Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Genomic diversity associated with polymorphic inversions in humans and their close relatives

Höps, Wolfram Gregor Alexander

[thumbnail of Thesis_hoeps_dec14_PRINT.pdf]
Vorschau
PDF, Englisch
Download (17MB) | Lizenz: Creative Commons LizenzvertragGenomic diversity associated with polymorphic inversions in humans and their close relatives von Höps, Wolfram Gregor Alexander steht unter einer Creative Commons Namensnennung 4.0

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

Individuals of one species share the bulk of their genetic material, yet no two genomes are the same. Aside from displaying classical variation such as deletions, insertions, or substitutions of base pairs, two DNA segments can also differ in their orientation relative to the rest of their chromosomes. Such inversions are known for a range of biological implications and contribute critically to genome evolution and disease. However, inversions are notoriously challenging to detect, a fact which still impedes comprehensive analysis of their specific properties. This thesis describes several highly inter-connected projects aimed at identifying and functionally characterizing inversions present in the human population and related great ape species. First, inversions between human and four great ape species were assessed for their potential to disrupt topologically associating domains (TADs), potentially prompting gene misregulation. TAD boundaries co-located with breakpoints of long inversions, and while disrupted TADs displayed elevated rates of differen- tially expressed genes, this effect could be attributed the vicinity to inversion breakpoints, suggesting overall robustness of gene expression in response to TAD disruption. The second part of this thesis describes contributions to a collaborative project aimed at characterizing the full spectrum of inversions in 43 humans. In this study, I co-developed a novel inversion genotyping algorithm based on Strand- specific DNA sequencing and contributed to the description of 398 inversion polymorphisms. Inversions exhibited various underlying formation mechanisms, promotion of gene dysregulation, widespread recurrence, and association with genomic disease. These results suggest that long inversions are much more prominent in humans than previously thought, with at least 0.6% of the genome subject to inversion recurrence and, sometimes, the associated risk of subsequent deleterious mutation. With a focus on the link between inversions and disease-causing copy num- ber variations, the last project describes a novel algorithm to identify loci hit sequentially by several overlapping mutation events. This algorithm enabled the description of detailed mutation sequences in 20 highly dynamic regions in the human genome, and additional complex variants on chromosome Y. Six complex loci associate directly with a genomic disease, thereby highlighting in detail the intrinsic link between inversions and CNVs. In summary, these projects provide novel insights into the landscape of in- versions in humans and primates, which are much more frequent, and often more complex than previously thought. These findings provide a basis for future inversion studies and highlight the crucial contribution of this class of mutation to genome variation.

Dokumententyp: Dissertation
Erstgutachter: Korbel, Dr. Jan
Ort der Veröffentlichung: Heidelberg
Tag der Prüfung: 22 März 2023
Erstellungsdatum: 31 Mai 2023 05:39
Erscheinungsjahr: 2023
Institute/Einrichtungen: Fakultät für Biowissenschaften > Dekanat der Fakultät für Biowissenschaften
DDC-Sachgruppe: 500 Naturwissenschaften und Mathematik
570 Biowissenschaften, Biologie
Normierte Schlagwörter: Genomik, Genetische Variabilität
Freie Schlagwörter: Genomische Strukturvarianten
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative