Vorschau |
PDF, Englisch
Download (284kB) | Nutzungsbedingungen |
Abstract
We consider a genralized partially linear model E(Y | X,T) = G{ X^T beta + m(T) } where G is a known function, beta is an unknown parameter vector, and m is an unknown function. The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model:(i) m is linear, i.e. m(t) = t^T gamma for a parameter vector gamma,(ii) m is a smooth (nonlinear) function. Under linearity (i) it is shown that the test statistic is asymptotically normal. Moreover, it is proved that the bootstrap works asymptotically. Simulations suggest that (in small samples) bootstrap outperforms the calculation of critical values from the normal approximation. The practical performance of the test is shown in applications to data on East-West German migration and credit scoring.
Dokumententyp: | Arbeitspapier |
---|---|
Ort der Veröffentlichung: | Heidelberg |
Erstellungsdatum: | 07 Jun. 2016 07:55 |
Erscheinungsjahr: | 1998 |
Seitenanzahl: | 35 |
Institute/Einrichtungen: | Fakultät für Mathematik und Informatik > Institut für Mathematik |
DDC-Sachgruppe: | 510 Mathematik |
Schriftenreihe: | Beiträge zur Statistik > Beiträge |