Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

The role of apoptosis repressor with a CARD domain (ARC) in the therapeutic resistance of renal cell carcinoma (RCC): the crucial role of ARC in the inhibition of extrinsic and intrinsic apoptotic signalling

Toth, Csaba ; Funke, Sarah ; Nitsche, Vanessa ; Liverts, Anna ; Zlachevska, Viktoriya ; Gasis, Marcia ; Wiek, Constanze ; Hanenberg, Helmut ; Mahotka, Csaba ; Schirmacher, Peter ; Heikaus, Sebastian

In: Cell Communication and Signaling, 15 (2017), Nr. 16. pp. 1-14. ISSN 1478-811X

[img]
Preview
PDF, English
Download (2MB) | Lizenz: Creative Commons LizenzvertragThe role of apoptosis repressor with a CARD domain (ARC) in the therapeutic resistance of renal cell carcinoma (RCC): the crucial role of ARC in the inhibition of extrinsic and intrinsic apoptotic signalling by Toth, Csaba ; Funke, Sarah ; Nitsche, Vanessa ; Liverts, Anna ; Zlachevska, Viktoriya ; Gasis, Marcia ; Wiek, Constanze ; Hanenberg, Helmut ; Mahotka, Csaba ; Schirmacher, Peter ; Heikaus, Sebastian underlies the terms of Creative Commons Attribution 3.0 Germany

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

Background: Renal cell carcinomas (RCCs) display broad resistance against conventional radio- and chemotherapies, which is due at least in part to impairments in both extrinsic and intrinsic apoptotic pathways. One important anti-apoptotic factor that is strongly overexpressed in RCCs and known to inhibit both apoptotic pathways is ARC (apoptosis repressor with a CARD domain). Methods: Expression and subcellular distribution of ARC in RCC tissue samples and RCC cell lines were determined by immunohistochemistry and fluorescent immunohistochemistry, respectively. Extrinsic and intrinsic apoptosis signalling were induced by TRAIL (TNF-related apoptosis-inducing ligand), ABT-263 or topotecan. ARC knock-down was performed in clearCa-12 cells using lentiviral transduction of pGIPZ. shRNAmir constructs. Extrinsic respectively intrinsic apoptosis were induced by TRAIL (TNF-related apoptosis-inducing ligand), ABT263 or topotecan. Potential synergistic effects were tested by pre-treatment with topotecan and subsequent treatment with ABT263. Activation of different caspases and mitochondrial depolarisation (JC-1 staining) were analysed by flow cytometry. Protein expression of Bcl-2 family members and ARC in RCC cell lines was measured by Western blotting. Statistical analysis was performed by Student’s t-test. Results: Regarding the extrinsic pathway, ARC knockdown strongly enhanced TRAIL-induced apoptosis by increasing the activation level of caspase-8. Regarding the intrinsic pathway, ARC, which was only weakly expressed in the nuclei of RCCs in vivo, exerted its anti-apoptotic effect by impairing mitochondrial activation rather than inhibiting p53. Topotecan- and ABT-263-induced apoptosis was strongly enhanced following ARC knockdown in RCC cell lines. In addition, topotecan pre-treatment enhanced ABT-263-induced apoptosis and this effect was amplified in ARC-knockdown cells. Conclusion: Taken together, our results are the first to demonstrate the importance of ARC protein in the inhibition of both the extrinsic and intrinsic pathways of apoptosis in RCCs. In this context, ARC cooperates with anti-apoptotic Bcl-2 family members to exert its strong anti-apoptotic effects and is therefore an important factor not only in the therapeutic resistance but also in future therapy strategies (i.e., Bcl-2 inhibitors) in RCC. In sum, targeting of ARC may enhance the therapeutic response in combination therapy protocols.

Item Type: Article
Journal or Publication Title: Cell Communication and Signaling
Volume: 15
Number: 16
Publisher: BioMed Central
Place of Publication: London
Date Deposited: 09 May 2017 09:00
Date: 2017
ISSN: 1478-811X
Page Range: pp. 1-14
Faculties / Institutes: Service facilities > Cluster of Excellence Cellular Networks
Medizinische Fakultät Heidelberg > Pathologisches Institut
Subjects: 610 Medical sciences Medicine
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative