Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

A direct method for the numerical solution of optimization problems with time-periodic PDE constraints

Potschka, Andreas

German Title: Eine direkte Methode für die numerische Lösung von Optimierungsproblemen mit zeitperiodischen PDE-Nebenbedingungen

[img]
Preview
PDF, English
Download (1354Kb) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the persistent URL or the URN below, as we can guarantee their long-time accessibility.

Abstract

In der vorliegenden Dissertation entwickeln wir auf der Basis der Direkten Mehrzielmethode eine neue numerische Methode für Optimalsteuerungsprobleme (OCPs) mit zeitperiodischen partiellen Differentialgleichungen (PDEs). Die vorgeschlagene Methode zeichnet sich durch asymptotisch optimale Skalierung des numerischen Aufwandes in der Zahl der örtlichen Diskretisierungspunkte aus. Sie besteht aus einem Linearen Iterativen Splitting Ansatz (LISA) innerhalb einer Newton-Typ Iteration zusammen mit einer Globalisierungsstrategie, die auf natürlichen Niveaufunktionen basiert. Wir untersuchen die LISA-Newton Methode im Rahmen von Bocks kappa-Theorie und entwickeln zuverlässige a-posteriori kappa-Schätzer. Im Folgenden erweitern wir die LISA-Newton Methode auf den Fall von inexakter Sequentieller Quadratischer Programmierung (SQP) für ungleichungsbeschränke Probleme und untersuchen das lokale Konvergenzverhalten. Zusätzlich entwickeln wir klassische und Zweigitter Newton-Picard Vorkonditionierer für LISA und beweisen gitterunabhängige Konvergenz der klassischen Variante auf einem Modellproblem. Anhand numerischer Ergebnisse können wir belegen, dass im Vergleich zur klassichen Variante die Zweigittervariante sogar noch effizienter ist für typische Anwendungsprobleme. Des Weiteren entwickeln wir eine Zweigitterapproximation der Lagrange-Hessematrix, welche gut in den Rahmen des Zweigitter Newton-Picard Ansatzes passt und die im Vergleich zur exakten Hessematrix zu einer Laufzeitreduktion von 68% auf einem nichtlinearen Benchmarkproblem führt. Wir zeigen weiterhin, dass die Qualität des Feingitters die Genauigkeit der Lösung bestimmt, während die Qualität des Grobgitters die asymptotische lineare Konvergenzrate, d.h., das Bocksche kappa, festlegt. Zuverlässige kappa-Schätzer ermöglichen die automatische Steuerung der Grobgitterverfeinerung für schnelle Konvergenz. Für die Lösung der auftretenden, großen Probleme der Quadratischen Programmierung (QPs) wählen wir einen strukturausnutzenden zweistufigen Ansatz. In der ersten Stufe nutzen wir die durch den Mehrzielansatz und die Newton-Picard Vorkonditionierer bedingten Strukturen aus, um die großen QPs auf äquivalente QPs zu reduzieren, deren Größe von der Zahl der örtlichen Diskretisierungspunkte unabhängig ist. Für die zweite Stufe entwickeln wir Erweiterungen für eine Parametrische Aktive Mengen Methode (PASM), die zu einem zuverlässigen und effizienten Löser für die resultierenden, möglicherweise nichtkonvexen QPs führen. Weiterhin konstruieren wir drei anschauliche, contra-intuitive Probleme, die aufzeigen, dass die Konvergenz einer one-shot one-step Optimierungsmethode weder notwendig noch hinreichend für die Konvergenz der entsprechenden Methode für das Vorwärtsproblem ist. Unsere Analyse von drei Regularisierungsansätzen zeigt, dass de-facto Verlust von Konvergenz selbst mit diesen Ansätzen nicht verhindert werden kann. Des Weiteren haben wir die vorgestellten Methoden in einem Computercode mit Namen MUSCOP implementiert, der automatische Ableitungserzeugung erster und zweiter Ordnung von Modellfunktionen und Lösungen der dynamischen Systeme, Parallelisierung auf der Mehrzielstruktur und ein Hybrid Language Programming Paradigma zur Verfügung stellt, um die benötigte Zeit für das Aufstellen und Lösen neuer Anwendungsprobleme zu minimieren. Wir demonstrieren die Anwendbarkeit, Zuverlässigkeit und Effektivität von MUSCOP und damit der vorgeschlagenen numerischen Methoden anhand einer Reihe von PDE OCPs von steigender Schwierigkeit, angefangen bei linearen akademischen Problemen über hochgradig nichtlineare akademische Probleme der mathematischen Biologie bis hin zu einem hochgradig nichtlinearen Anwendungsproblem der chemischen Verfahrenstechnik im Bereich der präparativen Chromatographie auf Basis realer Daten: Dem Simulated Moving Bed (SMB) Prozess.

Translation of abstract (English)

In this thesis we develop a numerical method based on Direct Multiple Shooting for Optimal Control Problems (OCPs) constrained by time-periodic Partial Differential Equations (PDEs). The proposed method features asymptotically optimal scale-up of the numerical effort with the number of spatial discretization points. It consists of a Linear Iterative Splitting Approach (LISA) within a Newton-type iteration with globalization on the basis of natural level functions. We investigate the LISA-Newton method in the framework of Bock's kappa-theory and develop reliable a-posteriori kappa-estimators. Moreover we extend the inexact Newton method to an inexact Sequential Quadratic Programming (SQP) method for inequality constrained problems and provide local convergence theory. In addition we develop a classical and a two-grid Newton-Picard preconditioner for LISA and prove grid independent convergence of the classical variant for a model problem. Based on numerical results we can claim that the two-grid version is even more efficient than the classical version for typical application problems. Moreover we develop a two-grid approximation for the Lagrangian Hessian which fits well in the two-grid Newton-Picard framework and yields a reduction of 68% in runtime for a nonlinear benchmark problem compared to the use of the exact Lagrangian Hessian. We show that the quality of the fine grid controls the accuracy of the solution while the quality of the coarse grid determines the asymptotic linear convergence rate, i.e., Bock's kappa. Based on reliable kappa-estimators we facilitate automatic coarse grid refinement to guarantee fast convergence. For the solution of the occurring large-scale Quadratic Programming Problems (QPs) we develop a structure exploiting two-stage approach. In the first stage we exploit the Multiple Shooting and Newton-Picard structure to reduce the large-scale QP to an equivalent QP whose size is independent of the number of spatial discretization points. For the second stage we develop extensions for a Parametric Active Set Method (PASM) to achieve a reliable and efficient solver for the resulting, possibly nonconvex QP. Furthermore we construct three illustrative, counter-intuitive toy examples which show that convergence of a one-shot one-step optimization method is neither necessary nor sufficient for the convergence of the forward problem method. For three regularization approaches to recover convergence our analysis shows that de-facto loss of convergence cannot be avoided with these approaches. We have further implemented the proposed methods within a code called MUSCOP which features automatic derivative generation for the model functions and dynamic system solutions of first and second order, parallelization on the Multiple Shooting structure, and a hybrid language programming paradigm to minimize setup and solution time for new application problems. We demonstrate the applicability, reliability, and efficiency of MUSCOP and thus the proposed numerical methods and techniques on a sequence of PDE OCPs of growing difficulty ranging from linear academic problems, over highly nonlinear academic problems of mathematical biology to a highly nonlinear real-world chemical engineering problem in preparative chromatography: The Simulated Moving Bed (SMB) process.

Item Type: Dissertation
Supervisor: Bock, Prof. Dr. Hans Georg
Date of thesis defense: 19. December 2011
Date Deposited: 16. Jan 2012 15:17
Date: 2011
Faculties / Institutes: Service facilities > Interdisciplinary Center for Scientific Computing
Subjects: 510 Mathematics
Controlled Keywords: Nichtlineare Optimierung, Quadratische Optimierung, Nichtlineare partielle Differentialgleichung, Präkonditionierung, Mehrzielmethode
Uncontrolled Keywords: Zeitperiodische NebenbedingungNonlinear Optimization , Nonlinear Partial Differential Equation , Preconditioning , Multiple Shooting , time-periodic constraint
About | FAQ | Contact | Imprint |
OA-LogoLogo der Open-Archives-Initiative