Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Imputation of missing genotypes within LD-blocks relying on the basic coalescent and beyond: consideration of population growth and structure

Kabisch, Maria ; Hamann, Ute ; Lorenzo Bermejo, Justo

In: BMC Genomics, 18 (2017), Nr. 798. pp. 1-12. ISSN 1471-2164

[thumbnail of 12864_2017_Article_4208.pdf]
Preview
PDF, English
Download (1MB) | Lizenz: Creative Commons LizenzvertragImputation of missing genotypes within LD-blocks relying on the basic coalescent and beyond: consideration of population growth and structure by Kabisch, Maria ; Hamann, Ute ; Lorenzo Bermejo, Justo underlies the terms of Creative Commons Attribution 3.0 Germany

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

Background Genotypes not directly measured in genetic studies are often imputed to improve statistical power and to increase mapping resolution. The accuracy of standard imputation techniques strongly depends on the similarity of linkage disequilibrium (LD) patterns in the study and reference populations. Here we develop a novel approach for genotype imputation in low-recombination regions that relies on the coalescent and permits to explicitly account for population demographic factors. To test the new method, study and reference haplotypes were simulated and gene trees were inferred under the basic coalescent and also considering population growth and structure. The reference haplotypes that first coalesced with study haplotypes were used as templates for genotype imputation. Computer simulations were complemented with the analysis of real data. Genotype concordance rates were used to compare the accuracies of coalescent-based and standard (IMPUTE2) imputation. Results Simulations revealed that, in LD-blocks, imputation accuracy relying on the basic coalescent was higher and less variable than with IMPUTE2. Explicit consideration of population growth and structure, even if present, did not practically improve accuracy. The advantage of coalescent-based over standard imputation increased with the minor allele frequency and it decreased with population stratification. Results based on real data indicated that, even in low-recombination regions, further research is needed to incorporate recombination in coalescence inference, in particular for studies with genetically diverse and admixed individuals. Conclusions To exploit the full potential of coalescent-based methods for the imputation of missing genotypes in genetic studies, further methodological research is needed to reduce computer time, to take into account recombination, and to implement these methods in user-friendly computer programs. Here we provide reproducible code which takes advantage of publicly available software to facilitate further developments in the field.

Document type: Article
Journal or Publication Title: BMC Genomics
Volume: 18
Number: 798
Publisher: BioMed Central; Springer
Place of Publication: London; Berlin; Heidelberg
Date Deposited: 24 Oct 2017 07:50
Date: 2017
ISSN: 1471-2164
Page Range: pp. 1-12
Faculties / Institutes: Service facilities > German Cancer Research Center (DKFZ)
Medizinische Fakultät Heidelberg > Institut für Medizinische Biometrie
DDC-classification: 610 Medical sciences Medicine
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative