Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Model-based Stochastical Segmentation of Higher-dimensional Data

Markowsky, Peter

[thumbnail of Thesis_Markowsky.pdf] PDF, Englisch
Download (10MB) | Nutzungsbedingungen

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

This thesis is motivated by the problem of segmenting extremely noisy images of geometric objects. To this end, it combines randomized combinatorial set cover optimization with a statistical model of object interaction. The set cover approach provides stability and applicability in cases in which many traditional methods of segmentation fail due to noise and imperfect data. The statistical model provides additional information that is not directly supplied by the image, and leads to a more realistic depiction of physical object properties in the resulting segmentation. This dissertation is divided into three parts: The first covers topics of randomized combinatorial optimization. This includes improving bounds of convergence and establishing a method of parallelization for an existing approach, as well as linking solutions to different combinatorial problems, such as geometric set cover and a general linear program. Part two is concerned with constructing a point process model of object interaction that fits later applications, and exploring some theoretical and practical pitfalls in its simulation, estimation, and coupling with a combinatorial approach. Part three compares previously discussed methods empirically, and demonstrates the performance of the established combination of randomized optimization and statistical model on microscopic cell images and 3D μCT scans of fiber reinforced materials.

Dokumententyp: Dissertation
Erstgutachter: Schnörr, Prof. Dr. Christoph
Ort der Veröffentlichung: Heidelberg
Tag der Prüfung: 19 November 2019
Erstellungsdatum: 02 Dez. 2019 11:05
Erscheinungsjahr: 2019
Institute/Einrichtungen: Fakultät für Mathematik und Informatik > Dekanat der Fakultät für Mathematik und Informatik
DDC-Sachgruppe: 510 Mathematik
Normierte Schlagwörter: Bilderkennung, Kombinatorische Optimierung, Punktprozess
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative