Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Origin and characterization of disks substructures, and their relation to stellar hosts

Kurtovic, Nicolas

[thumbnail of phd_thesis_nicolaskurtovic.pdf]
Preview
PDF, English
Download (31MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

Planets are formed from the gas and dust content available in planet-forming disks around young stars, creating substructures in their density, thermal, and chemical distribution. Characterizing those substructures can provide constraints on the planet-formation potential of each disk.

To improve our understanding of how planets are formed around the stars that are the most common in our galaxy, very low mass stars and binary stars, I studied high spatial resolution observations of dust and gas emission from these objects. To maximize information recovery, I analyzed these datasets with visibility-based methods.

The results demonstrate that substructured emission in the dust continuum is present in all spatially resolved disks around very low mass stars, which could be explained by ongoing planet formation. In circumbinary disks, the combination of hydro-models and observations suggest that measuring the eccentricity gradient as a function of radii can be used as a tracer for the presence of Saturn-like planets embedded in the disks. On the other hand, for multiple disk systems, I showed the feasibility of recovering the orbital motion of young objects through the relative movement of their disks, which is crucial to interpreting the emission substructures.

Document type: Dissertation
Supervisor: Pinilla, Prof. Dr. Paola
Place of Publication: Heidelberg
Date of thesis defense: 12 July 2023
Date Deposited: 24 Aug 2023 09:24
Date: 2023
Faculties / Institutes: The Faculty of Physics and Astronomy > Dekanat der Fakultät für Physik und Astronomie
DDC-classification: 520 Astronomy and allied sciences
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative