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Abstract

Mechanical vibrations of rotor-bearing systems are an ubiquitous problem in mechan-

ical engineering and the prediction of response frequencies and amplitudes with the

help of mathematical models is of major importance for the design of more efficient

and reliable machinery. In the present work a model for the dynamics of fast rotating,

elastic beams supported in hydrodynamic bearings is derived and its vibration behav-

ior analyzed. Special focus is put on the influence of the nonlinear bearing reaction

forces on the dynamics. The continuous rotor is modeled using Euler-Bernoulli beam

theory under the inclusion of rotatory inertia and gyroscopic effects. For a general

class of support functions the existence of weak solutions to the equations of motion

is proved.

The pressure distribution in the oil-lubricated simple journal bearings is modeled by

the well known Reynolds’ equation. Its derivation from the Navier-Stokes equations

by an asymptotic expansion in the film thickness is reviewed and new correction

terms for fluid inertia effects are derived. Additional correction terms for the short

bearing approximation to Reynolds’ equation are also derived by making additional

assumptions on the bearings’ width-to-radius ratio. Furthermore, the pressure distri-

bution and the bearing reaction forces are computed numerically in dependence of the

position and the velocity of the rotor inside the bearings.

The finite element method is applied to discretize the beam equation and the bearing

forces are included into the model as point forces in the bearing nodes. While the

classical lubrication theory leads to explicit equations of motion, the inertia corrections

lead to implicit equations of motion for the rotor-bearing system. The model is eval-

uated by comparing numerical simulations with experimental results obtained for a

passenger car turbocharger. For this example it is shown that the model equations de-

scribe the dynamics well, capturing most experimentally observed phenomena, such

as unbalance oscillation and self-excited oil whirl. Some differences between model

and experiment can be seen in the response frequency of the subharmonic oil whirl.

The inertia corrections yield a small improvement compared to the classical models.

A new phenomenological correction of the short bearing approximation based on the

adaptation of the average circumferential lubricant velocity is proposed and shown to

influence the whirl frequency ratio strongly.
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Continuation methods for periodic and quasiperiodic solutions are shown to be more

efficient and are hence more appropriate tools for the examination of the vibration

response behavior than direct numerical simulation. It is shown numerically, that the

static gravity load can be neglected for higher rotational frequencies. Combined with

a transformation to a co-rotating frame of coordinates this leads to a significant sim-

plification, since the resulting ODE becomes autonomous, and the vibration response

can be computed by the continuation of periodic orbits instead of invariant tori. This

is applied successfully to study the parameter range where the inertia correction for

the short bearing is valid.

All in all, the presented model and its variations prove to be useful for future industrial

application in the design of more efficient turbomachinery. Parts of the presented re-

search are already actively used for turbocharger design by the Toyota Central Research

and Development Laboratories.



Zusammenfassung

Mechanische Vibrationen von Rotor-Lager Systemen sind ein weit verbreitetes Pro-

blem und ihre Vorhersage mit Hilfe mathematischer Modelle ist von außerordentli-

cher Bedeutung für das Design effizienterer und zuverlässigerer Maschinen. In der

vorliegenden Arbeit wird ein Modell für die Dynamik rotierender, elastischer Balken

in hydrodynamischen Lagern hergeleitet und sein Vibrationsverhalten untersucht. Be-

sonderes Augenmerk liegt dabei auf dem Einfluss der nichtlinearen Lagerkräfte. Der

kontinuierliche Balken wird mit Hilfe der Balkentheorie von Euler und Bernoulli unter

Berücksichtigung der Rotationsträgheit und der Kreiselkräfte modelliert. Die Existenz

schwacher Lösungen der Bewegungsgleichungen wird für eine allgemeine Klasse von

Lagerfunktionen gezeigt.

Die Druckverteilung in den ölgeschmierten Gleitlagern wird durch die Reynolds-

Gleichung beschrieben. Die Herleitung dieser klassischen Gleichung aus den Navier-

Stokes-Gleichungen durch asymptotische Entwicklung nach der Filmdicke wird er-

neut durchgeführt. Dabei werden neue Korrekturterme für Trägheitseffekte in der

Schmierflüssigkeit durch Berücksichtigung höherer Ordnungen hergeleitet. Unter ei-

ner speziellen Annahme an des Verhältnis von Lagerbreite und -radius werden für

die Näherungslösung zur Reynolds-Gleichung, die ein kurzes Lager annimmt, eben-

falls Korrekturterme berechnet. Weiterhin werden die Druckverteilung und die daraus

resultierenden Lagerkräfte in Abhängigkeit von Rotorposition und Rotorgeschwindig-

keit numerisch berechnet.

Durch Anwendung der Methode der finiten Elemente wird die Rotorgleichung diskre-

tisiert. Dabei werden die Lagerkräfte als Punktkräfte in den Lagerknoten modelliert.

Während die klassischen Lubrikationsmodelle zu expliziten Systemen gewöhnlicher

Differentialgleichungen führen, führt die Berücksichtigung der Korrekturterme zu im-

pliziten Bewegungsgleichungen für das Rotor-Lager-System. Die numerische Evalua-

tion des Modells erfolgt durch Vergleich mit experimentellen Daten, die an einem

handelsüblichen Abgasturbolader gewonnen wurden. Am Beispiel des Turboladers

wird gezeigt, dass die Modellgleichungen die Schwingungen des Rotors gut beschrei-

ben und die wesentlichen Effekte, insbesondere die unwuchterregte Schwingung und

die fluidinduzierte Instabilität (oil whirl), wiedergegeben werden. Die Verwendung

der Trägheitskorrekturen führt zu einer leichten Verbesserung der Qualität der Vor-
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hersage der Frequenz der Instabilität, bei der kleine Unterschiede zwischen Experi-

ment und Simulation deutlich wurden. Desweiteren wird ein phänomenologisches

Modell basierend auf der Adaption der durchschnittlichen Umlaufgeschwindigkeit

der Schmierflüssigkeit eingeführt, durch welches die Frequenz der Instabilität stark

beeinflusst werden kann.

Kontinuationsmethoden für periodische und quasiperiodische Lösungen erweisen

sich als effizienter und daher geeigneter für die Untersuchung des Frequenzverhal-

tens als die direkte numerische Simulation. Durch Anwendung dieser Methoden wird

gezeigt, dass die statische Gewichtslast für große Rotationsfrequenzen vernachlässigt

werden kann. In Verbindung mit einer Transformation in ein mitrotierendes Koordi-

natensystem führt dies zu einer beträchtlichen Vereinfachung des Systems, welches

dadurch autonom wird. Durch diese Vereinfachung kann das Schwingungsverhalten

durch die Berechnung periodischer Orbits statt invarianter Tori ermittelt werden. Dies

wird bei der Untersuchung des Gültigkeitsbereiches der Trägheitskorrektur für das

kurze Lager erfolgreich angewendet.

Zusammenfassend lässt sich sagen, dass sich das beschriebene Modell und seine Va-

rianten als geeignet und nützlich für die zukünftige industrielle Anwendung in der

Entwicklung effizienterer Turbomaschinen erweist. Einige Ergebnisse dieser Arbeit

werden bereits bei den Toyota Central Research and Development Laboratories er-

folgreich in der Turboladerentwicklung eingesetzt.



Time is what happens when

nothing else happens.

Richard P. Feynman

Time is an illusion. Lunchtime

doubly so.

Douglas Adams
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Chapter 1

Introduction

The rotordynamic problems analyzed in this work have originated from a joint re-

search project of the University of Heidelberg and the Toyota Central Research &

Development Laboratories. It was the purpose of the project to set up a model for a

passenger car turbocharger, to study its dynamics and parameter dependencies. To

look at things from a more general point of view, this work focuses on the modeling

aspect as well as on the nonlinear dynamics of turbomachinery in general. We will

derive the equations of motion from first principles and subsequently analyze them.

We prove existence for the equations of motion for a quite general set of bearing force

functions. It shows that especially the nonlinear effects of the bearing reaction forces

have a large influence on the dynamics. A large part of the work is therefore con-

tributed to the derivation of laws for the bearing pressure distribution by a thin film

approximation to the Navier-Stokes equation and to the analysis of their dynamical

effects by the numerical solution of the corresponding equations and by numerical

continuation methods. The findings obtained from the numerical bifurcation analysis

of the proposed model provide a better understanding of the influence of the physical

parameters like damping, bearing clearance and width, or weight on the mechanical

vibration of the rotor, and hence on the emitted noise and the material fatigue. Thus

allowing the industrial engineers to improve future rotating machinery.

The purpose of this introduction is twofold. First it is to introduce the reader with

a background in mathematics into the engineering subject of rotordynamics and vice

versa. The second purpose is to give an outline of the structure of this thesis and to

summarize the main results. Therefore, additionally to the very short abstract at the

beginning of this thesis (page i), a more detailed summary of the main results is given

in Section 1.3 on page 9.
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1.1 Rotordynamics

Rotordynamics is the discipline of mechanics that is concerned with the study of the

dynamics of systems containing parts that rotate with a significant angular momentum

(Crandall, 1995). Rotating mechanical systems are ubiquitous and examples range

from the dynamics of planets, satellites and spinning tops to machines such as turbines,

compressors, pumps, helicopters, gyroscopic wheels and computer hard drives. There

has been a keen interest in rotordynamics since the first steam engines and there is

an extensive literature, especially in engineering; for overviews we refer to (Childs,

1993; Gasch et al., 2002; Vance, 1988; Yamamoto & Ishida, 2001; Ehrich, 1999). Rotating

machinery is called turbomachinery, if the rotor is used to handle fluids or gases,

and energy is exchanged between the process fluid and the rotor. Typical examples

of turbomachinery are pumps and compressors, gas and steam turbines, as well as

turbochargers.

1.1.1 The Turbocharger

The turbocharger is a prime example of a nonlinear rotordynamical system. A tur-

bocharger is a supercharging device used in many modern engines – especially diesel

engines – to increase engine power and to reduce fuel consumption. The turbocharger

Figure 1.1: The rotor of a turbocharger consists of the shaft, the compressor (left) and the

turbine wheel (right). The small brass rings are floating rings and mark the position of the

bearings.

for an internal combustion engine consists of a compressor which is powered by a

turbine. The turbine is driven by the exhaust gases of the previous combustions. The

central part in a typical passenger car turbocharger is the rotor which is depicted in Fig-

ure 1.1. It consists of a slender rotor shaft to which the compressor (or impeller) wheel

and the turbine wheel are attached. This rotor is supported by oil lubricated bearings
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Figure 1.2: The rotor is contained in the casing which is attached to the engine block, here

on the upper left of the motor.

and contained in a casing which itself is attached to the engine block (Figure 1.2).

The supercharging of the engine, i.e. higher pressures of the air-fuel mixture inside the

cylinders, leads to a higher efficiency of the combustion and thus to reduced fuel con-

sumption and/or more powerful motors. In recent years there has been a renaissance of

diesel engines in passenger cars and also in motor sports to which the increasing use of

turbochargers has contributed notably. The main working principle of a turbocharger

is that the exhaust gases from the cylinders drive the turbine wheel which transmits

the rotation to the compressor via the shaft. The pressure of the exhaust gases driving

the turbine is regulated by the wastegate. The rotational frequency of the shaft reaches

values as high as 120000 RPM, i.e. 2000 Hz.

Higher rotational velocities are desirable for an even better compression. However, it

is not possible to increase the frequencies ad infinitum, as the turbocharger and other

turbomachinery are subject to major mechanical vibration problems.

1.1.2 Vibration Problems in Rotordynamics

The two most common problems in rotordynamics of turbomachinery are the occur-

rence of large amplitude steady state synchronous vibrations and the occurrence of

subharmonic instabilities (San Andrés, 2006). The former have their source in the

unbalance of the rotor due to inevitable production inaccuracies. If e.g. the center

of gravity is not aligned with the rotation axis, the centrifugal forces will lead to a

periodic forcing of the system. Resonances occur for rotational speeds equal to one of
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the rotor’s eigenfrequencies. These angular velocities are called critical speeds.

These undesirable oscillations cause noise, wear, material fatigue and failure due to

contact, which can have serious consequences since the rotational energy contained

in the system is very high. A common countermeasure to unbalance oscillation is the

balancing of the rotor to reduce the total unbalance or the introduction of damping.

Another possibility is to change the geometry of the rotor-bearing system, such that

the resonance frequencies are tuned out of the operation range of the device under

consideration. This can be done by shape optimization of the rotor and finding optimal

positions of the bearings as has been shown in a related parallel project (Strauß, 2005;

Strauß et al., 2007).

The subharmonic vibrations have their source in the nonlinear reaction forces of the

fluid bearings, seals and fly wheels interacting with the rotor. These vibrations can

also have very high amplitudes and therefore cause noise and wear. Their suppression

can be achieved again by changing the geometry of the system to tune the frequencies

or by introducing damping. The most desirable option is the elimination of the source

of instability. The instability caused by oil lubricated bearings is called oil whirl and

can be partially suppressed by using e.g. elliptical bearings instead of circular bearings

(San Andrés, 2006).

Several experiments were carried out at Toyota Central R&D Laboratories (TCRDL)

for a passenger car turbocharger. The turbocharger was driven by pressurized air and

operated at different rotational speeds from 7839 RPM to 101000 RPM (∼ 130−1700 Hz).

The x- and y-deflection of the shaft was measured by eddy current sensors at both ends

and in the middle of the rotor between the two simple journal bearings.

Usually, floating ring bearings are used for the high-speed turbochargers for diesel

engines. The use of the simpler plain circular journal bearings leads to more unstable

behavior and is not advised in practice. However, in the experiments which were

carried out for this project at TCRDL and in the modeling we will examine plain

circular journal bearings. The observed dynamics are rich, while the modeling stays

simple. The modeling techniques can be easily adapted to more complicated bearing

geometries.

Figure 1.3 shows a power spectrum of the observed vibrations and some orbits of the

impeller side tip of the rotor, measured at different driving speeds. The orbits show the

increasingly complex dynamics of the rotor. In the spectrum in Figure 1.3 we observe

two principal vibration modes: a harmonic part with a resonance peak at about 1000

Hz and a subharmonic part setting in at a threshold forcing frequency of about 400 Hz.

The frequency of this latter vibration is slightly less than half the forcing frequency.

For higher rotational speeds the frequency of the subharmonic increases further, but

the shift of the peaks away from the ω
2 -line gets larger and the curve on which the

peaks are located seems to bend away from the ω
2 -line.
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Figure 1.3: Waterfall diagram of the response spectrum for varying driving frequencies and

orbits of impeller end of rotor measured in the experiments. Mainly two kinds of vibration

occur in the examined frequency range: the subharmonic oil whirl and the synchronous

unbalance oscillation of a bending mode.

Analyzing the two kinds of vibration we observe that the harmonic part is mainly due to

bending vibration with resonance of the first bending mode at approximately 1000 Hz.

In contrast to that the mode shape of the subharmonic vibration is a conical one. The

occurrence of the subharmonic vibration has been observed for a long time (Newkirk

& Taylor, 1925); see (Yamamoto & Ishida, 2001) for an overview. This self-excited

vibration with roughly half the driving frequency is called oil whirl and is caused by

the nonlinearity of the supporting oil film. In a series of papers (Muszynska, 1986;

Muszynska, 1987; Muszynska, 1988) the occurrence and the stability of this unwanted

phenomenon are studied. In the resonance region of the first bending mode of the

shaft the amplitude of the self excited oil whirl drops. This phenomenon is called

entrainment. It is known (Crandall, 1996) that the ratio of the subharmonic to the

driving frequency changes drastically when the angular velocity approaches twice

the critical speed and that the so-called oil whip occurs, a large amplitude response

with a frequency equal to two times the critical speed of the rotor. In the shown

experiment the transition happens slowly. The prediction of the frequency of the

subharmonic response and especially setting up a model that reproduces the shift of

the subharmonic frequency are two targets of this work.

1.2 Mathematical Modeling

Mathematical modeling has always played an important role in the study of rotordy-

namic problems. The prediction of the critical speeds of the more and more compli-

cated rotors was the main interest in the early days of rotordynamics at the end of the
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xg

xc

ek

ω

Figure 1.4: The Laval rotor consists of a disk of mass m and a shaft of stiffness k which

is fixed at both ends. It rotates with angular velocity ω. The shaft pierces the disk in its

center xc. The center of mass xg has constant distance e to the center.

nineteenth and the beginning of the 20th century.

A simple and classical example for the usefulness of mathematical modeling in rotor-

dynamics is Jeffcott’s model for the simple 2-D Laval rotor (Gasch & Pfützner, 1975).

The model has been introduced in 1919 and the rotor depicted in Figure 1.4 is therefore

also called Jeffcott rotor. It consists of an rotating elastic shaft with stiffness k which is

fixed at both ends. A disk of mass m is attached to it in the middle and rotates with the

shaft. The center of mass xg of the disk is supposed to be at distance e from the center

xc of the disk. The balance of the linear elastic force and the inertial force yields

mẍg = −kxc. (1.1)

Due to the rotation of the disk the position of the center of gravity can be expressed by

xg = xc + e




cosωt

sinωt


 . (1.2)

Hence the equation of motion for the shaft center is

mẍc = −kxc +mω2e




cosωt

sinωt


 . (1.3)

In this simple example the centrifugal force of the unbalance leads to a periodic forcing

term whose amplitude grows quadratically with the angular velocity. The general

analytic solution of this differential equation is

x(t) = c1 cosωct + c2 sinωct +
ω2e

ω2
c − ω2




cosωt

sinωt


 , c1, c2 ∈ R2. (1.4)

Spinning the rotor in the example with the angular velocity ωc =

√
k
m leads to an

unbounded solution, i.e. a resonance catastrophe. Thereforeωc is called critical speed.
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In the presence of damping running the system near the critical speed results in a large

amplitude response. Despite being very simple, Jeffcott’s model exhibits already one

of the most important features of rotordynamics, that of unbalance excitation. Using

this model Jeffcott proved, that a rotor can be driven at super-critical speeds, i.e. at

rotational speeds higher than the critical speed which was doubted before.

The use of more complicated rotor geometries led to a multitude of different models

which take into account gyroscopic effects, asymmetries and varying cross sections of

the rotor and interactions with the bearings, both with ordinary and partial differential

equations. For a detailed overview of the history of rotordynamics we refer to the

introduction of (Yamamoto & Ishida, 2001) and to (Nelson, 2003).

In the last decades computer aided engineering (CAE) has become more and more

important in the industrial development process. In the automotive industry CAE

reduces the cost notably, since the number of prototypes produced for testing pur-

poses can be decreased by using mathematical modeling and applying simulation and

optimization algorithms. In rotordynamics CAE is used to predict the vibrations of

the rotor. For this the calculation of the critical speeds as well as of the frequencies

of eventual self-excited oscillations is necessary. Only if these responses are known,

optimization of the vibration level is possible in a second step.

For the investigation of the critical speeds today the finite element method (FEM) is

most popular. This method has been developed parallely and rather independently by

engineers and mathematicians who have different viewpoints on the method. While

mathematicians see it as an approximation method for variational problems in special,

low-dimensional function spaces, engineers often see the finite elements as building

parts of a mesh that approximates the real object under consideration. Classical works

for FEM are (Strang & Fix, 1973) for the mathematical viewpoint, and (Clough, 1960) for

the engineering viewpoint. Finite elements for slender rotating beams are introduced

in (Nelson & McVaugh, 1976) and are now widely used for the computation of the

critical speeds.

Parallely with the increasing computing possibilities, not only the FEM has grown

in importance, but also a deeper investigation of the nonlinear dynamics of rotorma-

chinery has been made possible. There is a multitude of nonlinear effects possible

in rotordynamics, from nonlinear beam theory for strongly bent rotors to the clear-

ance effects in ball bearings, from hysteretic internal damping to the fluid-structure

interaction in the bearings, seals, and fly-wheels (Yamamoto & Ishida, 2001). Though

nonlinear effects like oil whirl and whip have been known for a long time (Newkirk

& Taylor, 1925), the use of modern simulation methods and numerical analysis has

contributed strongly to the theoretical understanding of these effects.

Especially the fluid-structure interaction has drawn major attention, as the develop-

ment of high-speed turbomachinery beginning in the 1960s and 70s revealed several
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rotor instability problems (Childs, 1993). Since the computation of the full 3 dimen-

sional flow of the lubricant and of the pressure distribution in the bearing is a difficult

and computationally expensive task, many simplifications and approximations have

been proposed. Probably the most famous approximation is Reynolds’ equation which

reduces the problem to the solution of a scalar, elliptic equation in a two-dimensional

domain (Ockendon & Ockendon, 1995). Further simplifications are the so-called short

bearing or the long bearing approximation, which allow for an analytic formulation

of the pressure distribution (Sommerfeld, 1964; Yamamoto & Ishida, 2001). There is

a vast literature dedicated solely to the behavior of hydrodynamic journal bearings

bearings, e.g. considering cavitations (Elrod, 1981), turbulent flow (San Andrés et al.,

1995), higher order correction terms for Reynolds’ equation (Crandall & El-Shafei,

1993; El-Shafei, 1995). For an overview and further references we refer the reader to

(Lang & Steinhilper, 1978; Szeri, 1998; Childs, 1993; San Andrés, 2006).

The mathematical models for the bearing pressure distribution allow the computation

of the bearing reaction forces acting on the rotor. These models combined with the

finite element rotor models allow for the prediction of the instabilities, the frequency

response and the amplitudes of the vibrations of the rotor-bearing system. The method

of Lund for the computation of bearing coefficients from the bearing forces,which allow

to predict the onset of instability has to be mentioned in this context (Lund,1987). Other

examples are (Muszynska, 1987; Muszynska, 1988), where a simple bearing model is

used to clarify the onset mechanism of oil whirl and whip, or (Hollis & Taylor, 1986),

where the limit cycles of fluid-induced oscillations are calculated by direct numerical

simulation. Modern finite element methods for the computation of flow and pressure

in the bearings allow an even better prediction of the rotor instabilities and response

frequencies (Holt et al., 2005).

The direct numerical simulation of the model equations is a popular approach for

the investigation of systems response. By solving multiple initial value problems it

allows the validation of the model equations for different parameter sets and also the

classification of solutions. However, the direct numerical simulation can be very time

consuming, not only because transient behavior has to be accounted for, but also due

to long data sets being necessary for the subsequent analysis of the solution with e.g.

Fourier analysis.

Numerical continuation and bifurcation methods are therefore an useful and efficient

alternative. These techniques provide efficient means of computing branches of solu-

tions of algebraic or differential equations by taking prediction steps along the branch

and employing Newton type methods as corrector. Furthermore, they allow the de-

tection and classification of bifurcations, i.e. qualitative changes of the solution. The

continuation of locus curves of bifurcations allows the partition of the parameter space

into domains of qualitatively equal behavior. Furthermore, continuation methods

allow the investigation of unstable solutions, and thus of hysteretic behavior, which



1.3 Main Results and Structure of the Thesis 9

is also not possible by direct numerical simulations, since unstable solutions can not

be reached by simulating the underlying system forward in time. They are therefore

better suited for extensive parameter studies. The theory of numerical continuation

and bifurcation methods is a broad field. We refer to the textbooks (Chow & Hale,

1982; Kuznetsov, 2004; Nayfeh, 2000; Nayfeh & Balachandran, 1995; Wiggins, 1990)

and the references there for more information.

1.3 Main Results and Structure of the Thesis

The interest in an accurate model of the turbocharger to predict the vibration response

stood at the beginning of this work and the joint research project with TCRDL. The

prediction of response amplitude and frequency is of utter importance for the design

process. As the existing models did not describe the dynamics of the rotor sufficiently

exact and especially the frequency response was not captured correctly, it became

necessary to review the modeling process and to introduce some modifications and

extensions to the model. Special attention is given here to the modeling of the bearings

and to the model validation with techniques for the computation of periodic and

quasiperiodic responses.

The thesis is structured into three main parts. The first part consists of the Chapters

2, 3, and 4 where the modeling of rotating beams is reviewed, existence of solutions

of the derived partial differential equation is proved, and the finite element method is

applied to discretize the equation of motion of the rotor. The second part is identical

with Chapter 5 where the lubrication theory for the hydrodynamical journal bearings

is derived. Higher order terms from an asymptotic expansion of the Navier-Stokes

equations are used to compute correction terms for Reynolds’ equation and the short

bearing approximation. The third part consists of Chapters 6 and 7. There, we validate

the model by direct numerical simulations and use continuation methods for periodic

orbits and quasiperiodic tori to compute the frequency response and its parameter

dependence. In the conclusions in Chapter 8 we summarize the results again with a

special view to future developments and applications.

1.3.1 First Part: The Model for the Rotor

The partial differential equations for the transverse motion of a continuous, isotrope,

rotating beam with varying cross-section are the foundation of our model. These

equations are derived in Chapter 2 by the Lagrangian formalism using Euler-Bernoulli

beam theory and taking into account rotatory inertia and gyroscopic effects following

(Yamamoto & Ishida, 2001) and (Nelson & McVaugh, 1976).

The equations obtained for the lateral deflections u and v of the beam as shown in
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u

v

z

x

y

Figure 1.5: The displacement of the rotating beam in x and y direction at the axial position

z is described by u(z) and v(z).

Figure 1.5 are

(EIau′′)′′ + µü − (Iaü′)′ − ω(Ipv̇′)′ + cu̇ = µω2(rG,1 cosωt − rG,2 sinωt), (1.5)

(EIav′′)′′ + µv̈ − (Iav̈′)′ + ω(Ipu̇′)′ + cv̇ = µω2(rG,1 sinωt + rG,2 cosωt) − µg, (1.6)

where ′ denotes the derivative with respect to the axial position z, and ˙ the derivative

with respect to time. Ia and Ip are the beams cross-sectional diametral and polar

moments of inertia, E is Young’s modulus, µ is the mass per length, c the external

viscous damping factor, and g the gravitational acceleration. rG denotes the position

of the center of gravity of a cross-section relative to the rotation axis. One sees that

analogously to the Jeffcott rotor, the misalignment of center of mass and the rotation

axis leads to the appearance of a harmonic forcing term.

The shaft is supported by bearings. The reaction forces of these bearings are modeled

as boundary or transmission conditions to the equations of motion. The bending

moment and the shear force have jumps of the size of the reaction forces at the location

of the bearings ([ f ]z = f (z+) − f (z−) denotes the jump of f at z)

[
−Iaü′ − ωIpv̇′ + (EIau′′)′

]
zbi

= fbi,1, (1.7)

[
−Iav̈′ + ωIpu̇′ + (EIav′′)′

]
zbi

= fbi,2, (1.8)

[−EIau′′]zbi
= tbi,1, (1.9)

[−EIav′′]zbi
= tbi,2. (1.10)

Together with appropriate initial conditions these 6 equations state the initial/boundary

value problem for the motion of the rotor.

In Chapter 3 we prove existence and uniqueness of weak solutions of these equations

for a quite general class of bearings. To facilitate notation in that chapter, we use a
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complex formulation for the displacement of the form w = u + iv, where u and v are

the lateral displacements from (1.5) to (1.10). We define general bearing function of

the following form

f : C2 ⊃ Bcr(0) × C→ C, (1.11)

(x + iy, v + iw) 7→ eiγ( f n(r, ṙ, γ̇) + i f t(r, ṙ, γ̇)),

where cr is the bearing clearance and

r =

√
x2 + y2, γ = arg(x + iy), ṙ = v cos γ + w sinγ, γ̇ = (w cosγ − v sinγ)/r. (1.12)

Note that f is defined only on Bcr(0) × C to model the confinement of the shaft inside

the bearings. With these bearing functions we prove the following existence theorem.

Theorem. Let f be a locally Lipschitz, nonlinear support function as in (1.11). Let a, b ∈
Ω = [0, L] and let the coefficients µ, E, Ip, Ia ∈ L∞(Ω) be strictly positive. Furthermore let

g ∈ H1(0,T; L2(Ω)) and let w0 ∈ H3(Ω) with |w0(a)|, |w0(b)| < cr, and w1 ∈ H2(Ω).

There exists a short time weak solution to the initial/boundary value problem (1.5)-(1.10) with

support function f , i.e. there is a T > 0 and

w ∈ C0(0,T; H2(Ω)), with w′ ∈ C0(0,T; H1
m(Ω)), (1.13)

such that for all ψ ∈ H2(Ω) and for almost all t ∈ [0,T]

L∫

0

[
µwttψ̄ + Iawttxψ̄x − iωIpwtxψ̄x + EIawxxψ̄xx

]
dx−

∑

xi∈{a,b}
f (w(xi),wt(xi))ψ̄(xi) =

∫
gψ̄dx.

(1.14)

Furthermore w satisfies the initial conditions:

w(0) = w0 ∈ H3(Ω) and wt(0) = w1 ∈ H2(Ω). (1.15)

The proof is split in two parts. In the first part we use Galerkin’s method to prove

existence and uniqueness for the case of linear support functions. In a second step we

then use a fixed point argument to prove existence in the nonlinear case.

In Chapter 4 the finite element method is applied to Equations (1.5)-(1.10). We use

standard 3rd order Hermite polynomials to compute the well known system stiffness

matrix K, gyroscopic matrix G, damping matrix C and mass matrix M for beam elements

of constant diameter. A rotor with varying cross-sections can be composed from several

such simple beam elements of constant diameter like in Figure 1.6. The individual

beam element matrices are then assembled to yield a system of ordinary equations

describing the motion of the nodal coordinates of whole beam.
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Figure 1.6: Detailed beam model of turbocharger: the rotor shaft is modelled with 13 finite

elastic beam elements shown in blue, the turbine and impeller wheels are modelled as rigid

disks and are shown with dashed red lines, and the positions of the bearings are indicated

by the black triangles.

1.3.2 Second Part: The bearing model

As already mentioned in the previous sections the influence of the bearings is crucial for

entire dynamics of the rotor. We assume plain circular journal bearings throughout this

work, since bearings of this kind were also used in the experimental setup at TCRDL.

The shaft rotates inside this cylindrical bearing and the thin clearance between shaft

and bearing is filled with a lubricant fluid as shown in Figure 1.7. The rotation of the

shaft creates a circular flow pattern by dragging along the fluid. This flow pattern

causes the impedance of the bearing to loads on the shaft by causing higher pressures

in narrowing regions of the bearing. This creates reaction forces that oppose the

movement. The reaction forces can be calculated from the pressure distribution inside

the bearing by integration over the bearing surface. For a thin fluid film of thickness

h bounded by two moving surfaces with relative velocities Vϕ and Vr the pressure

distribution p is given approximately by the well known Reynolds’ equation

δ2∂ϕ(h3∂ϕp) + ∂z(h3∂zp) = −12(Vr +
1

2
Vϕ∂ϕh) for (ϕ, z) ∈ [0, 2π] × [0, 1]. (1.16)

In Chapter 5 we review the derivation of this elliptic, second order equation from the

Navier-Stokes equations by asymptotic analysis with the ratio ε of bearing clearance

and bearing radius as small parameter (Ockendon & Ockendon, 1995).

The short bearing approximation to Reynolds’ equation is usually derived (Yamamoto

& Ishida, 2001) from Reynolds’ equation by an additional asymptotic expansion under
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Figure 1.7: Sketch of simple journal bearing; view in axial direction (left) and lateral

direction (right); the radial bearing clearance cr is exaggerated for illustration

the assumption that the ratio δ of the axial length to the radius of the bearing is small.

We derive both, Reynolds equation and the short bearing approximation in Chapter 5

in one step from the Navier-Stokes equations by assuming a special relation between

the two scaling parameters. With this special scaling we can identify inertia correction

terms from higher order terms of the asymptotic expansion. All in all we consider four

cases in this work which differ by higher order terms and by the ratio of the bearing

width W to the bearing radius R:

1. The classical Reynolds’ equation: The ratio ε = cr

R is small, while the ratio δ = W
R

is of order 1; no higher order terms are considered.

2. The short bearing approximation: the ratio δ = W
R is also small in addition to ε.

To derive the approximate equations in one step we set ε = Kδ2. Then the

equations simplify even more and an analytical solution for the bearing forces

can be obtained.

3. Reynolds’ equation with inertia corrections: In the derivation of Reynolds’ equa-

tion only terms of zeroth order in ε are considered. The inertia correction takes

into account also terms of order ε1.

4. Short bearing with inertia corrections: As above the additional assumption of

small δ and ε = Kδ2 allows for further simplification and analytical solution for

the pressure distribution also for the higher order terms.

While the results for points 1 and 2 are well known, the corrected solutions from point

3 and 4 obtained in Chapter 5 are new. We summarize them in two statements.
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Statement 1.1. The pressure solution for the zeroth order short bearing approximation corre-

sponding to point 2 in the list is

p0 = −6z(z − 1)

(
(γ′ − 1

2 )κ sinϕ + κ′ cosϕ
)

(1 − κ cosϕ)3
. (1.17)

The inertia correction for the short bearing pressure distribution has the following structure

p1 = F0 + RF1 + γ
′F2 + Rγ′F3 + R(γ′)2F4 + Rγ′′F5

+Rκ′′F6 + κ
′F7 + Rκ′F8 + Rκ′γ′F9 + R(κ′)2F10, (1.18)

where the F j are rational functions of h, κ cosϕ and κ sinϕ. The detailed formula is given in

Equation (5.61). An alternative formulation is given in Appendix E.1. We call p = p0 + εp1

the first order short bearing approximation. This approximation corresponds to point 4 in the

list above.

While Statement 1.1 holds for bearings where the ratios ε = cr

R and δ = W
R are both

small and approximately fulfill the additional relation ε = Kδ2, the following statement

holds for bearings where only ε = cr

R is small and which can have arbitrary width W.

Statement 1.2. The pressure distribution in a circular hydrodynamic bearing with lubrication

film thickness h0 = 1 − κ cosϕ is determined by three equations with the same differential

operator

L(·) = δ2∂2
ϕ(·) + δ2

3∂ϕh0

h0
∂ϕ(·) + ∂2

z(·) (1.19)

and varying right hand sides

ε0 : L(p0) = f0(κ, κ̇, γ̇), (1.20)

ε1 : L(p1) = Ψ(κ, κ̇, γ̇, κ̈, γ̈, p0,∇p0,∇2p0,∇3p0,∇2(∂tp
0)), (1.21)

where L(∂tp
0) = ∂t f0 − δ2∂ϕp0




3∂ϕ∂th0

h
+
∂th0∂ϕh0

h2
0


 . (1.22)

Here the pi are scalar functions defined onΩ = (0, 1) × (0, 2π). The boundary conditions are

pi(ϕ, 0) = pi(ϕ, 1) = 0 for ϕ ∈ (0, 2π), (1.23)

pi(0, z) = pi(2π, z) for z ∈ (0, 1). (1.24)

The parameters κ, γ, κ̇, γ̇, etc. are given by the current shaft position and velocity in polar

coordinates. The function f0 is given in Eq. (5.79), while a detailed expression for Ψ can be

found in the Appendix E.2. The pressure distribution p0 is called the zeroth order solution and

corresponds to point 1 in the list. The pressure distribution p1 is called the inertia correction

and we call p = p0 + εp1 the first order solution to Reynolds’ equation, corresponding to point

3 in the list.
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These higher order effects lead to a nonlinear dependence of the pressure distribu-

tion, and hence the bearing reaction forces, on the rotational frequency of the shaft.

Reynolds’ equation as well as the zeroth order short bearing approximation only yield

a linear dependence of the pressure on the driving frequency. In Chapter 6 simulations

show that this nonlinearity has an influence on the frequency of the subharmonic vi-

bration. In some parameter regions it decreases that frequency, thus reproducing the

effect observed in the experiments to a certain degree.

In addition to these analytically justified bearing models, we introduce a phenomeno-

logical correction for the zeroth order short bearing approximation

p̄0 = −6
z̄

W

(
z̄

W
− 1

) W2ρν

c2
r

(
(γ̇ − ω

2 + s(ω))κ sinϕ + κ̇′ cosϕ
)

(1 − κ cosϕ)3
. (1.25)

The correction term s(ω) changes the average circumferential lubricant velocity which

is equal to ω
2 in the usual short bearing approximation. This average velocity has been

identified as an important parameter for the onset and the frequency of the oil whirl

(Muszynska, 1986). By introducing this correction, we provide a simple and effective

model which can be tuned to show a certain frequency response, as shown by the

simulations in Chapter 6.

Finally, in Chapter 5 we also introduce some numerical schemes for the solution of

Reynolds equation. In particular, we give variational formulations of (1.20)-(1.22) and

use the finite element toolbox deal.II (Bangerth et al., 2008) to compute solutions on

an adaptive grid. These are used in the numerical simulation for the calculation of the

bearing forces. For a more detailed summary of the modeling of the bearings we refer

the reader to the conclusions section 5.7 of Chapter 5.

1.3.3 Third Part: Numerical Analysis

Application of the finite element method with standard C1-elements to the equation

of motion yields a system of coupled ordinary differential equations for the nodal

coordinates q

Mq̈ + (C + ωG)q̇ + Kq = Funb(t) + Fg + Fbear (1.26)

with system mass, damping, gyroscopic and stiffness matrices M, C, G, and K, 2π/ω-

periodic unbalance forcing term Funb(t), static load Fg and bearing reaction forces Fbear.

For simpler bearing models like the zeroth order short bearing approximation, the

forces depend on the deflection qb and velocity q̇b of the node inside the bearing

Fbear = Fbear(qb, q̇b), (1.27)

while for bearing models that include inertial terms, they also depend on the acceler-

ation q̈b

Fbear = Fbear(qb, q̇b, q̈b), (1.28)



16 Chapter 1: Introduction

thus yielding an implicit differential equation.

This model reproduces the experimental results quite well as is shown in Chapter 6

by direct numerical simulation with standard implicit integration methods for stiff

problems like backward differentiation formulas (BDF).
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Figure 1.8: Simulated orbits and waterfall diagram showing the response spectrum for 13

element beam model. The parameters are chosen similar to the experimental configuration

used for the results in Fig. 1.3. The main experimentally observed vibration effects of

subharmonic oil whirl and synchronous unbalance vibration are captured in the model.

Figure 1.8 depicts the simulation results corresponding to the experiment shown in

Figure 1.3. It can be seen that the simulated and the experimental results agree to a

great deal and that the main dynamical features of the experiment are reproduced.

The complexity of the orbits increases with the rotational speed and also the computed

amplitudes are only slightly larger than in the experiment. Entrainment can be ob-

served around a rotational speed of 1000 Hz where the first resonance of the harmonic

response occurs. There are however two differences between the simulations and the

experiments. In the simulations there appears a second peak in the harmonic response,

which is caused by the resonance of a second bending mode. This can not be observed

in the experiments. Furthermore, the ratio of the oil whirl frequency and the driving

frequency remains constant 1
2 and the shift to lower frequency ratios does not occur.

Further simulations reveal that the inertia corrections of the bearing functions have a

small effect on the frequency shift. The right panel in Figure 1.9 shows the response

spectra from two simulations of a smaller system. It can be clearly seen, that the use

of the inertia correction in the bearing function reduces the subharmonic frequency.

The effect of phenomenological correction (1.25) is more pronounced, as can be seen

from the left panel in Figure 1.9. By choosing an appropriate correction term, it

allows to reproduce a measured frequency behavior of a certain bearing type without

detailed modeling of the bearing, and without the computational effort of solving
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Figure 1.9: Left: The phenomenological correction of the short bearing approximation can

be used to influence the frequency shift of the subharmonic response frequency. Right:

The first order correction of the short bearing approximation has a small effect on the

subharmonic response. The blue peak shows the response frequency of the system with an

uncorrected, the green peak with inertia corrected bearing function. The system is driven

with 1900Hz.

partial differential equations in each time or optimization step. The results of Chapter

6 are summarized in more detail in Section 6.6

Direct simulation is useful to validate the model, for the investigation of the parameter

dependence of the solutions, however, continuation methods yield better results, be-

cause they allow to investigate also unstable solutions as well as bifurcations. As we

have seen before, the rotor-bearing systems examined in this work exhibit responses

with more than one frequency. Additionally to the harmonic response to the forcing

with frequency ω, there appears also a subharmonic, self-excited oscillation with fre-

quency ω2 ≤ ω
2 . In Chapter 7 we analyze the onset of this self-excited oscillation and

show numerically that the instability appears through a torus bifurcation of a stable
2π
ω -periodic orbit. We compute locus curves of the bifurcations, i.e. stability bound-

aries, in several parameters such as driving frequency, external damping and bearing

clearance. It shows that the self-excited oscillation can be suppressed by increasing

external damping, or by decreasing the bearing clearance.

A transformation of the equations of motion to a frame of coordinates co-rotating with

angular velocity ω

Mp̈+(2ωMH+G+C)ṗ+(K−ω2M+ωGH+ωCH)p = F̃bear(p, ṗ)+Fgr cos(ωt)+ω2Funb (1.29)

together with the neglection of the static (e.g. gravity) load Fgr leads to a significant

simplification of the equations of motion, since the system becomes autonomous.

This has the effect that quasi-periodic solutions with one of the basic frequencies

equal to ω in the fixed frame of coordinates are transformed to periodic solutions

in the co-rotating frame. This simplification has been applied for the computation

of the periodic orbits shown in Figure 1.10 with the software package for numerical
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Figure 1.10: Continuation of periodic solutions of Eq. (7.22) in absence of constant load

w.r.t. driving frequency; the two lower lines of graphs show the detailed orbits drawn in

red in the top figure.

continuation AUTO (Doedel et al., 2000).

A justification for the simplification of neglecting the static load is also given in Chap-

ter 7 through the computation and continuation of the corresponding quasiperiodic

tori of the non-simplified system. In Figure 1.11 we show the locus curves of quasiperi-

odic tori with constant rotation number in the driving frequency- bearing clearance

domain. The rotation number given by the color of the respective branch. A com-

parison with the frequency of the corresponding periodic orbits like those depicted

in Figure 1.10 shows significant differences only for small rotational frequencies out-

side the usual range of operation of the turbocharger. The continuation method for

quasiperiodic tori has been applied to a ’real world’ problem of this size for the first

time in this work and has been published in (Schilder et al., 2007). It is based on a

Fourier method proposed in (Schilder & Peckham, 2007).
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Figure 1.11: Locus curves of quasiperiodic tori with constant rotation number indicated

by the color. The dashed line shows the locus of a torus or Neimark-Sacker bifurcation.

The continuation methods combined with the simplification of neglecting gravity and

transforming into a co-rotating frame is also used to study the influence of the inertia.

The implicity of the equation of motion in that case makes necessary an adaptation of

the numerical method since AUTO only can deal with explicit equations. We employ

an internal Newton method to solve the implicit equation (1.28) for q̈ in every iteration

step of the corrector method of the continuation method. Even though this increases

the total number of Newton steps, this is still more efficient than direct numerical

simulations. It shows that only very few internal Newton steps are necessary. The

results show that the effect of the short bearing inertia correction can be observed over

a large parameter range in bearing width (W = 0.25 mm−2 mm) and driving frequency

(ω = 0 Hz − 2000 Hz). However, the validity of the first order correction for the short

bearing approximation is not given for bearings of the length used in the experimental

set-up (W = 5.4). Instead, the full Reynolds’ equation with inertia correction from

1.21 should be used. This is numerically very expensive, which makes a bifurcation

analysis of the same detailedness impossible. However, a proof of principle for the

method proposed is given in the last section of Chapter 7. Therefore it could be used

in the development and validation of future models for rotordynamical systems. The

reader is referred to Section 7.9 at the end of Chapter 7 for a more detailed summary

of the results of the numerical bifurcation analysis.

The conclusions in Chapter 8 close this thesis with a discussion of the results in the

light of further developments and applications.
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Chapter 2

Continuous Rotor Model

In this chapter we derive partial differential equations that model the transverse motion

a slender rotating beam. The model is based on the theory of linear elasticity and

includes gyroscopic effects. In Section 2.1 the geometry of the beam is defined and

special attention is paid to the imperfections in the geometry which can be caused

during production and which lead to static unbalance excitation. Afterwards we derive

the equations of motion for a rotating Rayleigh beam by means of the Lagrangian

formalism in Sections 2.2 to 2.4. We obtain two partial differential equations for

the transversal displacements which include rotatory inertia and gyroscopic terms.

Further modifications for the inclusion of fly wheels into the model are made in Section

2.5. Angular misalignment of the rigid disks modeling the wheels leads to dynamic

unbalance excitation. Finally we show how bearings can be added to the model (Sec.

2.6) and introduce a complex valued notation which reduces the number of equations

(Sec. 2.7).

2.1 Beam Geometry

A beam is a three-dimensional solid body with a long-stretched geometry, meaning

that it has two small dimensions compared to the third. In the following the beam is

supposed to be homogeneous and isotropic, i.e. all the material properties like density

or Young’s modulus do not depend on position. It is supposed to rotate about its

center line with constant angular velocity ω. In the undeformed state the rotational

axis is identical with the z-axis. In the center of each cross-section we fix a coordinate

system spanned by the cross-section’s principal axis of inertia e1(z) and e2(z), and the

normal vector e3(z)). This coordinate system is rotating with the same angular velocity.

In the following we will consider a circular beam of total length L with varying cross-
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Figure 2.1: Left: Location of the center of mass along the axis of the beam; the eccentricity

at axial position z is given by rG(z). Right: Shape of a cross-section with circular inner part

A0 and perturbed exterior A1. The size of the perturbation is exaggerated for illustration.

sectional shape. The reference configuration is given by

D = {(x, y, z) ∈ R3|z ∈ [0, L],
√

x2 + y2 ≤ R(z, ϕ)≪ L}, (2.1)

where ϕ = arg(x + iy) and the shape function R : [0, L] × [0, 2π] → R is a piecewise

continuous in z and in ϕ, bounded, strictly positive function. Where it is more conve-

nient, e.g. in sums, we will also use the notation r = (x, y, z) = (x1, x2, x3) for points in

D.

A major source of vibration in real life rotating machine elements is unbalance which is

caused by small imperfections in the geometry due to production and by unbalanced

loads on the beam. The small imperfections of the rotor can be modelled either by

assuming non perfect geometry or by allowing small density variations. We will take

the first point of view and assume homogeneous density ρ and the shape function R

to be of the form

R(z, ϕ) = R0(z) + R1(z, ϕ) > 0. (2.2)

We take R0 > 0 and R1 ≥ 0, and further more we consider the non-circular perturbation

R1 to be small, i.e. for all (z, ϕ) ∈ [0, L] × [0, 2π] we have

R1(z)

R
=

R − R0

R
≪ 1. (2.3)

Therefore its contribution to the area A(z) of each cross-section is also small,

A1(z)

A(x)
=

∫ 2π

0

∫ R0+R1

R0
r dr dϕ

∫ 2π

0

∫ R0+R1

0
r dr dϕ

≪ 1. (2.4)

The mass per length µ is given by

µ(z) = ρA(z). (2.5)
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We define the center of mass (rG,1, rG,2)(z) of a cross-section A(z) orthogonal to the z-axis

in the body-fixed coordinate frame of the principal axis of inertia by

rG,α(z) =
1

µ(z)

∫

A(z)

ρxα dx dy (2.6)

=
1

µ(z)

∫

A0(z)

ρxα dx dy +
1

µ(z)

∫

A1(z)

ρxα dx dy (2.7)

=
1

µ(z)

∫

A1(z)

ρxα dx dy for α = 1, 2. (2.8)

The first integral in (2.7) vanishes due to the circular shape of the unperturbed cross-

section with radius R0. Only the perturbation part of radius R1 gives a nonzero

contribution. However, the smallness of R1 compared to the entire radius obviously

also yields the smallness of rG,α compared to the shaft radius. As shown in Fig. 2.1 rG

describes the eccentricity of the centers of mass of the cross-sections. The coordinate

system of the principal axis of inertia is rotating with an angular velocityωwith respect

to the coordinate system which is fixed in space. Hence the coordinates rG of the center

of mass in the rotating system and the position of the center of mass rg in the fixed

system are related

rG = A(ωt)rg, (2.9)

where the matrix A is the rotation matrix

A(ωt) =




cosωt sinωt

− sinωt cosωt


 . (2.10)

The perturbation of the shape also leads to a perturbation of the principle moments

of inertia of the cross-sections. We have defined the slender beam to be small in two

dimensions and elongated in the third. Like before, we now look at infinitesimal

cross-sections orthogonal to the z-axis. The tensor of inertia J of such an infinitesimal

cross-section in a fixed coordinate system whose origin is located at its center is defined

by

Ji j =

∫

A(x3)

ρ(δi jxkxk − xix j) dx1 dx2 dx3. (2.11)

By using the fact that the center is located at the origin (x3 = 0) and by the decomposi-
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tion of the area A(x3) into the circular part A0 and the perturbed part A1 we obtain

J31 = J32 = 0,

J33 =

∫

A(x3)

ρxαxα dx1 dx2 dx3 =: ρIp(x3) dx3 +

∫

A1(x3)

ρ(x2
1 + x2

2) dx1 dx2 dx3,

J12 = −
∫

A(x3)

ρx1x2 dx1 dx2 = −
∫

A1(x3)

ρx1x2 dx1 dx2 dx3 := −ρ∆I12 dx3,

J11 =

∫

A(x3)

ρx2
2 dx1 dx2 dx3 =: ρIa(x3) dx3 +

∫

A1(x3)

ρx2
2 dx1 dx2 dx3,

J22 =

∫

A(x3)

ρ(x)x2
1 dx1 dx2 dx3 =: ρIa(x3) dx3 +

∫

A(x3)

ρx2
1 dx1 dx2 dx3.

We see that J11, J22, and J33 can be expressed in terms of a the circular cross-sections area

moments of inertia, the diametral moment Ia and the polar moment Ip, respectively,

and small perturbations caused by the shape perturbation R1. Hence the inertia tensor

of the cross-section has the following form

J = ρ




Ia + ∆I11 −∆I12 0

−∆I12 Ia + ∆I22 0

0 0 Ip + ∆I33




dz. (2.12)

The coordinate systems spanned by the cross-section’s principal axis of inertia (e1(z),

e2(z), e3(z)) in which I is diagonal depend on z. However, from J31 = J32 = 0 we

can deduce that the third principal axis e3 is always collinear with the z-axis. After

diagonalization of the tensor, let the principal moments of inertia be J1, J2 and J3 = J33

and let principal area moments be I1, I2 and I3. We then have Ji = ρIi dz. Due to

the small variations in shape, the diametral moments I1 and I2 differ only by small

perturbations ∆Ii from the diametral area moment Ia = πR4/4 of a perfect disk. We

will assume that

I1 = Ia + ∆I, and I2 = Ia − ∆I. (2.13)

This assumption can be fulfilled by adapting the radius R in such a way that a perfect

disk of radius R has an area moment equal to the mean of I1 and I2. The polar area

moment for a circular cross-section with uniform density distribution is Ip = πR4/2.

2.2 Potential Energy of the Rotating Beam

We will now derive an expression for the elasic energy stored in a deformed rotating

beam. In order to describe deformations of the reference configuration D we define

the displacement field u : D → R3. This vector field u describes the translation of a
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point x of the reference configuration to its new position x̃, i.e. for all x ∈ Dwe have

x̃ = x + u(x). (2.14)

In the following we will assume that the displacement of the beam is small. This

assumption leads to the classical Euler-Bernoulli beam theory which can be found in

many textbooks. In (Landau & Lifschitz, 1983) it is derived by physical reasoning,

in (Trabucho & Viaño, 1995) the displacement field is derived by strict asymptotic

analysis based on a variational formulation and using only the two assumptions that

the overall displacement is small and that two dimensions of the beam are small.

Shear effects can be neglected for slender beams. The shaft of the turbocharger we

want to model has a slenderness ratio s = L/R ≈ 70 for which it is sufficient to use

Euler-Bernoulli-theory. The inclusion of such shear effects would lead to Timoshenko

beam theory (Han et al., 1999) which is not studied in further detail in this work. A

continuous rotating Timoshenko beam model can be found in (Eshleman & Eubanks,

1969) and in (Nelson, 1980) where also a finite element discretization for such beams

is presented.

First we consider the displacement field (u1, u2, u3) : D → R3 obtained from Euler-

Bernoulli theory in the rotating frame of the bodies principal axis of inertia. In the

absence of axial forces it can be described (Trabucho & Viaño, 1995) by

u1(x, y, z) = d1(z), u2(x, y, z) = d2(z), u3(x, y, z) = x∂zd1 + y∂zd2. (2.15)

Cross-sections orthogonal to the center line stay planar and orthogonal to the center line

after deformation. The displacement of the center line is hence sufficient to describe

the whole displacement of the beam. If the displacement is small, the elastic energy of

a bent Euler-Bernoulli beam is given (Landau & Lifschitz, 1983) by

Ue =
1

2

L∫

0

EI1(∂zzd1)2 + EI2(∂zzd2)2 dz. (2.16)

Here E is Young’s modulus. I1 and I2 are the cross-sectional diametral moments of

inertia.

If we assume that the beam rotates about its center line with constant angular velocity

ω we can transform the above expression to a fixed coordinate system in which the

deformation of the centerline is described by the functions u for the deformation in the

x-direction and by v for the deformation in the y-direction. We have




d1

d2


 = A(ωt)




u

v


 . (2.17)
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If we denote by ′ the derivative with respect to z, we obtain from (2.16)

Ue =
1

2

L∫

0

EI1(cosωtu′′ + sinωtv′′)2 + EI2(− sinωtu′′ + cosωtv′′)2 dz

=
1

2

L∫

0

E
(
(I1 cos2ωt + I2 sin2ωt)u′′ + (I2 cos2ωt + I1 sin2ωt)v′′

+ 2(I1 − I2)u′′v′′ cosωt sinωt
)

dz

=
1

2

L∫

0

EIa(u′′2 + v′′2) + E∆I
(
(u′′2 − v′′2) cos 2ωt + 2u′′v′′ sin 2ωt

)
dz. (2.18)

If the rotor is also subject to gravity (or other static loads which are given by a potential)

we have to add the potential to the elastic energy (2.18)

U = Ue +Upot = Ue +

L∫

0

µgv dz. (2.19)

where the second equation is for gravity acting in the −y-direction and g denotes the

gravitational acceleration.

2.3 Kinetic Energy of the Rotating Beam

Euler-Bernoulli theory states that planar cross-sections of the undistorted beam which

are orthogonal to the center line stay planar and orthogonal to the center line also in

the bent state. Our derivation of the kinetic energy of the rotating beam is based upon

this observation.

In the unbent reference state each point in the beam is described by its position along

the axis of the rotor (z-coordinate) and its position on the cross-section orthogonal to

the center line at the point’s z-coordinate. The position of the center relative to the

z-axis is denoted by r0(z, t) and the center line has the coordinates (r0, z). In the unbent

state therefore r0 = 0. At each point on the z-axis we choose the principal axes of inertia

of the cross-section e1(z, t), e2(z, t) and the normal vector e3(z, t) as moving orthonormal

basis for that cross-section. As stated above this normal vector is always collinear

with the tangent vector of the center line. Using the sum convention the position of

the material point relative to the center line is given by r = ξαeα(z, t). Repeated Greek

indices are summed over 1 and 2, and repeated Roman indices are summed over 1, 2,

and 3.

The new position X(x, t) of a material point x at time t is given by the displacement

r0(z, t) of the center point transverse to the z-axes and the position relative to the center
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point

X(x, t) = r0(z, t) + ξαeα(z, t). (2.20)

The cross-section in which the point x lies in the undistorted beam remains rigid and

orthogonal to the center line. The position of the point on the disk is given by ξαeα(z, t)

in terms of the rotating coordinate system. The disk rotates with the angular velocity

Ω(z, t) about the momentary axis of rotation spanned byΩ = Ωiei.

The kinetic energy of the beam is given by the integral over the velocities in each point

T =
1

2

∫

D

ρ(x)(∂tX(x, t))2 dx3. (2.21)

Using the above assumptions on the deformation we obtain by integration over the

cross-sections

T =
1

2

∫

D

ρ(x)(ṙ0(z, t) +Ω(z, t) × ξiei(z, t))
2 dx3 (2.22)

=
1

2

∫

D

ρ(x)(ṙ0(z, t) · ṙ0(z, t) + 2ṙ0(z, t) · (Ω(z, t) × ξiei(z, t))

+(Ω(z, t) × ξiei(z, t)) · (Ω(z, t) × ξiei(z, t))) dx3

=
1

2

∫

D

ρ(x)(‖ṙ0(z, t)‖2 + 2(ṙ0(z, t) ×Ω(z, t)) · ξiei(z, t)

+(Ω1ξ2 −Ω2ξ1)2 + (ξ2
1 + ξ

2
2)Ω3) dx3

=
1

2

L∫

0

µ(u̇2 + v̇2) + 2µṙ0 · (Ω × rg(z, t)) + I1Ω
2
1 + I2Ω

2
2 + I3Ω

2
3 dz (2.23)

=:

L∫

0

Tt + Tunb + Trot dz, (2.24)

where we used the property of the ei being the principal axis of inertia of the disk. The

energy splits into three parts. The first term in (2.23) gives the translational kinetic

energy Tt. The term containing the eccentricity rg(z, t) of the cross-section appears

when integrating the second term in the third line. It gives the rotational energy stored

in the rotation of the center of mass of the cross-section about the center line and is

denoted by Tunb. The third term gives the rotational energy Trot of the inclined disk.

Starting with the last term we will now derive expressions for the rotational energy

in terms of the displacement and the inclination of the center line. To do so, we have

to express the momentary angular velocity Ω in such terms. This can be achieved by

introducing Euler angles describing the postion of the disk.

The position of the cross-section relative to the origin is given by the Euler angles

(γ, β, φ) (Nelson & McVaugh, 1976). The three angles describe three successive rotations
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Figure 2.2: Euler angles γ, β and φ describe the orientation of the rotating disk.

of the disk whose principal axis of inertia (e1, e2, e3) are assumed to be initially collinear

with the space coordinate system (ex, ey, ez). The first rotation leaves the y-axis fixed

and rotates the disk by the angle γ about this axis. The second rotation leaves the

image ex′ of the vector ex fixed and rotates the disk by β. The third rotation which

corresponds to the spin of the disk rotates the coordinate system about the image of ez

under the first two equations by the angle φ.

From Figure 2.2 we see that the momentary angular velocity is given by

Ω = γ̇ey + β̇ex′ + φ̇e3. (2.25)

In this equation ey is the unit vector in y-direction, e3 is the normal vector to the plane

(and also spans a principal axis of inertia), and ex′ is the unit vector along the image

of the x-axis after the first rotation. From (2.25) we can obtain the expression for the

current angular velocity in terms of the Euler angles. The detailed calculations of what

follows are given in the Appendix A where we obtain

Ω1 = γ̇ sinϕ cos β + β̇ cosϕ, (2.26)

Ω2 = γ̇ cosϕ cos β − β̇ sinϕ, (2.27)

Ω3 = −γ̇ sin β + ϕ̇, (2.28)

and for the third term in the integral from Equation (2.23) which gives the rotational
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energy of the infinitesimal cross-section

Trot =
1

2

(
I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3

)
=

Ia

2

(
γ̇2 cos2 β + β̇2

)

+
Ip

2

(
ϕ̇2 − 2 sin βγ̇ϕ̇ + sin2 βγ̇

)
(2.29)

+
∆I

2

(
(β̇2 − γ̇2 cos2 β) cos 2ϕ + 2β̇γ̇ cos β sin 2ϕ

)
.

We now use the assumption that the total deformation and hence also the inclination

of the beam is small. Using γ ≈ u′, β ≈ −v′ and φ = ωt as derived in Appendix A, by

dropping second order terms we get

2Trot ≈Ia(u̇′2 + v̇′2) + Ip

(
ω2 + 2ωu̇′v′

)

+ ∆I
(
(v̇′2 − u̇′2) cos 2ωt − 2u̇′v̇′ sin 2ωt

)
. (2.30)

The second term from the integral in (2.23) evaluates to

Tunb = 2µṙ0 · (Ω × rg(z, t)) =2µ(−u̇Ω3rG,2 + v̇Ω3rG,1)

=2µ(−u̇(ϕ̇ − γ̇ sin β)rg,2 + v̇(ϕ̇ − γ̇ sin β)rg,1)

≈2µω(v̇rg,1 − u̇rg,2). (2.31)

Here again the terms v′rg,2 and u′rg,2 are of second order and are therefore dropped.

Combining (2.23) with (2.30) and (2.31) we finally obtain the expression for the kinetic

energy we will use in the following.

T =
1

2

L∫

0

µ(u̇2 + v̇2) + 2µω(v̇rg,1 − u̇rg,2)

+ Ia(u̇′2 + v̇′2) + Ip

(
ω2 + 2ωu̇′v′

)

+ ∆I
(
(v̇′2 − u̇′2) cos 2ωt − 2u̇′v̇′ sin 2ωt

)
dz. (2.32)

Common Euler-Bernoulli beam theory does not include the rotatory inertia term Ia(u̇
′2+

v̇′2) and the gyroscopic term Ip

(
ω2 + 2ωu̇′v′

)
. The rotatory inertia term would also

appear in the non-rotating case. The beam theory which includes this rotatory inertia

term is called Rayleigh beam (Han et al., 1999) and is considered in this work.

2.4 Euler-Lagrange Equations

The derivation of the equation of motion is based on Hamilton’s principle (José &

Saletan, 1998). The equations of motion are the Euler-Lagrange equations of the action

functional

S =

t1∫

t0

L(q, q̇,∇q,∇2q, t, x). (2.33)
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The Lagrangian L depends on the functions q and their temporal and spatial deriva-

tives. It is worth noting that higher order derivatives are allowed which leads to a

more general formulation of the Euler-Lagrange equations. The Lagrangian is given

by

L = T −U,

where T is the kinetic energy and U the potential energy of the system under con-

sideration. In continuum mechanics the Lagrangian is calculated from a Lagrangian

density

L =

∫

Ω

L(q, q̇,∇q,∇2q, t, x) =

∫

Ω

T −U

which is again calculated from the densities of the kinetic and the potential energy

respectively.

The Euler-Lagrange equations in the continuum case do not lead to ordinary differ-

ential equations as it is the case for Lagrangians describing systems of point masses,

but to partial differential equations. The generalized Euler-Lagrange equations for

functionals involving higher order derivatives are

∂L
∂qi
−

n+1∑

j=1

d

dy j

∂L
∂(∂y j

qi)
+

n+1∑

j,k=1

d2

dy jdyk

∂2L
∂(∂y j

∂yk
qi)
= 0, (2.34)

where y = (t, x). Depending on the problem one also obtains natural boundary condi-

tions.

The dissipation of energy by viscous damping can be accounted for by adding the

Rayleigh dissipation function FR to the Lagrangian densityL

FR(q̇) =
1

2
c‖q̇‖2

with the distributed damping parameter c. The Euler-Lagrange equations are then

modified as follows (see e.g. (José & Saletan, 1998; Yamamoto & Ishida, 2001))

∂L
∂qi
−

n+1∑

j=1

d

dy j

∂L
∂(∂y j

qi)
+

n+1∑

j,k=1

d2

dy jdyk

∂2L
∂(∂y j

∂yk
qi)
− ∂FR

∂tqi
= 0. (2.35)

In the previous sections we have derived formulas for the kinetic and the potential

energy (cf. Eqs. (2.32) and (2.19)) of a rotating shaft with 2 distinct area moments of

inertia I1 and I2 differing by 2∆I and eccentricity rG of the center of gravity. In the

following we will assume that the two diametral moments of inertia are equal, i.e. that

∆I = 0.
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The Lagrangian is thus given by

L =
1

2

L∫

0

µ(u̇2 + v̇2) + 2µω(v̇rg,1 − u̇rg,2) + Ia(u̇′2 + v̇′2) + Ip

(
ω2 + 2ωu̇′v′

)

− EIa(u′′2 + v′′2) − 2µgv + c(u̇2 + v̇2) dz. (2.36)

The derivatives with respect to the generalized coordinates are:

∂L
∂u
= 0,

∂L
∂v
= −µg, (2.37)

d

dt

∂L
∂u̇
= µü − µωṙg,2,

d

dt

∂L
∂v̇
= µv̈ + µωṙg,1, (2.38)

d

dz

∂L
∂u′
= 0,

d

dz

∂L
∂v′
= ω(Ipu̇′)′, (2.39)

d2

dzdt

∂L
∂u̇′
= (Iaü′)′ + ω(Ipv̇′)′,

d2

dzdt

∂L
∂v̇′
= (Iav̈′)′, (2.40)

d2

dz2

∂L
∂u′′

= −(EIau′′)′′,
d2

dz2

∂L
∂v′′

= −(EIav′′)′′, (2.41)

∂FR

∂u̇
= cu̇,

∂FR

∂v̇
= cv̇. (2.42)

Using the generalized Euler-Lagrange equations 2.35 we obtain

(EIau′′)′′ + µü − (Iaü′)′ − ω(Ipv̇′)′ + cu̇ = µωṙg,2, (2.43)

(EIav′′)′′ + µv̈ − (Iav̈′)′ + ω(Ipu̇′)′ + cv̇ = −µωṙg,1 − µg, (2.44)

and by using the expression (2.9) for the unbalance we can replace the time derivatives

on the right hand side to obtain the equation of motion for the shaft:

(EIau′′)′′ + µü − (Iaü′)′ − ω(Ipv̇′)′ + cu̇ = µω2(rG,1 cosωt − rG,2 sinωt), (2.45)

(EIav′′)′′ + µv̈ − (Iav̈′)′ + ω(Ipu̇′)′ + cv̇ = µω2(rG,1 sinωt + rG,2 cosωt) − µg. (2.46)

Additionally, from the variation of the Lagrangian we obtain the natural boundary

conditions on {0, L} × [0,T]

Iaü′ + ωIpv̇′ − (EIau′′)′ = 0, (2.47)

Iav̈′ − ωIpu̇′ − (EIav′′)′ = 0, (2.48)

EIau′′ = 0, (2.49)

EIav′′ = 0. (2.50)

This system of equations together with the initial conditions

u(z, 0) = u0(z), u̇(z, 0) = u1(z), (2.51)

v(z, 0) = v0(z), v̇(z, 0) = v1(z), (2.52)

describes the motion of a free shaft without bearings. The two equations (2.45) and

(2.46) are coupled and one sees that the coupling vanishes for ω = 0, i.e. when the
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beam is not rotating the vibrations in x and y directions are mutually independent.

The antisymmetric coupling reflects the gyroscopic moments in the rotating beam

which are caused by changes of the angular momentum vector Ipω due to the whirling

of the rotor (Yamamoto & Ishida, 2001).

In Section 2.6 we will show how bearings can be included into the model generally and

in Chapter 5 we will derive a detailed model for the forces exerted by oil lubricated

journal bearings. The natural boundary conditions (2.47) and (2.48) show the absence

of shearing forces at the ends of the beam, while the boundary conditions (2.49) and

(2.50) stand for the absence of bending moments. We see that a harmonic forcing term

appears on the right hand side of Equations (2.45) and (2.46) which depends linearly on

the eccentricity of the center of mass and grows quadratically with the angular velocity.

This forcing is called static unbalance excitation (Gasch & Pfützner, 1975; Yamamoto

& Ishida, 2001). It is called static because the eccentricity of the center of mass can

be detected also when the rotor is at rest, in contrast to dynamic unbalance which is

caused by angular misalignment of flywheels as described in the following section.

The quadratic dependence of the unbalance on the angular velocity makes balancing

very important for fast rotating bodies, such as the rotors used in turbomachinery. The

technique of balancing is described in (Yamamoto & Ishida, 2001) for continuous and

rigid rotors with different kinds of unbalance.

2.5 Modifications for Rigid Disks

The rotor of a turbocharger consists not only of the shaft but also of the compressor

wheel and of the turbine wheel. The vibration of the blades and the gasdynamic in-

teraction of either of them shall be neglected in this work. Furthermore the vibrations

of the wheel structure are negligible as the eigenfrequencies are much higher than

the driving frequency and are not excited. It is therefore common in studies of rotor-

dynamics to model the wheels as rigid disks which are attached to the elastic shaft

(Yamamoto & Ishida, 2001; Vance, 1988; Childs, 1993).

As we have seen before, a cross-section of a Rayleigh beam remains planar and can

be considered rigid. Its dynamics can be described by four variables: x- and y-

displacement u and v and the two inclination angles γ ≈ u′ and β ≈ −v′. In contrast to

the above, the rigid disks which model the fly wheels are not necessarily perpendicular

to the shaft axis and so-called dynamic unbalance excitation can occur (Yamamoto &

Ishida, 2001). In Figure 2.3 such a situation is depicted. The Euler angles β, γ, and ϕ

describing the position of the body system relatively to the space system are defined

as above. The disk is attached at the axial coordinate zd and is initially inclined to

the shaft center line by the angle τ with phase η. When the center line inclines by the



2.5 Modifications for Rigid Disks 33

η

e3

e2

1e

y

x

z

τ

θ2

θ1

γ

η

ϕ

β

e3

e2

1e

ex’

y

x

z

τ

t

Figure 2.3: Dynamic unbalance: The disk is initially inclined to the shaft center line by the

angle τ with phase η (left). During movement (right) the position of the tangential vector

t relative to the body coordinate system e1, e2, e3 remains constant.

angles θ1 and θ2 away from the z-axis the following relations hold to first order

u′(zd) ≈ θ1 = γ + τ cos(φ + η), (2.53)

v′(zd) ≈ −θ2 = −β + τ sin(φ + η). (2.54)

We plug these relations into the Equation (2.29) for the rotational energy of a rotating

disk in terms of the Euler angles and we obtain after dropping second order terms in τ

2Trot =Ia

(
u̇′2 + v̇′2 + 2ωτ(u̇′ sin(ωt + η) − v̇′ cos(ωt + η))

)

+ I3

(
ω2 + 2ωu̇′v′ − 2ωτ(u̇′ sin(ωt + η) − ωv′ sin(ωt + η))

)

+ ∆I
(
(v̇′2 − u̇′2) cos 2ωt − 2u̇′v̇′ sin 2ωt

)

+ 2τω∆I
(
u̇′ sin(ωt − η) − v̇′ cos(ωt − η)

)
. (2.55)

Furthermore the disks also contribute to the kinetic energy stored in transversal motion.

This contribution is not influenced by the misalignment τ, but only by the eccentricity

of the center of mass rg as in Equation 2.32 where we have to replace mass density µ

by mass md

2Tt =md(u̇(zd)2 + v̇(zd)2) + 2mdω(v̇(zd)rd
g,1 − u̇(zd)rd

g,2). (2.56)

Adding the two contributions (2.55) and (2.56) yields the total kinetic energy of the

disk

Td = Tt + Trot. (2.57)

Since the disk is considered not elastic, only its weight contributes to the potential

energy

Ud = mdgv(zd). (2.58)

Hence the Lagrangian of the disk results as

Ld = Td −Ud (2.59)
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which has to be added to the Lagrangian of the shaft (2.36) to obtain the Lagrangian

for the composite system. Note that the Lagrangian of the disk only depends on the

displacement and the inclination of the centerline at the position zd and is not given

by an integral.

However it can be included into the analytic formulation of Section 2.4 by splitting

up the integration interval at the points zdi
. We obtain additional interface conditions

between the different parts of the shaft. Furthermore we have to demand continuity

of the functions u and v and their first spatial derivatives u′ and v′ in the points zdi

Consider the combined Lagrangian

L =

L∫

0

L +
Nd∑

i=1

Ldi
, (2.60)

whereL is the Lagrangian density of the continuous shaft (2.36). Ldi
is the Lagrangian

of the ith rigid disk fixed in zdi
, which is only depending on deflection and inclination

in that point. Variation of the action functional (2.33) yields the same partial differential

equations (2.45) and (2.46) on each interval Ii = [zi, zi+1] as for the case without disks.

The additional interface conditions at zdi
are

[
Iaü′ + ωIpv̇′ − (EIau′′)′

]
zdi

= mdi
ü(zdi

) −mdi
ωṙdi

g,2
, (2.61)

[
Iav̈′ − ωIpu̇′ − (EIav′′)′

]
zdi

= mdi
v̈(zdi

) +mdi
ωṙdi

g,1
−mdi

g, (2.62)

[EIau′′]zdi
− Idi

a ü′(zdi
) − ωIdi

p v̇′(zdi
) = (Idi

a − Idi
p )ω2τdi

cos(ωt + ηdi
), (2.63)

[EIav′′]zdi
− Idi

a v̈′(zdi
) + ωIdi

p u̇′(zdi
) = (Idi

a − Idi
p )ω2τdi

sin(ωt + ηdi
). (2.64)

The notation [u]z stands for the jump of u at z, i.e. [u]z = lim
xցz

u(x) − lim
xրz

u(x).

We see that the inertial force of the disk and the static unbalance forcing term add to the

shearing force between two adjacent sections, while the additional moments exerted

by the disk due to gyroscopic effects and dynamic unbalance add to the bending

moments. The additional forcing term in the moment balance (2.63) and (2.64) is

the already mentioned dynamic unbalance excitation which depends on the angle of

misalignment τ and also grows quadratically with the angular velocity. In contrast

to the static unbalance, misalignment can only be detected when the rotor is rotating

because the gyroscopic effects appear only during movement.

2.6 Bearings

As mentioned before we will derive a detailed model for oil lubricated journal bearings

in Chapter 5. Here we describe for reasons of completeness how to include bearings

into the continuous model of the rotating shaft in a more abstract way. The system
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(2.45)-(2.48) as it is written in Section 2.4 is not statically determined, i.e. it remains

unchanged under rigid body transformations since linear transformations are in the

kernel of the corresponding differential operator. The introduction of bearings solves

this problem and leads to the existence of a unique solution of our system as we shall

see in Chapter 3.

We shall consider two bearings which support the rotating shaft. They are located at

two disctinct axial positions a, b ∈ [0, L] along the rotor. Each of the bearings reacts

on the movement of the shaft by reaction forces fb and reaction moments tb which

we consider to be localized to the position of the bearing, i.e. we neglect the axial

dimension of the bearing. Hence, the support forces and moments in the two distinct

points {a, b} ⊂ [0, L] are concentrated point forces.

Here, as in Section 2.5, the bearing forces are added as transmission conditions for the

forces at their respective postions. For this we define I1 = [0, zb1
], I2 = [zb1

, zb2
], and

I3 = [zb2
, L]. Hence on each Ii we have

(EIau′′)′′ + µü − (Iaü′)′ − ω(Ipv̇′)′ + cu̇ = µω2(rG,1 cosωt − rG,2 sinωt), (2.65)

(EIav′′)′′ + µv̈ − (Iav̈′)′ + ω(Ipu̇′)′ + cv̇ = µω2(rG,1 sinωt + rG,2 cosωt) − µg. (2.66)

In addition to the boundary conditions (2.47) - (2.50) at z = 0 and z = L, we get the

force and moment transmission conditions at zb1
and zb2

:

[
−Iaü′ − ωIpv̇′ + (EIau′′)′

]
zbi

= fbi,1, (2.67)

[
−Iav̈′ + ωIpu̇′ + (EIav′′)′

]
zbi

= fbi,2, (2.68)

[−EIau′′]zbi
= tbi,1, (2.69)

[−EIav′′]zbi
= tbi,2. (2.70)

As an example, the bearing response force function for linear spring and damper

support with stiffness k and damping coefficient c is




fb,1(u, v, u̇, v̇)

fb,2(u, v, u̇, v̇)


 =



−ku − cu̇

−kv − cv̇


 . (2.71)

For other kinds of support the response function fb may be chosen differently, however

throughout this work they are considered as concentrated point forces. Furthermore,

we will not consider bearings such as spiral springs which exert moments on the shaft,

therfore tbi
= 0 for the rest of this work. As we will see later (cf. Sec. 5), the nonlinear

bearing forces of the oil lubricated bearing forces also respond only to the displacement

and not to the inclination of the shaft.
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2.7 Complex Formulation of Equation of Motion

The number of equations of motion can be reduced by introducing a complex-valued

notation using C ∼ R2. For this we set

w = u + iv, Fb = fb,1 + i fb,2, funb = rG,1 + irG,2, fgrav = −iµg, (2.72)

and obtain by adding Equations (2.65) and (2.65)

µẅ − (Iaẅ′)′ + iω(Ipẇ′)′ + cẇ + (EIaw′′)′′ = fgrav + µω
2 funbeiωt. (2.73)

Analogously we obtain

[
−Iaẅ′ + iωIpẇ′ + (EIaw′′)′

]
zbi

= Fb, (2.74)

[EIaw′′]zbi
= 0, (2.75)

from the boundary conditions (2.47)-(2.50). This formulation reflects nicely the sym-

metries and antisymmetries of the original equation. Furthermore it reduces notably

the notational effort and will therefore be used in Chapter 3 where we prove existence

of solutions to Equation (2.73).
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Existence of Solutions

In this chapter we want to examine the existence of solutions of the equation of motion

for a rotating beam. The equation has been derived in Section 2.6 of Chapter 2. The

equation for the deflection u(t, x) ∈ C of the beam at point x ∈ Ω = [0, L] at time t ∈ [0,T]

is

µutt − (Iauttx)x + iω(Iputx)x + (EIauxx)xx = g in (0,T) ×Ω, (3.1)

EIauxx = 0 on (0,T) × ∂Ω, (3.2)
(
Iauttx − iωIputx − (EIauxx)x

)
= 0 on (0,T) × ∂Ω, (3.3)

u(0, x) = u0(x) and ut(0, x) = u1(x) for x ∈ Ω, (3.4)

where g : [0,T] ×Ω → C is a periodic driving force. Supporting the shaft at the two

distinct interior points {a, b} ⊂ Ω leads transmission conditions for the moments and

the forces at the location of the support:

[EIauxx]x j
= 0 for (t, x j) ∈ (0,T) × {a, b}, (3.5)

[
(
Iauttx − iωIputx − (EIauxx)x

)
]x j
= f (u(t, x j), ut(t, x j)) for (t, x j) ∈ (0,T) × {a, b}, (3.6)

where f : C2 → C gives the reaction forces of the bearings depending on deflection and

velocity of the beam and [.]z denotes the jump of the term at that point. The coefficients

µ, Ip, Ia, and E are considered to be in L∞(Ω) and do not depend on time. Additionally

they are strictly positive, i.e. there are constants such that

0 < µ ≤ µ(x) ≤ µ < ∞,

0 < Ip ≤ Ip(x) ≤ Ip < ∞,

0 < Ia ≤ Ia(x) ≤ Ia < ∞,

0 < E ≤ E(x) ≤ E < ∞,

for almost every x ∈ Ω. Furthermore ω > 0 is constant.
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We will first prove the existence of solutions for the case of linear support functions

corresponding to spring support using Galerkin’s method (Evans, 1998; Zeidler, 1990).

In a second step we will consider nonlinear support as it is the case for the fluid film

bearings. Throughout the chapter, C will denote a generic positive real constant.

3.1 Existence for Linear Support

In the case of linear support the reaction forces in the support are as follows

f (u(x, t), ut(x, t)) = −ku(x, t), (3.7)

where k > 0 is a constant.

Multiplication of Equation (3.1) by ϕ̄ ∈ H2(Ω) (the overbar denoting the complex

conjugate) and partial integration leads to the following weak formulation:

L∫

0

[
µuttϕ̄ + Iauttxϕ̄x − iωIputxϕ̄x + EIauxxϕ̄xx

]
dx+k(u(a)ϕ̄(a)+u(b)ϕ̄(b)) =

∫
gϕ̄dx (3.8)

for all ϕ ∈ H2(Ω). By the Sobolev embedding theorem H2(Ω) ֒→ C1(Ω) continuously

for one-dimensionalΩ and every element in H2 is equal to a continuously differentiable

function after changing it on a subset of measure 0. Therefore the evaluation of u at

the points a and b is possible.

We can simplify the weak formulation (3.8) by introducing three sesquilinear forms.

These are

a :H2(Ω) ×H2(Ω)→ C, (3.9)

a(u, v) =

L∫

0

EIa(x)uxxv̄xxdx + k(u(a)v̄(a) + u(b)v̄(b)), (3.10)

which takes into account all terms related to stiffness, and

m :H1(Ω) ×H1(Ω)→ C, (3.11)

m(u, v) =

L∫

0

µ(x)uv̄ + Ia(x)uxv̄xdx, (3.12)

which takes all the inertia terms, and

b :H1(Ω) ×H1(Ω)→ C, (3.13)

b(u, v) = −iω

L∫

0

Ip(x)uxv̄xdx, (3.14)
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which is the gyroscopic term. Equation (3.8) then reads as

m(utt, v) + b(ut, v) + a(u, v) =
(
g, v

)
L2(Ω) . (3.15)

It follows directly from the boundedness and the strict positivity of the coefficients µ

and Ia that the form m(., .) defines a scalar product on H1(Ω) which is equivalent to the

standard scalar product in the sense that the induced norms are equivalent.

Definition 3.1. Let m(., .) be the sesquilinear form defined in (3.11). We equip the space

H1(Ω) with the equivalent scalar product (u, v)m = m(u, v) for u, v ∈ H1(Ω) to obtain

the space

H1
m(Ω) := (H1(Ω), (., .)m = m(., .)). (3.16)

From the bounds on µ(x) and Ia(x) we can immediately deduce:

Proposition 3.2. The identity id : H1(Ω)→ H1
m(Ω) is a continuous bijection with continuous

inverse.

In the following we do not consider the usual Gelfand triple with L2(Ω) as pivot space

but the triple

H2(Ω) ⊂ H1
m(Ω) = H1

m(Ω)
′ ⊂ H2(Ω)′, (3.17)

where we identify H1
m(Ω) with its dual and embed it into H2(Ω)′ by

〈u, v〉H2(Ω)′×H2(Ω) = (u, v)m = m(u, v) for u ∈ H1
m(Ω), v ∈ H2(Ω). (3.18)

The sesquilinear form a(., .) is examined in the following lemma.

Lemma 3.3. Let u, v ∈ H2(Ω), Ω = [0, L] ⊂ R1 bounded, a, b ∈ Ω with 0 ≤ a < b ≤ L,

0 < ρ < ρ(x) < ρ < ∞ for almost every x ∈ Ω and k > 0. The sesquilinear form

a(u, v) =

L∫

0

ρ(x)uxxv̄xxdx + k(u(a)v̄(a) + u(b)v̄(b)) (3.19)

is continuous and coercive.

Proof. We have

|a(u, v)| ≤ ρ




L∫

0

|uxx|2dx




1
2



L∫

0

|vxx|2dx




1
2

+ 2k‖u‖∞‖v‖∞ ≤ C‖u‖H2‖v‖H2 (3.20)

by Hölder’s inequality and the boundedness of ρ for the first term and from the con-

tinuos embedding of H2(Ω) into C1(Ω) for the second term. Thus a(u, v) is continuous.
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For u ∈ H2(Ω) we obtain by applying the triangular and Hölder’s inequality

|u(x)|2 = |u(a) +

x∫

a

ux(t)dt|2 ≤ 2|u(a)|2 + 2

∣∣∣∣∣∣∣∣

x∫

a

ux(t)dt

∣∣∣∣∣∣∣∣

2

≤ 2|u(a)|2 + 2




x∫

a

|ux(t)|dt




2

≤ 2|u(a)|2 + 2|x − a|




x∫

a

|ux(t)|2dt




≤ 2|u(a)|2 + 2L‖ux‖2L2(Ω)

and hence by integration overΩ

‖u‖L2(Ω) ≤ 2L|u(a)|2 + 2L2‖ux‖2L2(Ω)
. (3.21)

From the generalized Poincaré equation (B.1) from the appendix we get the following

estimate for the first derivative by setting B = [a, b] and ūxB =
1
|B|

∫
Ω

ux(s)ds:

‖ux‖2L2(Ω)
≤ 2‖ux − ūx,B‖2L2(Ω)

+ 2‖ūx,B‖2L2(Ω)
(3.22)

≤ 2‖ux − ūx,B‖2L2(Ω)
+

2

|B|2




∫

B

ux(y)dy




2

(3.23)

≤ 2
C

|B| ‖uxx‖2L2(Ω)
+

4|Ω|
|B|2 (|u(a)|2 + |u(b)|2). (3.24)

From these two estimates for ‖u‖L2(Ω) and ‖ux‖L2(Ω) we obtain the coercitivity of the

sesquilinear form:

‖u‖2
H2(Ω)

= ‖u‖2
L2(Ω)

+ ‖ux‖2L2(Ω)
+ ‖uxx‖2L2(Ω)

(3.25)

≤ ‖uxx‖2L2(Ω)
+ 2L|u(a)|2 + (2L2 + 1)‖ux‖2L2(Ω)

(3.26)

≤ C‖uxx‖2L2(Ω)
+ C′(|u(a)|2 + |u(b)|2) (3.27)

≤ C(ρ‖uxx‖2L2(Ω)
+ k(|u(a)|2 + |u(b)|2)) (3.28)

≤ Ca(u, u). (3.29)

�

The properties of the forms can be used to give some a priori estimates on the weak

solution.

Lemma 3.4. The solution of the linear Equation (3.8) fulfills the following a priori estimates:

‖u‖L∞(0,T;H2(Ω)) + ‖ut‖L∞(0,T;H1
m(Ω)) + ‖utt‖L2(0,T;H2(Ω)′)

≤ C
(∥∥∥g

∥∥∥
L2(0,T;L2(Ω))

+ ‖u0‖H2(Ω) + ‖u1‖H1(Ω)

)
. (3.30)
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Proof. Using ut as test function in Equation (3.8), we obtain
∫

Ω

(µuttūt+Iauttxūtx−iωIputxūtx+EIauxxūtxx)dx+k(u(a)ūt(a)+u(b)ūt(b)) =

∫
gūtdx. (3.31)

With sesquilinear forms used in Eq. (3.15) this can be written in a simplified manner

m(utt, ut) + b(ut, ut) + a(u, ut) =
(
g, ut

)
L2(Ω) . (3.32)

Adding the complex conjugate of the equation and observing that

d

dt
m(ut, ut) =

d

dt

∫

Ω

(
µutūt + Iautxūtx

)
dx

=

∫

Ω

(
µ (uttūt + utūtt) + Ia (uttxūtx + utxūttx)

)
dx

= m(utt, ut) +m(utt, ut),

and analogously
d

dt
a(u, u) = a(u, ut) + a(u, ut),

and that

b(ut, ut) + b(ut, ut) = 0,

we get

d

dt
(m(ut, ut) + a(u, u)) =

(
g, ut

)
L2(Ω) +

(
g, ut

)
L2(Ω). (3.33)

Using the Hölder inequality and ‖ut‖L2(Ω) ≤ ‖ut‖H1(Ω) < Cm(ut, ut) and 0 ≤ a(u, u) we

get
d

dt
(m(ut, ut) + a(u, u)) ≤ C(

∥∥∥g
∥∥∥

L2(Ω)
+m(ut, ut) + a(u, u)). (3.34)

We apply Gronwall’s inequality (B.3) with η(t) = m(ut, ut) + a(u, u), φ(t) = C and

ψ(t) = C
∥∥∥g(t)

∥∥∥
L2(Ω)

and obtain the a priori estimate

m(ut, ut) + a(u, u) ≤ eCt


m(u1, u1) + a(u0, u0) + C

t∫

0

∥∥∥g(t)
∥∥∥

L2(Ω)


 . (3.35)

From the equivalence of a(., .) to the standard scalar product on H2(Ω) (shown in lemma

3.3) we obtain the estimate for the norms for almost all t ∈ [0,T]

‖u‖H2(Ω) + ‖ut‖H1
m(Ω) ≤ C

(
‖g‖L2(0,T;L2(Ω)) + ‖u0‖H2(Ω) + ‖u1‖H1

m(Ω)

)
. (3.36)

To get an estimate on ‖utt‖L2(0,T;H2(Ω)′) we use the continuity of m(., .), b(., .) and a(., .).

We observe that for v ∈ H2(Ω)

| 〈utt, v〉 | = | (utt, v)H1
m(Ω) | = |m(utt, v)| (3.37)

= | (g, v
)

L2(Ω) − a(u, v) − b(ut, v)| (3.38)

≤
(∥∥∥g

∥∥∥
L2(Ω)

+ C ‖u‖H2(Ω) + C′ ‖utx‖L2(Ω)

)
‖v‖H2(Ω) . (3.39)
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Here we used the equivalence of m(., .) to the standard scalar product in the first line,

the Equation (3.15) in the second, and the continuity of a(., .) and b(., .) in the third line.

From this we deduce that

‖utt‖H2(Ω)′ ≤ C
(∥∥∥g

∥∥∥
L2(Ω)

+ ‖u‖H2(Ω) + ‖ut‖H1
m(Ω)

)
(3.40)

and after integration from 0 to T we obtain

‖utt‖2L2(0,T;H2(Ω)′) =

T∫

0

‖utt‖2H2(Ω)′ (3.41)

≤ C
(∥∥∥g

∥∥∥2

L2(0,T;L2(Ω))
+ ‖u0‖2H2(Ω)

+ ‖u1‖2H1
m(Ω)

)
(3.42)

using the above estimates (3.36) for ‖u‖H2(Ω). This completes the proof. �

Now we have all the ingredients to prove the existence of a weak solution of the linear

problem.

Theorem 3.5. Let a,m, b be the bilinear forms defined in (3.10),(3.11) and (3.14) and let

g ∈ L2(0,T; L2(Ω)).

There exists a weak solution of initial/boundary-value problem (3.1)-(3.4) with linear support

function f as in (3.7), i.e. we can find a function

u ∈ L∞(0,T; H2(Ω)), with u′ ∈ L∞(0,T; H1
m(Ω)) and u′′ ∈ L2(0,T; H2(Ω)′) (3.43)

that fulfills

〈utt, v〉 + b(ut, v) + a(u, v) = (g, v)L2(Ω) (3.44)

for all v ∈ H2(Ω) and for almost all t ∈ [0,T]. Furthermore u satisfies the initial conditions:

u(0) = u0 ∈ H2(Ω) and ut(0) = u1 ∈ H1
m(Ω). (3.45)

Proof. We use Galerkin’s method to construct a weak solution. For this we choose a

basis of {wk}k ⊂ H2(Ω) to construct approximate solutions.

Since H2(Ω) is dense in H1
m(Ω) and therefore also span({wk}k), we can find coefficients

αkn and βkn such that

un0 =

n∑

k=1

αknw j → u0 in H2(Ω), (3.46)

un1 =

n∑

k=1

βknw j → u1 in H1
m(Ω). (3.47)

We want to construct for each n ∈N approximate solutions of the form

un(t) =

n∑

j=0

d
j
n(t)w j (3.48)
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to the problems projected onto the subspace spanned by n of the testfunctions wk

m(un
tt,w

k) + b(un
t ,w

k) + a(un,wk) =
(
g,wk

)
L2(Ω)

for all k = 1, . . . , n, (3.49)

where the coefficients fulfill the initial conditions

d
j
n(0) = αnk and d

j′
n (0) = βnk. (3.50)

If the solution has the form (3.48) we can put it into the equation and obtain a system

of n linear differential equations for the coefficients d
j
n : [0,T]→ R

n∑

j=0

[
d

j′′
n (t)m(w j,wk) + d

j′
n (t)b(w j,wk) + d

j
na(w j,wk)

]
=

(
g,wk

)
L2(Ω)

(3.51)

for all k = 1, . . . , n. It can be written in matrix form

Md′′n + Bd′n + Adn = gn, (3.52)

where the matrices are given by Mk, j = m(w j,wk), Bk, j = b(w j,wk), Ak, j = a(w j,wk), and

gn = (
(
g,w1

)
, . . . ,

(
g,wn))T. This system can be solved uniquely because the matrix M

is nonsingular if the {wk}k are linearly independent. This follows from the fact that

m(., .) is a scalar product on H1
m(Ω) (cf. Lemma B.3 in the appendix). We therefore have

a unique solution vector dn ∈ C2(0,T;Rn) fulfilling the initial conditions (3.50).

The approximate solutions clearly also fulfill for all n the a priori estimate (3.30) we

have proved in Lemma 3.4. Therefore the sequence of approximate solutions {un}n
is bounded in L2(0,T; H2(Ω)), {un

t } is bounded in L2(0,T; H1(Ω)) and {un
tt} is bounded

in L2(0,T; H2(Ω)′). By the theorem of Banach-Alaoglu-Bourbaki (Brezis, 1999) we

therefore find a weakly convergent subsequence {unk}k and u ∈ L2(0,T; H2(Ω)) with

ut ∈ L2(0,T; H1(Ω)) and utt ∈ L2(0,T; H2(Ω)′), such that

unk ⇀ u weakly in L2(0,T; H2(Ω)),

u
nk

t ⇀ ut weakly in L2(0,T; H1(Ω)), (3.53)

unk

tt ⇀ utt weakly in L2(0,T; H2(Ω)′).

Now we consider a test function v =
∑l

k=1 ξk(t)wk ∈ C1(0,T; H2(Ω)) with smooth ξk(t).

The weak convergence (3.53) implies for nk > l

∣∣∣∣∣∣

T∫

0

〈utt, v〉+ b(ut, v) + a(u, v) − (g, v)L2(Ω)dt

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

T∫

0

〈
utt − unk

tt , v
〉
+ b(ut − unk

t , v) + a(u − unk , v)dt

∣∣∣∣∣∣
︸                                                          ︷︷                                                          ︸

→0 by (3.53)

+

T∫

0

∣∣∣m(unk

tt , v) + b(unk

t , v) + a(unk , v) − (g, v)L2(Ω)

∣∣∣
︸                                                  ︷︷                                                  ︸

=0 by (3.49)

dt. (3.54)
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As {w j} j has been chosen dense in H2(Ω), functions of the form of the test function

v are dense in L2(0,T; H2(Ω)) and hence Equation (3.54) remains valid for all v ∈
L2(0,T; H2(Ω)). Furthermore it follows that for almost all t ∈ [0,T] (3.44) is fulfilled for

all v ∈ H2(Ω).

It remains to show that the initial conditions are fulfilled. For this we note first

that from u ∈ L∞(0,T; H2(Ω)), u′ ∈ L∞(0,T; H1
m(Ω)) and u′′ ∈ L2(0,T; H2(Ω)′) we can

conclude that u ∈ C(0,T; H1
m(Ω)) and ut ∈ C(0,T; H1

m(Ω)
′
) (Evans, 1998). We choose a

function ψ ∈ C2(0,T;R) with ψ(T) = ψ′(T) = 0 and set v = ψwk ∈ C2(0,T; H2(Ω)). We

can then deduce from Equation (3.54) by partial integration over t that

T∫

0

〈u, vtt〉 + b(ut, v) + a(u, v) dt − ψ(0)m(ut(0),wk) + ψ′(0)m(u(0),wk) =

T∫

0

(g, v)L2(Ω) dt

and from (3.49) that

T∫

0

〈unk , vtt〉 + b(unk

t , v) + a(unk , v)dt

− ψ(0)m(unk

t (0),wk) + ψ′(0)m(unk (0),wk) =

T∫

0

(g, v)L2(Ω)dt.

From these two equations we can deduce by (3.53) that for all wk from our basis:

lim
nk→∞

ψ(0)m(unk

t (0),wk) − ψ′(0)m(unk (0),wk) = ψ(0)m(ut(0),wk) − ψ′(0)m(u(0), vt(0)).

But above we have chosen the projected initial conditions (3.50) such that in H1
m(Ω)

unk

t (0) =

nk∑

j=1

βknw j → u1

and therefore by continuity of m(., .) and the arbitrariness of ψ(0)

m(u1,w
k) = lim

nk→∞
m(unk

t (0),wk) = m(ut(0),wk) for all k. (3.55)

Analogously we have chosen unk =
∑nk

j=1
βknw j → u0 in H2(Ω) and hence

m(u0,w
k) = lim

nk→∞
m(unk(0),wk) = m(u(0),wk) for all k. (3.56)

From the density of span({wk}k) in H1
m(Ω) we get the equalities

u0 = u(0) and u1 = ut(0) for almost all x ∈ Ω. (3.57)

This finishes our proof. �
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Remark 3.6. Uniqueness of the solution can be shown using the technique in (Evans,

1998), Chapter 7.2, Theorem 4. There, the test function

v(t) =



∫ s

t
u(τ) dτ 0 ≤ t ≤ s

0 s ≤ t ≤ T
(3.58)

is used to show that the only weak solution of the homogeneous hyperbolic equation

with zero initial conditions is indeed u ≡ 0.

Remark 3.7. The regularity of the solution can be improved by taking g ∈ H1(0,T; L2(Ω)),

u0 ∈ H3(Ω) and u1 ∈ H2(Ω). Differentiation of the equation of motion (3.1) and the

boundary/transmission conditions with respect to time and testing with utt yields

u ∈ L∞(0,T; H3(Ω)), u′ ∈ L∞(0,T; H2(Ω)), u′′ ∈ L∞(0,T; H1
m(Ω)), u′′′ ∈ L∞(0,T; H2(Ω)′).

(3.59)

The proof is analogous to (Evans, 1998), Chapter 7.2, Theorem 5. In particular this

regularity yields u ∈ C0(0,T; H2(Ω)) and u′ ∈ C0(0,T; H1
m(Ω)), which is needed in the

next section.

3.2 Existence for Nonlinear Support

In this section we want to extend our existence result from the previous section to

nonlinear support functions, more precisely to support functions that model hydrody-

namic bearings. We prove short time existence of solutions to the nonlinear equations

using local Lipschitz continuity and a fixed point argument.

The support functions are derived in Chapter 5. Their detailed form is not important

here and we will write them in the following convenient way.

f : C2 ⊃ Bcr(0) × C→ C, (3.60)

(x + iy, v + iw) 7→ eiγ( f n(r, ṙ, γ̇) + i f t(r, ṙ, γ̇)),

where

r =

√
x2 + y2, γ = arg(x + iy), ṙ = v cos γ + w sinγ, γ̇ = (w cosγ − v sinγ)/r. (3.61)

The functions f n and f t give the normal and tangential forces acting on the rotating

beam in the bearing. Their special form is given in Equations (5.159) and (5.160) in

Section 5.5.1. For r < cr the functions f n and f t are locally Lipschitz-continuous as

can be seen from the analytical expressions in Section 5.5.1. For r → cr however

e−iγ f n → −∞, so that we do not have a global Lipschitz-constant for f . The local

Lipschitz condition is the essential ingredient in the proof of the following existence

theorem for the equation of motion with nonlinear support funcitons.
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Theorem 3.8. Let f be a locally Lipschitz, nonlinear support function as in (3.60). Let

a, b ∈ Ω = [0, L] and let the coefficients µ, Ia, Ip, EIa ∈ L∞(Ω) be strictly positive. Furthermore

let g ∈ H1(0,T; L2(Ω)) and let u0 ∈ H3(Ω) with |u0(a)|, |u0(b)| < cr, and u1 ∈ H2(Ω).

There exists a short time weak solution to the initial/boundary value problem (3.1)-(3.4) with

support function f , i.e. there is a T > 0 and

u ∈ C0(0,T; H2(Ω)), with u′ ∈ C0(0,T; H1
m(Ω)), (3.62)

such that for all v ∈ H2(Ω) and for almost all t ∈ [0,T]

L∫

0

[
µuttv̄ + Iauttxv̄x − iωIputxv̄x + EIauxxv̄xx

]
dx −

∑

xi∈{a,b}
f (u(xi), ut(xi))v̄(xi) =

∫
gv̄dx.

(3.63)

Furthermore u satisfies the initial conditions:

u(0) = u0 ∈ H3(Ω) and ut(0) = u1 ∈ H2(Ω). (3.64)

Proof. In the proof we will consider the nonlinear equation as a perturbation of the

linear case. In order to apply Banach’s theorem we will show that the solution operator

of a regularized linear equation with fixed nonlinearity on the right hand side is indeed

a contraction. The unique fixed point will then be a solution to the nonlinear problem.

Since f fulfills a local Lipschitz condition we find δ > 0, such that for xi ∈ {a, b}

| f (ξ, ζ) − f (ξ′, ζ′)| ≤ L(|ξ − ξ′| + |ζ − ζ′|) and ξ, ξ′ ∈ Bcr(0) (3.65)

for all ξ, ξ′ ∈ Bδ(u0(xi)) and ζ, ζ′ ∈ Bδ(u1(xi)).

Let k > 0 be a constant. We define the bilinear forms a, m, b as in (3.10), (3.11), and

(3.14) using k as coefficient for the form a:

a(u, v) =

∫

Ω

EIauxxv̄xx dx + k
∑

xi∈{a,b}
u(xi)v̄(xi). (3.66)

We can then rewrite the equation of motion (3.63).

〈utt, v〉 + b(ut, v) + a(u, v) = (g, v)L2 −
∑

xi∈{a,b}
f (u(t, xi), ut(t, xi))v̄(xi) + ku(t, xi)v̄(xi) (3.67)

such that it resembles the linear equation in Theorem 3.5. Fixing the function u on the

right hand side and solving the resulting linear equation yields the operator on which

we will apply the fixed point theorem.

Consider the Banach space

X = {u ∈ C0(0,T; H2(Ω)) |u′ ∈ C0(0,T; H1
m(Ω))} (3.68)
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with the norm

‖u‖X = sup
0≤t≤T

‖u‖H2(Ω) + sup
0≤t≤T

‖u′‖H1
m(Ω). (3.69)

We will use Banach’s theorem on the following closed subset M ⊂ X

M = {u ∈ X| |u(t, xi) − u0(xi)| ≤ δ, |u′(t, xi) − u1(xi)| ≤ δ for 0 ≤ t ≤ T, xi ∈ {a, b}}. (3.70)

The operator A : M → M is then defined as follows: For a given u ∈ M we define a

linear equation by

〈wtt, v〉 + b(wt, v) + a(w, v) = (g, v)L2 −
∑

xi∈{a,b}
f (u(t, xi), ut(t, xi))v̄(xi) + ku(xi)v̄(xi) (3.71)

which has a unique weak solution w ∈ X. From the proof of Theorem 3.5 and from

Remark 3.7 we know that w ∈ C0(0,T; H2(Ω)) and w′ ∈ C0(0,T; H1
m(Ω)) and that the

initial conditions are fulfilled. By eventually reducing T > 0 we can therefore assure

that |w(xi) − u0(xi)| ≤ δ and |w′(xi) − u1(xi)| ≤ δ. Hence w ∈M and we set

Au = w. (3.72)

Now we show that A is a contraction. Choose u, ũ ∈ M and set w = Au, w̃ = Aũ

and ∆w = w − w̃. For notational convenience we set ui = u(t, xi), wi = w(t, xi), etc.

Analogously to the proof of the a-priori estimate in Lemma 3.4 we test (3.71) with w′

and w̃′ and the complex conjugated equation with w′ and w̃′. Substraction then yields

d

dt

(
m(∆w′,∆w′) + a(∆w′,∆w′)

)

≤
∑

xi∈{a,b}
ℜ

((
f (ui, u

′
i ) − f (ũi, ũ

′
i ) + k(ui − ũi)

)
∆w′i

)

≤
∑

xi∈{a,b}

1

2

(
| f (ui, u

′
i ) − f (ũi, ũ

′
i )|2 + k2|ui − ũi|2

)
+ |∆w′i |2

≤
∑

xi∈{a,b}

1

2

(
L2

(
|ui − ũi| + |u′i − ũ′i |

)2
+ k2|ui − ũi|2

)
+ |∆w′i |2

≤
∑

xi∈{a,b}
(L2 + k2)|ui − ũi|2 + L2|u′i − ũ′i |2 + |∆w′i |2

≤ C
(
‖u − ũ‖2

H2(Ω)
+ ‖u′ − ũ′‖2

H1
m(Ω)
+m(∆w′,∆w′) + a(∆w,∆w)

)
.

The last estimate is due to the Sobolev embeddings of H2(Ω) and H1
m(Ω) into C1(Ω)

and C0(Ω), respectively. As in the proof of Lemma 3.4 we can now apply Gronwall’s

inequality to conclude

sup
0≤t≤T

(‖∆w′‖2
H1

m(Ω)
+ ‖∆w‖2

H2(Ω)
) ≤ eCTT sup

0≤t≤T

(‖u − ũ‖2
H2(Ω)

+ ‖u′ − ũ′‖2
H1

m(Ω)
). (3.73)

This is equivalent to

‖Au − Aũ‖X ≤ CT
1
2 ‖u − ũ‖X, (3.74)
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and by choosing T > 0 sufficiently small we can make A a contraction. This yields

the existence of a fixed point in M and hence a short time solution of the nonlinear

equation. �

For simpler nonlinear support functions like e.g. f (u) = −eiγ|u|3 one could also prove

long time existence, because global a-priori estimates can be derived easily, since
d
dt |u|4 = f (u)ū′ + f̄ (u)u′. The complicated nature of the support function for hydrody-

namic bearings does not permit such a simple approach. However, since the forces are

always restoring a proof for global existence should still be possible, but is not in the

scope of this work.



Chapter 4

Finite Element Discretization

In Chapter 2 we have derived the equations of motion (2.45) and (2.46) of a homoge-

nous, isotropic, rotating beam by the Lagrangian formalism. We are now going to use

the variational formulation of the equations of motion (2.36) to derive approximative

equations by the finite element method. The derivation is based on (Yamamoto &

Ishida, 2001) which is itself based on (Nelson & McVaugh, 1976). Good introductions

to the use of the finite element method in engineering can also be found in the books

(Kikuchi, 1986) and (Meirovitch, 1986). For the mathematical background see e.g.

(Rannacher, 2000; Rannacher, 2001; Braess, 2007; Strang & Fix, 1973).

4.1 Variational Formulation

We derive the finite element formulation for a rotating Rayleigh beam to which several

rigid disks are attached and which rotates in bearings. For this, consider the equations

of motion (2.45) and (2.46) for u, v ∈ H2(Ω) together with boundary conditions at zp1
= 0

and zpN+1
= L and transmission conditions at the points zpi

∈ Ω̊ = (0, L), i = 2, . . .N to

model the point forces fp and moments mp occuring at the positions of rigid disks and

and bearings

(EIau′′)′′ + µü − (Iaü′)′ − ω(Ipv̇′)′ + cu̇ = funb,1, (4.1)

(EIav′′)′′ + µv̈ − (Iav̈′)′ + ω(Ipu̇′)′ + cv̇ = funb,2 − µg, (4.2)
[
Iaü′ + ωIpv̇′ − (EIau′′)′

]
zpi

= fpi,1, (4.3)
[
Iav̈′ − ωIpu̇′ − (EIav′′)′

]
zpi

= fpi,2, (4.4)

[EIau′′]zpi
= tpi ,1, (4.5)

[EIav′′]zpi
= tpi ,2. (4.6)
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The notation [g]z denotes the jump of g at point z. To obtain a variational formulation

we multiply 4.1 with the test function η ∈ H2(Ω) and (4.2) with the test function

ξ ∈ H2(Ω). Partial integration overΩ = [0, L] then yields
∫

Ω

EIau′′η′′ + µüη + Iaü′η′ + ωIpv̇′η′ + cu̇η dz

+

N∑

i=1

(
(EIau′′)′η − (EIau′′)η′ − Iaü′ − ωIpv̇′

)∣∣∣∣
zpi+1

zpi

=

∫

Ω

funb,1η dz, (4.7)

∫

Ω

EIav′′ξ′′ + µv̈ξ + Iav̈′ξ′ − ωIpu̇′ξ′ + cv̇ξ dz

+

N∑

i=1

(
(EIav′′)′η − (EIav′′)η′ − Iav̈′ + ωIpu̇′

)∣∣∣∣
zpi+1

zpi

=

∫

Ω

( funb,2 − µg)ξ dz. (4.8)

The boundary terms that appear here, also appear in (4.3) - (4.6) and can therefore be

replaced with the corresponding forces and moments
∫

Ω

EIau′′η′′ + µüη + Iaü′η′ + ωIpv̇′η′ + cu̇η dz

+

N+1∑

i=1

(
fpi ,1(zpi

)η(zpi
) + tpi,1η

′(zpi
)
)
=

∫

Ω

funb,1η dz, (4.9)

∫

Ω

EIav′′ξ′′ + µv̈ξ + Iav̈′ξ′ − ωIpu̇′ξ′ + cv̇ξ dz

+

N+1∑

i=1

(
fpi ,2(zpi

)η(zpi
) + tpi,2η

′(zpi
)
)
=

∫

Ω

( funb,2 − µg)ξ dz. (4.10)

Adding the two equations we obtain the variational formulation of our equation

∫

Ω



η

ξ




T 

µ

µ







ü

v̈


 +



η′

ξ′




T 


Ia

Ia







ü′

v̈′


 +



η

ξ




T 


c

c







u̇

v̇




+



η′′

ξ′′




T 


EIa

EIa







u′′

v′′


 +



η′

ξ′




T 


ωIp

−ωIp







u̇′

v̇′


 dz (4.11)

+

N+1∑

i=1



η(zpi

)

ξ(zpi
)




T 


fpi,1

fpi,2


 +



η′(zpi

)

ξ′(zpi
)




T 


tpi ,1

tpi ,2


 =

∫

Ω



η

ξ




T 


funb,1

funb,2 − µg


 dz.

4.2 System Matrices

We observe that the integral part of the functional on the left hand side of this equation is

the sum of five functionals. We will now discuss the transformation of these functionals
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in the finite element approximation. The five functionals are the translatory inertia

functional

mt(ü, v̈, η, ξ) =

∫

Ω



η

ξ




T 

µ

µ







ü

v̈


 dz, (4.12)

the rotatory inertia functional

mr(ü, v̈, η, ξ) =

∫

Ω



η′

ξ′




T 


Ia

Ia






ü′

v̈′


 dz, (4.13)

the damping functional

c(u̇, v̇, η, ξ) =

∫

Ω



η

ξ




T 


c

c






u̇

v̇


 dz, (4.14)

the stiffness functional

k(u, v, η, ξ) =

∫

Ω



η′′

ξ′′




T 


EIa

EIa







u′′

v′′


 dz, (4.15)

and finally, the gyroscopic functional which introduces the coupling

g(u̇, v̇, η, ξ) =

∫

Ω



η′

ξ′




T 


ωIp

−ωIp







u̇′

v̇′


 dz. (4.16)

To derive approximative equations we chose a finite dimensional subspace Vn ⊂ H2(Ω)

and a basis {w̃i}i=1,...,n of Vn. The vectors

{wi}i=1,...,2n =






w̃i

0


 ,




0

w̃i



 (4.17)

then form a basis for Vn ×Vn. We are seeking solutions with separated variables of the

form 


u(z, t)

v(z, t)


 =

2n∑

i=1

qi(t)wi(z) (4.18)

which we will write in matrix notation as



u

v


 =Wq, (4.19)

where q = (q1, . . . , q2n) is the vector of the time dependent coefficients and W =

(w1, . . . ,w2n) is the matrix which has the basis vectors as columns. By putting (4.19) into

(4.11) and using the wi as test functions we obtain a system of 2n ordinary differential
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equations for q. This is the explicite formulation of the Galerkin approximation in

equation (3.52) in chapter 3.

∫

Ω

WT



µ

µ


 Wq̈ +W′T




Ia

Ia


 W′q̈ +WT




c

c


 Wq̇

+W′′T



EIa

EIa


 W′′q +W′T




ωIp

−ωIp


 W′q̇ dz (4.20)

+

N∑

i=1

W(zpi
)T




fpi,1

fpi,2


 +W′(zpi

)T




tpi,1

tpi,2


 =

∫

Ω

WT




funb,1

( funb,2 − µg)


 dz.

The integrals can be evaluated and yield the system matrices. Each of the functionals

(4.12)-(4.16) defines a matrix which acts on the vector of coefficients q or its time

derivatives. We have

mt(Wq̈,W) =

∫

Ω

WT



µ

µ


 Wq̈ dz =Mtq̈, (4.21)

where

Mt
i, j =

∫

Ω

µwT
i w j dz, i, j = 1, . . . , 2n. (4.22)

Analogously we obtain the matrices

Mr
i, j =

∫

Ω

Iaw′Ti w′j dz, i, j = 1, . . . , 2n, (4.23)

Ci, j =

∫

Ω

cwT
i w j dz, i, j = 1, . . . , 2n, (4.24)

Ki, j =

∫

Ω

EIaw′′Ti w′′j dz, i, j = 1, . . . , 2n, (4.25)

(4.26)

which are all symmetric. The matrix defined by the gyroscopic functional is slightly

more complicated, due to the coupling. By Wu we denote the first row of W, and by

Wv we denote its second row. We have

g(Wq̇,W) =

∫

Ω




W′
u

W′
v




T 


ωIp

−ωIp






W′
u

W′
v


 dzq̇ (4.27)

=

∫

Ω

ωIp



−W′

v

W′
u




T 


W′
u

W′
v


 dzq̇ (4.28)

=

∫

Ω

ωIp(W′T
u W′

v −W′T
v W′

u) dzq̇ = Gq̇, (4.29)
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where

Gi, j =

∫

Ω

ωIp(w′Ti,uw̃′j,v − w′Ti,vw′j,u) dz, i, j = 1, . . . , 2n. (4.30)

In the approximate Equation (4.20) the sum

N+1∑

i=1

W(zpi
)T




fpi,1

fpi,2


 +W′(zpi

)T




tpi,1

tpi,2


 (4.31)

containing the transmission terms transforms into a vector that gives the projected

forces and moments which might also depend on displacments and inclinations in the

zpi
. It can be further simplified if we chose the basis elements in an appropriate way

(cf. Sec. 4.3). Also the integral of the unbalance forcing

funb =

∫

Ω

WT




funb,1

funb,2


 dz (4.32)

yields a vector valued forcing term which in principle can be calculated explicitly if

we know the value of the eccentricity along the shaft. This, unfortunately, is rarely the

case and the unblance has to be estimated in practice. Analogously, only if the mass

density µ is known we can calculate the gravity load explicity

fgrav =

∫

Ω

WT




0

−µg


 dz. (4.33)

4.3 Explicite Choice of Approximating Space

Until now, we have left open the choice of the approximating subspace Vn and of the

basis elements wi. We will now give a derivation of the explicit system matrices based

on (Yamamoto & Ishida, 2001) and (Nelson, 1980). For this the beam is decomposed

into N sections of constant diameter, cross-section and material properties like density

and Young’s modulus. We will first derive the approximate equations for such a

uniform beam element and then accumulate them into a system for the whole beam.

Now, let us consider the kth beam element bounded by zk and zk+1 of lenght lk = zk+1−zk.

We want to describe the movement of the beam element by the nodal displacements

(uk, vk) and (uk+1, vk+1) and the nodal inclination angles (βk, γk) and (βk+1, γk+1) in zk

and zk+1, respectively, as shown in Figure 4.1. In the Appendix A it is shown that

β ≈ −v′ and γ ≈ u′ (see also Section 2.3). The displacement in x-direction u(z) is

approximated by a cubic polynomial which is uniquely determined by the four values

(uk, γk, uk+1, γk+1), and so is the displacement in y-direction v(z) by (vk, βk, vk+1, βk+1).

We can solve this interpolation problem with the use of the Hermite polynomials Ψk
i
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uk+1

vk+1

vk

βk+1

γk+1

βk

zk+1zk

uk

γk

z

y

x

Figure 4.1: A single beam element is described by the nodal displacements (uk, vk) and

uk+1, vk+1 and the nodal inclination angles (βk, γk) and (βk+1, γk+1).

(Stoer & Bulirsch, 2002; Meirovitch, 1986)

Ψ1(z) = 1 − 3

(
z − zk

lk

)2

+ 2

(
z − zk

lk

)3

, (4.34)

Ψ2(z) = (z − zk)


1 − 2

(
z − zk

lk

)
+

(
z − zk

lk

)2 , (4.35)

Ψ3(z) = 3

(
z − zk

lk

)2

− 2

(
z − zk

lk

)3

, (4.36)

Ψ4(z) = lk


−

(
z − zk

lk

)
+

(
z − zk

lk

)3 , (4.37)

and obtain the following representation for the displacements in [zk, zk+1]

u(z) = Ψ1(z)uk +Ψ2(z)γk +Ψ3(z)uk+1 +Ψ4(z)γk+1, (4.38)

v(z) = Ψ1(z)vk −Ψ2(z)βk +Ψ3(z)vk+1 −Ψ4(z)βk+1. (4.39)

Note that the Hermite polynomials are also the solutions of the static problem with

unit displacement of one of the variables, e.g. Ψ1 solves EIau′′′′ = 0 with boundary

condition uk = 1 and γk = γk+1 = uk+1 = 0. In the engineering literature these

interpolating functions are called shape functions.

We set

q̃k = (uk, vk, βk, γk, uk+1, vk+1, βk+1, γk+1)T (4.40)

and rewrite (4.38) and (4.39) in matrix form




u

v


 =



Ψ1 0 0 Ψ2 Ψ3 0 0 Ψ4

0 Ψ1 −Ψ2 0 0 Ψ3 −Ψ4 0


 q̃k =Wkq̃k. (4.41)
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If we put this into equation (4.20), we obtain the system translatory mass matrix by

calculating all the integrals in (4.21):

Mt
k =

µlk

420




156

0 156 Sym.

0 −22lk 4l2
k

22lk 0 0 4l2
k

54 0 0 13lk 156

0 54 −13lk 0 0 156

0 13lk −3l2
k

0 0 22lk 4l2
k

−13lk 0 0 −3l2
k
−22lk 0 0 4l2

k




. (4.42)

The other matrices are obtained by evaluating equations (4.23) - (4.30) and are given

in the Appendix C. We obtain the equation of motion for one beam element

M ¨̃qk + (G + C) ˙̃qk + Kq̃k = F, (4.43)

where the vector F = funb + fgrav is the sum of unbalance forcing and gravity load. For

a uniform element we can calculate the gravity load vector

fgrav = −
µg

12

[
0, 6lk,−l2k , 0, 0, 6lk, l

2
k , 0

]T
. (4.44)

4.4 Rigid Disk Element Matrices

We now focus our attention on the discrete terms in the variational formulation (4.20)

which give the virtual work of the forces and moments exerted by rigid disks. To

facilitate notation we first consider only the Lagrangian of the rotating rigid disk at

node k which we have derived in (2.59). Here again, we assume that the two cross-

sectional moments of inertia are equal, i.e. ∆I = 0

L =
Ia

2

(
γ̇2 + β̇2 + 2ωτ(γ̇ sin(ωt + η) + β̇ cos(ωt + eta))

)

+
I3

2

(
ω2 − 2ωγ̇β − 2ωτ(γ̇ sin(ωt + η) + ωβ sin(ωt + η))

)

+
md

2
(u̇2

k + v̇2
k) +mdω(v̇krd

g,1 − u̇krd
g,2) −mdgvk. (4.45)

Variation of the action functional with Rayleigh dissipation function FR = c(u̇2 + v̇2)

leads to 4 ordinary differential equations for the nodal coordinates qk = (uk, vk, βk, γk)

mdük + cu̇k = mdω
2(rG,1 cosωt − rG,2 sinωt), (4.46)

mdv̈k + cv̇k = mdω
2(rG,1 sinωt + rG,2 cosωt) −mdg, (4.47)

Iaβ̈k + ωI3γ̇k = ω
2τ(Ia − I3) sin(ωt + η), (4.48)

Iaγ̈k − ωI3β̇k = ω
2τ(Ia − I3) cos(ωt + η). (4.49)



56 Chapter 4: Finite Element Discretization

We can rewrite this in matrix notation

Mdq̈k + (Cd + Gd)q̇k = f d
unb + f d

grav, (4.50)

where the mass matrix Md is given by

Md =




m 0 0 0

0 m 0 0

0 0 Ia 0

0 0 0 Ia



, (4.51)

the gyroscopic matrix Gd by

Gd = ω




0 0 0 0

0 0 0 0

0 0 0 I3

0 0 −I3 0



, (4.52)

and the damping matrix by

Cd =




c 0 0 0

0 c 0 0

0 0 0 0

0 0 0 0



. (4.53)

The vectors of unbalance forces f d
unb

and gravity f d
grav are

f d
unb =




mdω
2(rG,1 cosωt − rG,2 sinωt)

mdω
2(rG,1 sinωt + rG,2 cosωt)

ω2τ(Ia − I3) sin(ωt + η)

ω2τ(Ia − I3) cos(ωt + η)




and f d
grav =




0

−mdg

0

0



. (4.54)

4.5 Assembling the Complete System

So far we have considered either one beam section with two nodes or a node to which a

rigid disk is attached. We will now show how the elements can be combined to derive

the approximative equation for the complete beam with N elements. Corresponding

to the choice we have made in Section 4.3, we take Vn to be the space of continuously

differentiable functions which are piecewise cubic polynomials

Vn = {u ∈ C1([0, L])|u|[zk ,zk+1] ∈ P3([zk, zk+1]), (4.55)

which is dense in H2(Ω) and has the dimension 2(N + 1). We set

q = (q1, . . . , qN+1) = (u1, v1, β1, γ1, . . . , uN+1, vN+1, βN+1, γN+1), (4.56)

where qk is the vector of nodal coordinates for the kth node. We choose the position

of the nodes such that the set of nodes includes the set of points where interface
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conditions are given in equations (4.3)-(4.6). The individual element displacement

vectors q̃k = (qk, qk+1) can be obtained from this via q̃k = Akq where

Ak =




0 0 . . . 0 1 0 . . . 0 0 . . . 0

0 0 . . . 0 0 1 . . . 0 0 . . . 0
...

. . .
...

0 0 . . . 0 0 0 . . . 1 0 . . . 0



∈ R8×4(N+1). (4.57)

Here, N + 1 is the total number of nodes and the block with the identity matrix starts

in the 4(k− 1)+ 1th column. We define the continuously differentiable matrix function

W on [0, L] by

W(z) =Wk(z)Ak for z ∈ Ik, (4.58)

where each Wk is defined as in equation (4.41) on the respective interval [zk, zk+1]. From

the definition of the Wk it is clear that W is in Vn ×Vn. Hence the overall displacement

is given by 


u

v


 =Wq. (4.59)

In terms of Section 4.1, the columns of W are the basis elements wi ∈ Vn × Vn, i =

1, . . . , 4(N+ 1). They are chosen in such a way that in node k they have have either unit

displacement (w4(k−1)+1 and w4(k−1)+2) or unit inclination (w4(k−1)+3 and w4(k−1)+4).

By putting the definition (4.58) of W into the variational formulation and the formulas

for the system matrices (4.21) - (4.30), we obtain expressions for the complete system

matrices

n−1∑

k=1

AT
k

( ∫

Ik

WT
k



µ

µ


 Wkq̈ +W′T

k




Ia

Ia


 W′

kq̈ +WT
k




c

c


 Wkq̇

+W′′T
k




EIa

EIa


 W′′

k q +W′T
k




ωIp

−ωIp


 W′

kq̇ dz

)
Ak + Fp (4.60)

=

n−1∑

k=1

AT
k

∫

Ik

WT
k




funb,1

funb,2 − µg


 dz.

The vector Fp gives the nodal forces and moments exerted by rigid disks or bearings.

From the definition of the Wk we see that Wk(zpi
) , 0 only for zpi

= zk or zpi
= zk+i

Wk(zk) =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0


 , (4.61)

Wk(zk+1) =




0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


 , (4.62)

W′
k(zk) =




0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0


 , (4.63)

W′
k(zk+1) =




0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0


 , (4.64)
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and hence Fp can be written as

Fp = [ fp1,1, fp1,2, tp1 ,1, tp1,2, . . . , fpn,1, fpn,2, tpn,1, tpn ,2]T. (4.65)

The bearing forces will be under consideration in Chapter 5. The disk forces have been

considered in Section 4.4 and can be written as



fdk,1

fdk,2

tdk,1

tdk,2



=Md

k q̈k + (Gd
k + Cd

k)q̇k − f d
unb,k − fgrav,kd . (4.66)

The complete mass matrix can hence be written as

M =

n−1∑

k=1

AT
k Ms

kAk +

n∑

k=1

BT
k Md

kBk, (4.67)

where Ms
k

is the mass matrix of the kth element, analogously for the gyroscopic,

damping and stiffness matrices and Md
k

is the mass matrix of the disk attached at the

kth node. The matrix

Bk =




0 . . . 0 1 0 0 0 0 . . . 0

0 . . . 0 0 1 0 0 0 . . . 0

0 . . . 0 0 0 1 0 0 . . . 0

0 . . . 0 0 0 0 1 0 . . . 0



∈ R4×4N (4.68)

places the nodal matrices at the right position in the system matrix like the Ak do for

the element matrices. Hence from (4.60) we get the equation of motion for the entire

system

Mq̈ + (G + C)q̇ + Kq = Funb + Fgr + Fbear, (4.69)

where the matrices are defined as above and the force vectors are combined from the

nodal and the element forces

Funb = Fd
unb + Fs

unb (4.70)

= [ f d1

unb
, . . . , f dn

unb
]T +

n−1∑

k=1

AT
k

∫

Ik

WT
k




funb,1

funb,2


 dz, (4.71)

Fgr = Fd
grav + Fs

grav (4.72)

= [ f d1
grav, . . . , f dn

grav]T +

n−1∑

k=1

AT
k

∫

Ik

WT
k




0

−µ(z)g


 dz (4.73)

=
[

f d1
grav, . . . , f dn

grav

]T −
n−1∑

k=1

AT
k

µg

12

[
0, 6lk,−l2k , 0, 0, 6lk, l

2
k , 0

]T
. (4.74)

The last equation only holds for uniform mass distribution in each element. The vector

of bearing forces has the form

Fbear =
[
0, . . . , 0, fb1,1, fb1,2, tb1,1, tb1,2, 0, . . . , 0, fb2,1, fb2,2, tb2,1, tb2,2, 0, . . . , 0

]T
. (4.75)
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The entries in the vector are at the postions of the bearing nodes. The special form of

the bearing response functions depends on the mechanical properties of the bearing

as described in Section 2.6 and in Chapter 5.

4.5.1 An Example
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Figure 4.2: Detailed beam model of turbocharger: the rotor shaft is modelled with 13 finite

elastic beam elements shown in blue, the turbine and impeller wheels are modelled as rigid

disks and are shown with dashed red lines, and the positions of the bearings are indicated

by the black triangles.

In Figure 4.2 a typical beam modell for a turbocharger is depicted. It consists of 13

elements and hence has 14 nodes. There are 2 rigid disks attached in node 4 and

12 respectivley (indicated by dashed lines), and the bearings (indicated by triangles)

are located at node 7 and node 9. This model will be used later on for numerical

simulations. A detailed description and all the paramters are given in the Appendix D.

4.6 Approximations for Unbalance Forcing

The unbalance force Funb in equation (4.69) includes terms coming from the rigid disks

and integral terms coming from an inhomogenous mass distribution along the shaft.

In practice it is very difficult to estimate the inhomogenity which is usually also very

small compared to the unbalance that is caused by the rigid disks. In the following the

integral terms will therefore be neglected and only the static and dynamic unbalance

caused by the misalignment of the rigid disks will be considered.
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Furthermore the moments cause by the dynamic unbalance are replaced by pairs of

forces located in neighbouring nodes. This formulation is equivalent (Yamamoto &

Ishida, 2001) and facilitates notation. The unbalance force vector in node k is then

characterized by its amplitude ak and its phase ψk in the x − y-plane perpendicular to

the shaft

funb,1 = ω2ak cos(ωt + ψk), (4.76)

funb,2 = ω2ak sin(ωt + ψk). (4.77)

The amplitude ak is calculated from the static unbalance and the force pairs replacing

the dynamic unbalance. For static unbalance only we have

ak = md‖rG‖, (4.78)

and for purely dynamic unbalance at node k we have

ak−1 = ak+1 =
τ(Ip − I3)

zk+1 − zk−1
. (4.79)

For the example from Section 4.5.1 the following constellation is considered where the

dynamic unbalance dominates the static unbalance

a3 = 1.35 × 10−7kgm, ψ3 = π, (4.80)

a5 = 1.50 × 10−7kgm, ψ5 = 0, (4.81)

a11 = 2.01 × 10−7kgm, ψ11 = 0, (4.82)

a13 = 2.07 × 10−7kgm, ψ13 = π. (4.83)



Chapter 5

Bearing Models

In the construction of turbomachinery, the bearings play an important role. Not only

do they contain the moving parts in their designated position, but they also provide

the necessary damping to prevent resonance catastrophes. In this chapter we derive

models for oil lubricated journal bearings and the reaction forces they exert on the

rotor.

In this work we consider plain journal bearings as they were used in the experiments

conducted at the Toyota Central R&D Laboratories, whereas in commercial high-speed

turbochargers usually floating ring bearings are used (San Andrés, 2006). The plain

journal bearings (c.f. Figs. 5.2 and 5.3) have the advantage that they are relatively

easy to model and that a closed form analytical solution of the pressure distribution

is possible in some special cases. For more complicated bearing geometries this is no

longer possible. The analytical formulation of the pressure distribution and hence also

the bearing reaction forces allows for a faster numerical integration of the equation of

motion of the rotor.

The derivation of bearing characteristics is an important branch of rotordynamics in

particular since the discovery of lubricant induced instabilities, i.e. oil whirl (Newkirk

& Taylor, 1925). The basic theory can be found in most textbooks on turbomachinery,

e.g. in (Childs, 1993; Vance, 1988; Yamamoto & Ishida, 2001). It is based on Reynolds’

equation for thin films of lubricant as we show in Section 5.1. The special case of long

bearings was already studied by Sommerfeld (Sommerfeld, 1964). The special case of

short bearings was introduced by Ocvirk (Childs, 1993). These two special cases allow

for an analytical formulation of the bearing reaction forces and are therefore of great

theoretical value. There is an extensive literature covering the calculation of bearing

coefficients, i.e. the coefficients of the linearization of the bearing functions (Lund,

1987; Szeri, 1998). These coefficients can be used for the prediction of the onset of the

lubricant induced instabilities (Muszynska, 1986; Muszynska, 1988; Crandall, 1995).

The evaluation of the model which was set up during the collaboration with TCRDL
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Figure 5.1: Comparison of experimental results (left) to simulations with Ocvirk short

bearing approximation (center) and modified short bearing (right); a perturbation term as

described in Sec. 5.2) yields a frequency shift of the oil whirl similar to the experimental

results.

showed that already the common simple journal bearing model explains the main

experimentally observed vibration phenomena quite well. The oil whirl, as well as

the resonance of the bending mode occur at nearly the same frequencies as in the

experiment as shown in the left and center diagram of Figure 5.1. The same holds for

the computed amplitudes and mode shapes. The detailed results of the simulations

are presented in Chapter 6, where also the comparison with the experimental data can

be found.

However, in the course of the evaluation of the model it showed that the simple journal

bearing model does not reproduce entirely correct the frequency of the subharmonic

self-excited oscillation, i.e. the oil whirl. The simulation results and the experimental

results differed, as can also be seen in Chapter 6. In the simulations the frequency of

the subharmonic oscillation was close to half the driving frequency until the driving

frequency reached twice the natural frequency of the beam. Then the frequency of the

self-excited oscillation locks to the natural frequency of the beam and reaches very high

amplitudes. The large amplitude oscillation is called oil whip. This transition behavior

is common and also observed in (Muszynska, 1986; Muszynska, 1988; San Andrés,

2006).

In the experiments the ratio of whirl frequency to driving frequency shifts from 1
2 to

lower values in the driving frequency range above the first critical frequency of the

beam. In order to describe this shift properly several other bearing models where con-

sidered and compared in simulations. Starting point is a modification of the pressure

distribution function (cf. Section 5.2) which shows that the frequency of the self-excited

oscillation can be directly influenced. Introduction of a perturbation which is quadratic

in the angular velocity ω leads to a shift of the whirl ratio that is very similar to the

one that is observed in the experiment (cf. Fig. 5.1).

In order to derive this perturbation from first principles the influence of second order

corrections to Reynolds’ equation is studied. As shown in 5.1.5 these inertia corrections

lead to a quadratic dependence of the pressure distribution on the angular velocity. The
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influence of inertia corrections on linearized bearing coefficients for journal bearings

has been studied in (Nataraj et al., 1994; Szeri, 1998; El-Shafei, 1995). A derivation of

the second order correction terms for squeeze film dampers is shown in (Crandall & El-

Shafei, 1993). The mathematical convergence theory for Reynolds theory is presented

in (Nazarov, 1990; Bayada & Chambat, 1986; Duvnjak & Marušić-Paloka, 2000) for

plain journal bearings with Newtonian lubricant and for thin films of non Newtonian

liquids in (Bourgeat et al., 1993; Duvnjak & Marušić-Paloka, 2000). The inertial effects

are studied in (Assemien et al., 1994)

The chapter is structured as follows. First we give the derivation of Reynolds’ equation

from the Navier-Stokes equation by an asymptotic expansion. The short bearing

approximation is derived by giving a relation of the film thickness to the bearing

length. This assumption of a relation between the two parameters is then also used to

derive the second order correction terms. In Section 5.2 we give a motivation for the

phenomenological perturbation term mentioned above. For completeness we list in

Section 5.3 some other bearing models which were also considered during the project,

such as finite length approximation, or Reynolds’ equation with Reynolds’ boundary

conditions.

5.1 Derivation of Reynolds’ Equation and Inertia Correction

We derive an equation for the pressure distribution inside a circular journal bearing.

This is a hydrodynamic bearing where a circular shaft rotates inside a circular bearing

casing and is supported by a thin layer of lubricant, usually oil in the case of the

turbocharger. It is schematically shown in the Figures 5.2 and 5.3. The bearing casing

is at rest. The rotation of the shaft creates a circular flow pattern by dragging along

the fluid. This flow pattern causes the impedance of the bearing to loads on the shaft

by causing higher pressures in narrowing regions of the bearing. This creates reaction

forces that oppose the movement. The reaction forces can be calculated from the

pressure distribution inside the bearing by integration over the bearing surface.

The radius R of the bearing and the radius R j of the rotating shaft differ by a small

distance cr, the radial bearing clearance (cf. Figs. 5.2 and 5.3). The axial length of the

bearing is called bearing width W. For small inclinations of the shaft the film thickness

h(ϕ) varies only with the circumferential angle ϕ and depends on the momentary

position of the shaft’s center Z which is considered to move with the velocity VZ. The

position of Z is given in polar coordinates by the eccentricity e and precession angle γ.

The angular velocity of the shaft is denoted by ω. Note that in the figures the bearing

clearance is exaggerated for illustration purposes. In the examined real turbocharger

the clearance is 0.02 mm, while the radius of the shaft is 3 mm.

The derivation is based on an asymptotic expansion of the Navier-Stokes equations
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Figure 5.2: Sketch of simple journal bearing; view in axial direction; the radial bearing

clearance cr is exaggerated for illustration

with respect to the small parameter ε = cr

R . This asymptotic expansion leads to ap-

proximations for the flow and the pressure in a thin film. The equation governing the

pressure is called Reynolds’ equation. We consider four cases in this work which differ

by higher order terms and by the ratio of the bearing width W to the bearing radius R:

1. The classical Reynolds’ equation: The ratio ε = cr

R is small, while the ratio δ = W
R

is of order 1; no higher order terms are considered.

2. The short bearing approximation: the ratio δ = W
R is also small in addition to ε.

To derive the approximate equations in one step we set ε = Kδ2. Then the

equations simplify even more and an analytical solution for the bearing forces

can be obtained.

3. Reynolds’ equation with inertia corrections: In the derivation of Reynolds’ equa-

tion only terms of zeroth order in ε are considered. The inertia correction takes

into account also terms of order ε1.
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Figure 5.3: Sketch of simple journal bearing; view in lateral direction

4. Short bearing with inertia corrections: As above the additional assumption of

small δ and ε = Kδ2 allows for further simplification and analytical solution for

the pressure distribution also for the higher order terms.

We derive in detail the equations for the pressure distributions in these four cases in

the following sections.

5.1.1 Scaling of the Navier Stokes Equations

The Navier-Stokes equations for an incompressible fluid (Ockendon & Ockendon,

1995) are given by

∂tū + (ū · ∇)ū = −∇p̄ + ν∆ū, (5.1)

div ū = 0. (5.2)

The bearings have cylindrical geometry. Therefore we write (5.1) and (5.2) in cylin-

drical coordinates and non-dimensionalize them using the following variables. The

dimensional variables carry an overbar, the non-dimensionalized ones carry a tilde:

τ = ωt, r̃ =
r̄

R
, z̃ =

z̄

R
, ϕ̃ = ϕ̄, (5.3)

ũ =
ū

Rω
, p̃ =

p̄

ρR2ω2
, R̃ = R2ω

ν
. (5.4)

The non-dimensionalized NSE for an incompressible fluid in cylindrical coordinates

then read as follows:
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r-component:

∂τũr + (ũr∂r̃ũr +
ũϕ

r̃
∂ϕ̃ũr + ũz∂z̃ũr −

ũ2
ϕ

r̃
)

= −∂r̃p̃ +
1

R̃
(∂2

r̃ ũr +
∂r̃ũr

r̃
+ ∂2

z̃ũr +
∂2
ϕ̃ũr

r̃2
− ũr

r̃2
−

2∂ϕ̃ũr

r̃2
), (5.5)

ϕ-component:

∂τũϕ + (
ũr

r̃
ũϕ + ũr∂r̃ũϕ +

ũϕ

r̃
∂ϕ̃ũϕ + ũz∂z̃ũϕ)

= −
∂ϕ̃p̃

r̃
+

1

R̃
(∂2

r̃ ũϕ +
∂r̃ũϕ

r̃
+ ∂2

z̃ ũϕ +
∂2
ϕ̃ũϕ

r̃2
−

ũϕ

r̃2
+

2∂ϕ̃ũr

r̃2
), (5.6)

z-component:

∂τũz + (ũr∂r̃ũz +
ũϕ

r̃
∂ϕ̃ũz + ũz∂z̃ũz)

= −∂z̃p̃ +
1

R̃
(∂2

r̃ ũz +
∂r̃ũz

r̃
+
∂2
ϕ̃ũz

r̃2
+ ∂2

z̃ ũz), (5.7)

Continuity equation:

∂r̃ũr +
ũr

r̃
+
∂ϕ̃ũϕ

r̃
+ ∂z̃ũz = 0. (5.8)

Two of the three dimensions of the problem are considered small compared to the

radius of the bearing: the radial clearance cr of the bearing and the axial length W

of the film. We therefore introduce the following scalings of the nondimensionalized

variables in Eqs. (5.5)-(5.8):

ε =
cr

R
, δ =

W

R
, r =

r̃ − 1

ε
, z =

z̃

δ
, ϕ = ϕ̃,

ur =
ũr

ε
, uz =

ũz

δ
, uϕ = ũϕ, R = εR̃, p = R ε

δ2
p̃.

The scaling for the axial coordinate z is chosen different from the scaling for the radial

coordinate in order to obtain a limit for different ratios of these two dimensions. The

scaling for the radial component includes a transformation such that r = 0 at the

bearing casing and r = −h(ϕ) on the journal surface. The differential operators in the

new variables fulfill

∂r̃ = ∂r
1

ε
, ∂z̃ = ∂z

1

δ
.

Writing NSE in the new coordinates then yields

∂τεur +


εur(

1

ε
∂rεur) +

1

1 + εr
uϕ∂ϕεur + δuz

1

δ
∂zεur −

u2
ϕ

1 + εr




= −1

ε
∂rp̃ +

1

R̃

(
1

ε2
∂2

rεur +
1

1 + εr
(
1

ε
∂rεur) +

1

δ2
∂2

zεur

+
1

(1 + εr)2
∂2
ϕεur −

εur

(1 + εr)2
−

2∂ϕεur

(1 + εr)2

)
,
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∂τuϕ +

(
εur

1 + εr
uϕ + εur(

1

ε
∂ruϕ) +

uϕ

1 + εr
∂ϕuϕ + δuz

1

δ
∂zuϕ

)

= − 1

1 + εr
∂ϕp̃ +

1

R̃

(
1

ε2
∂2

r uϕ +
1

1 + εr
(
1

ε
∂ruϕ) +

1

(1 + εr)2
∂2
ϕuϕ +

1

δ2
∂2

zuϕ

+
2∂ϕεur

(1 + εr)2
−

uϕ

(1 + εr)2

)
,

∂τδuz +

(
εur(

1

ε
∂rδuz) +

1

1 + εr
uϕ∂ϕδuz + δuz

1

δ
∂zδuz

)

= −1

δ
∂zp̃ +

1

R̃

(
1

ε2
∂2

rδuz +
1

1 + εr
(
1

ε
∂rδuz) +

1

δ2
∂2

zδuz +
1

(1 + εr)2
∂2
ϕδuz

)
.

With the scaling for the Reynolds number R = εR̃ we obtain:

R

∂τur + ur∂rur +

1

1 + εr
uϕ∂ϕur + uz∂zur −

u2
ϕ

(1 + εr)ε




= −R
ε2
∂rp̃ +

(
1

ε
∂2

r ur +
1

1 + εr
∂rur +

ε

δ2
∂2

zur +
ε

(1 + εr)2
∂2
ϕur

− ε

(1 + εr)2
ur −

2∂ϕεur

(1 + εr)2

)
,

R
(
∂τuϕ +

ε

1 + εr
uruϕ + ur∂ruϕ +

uϕ

1 + εr
∂ϕuϕ + uz∂zuϕ

)

= − R
1 + εr

∂ϕp̃ +

(
1

ε
∂2

r uϕ +
1

1 + εr
∂ruϕ +

ε

(1 + εr)2
∂2
ϕuϕ

+
ε

δ2
∂2

zuϕ +
2∂ϕε2ur

(1 + εr)2
−

εuϕ

(1 + εr)2


 ,

εR
(
∂τuz + ur∂ruz +

1

1 + εr
uϕ∂ϕuz + uz∂zuz

)

= −Rε
δ2
∂zp̃ +

(
∂2

r uz +
ε

1 + εr
∂ruz +

ε2

δ2
∂2

zuz +
ε2

(1 + εr)2
∂ϕuz

)
.

Finally by introducing the scaling for the pressure p = R ε
δ2 p̃ and ordering by orders of

ε and δ we get:

∂rur +
ε

1 + εr
ur +

1

1 + εr
∂ϕuϕ + ∂zuz = 0, (5.9)
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−∂rp = −ε
2

δ2


∂2

r ur + R
u2
ϕ

1 + εr


 (5.10)

+
ε3

δ2

(
R

(
∂τur + ur∂rur +

1

1 + εr
uϕ∂ϕuϕ + uz∂zuz

)
− 1

1 + εr
∂rur

)

−ε
4

δ4

(
∂2

zur

)

−ε
4

δ2



∂2
ϕur − ur − 2∂ϕur

(1 + εr)2


 ,

∂2
r uϕ =

δ2

1 + εr
∂ϕp (5.11)

+ε
(
R

(
∂τuϕ + ur∂ruϕ +

uϕ

1 + εr
∂ϕuϕ + uz∂zuϕ

)
− 1

1 + εr
∂ruϕ

)

−ε
2

δ2
∂2

zuϕ

+ε2R
uϕur

1 + εr

−ε2
∂2
ϕuϕ + 2ε∂ϕur − uϕ

(1 + εr)2
,

∂2
r uz − ∂zp = ε

(
R

(
∂τuz + ur∂ruz +

uϕ

1 + εr
∂ϕuz + uz∂zuz

)
− 1

1 + εr
∂ruz

)

−ε
2

δ2
∂2

zuz (5.12)

−ε2
∂2
ϕuz

(1 + εr)2
.

5.1.2 Boundary Conditions

We impose the following no slip boundary conditions on our system. On the outer

surface:

ũr = 0, ũϕ = 0, ũz = 0 onΓ1 = {r̃ = 0, ϕ̃ ∈ [0, 2π], z̃ ∈ [0,W]}, (5.13)

and on the journal surface:

ũr = Ṽr(ϕ, t), ũϕ = Ṽϕ(ϕ, t), ũz = 0 onΓ2 = {r̃ = −h̃(ϕ, t), ϕ̃ ∈ [0, 2π], z̃ ∈ [0,W]},
(5.14)

and at the openings at both ends:

p̃ = 0 onΓ3 ∪ Γ4 = {r̃ ∈ [−h̃(ϕ), 0], ϕ̃ ∈ [0, 2π], z̃ ∈ {0,W}}. (5.15)

The velocities Ṽr(ϕ, t) and Ṽϕ(ϕ, t) of the journal surface and the oil film thickness

h̃(ϕ, t) can be expressed in terms of the position and velocity of the journal center (cf.
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Figure 5.4: Sketch of simple journal bearing; view in axial direction

figure 5.4). Let Ee be the unit vector in the direction of the eccentricity ẽ and Eγ be the

corresponding orthonormal unit vector in the tangential direction. The velocity ṼZ of

the journal center can be written as

ṼZ = ˙̃eEe + γ̇ẽEγ.

Let Er and Eϕ be the local unit vectors at the point A. Then we have

Ee = cosϕEr − sinϕEϕ,

Eγ = sinϕEr + cosϕEϕ,

and from this

ṼZ = ( ˙̃e cosϕ + γ̇ẽ sinϕ)Er + (γ̇ẽ cosϕ − ˙̃e sinϕ)Eϕ.

Taking into concern the rotation of the shaft with with angular velocity ωwe can write

the velocity ṼA at point A as ṼA = ωEz× a+ ṼZ where a = −ẽEe+ lEr. We can determine
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l from the relation

‖a‖2 = R2
j = l2 + ẽ2 − 2lẽ cosϕ,

l± = ẽ cosϕ ±
√

R2
j
− ẽ2 sin2 ϕ.

Taking the positive solution l = l+ we get

a = −ẽEe + (ẽ cosϕ +
√

R2
j
− ẽ2 sin2 ϕ)Er

= −ẽ cosϕEr + ẽ sinϕEϕ + (ẽ cosϕ +
√

R2
j
− ẽ2 sin2 ϕ)Er

= ẽ sinϕEϕ +
√

R2
j
− ẽ2 sin2 ϕEr.

Hence

ṼA = ωẽ sinϕ(Ez × Eϕ) + ω
√

R2
j
− ẽ2 sin2 ϕ(Ez × Er)

+( ˙̃e cosϕ + γ̇ẽ sinϕ)Er + (γ̇ẽ cosϕ − ˙̃e sinϕ)Eϕ

= Er(−ωẽ sinϕ + ˙̃e cosϕ + ˙̃eγ sinϕ)

+Eϕ(ω
√

R2
j
− ẽ2 sin2 ϕ − ˙̃e sinϕ + γ̇ẽ cosϕ) (5.16)

= ṼrEr + ṼϕEϕ. (5.17)

For the film thickness h̃ we have

h̃ = R − l

= R − ẽ cosϕ −
√

R2
j
− e2 sin2 ϕ

= R − ẽ cosϕ −
√

(R − cr)2 − e2 sin2 ϕ. (5.18)

We now nondimensionalize and scale the boundary conditions in the same way as we

did for the NSE:

Vr =
1

ε

Ṽr

Rω
, Vϕ =

Ṽϕ

Rω
, κ =

1

ε

ẽ

R
=

ẽ

cr
, τ = ωt.

The derivative with respect to τ will be denoted by ′. From this and Eqs. (5.16) and

(5.18) we deduce the following equations for Vr

crωVr = −ωcrκ sinϕ + ωcrκ
′ cosϕ + ωcrκγ

′ sinϕ

Vr = −κ sinϕ + κ′ cosϕ + κγ′ sinϕ (5.19)

= V0
r ,



5.1 Derivation of Reynolds’ Equation and Inertia Correction 71

for Vϕ

RωVϕ = ω
√

R2
j
− ẽ2 sin2 ϕ − crωκ

′ sinϕ + ωcrκγ
′ sinϕ

Vϕ =

√
(R − cr)2

R2
− c2

r

R2
κ2 sin2 ϕ − εκ′ sinϕ + εκγ′ cosϕ

=

√
1 − 2ε + ε2 − ε2κ2 sin2 ϕ − εκ′ sinϕ + εκγ′ cosϕ

= (1 − ε − 1

2
ε2κ2 sin2 ϕ +O(ε3)) − εκ′ sinϕ + εκγ′ cosϕ

= 1 + ε(−1 − κ′ sinϕ + κγ′ cosϕ) − ε2 1

2
κ2 sin2 ϕ +O(ε3) (5.20)

= V0
ϕ + εV1

ϕ +O(ε2),

and for h(ϕ, t)

h(ϕ, t) =
h̃(ϕ)

R

1

ε
=

h̃(ϕ)

cr

=
1

ε
− κ cosϕ −

√
(
1

ε
− 1)2 − κ2 sin2 ϕ

=
1

ε
− κ cosϕ − (

1

ε
− 1 − ε1

2
κ2 sin2 ϕ +O(ε2))

= 1 − κ cosϕ + ε
1

2
κ2 sin2 ϕ +O(ε2) (5.21)

= h0 + εh1 +O(ε2).

5.1.3 Reynolds’ Equation and Short Bearing Approximation

We now want to solve the scaled NSE (5.9)-(5.12). We still have two free parameters

in the equations which we will assume to be small in the following. ε = cr

R is the ratio

of radial clearance cr and bearing radius R and is a measure for the film thickness. It

is considered small in all bearing theories. δ = W
R is the ratio of the bearing width W

and the radius R. This parameter is considered small in the so called short bearing

approximation. In the present model we have ε≪ δ ≪ 1. We therefore assume in the

following relation between the two parameters

ε = Kδ2. (5.22)
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This leads to the following equations

−∂rp = −Kε


∂2

r ur + R
u2
ϕ

1 + εr




+Kε2
(
R

(
∂τur + ur∂rur +

1

1 + εr
uϕ∂ϕuϕ + uz∂zuz

)
− 1

1 + εr
∂rur − K∂2

zur

)

−ε3K



∂2
ϕur − ur − 2∂ϕur

(1 + εr)2


 ,

∂2
r uϕ = ε

(
1

K(1 + εr)
∂ϕp − 1

1 + εr
∂ruϕ − K∂2

zuϕ

)

+εR
(
∂τuϕ + ur∂ruϕ +

uϕ

1 + εr
∂ϕuϕ + uz∂zuϕ

)

+ε2R
uϕur

1 + εr
− ε2

∂2
ϕuϕ + 2ε∂ϕur − uϕ

(1 + εr)2
,

∂2
r uz − ∂zp = ε

(
R

(
∂τuz + ur∂ruz +

uϕ

1 + εr
∂ϕuz + uz∂zuz

)
− 1

1 + εr
∂ruz − K∂2

zuz

)

−ε2
∂2
ϕuz

(1 + εr)2
,

and

∂rur +
ε

1 + εr
ur +

1

1 + εr
∂ϕuϕ + ∂zuz = 0.

We expand u and p into a series in ε

uε = u0 + εu1 +O(ε2) and pε = p0 + εp1 +O(ε2)

and insert the series into the scaled equations above, keeping in mind that

1

1 + εr
=

∞∑

n=0

(−εr)n.

Collecting terms of same order in ε we get

ε0 : ∂rp
0 = 0, (5.23)

∂2
r u0
ϕ = 0, (5.24)

∂2
r u0

z − ∂zp0 = 0, (5.25)

∂ru
0
r + ∂ϕu0

ϕ + ∂zu0
z = 0, (5.26)
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ε1 : −∂rp
1 = −K(∂2

r u0
r + R(u0

ϕ)2), (5.27)

∂2
r u1
ϕ =

∂ϕp0

K
− ∂ru

0
ϕ − K∂2

zu0
ϕ

+ R
(
∂τu

0
ϕ + u0

r∂ru
0
ϕ + u0

ϕ∂ϕu0
ϕ + u0

z∂zu0
ϕ

)
, (5.28)

∂2
r u1

z − ∂zp1 = −∂ru
0
z − K∂2

zu0
z

+ R
(
∂τu

0
z + u0

r∂ru
0
z + u0

ϕ∂ϕu0
z + u0

z∂zu0
z

)
, (5.29)

∂ru
1
r + u0

r − r∂ϕu0
ϕ + ∂ϕu1

ϕ + ∂zu1
z = 0. (5.30)

The boundary conditions for the functions appearing in the expansions for the pressure

and the velocity can be calculated from the boundary conditions for the NSE (5.13)

- (5.15) and their expansions (5.19) - (5.21). From uεr (0, ϕ, z) = 0 on the outer surface

we deduce u0
r (0, ϕ, z) = u1

r (0, ϕ, z) = 0. Analogously u0
ϕ(0, ϕ, z) = u1

ϕ(0, ϕ, z) = 0 and

u0
z(0, ϕ, z) = u1

z(0, ϕ, z) = 0. The boundary conditions at the inner surface r = −hε are

more interesting. For notational convenience the dependence of the velocities from z

and ϕ are not explicitly written down in the next equations. We get

Vr = uεr (−hε)

= u0
r (−h0 − εh1 +O(ε2)) + εu1

r (−h0 − εh1 +O(ε2)) +O(ε2)

= u0
r (−h0) − εh1∂ru

0
r (−h0) + εu1

r (−h0) +O(ε2).

From (5.19) we see that Vr = V0
r and therefore

u0
r (−h0) = V0

r , (5.31)

u1
r (−h0) = h1∂ru

0
r (−h0). (5.32)

For u0
ϕ, u1

ϕ, u0
z and u1

z we derive in the same way that

u0
ϕ(−h0) = V0

ϕ, (5.33)

u1
ϕ(−h0) = V1

ϕ + h1∂ru
0
ϕ(−h0), (5.34)

u0
z(−h0) = 0, (5.35)

u1
z(−h0) = h1∂ru

0
z(−h0). (5.36)

In combination with these boundary conditions the equations (5.23) - (5.30) can be

solved analytically which shall be done in the following sections.
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5.1.4 Approximate Solution of Order ε0

We start with the order ε0. The first equation (5.23) tells us that the pressure does not

depend on the radial variable r. Equations (5.24) and (5.25) can therefore be integrated

over r using the boundary conditions at r = 0 and r = −h0. We obtain the velocity

profiles:

u0
ϕ = −V0

ϕ
r

h0
, (5.37)

u0
z =

r(r + h0)

2
∂zp0. (5.38)

From the continuity equation (5.26) we can calculate ∂ru
0
r :

−∂ru
0
r = ∂ϕu0

ϕ + ∂zu0
z = ∂ϕ

(
−V0

ϕ
r

h0

)
+

r(r + h0)

2
∂2

zp0. (5.39)

We use again the fact that p0 does not depend on r and integrate both sides with respect

to r to eliminate the radial coordinate

−V0
r =

−h0(ϕ)∫

0

∂ϕ

(
−V0

ϕ
r

h0

)
dr + ∂2

zp0

[
1

6
r3 +

h0

4
r2

]−h0

0

(5.40)

= ∂ϕ

−h0(ϕ)∫

0

(
−V0

ϕ
r

h0

)
dr +

(
V0
ϕ

h0

h0

)
∂ϕh0 +

h3
0

12
∂2

zp0 (5.41)

= ∂ϕ

(
−V0

ϕ
h0

2

)
+ V0

ϕ∂ϕh0 +
h3

0

12
∂2

zp0. (5.42)

Leibniz’ rule ∂α
∫ g(α)

0
f (x, α) dx =

∫ g(α)

0
∂α f (x, α) dx + f (g(α), α)∂αg was used for inter-

changing derivation and integration. From this we get for the pressure

∂2
zp0 =

12

h3
0

(
h0

2
∂ϕV0

ϕ +
1

2
V0
ϕ∂ϕh0 − V0

ϕ∂ϕh0 − V0
r

)
(5.43)

=
12

h3
0

(
h0

2
∂ϕV0

ϕ −
1

2
V0
ϕ∂ϕh0 − V0

r

)
. (5.44)

Integration over z and using p = 0 for z ∈ {0, 1} then yields

p0 =
6z(z − 1)

h3
0

(
h0

2
∂ϕV0

ϕ −
1

2
V0
ϕ∂ϕh0 − V0

r

)
. (5.45)

To obtain the pressure profile in the lowest order in εwe finally use theε0-approximation

V0
r , V0

ϕ and h0 from (5.19) and (5.20) and (5.21).

h0 = 1 − κ cosϕ, V0
ϕ = 1, V0

r = −κ sinϕ + κ′ cosϕ + κγ′ sinϕ

and finally get
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Statement 5.1. The pressure solution for the zeroth order short bearing approximation

corresponding to point 2 in the list in Section 5.1 is

p0 = 6z(z − 1)

(
− 1

2κ sinϕ + κ sinϕ − κ′ cosϕ − κγ′ sinϕ
)

(1 − κ cosϕ)3
(5.46)

= −6z(z − 1)

(
(γ′ − 1

2 )κ sinϕ + κ′ cosϕ
)

(1 − κ cosϕ)3
. (5.47)

Usually the short bearing approximation is obtained by first deriving Reynolds’ equa-

tion for thin films and then in a second step assuming also smallness of the bearing

width. Here, due to the special scaling it can be derived in one step. In Figure 5.5 the

distributions for different values of κ, κ̇ are depicted to give an idea of the geometric

nature of the solutions.

Figure 5.5: Zeroth order short bearing pressure distributions p0 for varying values of κ and

κ̇; left: κ = 0.1, κ̇ = 0, middle: κ = 0.9, κ̇ = 0, right: κ = 0.5, κ̇ = 0.4.

For zero radial velocity the pressure distribution shows lower pressures in the region

behind (in mathematically positive direction) the point of smalles film-thicknes and

higher pressures in front of this bottle neck. For large eccentricities the region of large

pressure variation is concentrated around this point of smallest film-thickness. These

pressure differences sustain the circular whirling motion of the shaft. For nonzero

radial velocity there appears a large pressure opposing the outward movement and

avoiding collision.

From the solution for the pressure we can calculate the velocity profiles u0
r , u0

ϕ and u0
z

by (5.37), (5.38), and (5.39)

u0
ϕ = − r

h0
, (5.48)
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u0
z =

r(r + h0)

2
∂zp0 (5.49)

=
−6r(r + h0)

h3
0

(
z − 1

2

) ((
γ′ − 1

2

)
κ sinϕ + κ′ cosϕ

)
,

u0
r =

r∫

0

(−∂ϕu0
ϕ − ∂zu0

z) dρ

=

r∫

0

− ρ
h2

0

∂ϕh0 −
ρ(ρ + h0)

2
∂2

zp0 dρ

=
r2

2h2
0

κ sinϕ −



2r3 + 3r2h0

h3
0



((
γ′ − 1

2

)
κ sinϕ + κ′ cosϕ

)
. (5.50)

5.1.5 Approximate Solution of Order ε1

The equations (5.27) - (5.30) for the order ε1 have almost the same structure as the

zeroth order approximation. The difference lies only in the right hand side terms

which depend on the lower order solutions p0 and u0. To simplify the notation we

define

T0
ϕ(r, ϕ, z, τ) :=

∂ϕp0

K
− ∂ru

0
ϕ − K∂2

zu0
ϕ

+R
(
∂τu

0
ϕ + u0

r∂ru
0
ϕ + u0

ϕ∂ϕu0
ϕ + u0

z∂zu0
ϕ

)
, (5.51)

T0
z (r, ϕ, z, τ) := −∂ru

0
z − K∂2

zu0
z

+R
(
∂τu

0
z + u0

r∂ru
0
z + u0

ϕ∂ϕu0
z + u0

z∂zu0
z

)
. (5.52)

Equations (5.28) and (5.29) can then be rewritten as

∂2
r u1
ϕ = T0

ϕ, (5.53)

∂2
r u1

z − ∂zp1 = T0
z . (5.54)

From the equation for the pressure (5.27) and the solutions of lower order from the

previous section we see that

∂r∂zp1 = ∂z∂rp
1 = K(∂z∂

2
r u0

r + R∂z(u0
ϕ)2) = 0.

Therefore ∂zp1 does not depend on r and we can again use an analogous procedure

like in the previous section to derive an equation for the pressure.

We integrate equation (5.54) twice over r and use the boundary conditions (5.36) to

obtain

u1
z =

r(r + h0)

2
∂zp1 +

r∫

0

ρ∫

0

T0
z (s) ds dρ +

r

h0



−h1∂ru

0
z(−h0) +

−h0∫

0

ρ∫

0

T0
z (s) ds dρ



. (5.55)
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For u1
ϕ we have the boundary conditions u1

ϕ(0) = 0 and u1
ϕ(−h0) = V1

ϕ + h1∂ru
0
ϕ(−h0)

(5.34). Hence the circumferential velocity v1
ϕ is given by

u1
ϕ =

r∫

0

ρ∫

0

T0
ϕ(s) ds dρ +

r

h0



−V1

ϕ − h1∂ru
0
ϕ(−h0) +

−h0∫

0

ρ∫

0

T0
ϕ(s) ds dρ




(5.56)

and does only depend on the boundary condition and known zeroth order terms.

For u1
r we have the boundary conditions u1

r (0) = 0 and u1
r (−h0) = h1∂ru

0
r (−h0) (5.32). By

integrating the continuity equation (5.30) over r we then obtain

−h1∂ru
0
r (−h0) =

−h0∫

0

−∂ru
1
r dr (5.57)

=

−h0∫

0

(u0
r − r∂ϕu0

ϕ) dr +

−h0∫

0

∂ϕu1
ϕ dr +

−h0∫

0

∂zu1
z dr (5.58)

=

−h0∫

0

(u0
r − r∂ϕu0

ϕ) dr +

−h0∫

0

∂ϕu1
ϕ dr + ∂2

zp1

−h0∫

0

r(r + h0)

2
dr

+

−h0∫

0

r∫

0

ρ∫

0

∂zT0
z (s) ds dρ dr

+

−h0∫

0

r

h0



−h1∂z∂ru

0
z(−h0) +

−h0∫

0

ρ∫

0

∂zT0
z (s) ds dρ




dr. (5.59)

Here we used again that h0 and h1 do not depend on the axial coordinate z. Thus we

have eliminated the radial coordinate again and we have

∂2
zp1 =

12

h3
0



−h1∂ru

0
r (−h0) −

−h0∫

0

(u0
r − r∂ϕu0

ϕ) dr

−
−h0∫

0

∂ϕu1
ϕ dr −

−h0∫

0

r∫

0

ρ∫

0

∂zT0
z (s) ds dρ dr

−h0

2



−h1∂z∂ru

0
z(−h0) −

−h0∫

0

ρ∫

0

∂zT0
z (s) ds dρ







=: R(z, ϕ).

Using the zero boundary conditions for the pressure we can integrate the right hand

side term and we get the following solution for the pressure in the order ε1:

p1(z, ϕ, τ) =

z∫

0

ζ∫

0

R(s, ϕ) ds dζ − z

1∫

0

ζ∫

0

R(s, ϕ) ds dζ. (5.60)
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All the integrals on the right hand side exist and can be solved analytically. Hence

the solution for the pressure p1 can be computed explicitly and can be written in the

following form

p1 = R(κ′)2


−

51

35h2
0

z(z − 1) cos2 ϕ




+ Rκ′γ′

−

3

70h2
0

z(z − 1) sinϕ(47κ cosϕ + 14)




+ Rκ′



3

35h2
0

z(z − 1) sinϕ(10κ cosϕ + 7)




+ κ′



1

2h5
0

z(z − 1)
(
6h0κ sin2 ϕ(2κ cosϕ + 1)

+
(z2 − z − 1)

K
(−κ cos2 ϕ + 2κ2 cos3 ϕ + 3κ sin2 ϕ − cosϕ)

)

+ Rκ′′
(
− 3

5h0
z(z − 1) cosϕ

)

+ Rγ′′
(
− 3

5h0
z(z − 1)κ sinϕ

)

+ Rγ′2

−
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70h2
0

z(z − 1)κ2 sin2 ϕ




+ Rγ′



1

140h2
0

z(z − 1)κ
(
253κ sin2 ϕ − 7 cosϕ + 7κ cos2 ϕ

)

+ γ′



1

2h5
0

z(z − 1)
(
6κ2 sinϕh0(κ cos2 ϕ − cosϕ + 3κ sin2 ϕ)

+
(z2 − z − 1)

K
κ sinϕ(3κ2 sin2 ϕ − 1 − 4κ cosϕ + 5κ2 cos2 ϕ)

)

+ R

−

1

140h2
0

z(z − 1)κ
(
−14 cosϕ + 14κ cos2 ϕ + 65κ sin2 ϕ

)

+


−

1

4h5
0

z(z − 1)κ sinϕ
(
2h0(5 − 10κ cosϕ + 5κ2 cos2 ϕ + 9κ2 sin2 ϕ)

− (z2 − z − 1)

K
(3κ2 sin2 ϕ − 1 − 4κ cosϕ + 5κ2 cos2 ϕ)

) . (5.61)

This rather inconveniently long expression can also be written in the form

p1 =
z(z − 1)

h5
0


z(z − 1)G +

4∑

i=0

Hi


 , (5.62)

where the terms G and Hi are expression in terms of hi, Vi, and p0. They are given in

Appendix E.1.
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Statement 5.2. The inertia correction for the short bearing pressure distribution has the

following structure

p1 = F0 + RF1 + γ
′F2 + Rγ′F3 + R(γ′)2F4 + Rγ′′F5

+Rκ′′F6 + κ
′F7 + Rκ′F8 + Rκ′γ′F9 + R(κ′)2F10, (5.63)

where the F j are rational functions of h, κ cosϕ and κ sinϕ. The detailed formula is given in

Equation (5.61). An alternative formulation is given in Appendix E.1. We call p = p0 + εp1

the first order short bearing approximation. This approximation corresponds to point 4 in the

list of bearings models in Section 5.1.

An analysis of the performed scalings shows that the term RF1 leads to an ω2-

dependence of the pressure

p =
ε

δ2
Rp̃ =

ε

δ2
R p̄

ρR2ω2
, R = εR2ω

ν
.

The rescaled formula for the pressure is

p̄ =
ρR2ω2δ2ν

ε2R2ω
p

=
ρνωδ2

ε2
p

≈ ρνω

Kε
(p0 + εp1)

=
ρνω

Kε
p0 +

1

K

(
ρνωF0 + ω

2ρRcrF1 + ρνγ̇F2 +
ρνγ̇

K
F3 + ωρRcrγ̇F4

+γ̇2RcrF5 + Rcrγ̈F6 + ρRcrκ̈F7 + ρνκ̇F8

+
ρνκ̇

K
F9 + ωρRcrκ̇F10 + ρRcrκ̇γ̇F11 + ρRcrκ̇

2F12

)
.

In Figure 5.6 the inertia corrected pressure distributions for different parameter values

are depicted. It can be seen in the lower line that for large values of W, i.e. small

values of K, the first order solution differs significantly from the zeroth order solution.

In these cases the validity of the short bearing approximation is in question and a

solution without this approximation is needed.

5.1.6 Solution Without Short Bearing Approximation

The short bearing approximation is only valid for W
R -ratios up to 1 (Childs, 1993). For

bearings with very high W
R -ratios the Sommerfeld or long bearing approximation is

valid, but as most modern bearings do not have such high ratios this approximation is

rarely used (San Andrés, 2006). In the case where neither approximation can be used,

the classical Reynolds equation has to be solved numerically. We will now derive the
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Figure 5.6: First order pressure distributions p0 + εp1 for varying values of κ, κ̇ and W;

upper line: W = 0.25 (K = 1), lower line: W = 5.4 (K = 0.002); left: κ = 0.1, κ̇ = 0, middle:

κ = 0.9, κ̇ = 0, right: κ = 0.9, κ̇ = 0.

equations for zeroth and first order in ε corresponding to the points 1 and 3 in the

list in Section 5.1. In Section 5.4.1 we give a simple finite difference scheme for their

solution.

In equations (5.9) - (5.12) we expand p and u again into series in ε and collect terms of

the same order. Thus we get

ε0 : ∂rp
0 = 0, (5.64)

∂2
r u0
ϕ − δ2∂ϕp0 = 0, (5.65)

∂2
r u0

z − ∂zp0 = 0, (5.66)

∂ru
0
r + ∂ϕu0

ϕ + ∂zu0
z = 0, (5.67)
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ε1 : ∂rp
1 = 0, (5.68)

∂2
r u1
ϕ − δ2(∂ϕp1 − r∂ϕp0) = −∂ru

0
ϕ (5.69)

+ R
(
∂τu

0
ϕ + u0

r∂ru
0
ϕ + u0

ϕ∂ϕu0
ϕ + u0

z∂zu0
ϕ

)
,

∂2
r u1

z − ∂zp1 = −∂ru
0
z + (5.70)

+ R
(
∂τu

0
z + u0

r∂ru
0
z + u0

ϕ∂ϕu0
z + u0

z∂zu0
z

)
,

∂ru
1
r + u0

r − r∂ϕu0
ϕ + ∂ϕu1

ϕ + ∂zu1
z = 0. (5.71)

To simplify the notation in the equations for the first order corrections we define the

following terms which collect all lower order terms:

T0
ϕ = −δ2r∂ϕp0 − ∂ru

0
ϕ + R

(
∂τu

0
ϕ + u0

r∂ru
0
ϕ + u0

ϕ∂ϕu0
ϕ + u0

z∂zu0
ϕ

)
, (5.72)

T0
z = −∂ru

0
z + R

(
∂τu

0
z + u0

r∂ru
0
z + u0

ϕ∂ϕu0
z + u0

z∂zu0
z

)
. (5.73)

Analogously to Section 5.1.4 we use the fact that the pressure does not depend on the

radial coordinate to integrate velocity equations over r

uϕ = δ2 r(r + h0)

2
∂ϕp0 − V0

ϕ
r

h0
, (5.74)

uz =
r(r + h0)

2
∂zp0. (5.75)

The boundary conditions remain the same as before. From the continuity equation we

get

−∂ru
0
r = ∂ϕu0

ϕ + ∂zu0
z , (5.76)

and integration then yields

−V0
r =

−h0∫

0

∂ϕu0
ϕ + ∂zu0

z dr (5.77)

=
1

12
δ2∂ϕ(h3

0∂ϕp0) +
1

12
∂z(h3

0∂zp0) +
1

2
V0
ϕ∂ϕh0 − h0

2
∂ϕV0

φ. (5.78)

The last term vanishes since ∂ϕV0
φ
= 0. We obtain the classical Reynolds equation, an

elliptic equation for the zeroth order pressure p0:

δ2∂ϕ(h3
0∂ϕp0) + ∂z(h3

0∂zp0) = −12(V0
r +

1

2
V0
ϕ∂ϕh0). (5.79)

By means of the numerical methods described in Section 5.4.1 we can compute ap-

proximate solutions for this second order elliptical equation. For different parameter
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Figure 5.7: Solution p0 of zeroth order Reynolds equation for varying values of κ, κ̇, and

W; upper line: W = 0.25 (K = 1), lower line: W=5.4 (K = 0.002); left: κ = 0.1, κ̇ = 0, middle:

κ = 0.9, κ̇ = 0, right: κ = 0.9, κ̇ = 0.

values of κ, κ̇, and bearing width W these are depicted exemplarily in Figure 5.7. The

figures show similar behavior for different values of the bearing width in contrast to

the behavior of the short bearing approximation in the previous section 5.1.5. Here

we see zones of elevated pressure in front of the point of smallest film-thickness and

reduced pressure behind this point. Note that the different scales are due the non-

dimensionalization. In the scaled case with units the pressure is higher for the longer

bearing, the scaling factor for the pressure being
ρνω
Kε =

ηωW2

c2
r

.

For the first order equations we proceed analogously to obtain another elliptic equation

for p1. The right hand side of this equation however is more complicated due to the

terms T0
ϕ and T0

z . By integration of the equations for the velocities u1
ϕ and u1

z we get

u1
ϕ = δ2 r(r + h0)

2
∂ϕp1 +

r∫

0

s∫

0

T0
ϕ(t, ϕ, z, s) ds dρ (5.80)

+
r

h0



−V1

ϕ − h1∂ru
0
ϕ(−h0) +

−h0∫

0

s∫

0

T0
ϕ(t, ϕ, z, s) ds dρ



, (5.81)
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u1
z =

r(r + h0)

2
∂zp1 +

r∫

0

s∫

0

T0
z (t, ϕ, z, s) ds dρ (5.82)

+
r

h0



−h1∂ru

0
z(−h0) +

−h0∫

0

s∫

0

T0
z (t, ϕ, z, s) ds dρ



. (5.83)

Using the continuity equation and integrating over r we obtain

−V1
r =

−h0∫

0

∂ϕu1
ϕ + ∂zu1

z + u0
r − r∂ϕu0

ϕ dr (5.84)

=
1

12
δ2∂ϕ(h3

0∂ϕp1) +
1

12
∂z(h3

0∂zp1) (5.85)

+

−h0∫

0


∂ϕ

r∫

0

s∫

0

T0
ϕ(t, ϕ, z, s) ds dρ + ∂z

r∫

0

s∫

0

T0
z (t, ϕ, z, s) ds dρ


 dr

+

−h0∫

0

∂ϕ




r

h0



−V1

ϕ − h1∂ru
0
ϕ(−h0) +

−h0∫

0

s∫

0

T0
ϕ(t, ϕ, z, s) ds dρ







dr

+

−h0∫

0

∂z




r

h0



−h1∂ru

0
z(−h0) +

−h0∫

0

s∫

0

T0
z (t, ϕ, z, s) ds dρ







dr

+

−h0∫

0

(
u0

r − r∂ϕu0
ϕ

)
dr.

This is again an elliptic equation for p1 with a rather complicated right hand side

that depends only on the zeroth order solutions and the boundary conditions. The

velocities u0
r , u0

ϕ and u0
z can also be computed in terms of p0. After some computations

we obtain a right hand side that only depends on p0, film thickness, and the boundary

conditions

δ2∂2
ϕp1 + δ2

3∂ϕh0

h0
∂ϕp1 + ∂2

zp1 = Ψ(p0, h0, h1,V0
ϕ,V

1
ϕ). (5.86)

The the complete formula for Ψ is given in Appendix E.2. In the right hand side of

this equation there appear time derivatives of h0 and p0. The time derivative of h0

can easily be computed from (5.21) while the time derivative of the pressure needs

the solution of an auxiliary partial differential equation. Differentiating the classical

Reynolds equation (5.79) with respect to time we obtain

δ2∂2
ϕ∂tp

0 + δ2
3∂ϕh0

h0
∂ϕ∂tp

0 + ∂2
z∂tp

0 = − 12∂t




(V0
r +

1
2V0

ϕ∂ϕh0)

h3
0


 (5.87)

− δ2∂ϕp0(
3∂ϕ∂th0

h
+
∂th0∂ϕh0

h2
0

).
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This equation involves the same differential operator as Equations 5.79 and 5.86 and a

modified right hand side with known lower order terms. To summarize the previous

considerations we formulate the following statement.

Statement 5.3. The pressure distribution in a circular hydrodynamic bearing with lubrication

film thickness h0 = 1 − κ cosϕ is determined by three equations with the same differential

operator

L(·) = δ2∂2
ϕ(·) + δ2

3∂ϕh0

h0
∂ϕ(·) + ∂2

z(·), (5.88)

and varying right hand sides

ε0 : L(p0) = f0(κ, κ̇, γ̇), (5.89)

ε1 : L(p1) = Ψ(κ, κ̇, γ̇, κ̈, γ̈, p0,∇p0,∇2p0,∇3p0,∇2(∂tp
0)), (5.90)

where L(∂tp
0) = ∂t f0 − δ2∂ϕp0(

3∂ϕ∂th0

h
+
∂th0∂ϕh0

h2
0

). (5.91)

Here the pi are scalar functions defined onΩ = (0, 1) × (0, 2π). The boundary conditions are

pi(ϕ, 0) = pi(ϕ, 1) = 0 for ϕ ∈ (0, 2π), (5.92)

pi(0, z) = pi(2π, z) for z ∈ (0, 1). (5.93)

The parameters κ, γ, κ̇, γ̇, etc. are given by the current shaft position and velocity in polar

coordinates. The function f0 is given in Eq. (5.79), while a detailed expression for Ψ can be

found in the Appendix E.2. The pressure distribution p0 is called the zeroth order solution

and correspondes to point 1 in the list in Section 5.1. The pressure distribution p1 is called

the inertia correction and we call p = p0 + εp1 the first order solution to Reynolds’ equation,

corresponding to point 3 in the list.

The fact that we need the same differential operator in equations (5.89)-(5.91) simplifies

the numerical solution because we only need one discretization. Furthermore we have

to compute L−1 only once and can apply it subsequently to the three different right

hand sides.

In Figure 5.8 we exemplarily depict different inertia corrected solutions p0 + εp1. Com-

pared to the corrections in the short bearing case (cf. Fig. 5.6) the corrections in this case

are small. For both cases of W the geometry is very similar to the zeroth order case. In

Section 5.6 we thoroughly compare the different pressure distributions and also give

some numerical data that shows the convergence of the short bearing approximation

to the solution of the full Reynolds equation in zeroth and first order.
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Figure 5.8: Inertia corrected solutions p0 + εp1 of Reynolds equation for varying values of

κ, κ̇, and W; upper line: W = 0.25, lower line: W = 5.4; left: κ = 0.1, κ̇ = 0, middle: κ = 0.9,

κ̇ = 0, right: κ = 0.9, κ̇ = 0.

5.1.7 Remark on Existence and Regularity

The existence of a weak solution of Reynolds’ equation (5.79) is guaranteed by applying

the Lax-Milgram Lemma to the continuous bilinear form

a : H ×H→ R, (5.94)

a(u, v) =

∫

Ω

h3
0(δ2∂ϕu∂ϕv + ∂zu∂zv), (5.95)

where u and v belong to the Hilbert space

H = H1,2
per ∩ { f | TΓ2 f = 0} (5.96)

with TΓ2 being the trace operator onto the Dirichlet boundary

Γ2 = {(ϕ, z) ∈ ∂Ω | z ∈ {0, 1}, ϕ ∈ [0, 2π]}. (5.97)

The film thickness h0 is in C∞(Ω̄) and we have 0 < h0 < 2 on the whole of Ω̄, assuring

continuity. Since on one part of the boundary the functions of H have prescribed value,

the Poincaré inequality

‖u‖L2 ≤ C‖∂zu‖L2 ≤ C‖∇u‖L2 (5.98)

holds and the coercitivity β‖u‖2
L2 ≤ a(u, u) of the bilinear form is assured.

The right hand sides of the Reynolds’ equations for the time derivative ∂tp0 and for the

first order correction p1 involve higher order derivatives of the zeroth order solution
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p0. Therefore some regularity considerations are required. The coefficient h0 is in

C∞(Ω) which gives us all the interior regularity we need (Evans, 1998). Because we

can continuate it periodically, the Dirichlet boundary at z = 0 and z = 1 is in C∞, so we

also have regularity up to the boundary.

5.2 Phenomenological Correction of Pressure Function

In Section 5.1 we derived four bearing theories from first principles by asymptotic

expansions of the Navier-Stokes equations. In Chapter 6 we see that simulations

which only use the zeroth order approximations for the pressure do not reproduce the

frequency of the oil whirl as observed in the experiments. The inertia corrections yield

a small effect and lead to a reduced whirl frequency. However, the observed effect is

still small compared to the experimental result. In the following we describe a simple

fifth bearing model that is used to examine the influence of the pressure function on

the whirl frequency. It is obtained by the following phenomenological considerations.

The pressure distribution of the short bearing solution is

p̄0 = −6
z̄

W

(
z̄

W
− 1

) W2ρν

c2
r

(
(γ̇ − ω

2 )κ sinϕ + κ̇′ cosϕ
)

(1 − κ cosϕ)3
. (5.99)

for z ∈ [0,W]. Using this pressure function in the calculation of the bearing forces

during numerical integration of the equation of motion of the rotor, we observe a

subharmonic instability with a frequency of approximately ω
2 .

To test the influence of the term G = (γ̇ − ω
2 ) in the expression for p0 on the frequency

of the self excited oscillation we modify the term G and use the term

G̃ =
(
γ̇ − ω

2
+ s(ω)

)
(5.100)

instead. The shift function s has a strong influence on the subharmonic frequency. A

linear term s = σω with σ ∈ [0, 1
2 ] leads to a linear frequency shift, while the correction

function s(ω) = σω2 introduces a quadratic dependence onω into the pressure function.

By tuning the coefficient σ it is possible to control the shift. Using the modified pressure

distribution

p̄0 = −6
z̄

W

(
z̄

W
− 1

) W2ρν

c2
r

(
(γ̇ − ω

2 + s(ω))κ sinϕ + κ̇′ cosϕ
)

(1 − κ cosϕ)3
, (5.101)

to calculate the bearing reaction forces, the experimentally observed nonlinear fre-

quency shift can be observed also in the numerical simulations shown in Chapter 6.

Figure 5.9 depicts three pressure distributions for varying values of κ and κ̇ for illus-

tration. In Section 5.6 we compare this pressure distribution and the resulting bearing

forces to the usual short-bearing approximation.



5.2 Phenomenological Correction of Pressure Function 87

Figure 5.9: Phenomenologically corrected short bearing pressure distributions p0 for vary-

ing values of κ and κ̇; left: κ = 0.1, κ̇ = 0, middle: κ = 0.9, κ̇ = 0, right: κ = 0.5,

κ̇ = 0.4.

The structure of the term G is explained in (Crandall, 1995). Recall the derivation

of Reynolds’ equation (cf. Sec. 5.1.4) where we obtained as principal flow pattern a

Couette flow with a linear velocity profile growing from 0 on the bearing casing to Rω

on the shaft. Integration of the continuity equation (5.26) over the radial coordinate

and using the expression (5.38) for u0
z yields

−V0
r =

−h0(ϕ)∫

0

∂ϕu0
ϕ(r, ϕ) dr +

−h0(ϕ)∫

0

∂zu0
z(r, ϕ, z) dr

= ∂ϕ

−h0(ϕ)∫

0

u0
ϕ(r, ϕ) dr + u(−h0(ϕ), ϕ)∂ϕh0(ϕ) +

h3
0

12
∂2

zp0

= −∂ϕ(h0(ϕ)u0
ϕ(ϕ)) + V0

ϕ∂ϕh0(ϕ) +
h3

0

12
∂2

zp0

= (V0
ϕ − u0

ϕ(ϕ))∂ϕh0(ϕ) − h0(ϕ)∂ϕu0
ϕ(ϕ) +

h3
0

12
∂2

zp0,

where uϕ(ϕ) is the radially averaged circumferential lubricant velocity.

In Section 5.1.1 we have rescaled time such that the angular velocity is of order O(1).

In order to show the appearance of the ω/2-term, in the following paragraphs we go

back to dimensionalized time. Hence V0
ϕ = ω and V0

r = −ωκ sinϕ + κ̇ cosϕ + κγ̇ sinϕ.

Integration over z yields

p0 =
6z(z − 1)

h3

(
−V0

r + (u0
ϕ(ϕ) − V0

ϕ)∂ϕh(ϕ) + h(ϕ)∂ϕu0
ϕ(ϕ)

)

=
6z(z − 1)

h3

(
ωκ sinϕ − κ̇ cosϕ − κγ̇ sinϕ + (u0

ϕ(ϕ) − ω)κ sinϕ

+(1 − κ cosϕ)∂ϕu0
ϕ(ϕ)

)

=
6z(z − 1)

h3

(
(u0
ϕ(ϕ) − γ̇)κ sinϕ − κ̇ cosϕ + (1 − κ cosϕ)∂ϕu0

ϕ(ϕ)
)
. (5.102)
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In the short bearing approximation the circumferential velocity has a linear Couette

profile (cf. Eq. (5.37)) which rises from zero velocity on the casing to V0
ϕ = ω on the

shaft

uϕ =
r

h(φ)
ω, (5.103)

and hence the radially averaged circumferential velocity is

u0
ϕ(ϕ) =

1

2
ω (5.104)

and does not depend on ϕ. Therefore the last term in (5.102) vanishes and we get

p0 =
−6z(z − 1)

h3

(
(γ̇ − ω

2
)κ sinϕ + κ̇ cosϕ

)
. (5.105)

In (Muszynska, 1986; Muszynska, 1987; Muszynska, 1988) the fluid average circumfer-

ential velocity is identified as an important parameter for the onset and the frequency

of the oil whirl. Experimental results are given which show a decrease of the average

circumferential velocity for large eccentricities of the shaft. Hence

G̃ = (γ̇ − ω
2
+ s(ω)) (5.106)

can be interpreted as a direct change of the lubricants average circumferential velocity.

In Chapter 6 we see that this manipulation of the term G = (γ′ − 1
2 ) leads to a change

in the subharmonic response frequency. This observation is also the motivation for

the derivation of the inertia correction. As shown in Section 5.1.5 the inclusion of first

order corrections leads to an ω2-dependence of the pressure and hence the bearing

forces.

5.3 Alternative Bearing Models

Several other modifications of the bearing model were also tested for their ability to

reproduce the experimental results, especially the frequency shift of the oil whirl. As

the simulations in Chapter 6 show, it was not possible to reproduce the shift by any of

them. We describe them here for completeness.

5.3.1 The Finite Bearing

In the short bearing theory the axial pressure distribution is approximated by a

parabolic profile of order 2. Another possibility is to assume a separation of the

variables and approximate the axial pressure distribution by a parabolic function of

order m (Inagaki, 2002):

p(ϕ, ζ) = (1 − (2ζ − 1)m)v(ϕ). (5.107)
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If we plug this into equation (5.79) and integrate both sides with respect to ζ from 0 to

1, we obtain

δ2 m

m + 1

(
3h2hϕvϕ + h3vϕϕ

)
− 4mh3v = −12

(
G sinϕ + E cosϕ

)
, (5.108)

where we set E = κ′ and G = κ(γ′− 1
2 ). It is possible to simplify this equation by setting

w = h2v. Inserting this into equation (5.108) one gets:

hwϕϕ − hϕwϕ − (2hϕϕ + ah)w = −12b
(
G sinϕ + E cosϕ

)
, (5.109)

where a = 4
(m+1)
δ2 and b =

(m+1)
mδ2 . Expanding w into a Fourier series and neglecting terms

of order 3 and higher one gets an approximation of the solution:

w =

2∑

n=0

Kn cos(nϕ) +

2∑

n=1

Cn sin(nϕ), (5.110)

where

K0 =
−24κbE

3aκ2 − 4a − 4 − 6κ2
,

K1 =
−48bE

3aκ2 − 4a − 4 − 6κ2
=

2

κ
K0,

K2 =
−24κbE(a − 2)

(3aκ2 − 4a − 4 − 6κ2)(a + 4)
= K0

(a − 2)

(a + 4)
,

C1 =
−48bG

aκ2 − 4a − 2κ2 − 4
,

C2 =
−24κbG(a − 2)

(aκ2 − 4a − 2κ2 − 4)(a + 4)
=
κ

2
C1

(a − 2)

(a + 4)
.

Having this, the approximate pressure function is

p = (1 − (2ζ − 1)m)
w

h2
. (5.111)

Figure 5.10 show the pressure distributions for varying values of κ, κ̇, and W. The

geometry is most notably different for small eccentricities (κ = 0.1). In Section 5.6

we compare the resulting forces. The finite bearing approximation proposed here

underestimates the pressure in most cases, leading to too small bearing forces. This

is due to the large error made by truncating the Fourier series. This approximation is

therefore not considered in the numerical simulations in Chapter 6.

5.3.2 Reynolds’ Boundary Conditions

In the calculation of the bearing forces in Section 5.5 the so-called Gümbel boundary

conditions are used. They provide a simple cavitation model by setting the pressure

to zero where negative pressure occurs. In our search for an oilfilm model that repro-

duces the frequency shift the use of these simplified boundary conditions appeared
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Figure 5.10: Finite bearing pressure distributions p0 for varying values of κ, κ̇, and W;

upper line: W = 0.25, lower line: W = 5.4; left: κ = 0.1, κ̇ = 0, middle: κ = 0.9, κ̇ = 0, right:

κ = 0.5, κ̇ = 0.4.

to be another possible explanation. A more realistic cavitation model is given by

Reynolds’ boundary conditions (Yamamoto & Ishida, 2001). So we reformulate the

nondimensional Reynolds’ equation (5.79)

δ2∂ϕ
(
h3∂ϕp̄

)
+ ∂ζ

(
h3∂ζp̄

)
= −12

(
(γ′ − 1

2
)κ sinϕ + κ′ cosϕ

)
(5.112)

using Reynolds’ boundary conditions

p(0, z) = p(2π, ζ) ∀ζ ∈ [0, 1], (5.113)

p(ϕ, 0) = p(ϕ, 1) = 0 ∀ϕ ∈ [0, 2π], (5.114)

p ≥ 0, (5.115)

which leads to a free boundary problem for the pressure. The third boundary condition

is responsible for the free boundary problem structure because it does not fix the point

of oilfilm rupture.

This kind of problem can be solved numerically by a projection method like projective

successive overrelaxation (PSOR) (Deuflhard & Hohmann, 1993). Simply spoken, in

this method one computes the solution for the unconstrained problem and then projects

the solution on the subspace containing the feasible functions, that is the subspace of

positive functions in our case. In Section 5.4.1.3 we describe the method in detail

and give the appropriate choice of iteration matrices which assure convergence. In

Figure 5.11 the pressure distribution is again shown for varying parameter values.
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Figure 5.11: Pressure distributions p0 computed with Reynolds’ boundary conditions for

varying values of κ, κ̇, and W; upper line: W = 0.25, lower line: W = 5.4; left: κ = 0.1,

κ̇ = 0, middle: κ = 0.9, κ̇ = 0, right: κ = 0.5, κ̇ = 0.4.

5.4 Numerical Schemes for Reynolds’ Equation

In the previous section a variety of different bearing models were given. For some of

them it is possible to give analytical solutions, e.g. for the short bearing approximation

(5.47). Others involve the solution of partial differential equations, i.e. Reynolds’ equa-

tion with different right hand sides for the zeroth and first order approximation (5.79)

and (5.86) and the iterative solution of this equation with other boundary conditions

by the PSOR method in section 5.3.2. In this work three different methods have been

used to solve these PDEs which we will describe in the following. The differential

operator in all three cases is given by

L̃(·) = δ2∂ϕ
(
h3

0(ϕ)∂ϕ(·)
)
+ h3

0(ϕ)∂2
z(·). (5.116)

The operator L̃ above is given in divergence form and therefore useful in the weak

formulation of the problem which is used later for the finite element discretization.

The software package deal.II (Bangerth et al., 2007; Bangerth et al., 2008) is used for

the discretization and the setup of the linear equations.

The film thickness h0 depends only on the circumferential angle ϕ. Therefore we can

also divide L̃ by h3
0

and by δ2 to obtain the operator L which allows for an easier

discretization by finite differences

L(·) = ∂2
ϕ(·) + 1

δ2
∂2

z(·) +
3∂ϕh0

h0
∂ϕ(·). (5.117)
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5.4.1 Finite Differences for Reynolds’ Equation

5.4.1.1 5-point Laplacian and Second Order Approximation

A very simple discretization of L can be calculated by applying the five-point dis-

cretization of the Laplace operator and central differences for the first order derivative.

We obtain

δ2 3κ sinϕi

1 − κ cosϕi

1

2∆ϕ

(
p(ϕi+1, ζ j) − p(ϕi−1, ζ j)

)

+ δ2 1

∆2
ϕ

(
p(ϕi+1, ζ j) + p(ϕi−1, ζ j) − 2p(ϕi, ζ j)

)

+
1

∆2
ζ

(
p(ϕi, ζ j+1) + p(ϕi, ζ j−1) − 2p(ϕi, ζ j)

)

=
−12

(
(γ′ − 1

2 )κ sinϕi + κ
′ cosϕi

)

(1 − κ cosϕi)3
, (5.118)

where ϕi = i∆ϕ, i = 1, . . . ,N and ϕζ = j∆ζ, j = 1, . . . ,M.

We set

pi, j = p(ϕi, ζ j),

gi =
3κ sinϕi

1 − κ cosϕi
,

fi =
1

δ2

−12
(
(γ′ − 1

2 )κ sinϕi + κ
′ cosϕi

)

(1 − κ cosϕi)3
,

and

d =
∆2
ϕ

∆2
ζ
δ2
.

From this we get

1

∆2
ϕ

(pi+1, j + pi−1, j + d(pi, j+1 + pi, j−1) − 2(1 + d)pi, j) +
1

2∆ϕ
gi(pi+1, j − pi−1, j) = fi.

The periodic boundary condition p(0, z) = p(2π, z) leads to the following special rela-

tions:

∂ϕp1, j ≈
1

2∆ϕ
(p2, j − pN, j),

∂ϕpN, j ≈
1

2∆ϕ
(p1, j − pN−1, j).

So the discretized equation can be written in matrix form as

Cp = Ap + ∆ϕBp = F (5.119)
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with

A =




L1 dI

dI L1
. . .

. . .
. . . dI

dI L1




, where L1 =




−2 − 2d 1 1

1
. . .

. . .
. . .

. . . 1

1 1 −2 − 2d




,

B =
1

2




L2

L2

. . .

L2



, where L2 =




g1

g2

. . .

gN−1



·




0 1 −1

−1 0
. . .

. . .
. . . 1

1 −1 0




,

and ( f1, . . . , fN) M-times repeated to form the right hand side

F = ∆2
ϕ

(
f1, . . . , fN, . . . , f 1, . . . , fN

)T .

Since the 5-point-Laplacian and the central differences both are second order approxi-

mations this discretization also is of second order.

5.4.1.2 9-point-Laplacian and 4th Order Approximation

The 9-point-Laplacian on a uniform grid with step-size h

∆
(9)
h

uh =
1

6h2

(
4ui±1, j + 4ui, j±1 + ui±1, j±1 − 20ui, j

)
(5.120)

yields a fourth order approximation for the Poisson equation after a modification of

the right hand side (Rannacher, 2000) using the well known 5-point Laplacian

f̃ = f +
1

12
h2∆

(5)

h
f. (5.121)

To apply this to a discretization of the differential operator L of Reynolds’ equation

(5.117) with different step-sizes h1 and h2 in each direction we modify the discretization.

We set

L1 = θpi, j + αpi±1, j + βpi, j±1 + γpi±1, j±1 (5.122)

with

γ =
h2

1
+ δ2h2

2

12δ2h2
1
h2

2

, (5.123)

α =
1 − 2γh2

1

h2
1

, (5.124)

β =
1 − 2γh2

2
δ2

h2
2
δ2

, (5.125)

θ = −2(α + β + 2γ). (5.126)
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Furthermore we set

L2 =
gi

12h1

(
pi−2, j − 8pi−1, j + 8pi+1, j − pi+2, j

)
, (5.127)

where gi =
3∂ϕh0(ϕi)

h0(ϕi)
, and

L3 =
1

12

(
−4pi, j + pi±1, j + pi, j±1

)
(5.128)

to come to the following result.

Proposition 5.4. Let p be the solution of

L(p) = F (5.129)

where L is given by (5.117) and F =
f

δ2h3
0

. We then have

L1p + (I − L3)L2p − (I − L3)F = O(h4), (5.130)

i.e. the consistency order is τ = 4.

Proof. Taylor expansion and substitution of Equation (5.129) show that

L1p = ∂2
ϕp +

1

δ2
∂2

zp +
1

12
(h2

1∂
2
ϕ + h2

2∂
2
z)(F − g∂ϕp) +O(4), (5.131)

L2p = g∂ϕp +O(4). (5.132)

Furthermore, for any π ∈ C4 we have

L3π =
1

12
(h2

1∂
2
ϕ + h2

2∂
2
z)π +O(4). (5.133)

Hence the result follows. �

The computational effort can be reduced by using the symmetry in the z-direction. We

take Dirichlet conditions at z = 0 and symmetry conditions at z = 1
2 . In the ϕ-direction

we take periodic boundary conditions. The vector of unknowns is

p = (p0,1, p1,1, . . . , pN−1,1, p0,2, . . . , pN−1,M)T (5.134)

where the first index i of pi, j stands corresponds to the grid inϕ-direction and the second

index to the grid in z-direction. Using the above scheme we obtain the following system

matrices

L1 =




A B

B A
. . .

. . .
. . . B

2B A




, (5.135)
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where

A =




θ α α

α θ
. . .

. . .
. . . α

α α θ




, and B =




β γ γ

γ β
. . .

. . .
. . . γ

γ γ β




,

and

L2 =
1

12h1
IdM ⊗ C, (5.136)

where

C =




g1

g2

. . .

gN−1



·




0 8 −1 1 −8

−8 0 8 −1 1
. . .

. . .
. . .

. . .

8 −1 1 8 0



,

and

(I − L3) =
1

12




D IdN IdN

IdN D
. . .

. . .
. . . IdN

2IdN D




, where D =




8 1 1

1 8
. . .

. . .
. . . 1

1 1 8




.

As already mentioned in the derivation (cf. Section 5.1.6), the solution of Reynolds’

equation and its inertia correction requires the solution of three PDEs with identical

differential operator and varying right hand side. Therefore it is advantageous to use a

direct solution method like LU-decomposition for the corresponding linear equation,

since the decomposition of the system matrix can be stored and used three times

consecutively. In our case we use the LU-decomposition for sparse matrices which

is implemented in the software package UMFPACK (Davis, 2004; Davis, 2007) and

which is included in MATLAB. Comparison with iterative methods like bicgstab

or gmres showed a slight advantage of the sparse LU-decomposition in the required

computational time.

In the solution process the matrices for the discretized operator L1, L2, and L3 are set

up and the LU-decomposition is computed. Then the solution p0 of the zeroth order

of Reynolds’ equation is computed with the right hand side

f0 =
−12

(
(γ′ − 1

2 )κ sinϕi + κ
′ cosϕ

)

δ2h3
0

. (5.137)

The right hand side of the equation for ∂tp
0 involves spatial derivatives of p0 (cf.

(5.87)) and the one for p1 involves higher order derivatives of p0 and of ∂tp0 (cf. (E.9)).
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Due to the periodicity of the solution we can compute higher order approximations

of the ϕ-derivatives also at the boundary by prolongation. In order to compute the

z-derivatives, we use the differential equation to calculate second order derivatives,

while the first and third derivative are computed by finite differences.

The solution of the linear equations give an approximation to the pressure distribution

p = p0 + εp1. (5.138)

The resulting forces on the rotating shaft are computed by numerical integration of the

pressure distribution.

5.4.1.3 Projection Method for Constrained Problem

In Section 5.3.2 the positivity contstraints to Reynolds’ equation known as Reynolds’

boundary conditions are introduced as an alternative bearing model. The projective

successive overrelaxation method (PSOR) can be used to solve this free boundary

problem (Deuflhard & Hohmann, 1993). The PSOR algorithm for the constrained

problem works as follows. The matrix C = A + ∆ϕB from Eq. (5.119) is decomposed

into a diagonal, a lower and an upper triangular matrix C = D+L+R. We set Q = D+ρL,

S = (1 − ρ)D − ρR and F̃ = ρF. In every iteration step k we solve:

Qp̃k = Spk−1 + F̃, (5.139)

pk = max(p̃k, 0), (5.140)

where the first step is the usual successive overrelaxation step and the second step

is the projection on the subspace of positive functions. For a choice of ρ ∈ [1, 2] this

procedure converges to the solution of the free boundary problem because the SOR

converges (Deuflhard & Hohmann, 1993) and the projection does not increase the

spectral radius of the iteration mapping. Due to the fact that we have to solve the free

boundary problem in every time step the numerical integration becomes very slow.

The simulation results in Chapter 6 show no significant effect on the frequency of the

self-excited oscillation.

5.4.2 Finite Element Approximation

The pressure distribution inside the bearings shows large variations in the circumfer-

ential ϕ-direction in a small interval around ϕ = 0 and almost no variation elsewhere.

In order to resolve this with finite differences a very small stepsize has to be chosen,

which increases the computational cost. To overcome this problem a finite element

approach with local refinement is used alternatively to improve the speed of the calcu-

lations. The theory of finite elements for elliptic equations is well developed and can

be found in textbooks like (Braess, 2007; Ciarlet, 1978; Brenner & Scott, 1994; Strang &
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Fix, 1973) or in (Rannacher, 2000). We use the finite element software library deal.II

(Bangerth et al., 2007; Bangerth et al., 2008).

The weak formulations of the three Reynolds equations for zeroth order pressure p0

(derived from Eq. (5.79)), its time derivative ∂tp
0 (from (5.87)), and first order pressure

p1 (cf. (5.85)) are

−
"

Ω

1

12
h3

0∇̃p0∇̃ψ dϕ dz = −
"

Ω

fψ dϕ dz, (5.141)

−
"

Ω

1

12
h3

0∇̃∂tp
0∇̃ψ dϕ dz = −

"

Ω

∂t fψ dϕ dz +

"

Ω

∂th
3
0∇̃p0∇̃ψ dϕ dz, (5.142)

−
"

Ω

1

12
h3

0∇̃p1∇̃ψ dϕ dz =

"

Ω

(
−W0ψ +Wϕ∂ϕψ +Wz∂zψ

)
dϕ dz, (5.143)

where

W0 = h1∂ru
0
r (−h0) + ∂ϕh0

(
V1
ϕ + h1∂ruϕ(−h0)

)
− u0

r + r∂ϕuvph0,

Wϕ =

−h0∫

0

r∫

0

s∫

0

T0
ϕ(ρ, ϕ, z) dρ ds dr +

1

2
h0



−V1

ϕ − h1∂ruϕ(−h0) +

−h0∫

0

r∫

0

T0
ϕ(ρ, ϕ, z) dρ dr



,

Wz =

−h0∫

0

r∫

0

s∫

0

T0
z (ρ, ϕ, z) dρ ds dr +

1

2
h0



−h1∂ruz(−h0) +

−h0∫

0

r∫

0

T0
z (ρ, ϕ, z) dρ dr



.

Here we use the notations from Section 5.1.6 and additionally ∇̃ denotes the operator

∇̃ = (1
δ∂ϕ, ∂z)T. ψ is a test function.

In deal.II we use second order quadratic elements and Gaussian quadrature with 3

quadrature points in each direction. The local refinement is done following a-posteriori

error estimation with the built-in Kelly-estimator which measures the local error of the

solution of the Poisson problem by integrating over the jump of the gradients along

the faces of each cell (Bangerth et al., 2008). The treatment of the periodic boundary

conditions is not trivial since it must be kept track of the hanging nodes at different

levels of refinement along periodic boundary. This is done following the suggestions

of (Bangerth, 2002) by recursively checking the refinement of adjacent elements along

the periodic boundary and interpolating hanging nodes in case of different refinement

levels.

We want to use the same discretization of the differential operator for the three different

equations. Therefore, we first compute the solution of the zeroth order Equation (5.141)

on a relatively coarse grid that has been 3 times globally refined and which has 64

nodes. Then we subsequently refine 9 times locally by applying the a-posteriori error

estimation and refining the 30% of the cells with highest local error, while coarsening

the lowest 3%. The obtained system matrix is then also used to solve Equations
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cycles DOF I1 I2 DOF I1 I2

κ = 0.7 κ = 0.98

3 1126 -0.181363 0.0735314 1093 -2.05621 0.348900

4 2253 -0.183821 0.0737043 2225 -2.19322 0.348822

5 4262 -0.184569 0.0736962 4639 -2.21716 0.353029

6 8021 -0.184602 0.0737123 8831 -2.22607 0.354908

7 15674 -0.184642 0.0737650 16042 -2.22823 0.355328

8 29621 -0.184649 0.0737705 31122 -2.22937 0.355737

9 55805 -0.184641 0.0737767 58818 -2.22937 0.355813

10 105926 -0.184637 0.0737791 115497 -2.22968 0.355882

11 200516 -0.184635 0.0737798 216140 -2.22975 0.355925

12 378415 -0.184634 0.0737802 407322 -2.22978 0.355933

Table 5.1: Values of the bearing integrals converge with increasing number of local

refinement cycles for κ = 0.7 and slower for κ = 0.98. The slow convergence is due to

cut-off of the negative part of the solution.

(5.142) and (5.143). In Chapter 6 the numerical solution of the equation of motion of

a rotating, elastic shaft supported by hydrodynamic bearings requires the solution of

the three equations (5.141)-(5.143) in every time-step. The system matrix depends on

the thickness h0 of the lubricant film and has to be updated in every timestep. If we

solve the three systems in every time step, the direct LU-decomposition for sparse

matrices from the UMFPACK library is faster than the usual iterative solvers, because

it has to be done only once in the first linear equation and can be reused to solve the

second and the third. The process can still be accelerated by using the fact that during

several time-steps of the ode-solver the system matrix does not change drastically.

If we use the LU-decomposition as a preconditioner for e.g. the cg-solver for some

time steps the convergence of the iterative solver is very good, since we use a matrix

close to the inverse as preconditioner. We recompute the LU-decomposition as soon

as the iterative solver makes more than a prescribed number of iteration steps (in the

numerical examples shown later this is 10). The number of necessary refinement cylces

is determined by examining the convergence of the bearing integrals

I1 =

∫

Ω

p cosϕ dr dϕ, I2 =

∫

Ω

p sinϕ dr dϕ, (5.144)

for different values of κ as shown in Table 5.1. There it can be seen, that 10 refinements

lead to a reasonably small error (≈ 1e − 4) in the intgrals. The resulting mesh and a

series of solutions p0, p1, and ∂tp0 is shown in Figure 5.12. The package VisIt is used

here for the visualization of mesh and surfaces.

The process of local refinement takes up a lot of computation time, therefore we restrain

it to those time-steps when a new Jacobian matrix for the implicit solver is computed.
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Figure 5.12: Solutions and mesh computed with deal.II after 11 refinement cylces; upper

left: p0, upper right: p1, lower left: ∂tp0, lower right: mesh. The domain shown is

[−π,π] × [0, 1
2 ].

The zone of large variation in the pressure distribution is located most of the time

around the line ϕ = 0 (cf. Figure 5.12), so there is always a fine grid around this line,

even if the pressure distribution changes slightly. Since a new Jacobian is computed

each time the error gets large and convergence is slow, this is a good heuristic for the

timing of the recomputation of the grid.
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5.5 Calculation of Bearing Forces

Having calculated the pressure distribution in the journal bearing we can now com-

pute the force acting on the journal center. Negative pressures lead to cavitation in

the oil film. A very simple but popular cavitation model are the so called Gümbel

boundary conditions which are often used in the rotordynamics literature (Childs,

1993; Yamamoto & Ishida, 2001; San Andrés, 2006). When calculating the force by in-

tegration of the pressure over the journal surface only the domain where the pressure

is positive is considered. The above mentioned Reynolds’ boundary conditions are a

more complicated and computationally more expensive model.

For all the lubrication models proposed in this chapter the resulting bearing forces are

computed by integrating the positive part of the pressure over the bearing surface.

Fbear =




FN

FT


 =

∫

Ω

p̄+ν dσ = −
2π∫

0

W∫

0

p̄+



cosϕ

sinϕ


 R dϕ dz. (5.145)

The analytical formulation of the pressure distribuation in the short bearing approxi-

mation also allows for the analytical computation of these integrals.

5.5.1 Analytical Solution for the Lowest Order in Short Bearing Approxi-

mation

The surface integral for the lowest order approximation can be solved analytically using

Sommerfeld’s variable transformation (Lang & Steinhilper, 1978). The (dimensional)

normal and tangential forces are computed from the (dimensional) pressure p̄ by

FN = −
W∫

0

2π∫

0

(
p̄(ϕ, z̄/W)

)+ cosϕR dϕ dz̄, (5.146)

FT = −
W∫

0

2π∫

0

(
p̄(ϕ, z̄/W)

)+ sinϕR dϕ dz̄. (5.147)

A variable transformation z = z̄/W leads to an integral over the nondimensional

pressure.

FN = −WRρνω

Kε

1∫

0

2π∫

0

(p0)+ cosϕ dϕ dz, (5.148)

FT = −WRρνω

Kε

1∫

0

2π∫

0

(p0)+ sinϕ dϕ dz. (5.149)
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The pressure distribution obtained from the short bearing approximation to Reynolds’

equation (cf. Eq. (5.47) in Sec. 5.1.4) can be written in a complex notation, which shows

the positive pressure region in a more distinctive way

p0 = −6z(z − 1)

(
(γ′ − 1

2 )κ sinϕ + κ′ cosϕ
)

(1 − κ cosϕ)3
(5.150)

=
−6z(z − 1)

(1 − κ cosϕ)3
ℜ

((
κ′ − i

(
γ′ − 1

2

)
κ
)

eiϕ
)

(5.151)

=
−6z(z − 1)

(1 − κ cosϕ)3

√

κ′2 +
((
γ′ − 1

2

)
κ
)2

ℜ
(
ei(ϕ+ψ)

)
. (5.152)

The phase angle ψ is defined by

ψ = arg
(
κ̇ − i

(
γ̇ − 1

2

)
κ
)
. (5.153)

Hence p0(ϕ, z) > 0 if the real part of the complex number ei(ϕ+ψ) is positive, i.e.

Re
(
ei(ϕ+ψ)

)
> 0 ⇔ ϕ + ψ ∈

[
−π

2
,
π

2

]
. (5.154)

So the integration in Eqs. (5.148) and (5.149) runs from

ϕ1 = −
π

2
− ψ to ϕ2 =

π

2
− ψ, (5.155)

as the first two terms in (5.152) are all positive since 0 < κ < 1.

One can now integrate the equations (5.148) and (5.149) using Sommerfeld’s variable

transformation

1 − κ cosϕ =
1 − κ2

1 − κ cosθ
. (5.156)

However, the calculations are lengthy and can be found in Appendix F. The integration

boundaries transform as follows:

θ1 = arctan(κ − cosϕ1,−
√

1 − κ2 sinϕ1), (5.157)

θ2 = arctan(κ − cosϕ2,−
√

1 − κ2 sinϕ2). (5.158)

With these boundaries the integrals result in

FN = −W3Rρνω

c2
r

(
A1κ

′ − A2(γ′ − 1

2
)κ

)
, (5.159)

FT = −W3Rρνω

c2
r

(
A3(γ′ − 1

2
)κ − A2κ

′
)
, (5.160)

(5.161)
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where

A1 =
(κ2 + 1

2 )(θ2 − θ1) − 2κ(sinθ2 − sinθ1) + 1
4 (sin 2θ2 − sin 2θ1)

(1 − κ2)
5
2

, (5.162)

A2 =
−κ(cosθ2 − cosθ1) + 1

4 (cos 2θ2 − cos 2θ1)

(1 − κ2)2
, (5.163)

A3 =
(2(θ2 − θ1) − sin 2θ2 + sin 2θ1)

4(1 − κ2)
3
2

. (5.164)

This nice analytical formulation allows for a much faster numerical solution of the

equation of motion, since the numerical evaluation of the surface integrals is compu-

tationally much more expensive.

5.5.2 Calculation of Bearing Forces for Inertia Corrected Pressure

The (dimensional) normal and tangential forces are computed from the (dimensional)

pressure p̄ by

FN = −
W∫

0

2π∫

0

(
p̄(ϕ, z̄/W)

)+ cosϕR dϕ dz̄, (5.165)

FT = −
W∫

0

2π∫

0

(
p̄(ϕ, z̄/W)

)+ sinϕR dϕ dz̄. (5.166)

The same variable transformation for z̄ like in Section 5.5.1 leads to an integral over

the nondimensional pressure

FN = −
ρνωδ2

ε2

1∫

0

2π∫

0

(
p(ϕ, z)

)+ cosϕR dϕW dz (5.167)

= −WRρνωδ2

ε2

1∫

0

2π∫

0


−6z(z − 1)

Ψ(ϕ)

h3
0

+ε
1

h5
0


z2(z − 1)2G(ϕ) + z(z − 1)

4∑

i=0

Hi(ϕ)







+

cosϕ dϕ dz

= −WRρνω

Kε

2π∫

0



Ψ(ϕ)

h3
0

+ ε
1

h5
0




1

30
G(ϕ) − 1

6

4∑

i=0

Hi(ϕ)







+

cosϕ dϕ, (5.168)

FT = −
ρνωδ2

ε2

1∫

0

2π∫

0

(
p(ϕ, z)

)+ sinϕR dϕW dz (5.169)

= −WRρνω

Kε

2π∫

0



Ψ(ϕ)

h3
0

+ ε
1

h5
0




1

30
G(ϕ) − 1

6

4∑

i=0

Hi(ϕ)







+

sinϕ dϕ. (5.170)
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The integration along the z-axis can easily be computed while the solution of the

ϕ-integral is rather complicated and therefore done numerically.

5.5.3 Order Improvement for Numerical Integration

The computation of the bearing reaction forces (5.148) and (5.149) can be done analyt-

ically in the simple case of the short bearing approximation (cf. Sec. 5.5.1). Already in

the case of short bearing approximation with inertia correction the analytical solution

of the involved integrals becomes too complicated. When the full Reynolds equation

(with or without inertia correction) is solved numerically with the methods in Sections

5.4.1.2 and 5.4.2, the computation of the bearing forces also requires the numerical

solution of the integrals

FN = −WRρνω

Kε

1∫

0

2π∫

0

(p)+ cosϕ dϕ dz, (5.171)

FT = −WRρνω

Kε

1∫

0

2π∫

0

(p)+ sinϕ dϕ dz, (5.172)

which are not linear in the pressure distribution because of the truncation of the

negative part. Furthermore we want to use the given grid points for the quadrature

having computed the values there already.

As can be seen in Sec. 5.1 the solution of Reynolds equation show periodic behavior

with sign-change in the circumferential ϕ-direction and parabolic shape in the axial

z-direction without sign-changes for most values of z on the grid. We first compute

all the integrals with respect to z and then use the resulting sequence on the ϕ-grid to

approximate the integral in theϕ-direction. In the case of a uniform grid which we have

for a finite differences discretization (cf. Sec. 5.4.1) we can compute the integrals using

Simpson’s rule and the error is of order 4 in the grid sizes h1 or h2 (Stoer & Bulirsch,

2002) in those cases where no sign-changes occur. The truncation of the negative part

leads to a problem in the computation of the integrals essentially because of the loss

of differentiability. In the following we describe a work-around for this problem.

For sufficiently differentiable functions f the accumulated trapezoidal rule

Th =
1

2
h( f (a) + f (b)) + h

N−1∑

i=1

f (a + ih) (5.173)

can be corrected to yield an accuracy of order h4 where h = (b − a)/N) and ξ ∈ (a, b)

I( f ) = Th − h2 f ′(b) − f ′(a)

12
+ h4 b − a

720
f (4)(ξ). (5.174)

For periodic functions the derivatives at the end-points are equal and the trapezoidal

rule is always of order 4 (Stoer & Bulirsch, 2002).
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Since the zeros of the pressure distribution are not necessarily located at grid-points,

the application of the trapezoidal rule to the truncated pressure (p)+ has no longer

order 4. Figure 5.13 shows that the truncation entails the inclusion of the triangular

xi+1

fi

fi+1

xi

, f’  i

, f’  i+1

x*
�
�
�
�

�
�
�
�

�
�
�
�

x+
�
�
�
�
�
�
�
�

Figure 5.13: Correction of the quadrature by integration of an interpolant

area below the dashed line into the trapezoidal sum, while the exact integral only

includes the area below the black curve up to its zero at x∗. This can be overcome by

approximating the positive part of the integral on the cell in which the sign change

occurs with the help of an interpolant, which is shown in red. This leads again to an

error of order h4
1
. In detail we do the following to correct the approximation of the

integral. We therefore determine the intervals where sign changes occur and do the

following steps for all of them:

• compute derivatives f ′
i

and f ′
i
+ 1 with central differences,

• compute the coefficients of the interpolating cubic Hermite polynomial H3 which

are given by

a0 = fi, a1 = f ′i , a2 =
−3 fi + 3 fi+1

h
−

2 f ′
i
+ f ′

i+1

h2
, a3 =

f ′
i
+ f ′

i+1

h2
+

2 fi − 2 fi+1

h3
,

(5.175)

• find the zero x+ of polynomial H3 that lies in [xi, xi+1],

• compute the integrals of the interpolant from the boundaries of the interval to
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the zero

I1 =

∫ x+

xi

H3(x) dx = (((
a3

4
x+ +

a2

3
)x+ +

a1

2
)x+ + a0)x+,

I2 =

∫ xi+1

x+
H3(x) dx = h(

fi + fi+1

2
+ h

f ′
i
− f ′

i+1

12
) − I1,

• correct the trapezoidal sum Th over the whole interval [0, 2π] by

Ih = Th +


− h fi

2 −
h2 f ′

i

12 + I1 if fi > 0,

− h fi+1

2 +
h2 f ′

i+1

12 + I2 if fi+1 > 0.
(5.176)

Proposition 5.5. The resulting approximation to the integral is of order 4, i.e. |I− Ih| = O(h4).

Proof. Outside the intervals where sign changes occur the approximation order of the

corrected trapezoidal sum is 4 (cf. Eq. (5.174)). We need to give an estimate for the

error of the above procedure inside these intervals.

Let fi, f ′
i
, fi+1 and f ′

i+1
be the function values and derivatives at the boundary of the

interval (xi, xi+1) of length h. The interpolation error of the Hermite interpolation is

given by (Stoer & Bulirsch, 2002)

| f (x) −H3(x)| ≤ 1

4!
‖ f (iv)‖∞

∣∣∣(x − xi)
2(x − xi+1)2

∣∣∣ . (5.177)

With this the error of the integrals of the truncated functions can be estimated.

|I − Ih| = |
xi+1∫

xi

( f+ −H+3 ) dx| ≤
xi+1∫

xi

|( f+ −H+3 )| dx ≤
xi+1∫

xi

|( f −H3)| dx ≤ C‖ f (iv)‖∞h5. (5.178)

Hence the integral of the interpolant up to its zero is a sufficient approximation to the

truncated function f inside the intervals where sign changes occur. �

When calculating the pressure distribution on a uniform grid by finite difference we use

this method to correct the integration. Numerical results show that the computation

time is not drastically increased while convergence is faster. In Figure 5.14 we compare

the convergence of the above method to the convergence of the simple trapezoidal rule

for the integration of the functions

f =

(
sin(ϕ − α)

(1 − c cos(ϕ))3

)+
cos(ϕ),

and

g =

(
sin(ϕ − α)

(1 − c cos(ϕ))3

)+
sin(ϕ),

which occur in the computation of the bearing forces. The relative errors of the

corrected method converge much faster to zero than those of the trapezoidal method.
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Figure 5.14: Error of the numerical quadrature: Corrected trapezoidal method shows faster

convergence than trapezoidal method .

5.6 Numerical Results and Comparison of Bearing Properties

In the previous sections different models for the pressure distribution in a plain journal

bearing and numerical methods to compute them were introduced. In this section

we compare the results and take a look at the bearing reaction forces caused by the

movement of the shaft in the lubricant.

5.6.1 Convergence Considerations for Short Bearing Approximation

In Section 5.1 Reynolds’ equation is derived as a thin film approximation to the Navier-

Stokes equations. The short bearing approximation additionally considers the axial

dimension of the bearing being small. We introduce the additional relation ε = Kδ2

where ε = cr

R is the ratio of radial bearing clearance cr to bearing radius R and δ = W
R

the ratio of bearing width W to radius. By letting them simultaneously become small

the convergence of the solution of Reynolds’ equation (in two variables) to the short

bearing approximation can be observed. Figure 5.15 shows the relative difference

between the solutions of Reynolds’ equation pi
r and the short bearing approximation

pi
s in the L2-Norm

error =
‖pr − ps‖L2

‖pr‖L2

(5.179)

for the zeroth and the first order. The error is shown in dependence of ε for a fixed ratio

of K = crR
W2 = 1 which corresponds to a very short bearing. As expected from Section 5.1

the convergence rate is roughly quadratic for the first order approximation and linear



5.6 Numerical Results and Comparison of Bearing Properties 107

10
−4

10
−3

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ε

re
l. 

L2  e
rr

or

 

 

ε0,κ=0.1

ε1,κ=0.1

ε0,κ=0.5

ε1,κ=0.5

ε0,κ=0.9

ε1,κ=0.9

Figure 5.15: The relative difference
‖pr−ps‖L2

‖pr‖L2
between the solutions of Reynolds’ equation

and the short bearing approximation for zeroth and first order and for different eccentricity

values; the ratio of clearance to the square of width is constant K = ε
δ2 = 1.

in ε for the zeroth order approximation. The validity for different eccentricity ratios

is also demonstrated in the figure. However, for large eccentricities the convergence

becomes poorer.

Since the bearings used in practice usually do not fulfill this special ratio K = crR
W2 = 1,

it is also necessary to examine the convergence behavior for different ratios in order to

know the limits of usability of the approximation. In Figure 5.16 the relative error in

dependence of δ is depicted for several values of ε. In the zeroth order approximation

the ratio K does not appear in the expression for the pressure (5.47), so there is no

difference in the convergence of the zeroth order solutions for different ε and only the

one for ε = cr

R = 0.0067 is depicted. We have convergence of the solutions of Reynolds’

equation to the short bearing approximation for decreasing δ = W
R , the convergence

being better for small ε and also better for the first order equation than for the zeroth

order. However, it can also be seen, that for large δ, i.e. longer bearings of a width to

radius ratio of 1 or larger, the short bearing solution differs largely from the solution

of Reynolds equation no matter how small ε. Here the difference is bigger for the first

order equation than for the zeroth order. This corresponds with (Childs, 1993) and

(San Andrés, 2006) where is stated that the short bearing approximation is valid only

for W
R -ratios smaller than 1.
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Figure 5.16: The relative difference
‖pr−ps‖L2

‖pr‖L2
between the solutions of Reynolds’ equation

and the short bearing approximation (order ε0 and order ε1) for varying width and different

values of ε; the relative eccentricity is κ = 0.9.

5.6.2 Comparison of Pressure Distributions and Resulting Forces

The surface plots in the Figures 5.5 - 5.11 depict the pressure distributions arising from

the solution of Reynolds’ equation, the short bearing approximation and alternative

bearing models, as derived in the Sections 5.1 - 5.3. The comparison of the various

pressure distributions is facilitated by looking at the z-averaged pressure distributions

as shown in Figure 5.17. It can be seen clearly that for the very short bearing (first line:

W = 0.24 mm, K = 1) and for the short bearing (second line: W = 1 mm, K = 0.06) the

z-averaged pressure distributions are almost identical with slightly larger differences

for larger eccentricities. The only exception is the finite bearing approximation (5.111),

which underestimates the pressure in all cases and is therefore not considered in

the simulations in Chapter 6. For the medium sized bearing as it is used in the

turbocharger of TCRDL the first order short bearing approximations shows drastically

different behavior than the first order solution of Reynolds’ equation, as seen in the

convergence considerations in the last section. While the zeroth order approximation

overestimates the pressure, the correction term (5.61) in this case becomes larger than

the zeroth order solution and therefore dominates the pressure distribution, leading

to a physically wrong solution where the pressure is negative in front of the point of

smallest film thickness.



5.6 Numerical Results and Comparison of Bearing Properties 109

−4 −3 −2 −1 0 1 2 3 4
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

φ

z−
av

. p
re

ss
ur

e
ε = 6.67e−03, δ = 8.16e−02, Rey = 151.3,

κ = 0.1, κ′  = 0, κ′′  = 0, γ′ = 0, γ′′ = 0

 

 

rey0
rey1
shb0
shb1
fin
reybc
phen

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

φ

z−
av

. p
re

ss
ur

e

ε = 6.67e−03, δ = 8.16e−02, Rey = 151.3,
κ = 0.5, κ′  = 0.4, κ′′  = 0.10125, γ′ = 0.45, γ′′ = 0

 

 

rey0
rey1
shb0
shb1
fin
reybc
phen

−4 −3 −2 −1 0 1 2 3 4
−60

−40

−20

0

20

40

60

φ

z−
av

. p
re

ss
ur

e

ε = 6.67e−03, δ = 8.16e−02, Rey = 151.3,
κ = 0.9, κ′  = 0, κ′′  = 0, γ′ = 0, γ′′ = 0

 

 

rey0
rey1
shb0
shb1
fin
reybc
phen

−4 −3 −2 −1 0 1 2 3 4
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

φ

z−
av

. p
re

ss
ur

e

ε = 6.67e−03, δ = 3.33e−01, Rey = 151.3,
κ = 0.1, κ′  = 0, κ′′  = 0, γ′ = 0, γ′′ = 0

 

 

rey0
rey1
shb0
shb1
fin
reybc
phen

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

φ

z−
av

. p
re

ss
ur

e

ε = 6.67e−03, δ = 3.33e−01, Rey = 151.3,
κ = 0.5, κ′  = 0.4, κ′′  = 0.10125, γ′ = 0.45, γ′′ = 0

 

 

rey0
rey1
shb0
shb1
fin
reybc
phen

−4 −3 −2 −1 0 1 2 3 4
−60

−40

−20

0

20

40

60

φ

z−
av

. p
re

ss
ur

e

ε = 6.67e−03, δ = 3.33e−01, Rey = 151.3,
κ = 0.9, κ′  = 0, κ′′  = 0, γ′ = 0, γ′′ = 0

 

 

rey0
rey1
shb0
shb1
fin
reybc
phen

−4 −3 −2 −1 0 1 2 3 4
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

φ

z−
av

. p
re

ss
ur

e

ε = 6.67e−03, δ = 1.80e+00, Rey = 151.3,
κ = 0.1, κ′  = 0, κ′′  = 0, γ′ = 0, γ′′ = 0

 

 

rey0
rey1
shb0
shb1
fin
reybc
phen

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

φ

z−
av

. p
re

ss
ur

e

ε = 6.67e−03, δ = 1.80e+00, Rey = 151.3,
κ = 0.5, κ′  = 0.4, κ′′  = 0.10125, γ′ = 0.45, γ′′ = 0

 

 

rey0
rey1
shb0
shb1
fin
reybc
phen

−4 −3 −2 −1 0 1 2 3 4
−800

−600

−400

−200

0

200

400

600

800

φ

z−
av

. p
re

ss
ur

e

ε = 6.67e−03, δ = 1.80e+00, Rey = 151.3,
κ = 0.9, κ′  = 0, κ′′  = 0, γ′ = 0, γ′′ = 0

 

 

rey0
rey1
shb0
shb1
fin
reybc
phen

Figure 5.17: z-averaged pressure distributions from solutions to Reynolds’ equation (rey0,

rey1), short bearing approximation(shb0, shb1), finite bearing (fin), Reynolds’ equation with

free boundary conditions (reybc), and the phenomenological correction (phen ): First line:

very short bearing (W = 0.24, K = 1); second line: short bearing (W = 1, K = 0.06); third

line: medium sized bearing (W = 5.4, K = 0.002); in each column different values of κ, κ̇,

and γ̇ are used.

This affects also the bearing reaction forces as shown in Figure 5.18. We depict the

normal force along the line from the center of the bearing to center of the shaft and the

orthogonal tangential force in dependence of the eccentricity κ for a rotating shaft with

rotational frequency ν = 1400 Hz and whirling with an angular velocity of γ̇ = 0.4ω.

In the three columns of the figure different bearing lengths are considered, all other

parameters being equal. Again it can be seen that for a long bearing (W = 5.4 mm) the

first order solution shows a drastically different behavior due to the large difference of

the pressure distributions shown in Figure 5.17. This also leads to a totally different

dynamic behavior of the shaft as can be seen in the simulations in Chapter 6.

The forces arising from the solutions of Reynolds’ equation only show little differences.

In Figure 5.19 surface plots of the bearing forces arising from the zeroth order short

bearing approximation are shown exemplarily in dependence of κ and γ̇ for κ̇ = 0, and

W = 1. The forces are zero for γ̇ = 1
2 . This is the case for the zeroth order Reynolds’
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Figure 5.18: Normal and tangential forces acting on a rotating shaft (rot. frequency ν =

1400 Hz) orbiting the bearing center on a circular orbit of radius κ; the angular velocity is

γ̇ = 0.4ω; the other parameters are R = 3 mm, cr = 0.02 mm, Reynolds number R = 152;

the bearing width varies from the left to the right: W = 0.245 mm, W = 1 mm, and

W = 5.4 mm. Depicted are the forces resulting from the solutions to Reynolds’ equation

(rey0, rey1), short bearing approximation (shb0, shb1), finite bearing (fin), Reynolds’ equation

with free boundary conditions (reybc), and the phenomenological correction (pheno). The

right column is not in logarithmic scale due to the sign changes of the first order short

bearing approximation shb1.
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Figure 5.19: Surface plots of normal and tangential force computed for zeroth order short

bearing approximation for varying κ and γ̇ with fixed κ̇ = 0, W = 1.

equation as well.

For the short bearings the first order approximations differ only a little from the zeroth

order approximations. They are however not identical and especially the tangential

force of the first order solution is smaller than that of the zeroth order solution. In view

of the question for the rotor self excited whirl frequency the behavior of the tangential
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force is of special interest, since it accelerates or decelerates the rotor along the circular

whirling orbit. For the first order solutions the zero of the tangential force moves to

lower values of γ̇ as shown in the Figure 5.20 which backs the hypothesis that the

inertia correction leads to a reduction of the whirl frequency.
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Figure 5.20: Approximate value of γ̇ for which the tangential force vanishes in dependence

of ω for κ = 0.9, κ̇ = 0.

The phenomenological correction of the zeroth order short bearing approximation

(5.101) also shows similar behavior. In Figure 5.21 we depict the normal and the

tangential force for W = 1, γ̇ = 0.4, and κ̇ = 0, in dependence of κ and the correction

parameter σ for a linear correction s(ω) = σω.
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Figure 5.21: Normal and tangential force from phenomenological pressure correction in

dependence of κ and σ.

From Equation (5.101) it is easy to see that the parameter σ shifts the zero of the

tangential force. In the figure the tangential force is zero for σ = 0.1. Hence we can use
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the shift parameter to control for which value of γ̇ the tangential force vanishes, e.g. in

the linear case

γ̇ + σ =
1

2
⇒ ft = 0. (5.180)

5.7 Conclusions

In view of the convergence results and the comparison of the resulting forces we can

draw the following conclusions.

• For very short and short bearings the solution of Reynolds equation converges

to the derived short bearing approximation and yields a model for the pressure

distribution that is easier and faster computable.

• The first order short bearing approximation can be used for very short bearings

(K ≈ 1), while for medium sized bearings the first order Reynolds equation

should be the model of choice for the pressure distribution in the plain journal

bearing.

• The numerical evidence points to an influence of the inertia correction on the

whirling frequency via a change in the zero of the tangential force. This influence

on the tangential force is also present for the phenomenological correction to the

short bearing approximation

• The finite bearing approximation underestimates the pressure and the forces and

will therefore not be considered for the direct numerical simulations.

• The free boundary problem for zeroth order Reynolds equation with Reynolds

boundary conditions yields solutions that are similar to those with Gümbel

conditions, however the computation time is considerably larger. In Chapter 6

we see that there is no influence on the whirling frequency.

The derivation of the bearing model is an important part of the modelling of the

rotor-bearing system as the influence on the dynamics is considerable. It is therefore

naturally an intensively studied field with a large variety of models around. We do

not seek completeness here, which would be beyond the scope of this work, but we

want to show in the following that already the relatively simple models presented here

lead to complex dynamic behavior. The methods we will use in Chapters 6 and 7 can

then also be applied to more complicated bearing that e.g. involve turbulence, surface

roughness, or variable viscosity.



Chapter 6

Direct Numerical Simulation and

Experimental Results

In the previous chapters we have derived the various parts of a model for rotating

beams constrained by simple journal bearings. In Chapter 2 a PDE model was derived

for the lateral motion of a continuous Rayleigh beam. In Chapter 4 we have used

the finite element method to discretize the equations and we have arrived at an ODE

system for the nodal displacement of the beam. In Chapter 5 the model for the

reaction forces of the oil lubricated bearings has been derived from the Navier-Stokes

equations by asymptotic analysis. In the present chapter we combine these results to

obtain finally the equations of motion for the rotating beam, and we solve these with

numerical integration methods. The results of the simulations are compared to the

experiments performed at the Toyota Central Research and Development Laboratories

(TCRDL). As we shall see, the equations of motion are either a stiff system of ordinary

differential equations if no inertia correction is applied, or an implicit system if the

inertia correction is used in the bearing model. Therefore appropriate implicit methods

such as backward differentiation formulas (BDF) (Hairer & Wanner, 1996) or numerical

differentiation formulas (NDF) (Shampine & Reichelt, 1997; Shampine, 2002) have to

be used.

6.1 Equations of Motion

The equations of motion for a rotating beam are a system of ordinary differential

equations for the nodal displacement of the beam elements used for the discretization

of the rotor as in Equation (4.69).

The state space is R4(N+1), where N is the number of finite beam elements. The state
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vector is

x = (x1, . . . , x4(N+1)) (6.1)

= (q1, . . . , qN+1) = (u1, v1, β1, α1, . . . , uN+1, vN+1, βN+1, αN+1), (6.2)

where uk and vk are the lateral displacements in node k, and βk and αk the inclinations

as shown in Section 4.3 of Chapter 4. For small displacements we have approximately

βk ≈ −v′
k

and αk ≈ u′
k

(cf. Appendix A). Furthermore, we need the following notations

which facilitate the formulation of the equations of motion. The polar coordinates of

the nodal displacement are

rk =

√
u2

k
+ v2

k
, γk = arg(uk + ivk). (6.3)

The nodal lateral displacements at the bearing nodes are denoted by xbi
= (ubi

, vbi
)T.

The vector xb = (ub1
, vb1

, ub2
, vb2

)T contains the displacements at all the bearing nodes.

As seen in the previous chapters the rotating shaft is subject to several external forces.

First, there are constant loads, such as gravity, which we will denote in the following

by Fgr. Second, there are time-periodic forces Funb(t) due to the unbalance of the rotor,

as given in (4.76) and (4.77) with nodal unbalance amplitude ak and phase ψk. They

have the following structure

Funb(t) = ω2




a1 cos(ωt + ψ1)

a1 sin(ωt + ψ1)

0
...

aN+1 cos(ωt + ψN+1)

aN+1 sin(ωt + ψN+1)

0

0




. (6.4)

Third, there are the bearing reaction forces. Depending on the bearing model the

system is either explicit or implicit.

6.1.1 Explicit Case

When no inertia correction is applied, i.e. the zeroth order short bearing approximation

(Eqs. (5.159), (5.160)) or the zeroth order solution to Reynolds equation (Eq. (5.145)) are

used as models for the pressure distribution in the bearings, the equation of motion

(4.69) is explicit. It is also explicit for the alternative bearing models proposed in

Section 5.3, like the phenomenological model, the finite bearing approximation, and

the solution with Reynolds boundary conditions. In these cases the bearing reaction

force Fbear has the following form

Fbear(xb) =
(
0, . . . , fb1,1(xbi

, ẋbi
), fb1,2(xb1

, ẋb1
), 0, . . . , fb2,1(xb1

, ẋbi
), fb2,2(xb2

, ẋb2
), 0, . . . , 0

)T
.

(6.5)
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It is computed from the normal and the tangential forces at the bearing nodes bi, i ∈
{1, 2}, by 


fbi,1

fbi,2


 (xbi

, ẋbi
) = T(γbi

)




fn(rbi
, ṙbi
, γ̇bi

)

ft(rbi
, ṙbi
, γ̇bi

)


 , (6.6)

where T(γ) is the two-dimensional rotation matrix

T(γ) =




cosγ − sinγ

sinγ cosγ


 . (6.7)

Combining the above, we finally obtain the equation of motion which can be written

in second order form as

Mẍ + (ωG + C)ẋ + Kx = Fgr + Funb(t) + Fbear(xb, ẋb), (6.8)

or in first order form with y = (ẋ, x)T




M

I


 ẏ =



−(ωG + C) −K

I 0


 y +




Fgr + Funb(t) + Fbear(yb)

0


 . (6.9)

6.1.2 Implicit Case

When the inertia corrected lubrication models (Eq. (5.63) or (5.90)) are used, the bearing

reaction forces additionally depend on the acceleration of the shaft at the bearing node.

We have

Fbear =
(
0, . . . , 0, fb1,1(xb1

, ẋb1
, ẍb1

), fb1,2(xb1
, ẋb1

, ẍb1
) , 0, . . .

. . . , 0, fb2,1(xb2
, ẋb2

, ẍb2
), fb2,2(xb2

, ẋb2
, ẍb2

), 0, . . . , 0
)T

(6.10)

with 


fbi,1

fbi,2


 (xbi

, ẋbi
, ẍbi

) = T(γbi
)




fn(rbi
, ṙbi
, γ̇bi

, r̈bi
, γ̈bi

)

ft(rbi
, ṙbi
, γ̇bi

, r̈bi
, γ̈bi

)


 . (6.11)

This leads to an implicit equation of motion

Mẍ + (ωG + C)ẋ + Kx = Fgr + Funb(t) + Fbear(xb, ẋb, ẍb), (6.12)

which we can be rewritten in first order form




M

I


 ẏ =



−(ωG + C) −K

I 0


 y +




Fgr + Funb(t) + Fbear(yb, ẏb)

0


 . (6.13)
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By introducing the projection Pb onto the components of the state space describing the

lateral displacement of the bearing nodes and the dummy variable a

Pbẍ = ẍb = a, (6.14)

we can rewrite this implicit equation as a differential-algebraic equation of degree 1

with singular mass matrix.




M 0 0

0 I 0

Pb 0 0







ẍ

ẋ

ȧ



=




−(ωG + C) −K 0

I 0 0

0 0 −I







ẋ

x

a



+




Fgr + Funb(t) + Fbear(xb, ẋb, a)

0

0



.

(6.15)

6.1.3 Simple Model

Additionally, as in (Hollis & Taylor, 1986), a very simple model can be used for ex-

amination of the influence of the bearing function on the dynamics. We consider a

rotating cylinder of mass M of the same length as a journal bearing. The forces acting

on the cylinder are the bearing forces, unbalance forcing, gravity and eventually some

viscous damping with damping coefficient D ≥ 0. With x ∈ R2 being the vector of

lateral displacement, the equation of motion for the lateral displacement is

Mẍ +Dẋ =




Fbear,1

Fbear,2 −Mg


 + funbω

2




cosωt

sinωt


 . (6.16)

One can interpret this as a model describing just the motion of the bearing node subject

to the bearing forces and an additional periodic forcing, but without interaction with

the neighboring nodes. Depending on the lubrication model, Equation (6.16) can be

either explicit or implicit.

6.2 Numerical Methods

In the previous section we stated equations of motion that arise from our models. All

these equations show the characteristics of stiff equations (Hairer & Wanner, 1996).

Especially the spectrum of the Jacobian is very stretched out over the negative half

plane. In Figure 6.1, we exemplarily depict the eigenvalues of the Jacobian of the

explicit system (6.8) using a 13 element beam as in Section 4.5.1 and the short bearing

lubrication model (5.159), (5.160). We see that it has eigenvalues of large absolute value

on the negative real axis as well as close to the imaginary axis. Therefore the use of

A-stable implicit methods is appropriate, where the whole negative half plane is in

the region of stability (Hairer & Wanner, 1996). Semiexplicite equations of the form

(6.15) can be solved by Matlab’s ode15s solver or Hairer and Wanner’s RADAU5 (Hairer
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Figure 6.1: Spectrum of the Jacobian of the explicit system (6.8) for a 13 element beam

model with short bearing lubrication model at ω = 2010 Hz. Most of the eigenvalues are

located along the imaginary axis with a small negative real part and a few eigenvalues

have large negative real parts, which leads to the stiffness of the equations.

& Wanner, 1996), among others. The implicit equation can be solved with Matlab’s

ode15i. The code DASPK can be used to solve both variants.

In this work, we mainly apply Matlab’s ode15s code and the code DASPK, which is

a successor of the popular code DASSL. DASPK uses backward differentiation formulas

(BDF) of variable order for the integration of stiffdifferential(-algebraic) systems. These

implicit multistep methods are described in (Brenan et al., 1989) and also in (Deuflhard

& Bornemann, 1994). DASPK can also compute consistent initial conditions. The DASPK

routine is included in the free software Octave (Eaton, 2002) which is mostly compatible

with Matlab.

The code ode15s used in Matlab is described in (Shampine & Reichelt, 1997). It uses

numerical differentiation formulas (NDF) which are a modification of the BDF having

an additional free parameter that can be used to either enlarge the region of stability

while maintaining the truncation error, or to reduce the error while keeping the size

of the region of stability close to the one of the BDF. In ode15s the second target is

chosen leading to smaller regions of stability. For order 2, however, both methods are

A-stable. When using ode15s it is necessary to set the maximal order of the method to

2, since otherwise numerical instabilities occur. ode15s can compute consistent initial

conditions.

In both codes the user can supply a routine for the Jacobian matrix of the system, which
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is otherwise computed by finite differences. The computation of the bearing reaction

forces can be computationally expensive, especially when the Reynolds equation has

to be solved to compute them. This makes the computation of the Jacobian by finite

differences expensive although the non-linearity only appears in a few (4) components

and depends only on the coordinates of the bearing nodes. We therefore supply a

routine that makes use of the special structure of the system to compute the Jacobian

more efficiently. For this, we compute the matrices

Kbi
=




∂ fbi ,1

∂xbi ,1

∂ fbi ,1

∂xbi ,2

∂ fbi ,2

∂xbi ,1

∂ fbi ,2

∂xbi ,2


 , (6.17)

Cbi
=




∂ fbi ,1

∂ẋbi ,1

∂ fbi ,1

∂ẋbi ,2

∂ fbi ,2

∂ẋbi ,1

∂ fbi ,2

∂ẋbi ,2


 , (6.18)

Mbi
=




∂ fbi ,1

∂ẍbi ,1

∂ fbi ,1

∂ẍbi ,2

∂ fbi ,2

∂ẍbi ,1

∂ fbi ,2

∂ẍbi ,2


 , (6.19)

using central differences. These are subsequently added to the corresponding compo-

nents of the matrix of the constant linear part of Equations (6.9) or (6.13), respectively,

and to the mass matrix of (6.13)

J =



−(ωG + C) −K

I 0


 +




Cb Kb

0 0


 , (6.20)

B =




M

I


 −



−Mb

0


 , (6.21)

where

Kb =




. . .

Kb1

. . .

Kb2

. . .




(6.22)

is zero except for the blocks Kb1
and Kb2

which are located at the indices corresponding

to the variables describing the lateral displacement of the bearing nodes. Cb and Mb are

formed analogously. While still using finite differences to approximate the derivative

of the non-linearity, we can hence reduce the number of necessary computations of

the bearing forces to 24 regardless of the dimension of the system. Both, the Jacobian

J and the mass matrix B are sparse. The use of the sparsity pattern and other sparse

matrix routines in Matlab also leads to a considerable speed-up of the computations.
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6.3 Analysis of Experimental Results

Simulations have been done for several different parameter sets. These sets reflect

the different set-ups used in the experiments at TCRDL using the turbocharger rotor

similar to the one depicted in Figure 6.2, but without floating ring bearings. The

experiments have been carried out in 2002 at TCRDL by Mizuho Inagaki. The standard

Figure 6.2: The rotor of a turbocharger used in the experiments at TCRDL. It consists of

the shaft, the compressor (left) and the turbine wheel (right). The bearing positions are

indicated here by the two floating rings (golden color). The experiments were done for

plain journal bearings without floating rings.

Figure 6.3: Positions of eddy current sensors measuring lateral x-y-displacement at three

points along the shaft (impeller, middle, turbine) and axial displacement at the right end.
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Figure 6.4: Experimental results: Waterfall diagram of the response spectrum of rotor for

varying driving frequencies (center); orbits of impeller end of rotor for 4 different driving

frequencies (left and right). Mainly two kinds of vibration occur in the examined frequency

range: the subharmonic oil whirl and the synchronous unbalance oscillation of a bending

mode.

experimental case used two bearings of 5.4 mm width, 0.02 mm radial clearance,

80◦C oil pan temperature and an oil supply pressure of 0.001 Pa. The dimensions

of the rotor and the unbalance condition are given in the Appendix D. During the

experiments the rotor is driven by pressurized air at a given rotational velocity. The

lateral displacement in x- and y-direction is measured by eddy current sensors at three

positions along the rotor. Additionally, the axial displacement is measured at one end.

The sensor positions are shown in Figure 6.3.

The results of the measurements with the above experimental set-up are shown in

Figure 6.4. In the central waterfall diagram for each rotational speed ω (y-axis) the

power spectrum of the motion of the impeller is plotted with the observed frequencies

ν along the x-axis. The two diagonals indicate the ν = ω and 2ν = ω lines. To the

left and to the right of the waterfall diagram orbits of the impeller end of the rotor are

plotted for four different rotational frequencies. One observes increasingly complex

behavior. In Chapter 7 an analysis of the Poincaré sections of the orbits also reveals

quasiperiodic behavior.

In the waterfall diagram it can be seen that above a threshold of about 400 Hz there are

mainly two frequencies present in the power spectrum, while there is only one present

below 400 Hz. The one frequency always present is equal to the driving frequency,

which is due to a harmonic response to unbalance forcing. Around 1000 Hz there is

a peak with large amplitudes, which is caused by the resonance of the first bending

mode of the rotor. The other frequency is a subharmonic, large amplitude vibration

which sets in above 500 Hz. Around the resonance of the bending mode the amplitude

of this mode drops, only to increase again above the critical speed of 1000 Hz. This
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Figure 6.5: The running modes measured in experiment (set-up 1) are an allmost rigid

conical mode (left) and a bending mode (right). Red markers indicate the measuring

positions, points in between are unknown.

phenomenon is known as entrainment. The subharmonic vibration is called oil whirl,

as it is a rotor instability which is caused by the oil-lubricated bearings. This instability

has been known for a long time (Newkirk & Taylor, 1925) and has been investigated

thoroughly in (Muszynska, 1986; Muszynska, 1988; Crandall, 1995; Hollis & Taylor,

1986) among others. In Figure 6.4, but also in Figure 6.6 below, one can see that the

whirl frequency is about half the driving frequency for rotational speeds below the

critical speed of 1000 Hz. For higher rotational speeds the frequency of the oil whirl

still increases, but no longer linearly. The ratio of whirl frequency to rotational speed

drops from 1
2 at 500 Hz to approximately 2

5 at 1500 Hz and one observes a shift away

from the ω
2 -line.

The running mode shapes can also be calculated from the experimental data. They

are shown in Figure 6.5. There are two main running modes at a rotational speed of

998 Hz: a conical mode of the subharmonic oil whirl with a frequency of less than half

the rotor speed and a bending mode synchronous with the rotation.

As mentioned above several experiments with varying parameters were carried out.

The experimental parameters are given in Table 6.1. In Figure 6.6 the Campbell dia-

grams for 4 different situations are depicted. In these diagrams, the x-coordinate of

the centers of the circles gives the response frequency, the y-coordinate the driving

frequency, and the radii of the represent the amplitudes of the underlying Fourier

modes.

The comparison of the cases 1 and 2 shows that a variation of the unbalance parameter

has little influence on the occurrence and the frequency of the oil whirl. In case 2, the

amplitudes of the oil whirl are smaller, while the entrainment is more pronounced.

The measurements in case 3 and 4 show that the oil whirl is suppressed by a reduction

the bearing clearance or the bearing width. However, these modifications lead to
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Figure 6.6: Campbell diagram showing amplitudes (radius of circles) and frequency (po-

sition of center) of the oscillations at impeller side for 4 different experimental set-ups.

For the experimental parameters see Table 6.1. Circles on the diagonal are due to har-

monic response, circles to the left of the line indicating half-frequency response are due to

self-excited vibration.

larger unbalance oscillations in the resonance region of the bending mode. These large

oscillations caused the limitation of these two experiments to the speed region below

60000 RPM (1000 Hz), since bearing failures and extreme noise occurred.

Case rad. clearance bearing width unbalance [10−7kgm],[rad]

# [mm] [mm] a3, ψ3 , a5, ψ5 a11, ψ11 a13, ψ13

1 0.02 5.4 1.35, π 1.50, 0 2.01, 0 2.07, π

2 0.02 5.4 0.64, 0 0.75, 0 0.98, π 1.09, π

3 0.01 5.4 1.35, π 1.50, 0 2.01, 0 2.07, π

4 0.02 3.8 1.35, π 1.50, 0 2.01, 0 2.07, π

Table 6.1: Experimental parameters for the results shown in Figure 6.6.
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Figure 6.7: A detailed 13 element beam model (left) and a less detailed 3 element beam

model (right) used in numerical simulations. The 3 element model is also used in the

investigation of oil-film influence and numerical bifurcation analysis. The rigid discs

modelling impeller and turbine are shown in red dashed lines and the positions of the

bearings are indicated by the black triangles.

6.4 Simulations for Large Rotor Model

In the joint research project with TCRDL direct numerical simulations were performed

for several rotor models of varying element number. These were a larger model with

13 beam elements (cf. Section 4.5.1) that was also considered for shape optimization

in (Strauß, 2005), as well as a smaller model with 4 beam elements that is also used

in the investigation of the influence of the lubrication model in Section 6.5 and in the

bifurcation analysis in Chapter 7.

The analytic formulation of the bearing reaction forces in the short bearing approxi-

mation allows for their fast computation. This reduces the computation time for direct

numerical simulation considerabely. The 13 element rotor model is depicted again in

Figure 6.7 with the positions of the short bearings indicated by triangles. The bearing

and unbalance parameters are chosen as in the experimental case 1 (cf. Table 6.1) with

a dynamic viscosity of η = 0.049 Pas. The integration of Equation (6.9) with bearing

force functions given by the zeroth order short bearing approximation (5.159) and

(5.160) is done by applying ode15swith maximal order set to 2 and a relative tolerance

of 10−2. The only remaining free parameter that is not known from the experiment is

the viscous damping coefficient that is used in the damping matrix C in Equation (6.9).

It is set to 9 Ns/m in this simulation.

The results are shown in Figure 6.8 and one can see from the waterfall diagram that

the main dynamical features of the experiment are reproduced. The complexity of the

orbits increases with the rotational speed and also the amplitudes are only slightly

larger than in experiment. Entrainment can be observed around a rotational speed
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Figure 6.8: Simulated orbits and waterfall diagram for 13 element beam model and pa-

rameters as in experimental set-up 1 with external damping coefficient 9 Ns/m. The main

experimentally observed vibration effects of subharmonic oil whirl and synchronous un-

balance vibration are captured in the model.
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Figure 6.9: The running modes from simulation with ext. damping coefficient 9 Ns/m are

similar to those from the experiment. Associated to the subharmonic oil whirl is an allmost

rigid conical mode, while the harmonic part has the curved shape of a first bending mode.

of 1000 Hz where the first resonance of the harmonic response occurs. The running

modes can also be calculated and are shown in Figure 6.9. In good agreement with the

experiments the subharmonic mode is a conical mode, while the harmonic response

consists of a bending mode.

There are however two differences between the simulations and the experiments. In the

simulations there appears a second peak in the harmonic response, which is caused by

the resonance of a second bending mode. This can not be observed in the experiments.

Furthermore, the ratio of the oil whirl frequency and the driving frequency remains

constant 1
2 and the shift to lower frequency ratios does not occur. This phenomenon

will be addressed later in Section 6.5.
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Figure 6.10: Waterfall diagrams for simulations using the same set-up as in the experi-

mental case 1; external damping coefficient is varying from 10−2 Ns/m to 103 Ns/m. For

small external damping the entrainment effect for driving frequencies around 1000 Hz is

strongly developed, while for higher damping the self-excited oscillation can be completely

suppressed. For D = 103 Ns/m (lower left) the subharmonic part of the response is shifted

slightly to lower frequencies, i.e. to the left of the 1
2
ω-line.

In order to further evaluate the model and to find an appropriate external damping

parameter more simulations with this model have been carried out. The external

damping coefficient is varied from 10−2Ns/m to 104Ns/m to study its influence. The
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results are shown in waterfall diagrams in Fig. 6.10. Note that significant features of

the experiment such as the half-frequency oil whirl, harmonic unbalance resonance

and entrainment are reproduced. The variation of the damping coefficient shows

that the oil whirl instability can be completely suppressed by increasing the viscous

damping. Furthermore the frequency ratio of oil whirl to driving frequency can also

be influenced. In the central panel of the lower row the ratio of the two frequencies is

still constant, but slightly less than 1
2 . It can be said that the external damping plays

a big role. Its influence is examined in more detail in Chapter 7 where continuation

methods are used to determine the exact values for which the oil whirl is suppressed.

The frequency shift seems to depend not only on the external damping but also on the

lubrication model used. This will be investigated partly in the next section.
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Figure 6.11: Simulation results with higher viscosity η = 0.2188 Pas; external damping

36 Ns/m (left) and 450 Ns/m (right): the higher viscosity leads to a stronger damping and

to the suppression of the self-excited part of the vibration response; stronger damping also

suppresses the harmonic part.
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Figure 6.12: Simulation results with reduced radial bearing clearance cr = 0.01 mm: the

subharmonic part of the response is suppressed for frequencies above 1000 Hz for external

damping of 36 Ns/m (left); for external damping of 450 Ns/m (right) it vanishes completely.

The figures 6.11, 6.12 and 6.13 show results from simulations done with different pa-

rameter values, such as higher viscosity, smaller radial clearance or smaller bearing
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Figure 6.13: Simulation results with reduced bearing length B = 3.8 mm; external damping

0.1 Ns/m (left) and 1 Ns/m (right). For both damping values the subharmonic response is

quite large in contrast to the experiment.

length. In all of these simulations we can observe self-excited oscillations and unbal-

ance oscillation. Entrainment is also present for smaller external damping. Especially

the effect of the reduction of the bearing clearance is reproduced very well. For both

values of the damping parameter the oil whirl is almost entirely suppressed. In con-

trast to that, in the simulations the reduction of the bearing width leads to oil whirl with

an even larger amplitude, while the corresponding experiment shows no self-excited

oscillations. This result could be due to a stronger influence of the oil-inlet which is

neglected in the model, due to inclination of the shaft, or also due to a rotor damaged

by previous experiments.

6.5 Influence of Oilfilm Model on Dynamics

In the last section the simulations of the larger 13 beam element model with short bear-

ing lubrication model already showed quite good agreement with the experimental

data. The main difference between the calculated and the measured power spectrum

is the shift of the frequency of the oil whirl away from the line ν = ω
2 . The results in Fig-

ure 6.10 show that increased damping leads to such a shift but also to the suppression

of the oil whirl.

6.5.1 Simulations with Phenomenological Bearing Model

From looking at the equations for the bearing reaction forces of the short bearing (5.159)

and (5.160), we see that the forces vanish for value of γ̇ = ω
2 and κ̇ = 0. This leads to the

reasonable conjecture, that the whirl frequency can be influenced by the lubrication

model. The phenomenological model proposed in Section 5.2 is a simple modification

of the short bearing lubrication model. In Section 5.2 the factor ω
2 is identified as the
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Figure 6.14: Modified bearing function leads to frequency shift; left: short bearing solution

(s ≡ 0), right: ω
2

-term changed to 0.46ω (s = 0.04ω) in Eq. (6.23); blue: lines ν = ω and ν = ω
2

,

red: (ν = 0.46ω)-line coincides with actual frequency of self-excited oscillation (D = 0.001,

M = 100, funb = 2.3 · 10−7).

lubrication fluid’s average circumferential velocity and a correction term is introduced

that changes this velocity. The resulting pressure function then looks as follows

p̄0 = −6
z̄

W

(
z̄

W
− 1

) W2ρν

c2
r

(
(γ̇ − ω

2 + s(ω))κ sinϕ + κ̇′ cosϕ
)

(1 − κ cosϕ)3
. (6.23)

As a first test for this phenomenological model we integrate the simple model (6.16)

using first short bearing approximation and second the corrected pressure from (6.23)

with s(ω) = 0.04ω. The comparison of the results depicted in Figure 6.14 shows that

the linearly shifted peaks of the self-excited oscillation of the corrected model lie on

the ν = 2.3ω
5 line, while the peaks for the uncorrected model lie on the ν = ω

2 line. This

clearly indicates a direct influence of the correction on the whirl frequency.

To further investigate the influence of the modification term s(ω) we simulate a smaller

rotor model with 3 beam elements as depicted in Figure 6.7 using the phenomenologi-

cally corrected short bearing pressure function (6.23) with a quadratic correction term

s = σω
2

ω0
. The sole reason for introducing ω0 = 1000 Hz into the term is to normalize it,

so that not too small values of σ have to be used.

In Figure 6.15 the Campbell diagrams a depicted for varying values of σ ∈ [0, 0.2]. For

small values of σ the spectrum is similar to the uncorrected one in the top left corner.

All diagrams show the presence of a harmonic response with a resonance around 900

Hz. The line ν = ω on which the circles of the harmonic part lie and the line ν = ω
2 are

indicated in blue. The circles indicating the self-excited oscillation are always located

on the curves ν = ω
2 − σω2

ω0
which are depicted in red. As σ grows, the red lines, and

hence the peaks of the self-excited oscillation, bend away more and more from the

blue line ν = ω
2 , a behavior similar to the experiment. Additionally it can be observed

that the large amplitude oscillation which is present at 1800 Hz for σ = 0, is pushed
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Figure 6.15: Campbell diagrams for simulation of small beam model with phenomenolog-

ical correction of short bearing. σ is the tuning parameter. The subharmonic part of the

response allways lies on the curve ν(ω) = ω
2
− s(ω) = ω

2
− σω2

ω0
with ω0 = 2π · 1000 rad

s
.

towards higher frequencies and finally out of the range of simulated rotational speeds.

This illustrates again the important influence of the lubrication model on the whole

dynamics. In (Crandall, 1995) it is shown by considering force equilibria that the

onset frequency of the oil-whip, the large amplitude oscillation which starts in our

example at around 1800 Hz, is double the eigenfrequency of the first bending mode.

In (Muszynska, 1986) the fluid’s average circumferential velocity is identified as addi-

tional critical speed. The coalescence of these two critical speeds leads to this harmful
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phenomenon that is the oil-whip. In this case the self-excitated vibration forces the

bending oscillation causing the large amplitudes.

6.5.2 Varying the Lubrication Model

The last section has shown the importance of the lubrication model and especially

of the average circumferential fluid velocity for the dynamical behavior of the rotor-

bearing system. In Chapter 5 we have derived several bearing models which are more

realistic than the short bearing approximation. In order to reproduce the experimen-

tally observed shift of the ratio of the whirl frequency to the driving frequency these

models have tested with the small 3 beam element rotor model which has 32 degrees

of freedom (DOF), as well as with the simple model with 4 degrees of freedom (6.16).

According to (Childs, 1993) and (Yamamoto & Ishida, 2001) the zeroth order short

bearing approximation is valid for ratios of bearing length to bearing radius W
R < 1.

The bearings of the turbocharger of which the vibration behavior was examined in the

experiments has a ratio W
R =

5.4
3 and so the short bearing approxmation tends to give

erroneous results. As a first step it is therefore interesting to investigate the behavior of

the rotor when the bearing reaction forces are computed from the solution of Reynolds

equation itself without the simplification of assuming a short bearing. Furthermore

the choice of the boundary conditions which serve as a simple cavitation model could

influence the vibration behavior. Two sets of boundary conditions described in more

detail in Sections 5.3.2 and 5.5 are under consideration in the following simulations:

• the Gümbel boundary conditions prescribe the periodicity of the pressure in the

circumferential direction and environment pressure (p = 0) at the bearing ends.

After the solution the pressure is set to zero in the regions where it is negative.

• the Reynolds’ boundary conditions additionally demand that p ≥ 0 inside the

domain which leads to a free boundary problem whose solution is quite time

consuming and which has to solved every time the bearing forces are evaluated.

6.5.2.1 Simulations with Reynolds’ Boundary Conditions

Since the solution of the free boundary boundary problem with the PSOR algorithm

(cf. Section 5.4.1.3) is very time consuming, the simulations for this lubrication model

are done with the 4 DOF model (6.16). Matlab’s ode15s is used as integrator and the

5-point Laplacian (cf. Sec. 5.4.1) is used for the discretization of Reynolds’ equation.

This computational setup leads to very long computation times which definitely could

be improved a lot by applying more sophisticated numerical methods. However, the

results of this simple numerical experiment imply that the influence of the Reynolds’

boundary conditions on the vibrations is neglectable. The frequency response is shown



6.5 Influence of Oilfilm Model on Dynamics 131

0 500 1000 1500 2000
0

500

1000

1500

2000

Amp=0.001mm

frequency [Hz]

ro
t. 

sp
ee

d 
[H

z]

Campbell diagram, Reynolds BC

Figure 6.16: Spectrum from simulation of simple model (6.16) with Reynolds’ boundary

condition the lubrication equation shows no shift of subharmonic response.

in Figure 6.16 for a few driving frequencies. The parameters used in this simulation

are D = 0.5 Ns
m , u = 2.1 · 10−7 kg m and M = 0.1 kg. The results show no significant shift

of the subharmonic response.

6.5.2.2 Reynolds’ Equation With/Without Inertia Correction

Although they provide a cruder cavitation model, the Gümbel conditions allow for

a faster evaluation of the bearing forces, which accelerates the computation. In the

following simulations Reynolds’ equation with Gümbel boundary condition is used in

the two variants derived in Section 5.1.6. We compare the solutions of the explicit model

(6.9), that uses the zeroth order Reynolds’ equation (5.89), with those of the implicit

model (6.13), where the first order inertia corrected version of Reynolds’ equation

(5.89) is used. For the rotor itself the smaller 3 element model is used in both cases

with the parameters as given in Appendix D.2. For the explicit model Matlab’s ode15s

solver for stiff problems is used. For the implicit model the solver routine DASPK is

called from an octave script. The partial differential equations for the evaluation of the

pressure distribution in each step are solved with the deal.II package as described in

Section 5.4.2. The computations are again quite time consuming. The most critical part

is the computation of the pressure distribution from Reynolds’ equation. As we have

seen in Sections 5.4.2, many degrees of freedom are needed to compute the bearing

forces with sufficient accurateness. Less accuracy in the finite element solver often

leads to failure in the ode solvers, which in that case run into discontinuities leading

to nonconvergence of the underlying Newton method.
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Figure 6.17: 3 element beam mode: comparison of the spectra of simulation results with

zeroth order (blue) and first order (green) Reynolds’ equation. No significant frequency

shift of the subharmonic can be observed.

The results are shown in Figure 6.17. The power spectrum of the rotor vibration

taken from the orbit of the turbine is shown for four different rotational speeds from

the region in which the frequency shift is observed in the experiment. The blue

peaks show the frequency response of the explicit system with zeroth order Reynolds’

equation. The green peaks show the response of the implicit system with the inertia

corrected version of Reynolds’ equation. A frequency shift which is as significant as in

the experiment cannot be observed. Computations over a longer time interval which

allow for a better frequency resolution in the spectra are not done, since a significant

frequency comparable to the one observed in experiment would be visible at this scale

and the calculation time (in the order of several days for one rotational velocity) is

prohibitively long.

6.5.2.3 Simulations Using Inertia Corrected Short Bearing Approximation

Faster computations are possible when we use the short bearing approximation which

allows for an analytic formula for the pressure distribution in the case of inertia cor-
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Figure 6.18: Comparison of subharmonic responses of simple model (6.16) for classical

short bearing (blue) and inertia corrected short bearing (green). A frequency shift to-

ward lower frequencies of about 1% compared to response of uncorrected system can be

observed.

rected pressure, as well as in the case of zeroth order approximation. In Section 5.6 it

is demonstrated that bearing parameters similar to those form the experiment (R = 3

mm, W = 5.4 mm, cr = 0.02 mm) lead to erroneous results in the pressure distribution

especially for the inertia corrected pressure. To evaluate the influence of the inertia

correction on the frequency of the oil whirl, the simple model (6.16) is simulated (M = 1

g, D = 1e − 3g/s, u = 3e − 7gmm) with both lubrication models (5.47) and (5.63) and

a bearing configuration for which the short bearing approximation and the inertia

correction are valid (R = 3 mm, W = 0.25 mm, cr = 0.02 mm). DASPK is used for

time integration in both cases, the explicit case using the zeroth order short bearing

approximation and the implicit case using inertia corrected first order short bearing

approximation.

The results of these simulations are depicted in Figure 6.18. They show that the

subharmonic response of the inertia corrected model (green) displays a frequency shift

to the response of the model using the classical short bearing approximation (blue).

The shift, however, is not of the same magnitude as observed in the experiments,

but it is relatively small. Compared to the subharmonic response of the uncorrected
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model with its ω
2 -response, the response of the inertia corrected system is between

0.5% and 1% lower. This clearly shows that the inertia correction has an influence on

the self-excited oscillation, but it also indicates that the large frequency shift observed

in experiment can not be fully explained by this correction.

6.6 Conclusions from the Simulations

To conclude this chapter we summarize here the results and comment on the quality

of the proposed model.

• The simulations show that the presented beam model together with the short

bearing approximation for the hydrodynamic bearings reproduces the dynam-

ical behavior of the turbocharger quite well. In good agreement with the ex-

perimental results it exhibits the harmonic unbalance response, the self-excited

subharmonic oscillation known as oil whirl, and the same vibration modes.

• In the model with short bearing the dependence on parameters such as bearing

width, radial clearance, and oil viscosity is similar to the experimental response

to parameter variation.

• The external damping constant is a parameter unknown in experiment. Its

influence can be used to suppress the self-excited oscillation and to influence its

frequency.

• The frequency of the oil whirl can be influenced by varying the lubricant’s average

circumferential velocity. By introducing a phenomenological correction term into

the short bearing approximation it is possible to prescribe the frequency of this

self-excited oscillation.

• The ratio of oil whirl frequency to forcing frequency differs between experiment

and simulation. The variation of the lubrication model does not have a large

effect on this ratio. The use of zeroth order Reynolds’ equation neither with

Gümbel boundary conditions, nor with Reynolds’ boundary conditions instead

of the short bearing approximation leads to a reduction of the whirl-forcing ratio.

• The inertia correction of Reynolds equation also leads to no significant shift of

the whirl-forcing ratio, while the computation time is considerably longer due

to the required solution of 3 partial differential equations in each time step.

• The inertia correction of the short bearing approximation has a small influence on

the frequency of the oil whirl. The ratio of oil whirl frequency to forcing frequency

is close to 1
2 for the uncorrected classical short bearing approximation. For the

inertia corrected short bearing approximation the ratios drops by approximately

1%.
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These results suggest that the short bearing approximation is a good compromise for

simulations where the computation time is critical, such as e.g. in an shape optimization

framework. The inclusion of the phenomenological correction for the circumferential

lubricant velocity allows to reproduce a measured frequency behavior of a certain

bearing type without detailed modeling of the bearing, and without the computational

effort of solving partial differential equations in each time or optimization step.

However, the determination of the overall frequency response of the system by direct

numerical simulation is somewhat inefficient, since it is first necessary to compute also

the transient behavior at the beginning and to determine the end of the transient region.

Secondly the accuracy of the Fourier spectra depends on the length of the simulated

interval. In order to compute the frequency response more efficiently, continuation

methods seem to be more appropriate which follow the periodic orbit in parameter

space and which do not require the computaition of transients. Such methods are

introduced and applied to the above models in the following Chapter 7.
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Chapter 7

Numerical Bifurcation Analysis

The direct numerical simulation of the model equations is a popular approach for the

investigation of systems response. By solving multiple initial value problems it allows

for validation of the model equations over a broader parameter range and also for the

classification of solutions. However, as we have seen in Chapter 6, the direct numerical

simulation can be very time consuming, not only because transient behavior has to

be accounted for, but also due to long data sets being necessary for the subsequent

analysis of the solution with e.g. Fourier analysis.

Numerical continuation and bifurcation methods are an useful and efficient alterna-

tive. These techniques not only provide efficient means of computing certain types of

solutions, but also allow the detection and classification of bifurcations, i.e. qualitative

changes of the solution. They are therefore better suited for extensive parameter stud-

ies. Bifurcation theory is a very broad and flourishing field. We refer to the textbooks

(Chow & Hale, 1982; Kuznetsov, 2004; Nayfeh, 2000; Nayfeh & Balachandran, 1995;

Wiggins, 1990) and the references there for more information on bifurcation theory.

There are some well-established software-packages for the computation of equilibria

and periodic solutions such as AUTO (Doedel et al., 2000), CONTENT (Kuznetsov &

Levitin, 1997), or MATCONT (Dhooge et al., 2004). These packages provide methods

for detecting pitchfork, transcritical, period-doubling, and Neimark-Sacker bifurca-

tions. Furthermore, loci of such bifurcations can be computed in a two-parameter

plane.

In this chapter the software-package AUTO 2000 (Doedel et al., 2000) is used to study

the parameter dependency and the bifurcation behavior of equilibria and also of pe-

riodic solutions of the equations that model the dynamics of a fast rotating body in

hydrodynamic bearings. Additionally, a method proposed in (Schilder & Peckham,

2007) and implemented in the package TORCONT (Schilder, 2004) is used to continue

the quasi-periodic solutions which also have been observed in the direct numerical

simulations and in the experiments.
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7.1 Short Overview of Continuation Methods and Bifurcation

Theory

Continuation methods are based on the Implicit Function theorem (Chow & Hale,

1982). For a given solution (x0, λ0) ∈ X ×Λ of an equation

F(x, λ) = 0 (7.1)

with a Fréchet differentiable function F : X × Λ → Z, where X and Z are Banach

spaces, and the parameter set Λ is an open set in a Banach space, the boundedness

of the derivative DxF asserts the existence of a a function x∗(λ) that parametrizes

the solutions in a neighborhood of (x0, λ0), i.e. for (x, λ) in that neighborhood we

have F(x, λ) = 0 iff x = x∗(λ). In points where the differentiability condition fails the

qualitative behavior of the solutions can change. These points are called bifurcation

points.

In this chapter we will mainly come across two types of bifurcations: the Hopf bifur-

cation and the Neimark-Sacker or torus bifurcation. The two bifurcations are closely

related, since both are occurring at the onset of self-excited vibrations. The Hopf bi-

furcation describes the bifurcation of a periodic orbit from a branch of equilibrium

solutions, while the torus bifurcation describes the bifurcation of an invariant torus

from a branch of periodic orbits leading to the appearance of a second frequency in

the solution.

The Hopf bifurcation theorem (Guckenheimer & Holmes, 1983; Kuznetsov, 2004) states

that generically, if an ordinary differential equation ẋ = f (x, µ), x ∈ Rn, µ ∈ R has

an equilibrium at (x0, µ0) at which a pair of complex conjugate eigenvalues of the

Jacobian Dx f (x, µ0) crosses the imaginary axes transversally, there exists a family of

periodic orbits close to the equilibrium towards one side of the bifurcation value of the

parameter, i.e. for µ > µ0 or for µ < µ0. The stability of the equilibrium changes in µ0

and the periodic orbit is always of a different stability type than the equilibrium on its

side of the bifurcation value.

The Neimark-Sacker bifurcation is the equivalent bifurcation for fixed points of maps.

It occurs when the one-parameter family of maps fµ : x 7→ fµ(x) has a fixed point (x0, µ0)

at which the Jacobian Dx fµ0 has a pair of complex conjugate eigenvalues λ, λ̄ which

cross the unit circle transversally at µ0. Furthermore, the additional non-resonance

conditions λn
, 1 for n = 1, 2, 3, 4 are required. If these conditions are fulfilled there

exists an invariant circle of the map fµ on one side of the bifurcation value. This

is of particular importance for the bifurcation of limit cycles of ordinary differential

equations. The stability of a limit cycle is given by the Floquet multipliers, which are

the eigenvalues of the stroboscopic or Poincaré map of the cycle. The limit cycle corre-

sponds to a fixed point of the Poincaré map and if a pair of multipliers crosses the unit

circle, this fixed point undergoes a Neimark-Sacker bifurcation and an invariant circle
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of the Poincaré map appears. This invariant circle corresponds to a two-dimensional

invariant torus that bifurcates from the limit cycle. Under the additional assumption of

normal hyperbolicity the torus persists for small parameter changes (Fenichel, 1971).

The dynamics on this invariant torus can either be periodic or quasi-periodic. The

periodic case is structurally stable, while the quasi-periodic flow can be destroyed by

arbitrarily small parameter variations. However the measure of the set of parameter

values where quasiperiodic behavior on the torus can occur is non-zero and there is

hence a non-zero probability to observe it (Wiggins, 1990).

The Implicit Function theorem is the foundation for the numerical continuation meth-

ods that are used in the following. The solutions that are continued can have different

natures. In the case of equilibrium solutions of an ordinary differential equation

ẋ = f (x, λ) with f : Rn × R → Rn, starting from a known equilibrium (x0, λ0) with

f (x0, λ0) = 0 and nonsingular Jacobian, a Newton-type method can be used to com-

pute a nearby equilibrium, the existence of which is guaranteed by the above theorem.

The case of the continuation of periodic solutions of a differential equation can be

regarded as an infinite dimensional analogon of the above. Consider the function F

going from the space of continuously differentiable functions to R2n+1, and mapping a

function ϕ on the residual of the boundary value problem

F : C1([0, 1]) ×R ×Λ→ R2n+1, (7.2)

F(ϕ,T, λ) =




ϕ̇ − T f (ϕ, λ)

ϕ(1) − ϕ(0)

Ψ(ϕ)



. (7.3)

Then a zero of F is a solution to the boundary value problem, i.e. a periodic solution of

the original equation. The first component of F is the differential equation, the second

is the boundary condition which asserts periodicity, and the third is a phase condition

which chooses on particular solution out of the possible shifted ones. Differentiability

conditions on analogous to the equilibrium case then allow a continuation in parameter

space.

A detailed overview of the numerical methods used in AUTO can be found in (Beyn

et al., 2002; Doedel et al., 1991a; Doedel et al., 1991b; Kuznetsov, 2004). AUTO

uses pseudo-arclength continuation (Keller, 1977) which allows the continuation also

around folds. The system F(x, λ) = 0, λ ∈ R with a zero in (x0, λ0) is augmented with

an additional equation which fixes the stepsize along the solution branch

F(x1, λ1) = 0, (7.4)

(x1 − x0)x′ + (λ1 − λ0)λ′ − ∆s = 0, (7.5)

where (x0, λ0) is the current position on the branch, (x1, λ1) the unknown next point,

and (x′, α′ the normalized tangent vector of the branch in (x0, λ0). The advantage of

this formulation is, that the Jacobian of the left hand side is always nonsingular as long
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as the solution is regular, i.e. the Jacobian DF = (DFx,DFλ) of the original equation has

rank n and only one solution branch passes through the solution (Beyn et al., 2002).

Bifurcations are detected by test functions which have zeros at the bifurcation points,

e.g. the determinant of the Jacobian of the augmented system (7.4) and (7.5) is used as

test function for a branch point. In AUTO the real part of the complex eigenvalue with

smallest absolute value of the real part is used as test function for Hopf bifurcation

points.

The computation of invariant tori is currently an active area of research. An overview

of recent contributions can be found in the introduction of (Schilder et al., 2005). The

recently developed package TORCONT (Schilder, 2004) is used for the continuation

in invariant tori with quasiperiodic solutions in Section 7.7.3. The technique is based

on the computation of a Fourier approximation of the invariant circle of the Poincaré

map. More details and references are given in Section 7.7.2.

7.2 Reformulations of Equations of Motion

The equations of motion for rotordynamical systems are derived in Chapters 2 to 5.

They are an explicit system of ordinary differential equations

Mẍ + (ωG + C)ẋ + Kx = Fgr + Funb(t) + Fbear(xb, ẋb), (7.6)

if the bearing force function does not depend on the nodal acceleration of the bearing

nodes. In first order form it reads




M

I


 ẏ =



−(ωG + C) −K

I 0


 y +




Fgr + Funb(t) + Fbear(yb)

0


 . (7.7)

If the bearing force function does depend on the nodal acceleration, the system becomes

implicit

Mẍ + (ωG + C)ẋ + Kx = Fgr + Funb(t) + Fbear(xb, ẋb, ẍb). (7.8)

The first order form is




M

I


 ẏ =



−(ωG + C) −K

I 0


 y +




Fgr + Funb(t) + Fbear(yb, ẏb)

0


 . (7.9)

From Chapter 4 we recall that the mass matrix M is symmetric and positive definite, the

damping matrix C and the stiffness matrix K are symmetric and positive semidefinite,

and the gyroscopic matrix G is skew-symmetric. Fgr is a static load (e.g. gravity),

Fbear is the nonlinear bearing reaction force, and Funb = uω2 cos(ωt +ψ) is the periodic

unbalance forcing.
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7.2.1 Transformations for AUTO and Internal Newton Method

For the software AUTO, the user has to supply a file which returns the right hand side

of an explicit, autonomous, ordinary differential equation for given state vector and

parameters. As described in the AUTO user manual (Doedel et al., 2000) the transfor-

mation of a non-autonomous periodically forced system like (7.7) to an autonomous

system can be done by coupling a nonlinear oscillator unidirectionally to the original

system, like e.g. the Hopf normal form

ẋ = x + ωy − x(x2 + y2), (7.10)

ẏ = −ωx + y − y(x2 + y2), (7.11)

which has the asymptotically stable solution x = sin(ωt), y = cos(ωt). The periodic

forcing term funb = u cosωt in (7.7) can then be replaced by funb = uy to obtain an

autonomous system.

For a given state vector y the user supplied right hand side function has to return ẏ.

It is however not possible to transform (7.9) analytically into an explicit expression for

ẏb, the variables describing deflection and velocity at the bearing nodes. In order to

apply AUTO to (7.9), we have to solve the equation for ẏ numerically. This is possible

by applying an internal Newton method. Since the nonlinearity is only in the bearing

nodes this can be done relatively efficiently by a decomposition into variables which

affect and are affected directly by the nonlinearity and variables that are only affected

by the linear term. For this we separate y and ẏ into those variables y1 and ẏ1 that

describe displacements and velocities at the bearing and those variables y2 and ẏ2 that

describe the rest. By rearranging the system matrices we can put (7.9) in the following

form



M11 M12

M21 M22







ẏ1

ẏ2


 =




A11 A12

A21 A22







y1

y2


 +




Fbear(y1, ẏ1)

0


 +




G1

G2


 (7.12)

=




Fbear(y1, ẏ1)

0


 +




R1

R2


 , (7.13)

where A and G are the respective permutations of

Ã =



−(ωG + C) −K

I 0


 , G̃ =




Fgr + Funb(t)

0


 , (7.14)

and

R1 = A11y1 + A12y2 + G1, (7.15)

R2 = A21y1 + A22y2 + G2. (7.16)

We can eliminate ẏ2 from the first line of Equation (7.12) by using

ẏ2 = (M22)−1R2 − (M22)−1M21 ẏ1 (7.17)
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and obtain the following low-dimensional equation for ẏ1

(M11 −M12(M22)−1M21)ẏ1 =




Fbear(y1, ẏ1)

0


 + R1 −M12(M22)−1R2. (7.18)

This equation has to be solved numerically with Newton’s method. The iteration

matrix is

J =M11 −M12(M22)−1M21 −Mb, (7.19)

where the Jacobian Mb of Fbear with respect to ẏ1 is approximated by central finite

differences. The result of the last successful step is a good starting value for the

internal Newton method, in practice leading to convergence after a few iteration steps.

This internal Newton method is less numerically efficient than solving the implicit

equation directly, because one ends up in doing two Newton methods: one every time

the right hand side is evaluated, and one in AUTO’s continuation procedure. But since

AUTO does not allow implicit equations, this is a reasonable work-around, especially

since generally only very few internal iterations are needed.

7.2.2 Formulation in Co-Rotating Frame

So far we considered the equation of motion (7.6) in a fixed frame coordinate system.

The transformation to a co-rotating frame however yields some further insight into

the dynamics of the system. Let qi = (ui, vi, βi, αi) be the nodal coordinates in the fixed

frame as above and pi the coordinates in a frame that is rotating about the z-axis with

rotational speed ω. Then

qi =




T(ωt)

T(ωt)


 pi, where T(ωt) =




cosωt − sinωt

sinωt cosωt


 . (7.20)

Setting

P =




T(ωt)
. . .

T(ωt)




and H =




0 −1

1 0
. . .

0 −1

1 0




, (7.21)

and substituting q = Pp in (7.6) we obtain the following equation for y:

Mp̈+ (2ωMH +G+C)ṗ+ (K−ω2M+ωGH+ωCH)p = F̃bear(p, ṗ)+ Fgr cos(ωt)+ω2Funb.

(7.22)

The bearing function Fbear in (7.6) only depends on the eccentricity r, the radial velocity

ṙ and the angular velocity γ̇ of the journal center (cf. (5.159), (5.160))

Fb =




Fb,x

Fb,y


 = T(γ)




Fn(r, ṙ, γ̇)

Ft(r, ṙ, γ̇)


 . (7.23)
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If we denote the polar coordinates in the co-rotating frame by e and ψ we have the

following relations: e = r, ė = ṙ, γ = ψ + ωt and γ̇ = ψ̇ + ω. Therefore the transformed

bearing function F̃bear in (7.22) has the following form

F̃bear = T−1(ωt)Fbear(q, q̇) = T−1(ωt)T(γ)




Fn(r, ṙ, γ̇)

Ft(r, ṙ, γ̇)


 (7.24)

= T−1(ωt)T(ωt)T(ψ)




Fn(e, ė, ψ̇ + ω)

Ft(e, ė, ψ̇ + ω)


 (7.25)

= T(ψ)




Fn(e, ė, ψ̇ + ω)

Ft(e, ė, ψ̇ + ω)


 . (7.26)

In the implicit case the transformed bearing function is of the form

F̃bear =




Fn(e, ė, ψ̇ + ω, ψ̈)

Ft(e, ė, ψ̇ + ω, ψ̈)


 . (7.27)

The formulation in the co-rotating can sometimes be more convenient than the fixed

frame version as the harmonic unbalance forcing transforms to a constant term and the

formerly static gravity load term becomes an harmonic forcing term. In the absence

of gravity load (e.g. in a vertical rotor) or any other constant load the analysis of the

dynamics is therefore simpler because the system is autonomous. Periodic orbits of the
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Figure 7.1: Comparison of simulated orbits seen in fixed frame of coordinates (top) and

co-rotating frame (bottom); quasi-periodic orbits in the fixed frame become periodic orbits

in the co-rotating frame of reference.

system with unbalance forcing in the static coordinate system transform to equilibria

in the co-rotating frame and invariant tori transform to periodic orbits. This can be
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seen from the following considerations. Let

x = aeiω0t + beiω1t (7.28)

be a quasi-periodic signal with the two basic frequencies ω0 and ω1. The transformed

signal in a rotating frame with ω0 then has the form

z = e−iω0tx = a + bei(ω1−ω0)t. (7.29)

Hence a periodic solution with frequency ω0 (i.e. b = 0) will transform to a constant

solution, while the term with frequency ω1 is transformed into another periodic term

with the frequency ω1 − ω0. In Section 7.8 the period length Trot of a solution to the

equation of motion in the co-rotating frame of coordinates is computed with AUTO.

To calculate the basic frequency ω1 in the fixed frame of coordinates for ω1 < ω0, we

use

Trot =
2π

ω0 − ω1
⇔ ω1 = ω0 −

2π

Trot
. (7.30)

Hence if ω1 =
ω0

2 the period is Trot =
4π
ω0

, and if Trot <
4π
ω0

, the subharmonic frequency is

also reduced ω1 <
ω0

2 , as it is observed experimentally for the oil whirl.

The simplification achieved through the transformation is illustrated in Figure 7.1,

where we see a comparison of simulation results of a system without gravity load in

the fixed frame and in the co-rotating frame for varying rotational speed. The orbits in

the lower graph, seen in the co-rotating frame, are much simpler. Neglecting gravity

is also justified in our example for large rotational speeds, because Fgr becomes small

compared to unbalance above frequencies of approximately 500 Hz as can be seen later

in this chapter.

7.3 Linear Stability Analysis

As a first step in the bifurcation analysis we perform a linear stability analysis of the

rotor-bearing system. From the equations of motion (7.7) and (7.9) we see that in the

absence of the constant load, i.e. fgrav = 0, and of the unbalance forcing ( funb = 0),

there exists an equilibrium in the origin. For non-vanishing constant load fgrav , 0 the

equilibrium is no longer in the origin. If the bearing function is complicated one has to

calculate it numerically. The real parts of the eigenvalues of the Jacobian of the right

hand side of the equation of motion evaluated at the equilibrium point give its linear

stability. The computation of the zeros of the right hand side can be complicated if the

system is large, i.e. if many beam elements are considered. However, since nonlinearity

is brought into the system only by the bearing function which itself only depends on

the nodal coordinates of at the bearing positions, a decomposition of the equation of

motion can be used to facilitate the numerical computation of the equilibrium.
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From (7.6) we see that the condition for an equilibrium in x∗ is

0 = Kx∗ + Fgr + Fbear(x
∗
b, 0). (7.31)

K is the stiffness matrix of the beam, its null space is spanned by the rigid body motions

of the beam (cf. Eq. 4.25), and therefore Kxr = 0 for a rigid translation xr of the beam.

Hence we can decompose the equilibrium position x∗ into a rigid translation xr and a

elastic bending deflection xe with fixed zero deflection at the bearing nodes (xe
b
= 0):

x∗ = xr + xe. (7.32)

Substituting this into (7.31), the forces in the bearings are then given by

Fbear(x
r
b) = −Kxe + Fgr. (7.33)

Ordering K and xe in such a way that the zero components of xe are in the first rows

we can write the last equation in more details:

−




K1 K2

K3 K4







0

x̃e



+




Fgr,1

Fgr,2



=




Fbear(x
r)

0



. (7.34)

From this we can calculate the bending deflection

x̃e = K−1
4 Fgr,2 (7.35)

and the resulting bearing forces by elimination of xe from the equation

Fbear(x
r
b) = −K2x̃e + Fgr,1 (7.36)

= −K2K−1
4 Fgr,2 + Fgr,1 (7.37)

= F̃. (7.38)

Then the rigid translation in each of the bearings can be calculated by solving numer-

ically the nonlinear equation

Fbear(x
r
b) = F̃, (7.39)

e.g. with a Newton type method. The entire rigid translation xr is calculated from

the translations at the bearings xr
b

by linear interpolation. The lateral shaft deflection

in equilibrium is then given by adding again the rigid translation and the bending

deflection.

Since (7.39) decomposes even further into two two-dimensional problems, one for each

bearing, this reduced problem is much easier to solve than the direct problem (7.31),

also for large systems with many finite elements.
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Knowing the equilibrium position, the bearing stiffness and damping coefficients, as

well as the derivative with respect to the nodal acceleration ẍb in the case of the implicit

system (7.9)

Koil = (
∂Fbear,i

∂xb, j
)i, j, (7.40)

Coil = (
∂Fbear,i

∂ẋb, j
)i, j, (7.41)

Moil = (
∂Fbear,i

∂ẍb, j
)i, j, (7.42)

can be determined by calculating the central difference quotients of the oil film forces

around the equilibrium as in Equation (6.17) in Section 6.2.

With these coefficients one can do a linear stability analysis of the equilibrium position

by analyzing the linearized right hand side of the equation of motion without periodic

forcing

ẏ =



−(M −Moil)

−1(ωG + C + Coil) −(M −Moil)
−1(K + Koil)

I 0


 y

= By. (7.43)

Note that in the case of the explicit equation of motion (7.7) Moil = 0. The eigenvalues

of the matrix B in Eq. (7.43) determine the stability of the equilibrium. By computing

the equilibria and the corresponding eigenvalues for varying values of the rotational

velocity, dependence of the equilibria’s stability on this parameter can be studied.

Using the old equilibrium as a starting value for the Newton iteration of the next one is

a good guess and leads to fast convergence. If all eigenvalues have negative real part,

the system is linearly stable and for small forcing the expected response is harmonic.

If one or more eigenvalues have positive real part, the corresponding equilibrium is

unstable and self-excited oscillations may occur. A Hopf bifurcation occurs at a given

parameter value, if a pair of two eigenvalues crosses the imaginary axes transversally

at this parameter (Wiggins, 1990).

7.3.1 Hopf Bifurcation at Onset of Oil Whirl

Like in Chapter 6 we mainly study two models of a turbocharger, a larger one with

thirteen beam elements resulting in an equation of motion with 112 dimensions and

a smaller one with only three beam elements whose equation of motion has only 32

dimensions (cf. Fig. 6.7).

For rotational speeds between 10 Hz and 2010 Hz we calculate the equilibria of the

large model with 13 finite beam elements and the corresponding eigenvalues of the

Jacobian. In Figure 7.2 the real and the imaginary parts of the eigenvalues are plotted
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Figure 7.2: Plot of the eigenvalues of the linearized dynamical system for the 13 beam

element model. Top: Real parts. Bottom: Frequencies of the eigenmodes given by the

imaginary parts divided by 2π. Two eigenmodes subsequently lose stability at driving

frequencies of around 100 and around 350 Hz, respectively.

in dependency of the rotational velocity ω. In the upper plot we see that two curves

cross the zero line, one around 100 Hz and one at about 350 Hz, which indicates

some vibration modes becoming unstable. In the lower plot the red line indicates

the forcing frequency. Crossings of the red line with blue eigenvalue curves indicate

driving frequencies where harmonic resonances occur. This is in agreement with the

simulation results shown in Figure 6.8 in Section 6.4, where a harmonic resonance of

the first bending mode appears at 1000Hz and a second harmonic resonance peak is

observed around 1600 Hz. In Figure 7.3 the orbits of the eigenvalues in the complex

plane are shown. One can see the pair of eigenvalues crossing the imaginary axis into

the positive half plane. This shows numerically the presence of a Hopf bifurcation at

the onset of the oil whirl.

This linear stability analysis is common in rotordynamics and is used e.g. in (San Andrés,

2006) or (Childs, 1993) to predict the stability of rotordynamic systems. However in

the presence of self-excited oscillations, the linear stability analysis can lead to wrong

conclusions, since we perform it along the then unstable equilibrium which is not

observed in the physical reality. Nevertheless, the correct perdiction of the resonance

peaks shows that the solutions with self-excited oscillation are still reasonably close to

the equilibrium, such that a linear stability analysis makes sense.

For the smaller system we observe similar behavior as can be seen in Figure 7.4. Again

two pairs of complex eigenvalues cross the imaginary axis. One pair at around 50 Hz

and the other one around 300 Hz. In the lower figure on the left, one can see that again

there is a harmonic resonance near 1000 Hz.
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Figure 7.3: Close up of the origin of the complex plane with spectrum of the Jacobian of

the 13 element model: two pairs of complex conjugate eigenvalues cross the imaginary

axis indicating two subsequent Hopf bifurcations. Eigenvalues with negative real parts

are plotted in red, eigenvalues with positve real parts in blue, for small ω both pairs start

close to the origin in the negative half plane.
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Figure 7.4: Results of linear stability analysis of 3 element model; left: plots of real and

imaginary parts of the eigenvalues of the Jacobian; right: close-up of origin of the complex

plane showing the orbits of 2 pairs of complex conjugate eigenvalues crossing the imaginary

axis with varying ω. Eigenvalues with negative real part are plotted in red, those with

positive real part in blue; for small ω both pairs start close to the origin in the negative half

plane.

7.4 Numerical Bifurcation Analysis of Large Model

The software-package AUTO (Doedel et al., 2000) has been developed to perform

parameter continuation for a multitude of problems. In this section it is used to

investigate closer the onset of instability of the larger, 112-dimensional model of the

turbocharger (cf. 6.7) with 13 beam elements. Unfortunately the dimension of our

problem makes it difficult to use AUTO for the calculation of the bifurcations the

periodic orbits of our model (7.7) with unbalance forcing. This is mainly due to the
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Figure 7.5: y-deflection at impeller side of the equilibrium state of the large model (N = 112)

for varying rotational speed (x-axis) with lower (36 Ns/m;left) and higher (180Ns/m;right)

damping factor and no unbalance forcing; to the right of the first Hopf bifurcation (H) the

fixed point is unstable.

size and the stiffness of the problem and the resulting convergence problems for the

Newton methods used in the algorithm. In the absence of unbalance it is possible to

calculate the equilibrium and its stability for different damping factors and to locate

the Hopf bifurcations which mark the onset of the oil whirl.
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Figure 7.6: Curves of Hopf Bifurcations in the ω-D plane; above and left of the red curve

the equilibrium is asymptotically stable; between the curves 2 unstable, below blue curve

4 unstable directions

The starting point for all continuations in the following is always the trivial equilibrium

which exists in the absence of unbalance and static load (Fgr = 0 and Funb = 0). For
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increasing the Fgr this equilibrium becomes non trivial. The equilibrium branch is

followed until Fgr reaches the same value it has in the simulations. Starting from

this point, the equilibrium is now continued in the driving frequency from 10 Hz to

2000 Hz.

The results of the continuation are shown in the Figure 7.5 for two different external

damping factors. Both graphs in the figure show the y-deflection of the rotor at the

impeller side in the equilibrium state for a range of rotational speeds. The distance of

the equilibrium from the origin decreases with increasing driving frequency. Several

Hopf bifurcations are detected along the branches and marked with red H. As soon as

the rotational speed passes the frequency of the first Hopf bifurcation the equilibrium

solution becomes unstable and oil whirl occurs. For the lower value of the damping

factor a second Hopf bifurcation is detected at a higher rotational speed. Note that

for the higher damping (180Ns/m) the second Hopf bifurcation vanishes and that the

onset of self-excited oscillation is pushed to higher frequencies. The parameters used

to obtain the results in Figure 7.5 were the same as those used in the simulation shown

in Figure 6.11, except for the unbalance excitation, which is neglected here.

The prediction of the onset of instability is of crucial importance for the design of the

turbocharger and also of other rotors. A continuation of the first Hopf bifurcation in

parameter space would yield a good tool for this purpose. However, the size of the

system poses some problems to the numerical methods of AUTO and we encountered

convergence problems when we tried this continuation. As an alternative it is possible

to detect the loci of the Hopf bifurcations by several runs of AUTO which cover

the parameter region of interest. For this we compute an equilibrium branch by

continuating the starting solution in the damping parameter. From well chosen points

on this branch we repeat the continuation in ω, and we can hence detect the location

of the Hopf bifurcations on branches with different damping. For the results shown

in Figure 7.6 such a search strategy was applied. Connecting the points of the first

Hopf bifurcations (red) and those of the second Hopf bifurcations (blue) linearly we

obtain a partition of the parameter space. In the left upper corner, above the red curve

the equilibrium is asymptotically stable. Between the two curves there are 110 stable

directions and 2 unstable ones. Below the blue curve there are 4 unstable directions.

These results agree with our simulations in Section 6.4 (cf. Fig. 6.10) where the self-

excited subharmonic vibration disappears for a large external damping factor D.

7.5 Numerical Bifurcation Analysis of Small System

As mentioned in Section 7.4 there are some convergence problems in AUTO for the

large 112 dimensional system. To analyze the qualitative behavior in more detail we

use again the smaller 3-element beam model for some calculations (cf. 6.7) which has

be shown to have similar dynamical properties in Section 6.5. It consists only of 3 beam
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elements with 2 disks attached at each end of the rotor and two journal bearings. The

system therefore has 32 degrees of freedom (cf. Fig. 6.7). As explained in Section 7.2.1 2

more degrees of freedom have to be coupled to the system to make up for the periodic

forcing, leading to a 34 dimensional system.

7.5.1 Unforced System in Fixed Frame of Coordinates

First we want to examine the bifurcation behavior of the equilibrium in the absence

of unbalance forcing. For this we proceed exactly as above. Starting from the trivial

equilibrium with small ω, the static load is increased until it reaches the value from the

simulations. Then the driving frequency is increased and the equilibrium is continued

until ω = 2000 Hz.
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Figure 7.7: Bifurcations of equilibrium of small system. Left: 3 subsequent Hopf bifurca-

tions (marked with H) are detected along equilibrium branch (black) for varying driving

frequency; colored branches show the maximal amplitudes of the periodic orbits emerging

at the Hopf points; only the leftmost one (red) is stable. Right: Locus curve of the Hopf

bifurcations in the frequency-damping factor domain; the first Hopf bifurcation from the

left picture lies on the black curve, the second and third Hopf bifurcations on the red curve

at the intersection with D = 10 Ns/m.

The results for the comparable smaller system are similar to the ones obtained for the

larger system, but more detailed as shown in Figure 7.7. For the unforced system

we observe three Hopf bifurcations from the equilibrium for rotational frequencies

between 0 and 2000 Hz. It is possible to follow the periodic orbits emerging from

the Hopf points. Unfortunately, there are again convergence problems for larger

amplitudes of the periodic orbits, and they can not be continued through the whole

frequency domain. Their maximal amplitude in the y-direction is shown in the colored

branches in the left diagram. At the first point (lowest frequency) a supercritical Hopf

bifurcation occurs and a stable periodic orbit branches off from the fixed point which is

unstable from then on for all higher frequencies. The frequency of the stable periodic

orbit is half the driving frequency as expected from the simulations. The two Hopf
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Figure 7.8: Results of linear stability analysis: trajectories of eigenvalues in the complex

plane. One pair of eigenvalues crosses the imaginary axis twice with increasing driving

frequency; first from negative (red) to positive (blue), and then back. For low driving

frequencies both pairs are close to the origin.

points that are detected for higher rotational speeds seem to be linked by an unstable

periodic orbit that emerges at the Hopf bifurcation in the middle and merges again

with the unstable fixed point at the third Hopf point (higher frequency value). Since the

calculations stop due to convergence problems it is not possible to link them in AUTO.

However dimensional considerations indicate this, because the stable eigenspace of

the fixed point has dimension 32 until the first Hopf bifurcation, dimension 30 between

the first and the second one, the dimension decreases again to 28 between the second

and third Hopf point and increases to 30 again for frequencies higher than at the third

Hopf point. This periodic orbit is unstable, as already the periodic orbit emerging

from the first Hopf point is stable and stays so. This conclusion is supported by a

linear stability analysis. As can be seen from Fig. 7.8 one pair of eigenvalues crosses

the imaginary axis twice, once in positive for a lower frequency and once in negative

direction as the frequency increases. Another pair crosses the imaginary axis and stays

in the right half-plane. The latter corresponds to the stable periodic orbit emerging at

the first Hopf point, while the former corresponds to the unstable periodic orbit that

exists between the second and third Hopf point.

This interpretation is also backed by the continuation of the loci of the Hopf bifurcation

points. For this smaller system it is possible to track the locus curve in the two

parameters damping factor and driving frequency. This is shown in the right diagram

of Figure 7.7. The diagram shows the frequency-damping pairs at which the onset of

self-excited oscillation occurs, i.e. the locus curve of first Hopf bifurcation (black), and

those values of damping and frequency where the secondary Hopf bifurcation occurs.

One can see that for a damping factor larger than approximately 90 Ns/m no Hopf

bifurcation occurs anymore. This corresponds to the simulations in Section 6.4 and to

the results of the bifurcation analysis for the large system (cf. Fig. 7.6), where for higher
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damping factors no self-excited oscillation is observed. The second Hopf bifurcation is

suppressed already for smaller values of the external damping factor. The frequencies

where the red branch of Hopf bifurcations crosses the value D = 10 Ns/m in the right

panel coincide with the frequencies of the second and third Hopf bifurcation in the left

panel.

7.5.2 Forced System in Fixed Frame of Coordinates

In the presence of unbalance excitation the dynamics is slightly different. We start

again with the trivial equilibrium for Fgr = 0 and Funb = 0. As above, we trace the

equilibrium when we increase Fgr to the value specified by the design of the rotor. As

explained in Section 7.2.1 the non-autonomous forcing is replace by a two-dimensional

oscillator with a stable limit cycle, that is unidirectionally coupled to the system. By

increasing Funb to the value specified in the design, we couple in the forcing. This has

the effect that the equilibrium no longer exists. For rotational frequencies below the

frequency of the first Hopf bifurcation, a stable periodic orbit takes its place. It has

the same frequency as the forcing. AUTO allows for a continuation of the periodic

orbit with the rotational frequency as continuation parameter. With rising rotational

frequency the amplitude of the periodic orbit increases as expected from Equation (7.7)

where the amplitude of Funb grows quadratically in ω.
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Figure 7.9: Frequency-response diagrams for the smaller system with unbalance excita-

tion, at the leftmost torus bifurcation (T) this periodic orbit gets unstable and self excited

oscillations appear which leads to a quasiperiodictours branching off; left: low damping,

right: higher damping.

In Figure 7.9 the amplitude of this periodic orbit is depicted against the rotational

frequency for two different values of the external damping factor D. For low damping

we observe three torus bifurcations marked with a red T, while for the higher value

only two of them are observed in the frequency range covered. An examination of the

34 Floquet multipliers that are computed by AUTO shows that all but one multiplier

lie inside the unit circle and one is equal to 1. This shows that the periodic orbit
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is asymptotically stable for driving frequencies lower than the one of the first torus

bifurcation on the branch. At the first torus bifurcation a pair of Floquet multipliers

with non-zero imaginary part leaves the unit circle, the periodic orbits gets unstable

and a stable invariant torus bifurcates from it (Kuznetsov, 2004). At the second torus

bifurcation another pair of Floquet multipliers leaves the unit circle. At the third torus

bifurcation one pair reenters the unit circle. For higher external damping, the first

torus point which is observed on the branch also marks a pair of Floquet multipliers

leaving the unit circle. Again this has the consequence of a stable invariant torus

bifurcating from the periodic orbit which is hence unstable. However, at the second

torus bifurcation point this pair of multipliers returns into the unit circle and the

periodic orbit regains its stability. There is no crossing of a second pair of multipliers

detected. This behavior can be explained by looking at the Hopf bifurcation diagram

on the right of Figure 7.7 which shows that the region of instability of the fixed point

is like a tongue in the frequency-damping factor domain, i.e. for large damping as

well as for very small and for very large frequencies the equilibrium is asymptotically

stable. While this is not a proof for the situation in the forced case, the results of the

averaging theorem (K., 1969; Guckenheimer & Holmes, 1983) suggest that the loci of

the torus bifurcations show a similar behavior. This means that that the second torus

bifurcation which is observed in the low damping case is suppressed in the higher

damping case, and that the second torus bifurcation is the reversion of the first one.

Unfortunately it is not possible to follow the locus of the torus bifurcations themselves

in the frequency-damping factor domain. Again, the relatively high dimension of the

system leads to convergence problems in the Newton methods AUTO employs.

7.6 Fixed Frame vs. Co-Rotating Frame

As already shown in Section 7.2.2 a formulation in a coordinate frame co-rotating with

angular velocity ω can be a simplification of the system (cf. Eq. (7.22)), if there is no

constant load applied to the rotor. In this case the transformed system becomes au-

tonomous, periodic orbits with period T = 2π
ω become fixed points, and quasiperiodic

solutions with one of the basic frequencies equal to ω become limit cycles. In the

absence of a constant load, e.g. for a vertical rotor, this makes numerical continuation

of these quasiperiodic solutions possible. However, since the trivial equilibrium is un-

stable in the absence of gravity, some preliminary continuations are necessary to reach

a starting solution for continuation in the driving frequency. For this, starting from the

trivial equilibrium, we increase the amplitude Funb and follow the equilibrium branch.

A Hopf bifurcation is detected along the branch for high values of the unbalance. The

stable periodic orbit emerging from it is continued backwards in the forcing amplitude

until the smaller value of Funb used in the simulation is reached. This stable periodic

orbit is the starting solution for a continuation in the driving frequency. Alternatively,
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one could also start from a solution computed by direct numerical simulation. How-

ever, the proposed method of reaching the starting solution by 2 continuation runs is

faster, and we can also use the other solutions computed during the process for further

continuation runs.
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Figure 7.10: Continuation of periodic solutions of Eq. (7.22) in absence of constant load

w.r.t. driving frequency; the bottom line shows the detailed orbits drawn in red in the

top figure. The reduced amplitudes around driving frequencies of 1000 Hz are due to the

entrainment phenomenon also observed in the simulations.

Figure 7.10 shows the results of this continuation of the stable periodic orbits of the

system (7.22) in the co-rotating frame. These are equivalent to the quasiperiodic

solutions of the system (7.7) in the fixed frame for which both, the subharmonic and

the harmonic response are present. The orbits depicted in red in the upper diagram are

shown again in the lower row for better visibility. The entrainment of the subharmonic

in the region of resonance of the first bending mode can be observed nicely in this frame

of reference. Between 700 Hz and 1000 Hz and again at about 1500 Hz, the amplitude

of the subharmonic responce decreases significantly. This entrainment effect can also
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be observed in the simulations and in the experiments in the vicinity of the resonance

of the first bending mode.

For some parameter regions the entrainment becomes so strong that the subharmonic

is completely suppressed. This is shown in the left diagram of Figure 7.11. It shows

the locus of the Hopf bifurcation which is at the onset of the oil whirl in the frequency-

bearing clearance ω − cr domain. In the region above the blue line the periodic orbit
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Figure 7.11: Left: Locus of the Hopf bifurcation that marks the onset of oil whirl in the

ω − cr domain for the system (7.22) in a co-rotating frame of coordinates; center and right:

Corresponding Loci of torus and period doubling bifurcations of the system in fixed frame

of coordinates. The right diagram shows a larger part of the parameter range and the locus

of the second torus and period doubling bifurcation.

exists and is stable. Below it, there exits a stable fixed point which corresponds to

a stable periodic orbit with rotational frequency omega in the fixed frame, i.e. an

harmonic response. For small values of cr the subharmonic response disappears in a

region around 900 Hz.

In order to compare this result from the slightly simplified case of zero load in the co-

rotating frame to the full problem in the fixed frame, we have computed the location

of the onset and suppression of the oil whirl in the presence of an harmonic unbalance

forcing and a static load in the fixed frame of coordinates (7.7). The center and the

right diagram in Figure 7.11 show the results. For this, we proceed as in Section 7.5.2

to reach the small stable 2π
ω -periodic orbit present for small values of ω. Again the

technique of sweeping the parameter domain with branches started from previously

computed solutions allows to draw a locus curve of the secondary bifurcations.

The curve of Hopf bifurcations is replaced by the locus curve of torus bifurcations

whose shape is allmost identical to the former. In some parameter regions the torus

curve splits into two curves of period doubling bifurcations where a Floquet multi-

plier passes through −1 on each branch. The point of intersection of the torus curve

two multipliers pass through −1. This situation is known as 1 : 2-resonance. The

complicated bifurcation behavior in the vicinity of such a resonance is described in

(Kuznetsov, 2004) and in the references given in that book, especially (Arnol’d, 1987;

Gambuado, 1985). The diagram in the center shows the same part of theω− cr domain

as the left diagram, while the right diagram shows a larger parameter region which
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Figure 7.12: Power spectrum of vibrations measured in an experiment for ramping up the

driving frequency of the rotor from 130 Hz to 1700 Hz; panel (a) shows a waterfall diagram

and panel (b) a logarithmic intensity plot.

shows the curve of secondary torus bifurcations from the unstable periodic orbit, like

they where observed in Figure 7.9 of Section 7.5.2.

This result shows that neglecting gravity and transformation to a co-rotating frame

yields a significant simplification of the equation of motion, while the prediction of the

onset of the oil whirl and entrainment remains unaffected.

7.7 Continuation of Quasiperiodic Oscillations

In this section the continuation method for invariant tori presented in (Schilder &

Peckham, 2007) is applied to the 3 beam element model of the turbocharger with

constant gravity load and unbalance forcing in a co-rotating frame of coordinates.

Loci of invariant tori with fixed rotation number are computed and compared to

periodic solutions of the system without gravity. Parts of the content of this section

are joint work with Frank Schilder, Jens Starke, Mizuho Inagaki, Hinke Osinga, and

Bernd Krauskopf, which has been published in (Schilder et al., 2007).

7.7.1 Poincaré Section for Experimental Data

The experimental results presented in Section 6.3 of Chapter 6 showed the presence

of two principal vibration modes which are due to unbalance and oil whirl. These

vibration modes have been described in detail there. For convenience we show again

a typical power spectrum from the experimental results in two different ways in

Figure 7.12. One can clearly observe the two principal vibration modes as peaks in the

waterfall diagram in panel (a) and as darker lines in the intensity plot in panel (b). The
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Figure 7.13: Orbits of turbine dynamics (gray) overlaid with their Poincaré sections (black)

measured for different rotational speeds (note the different scale forω = 131 Hz). Especially

for driving frequencies of 595 Hz and 918 Hz the invariant circles on the tori are clearly

visible, while for higher driving frequencies the invariant circles are broken up and show

phase locking.

ratio of the frequency of the subharmonic to the driving frequency is approximately
1
2 for low driving frequencies. For driving frequencies higher than 1000 Hz the ratio

drops significantly below 1
2 .

Figure 7.13 shows the increasingly complex behavior of the orbits measured at the

turbine end of the shaft. For small rotational speeds (250 Hz) the orbit is periodic with

a small amplitude. As the driving frequency rises above 400 Hz a second frequency

appears, which results in quasiperiodic dynamics on a torus. Such behavior is best

analyzed by stroboscopic or Poincaré maps: We mark the position of the turbine every

time the impeller crosses the x-axis from positive to negative values. The periodic orbit

of the turbine end of the shaft that we observe for low rotational speeds corresponds

to a fixed point of the stroboscopic map; see Figure 7.13 (a). For increasing rotational

speeds the Poincaré map shows invariant circles indicating the existence of invariant

tori; see Figures 7.13 (b) and (c). For even higher speeds the invariant circles show

phase locking, i.e. the quasiperiodic solution is replaced by stable periodic orbits of

possibly longer periods on the invariant torus; see Figures 7.13 (d)–(f).
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7.7.2 Computation of Quasiperiodic Oscillations

A vibration with two or more (but finitely many) incommensurate frequencies is a

quasiperiodic solution of an ODE. Such quasiperiodic solutions appear e.g. in coupled

or forced oscillators. A quasiperiodic solution never repeats and densely covers an

invariant torus in phase space. The experimental data shown in Figures 7.13 (b) and (c)

provide an example for such a behavior. In (Schilder & Peckham, 2007) a method is

presented for the computation of quasiperiodic solutions with two incommensurate

frequencies; for further references see also (Ge & Leung, 1998; Schilder et al., 2006;

Schilder et al., 2005). The basic idea of this method is to compute an invariant circle

of the period-2π/ω1 stroboscopic map, which is the intersection of the torus with the

plane t = 0. Here, in the case of a forced oscillator, ω1 = ω is the forcing frequency and

time is interpreted as an angular variable modulo the forcing period. By construction,

the invariant circle has rotation number ̺ = ω2/ω1, whereω2 is the additional response

frequency of the occurring vibration. The invariant circle with rotation number ̺ is a

solution of the so-called invariance equation

u(θ + 2π̺) = g(u(θ)), (7.44)

where u is a 2π-periodic function and g is the period-2π/ω1 stroboscopic map of (7.22).

We approximate the invariant circle u with a Fourier polynomial of the form

uN(θ) = c1 +

N∑

k=1

c2k sin kθ + c2k+1 cos kθ (7.45)

and compute the real coefficient vectors c1, . . . , c2N+1 by collocation at the uniformly

distributed points θk, k = −N, . . . ,N on the circle S1. The stroboscopic map g is

computed with the second-order fully implicit midpoint rule as the solution of a two-

point boundary value problem. For this, we demand for k = −N, . . . ,N, that uN(θk)

and uN(θk + 2πρ) are connected by the flow of the equation of motion, i.e.

ẋk = T1 f (xk), (7.46)

xk(0) = uN(θk), (7.47)

xk(1) = uN(θk + 2πρ), (7.48)

P1(x) = 0, (7.49)

P2(UN) = 0. (7.50)

P1 and P2 are scalar phase conditions which fix an initial point of one solution from

{x−N , . . . , xN} and {u−N, . . . , uN}, since tori, like periodic solutions, are only unique up

to phase shifts. For more details we refer to (Schilder & Peckham, 2007) where the

method is introduced, and to Figure 7.14, where the functions xk and uN are depicted

on the torus.

To start the continuation of the torus in the two continuation parameters driving

frequency ω1 and bearing clearance cr, it is necessary to construct starting solutions.
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Figure 7.14: Illustration of the invariance equation (7.44). The solution curve starting at the

point x(t0) crosses the invariant circle again in the point x(t0 + T1) after one period (a). In

angular coordinates on the invariant circle we have x(t0 + T1) = u(θ0 + 2π̺). If we identify

the circles at both ends of the tube, we obtain a torus (b).

These seed solutions for our subsequent continuations of tori are computed with the

method of homotopy. To this end, we introduce an artificial parameter λ ∈ [0, 1] as an

amplitude of the gravitational forcing:

Mÿ + (ωG + C)ẏ + Ky = F̃b(y, ẏ) + λA(ωt)TFg + ω
2Funb. (7.51)

In the following the case λ = 0 is referred to as the zero-gravity system and the case λ = 1

as the Earth-gravity system. The principle of homotopy is to compute a torus for λ = 0,

where (7.51) is autonomous and a torus is easily constructed, and then to follow this

torus as λ is slowly increased up to λ = 1. In the autonomous case, we can construct

an invariant torus directly from a N-th order Fourier approximation of the form (7.45)

of a T2 = 2π/ω2-periodic solution of the zero-gravity system with frequency ω2

x(t) = uN(ω2t) = uN(θ), (7.52)

where θ = ω2t. For the period-2π/ω1 stroboscopic map of this solution we have by

definition

x(t + T1) = g(x(t)) = g(uN(θ)), (7.53)

and we also have

x (t + T1) = x
(
θ

ω2
+

2π

ω1

)
= x

(
1

ω2

[
θ + 2π

ω2

ω1

])
= uN

(
θ + 2π̺

)
. (7.54)

So the Fourier approximation already fulfills the invariance equation. Finally, the

solution segment of the seed solution which connects a starting point x(t0) with the

endpoint x(t0+T1) is given by x(t) = uN(θ), where (θ−t0/ω2) ∈ [0, 2π̺] (cf. Figure 7.14).

For the system under consideration it turns out that the zero-gravity tori are such

accurate approximations to the Earth-gravity tori that the latter can be computed in

just one homotopy step. In panels (b) and (c) of Figure 7.15 a series of computed tori in

the zero-gravity system and in the Earth-gravity system is depicted for varying radial

bearing clearance cr and driving frequencyω. The zero-gravity tori are almost identical



7.7 Continuation of Quasiperiodic Oscillations 161

to the Earth-gravity tori. This is a first indication that neglecting gravity is a valid and

powerful simplification of the model equation, since the computation of invariant tori

(for λ = 1) is a much harder problem than the analysis of periodic solutions (for λ = 0).

Hence, a reduction of this numerical complexity is desirable.

Furthermore, the behavior of periodic solutions with respect to parameter variations

can be studied by changing the parameters independently and perform one-parameter

continuation. For quasiperiodic tori this is not true, since quasiperiodic solutions

are not structurally stable, i.e. a quasiperiodic vibration with two incommensurate

frequencies can be changed into a phase-locked state by arbitrarily small changes

in any parameter (Wiggins, 1990; Kuznetsov, 2004; Strogatz, 2000). Therefore, the

continuation of quasiperiodic tori requires two free parameters to follow solutions with

fixed frequency ratio (rotation number), and their loci are curves in a two-parameter

plane. For example, note the slight shift in some of the positions of Earth-gravity tori

in Figure 7.15 (a) with respect to the seed solutions. The union of the locus-curves of

quasiperiodic tori covers a set of large measure (Glazier & Libchaber, 1988; Kuznetsov,

2004; Strogatz, 2000) in parameter space. In other words, there is a non-zero probability

to observe quasiperiodic behavior in physical systems.

According to the above construction, the computation of periodic solutions for λ = 0 is

equivalent to a computation of invariant tori for λ = 0. It shows that these tori are good

approximations of the tori for λ = 1 for certain parameters. The computation of the

invariant tori allows one to identify such parameter regions where neglecting gravity

is a sound assumption, i.e. where the tori of the Earth-gravity system and the periodic

solutions of the zero-gravity system do not differ significantly. In these regions one

can obtain the response behavior of the turbocharger model much easier by studying

the periodic solutions of the autonomous ODE (7.51) with λ = 0.

7.7.3 Computational Results

To test the validity of the zero-gravity assumption we sweep the two-parameter plane

of radial bearing clearance cr and forcing frequency ω with a large number of curves

of Earth-gravity tori with fixed rotation number to obtain a picture as complete as

possible. We then compare these results with the respective computations of periodic

solutions for the zero-gravity approximation. All the computations were performed

on Equation (7.51) in co-rotating coordinates. Note that, due to the shift in frequencies,

the rotation numbers ̺ f in the fixed frame and ̺r in the co-rotating frame systems are

related via ̺ f = |̺r − 1|. In the results below we find ̺r ≤ 1, thus ̺ f = 1 − ̺r. This

corresponds to the results in (7.30) where a similar transformation is obtained for the

period length T2 of the periodic solutions in the zero-gravity system.

The starting point for the whole computational process is a Fourier approximation of

the periodic solution of the zero-gravity system forω = 1000 Hz and cr = 0.02 mm. It is
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Figure 7.15: Positions of the seed solutions (label ×) and corresponding earth-gravity

tori (label ◦) in the (cr, ω) plane (a). The invariant circles for Earth gravity (b) and the

corresponding periodic solutions for zero gravity (c) for the starting positions along the

row near ω ≈ 894 Hz. The tori at the labeled positions are shown in Figure 7.16.

obtained by simulation and a subsequent Fourier transformation with N = 15 Fourier

modes in (7.45). Then, by continuation of this periodic solution with respect to the

forcing frequency or the bearing clearance, we cover the parameter space with a set of

starting points for subsequent torus continuation. These starting solutions are shown

in Figure 7.15 (a) as the columns and rows of crosses. The covered parameter range is

cr ∈ [0.01 mm, 0.08 mm], which is the design margin of the used journal bearing, and

ω ∈ [700 Hz, 1200 Hz], which is a principal range of operation for the turbocharger.

Furthermore, the entrainment occurs in this frequency range in the experiment.

As explained in the previous section, initial approximations of tori in the Earth-gravity

system can be constructed from these periodic solutions. These tori are computed with

N = 15 Fourier modes and M = 100 Gauß collocation points and the mesh size is kept

fixed for all subsequent computations. In the homotopy step we keep the radial bearing

clearance cr fixed and take the forcing frequency ω as a secondary free parameter. The

obtained starting positions of tori are marked with circles in Figure 7.15 (a). Note

that most of the starting positions coincide with the seed positions. The differences in

the forcing frequencies mean that tori with a certain rotation number are observed for

slightly different rotational speeds in the two systems. In other words, the response

frequencies differ somewhat.

It shows that the distribution of starting solutions is dense enough to cover the (cr, ω)-

plane with loci of tori with fixed rotation numbers so that meaningful conclusions

can be drawn. If the locus curves were to scarce in the parameter plane, more seed

solutions with different rotation numbers would have to be computed.

In panels (b) and (c) of Figure 7.15 we compare the two types of solutions. Both graphs

illustrate the change of the invariant circle in the stroboscopic map as the bearing

clearance is increased and the forcing frequency is kept (approximately) constant

ω ≈ 900 Hz. The two sets of circles are clearly very similar. The full tori for the

starting positions labeled 1 to 4 are shown in Figure 7.16 together with a plot of the
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Figure 7.16: The left-hand column of (a)–(d) shows starting tori with labels 1, 2, 3 and 4,

respectively, along the row ω = 894 Hz in Figure 7.15 (a). The corresponding x- and y-

displacements at the first FEM-node are shown in the right-hand column. The dark closed

curve is the invariant circle of the period-2π/ω1 stroboscopic map.
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x-y-displacements at node 1. A comparison of the results in Figure 7.16 (b) with the

experimentally observed orbits and Poincaré sections depicted in Figure 7.13 (c) shows

that, even though our finite beam-element model with oil-film forces is quite coarse,

the numerical results are in good qualitative agreement with the experiment. Note

that the Poincaré sections are defined differently in these figures.

A comparison of the two sets of resulting two-parameter curves is shown in Figure 7.17

with loci of tori with fixed rotation number in panel (a) and loci of periodic solutions

with fixed frequency ratio in panel (b). The color bar indicates the rotation numbers

that are associated with these curves. For easier interpretation they are shifted back

to fixed-frame frequencies. The second response frequency ω2 is the product of this

shifted rotation number with the driving frequency shown on the vertical axis

ω2 = ρ fω. (7.55)

The curves match very well: Only in a band around 900 Hz there are some visible

differences, which are small. At a first glance we observe that in the region covered the

frequencyω2 of the self-excited oscillation is approximately half the driving frequency,

in accordance with the experimental data (cf. Figure 7.12). The line with constant

cr = 0.02 mm and varying driving frequency is of particular interest, since this is the

value of the bearing clearance used in the current design of the turbocharger. Along

this cross-section the rotation number decreases initially, stays almost constant for

ω ∈ [830 Hz, 970 Hz] and then starts to increase again. This behavior occurs in the

same region as the shift of the oil whirl response frequency away from the straight line

ω2 = 0.5ω in Figure 7.12. However, in contrast to the experiment, it returns to ρ f =
1
2

for even higher frequencies.

Figure 7.17 also shows two dashed bifurcation curves, namely, a locus of Neimark-

Sacker bifurcations (a) and the corresponding locus of Hopf bifurcations (b). These

curves are parts of the curves shown in Figure 7.11 and match very well each other in

this frequency range. For small bearing clearance, to the left of the Neimark-Sacker

curve, the response is periodic and has the same frequency as the forcing. In the zero-

gravity system this corresponds to an equilibrium solution. If this curve is crossed

from left to right the quasiperiodic response is born and its amplitude grows rapidly

as the bearing clearance is further increased. This can be seen from the invariant

circle in Figure 7.15 (b) and the increasingly larger tori in Figure 7.16. Again the

zero-gravity system exhibits very similar behavior, as is illustrated with panels (b)

and (c) of Figure 7.15, where periodic solutions are compared with invariant circles

of tori along the line ω = 894 Hz. These results indicate that for the range of forcing

frequencies considered here a reduction of the bearing clearance could dramatically

reduce the amplitude of the quasiperiodic vibration or even suppress the second

frequency completely.

Figure 7.17 (a) shows a total of 51 curves of tori and along each curve we computed

200 tori, which is the reason why some curves end in the middle of the figure. The
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Figure 7.17: Curves of quasiperiodic tori with fixed rotation number of the Earth-gravity

system (a) and curves of periodic solutions with fixed frequency ratio of the zero-gravity

system (b). The diagram gives an overview of the second response frequency as a function

of the bearing clearance and the forcing frequency. The color bar indicates the rotation

number or frequency ratio associated with each curve, which was shifted back to fixed-

frame frequencies for easier interpretation. The dashed curve in panel (a) is the locus of

the Neimark-Sacker bifurcations, and the dashed curve in panel (b) is the locus of Hopf

bifurcations (cf. Fig. 7.11). The second frequency is suppressed to the left of these curves,

that is, there are no tori for bearing clearances smaller than ≈ 0.01 mm.
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computation of the tori took approximately four weeks on an Intel Xeon CPU 2.66GHz,

that is, the average time to compute one torus is about four minutes. The computation

of the corresponding curves of periodic solutions in panel (b) with the same number

of solutions along each curve was completed within 24 hours, that is, the computation

of one periodic solution takes about nine seconds. Therefore, neglecting the gravity

forcing in (7.51) yields a drastic gain in computation time, while the accuracy of the

results is only slightly affected. As our computations show, the qualitative behavior

of the two systems virtually coincides for the investigated parameters, and one might

ask whether the introduced approximation error is at all significant. The results clearly

suggest that one could perform an analysis of periodic solutions of the zero-gravity

system and look at the Earth-gravity system only for reference and verification.

7.8 Influence of inertia terms

In the previous sections we have seen that continuation methods can be efficiently

used to compute the frequency response of forced oscillating systems. In Section 7.7.3

it was demonstrated the transformation of the equation of motion into a co-rotating

frame of reference and the subsequent neglecting of the gravity forcing provides a

very useful and yet still accurate simplification in the parameter range of interest.

We will now use this knowledge to examine the influence of the inertia correction

to the short bearing solution of the pressure distribution in the journal bearing. The

exact formula for this correction is given in Statement 5.2 in Chapter 5 and we will

not repeat it here. The important difference to the previous sections is the implicit

nature of the equation of motion, because the corrected pressure distribution depends

on the nodal acceleration. In Section 7.2.1 it is shown how this can be overcome by

an internal Newton method, so that we still can apply AUTO for the continuation

of the periodic orbits. The correction parameter σ ∈ [0, 1] is introduced to perform

homotopies from the uncorrected pressure distribution p = p0 to the inertia corrected

pressure distribution p = p0+εp1 by p(σ) = p0+σεp1. Hence, the bearing forces depend

on σ and are equal to (5.159) and (5.160) for σ = 0 and to (5.168) and (5.170) for σ = 1.

7.8.1 Simple 4-D System

In order to illustrate the influence of the pressure correction and also its validity

over a larger range of parameters, we examine the simple 4-D bearing model (6.16).

Transformed to a co-rotating frame of coordinates the equations of motion are

ẍ = ω2x + 2ωẏ +
1

M

(
−D(ẋ − ωy) + F̃bear + ω

2Funb

)
,

ÿ = ω2y − 2ωẋ +
1

M

(
−D(ẏ + ωx) + F̃bear

)
.
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Note that here Funb is transformed to a constant load. The gravity forcing has already

been dropped.

To investigate the ratio of forcing frequency and response frequency directly, we addi-

tionally scale the time such that in the fixed frame the forcing has period 1

2πτ = ωt, (7.56)

which results in

x′′ = 4π

(
πx + y′ +

1

M

(
−D

ω
(x′ − πy) +

πF̃bear,1(σ,W)

ω2
+ πFunb

))
, (7.57)

y′′ = 4π

(
πy − x′ +

1

M

(
−D

ω
(y′ + πx) +

πF̃bear,2(σ,W)

ω2

))
, (7.58)

where ′ denotes the derivative with respect to τ. We identify 4 parameters in the

system which we will use for continuation in the following: the driving frequency

ω, the amplitude Funb of the unbalance forcing, the correction factor σ which couples

in the inertia correction, and the bearing width W, which we use to examine the

range of validity of the inertia correction. All other parameters, especially the bearing

radius and clearance, remain fixed at the usual values (R = 3 mm and cr = 0.02 mm,

D = 0.001 g/s, M = 1 g).

The starting values for the parameters are ω = 16π, σ = 0 and W = 0.25 mm. For

Funb = 0 the system has a trivial fixed point for any value of ω, which is unstable for

most values ofω. Continuation of the equilibrium with increasing Funb as continuation

parameters yields a non-trivial branch of equilibria. On this branch a Hopf bifurcation

occurs after which the equilibria are stable. This happens for relatively large values

of Funb. The stable equilibria of the system in the co-rotating frame correspond to

periodic orbits of the system in the fixed frame, which are phase-locked to the driving

frequency in the case of strong forcing. In the next step we continue the stable periodic

orbit that emerges at the Hopf bifurcation point backwards in Funb and pick a solution

with Funb = 10−3 mm g. Now, we split the continuation process. First, a family A

of periodic orbits is computed with respect to the driving frequency. Then, another

family B of periodic orbits is computed after the inertia correction is switched on,

i.e. the starting solution is continued until σ = 1, and then the driving frequency is

increased. From each family we pick 20 solutions in steps of 100 Hz on the branches.

All these are continued in the bearing width from W = 0.25 mm, a value for which the

additional assumption (5.22) on the relation of width and radius is fulfilled, to W = 2.

In Figure 7.18 we show the results of these continuations. We plot the continuation

branches in the driving frequency – bearing width plane (ω −W). The period length

of the corresponding periodic orbit is color encoded with shades of red indicating a

period length T close to 2 and shades of blue indicating lower values of T. The graph

on the left hand side shows the families of periodic solutions without inertia correction

initiating at W = 0.25 from the previously computed branch A. The graph on the right
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Figure 7.18: Branches of periodic solutions in the ω −W plane with the corresponding

period length color encoded. The thicker points show the actually computed solutions.

Left graph: Along the branches without inertia correction the period length varies very

little and stays close to 2. Right graph: The solutions to the inertia corrected problem in

the co-rotating frame coordinates show reduced period lengths, especially around W = 1.5

mm and ω = 1000 Hz, which corresponds to increased period lengths the fixed frame, i.e.

reduced response frequencies.

hand side shows the families of solutions initiating from the branch B computed before

with the inertia correction switched on.

The period length of the uncorrected model show almost no dependence on ω and W

along the branches and the period length remains 2 over the whole parameter range.

This corresponds to a self-excited oscillation with frequency ω2 =
ω
2 which we have

also observed in most of the simulations.

It can clearly be seen, that already for W = 0.25 the period length of the inertia corrected

solutions is reduced. In the fixed frame of coordinates this corresponds to a reduction of

the frequency of the self-excited oscillation, as we have shown in (7.30). For increasing

W the frequency shift gets stronger until approximately W = 1.5. From this value on,

the period length increases again on the branches with higher driving frequency ω

and decreases further on those with lowerω. For small W the frequency shift between

the branches on the left and those on the right is constant. This corresponds to a

linear shift of the subharmonic response. For higher W however, the difference in

period length between the branches first increases with omega until around ω = 1000

Hz. This corresponds to the ’bending’ away of the oil whirl peaks from the ω
2 -line

in Figure 7.12. For ω > 1000 Hz the difference in period length decreases again, a

behavior not observed in experiment. Note that the value W = 5.4 mm used in the

previous simulations cannot be reached along the read branches as the computations

break down on the way, due to strongly increasing periods. This can be explained by

the fact that especially the inertia correction for the short bearing (5.63) is no longer

valid for larger values of W and gives erroneous results, while the uncorrected short

bearing solution still yields quite reasonable results. In Section 5.6 the analysis of the

asymptotic behavior of the bearing integrals showed similar results.
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However, for small values of the bearing width for which both orders of the short

bearing approximation are valid, the inertia correction leads to a significant reduction

of the subharmonic response frequency over the whole frequency range. Allthough,

there can be other explanations for the shift of the frequency ratio, the results in this

section show that the influence of the inertia correction has to be considered as a

possible explanation of the this experimentally observed behavior.

7.8.2 Inertia Correction for 3-Element Model

In the previous section we have seen, that the inertia correction has an effect on the

frequency of the self-excited oscillation. We have noticed there, that in the case of the

zeroth order approximation of the bearing pressure distribution the frequency ratio

of self-excited oscillation and forcing do not depend on the bearing width, but they

do in the case of first order approximation. For larger values of W the results tend

to be erroneous as we have also seen in Section 5.6. However, values for W small

enough for inertia correction to be valid do not suffice to contain a rotor with the given

specifications.

However, to show the applicability of the method also to the 32-dimensional model

of the turbocharger, we computed continuations of periodic orbits in the correction

parameter σ for 2 different driving frequencies (ω = 20 Hz, 1200 Hz) using a bearing

width of W = 5.4 mm as it was also used in the experiments. The equation of motion

is given by (7.22) and like in the previous section we introduce the inertia correction

parameter σwith which we do a homotopy from bearing function given by the zeroth

order short bearing approximation to the first order approximation.

The starting solutions are chosen from the family of periodic orbits which has been

computed in Section 7.6 with the zeroth order short bearing approximation as bearing

model (5.159),(5.160), and which is depicted in Figure 7.10. Along this family of

periodic orbits, the ratio of the frequency of the self excited oscillation and the forcing

is not constant. This figure corresponds to the cut along the line cr = 0.02 in panel (b)

of Figure 7.17 which is described in Section 7.7.3. We observe that the ratio drops

significantly in the frequency range around 900 Hz where we have a resonance of

the first bending mode (cf. the linear stability analysis in Fig. 7.4). Note, that the

frequencies of the solution seen in the co-rotating frame and in the fixed frame of

coordinate transform into each other according to Equation (7.30). To facilitate the

comparison with the experimental results, we show the frequency ratio calculated in

the fixed frame.

From the starting solution we initiate the continuation by increasing the parameter

σ. The continuation process is quite slow because of the internal Newton method.

It is not possible to reach the value σ = 1, because the period length of the periodic

orbit becomes very large and the computations stop due to convergence problems. In
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Figure 7.19: Ratio of the frequency of the self-excited oscillation and the forcing frequency

for family of periodic orbits depicted in Figure 7.10. In contrast to the experimental result,

the ratio increases to 0.5 again after the entrainment region around 1000Hz.
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Figure 7.20: 2 families of periodic orbits with different driving frequency computed by

continuation in the inertia correction factor σ; the lower graphs show the dependence of

the frequency of the self-excited oscillation from σ. The shift of the frequencies goes to the

opposite direction as the one observed in the experiments.

Figure 7.20 we depict the two families of periodic solutions in dependence of σ. While

the orbit structure does not change very much in both cases, the ratio of the frequencies

increases with σ. For the low forcing frequency the change of the ratio is smaller than

for the large forcing frequency.

These results are in contrast to what we observe in the experiment. There, no shift away

from the frequency ratio 1
2 is observable for low driving frequencies, while for higher

driving frequencies the ratio drops below 1
2 . So, the results show that for larger values

of the bearing width the inertia correction of the short bearing pressure distribution
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does not explain the frequency shift. However, this is not a surprising result, since it

was already shown in Section 5.6 that the validity of the short bearing approximation,

and especially of the first order correction p1 5.63 is not given for W = 5.4 mm.

Nevertheless, these computations show that the continuation of periodic orbits is also

possible if we apply the internal Newton method to solve the implicitly given equation

of motion. The steps taken by the predictor of AUTO are small enough, such that the

last value computed for ẋ in the user supplied function is also good starting point for

the internal Newton method, and convergence is achieved in very few iteration steps.

It can hence be used in the evaluation of other bearing models even if these involve

implicit terms, and can therefore assist in the future development of a lubrication

model which describes the frequency shift of the subharmonic response better than

the lubrication models used here.

7.9 Conclusions

In this chapter we analyzed the bifurcation behavior of several models for fast rotating

bodies in journal bearings. Two models of a turbocharger were used as examples. A

four dimensional prototypical model was also analyzed. We summarize our findings:

7.9.1 Torus Bifurcation at the onset of Oil Whirl

The continuation of the periodic orbits with respect to the driving frequency show that

a torus bifurcation occurs at the onset of the oil whirl of the rotor of the turbocharger.

The periodic orbit of the harmonic response becomes unstable at the critical frequency

and a stable invariant torus bifurcates from it. This behavior is observed in both, the

large 112-dimensional and the smaller 32-dimensional turbocharger model. In the case

without unbalance forcing a Hopf bifurcation occurs at a frequency close to the critical

frequency of the forced case.

7.9.2 Computation of Locus Curves and Suppression of Whirl

The locus curve of the Hopf bifurcation at the onset of instability can be computed di-

rectly with AUTO in the damping-driving frequency domain as well as in the bearing

clearance-driving frequency domain. The locus curve of the torus bifurcation has to be

detected by sweeping the parameter space with branches of periodic solutions. Com-

parison of the two curves shows no significant differences. The self-excited oscillation

can be suppressed by large external damping or for small values of the bearing clear-

ance. From a physical point of view, a large bearing clearance leads to the undamping

of the conical mode via oil-film forces.
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7.9.3 Computation of Quasiperiodic Tori Justifies Neglecting Static Loads

The continuation of quasiperiodic tori in the two parameters bearing clearance and

the driving frequency verified that gravitational forces can be neglected for higher

rotational speeds. This leads to a dramatic reduction of computational effort if the

model is formulated in co-rotating coordinates, because invariant tori of the Earth-

gravity system are well approximated by tori constructed from periodic solutions of

the zero-gravity system. These periodic solutions can be computed much simpler

and the available efficient methods like AUTO can be applied to substantially more

detailed models of a turbocharger, or other machinery with fast rotating parts. For

systems where the static loads cannot be considered to be small perturbations, the

computation of invariant tori is necessary and the method proposed in (Schilder &

Peckham, 2007) and applied above works well for moderately large systems. On the

one hand it is more memory consuming than direct simulation. On the other hand it

is faster and gives more information about the dynamics, since it allows to compute

also unstable tori and hence the analysis of hysteresis effects.

7.9.4 Validity of Inertia Correction of Short Bearing Approximation

The effect and the validity of the inertia correction of the short bearing approximation

of pressure distribution in the journal bearings can be studied efficiently by performing

a homotopy between zeroth order and first order short bearing approximation. The

internal Newton method is applied to solve the implicit equation of motion inside

the user supplied function for AUTO and performs well. For the 4-D toy problem

with small bearing width fulfilling (5.22), the inertia correction leads to a significant

reduction of the ratio of the frequency of the self-excited oscillation and the driving

frequency as observed in the experiments. This reduction persists under a change

of the bearing width up to values of W = 2 mm. While the validity of the inertia

correction of the short bearing approximation is not given for the 32-dimensional

turbocharger model with bearing width W = 5.4 mm, the proposed procedure of using

a co-rotating frame of reference, neglecting gravity, and applying the internal Newton

method proves to be applicable for the continuation of such systems. It could be used

in the future to study the behavior of other models for systems with fast rotating parts

which include lubrication models leading to implicit equations of motion.
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Conclusions and Outlook

The following closing remarks summarize the most important results of the present

thesis and show up some possible directions for future research.

The starting point for the thesis was the need for a more detailed and exact model for

the prediction of the vibration of a passenger car turbocharger. Vibrations in rotating

machinery are a common problem and the prediction of the frequencies and the ampli-

tudes of the occurring oscillations and their dependence on physical parameters such

as bearing geometry, lubricant viscosity or temperature, and rotational frequency is of

utter importance for the development of more efficient and reliable designs. There-

fore, a general model for rotating beams in oil-lubricated bearings has been developed

in this work and has been successfully applied to predict the lateral vibrations of a

turbocharger in simple journal bearings.

By applying Euler-Bernoulli beam theory and the Lagrange formalism we have derived

a model for a continuous, isotropic rotor of varying diameter to which rigid disks

modelling fly-wheels are attached. Special attention has been given to the effects of

rotatory inertia and gyroscopic effects which become more and more influential on

the rotors eigenfrequencies for rising rotational frequencies. The misalignment of the

center of gravity of the cross-sections of the beam with axis of rotation leads to a periodic

unbalance forcing. The bearing reaction forces are modeled as nonlinear point forces

at two points along the axis of the rotor. For the numerical simulation of the model

equations, the finite element discretization of the equations for the continuous beam

has been realized by the approximation with piecewise cubic polynomials, leading

to Rayleigh beam elements. The resulting ordinary differential equation describes the

lateral motion in the finite element nodes. The modeling approach in this work is valid

for small displacements and neglects shear deformation which is justified for slender

beams. For non-slender beams with larger diameter-to-length ratio the inclusion of

shear effects by using e.g. Timoshenko beam theory is necessary.

One of the main results of the work is the proof of existence of solutions for the equa-
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tions of motion. It is given for the quite general class of locally Lipschitz-continuous

support-functions by first applying Galerkin’s method to the problem with linear

spring and damper support, and then using a Banach fixed point argument to obtain

existence also in the nonlinear case. A special difficulty is the confinement of the rotor

into the bearings and the absence of a growth condition for the bearing functions for

large eccentricities. Hence, the result for the nonlinear support only yields short time

existence and no statement is made about possible collisions with the bearing casing.

For simpler polynomial bearing functions it should be possible to prove the existence

of solutions global in time which are bounded at the positions of the bearings such

that no collisions occur, because global a priori estimates can be easily obtained. The

more complicated bearing functions for hydrodynamic bearings do not show such a

simple growth behavior for large eccentricities. They are however also restoring forces

and therefore a proof of long time existence should also be possible with some more

technical considerations.

Another main result of the thesis is the derivation of inertia corrections to the thin

film equations used in the modeling of the bearings and the examination of their in-

fluence on the rotor self-excited oscillation. In previous models, the reaction forces

of the oil-lubricated journal bearings were modeled by using Reynolds’ equation for

the pressure distribution in the thin lubricant film and subsequent integration over

the journal surface. In the present work the short bearing approximation was ap-

plied in first simulations of the system. This simplification allows for an analytical

expression of the forces and hence fast numerical evaluation. These simulations yield

already qualitatively good results. The main oscillation phenomena observed in the

experiments are captured in the model. The harmonic unbalance oscillation is present

and a resonance of a bending mode occurs at the same driving frequency as in the

experiment. The fluid-induced self-excited oscillation, the well known rotor instabil-

ity called oil whirl, also appears in the model, and the onset frequency is close to the

experimentally measured one.

The frequency of the self-excited subharmonic oscillation, however, is predicted too

high. In the experiment the ratio of subharmonic frequency driving frequency is 1
2

between the onset of the instability and the resonance of the bending mode, and it

drops to approximately 2
5 with increasing rotational frequencies above the resonance

of the bending mode. In the simulations this ratio remained constant equal to 1
2 for all

rotational frequencies. This small difference between model and experiment resulted

in a deeper investigation of the derivation of the lubrication model.

Considerations about the fluid average circumferential velocity lead to the introduction

of a phenomenological correction term into the short bearing pressure solution, which

allowed for a tuning of the subharmonic response frequency. There is a one-to-one

correspondence between that velocity and the subharmonic response frequency. The

success of the phenomenological model showed that the frequency of the self-excited
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oscillation depends strongly on the lubrication model. In order to give also a modifica-

tion of the old lubrication model based on first principles, we have derived new inertia

correction terms for Reynolds’ equation and also for the short bearing approximation

based on an additional relation between bearing width and radius. The introduction of

these correction terms into the equation of motion complicates its numerical solution,

because it is changed from an explicit to an implicit ordinary differential equation,

but it can still be solved by applying the appropriate implicit methods like e.g. DASPK

(Brenan et al., 1989). For bearing dimensions as in the experimental setup, the inertia

corrections of Reynolds’ equation showed no detectable effect on the frequency of

the oil whirl. For very short bearings however an small decreasing effect could be

observed in the simulations.

Numerical continuation methods for periodic orbits and quasiperiodic orbits have

proved to be more efficient for performing extensive parameter studies of oscillating

systems. Using the package AUTO (Doedel et al., 2000) locus curves of the Hopf bifur-

cations and the torus bifurcations at the onset of the oil whirl were computed in the

unforced and forced case, respectively, thereby allowing the direct determination of

the regions of stability of the rotor. A transformation of the equations of motion to

a co-rotating frame of coordinates together with neglecting the static load makes the

system autonomous, a significant simplification. For the example of the turbocharger,

neglecting the static load is justified for larger rotational velocities. This is shown by

computing the quasiperiodic solutions of the non-autonomous system by applying a

recently introduced Fourier method for the continuation of tori and comparing them

with the periodic ones of the simplified autonomous system. By applying this simpli-

fication it was also possible to examine the validity of the inertia correction in the short

bearing approximation over a larger range of parameters. All in all, the application

of continuation methods together with the simplification of the system to co-rotating

coordinates and the neglect of the static load is shown to be a powerful tool in the

investigation of rotordynamic models and should be considered as an alternative to

the time integration methods popular in current CAE methods.

The phenomenological correction of the bearing reaction forces seems to be a good

alternative starting point for further research. Its influence on the frequency response

is much stronger than the inertia corrections and changes in the response frequency

similar to the experiment could be achieved. There are some possible further de-

velopments. First, an even more detailed analysis of the lubrication model taking

into account thermic effects on the bearing geometry, the effect of the oil inlet, or

non-Newtonian behavior of the lubricant (San Andrés & Kerth, 2004) could lead to

a change in the average circumferential velocity. Also cavitation effects, turbulence

or secondary flows, i.e. liquid flowing in the direction opposite the rotation of the

shaft, have been neglected in this work, but could reduce that velocity and hence the

frequency of the oil whirl.
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Another interesting application for the phenomenological correction is its application

in situations where fast evaluation of the bearing response is important and has to

be done very often, like in an optimization setting. In (Strauß, 2005) the shape of the

rotor has been optimized with respect to the unbalance response for a similar model

but with linear spring and damper bearings. The nonlinear effects of the bearings,

especially the fluid induced instability, were not considered there. To include them,

the computation of periodic obits, e.g. by a boundary value method, is necessary which

is computationally expensive. If the bearing geometry is not part of the optimization,

the frequency response behavior for the oil whirl which depends mainly on that

geometry could be prescribed by applying the phenomenologically corrected model

during the optimization. After the optimization or at some intermediate stage a more

detailed and computationally more expensive lubrication model could than be used

for verification only.

The research presented in this thesis has contributed successfully to the developement

of a model for rotating machinery and the examination of the parameter dependencies

of the occuring oscillations. Parts of the results are also currently applied at the Toyota

Central Research and Development Laboratories (TCRDL) to compute the response

vibration of a turbocharger in floating ring bearings and are included in a pending

patent application (Rübel et al., 2006) in Japan.
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Figure A.1: Euler angles of a rotating disc

In Section 2.3 we use Euler angles to describe the position of a disk in space. The

Euler angles used here and in (Nelson & McVaugh, 1976) differ slightly from those

commonly used in textbooks like (Nolting, 1989; José & Saletan, 1998) and in parts of

the engineering literature (Yamamoto & Ishida, 2001). We shall therefore give here the

explicit derivation for the expression of the momentary angular velocityΩ in terms of

the Euler angles.
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The position of the cross-section relative to the origin is given by the Euler angles

(γ, β, φ) shown in Figure A.1. The three angles describe three successive rotations of

the disk whose principal axis of inertia (e1, e2, e3) are assumed to be initially collinear

with the space coordinate system (ex, ey, ez). The first rotation leaves the y-axis fixed

and rotates the disk by the angle γ about this axis. The second rotation leaves the image

ex′ of the vector ex fix and rotates the disk by β. The third rotation which corresponds

to the spin of the disk rotates the coordinate system about the image of ez under the

first two equations by the angle φ. The rotation matrices for the three rotations are

R1 =




cosγ 0 − sinγ

0 1 0

sinγ 0 cosγ



, (A.1)

R2 =




1 0 0

0 cos β sin β

0 − sin β cos β



, (A.2)

R3 =




cosϕ sinϕ

− sinϕ cosϕ

0 0 1



. (A.3)

Successive application of the rotations yields the transformation matrix which allows

the calculation of the angular velocity in the body system (e1, e2, e3)

R = R3R2R1 (A.4)

=




cosϕ cosγ + sinϕ sinγ sin β sinϕ cos β − cosϕ sinγ + sinϕ sin β cosγ

− sinϕ cosγ + cosϕ sinγ sin β cosϕ cos β sinϕ sinγ + cosϕ sin β cosγ

cos β sinγ − sin β cos β cosγ



.

From Figure A.1 we see that the momentary angular velocity is given by

Ω = γ̇ey + β̇ex′ + φ̇e3. (A.5)

In this equation ey is the unit vector in y-direction, e3 is the normal vector to the plane

(and also spans a principal axis of inertia), and ex′ is the unit vector along the image of

the x-axis after the first rotation. The coordinates of ey in the rotating body coordinate

system are R · ey, those of ex′ are given by RR−1
1
· (1, 0, 0)T. Hence we can write

Ω =




sinϕ cos β cosϕ 0

cosϕ cos β − sinϕ 0

− sin β 0 1







γ̇

β̇

ϕ̇



. (A.6)

In Section 2.3 the Euler angles and the kinetic energy of the rotating disk are expressed

in terms of the shaft’s prescribed spin velocity ω which is assumed to be constant and

the tangential vector t = (∂zu, ∂zv, 1) = (u′, v′, 1) of the center curve r0(z, t). We give

the detailed derivations here for completeness. To simplify the notation we denote the
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derivative of a given quantity f with respect to z by f ′, and the derivative with respect

to t by ˙f .

From Euler-Bernoulli theory we know that the tangential vector to the center-line is

orthogonal to the disk and hence collinear to e3. From this and Fig. A.1 we can derive

that

tanγ = u′, (A.7)

tan β =
−v′√
1 + u′2

. (A.8)

The angle φ of the rotation about the axis spanned by e3 equals the spin of the disk if

there is no torsion. We shall assume this and we set

φ = ωt. (A.9)

If the inclination of the shaft is small, so are γ and β and we have

γ = u′ +O(u′3), (A.10)

β = −v′ +O(v′3, v′u′2). (A.11)

Furthermore from (A.7) and (A.8) we get the following for the angular velocities:

γ̇ =
u̇′

1 + u′2
= u̇′ +O(u′2), (A.12)

β̇ = − v̇′ + v̇′u′2 − u′v′u̇′√
1 + u′2(1 + u′2 + v′2)

= −v̇′ +O(u′2, u′v′, v′2), (A.13)

ϕ̇ = ω. (A.14)

The rotational energy of a rigid body rotating about an axis through its center of gravity

is given by

Trot =
1

2

(
I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3

)
, (A.15)

whereΩ is the angular velocity in the coordinate system spanned by the principal axis

of inertia. We want to express this energy in terms of u and v. First we plug in the

expressions for Ω from Eq. (A.6).

2Trot = I1(γ̇ sinϕ cos β + β̇ cosϕ)2

+I2(γ̇ cosϕ cos β − β̇ sinϕ)2

+I3
(
ϕ̇ − γ̇ sin β

)2

=
1

2
(I1 + I2)

(
γ̇2 cos2 β + β̇2

)

+I3

(
ϕ̇2 − 2γ̇ϕ̇ sin β + γ̇2 sin2 β

)

+
1

2
(I1 − I2)

(
(β̇2 − γ̇2 cos2 β) cos 2ϕ + 2β̇γ̇ cos β sin 2ϕ

)
. (A.16)
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Then we insert the expressions for γ and β from above and neglect all terms of order

u′2, v′2, u′v′, and higher,

2Trot ≈
1

2
(I1 + I2)

(
u̇′2 + v̇′2

)

+I3

(
ω2 + 2ωu̇′v′

)

+
1

2
(I1 − I2)

(
(v̇′2 − u̇′2) cos 2ωt − 2u̇′v̇′ sin 2ωt

)
. (A.17)
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Tools from Functional Analysis

In (Jost, 1998) we find the following variant of Poincaré’s inequality.

Lemma B.1 (Generalized Poincaré Inequality). LetΩ ⊂ Rd be convex, u ∈ H1,p(Ω). Then

for every measurable B ⊂ Ω with |B| > 0 we have




∫

Ω

|u − ūB|p



1
p

≤ C

|B|




∫

Ω

|Du|p



1
p

, (B.1)

where ūB =
1
B

∫
B

u(x)dx is the average of u on B.

In (Evans, 1998) Gronwall’s inequality is used for proving a priori estimates of solutions

of PDEs. We cite the differential version here.

Lemma B.2 (Gronwall’s Inequality). Let η : [0,T] → R+ be absolutely continuous and

satisfy for almost all t the differential inequality

η′ ≤ φ(t)η(t) + ψ(t) (B.2)

with nonnegative, summable functions φ : [0,T]→ R+ and ψ : [0,T]→ R+. Then η satisfies

η(t) ≤ e(
∫ t

0
φ(s)ds)


η(0) +

t∫

0

ψ(s)ds


 . (B.3)

Lemma B.3. The mass matrix appearing in the ODE of the Galerkin approximation (3.52) is

nonsingular.

Proof. M is defined by applying the scalar product m(., .) to the elements of the orthog-

onal basis {wk}k ⊂ H2(Ω) which are chosen as approximation function,

M jk = m(wk,w j) for 1 ≤ j, k ≤ n. (B.4)
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Suppose M is singular. Then the columns of M are linear dependent and there are

λ1, . . . , λn, with at least one λi , 0, such that the columns can be combined to 0,

0 =

n∑

k=1

λkm(wk,w j) = m




n∑

k=1

λkwk,w j


 for 1 ≤ j ≤ n. (B.5)

Now we form the scalar product of this vector with the vector λ̄ = (λ̄1, . . . , λ̄n)T and

obtain

0 =

n∑

j=1

λ̄ jm




n∑

k=1

λkwk,w j


 = m




n∑

k=1

λkwk,
n∑

j=1

λ jw
j


 =

∥∥∥∥∥∥∥∥

n∑

j=1

λ jw
j

∥∥∥∥∥∥∥∥

2

H1
m(Ω)

,

since m(., .) is a scalar product. Hence

n∑

j=1

λ jw
j = 0,

which is a contradiction, because the {wk}k=1,...,n are elements of an orthogonal basis

and hence linearly independent. Therefore, M is nonsingular. �



Appendix C

Element Matrices

In Chapter 4 we derive the element matrices for a finite rotating Rayleigh beam element

and for rigid disks by the use of Hermite polynomials as shape functions. The exact

form of the functions and of the matrices is given in this appendix.

C.1 Shape Functions

The Hermite polynomials which are used for the interpolation of the displacement of

a beam element with prescribed nodal displacements uk, vk, uk+1, vk+1 and inclinations

βk, γk, βk+1, and γk+1 are given by

Ψ1(z) = 1 − 3

(
z − zk

lk

)2

+ 2

(
z − zk

lk

)3

, (C.1)

Ψ2(z) = (z − zk)


1 − 2

(
z − zk

lk

)
+

(
z − zk

lk

)2 , (C.2)

Ψ3(z) = 3

(
z − zk

lk

)2

− 2

(
z − zk

lk

)3

, (C.3)

Ψ4(z) = lk


−

(
z − zk

lk

)2

+

(
z − zk

lk

)3 , (C.4)

and the displacement is given by




u

v


 =



Ψ1 0 0 Ψ2 Ψ3 0 0 Ψ4(z)

0 Ψ1 −Ψ2 0 0 Ψ3 −Ψ4(z) 0


 qk =Wkqk, (C.5)

where qT = (uk, vk, βk, γk, uk+1, vk+1, βk+1, γk+1). The derivative in axial direction is given

by




u′

v′


 =



Ψ′

1
0 0 Ψ′

2
Ψ′

3
0 0 Ψ′

4
(z)

0 Ψ′
1
−Ψ′

2
0 0 Ψ′

3
−Ψ′

4
(z) 0


 qk = W′

kqk (C.6)
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with

Ψ′1(z) =
6

lk


−

z − zk

lk
+

(
z − zk

lk

)2 , (C.7)

Ψ′2(z) = 1 − 4
z − zk

lk
+ 3

(
z − zk

lk

)2

, (C.8)

Ψ′3(z) =
6

lk




z − zk

lk
−

(
z − zk

lk

)2 , (C.9)

Ψ′4(z) = −2
z − zk

lk
+ 3

(
z − zk

lk

)2

. (C.10)

For the second derivatives we have




u′′

v′′


 =



Ψ′′

1
0 0 Ψ′′

2
Ψ′′

3
0 0 Ψ′′

4
(z)

0 Ψ′′
1
−Ψ′′

2
0 0 Ψ′′

3
−Ψ′′

4
(z) 0


 qk =W′′

k qk. (C.11)

with

Ψ′′1 (z) =
6

l2
k

(
−1 + 2

z − zk

lk

)
, (C.12)

Ψ′′2 (z) =
4

lk
+ 6

z − zk

l2
k

, (C.13)

Ψ′′3 (z) =
6

l2
k

(
1 − 2

z − zk

lk

)
, (C.14)

Ψ′′4 (z) = − 2

lk
+ 6

z − zk

l2
k

. (C.15)

C.2 Element Matrices for Rigid Disks

The mass matrix Md for the rigid disk elements is given by

Md =




m 0 0 0

0 m 0 0

0 0 I 0

0 0 0 I



, (C.16)

the gyroscopic matrix Gd by

Gd = ω




0 0 0 0

0 0 0 0

0 0 0 Ip

0 0 −Ip 0



, (C.17)
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and the damping matrix by

Cd =




c 0 0 0

0 c 0 0

0 0 0 0

0 0 0 0



, (C.18)

where c is the damping coefficient for the external damping.

C.3 Rayleigh Beam Element Matrices

The mass matrix is split into two parts, the matrix Mt for the translational inertia

Mt =
µl

420




156

0 156 Sym.

0 −22l 4l2

22l 0 0 4l2

54 0 0 13l 156

0 54 −13l 0 0 156

0 13l −3l2 0 0 22l 4l2

−13l 0 0 −3l2 −22l 0 0 4l2




, (C.19)

and the matrix Mr for the rotatory inertia

Mr =
µr2

120l




36

0 36 Sym.

0 −3l 4l2

3l 0 0 4l2

−36 0 0 −3l 36

0 −36 3l 0 0 36

0 −3l −l2 0 0 3l 4l2

3l 0 0 −l2 −3l 0 0 4l2




. (C.20)

For our choice of damping, the damping matrix is a multiple of the translatory mass

matrix

C =
cl

420




156

0 156 Sym.

0 −22l 4l2

22l 0 0 4l2

54 0 0 13l 156

0 54 −13l 0 0 156

0 13l −3l2 0 0 22l 4l2

−13l 0 0 −3l2 −22l 0 0 4l2




. (C.21)
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The skew symmetric gyroscopic matrix is

G =
ωIp

30l




0

−36 0 Skew–sym.

3l 0 0

0 3l −4l2 0

0 −36 3l 0 0

36 0 0 3l −36 0

3l 0 0 −l2 −3l 0 0

0 3l l2 0 0 −3l 4l2 0




, (C.22)

and the stiffness matrix is

K =
EIa

l3




12

0 12 Sym.

0 −6l 4l2

6l 0 0 4l2

−12 0 0 −6l 12

0 −12 6l 0 0 12

0 −6l 2l2 0 0 6l 4l2

6l 0 0 2l2 −6l 0 0 4l2




. (C.23)



Appendix D

Specifications of Turbocharger

Beam Models

D.1 13 Element Beam Model

In Chapters 4 and 6 we consider a beam model consisting of 13 Euler beam elements.

Turbine and impeller are modeled with rigid disks attached in different nodes. A

further refinement is the use of a two layer shaft model. Considering two layers of

different material along the shaft allows for a more detailed description of the shaft. We

consider now the following shaft with 13 elements that have the following parameters:
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Figure D.1: Detailed beam model of turbocharger.
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Inner Shaft Outer Shaft

#
Length

[mm]

∅

[mm]

Young’s

modulus

[N/m2]

Density

[kg/m3]

∅

[mm]

Young’s

modulus

[N/m2]

Density

[kg/m3]

1 10.0 4.1 7800 2.058e11

2 4.5 4.1 7800 2.058e11 6.0 0 7.35e10

3 15.2 4.1 7800 2.058e11 10.0 0 7.35e10

4 6.0 4.1 7800 2.058e11 25.0 0 7.35e10

5 7.1 8.0 7800 2.058e11

6 9.5 6.2 7800 2.058e11

7 12.65 6.0 7800 2.058e11

8 12.5 6.0 7800 2.058e11

9 6.65 6.0 7800 2.058e11

10 11.2 9.9 7800 2.058e11

11 6.6 14.2 0 2.058e11

12 9.6 11.0 0 2.058e11

13 5.0 7.0 7800 2.058e11

The parameters of the rigid disks are the following:

Mass [kg]
Diametral inertia

moment Id [kgm2]

Polar inertia moment Ip

[kgm2]

Impeller 1.3328e-2 1.2740e-6 2.1560e-6

Turbine 4.3414e-2 3.1360e-6 5.8800e-6

A picture of this model is shown in Figure D.1, showing the beam elements from left

to right and also the positions of the bearings. The thinner lines represent the outer

shaft elements and the red dashed lines symbolize the two rigid disks.

From this geometry data one can calculate the effective masses and moments of inertia

of each element, which are needed for the setup of the system’s matrices. They are

given by the following formulas:

µ = πl
(
r2

i ρi + (r2
o − r2

i )ρo

)
, (D.1)

Ip =
π

2

(
ρir

4
i + ρo(r4

o − r4
i )
)
, (D.2)

Ia =
π

4

(
ρir

4
i + ρo(r4

o − r4
i )
)
, (D.3)

EYId = =
π

4

(
EY,iρir

4
i + EY,oρo(r4

o − r4
i )
)
. (D.4)

These effective parameters are used in the calculation of the system matrices and the

equation of motion.
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The unbalance parameters for the above beam model are

a3 = 1.35 × 10−7kgm, ψ3 = π, (D.5)

a5 = 1.50 × 10−7kgm, ψ5 = 0, (D.6)

a11 = 2.01 × 10−7kgm, ψ11 = 0, (D.7)

a13 = 2.07 × 10−7kgm, ψ13 = π (D.8)

where ai is the unbalance amplitude, and ψi is the phase of the unbalance vector in

node i.

D.2 3 Element Beam Model

In Chapters 6 and 7 we consider a simplified smaller 3 element beam model. This

model (c.f. Figure D.2) has only one layer and it has the following specifications.

Shaft

#
Length

[mm]

∅

[mm]

Young’s

modulus

[N/m2]

Density

[kg/m3]

1 35 6 7800 2.058e11

2 25 6 7800 2.058e11

3 35 10 7800 2.058e11
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Figure D.2: 4 element beam model of turbocharger.

The parameters of the two rigid disks attached at both ends are
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Mass [kg]
Diametral inertia

moment Id [kgm2]

Polar inertia moment Ip

[kgm2]

Impeller 2.0e-2 0.5e-6 2e-6

Turbine 3.0e-2 0.7e-6 3e-6

The unbalance parameters for the above beam model are

a1 = 1.35 × 10−7kgm, ψ3 = π, (D.9)

a4 = 2.07 × 10−7kgm, ψ13 = π. (D.10)



Appendix E

Detailed Formulas for the Inertia

Correction p1

E.1 Short Bearing Approximation

The detailed solution for the pressure p1 can be computed by solving the integrals in

(5.60). Additionally to the expression on Equation (5.61) the solution can be written in

a more convenient form in terms of p0, hi, and Vi (i = 0, 1)

p1 =
z(z − 1)

h5
0


z(z − 1)G +

4∑

i=0

Hi


 . (E.1)

Here the following abbreviations are used

Ψ(t, ϕ) := (γ′ − 1

2
)κ sinϕ + κ′ cosϕ, (E.2)

G(t, ϕ) :=
1

K
(
3

2
(∂ϕh0)2Ψ − 3

2
h0∂ϕΨ∂ϕh0 +

1

2
h2

0∂
2
ϕΨ −

3

2
h0Ψ∂

2
ϕh0), (E.3)

H4(t, ϕ) := − 1

40
R

(
−3∂2

ϕh0 + 24∂τΨ − 10∂τ∂ϕh0 + 2∂ϕΨ
)

h4
0, (E.4)

H3(t, ϕ) :=
(
R

(
3

10
Ψ∂τh0 +

1

2
∂τh0∂ϕh0 +

3

20
(∂ϕh0)2 − 81

70
Ψ2 +

13

20
Ψ∂ϕh0

)

+ 3Ψ − 4∂ϕh0 + 3∂ϕV1
ϕ

)
h3

0, (E.5)

H2(t, ϕ) :=
(
−3KV1

ϕ∂ϕh0 −
1

2
∂2
ϕΨ − 3K∂ϕh1

) h2
0

K
, (E.6)

H1(t, ϕ) :=
(
18Kh1Ψ+

3

2
Ψ∂2

ϕh0 +
3

2
∂ϕh0∂ϕΨ

)
h0

K
, (E.7)

H0(t, ϕ) := −3

2
(∂ϕh0)2Ψ

K
. (E.8)
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E.2 Correction to Solution of Reynolds’ Equation

In Section 5.1.6 the equation for the correction term p1 to the solution of Reynolds’

equation is derived. The right hand side of this elliptical equation is given here.

Ψ(p0, h0, h1,V0
ϕ,V

1
ϕ) =

Rh4
0((− 9

560
∂ϕp0∂3

ϕp0 − 9

560
(∂2
ϕp0)2)δ4

+ (− 3

140
(∂ϕ∂zp0)2 − 9

560
∂zp0∂2

ϕ∂zp0 − 3

280
∂2
ϕp0∂2

zp0 − 9

560
∂ϕp0∂2

z∂ϕp0)δ2

− 9

560
∂zp0∂3

zp0 − 9

560
(∂2

zp0)2)

+Rh0
3((− 3

80
(∂ϕp0)2∂2

ϕh − 3

16
∂ϕp0∂2

ϕp0∂ϕh0)δ4

+ (− 3

40
∂ϕp0∂ϕh0∂

2
zp0 − 9

80
∂ϕh0∂zp0∂ϕ∂zp0)δ2)

+Rh2
0(− 9

40
δ4∂ϕp02

(∂ϕh0)2
+ (

1

10
∂t∂

2
zp0 +

1

120
∂3
ϕp0V0

ϕ)δ2

+
1

120
∂2

z∂ϕp0V0
ϕ +

1

10
∂t∂

2
zp0)

+h0(((
1

24
∂2
ϕp0V0

ϕ∂ϕh0 +
1

4
∂ϕp0∂t∂ϕh0 +

1

4
∂2
ϕp0∂th0 +

1

2
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1

4
∂th0∂

2
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zp0V0
ϕ∂ϕh0)R

− 3

2
δ2∂2

ϕp0 − 1

2
∂2

zp0)

+ (δ2∂ϕp0∂ϕh0∂th0R − 5δ2∂ϕp0∂ϕh0)

+h−1
0 ((

3

20
(V0

ϕ)2∂2
ϕh0 +

1

2
V0
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2
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2
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3
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ϕ). (E.9)
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Integration of Bearing Integrals

with Sommerfeld Variable

Transformation

We want to solve the following integrals that appear in the calculation of the bearing

forces

FN = −W3Rρνω

c2
r

1∫

0

2π∫

0

(p0)+ dϕ dz, (F.1)

FT = −W3Rρνω

c2
r

1∫

0

2π∫

0

(p0)+ dϕ dz, (F.2)

where

p0 = −6z(z − 1)

(
(γ′ − 1

2 )κ sinϕ + κ′ cosϕ
)

(1 − κ cosϕ)3
. (F.3)

We set

a = κ′, (F.4)

b = κ(γ′ − 1

2
), (F.5)

C =
W3Rρνω

c2
r

, (F.6)

ψ = arg(a − ib). (F.7)

The pressure is positive for

ϕ ∈ [ϕ1, ϕ2] = [−ψ − π
2
,−ψ + π

2
]. (F.8)
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Hence, the integrals become

FN = −C

1∫

0

ϕ2∫

ϕ1

−6z(z − 1)
b sinϕ cosϕ + a cos2 ϕ

(1 − κ cosϕ)3
dϕ dz, (F.9)

FT = −C

1∫

0

ϕ2∫

ϕ1

−6z(z − 1)
b sin2 ϕ + a cosϕ sinϕ

(1 − κ cosϕ)3
dϕ dz. (F.10)

The integration with respect to z is readily done and yields

FN = −C

ϕ2∫

ϕ1

b sinϕ cosϕ + a cos2 ϕ

(1 − κ cosϕ)3
dϕ, (F.11)

FT = −C

1∫

0

ϕ2∫

ϕ1

b sin2 ϕ + a cosϕ sinϕ

(1 − κ cosϕ)3
dϕ. (F.12)

To solve the integrals with respect toϕwe introduce the variable transformation which

is due to Sommerfeld

1 − κ cosϕ =
1 − κ2

1 − κ cosθ
. (F.13)

This yields

cosϕ =
κ − cosθ

1 − κ cosθ
, (F.14)

sinϕ =
−
√

1 − κ2 sinθ

1 − κ cosθ
, (F.15)

ϕ = arctan(
−
√

1 − κ2 sinθ

κ − cosθ
), (F.16)

dϕ

dθ
=

(κ − cosθ)(−
√

1 − κ2 cosθ) +
√

1 − κ2 sin2 θ(
1 +

(1−κ2) sin2 θ
(κ−cos θ)2

)
(κ − cosθ)2

(F.17)

=
(
√

1 − κ2(sin2 θ + cos2 θ − κ cosθ))

(κ − cosθ)2 + (1 − κ2) sin2 θ
(F.18)

=
−
√

1 − κ2κ cosθ

κ2 − 2κ cosθ + cos2 θ + sin2 θ − κ2 sin2 θ
(F.19)

=

√
1 − κ2

1 − κ cosθ
. (F.20)

Using the transformation formula we obtain the new integral boundaries

θ1 = arctan(κ − cosϕ1,−
√

1 − κ2 sinϕ1), (F.21)

θ2 = arctan(κ − cosϕ2,−
√

1 − κ2 sinϕ2). (F.22)
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The integrals transform to

FN = −C

ϕ2∫

ϕ1

b sinϕ cosϕ + a cos2 ϕ

(1 − κ cosϕ)3
dϕ

= −C

θ2∫

θ1


a

(
κ − cosθ

1 − κ cosθ

)2

− b

√
1 − κ2 sinθ(κ − cosθ)

(1 − κ cosθ)2




√
1 − κ2(1 − κ cosθ)3

(1 − κ2)3(1 − κ cosθ)
dθ

= −C

θ2∫

θ1


a

(κ − cosθ)2

(1 − κ2)
5
2

− b
sinθ(κ − cosθ)

(1 − κ2)2


 dθ, (F.23)

and analogously

FT = −C

ϕ2∫

ϕ1

b sin2 ϕϕ + a cosϕ sinϕ

(1 − κ cosϕ)3
dϕ

= −C

θ2∫

θ1


b

sin2 θ

(1 − κ2)
3
2

− a
sinθ(κ − cos δ)

(1 − κ2)2


 dθ. (F.24)

The three resulting integrals are

A1 =

θ2∫

θ1

(κ − cosθ)2

(1 − κ2)
5
2

dθ (F.25)

=
(κ2 + 1

2 )(θ2 − θ1) − 2κ(sinθ2 − sinθ1) + 1
4 (sin 2θ2 − sin 2θ1)

(1 − κ2)
5
2

, (F.26)

A2 =

θ2∫

θ1

sinθ(κ − cosθ)

(1 − κ2)2
dθ =

−κ(cosθ2 − cosθ1) + 1
4 (cos 2θ2 − cos 2θ1)

(1 − κ2)2
, (F.27)

A3 =

θ2∫

θ1

sin2 θ

(1 − κ2)
3
2

dθ =
(2(θ2 − θ1) − sin 2θ2 + sin 2θ1)

4(1 − κ2)
3
2

, (F.28)

which finally gives the following formulation for the forces

FN = −C(aA1 − bA2), (F.29)

FT = −C(bA3 − aA2). (F.30)
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