Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Dynamics of anions and ultracold atoms in a hybrid atom-ion trap.

Hassan, Saba Zia

[thumbnail of 2022_Dissertation_Saba_Hassan_HGSFP.pdf]
Preview
PDF, English
Download (13MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

In this work, the dynamics of anion-neutral interactions are studied in a hybrid atom-ion trap. An octupole radio-frequency trap is used for trapping anions, and a dark spontaneous-force optical trap is employed to create ultracold rubidium (Rb) atoms. Spatial density distributions of the ion and atom clouds are determined via photodetachment tomography and saturation absorption imaging, respectively. A method to map the ions’ translational temperature onto their time of flight to the detector is presented. This technique is applied to determine the temperature of OH−anions as they undergo laser-induced forced evaporative cooling to temperatures below 4 K. The dynamics of associative electronic detachment reaction between closed-shell anions OH−and alkali atoms are investigated where for a ground-state Rb the influence of a dipole-bound state as a reaction intermediate is observed. The interaction dynamics of Rb with OH−(H2O) are also explored, where a smaller atom-to-ion mass ratio favors sympathetic cooling via elastic collisions. For atomic O−, the detachment processes involving ground-state Rb are found to be closed and efficient anion sympathetic cooling, via ultracold Rb, is observed. These results present hybrid systems as a platform to investigate anion-neutral collision dynamics, particularly interesting for astrochemistry, fundamental physics, and quantum chemistry.

Document type: Dissertation
Supervisor: Weidemüller, Prof. Dr. Matthias
Place of Publication: Heidelberg
Date of thesis defense: 24 May 2022
Date Deposited: 07 Jun 2022 12:50
Date: 2022
Faculties / Institutes: The Faculty of Physics and Astronomy > Institute of Physics
DDC-classification: 530 Physics
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative