Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Analyzing human decisions in IGRT of head-and-neck cancer patients to teach image registration algorithms what experts know

Stoiber, Eva Maria ; Bougatf, Nina ; Teske, Hendrik ; Bierstedt, Christian ; Oetzel, Dieter ; Debus, Jürgen ; Bendl, Rolf ; Giske, Kristina

In: Radiation Oncology, 12 (2017), Nr. 104. S. 1-7. ISSN 1748-717X

[thumbnail of 13014_2017_Article_842.pdf]
Vorschau
PDF, Englisch
Download (1MB) | Lizenz: Creative Commons LizenzvertragAnalyzing human decisions in IGRT of head-and-neck cancer patients to teach image registration algorithms what experts know von Stoiber, Eva Maria ; Bougatf, Nina ; Teske, Hendrik ; Bierstedt, Christian ; Oetzel, Dieter ; Debus, Jürgen ; Bendl, Rolf ; Giske, Kristina steht unter einer Creative Commons Namensnennung 3.0 Deutschland

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

Background: In IGRT of deformable head-and-neck anatomy, patient setup corrections are derived by rigid registration methods. In practice, experienced radiation therapists often correct the resulting vectors, thus indicating a different prioritization of alignment of local structures. Purpose of this study is to transfer the knowledge experts apply when correcting the automatically generated result (pre-match) to automated registration. Methods: Datasets of 25 head-and-neck-cancer patients with daily CBCTs and corresponding approved setup correction vectors were analyzed. Local similarity measures were evaluated to identify the criteria for human corrections with regard to alignment quality, analogous to the radiomics approach. Clustering of similarity improvement patterns is applied to reveal priorities in the alignment quality. Results: The radiation therapists prioritized to align the spinal cord closest to the high-dose area. Both target volumes followed with second and third highest priority. The bony pre-match influenced the human correction along the crania-caudal axis. Based on the extracted priorities, a new rigid registration procedure is constructed which is capable of reproducing the corrections of experts. Conclusions: The proposed approach extracts knowledge of experts performing IGRT corrections to enable new rigid registration methods that are capable of mimicking human decisions. In the future, the deduction of knowledge-based corrections for different cohorts can be established automating such supervised learning approaches.

Dokumententyp: Artikel
Titel der Zeitschrift: Radiation Oncology
Band: 12
Nummer: 104
Verlag: BioMed Central
Ort der Veröffentlichung: London
Erstellungsdatum: 28 Jun. 2017 13:23
Erscheinungsjahr: 2017
ISSN: 1748-717X
Seitenbereich: S. 1-7
Institute/Einrichtungen: Zentrale und Sonstige Einrichtungen > Deutsches Krebsforschungszentrum
Medizinische Fakultät Heidelberg und Uniklinikum > Radiologische Universitätsklinik
DDC-Sachgruppe: 610 Medizin
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative