
for some constant C, let (Un)ney © L2(Q, 1) be a corverging sequence with limit u such that m(u,) — m-
weakly in L2(Q, u). Then m* € m(u).



Lemma 2.10. Asaimey1,y» : X — R are two Lipschitz continuows mappngs on a named space X with
Lipschitz constants C1, C, andthat [ly1(X)I| + [ly2(X)Il < Cs for all x € X. Then X = y1(X)y2(X) is Lipschitz
continuots with Lipschitz constant Cz (C1 + C»).

For (Q, o, 1) a measure space and aLipschitz continuous function j : R™ — R which is monaone
in ary argument consider sequences (a’ij)jEN c L%(Q) such that a'ij — a inL%Q) fori =1,...,mand

)| < d < e as. Then i@},....aM = j(at,...,a™ in LXQ).

Proof.
Form= 2 find|j(o, 0?) - j(a*, 0?)| < |i(a}, a?) - j(},0?)| + (e}, 0?) - j(a*, a?)| 0
Wefinally cite the following version d Schauder’s Fixed Point Theorem:

Theorem 2.11. (Schaudr’s :aond fiked pant theorem)[ 18]
Suppae that

1. Xisareflexve separable Banach space

2. ThemapT : M c X —» M isweakly sequentially continuots, i.e., if X, — xasn — oo, then also
T(x0) = T(X)

3. The set M is norempty, closed, bounded andcorvex

Then T has a fixed pant.

3. Formulating the Mathematical Problem

In the foll owing, fr ¢ withT beinga (n— 1)-dimensional Manifold denctes the integral of ¢ with resped
to the (n — 1)-dimensional Hausdorff measure H"1(-nT) onT.

L2(Q U I'zs U 09Q) denates the space of dl square-integrable functions with resped to the measure
w(A) = LIAN Q) + H™ (AN (Fas U Q) which is asum of the L ebesgue measure on Q and the Hausdorff
measure onT g U 9Q. fgurasu 50, as to be understood in this context.

Suppase we were given Q c R" bounded and open with C2-boundiry. Suppae Q = Q1 U Q) U T as With
Q1, Q, being open sets with piecavise C>1-boundiry and Q1 NQ»NT s = 0. In Particular, Fas = 0Q1N0Qy
and is a piecavise smoath (n — 1)-dimensional manifold. For the rest of this ssdion, we define v, as the
outer normal vedor of Q.

Thetransport and condensation equations real as foll ows:

oc+divj=0 in Qy
c=0 in Qq
j:=Jjw=-KVc+wc @
jv2 = jwr(c, 9, cr) in s
Hpona0,"2 = Jwaa(c,9)

oCr = jwr(c,9,cr) in Ias (8)



whereas the energy transport can be described by the foll owing set of equations:

ou+dvj, = 0 in QU Qg ©)]
o [ji =KV + jme(@) +wm®)  in Q
BT s ke in 0
Otu— (Jﬁ - j&)VZ = 0 OoNI'as

ou+g(®) = juvo onoQ

u(xtd) = u)Ql(x,t,ﬁ)eml(ﬁ) (10)
u(xt,9) = ujgz(x,t,ﬂ)emz(ﬂ)+c(x,t)rnc(19) (12)
ur(xt,®) = u(xt.9) € cr(x me. () (12
Ua(xt9) = U, (xt9) =0 (13

Asaime that
Jwan, (€, 9, cr) = jo(c,?) ja(cr)
where jo(c,¥) = jo(C — co(®)) with co, jo, j1 and X2 are Lipschitz cortinuots monatone increasing
functions (with Lipschitz-constants Co, Jo, J1, J1..), Co = 0 and ¢y and jo being bouned by some cnstants

Comax and Jomax and jo(0) = j1(0) = O with Lipschitz-constant J;. Furthermore co may be strondy
continuots. Evidently, for every —oo < dit < 9Kt < +00, there ae —oo < Cyrir < ¢ < +o0 such that

< 0 if (Ca ﬁ) € (—OO, Ckl’it] X [ﬂkl’it’ 19km] U [Ckrit, Ckrit] X [ﬁkrit’ OO)
>0 if(c,¥) e [c™, 00) X [Trits PM] U [Cirit, ] X (—o00, Ficit]

jo(c, 9) {

On [Cirit, S X [rit, <™ jo is bounded by some nstant Jp and |d:cr| < JoJi as..
Furthermore, H*(Q) denates the dual spaceof HY(Q) andy € L%(0, T; H*(Q)) means:

)
/ / 0o < Cldle Yo € HY(Q)
0 QU RUIQ

In conredion with this definition, we cdl H=}(Q) the dual spaceof H3(Q2), H"(Q) the dual space of
H3(Q) N H¥(Q) and H™1(Q2) and H3(Q,) respedively.

Testing the equations (7) and (9) with some ¢ € C1(Q), partial integration and inserting the boundiry
condtions yields

T T T
/ / ARU) 6 — / / oV + / o) = 0 (14)
0 QUIMRsUIQ 0 Q 0 oQ
T T T
/ dco + / / (KVe—we) Vo + / / s (G 9,61) = O (15
0 Qy 0 Qo 0 Qo
while aquality (8) shoud hdd in the sense of L(T'a)
atCF = jW,r(Cv 07 CF) In Lz(ras) (16)



Inserting the explicit form of j, in equation (14) and pertia integration of the cnvedive term in space
yields aseand pashble formulation o the problem:

/OT/Qurasuagatu(ﬂ)cm/oT/wa+/0T/QZV(jmc(ﬁ)+WmZ(ﬁ))¢

T T
[ wrcoam@or [ ] @) omens=o @
0 Ias 0 0Q
Thiswill be the basic ansatz to show L* estimates on 4.

Problem 3.1. Asaume & € H(Qy), Jo € HY(Q), G € L™(Tas), o € L2(Q U T'as U Q) with constants
+00 > 9 > Yy > —00, Crit 1= C(_)l(ﬂkrit), ot .= Cal(l?km), I > 9o > Dit, M > G > Gt > 0 almost
surely, € > 0 almost surely and (&g, Jo, Cr.0, Up) satisfying equations (10)- (13) almost surely. Furthermore,
g = g(, x,t) isasumed to be bounded andLipschitz in ¢ with a Lipschitz constant independent on (X, t),
g(®, x,t) > 0for 9 > 9 and ¢, x,t) < Ofor & < Syt for all (x,t) € IQ x (0, T).

Find c € L?(0, T; HY(Qp)) n HY(0, T; H1(Qy)), ¥ € L0, T; HY(Q)), ¢ € HL(O, T;H (), ¥ €
HY(0,T; L2(A)) YA cc Qi, cr € HY0, T;L®(T4s)), U € L0, T; L?(Q U T'as U Q) N L2((0, T) x Q),
otu € H*(Q) such that u satisfies equaions (10) - (13) and (c, 9, cr, u) satisfies (14) - (16) with c(0) = Cp,
9(0) = Jo, cr(0) = &9 and Y0) = Tp andthe esential boundkdness condtions IKt > § > Fyir, Mt > ¢ >
Cierit -

4. An Approximated Problem

The energy equation on ., is the most difficult in the system of equations. It seans evident, that
the coefficients have to be smocthed ou if one wants to overcome problems in terms like d¢(cmg(#)) or
div (j me(s9)) which is not in L2 or even in H™ as long as it is not known that ¢ is essentialy bounded.
However, if we smocth ou the coefficients in the energy equations by a Dirac sequence and take the limit,
week convergence of j in L2 would na be enoughto get sufficient convergence behavior of the boundry
condtions. To thisaim, an ather approad isintroduced giving more regularity of the vapor concentration
C.

The first step is to modify the system describing vapor transport by changing the boundiry condtion
into

jv2 = jwr(c, 9, cr) + 66c

this will | ead to an L2-estimate on d;c. Thelimit § — 0 seams very delicate in this context and it will t urn
out to bethelast step in the goproximation procedure. The arucial paint is, that the introduction o thisterm
does nat change the type of the equation, i.e. the equation remains of parabadlic type.

We asaume that ¢ € H1(€Q,) and choose an extension of con (-1, T + 1) x K with some balls K and K
satisfying Q cc K cc K, by extending it harmonicaly on K acording to Lemma 2.3 such that Clyg = Curit
and clsx = 0. By the wedk maximum principle, ¢kt > ¢ > gqit still hddsin K almost surely and we extent
this function on(0, T) constant on (-1, T + 1). Smoathingwith 7 € C3(R x R") such that n > 0, lpll,» = 1
and supp(n * x(T)xa) C (0.5, T + 0.5) x K yields two functions:

c = (nxc)eCF(RxR") (18
(n * (-KVc +wc)) € C'(R x R") 19

j1

7



such that ¢* still satisfies ¢t > ¢* > ¢yt 0N (0, T) x Qp admost surely. Now solve:
e +divji—Ay =0  yeHYQ) (20)
Proposition 4.1. For the solution d equation (20) halds ¢ € C*(Q;) N H2?(Qy) and
Iz (0,1 H22(0,)) < C(22) (IlatC*llLZ(o,T;LZ(K)) + ||div jl||L2(0,T;L2(K)))
For Q, € C%™ we get

Il 20.7:Hme(s)) < C(Q2) (1€l 20 T:020¢)) + 1KV jalliz0 7120y

Proof.
The eistence of y and the C*(Q)-regularity follows from standard results (see [6]), the H%3(K)-
estimate from Lemma 2.4 aswell as the higher estimates from [6]. O

Note that the mapping ¢ — |* = -V + j1 as amapping L2(0, T; HY(Q2)) n HY(0, T; L?(Qy)) —
L2(0, T; HY(Q)") is continuots.
The euations for (u, #) are changed the foll owing way:

. KoV + j*me(9) + wmp(9) in Qo

o= {—Klw in O @D
u(xt9) = ul, (xt9) = m@) (22
(%t 9) = Uy (xt9) = me(®) +c (X t) me(9) (23
(6t 9) = ul(xt8) =mp) +cr(x Hme. () (24)
Ua(X L) = Uo(X%t9) = mo(9) (25

Remark that we introduced the functions mr and myo which will be needed to get an L2-control of dyd. It
will be one of the last steps of the considerations below to get rid of these two terms.

Problem 4.1. Keg the asumptions on jws0,(C, ¥, cr), Co, z%, Cro and Ug as in Problem 3.1 bu with
(Go, o) now satisfying equations (22)-(25)

Find (c,9,cr) € Y,ue L?(0, T; L2(Q UTas U 0Q)) N L=((0, T) x Q), dyu € H*(Q) such that equations
(22)- (25) are satisfied and

T T T T
0 = / / o + / / S0k — / Vo + / / 0, (€ 9, C)
0o Jo, 0 JoQ, 0 JQ 0 JoQ,
3
0 = cr— /0 jwras(C, 9, Cr)
T T
0 - // atu(ﬁ)¢+/ / V(" me(®) + wm(®)) ¢
0 QUIMRsUOQ 0 Q)
T T
. / / Vove - / / ot (6, 8, &) (Me(8) — Mo, ()
0 Q 0 Tas

T T
+ /0 /ﬁ (00) = Juan(e. D) me(7) ¢ - /0 /r e (09
with ¢(0) = &, #(0) = Fo, cr(0) = Go and YO) = G,
8



The hope is, that the sequence of solutions to this problem will converge to a solution o the original
problem if n is replaced by a Dirac-sequence and the alditional terms tend to zero in a reasonable sense.
Remark that due to the reformulation with the additional boundry terms, one of the aiticd questions will
be whether j* — jwr(c, ¥, cr) in areasonable space ca be shown.

The strategy to oltain a solution d the goproximated system looks as follows: in sedion 7, the system
abowve will be decompased into three gopropriate equations. In ead of the eguations, two variables will be
considered as parameters and the last oneisthe freevariable. Then, the equations will be extended by some
terms depending onthe solutions and the parameters. These terms will cancd out in case the parameters
and the solutions coincide. The system is then solved using Schauder’s seoond Fixed Point Theorem. The
threetypes of equations which are analyzed in the foll owing two sedions have to be understood as genera
form of the equations arising from the decmposition in sedion 7.

5. TheTransport and the Condensation Equation

Itiseasy to seethat

ler@®l < exp(Jodit)er(0)  and (26)
d(cri—cr2) < Jo(cri—cr2)+I(jo(cr,P1) — jo(Cz, ¥2))l Cr 2
or after multi plying with Acr := (Cr1 — Cr2):
1d
2dt

which yields by Gronwall’s lemma dter integrating in spacellcr 1 — Cr 2ll < o.T:12(r,)) — 0 &S II(Jo(C1,P1) -
Jo(C2, P2)ll2o:L2(rag) — O- Therefore by the explicit form of dicr: llcr 1 — Cr2llhyo T2y — O- Note
that cr(T) > 0 whenever c-(0) > 0.

IAcr? < C(Jo, 31, T, cr(0)) (1A + jo(C1, 91) — jo(Ca, 92)P)

Proposition 5.1. For evey (c, ) € L(0, T;: HL(Q2))? with it < ¢ < T anddyir < 9 < 9 a.s. onas
thereisa urique solution cr € H(0, T; L?(I'as)) tO

otCr = Jw,o0,(C, 9, Cr)

with [lcrllyyo T2,y < C with C independent on (c, ). cr depends Lipschitz continuowsly on ¢, & €
LZ(O, T, LZ(Fas))-

For the Transport equation, the foll owing theorem can be obtained
Theorem 5.2. For o € HY(Q2) with ¢ > G > it almost surely and j : [0, T] x Q x R such that |
is uniformly Lipschitz continuous in the last variable with j(t, x,c) > 0 for ¢ > ¢ and j(t, x,c) < O for

¢ < M thereisa urique solution c € H((0, T) x Q) N HY(0, T; L2(892) with c(t, X) > 0 almost surely in
spaceandtime to the problem

T T T T
/ / OtCo + / / 00:Cp — / jwVe + / / j(©p =0 27
0o Ja, o Joo, 0o Ja, o Joa,

V¢ € HY((0, T) x Q) with ¢(0, -) = & and anestimate

lIcllL2o.1:H1(Q)) + 19tCllL2(0.1:H-(0n)) < C(T, Q2, Co)
9



where the constant C does nat depend ond or ¢r and

ll0tClli2(0,7:12(00)) + 1AClL20T:12(025)) < C(T, 22, Co, 6)
Furthermore, €t > ¢ > ¢yt almost surely.

Proof.
Take an complete orthonamal system (Vi)nen Of HY(Q2) and define Hin(Q) := span(va, . .., Vm) for
every m e N. We show that there is ¢y, € Hn(Q2) such that

T T T T
| [ aces [ [ v~ [ [ juves [ [ ie=o0
0 Qo 0 Qo 0 Qo 0 0Q

for every ¢ € Hn(Q2). Tothisaim, set
m
Cmi= Y &tV
i=1
Inserting this ansatz yields a system of equations

A& (t) = F(¢)
With&(0) = [o,ua0, CoVi, Lipschitz continuous function F and
A=(aj) = (B(vi,vj) ::/ Vi Vj +6/ Vi Vj
Qy 0Q

Since B is astrongdy positive bi linea form on H(Q,), A € R™" isinvertible and there exists a unique &
satisfying the ODE abowe.
By standard arguments, testing with ¢, yields:

d .
—(/ cﬁms/ c%)+ |ch|zs/ |J|-|cm|+/ W [l [V Crl
dt \Ja, 00, @ 00 Q

and byasimple cdculation

sup llem(®)llLz2,ua0,) + IVCmlliz@T:12(00)) < C
te[0.T]

Testing with d;c yields

d .
@cm)> +6 | (dcm)® + I / IVCml? < / 1l - 10¢Cml + / W |8¢Crnl [V Cr
Q, 80, t 00, Q

whichisagain easy to hande and yields

ll6tCmllL20.T;L2(00050,) + Slf‘gg] IVem(Dll2(,) < C
te[O,

Passage to the limit yields a solution to the problem satisfying the daimed regularities on [|cll 2 1:H1(,)) +
||atC|||_2(O7T;H*(QZ)) and On||atC|||_2(O’T;LZ(QzanZ)) + ”AC”LZ(O,T;LZ(Qz))' Remark that the last estimate stems from

10



the fad that 6;,c — Ac + vWc = 0 as.. For two solutions ¢, ¢, with identicd initial values, it can be chedked
quickly that

d 2 2 2
Gl @cres | @-cr)+ [ me-c

< / JodiCo(C1 — €)% + / Wi |c1 = Cof [V(c1 — )
Qo Q)

which yields uniquenessof ¢ by applicaion o Gronwall’sinequality.

To chedk the independence of the estimates’ constants form the parameters ¢ and ¢, just remember that
acording to the definitions in 5we cdculate |jo(C1, ¥) — jo(C2, F)| < Jolcs — Co(F) — C2 + Co(P)] to seethat
the Lipschitz constant of jw.sq, iSindependent onthe dhaice of ¢ and by equation (26) aso cr. O

6. The Energy eguation

Problem 6.1. For given Uy € L%(Q U T'as U 4Q) andw € HY(Q) with uy(X) € u(x, 0, %) where u is defined
as below and 9%t > 9 > Jyir almost surely, find ue L2(0, T; L(Q U T'as U 4Q)), diu € L?(0, T; H*(Q))
9 € HY(O, T; L%(Q, £ + ur)) N L%(0, T; HY(Q)) such that:

/OT/Qatu(ﬁ)fp+/0T/QVI9V¢+/OT/QZV(j*mc(0)+sz(,9))¢+_”

T T
o /O /r e () + /O /r IRCTORCRRDTEINCY

where j, is given by equation (21) and (22)-(25) are satisfied. Suppase #(0) = Jg, c* € CZ1([0, T] x Qy),
j* € C2L([0, T] x Q)" such that dc* +div j* = 0. Furthermorew € L®(0, T; Q,)", divw = 0, V‘agz = 0and
cr € HY(0, T; L2(as)) N L=((0, T) x Tas). g = (3, X, t) isassumed to be monatone increasing andLipschitz
in®¥ with aLipschitz constant independent on (x, t), g(&, x, t) > 0for ¥ > 9 and ¢, x, t) < Ofor ¥ < Vit

Finaly, my, mp, me, mg.,myq and mr are maximal monaone grapls with 0 € m(0), mi(s) = bi(s) +
aiHi(9), bi € CY(R), aj € R*, c0 > b* > bi(s) Vi, bi(s) > b, >0fori=12T, a2 =ac.=0and

0 S< hi
Hi(s) :==4[0,1] s=h
1 S> hi

with hy being arbitrary positive mnstants.
Theorem 6.1. Assume that my, mp, me, Mg, My and mr above are in CH(R), strondy monaone with
bounded derivatives, i.e.
0 < b, < mj,mp, mf, mg, mg,, My, < b' < oo
,andc* > Oaswell ascr > 0. Then Problem 6.1 has a urique solution which satisfies the estimate:

3lL07:H1(Q) + IHIHi0T:L2(0urua)) < C

with C = C(T, b, b*, lIcrllyyo 1 o(ra)» 1 + WilLe(o.1)x0,), #(0)) only depending onthese constants and
it <9 < 9 almost surely.
11



Proof.
1. Sep: Galerkin Approximation

Take an orthonamal Basis (Vi )iy of H(Q) and define Hy(Q) := span(va, . . ., Vi) for every me N. The
first step isto show that there is asolution 9y, € C1([0, T]; Hm(€2)) to the system

0= /0 ' /Q AUV d(L + H) - /0 ! /Q Ju(@m) VY

& (29
+ / / (0tu(Im) + 9(Om) — dtcr M. (Im))vi fori=1,....m
0 Jrauon

with 9m(0) = X, (Yo, Vi) Vi. To this aim use the ansatz:
m
I =) &MV
i=1

and et a system of equetions:

Z( /Q (% o (Fm) + € MU(Pm)E (OViV; + /r (S, (9m) + ME@e)E OV} | = FED i = 1....m
=1

which can be written in the form:
A D) E () = FE1) (30)

with the correspondng initial condtions. Here, A is alinea mapping R™ — R™ and F is Lipschitz-
cortinuows in &. There is alocdly unique Solution on (0, tg) with to < T, if the matrix inverse A(¢,t)™1
exists andis Lipschitz continuowsin & since

AL ) IR EL Y - A2, ) TF(E D) = (AL D™ - A, ) ) (6 D) + A, ) (F(&) - F(&) (3D

It halds |F(£)| < Cl¢| by definition and the relation |£]2 < C(T) will follow from equation (37). We therefore
asume for themomentto = T.
Now, A1 exists, since Hy, is isomorphic to R™ and

B(4.v) = /Q (M () + C ML (I U + /r (ST, (9m) + M-Im0

isa continuous bi linea form with B*|4[I7, > B(¢, ¢) > B.lI¢lZ, with B* and B, being constants indepen-
dent on mand ¢y,,. By the Lax-Mil gram-Lemma, the Matrix representing B isinvertible and from above we
seethat thismatrix is A. A depends Lipschitz-continuots on¢ and A — A1 islocdly Lipschitz-continuots
with a Lipschitz constant depending on||A||.

2. Sep: A Priory Estimates and Limit
Define

]

a(x t, 9 :=/ u(x, t, syds (32
0
12



for arbitrary 9, the following simple equation hdds:
T T T
L e = [ (woowo-aoon))s [ [ ao 33
0 QUI 3sU0Q Q 0 QU 3sU0Q
Since u takes the abstrad form u() = m() one gets with M(9) := f(’f m(s)ds:

9
%b*ﬁz > u@@)9 — a(?) = m#)I — M(9) = / m'(s)sds > %b*ﬁz
0
furthermore, one gets for the last term in equation (33):

/OT /Quagurasat(ﬂ) _ /0 T ( /Q A Mc(9) + /r asatchCr(ﬂ)) (34)

In order to get apriory estimates, take 9y, as avalid test function:
T T T
0= [ [ owomtns [ [ 9ui= [ (et + wine(am) 7o
0 Q 0 Q 0 Qo
T
+ / / (OtU(Im)Fm — 0tCr Me (Fm)Fm + 9(Fm)Im)
0 T'asUoQ
We nedl to estimate the third term on the right hand side:
T T T
| [ v mon s wm@aon=- [ [ Gmom swm@a)¥ons [ [ ivamsnom
0 Qy 0 Qy 0 0Q2
T T
= [ ] GIMn) s ¢ [ [ vemtondin
O Qz O 692

-/ ' / 172 (M) = (o)) + / ' /| v M) (@9

We see from equations (35) and (34) that the sum of terms including d;c* and dv j* vanish and get by
c >0

1 T T
20 e [ o< [ [ aerme@nin - Ma@m)+C [ a0
QUAQUT a5 0 JQ 0 JTlas

QU 35UOQ
]
N /0 /692| i"l (Mc(@m) + M@ ) (36)

Since Mg, (9) < 3b*92, M(d) < 2b*92, Grorwall’s lemma gpplied to this inequality yields:

/ 92(T) + / ! / IVIml2 < C(b,, b*,9(0),cr) (1 + CT exp(CT)) (37)
QUI3sUIQ 0 Q

and this yields together with equation (31) by |£]2 < C(1 + T exp(CT)) the global existence and uriqueness
in (0, T). In asemndstep, we choose 9y, as atest function and make use of

o (9m) = rrf;L(ﬁm)atﬁm

O (¥m) = MH(Im)dtIm + 0:C" Me(Im) + € ML(Im)drIm
atUraS(ﬁm) = m’r(ﬂm)atﬁm + atCr Me (ﬁm) + C]"f'r(:r (ﬁm)atﬁm
OtUpo(Im) =

m:ag (ﬁm)atﬂm
13



The conwedive term turns into:

o [ div (M) + WMa(0m)Bem = / AV §*Me(nm) dm + / (ML) + W (90) VIO
Qp Q) Q

So ore ohtains:;
/ (M) + C () Pem)? + / M, () Ocm)? + / MY (9m) O
Qy Q Fas
d
./ oot ()01t + [ Mm@ + g [ 007 38

<" + Wl b IVImllL2(0) 10t mllL2(,) + Clldllo 101l L2(50,)
+ ClJ I @) IMe(@m)llL2aoy 10t mll L2902
where mg(9)9 and mq. ()9 were estimated by b9, m,, M, N, My > by, ¢ > 0 and mg, m; > 0. Gron-

wall’slemmayields:

]
/ / @)+ sup [ (VOm)? < CO(O).T. i, W, cr. by, b) (39)
0 QUIOQUT 55 O<t<T JQ

Choasing any test function ¢ € HY(Q) finally yields:
U@ mILzor 47y < CUIGT +Wlleo) (IV0mllLz(0y + CllFmll2gauray) (40)
For ¢m, and u we get the foll owing convergences for a sub sequence

9m — ¢  in L0, T;HY(Q))
O9m — ¢ in L3O, T;L2(Q U Tas U 0Q))
u@m) — W in L*0,T;(H")

Which yields by Lions Theorem
Im— ¢ in L20,T;L3(Q U U Q) 8 = o
Since u depends by some Lipschitz-continuows terms on 9,
u(@m) — u(d) in

strondy in L2(0, T; L2(Q U T'as U 0Q)) and

[ e &= ] awioms =~ [] womos ™ - [[ usro

for suitable test functions with zero bounary valuesin time. Sinceu(s) € H(0, T; L2(Q U I'ss U 6Q)), we
have u; = dyu(9)
Using all the ebove mnvergences , equation (28) hdds for (u, ).
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3. Sep: Essntial Boundedness
The basic ideato show the essntial boundedness of 9, is testing the equation with (9 — 9¥)*, where
x* = yr+(X) X. Inthis context, it can first be observed, that
g(x, t, 9@ — 9)* >0
0Q)

by definition o g. Therefore, the term will be negleded in the cdculations below.
Following Rodriguez[9, 10] define M := 9t and cdculate

Jo(mi(s) = M)*dr if r > m(M)

Puir) = {o ifr < m(M)

Remark, that Bu.i(m(9(0))) = O for dl i. Choose (¢ — M)* asavalid test function and cdculate:
T T
| [ owoo - = [ [ @puatmo) + acmoo - My + capucmo))
0 Qz 0 QZ

;
_ / / A" (Me(@)(® — MY — Buc(me())) + / (¢ (T) Buc(9(T)) + Bu2(me(3(T)
0 Qp Q)

/OT /Q 1atU1(1‘})(ﬁ—M)+= /OT /Ql 8B (M ()

/ T | @) - e oo -y = | ' | cxtpue oo+ | ' | )

T T
_ / Crfe (M )] - / (@uctBrne (Mo (9)) — BB (M-(9))
Cas 0 0 Tas

/OT /69 OtUs (P — M)t = /OT /ag Bm.aa(Mea(9))

T T
/ div (j*m(@))(® — M)* = / / (v M) — M) + " VB o(me(®)))
0 Qz 0 Q2
T T
- / (v J*me@)(® — M)" — div |* Buc(me(®))) + / / *Bunc(me()
0 Q) 0 [asU0Q

From the transformation theorem for Integrals follows

0 < Bmi(m(9))

m(9) 9
- [ v -Myds [ mrime) - (9 ds

C{fs- Mytmi(9ds if 9> M
o if <M

and from the bouncedness of the derivatives of the nm follows the existence of C; j for ea cougei, j such
that

Bmi(Mi() < CijBwm,j(m;j ()
15



therefore, the estimate on Bi(mi(¥)) reads as follows:
/ Bu2mad(D)) + / Bua(m@®)) + / Bur(Me(9() + / Buan(Mua (@)
Qp Q1 Tas oQ

t
< C/O (/Qzﬁlvl,z(mz(ﬁ)) + /Ql,BM,l(ml(ﬁ)) + /FaSﬁM,r(mr(ﬁ)) + /HQﬁMﬁQ(mm(ﬁ)))

for every t € [0, T] and therefore the expresson onthe left hand side is zero for all t. Thisimplies 9 < M.
In the same way it can be shown that & > Uit

4. Sep: Uniqueness
Asaume the test function ¢ having A¢ € H*(Q) and dy¢ € H*(Q) and ¢(T) = 0. Take two solutions
(u1, 91) and (uy, ¥2) with (u1(0), 91(0)) = (u2(0), ¥2(0)) of the problem:

T T
/O /Q (01 - 02)(~ade - Ad — V) + /0 /r 1= 02000 + V6] + )
- /Q (U(0) - U(0)(0) = O

with o = % onQ andTI" U dQ respedively,

B = xa, - (I"(Me(P1) — Me(P2)) + W(mp(91) — mp(92)))/ (91 — 92)
§ = Brafye, + (981) = 9(82)) — or(Me: (91) — Mg (92))) /(91 — B2)
and [V¢] = (V¢la, — Vola,) v2 is aterm which enters due to jumps of V¢ at the interfacel’ss. Note, that

la| > b..
We insert a solution to the problem:

£02¢ — adip — Ap— BV = (91—-102) inQ (41)
8020 — adp +6¢ = —[Vo]+ (91 —102) ONnTasUdq (42)

#T) = 0O (43)

(M) = 0 (44)

with the apriory estimate (45) from Lemma 6.2 to oktain for u;(0) = ux(0):

T T
/ / (91— 92)* < / / (91 — 92)ed?¢
0 QUIQUT 55 0 QUIQUT 55

;
;
/ (B - 92)e0id)|, / / 001 — 92)0g
QUIQUT 55 0 QUIQUT 55

wherethefirst term ontheright hand side of the last inequality vanishes dueto the fad that ¢#1(0) = J»(0)and
Aw(T) = 0. By the boundedness of dy(91 — ¥2)and dyg in L%(0, T; L?(Q U 0Q U T'5)) we get

T
/ / (91— 192)2 <0
0 QUIOQUT 55
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Lemma6.2. Let @ € LY(Q U T, U dQ), B € L2(Q), § € L*(as U dQ) with @ > «, > O.For evay
f € L2(QUAQUT s, L+ H) there exstsasolution ¢ € HY(0, T; L2(Q U 0Q UT5s)) N L%(0, T; HY(Q)) with
A¢,02¢ € L(0, T; H*(Q)) to the problem

£02¢ — adip —Ap— BV = f inQ
g0 —adp +6¢ = —[Ve]+f 0nTasUoQ
o(T) = 0
op(T) = 0
where [V¢] := (Vola, — Véla,) v2, that satisfies the following a priory estimates:
2 2 2 2
/| o O [ o [ eIl (45)

where the constant C depends only on Q, a, 3, 6.

Note that an important condtionin thislemmais the strict positivity of a.
Proof. Perform the transformation t ~ —t. Using the Galerkin approximation with spaces Hy(Q) asin
the previous proof, we get the existence of asolution ¢, € H2(0, T; Hn(Q)) to the problem

T T
Lo tu= [ (ctoms+ admy + VoV - 5V6m0)
0 QUIQUT a5 0 Q
T
+ / / (802¢m + adidm+ pm)y Vi € HY(O, T; Hin(Q))
0 TasuoQ

Choasing di¢nm as atest function, the foll owing estimates can be obtained:

d
SUL et [of [ @] [ aton?
QUIMRsUOQ Q TasUoQ QUIQUI a5

< (||f|||_2(9) + ||ﬁ||L°°(Q)||V¢m||L2(Q)) 10t PmllL2()
+ (I8l (rasua0) + DlldmllLz(rauon 10tdmllL2r.uo0)

since « is boundd from below 0 < ag < «, it can be seen by absorbing the terms including d¢m on the
right hand side, that:

d
4 ( [ st + [ o [ (¢m)2) ff o ey
dt \/auaauras Q TasU8Q QUAQUT 46

<C (nfnﬁz@) + IVt o gy + dmllLzqrasun) + / s(atasm)z)
Q

UOQUI 5g

and therefore

.
/ / (@dm)” + & / (Odm)” + / (Vém) + / (9m)> < C(IIfIIZ2qq)
0 JQUIQUI as QUAQUI a5 Q [asUoQ

The H*-estimates on d2¢m and A¢gn, are trivia. An estimate on llémllL2ur,uan) Can be obtained by
dm(X T) = ¢m(X, 0) + fOT Owp(x, s)ds and Jensen’s inequality.
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Lemma6.3. Let Acc (0, T) x Qq, HL(Q) := HY(Q) n L¥(Q) with || - [l == 11+ Iy + I - llL=, H‘}O’O(Q) =
H3(Q) NL=(Q) andHZ:, H be the correspondng dud spaces. The solution « from Theorem 6.1 satisfies
the estimates:

IVOlL20.1;120)) + 10tUllL2 0,11z () + ||3tﬂ||L2(o,T;H3:O(QZ)) < C
Ca

IA

10t 2(0.1:L2(m)
where C only depends on b, b*, #(0), cr, T, [|j*ll2(0 T :L2(0))> 7", kit and C addtionally depends on A.

Proof.
Using the result above and testing the problem with ¢ € L%(0, T; HL (Q)) yields

T
/ / g
0 QUI 3sUIQ

< (IIVﬁ|||_2(o,T;L2(Q)) + Cllj*llLZ(o,T;LZ(Q))) IVell20.T;L20)

+[)T /6%,-*%(,9)(,5

sinced, ¢ € L%(0, T; HL (Q)) and my is differentiable foll ows me(9)¢ € L2(0, T; HL (Q)) and

T
/ / g
0 QUI 3sU0Q

Testing again with ¢ and wsing the fad that mc(9)9 € H.,(Q) equations (33) to (37) yield the estimate

< C(IMll20 2@y 12Tz 9™ Buit) I8l 20 73142 ()

T .
/0 / IVo? < C (b*, b*, 9(0), cr, T, 1] llL20,7:L2(0,))» gk, ﬁkrit)
Q

To get the estimates on 4y, choose a1y ¢ € H3(Q2) N HL,(Q) and test the equation with y 1= ¢(c* () +
m’z(ﬂ))‘l with ||lﬁ”L2(O,T;H1(Q)) <C ||¢||L2(0,T;H1(Q))”ﬁ”LZ(O,T;Hl(Q)) to cdculate:

T T T
/ / L) / / ouy / / 8t0*mc(ﬂ)w'
o Jo, 0 J 0 J

ClIoC 20,11 @2))) 19112 (0,)
For any set A cc (0, T) x Q; take some ¢ € C5°((0, 1) x Q1) with¢ = 1 onAand ¢ > Oto cdculate:

o [ @y < [ ' / LOCUEE / ' /| G

CallVallLz07:L2(01))

+

IA

IN

IA

IN

The next theorem gives unique existence for the general classof coefficients.
Theorem 6.4. Problem 6.1 has a urique solution which satisfies the estimate:

L~ 0,1:H1() + IPllHr 0T L2Qurasuaq)) < C

with C = C(T, b., b*, lICrllnio;Lo(ra)- 1™ + WilL=((0.T)x0,), #(0)) only depending onthese constarts and

Frit < 9 < 9T almost surely.
18



Proof.

The maximal monaone graphs m; (i = 1,2, T, ¢, cr, 0Q2) can be goproximated by monaone functions
my satisfying the condtions of Theorem 6.1 such that the correspondng functions u®(:#) converge uniformly
in. Remark that we can choose the mf such that O < b, < mf’ < mp’ < Mg’ < Mg’ <M ’ < ng,’
independent on the goproximation and taking alook at equation (36) it is evident that the constants in (37)
can be chasen independent on . The same halds for the inequdliti es (38) and (39) and the boundedness
of [|6:U®(9°)llL2(0,7;H+(qy) IN €quation (40).

Ase — 0 thefollowing convergences hald for a sub sequence of the solutions (u®, 94):

9 — 9  in L%0,T;HYQ)
09° — % in L3O, T;L%(QUTasUdQ)) (46)
HU®?) = w in LXO,T;(H"(Q)
Which yields by Lions Theorem
9% - 9in L?(0, T; L2(Q) N L%(Tas)) 0 = (47
Sofar, one can argue the sameway asfor Theorem 6.1. Theweak convergence u?(9¢) — u(d) in L2(QUAQU

I'as) can be shown by the boundedness|u?(9%)| < ¢(1 + [9%]) which shows u?(9%) — u* in L?(Q U 0Q U T as).
The relation u* € u(d?) follows from the fad, that for any ¢ € H1(Q) with ¢ := u(¢) hdds:

' -1
/0 /Quaguras CHCORYY (ﬁ - () (f)) >0

and bythe mnvergences (46), (47) and the uniform convergence of (U¢)~1(-) ontheinterval (Sit, 9 ™), the

limit i nequality reals:
T
[ w-of-ui)=o
0 QUOIQUT 35

likein [15] Chapter 4 Propasition 4.1 substituting = u* + A¢ for somed e Rand ¢ € L*(Q U dQ U Tyg)
yields:

.
/ / EW-ul(U)=0  VEeLY(QUAQUT )
0 QUOIQUT 55

JJuo &= [ awtoro =- [ o0 = - [ uoo

for suitable test functions and therefore u; = d;u(?9).
The uniquenessfoll ows again by considering the eguation:

and we have:

T T
/o /Q (91 = 92)(~amOrp — Ap — BV @) + /o /r aSUaQ(191 - ¥2)(—amoip + [V¢] + 6¢)

T
= / / (U1 = W) — am(P1 — ¥2)) Org
0 JQUIQUI a5
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where am € L®(Q U 0Q U Tas) With am| < mand am(d — 92) — (Up — Up) in L%(0, T; L2(Q U 9Q U Tay)).
¢ isasolution to

c0%p — amdhd — A — VG = (91— 1) inQ
8020 — ambhp + 66 = —[Ve] + (91— 92) ONasU OQ
o(T) = O
(M) = 0

Since |0l L2(0,T:L2(ur,suae) < C with C independent onm, it foll ows that

T T T
/ / (01— 92)? < / / (U1 — W) — am(@1 - 92)) Bk + & / / 3001 - 9)
0 QUIQUT 55 0 QUIQUT 55 0 QUIM 35U

which implies by the convergence of the first term in m and the convergence of the secondterm in e

T
/ / (91— 192)*>=0
0 QUIQUT 55

The result u; = u, follows from the uniqueness of the evolution operator. The boundedness can be
shown the same way as for Theorem 6.1. Alternatively,  inherits the boundednessfrom the 9¢ by Lemma
2.8.

7. Solving the approximated system

The existence of asolutionto the original couded system can be shown by an application o Schauder's
fixed pant theoremin Y:

Y o= VixVox Vs (48)
Vi o= HY(O.T) x Q2) N L2(0, T; WH3(Qy)) (49
Vo = L0, T;HY(Q)) N HY0, T; LA(Q U Tas U 6Q)) (50
V3 = Hl(O, T; Lz(ras)) (1)

Theorem 7.1. There exstsat least onesolution (c, 9, cr) € Y and acorrespondng function ue L2(0, T; L2(QuU
s U 0Q)) to the couped problem 4.1

Proof.
Define the set

Krit krit
Ckrit < € < ™ Fyit <9 <M, g < Cq., llclv, < Coq, |I¥lv, < Cy,
K- = {(c,ﬂ, o) €Y it Kkrit llcrliv, s lIClv, o 1Py, 9

c(0,-) = €, ¥(0,-) = o, cr(0,-) = Cro. IBcCrlle < Jod1. Cr = 0as.

Where C, C¢, Cy are the constants from Propasition 51, Theorem 5.2 and Theorem 6.4. Then, K c Y is
anorempty, closed, bounded and convex subset.
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Consider the following map from K onto itself: For agiven triple (cq, 91, cr.1) € K cdculate the unique
solutionto
OCr = jwaa,(C1, P, Cr), cr(0) = Cro

acording to Propasition 51. Define

ja(cr)

ja(c, ﬁ7 CF) = jW,F(C9 ﬂv Cl") Clil = jO(C’ ﬁ) T

Due to the assumptions on j1, ja isabounded locdly Lipschitz continuous function onR3.
Calculate ¢ as the unique solution to the problem

T T T T T
/ / e+ / / . / Vo + / / (. 06 + / / ja(C, 91, 6r)Cr 16 = O
0 Qr 0 0Q2 0 Qr 0 0Q2N0Q 0 Ias

(52
for al ¢ € HY((0, T) x Q) with ¢(0) = G by Theorem 5.2.
Findly, find ¢ as the solution to the problem

/OT/Qatu(ﬁ)¢+/oT/QVﬁV¢+/OT/QZV(j*mC(ﬂ)+Vm2(19))¢

T T
+ / / (GU() + Tt ) — / / AuCr 2, (9)6 = O
0 [asU0Q 0 Ias

where ¢* and j* are cdculated from ¢; and

jo(% t, Me(F) + g(x, t, F) onoQ N dQp
g(xt,9) :=qg(xt, %) onadQ\oQ, (53
—Ja(c1, @, cr)era(x )(me(d) — me.(F)) onTlas

Remember, that me() > mg. () for dl 9. If it isassumed in (53) that m(#) = const and mg.(¢#) = const
onR\[Sit, 9], §is Lipschitz continuots ac@rding to Lemma2.10 and by Theorem 6.4 there isaunique
solution to the problem above that satisfies 9Kt > ¢ > @r. Then, due to the upper and lower esential
bound ond, the assumption onm, and m, can be made w.l.0.g..

It only remains to show that the mapping (c1, 91, cr1) — (C, 9, cr) iswedkly sequentially continuots on
K. Schauder’'s ssoond Fixed Point Theorem 2.11 will then yield the existence of a solution to problem 4.1
by the simple remark that dicr = jwr(c, 9, cr) = ja(c, 3, cr)cr.

To provethe weekly sequentially cortinuity of (c1, #1, cr.1) = (C. 9, cr) take any sequence(cy, 9, ¢f ;) €
Y such that (], 87, ¢}l ,) = (€1, 91, cr1) wealy in Y. Evidently, ¢} — ¢; in L*(0, T; HY(Q)) and 9] —
strongy in L%(0, T; HS(Qy)) for s € (0,1). Therefore ¢} — ¢y strondy in L%(0, T; L2(6Qy)) and 9] — o1
strongdy in L2(0, T; L2(Ias U Q).

First observe that Propasition 51 states the strong convergence of ¢l — cr in Va.

The Lipschitz-continity of ja yields ja(c], 97, cl) — ja(c, 91, cr) strondy in L0, T; L?(Tag)). It
follows

T T
/0 / ja(c 95, )G 6 /O / (. 91, a0 Yo € CHOTIX ) N HY(O,T) x Q)
raS raS

andthe limit c is the unique solution to (52).
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For a sub sequence of the asciated solutions hads #" — ¢ wedkly in V,. Therefore, strong conver-
genceof ja(c], 9", ) — ja(C1, 9. cr), me(¥") — me(#) and dieto bounadnessalso of ja(c], 9", cf)me(9") —
ja(c1, 9, cr)me(d) in L%(0, T; L2(Tas)) areobtained. By theweek convergenceof ¢t ; — ¢r1inL*(0, T; L?(Tas))
follows

T T .
/0 /r ja(c 9", G, M9 — /O /r ja(c1, 9. cr)or M) Vo € C @)
T T _
| [ isconadim@e - [ ] jdentaeam@p voec@

and sincethe right hand side can be considered as alinea functional on ¢ € H(Q), the Banadh-Steinhaus
Theorem yields convergence of the latter limit for all such ¢. Sincec] — c; strondy in L%(0,T; HY(Q))
and the extension operator is continuows as well as the folding operator, we get j*" — j* strondy in
L2(0, T; HY(Qy)). The week convergence of Ly —Crain HY(0, T; L?(Tyy)) finally yields

T T _
/0 /r A, e, (97 — /0 /r BiCra e ()6 Vo € C @)

Sinceu” € L%(0, T; L%(Q U T'as U 6Q)) is bounded by (c7, 9", ¢ ;), u" — u* weekly in L*(0, T; L(Q U
[as U 0Q)). It's easy to seethat mpy(9") — mp(d) and me(9") — me(d) in L2((0, T) x Q) as well as
me(@") — mr(d) in L2((0, T) x [as) and mya(9") — mya(d) in L2((0, T) x Q). By Lemma 2.9, my (") >
ul = uy € my(9) weakly in L%(0, T; L2(Qq)).

To seethat Ul — ur € mp(9) + crme (¥) in L2((0, T) x I'as), remember that for every function ¢ e
L®(0, T; L®([4s)) hdds

]
/O /r (U — & — mp(MEAE)) (0" — M) > 0 (54
and therefore dso
]
/0 /r (Ur — cré — Me(MEY(E)) (@ — MEX(E) = 0

by the strong convergence of 4" and the week convergence of uf! and c;.. It foll ows from monaonicity, that
ur € mp(9) + crme. (9).
Thelast convergences show that

T T
lim / / u'g = / / up Vo eC¥[0,T] xQ)
= Jo  Jaurs,sus 0 JQUIaUAQ

with u* = u € u(®¥) and bythe boundednessof u for al ¢ € L%(0, T; H(Q)). Itiseasy to seethat d,u™ — d;u
in L2(0, T; H*(Q)) and therefore the limit function ¢ isidentica with the unique solution to the hea transfer
problem with parameters (C1, Cr.1). O
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Sincethereation dicr = jwr(c, 3, cr) = ja(c, 3, cr)cr hads, the problem takes the foll owing form:

T T T T
o = [ [ocss [ [ socs- [ [ wer [ [ juaes.cio
0o Jo, o Joo, 0 JQ 0 JoQ
-
0 = CF_/ jw,Fas(C, ﬁ’ C]")
0 =

/ /Qurasumatu(ﬁ)m/ /VﬂV¢+/ /QZV(j me() + wm(®)) ¢

- / (6, 9, C) Me(8) + / / (O0) - jwa(C, 9) Me(9) ¢
0 Ias

8. Solvingtheoriginal Prablem

Theorem 8.1. Thereisat least one solution to problem 3.1.

Proof.

To show existence of asolution o the original system, some uniform estimates on (c, ¢, cr) independent
onthe gproximation ¢* = ¢ * i, mr and myg, are needed. The estimates on ¢ and ¢ from Theorem 5.2 and
Propasition 51 only depend ond¥ and dyir so there is only need for some new estimates on ¢. To this
aim write the hea transport equation in the following way:

/OT /Qurasu()Q RS + /OT /Q Vive - /OT o, (j*me() + wmp(9)) Vo

T T
+ / / ot 9o + / / P*me()6 = 0
0 oQ 0 0Qp

g9 — jwaea(c, HM(IF) onadQ N oQ,
withg := {1 g(%) 0N d0\6Q,
=jwr(c, 9, cr)me(¥) onTas
We remember the estimates from Lemma 6.3:

IVlizoriLz@) + 10lzrnz @) + 1020 rnz @) < ©
Ca

IA

10l L20.7;L2(n))
where C and Ca do nd depend on ou approximation bu Ca dependson A cc (0, T) x Q.

First Limit Problem with fixed §, mr andmyq
Asame
c+® (n° xc”) e CT(RxR")
ii = 0= (-KVc® +wc?) e CT(R xR")
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with n® being the standard molli fier such that »* ! 6o in sense of distribution. Let ¢ and j*¢ be the
correspondng sequences acarding to (20). For every e, there is a solution (c®, ¢f, ¥°, u®) and we obtain
from the estimates abowe

9 — ¢  in L0, T;HY(Q)
o — 9 in L30,T;HZ(Q2)
&9° — 9 inL%0,T;L%A) for Acc(0,T)xQq
HUE®®) — uw  in L3O, T; HX (@)
¢ — ¢ in HYO.T;HY(Q) N L%0. T; Wy%(Q))
Which yields by Lions Theorem
¥ - 9in L’(0, T;HY(Q) a0 =%
¢ - cin L0, T;HY(Qy)) ¢ — cinL?0,T;L%(69y))
In the same way as for Propasition 51 follows
¢ — crinVs
¢ — crinl?0,T;L3(Tas))

Therefore dso ju(c?, ¥°, ) = jo(c® — co(9))ci converges weekly in L%(0, T; L3(I'as)) to jw(C, &, Cr).
From these convergences foll ows immediately:

T T T T
/ e +6 / aich + / (Ve-vgVe + / / .06 =0 (55
0 Qy 0 Qo 0 Qy 0 0Qp

3tcl" = jW(C’ 19’ CF) (56)

for the limit functions.
Similar to the goproximated problem, it can be seen that u € u(1¥). Thisis evident for uy, Uy, Ugg and for
ur remember inequality (54):

)
/ / (U — G — me(MEXE) (9 — M) = 0
0 Fas

to oltain ur € crme. (9) + mp(9).

Thestrongconvergencec® — cin L2(0, T; H(Qy)) yields j&, — jw strondy in L?(0, T; L2(Q,))" aswell
as j¢ — jw strongy in L%(0, T; L%(Q))". Sincedic™® — gic weakly in L%(0, T; L3(Qy)), j§ — jw wedly
in E(Qy) and y* — y for some y weakly in L%(0, T; H}(Q2) N H3(Qy)) with Ay = 0, we conclude from
Lemma2.4 that ¢ = 0 and from Lemma2.7 that Vy©v, — 0inL%(0, T; H%(GQZ). Dueto the agumentation

after Lemma 2.7 follows
T T r
/ / g / / (1560, 0, ) + 50
0 692 0 aQZ
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for al ¢° — ¢ weakly in L2(0, T; H1(Qy)) with ¢ — ¢ strondy in L?(0, T; L2(QUT asUQ)). Wetherefore
finally get asalimit equation for (U8, 9%):

T T T
/ / () + / / VOVe — / jwme(9) Ve
0 QUIM3sUQ 0 Q 0 Qo
T T
[ e [ [ snemoe-o
0 0Q 0 0Qp

For all ¢ € L2(0, T; HY(Q) n C*(Q)) and bythe regularity of the termsfor al ¢ € L2(0, T; H1(Q))

SeoondLimit Problem with fixed §
Fixing ¢ and chocsing a sequence of functions (M)nen, (M )nen With mit %00, M, %0
uniformly on [dit, 9] for the crrespondng sequence of functions (9", u") hads:
" — 9 in L%0,T;HY(Q)
" — 9 in L0, T;HZ ,(Q2)
49" — ¥ inL%0,T;L%(A) for Acc(0,T)xQ
ou'@") — w  in L300, T;HX(Q)
A" — ¢ in HYO, T; HY(Qyp)) N L0, T; H3(Qy))

Which yields by Lions Theorem

9" — 9in L2(0, T;HYQ)) ) = &
c" > cin L%0,T;HY(Qy) c" - cinlL?0,T;L2(0y))
for some s e (%, 1) by the locd strong convergence of the sequence. Furthermore
We have ¢ — crinVzandcl — cr inL%(0, T; L?(I'as)) and therefore dso ju(c", 9", c) = jo(c" -
Co(9"))cft converges weekly in L2(0, T; L%(Tas)) to jw(c, 9, cr). From these convergences foll ows immedi-
ately (55) and (56) for the limit functions.

Similar to the gproximated problem, it cen be seen that u € u(#). This is evident for ug, Uy, Ujo
(aqually, uyn, — 0). For ur remember inequality (54):

)
/ / (U - i — me(mEXE)) (9" — M) > O
0 Fas

and wse mpr — 0to oltain ur € crmg ().
We therefore finally get as alimit equation for (U, 9):

T T T
/ / ) + / / VoV - / M)V
0 QU RUIQ 0 Q 0 Q)

T T
+ / o) + / / 53 CMe(B)p = O
0 oQ 0 Qo

For al ¢ € L2(0, T; HY(Q) n C*(Q)) and bythe regularity of the termsfor all ¢ € L2(0, T; H1(Q)).
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TheLimits —» 0
In order to get rid of the 6-terms, chocse asequence s — 0 and test the equation

T T
/ (0tcop + (KVC —W)Vg) + / (60cc+ j(c, ¥, cr))p =0
0 Jo, 0

0Q

with ¢ € Hé‘(Qg) to oltain [|0iCll 20, 1:H-1(q,)) < C with C independent on 6. Furthermore, use the estimates
from Propasition 5.1, Theorem 5.2 and Lemma 6.3 to oltain sequences

#° — 9 in L%0,T;HYQ)
a° — ¥ in L0, T;HE o(Q2)
a9 — 9 inL%0,T;L?A) for Acc(0,T)xQ
W — u  inL%0,T;L3(QUT4))
HU®) — uw  in L20, T;H¥(@Q))
¢ — ¢ in HYO, T; H X)) n L2(0, T; HY(Qy))
¢ — crinVs

which implies
9 > 9in L20,T;H3Q)) 0 =
¢ - cian(O,T;Hs(Qg))forse(%,l)
¢ — crinL%0,T;L?(Tas))

For any ¢ € HY(0, T; L%(8€2,)) with ¢(T) = 0, ashort cdculation yields by the boundednessof ¢

/OT/aQZ(satc% = 5LQZC5(0)¢(0)_5/OT/mzCaat¢

- 0 a&s6—0

and the other convergences are evident from the ébove cdculations. Therefore, there exists at least one
solution to the problem with the daimed regularity. d
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