Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Using country of origin to inform targeted tuberculosis screening in asylum seekers: a modelling study of screening data in a German federal state, 2002-2015

Bozorgmehr, Kayvan ; Preussler, Stella ; Wagner, Ulrich ; Joggerst, Brigitte ; Szecsenyi, Joachim ; Razum, Oliver ; Stock, Christian

In: BMC Infectious Diseases, 19 (2019), Nr. 304. S. 1-15. ISSN 1471-2334

[thumbnail of 12879_2019_Article_3902.pdf]
Vorschau
PDF, Englisch - Hauptdokument
Download (3MB) | Lizenz: Creative Commons LizenzvertragUsing country of origin to inform targeted tuberculosis screening in asylum seekers: a modelling study of screening data in a German federal state, 2002-2015 von Bozorgmehr, Kayvan ; Preussler, Stella ; Wagner, Ulrich ; Joggerst, Brigitte ; Szecsenyi, Joachim ; Razum, Oliver ; Stock, Christian steht unter einer Creative Commons Namensnennung 4.0

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

Background: Screening programmes for tuberculosis (TB) among immigrants rarely consider the heterogeneity of risk related to migrants’ country of origin. We assess the performance of a large screening programme in asylum seekers by analysing (i) the difference in yield and numbers needed to screen (NNS) by country and WHO-reported TB burden, (ii) the possible impact of screening thresholds on sensitivity, and (iii) the value of WHO-estimated TB burden to improve the prediction accuracy of screening yield.

Methods: We combined individual data of 119,037 asylum seekers screened for TB in Germany (2002-2015) with TB estimates of the World Health Organization (WHO) (1990-2014) for their 81 countries of origin. Adjusted rate ratios (aRR) and 95% credible intervals (CrI) of the observed yield of screening were calculated in Bayesian Poisson regression models by categories of WHO-estimated TB incidence. We assessed changes in sensitivity depending on screening thresholds, used WHO TB estimates as prior information to predict TB in asylum seekers, and modelled country-specific probabilities of numbers needed to screen (NNS) conditional on different screening thresholds.

Results: The overall yield was 82 per 100,000 and the annual yield ranged from 44.1 to 279.7 per 100,000. Country-specific yields ranged from 10 (95%- CrI: 1-47) to 683 (95%-CrI: 306-1336) per 100,000 in Iraqi and Somali asylum seekers, respectively. The observed yield was higher in asylum seekers from countries with a WHO-estimated TB incidence > 50 relative to those from countries ≤50 per 100,000 (aRR: 4.17, 95%-CrI: 2.86-6.59). Introducing a threshold in the range of a WHO-estimated TB incidence of 50 and 100 per 100,000 resulted in the lowest “loss” in sensitivity. WHO’s TB prevalence estimates improved prediction accuracy for eight of the 11 countries, and allowed modelling country-specific probabilities of NNS.

Conclusions WHO’s TB data can inform the estimation of screening yield and thus be used to improve screening efficiency in asylum seekers. This may help to develop more targeted screening strategies by reducing uncertainty in estimates of expected country-specific yield, and identify thresholds with lowest loss in sensitivity. Further modelling studies are needed which combine clinical, diagnostic and country-specific parameters.

Dokumententyp: Artikel
Titel der Zeitschrift: BMC Infectious Diseases
Band: 19
Nummer: 304
Verlag: BioMed Central ; Springer
Ort der Veröffentlichung: London ; Berlin, Heidelberg
Erstellungsdatum: 05 Jun. 2019 11:12
Erscheinungsjahr: 2019
ISSN: 1471-2334
Seitenbereich: S. 1-15
DDC-Sachgruppe: 610 Medizin
Freie Schlagwörter: Tuberculosis, Infection control, Public health, Migration, Asylum seekers, Screening, Efficiency, Global health, Modelling, Epidemiology
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative