Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Origination, Monoclonality and Evolution of the Marbled Crayfish Genome Procambarus virginalis

Maiakovska, Olena

[thumbnail of PhDThesis.pdf]
Preview
PDF, English
Download (5MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

The parthenogenetic marbled crayfish (Procambarus virginalis) sparked interest within the scientific community due to its unique features. Its polyploid and monoclonal genome, high environmental adaptability and phenotypic diversity made the marbled crayfish a suitable laboratory model for genomics, epigenetics and ecology research. The previously established marbled crayfish genome sequence of 3.5 Gbp represents a highly fragmented draft assembly. Initial comparative genomic analyses resulted in confirmation of P. virginalis genome origination from the sexually reproducing freshwater crayfish P. fallax. However, in-depth genomic analysis and interspecies genome comparisons require further refinement of the fragmented genome reference of the marbled crayfish. In this PhD thesis, the first refinement of the marbled crayfish genome has been performed with application of the PacBio Single Molecule Real Time (SMRT) sequencing technology. The new and improved genome assembly of the marbled crayfish resulted in 3.7 Gbp of sequence length and an N50 of 144kb. The refined genome assembly enabled searching parental haplotypes and understanding species origination. The absence of evidence for loss of heterozygosity in the various monoclonal marbled crayfish generations suggests the lack of recombination process during oogenesis. Thus, marbled crayfish suggest to be apomictic parthenogens which are characterized by generating identical copies of the maternal genotype. Moreover, despite of the limited genome variability, monoclonal marbled crayfish genomes consisted of population-specific genetic polymorphisms within the global population. Comparative genomic analysis between geographically distant populations resulted in the identification of population-specific mutational signatures. The calculation of genomic variability of marbled crayfish from the growing population in Lake Reilingen allowed to estimate population dynamics. Thus, the population in Lake Reilingen demonstrates a rapid growth, following the density-independent exponential model. This PhD thesis provides fundamental insights into marbled crayfish research, particularly via making use of an improved genome assembly for comparative genomic analyses, epigenetic studies, and for research on the evolution and genomic adaptation to asexuality.

Document type: Dissertation
Supervisor: Lyko, Prof. Dr. Frank
Place of Publication: Heidelberg
Date of thesis defense: 11 December 2020
Date Deposited: 16 Apr 2021 06:46
Date: 2021
Faculties / Institutes: The Faculty of Bio Sciences > Dean's Office of the Faculty of Bio Sciences
DDC-classification: 570 Life sciences
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative