Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Nonlocal Graph-PDEs and Riemannian Gradient Flows for Image Labeling

Sitenko, Dmitrij

[thumbnail of Dissertation]
Preview
PDF, English (Dissertation)
Download (24MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

In this thesis, we focus on the image labeling problem which is the task of performing unique pixel-wise label decisions to simplify the image while reducing its redundant information. We build upon a recently introduced geometric approach for data labeling by assignment flows [ APSS17 ] that comprises a smooth dynamical system for data processing on weighted graphs. Hereby we pursue two lines of research that give new application and theoretically-oriented insights on the underlying segmentation task. We demonstrate using the example of Optical Coherence Tomography (OCT), which is the mostly used non-invasive acquisition method of large volumetric scans of human retinal tis- sues, how incorporation of constraints on the geometry of statistical manifold results in a novel purely data driven geometric approach for order-constrained segmentation of volumetric data in any metric space. In particular, making diagnostic analysis for human eye diseases requires decisive information in form of exact measurement of retinal layer thicknesses that has be done for each patient separately resulting in an demanding and time consuming task. To ease the clinical diagnosis we will introduce a fully automated segmentation algorithm that comes up with a high segmentation accuracy and a high level of built-in-parallelism. As opposed to many established retinal layer segmentation methods, we use only local information as input without incorporation of additional global shape priors. Instead, we achieve physiological order of reti- nal cell layers and membranes including a new formulation of ordered pair of distributions in an smoothed energy term. This systematically avoids bias pertaining to global shape and is hence suited for the detection of anatomical changes of retinal tissue structure. To access the perfor- mance of our approach we compare two different choices of features on a data set of manually annotated 3 D OCT volumes of healthy human retina and evaluate our method against state of the art in automatic retinal layer segmentation as well as to manually annotated ground truth data using different metrics. We generalize the recent work [ SS21 ] on a variational perspective on assignment flows and introduce a novel nonlocal partial difference equation (G-PDE) for labeling metric data on graphs. The G-PDE is derived as nonlocal reparametrization of the assignment flow approach that was introduced in J. Math. Imaging & Vision 58(2), 2017. Due to this parameterization, solving the G-PDE numerically is shown to be equivalent to computing the Riemannian gradient flow with re- spect to a nonconvex potential. We devise an entropy-regularized difference-of-convex-functions (DC) decomposition of this potential and show that the basic geometric Euler scheme for inte- grating the assignment flow is equivalent to solving the G-PDE by an established DC program- ming scheme. Moreover, the viewpoint of geometric integration reveals a basic way to exploit higher-order information of the vector field that drives the assignment flow, in order to devise a novel accelerated DC programming scheme. A detailed convergence analysis of both numerical schemes is provided and illustrated by numerical experiments.

Document type: Dissertation
Supervisor: Schnörr, Prof. Dr. Christoph
Place of Publication: Heidelberg
Date of thesis defense: 13 June 2023
Date Deposited: 21 Jun 2023 14:00
Date: 2023
Faculties / Institutes: The Faculty of Mathematics and Computer Science > Institut für Mathematik
DDC-classification: 500 Natural sciences and mathematics
510 Mathematics
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative