Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Next-generation sequencing diagnostics of bacteremia in septic patients

Grumaz, Silke ; Stevens, Philip ; Grumaz, Christian ; Decker, Sebastian O. ; Weigand, Markus A. ; Hofer, Stefan ; Brenner, Thorsten ; Haeseler, Arndt ; Sohn, Kai

In: Genome Medicine, 8 (2016), Nr. 73. S. 1-13. ISSN 1756-994X

[thumbnail of 13073_2016_Article_326.pdf]
Vorschau
PDF, Englisch
Download (1MB) | Lizenz: Creative Commons LizenzvertragNext-generation sequencing diagnostics of bacteremia in septic patients von Grumaz, Silke ; Stevens, Philip ; Grumaz, Christian ; Decker, Sebastian O. ; Weigand, Markus A. ; Hofer, Stefan ; Brenner, Thorsten ; Haeseler, Arndt ; Sohn, Kai steht unter einer Creative Commons Namensnennung 3.0 Deutschland

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

Background: Bloodstream infections remain one of the major challenges in intensive care units, leading to sepsis or even septic shock in many cases. Due to the lack of timely diagnostic approaches with sufficient sensitivity, mortality rates of sepsis are still unacceptably high. However a prompt diagnosis of the causative microorganism is critical to significantly improve outcome of bloodstream infections. Although various targeted molecular tests for blood samples are available, time-consuming blood culture-based approaches still represent the standard of care for the identification of bacteria. Methods: Here we describe the establishment of a complete diagnostic workflow for the identification of infectious microorganisms from seven septic patients based on unbiased sequence analyses of free circulating DNA from plasma by next-generation sequencing. Results: We found significant levels of DNA fragments derived from pathogenic bacteria in samples from septic patients. Quantitative evaluation of normalized read counts and introduction of a sepsis indicating quantifier (SIQ) score allowed for an unambiguous identification of Gram-positive as well as Gram-negative bacteria that exactly matched with blood cultures from corresponding patient samples. In addition, we also identified species from samples where blood cultures were negative. Reads of non-human origin also comprised fragments derived from antimicrobial resistance genes, showing that, in principle, prediction of specific types of resistance might be possible. Conclusions: The complete workflow from sample preparation to species identification report could be accomplished in roughly 30 h, thus making this approach a promising diagnostic platform for critically ill patients suffering from bloodstream infections.

Dokumententyp: Artikel
Titel der Zeitschrift: Genome Medicine
Band: 8
Nummer: 73
Verlag: BioMed Central
Ort der Veröffentlichung: London
Erstellungsdatum: 06 Jul. 2016 08:18
Erscheinungsjahr: 2016
ISSN: 1756-994X
Seitenbereich: S. 1-13
Institute/Einrichtungen: Medizinische Fakultät Heidelberg und Uniklinikum > Universitätsklinik für Anaesthesiologie
DDC-Sachgruppe: 610 Medizin
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative