Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

The detailed velocity structure and distribution of 13CO emission in the Galactic plane

Riener, Manuel

[thumbnail of Riener_PhD_thesis.pdf]
Preview
PDF, English
Download (31MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

Studying the detailed velocity structure of molecular gas in our Galaxy is of fundamental importance for understanding structure formation in the interstellar medium. Knowledge about the detailed gas kinematics is moreover essential to map the distribution and dynamics of the molecular gas in the Milky Way.

In this thesis I use the method of spectral decomposition to analyse the 13CO (1-0) observations of the Galactic Ring Survey (GRS). I developed the GaussPy+ package, specifically designed for the fully automated decomposition of large Galactic plane surveys, to fit the ~2.3 million spectra of this large emission line data set. After extensive validation of the algorithm using synthetic spectra and a GRS test field, I use GaussPy+ to fit the entire data set of the GRS, resulting in ~4.6 million Gaussian fit components.

These decomposition results provide a new way to analyse the dynamics of the molecular gas over a wide extent of the Galactic plane and study how its velocity structure looks like and varies at Galactic to sub-cloud scales. I find that the velocity dispersion of the gas is increased in the midplane and towards the inner Galaxy, and establish that the integrated emission of the velocity components correlates well with the complexity of the gas emission and the amount of dust emission along the line of sight. Moreover, I uncover qualitatively similar fluctuations in the centroid velocities of the gas components throughout the entire GRS data set, and demonstrate how the fitted linewidths enable the separation of blended gas emission features that originate from nearby regions and far distances.

Finally, I use a Bayesian approach to obtain the current best assessment of the Galactic distribution of 13CO. As prior information, I use the presently most precise knowledge about the structure and kinematics of the Milky Way and an extensive compilation of distances from literature. I perform two different distance calculations that either include or exclude a prior for a model of Galactic features, which allows me to characterise possible biases of the distance estimates and establish more reliable limits on the 13CO distribution. I establish that the majority (76% to 84%) of the 13CO emission is associated with spiral arm features. However, I do not find significant differences between the gas emission properties associated with spiral arm and interarm features.

I conclude that the decomposition results provide a wealth of data enabling new and unexplored ways to interpret the detailed gas velocity structure of large Galactic plane surveys. The methodology and results presented in this thesis allowed for a homogeneous study of the dynamics and distribution of the molecular gas over a large fraction of the Galactic disk. As demonstrated in this work, the information extracted from the detailed gas kinematics and its combination with complementary tracers of the interstellar medium has enormous potential to further our knowledge about the physical processes and mechanisms shaping the interstellar medium.

Document type: Dissertation
Supervisor: Beuther, apl. Prof. Dr. Henrik
Place of Publication: Heidelberg
Date of thesis defense: 10 July 2020
Date Deposited: 20 Jul 2020 07:28
Date: 2020
Faculties / Institutes: The Faculty of Physics and Astronomy > Dekanat der Fakultät für Physik und Astronomie
DDC-classification: 520 Astronomy and allied sciences
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative