Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Integrative bioinformatics analyses of genome-wide RNAi screens

Amberkar, Sandeep

[thumbnail of Thesis_Final2_2_HeiDok_02102014_v2.pdf]
Vorschau
PDF, Englisch
Download (38MB) | Nutzungsbedingungen

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

In past few years, genome-wide RNAi screens have identified many novel genes involved in diseases for many viruses such as Human Immunodeficiency Virus-1 (HIV-1), Hepatitis C virus (HCV), West Nile Virus (WNV) and Influenza virus (IV). However, due to difference in experimental conditions, usage of different viral strains and inherent biological noise, these screens have shown low number of common or overlapping hits for a virus. Moreover, this overlap gets poorer for similar studies on viruses of different families. Although these overlaps are significant, their lower size restricts a comprehensive insight from a comparative analysis. Thus, a direct comparison of gene hit-lists of RNAi screens may not always give meaningful results. To address this problem we propose an integrative bioinformatics pipeline that allows for network based meta-analysis of viral HT-RNAi screens. Initially, human protein interaction network (PIN) generated by collating data from various public repositories, is subjected to unsupervised clustering to determine functional modules. Those modules that are significantly enriched in host dependency factors (HDFs) and/or host restriction factors (HRFs) are then filtered based on network topology and semantic similarity measures. Modules passing all these criteria are then interpreted for their biological significance from enrichment analyses. With our approach we could predict Tankyrase-1 as a potential novel hit within the functional subnetworks, within the human PIN for Hepatitis C virus (HCV). and Human Immunodeficiency Virus-1 (HIV-1), based on HDFs and HRFs identified in the corresponding genome-wide RNAi screens of these viruses. Thus, our approach allows for a network based meta-analysis of genome-wide screens to develop plausible hypotheses for novel regulatory mechanisms in virus-host interactions based on RNAi screens.

Dokumententyp: Dissertation
Erstgutachter: Eils, Prof. Dr. Roland
Ort der Veröffentlichung: Heidelberg
Tag der Prüfung: 18 Juli 2014
Erstellungsdatum: 17 Okt. 2014 08:42
Erscheinungsjahr: 2014
Institute/Einrichtungen: Fakultät für Biowissenschaften > Dekanat der Fakultät für Biowissenschaften
DDC-Sachgruppe: 500 Naturwissenschaften und Mathematik
Normierte Schlagwörter: systems biology, RNAi screens, virus host interactions, protein interaction networks, bioinformatics
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative