Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

ProDAS: Probabilistic Dataset of Abstract Shapes

Müller, Jens ; Ardizzone, Lynton ; Köthe, Ullrich

[thumbnail of ProDAS.pdf]
Preview
PDF, English
Download (1MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

We introduce a novel and comprehensive dataset, named ProDAS, which enables the generation of diverse objects with varying shape, size, rotation, and texture/color through a latent factor model. ProDAS offers complete access and control over the data generation process, serving as an ideal environment for investigating disentanglement, causal discovery, out-of-distribution detection, and numerous other research questions. We provide pre-defined functions for the important cases of creating distinct and interconnected distributions, allowing the investigation of distribution shifts and other intriguing applications. The library can be found at https://github.com/XarwinM/ProDAS.

Document type: Preprint
Date Deposited: 13 Dec 2023 12:43
Date: 8 December 2023
Faculties / Institutes: The Faculty of Mathematics and Computer Science > Department of Computer Science
DDC-classification: 004 Data processing Computer science
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative