Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Secure Multiparty Computation in Clinical Research and Digital Health

Ballhausen, Hendrik ; von Maltitz, Marcel ; Niyazi, Maximilian ; Kaul, David ; Belka, Claus ; Carle, Georg

[thumbnail of 26839_escience2019_MPC.pdf] PDF, Englisch - Hauptdokument
Download (781kB) | Lizenz: Creative Commons LizenzvertragSecure Multiparty Computation in Clinical Research and Digital Health von Ballhausen, Hendrik ; von Maltitz, Marcel ; Niyazi, Maximilian ; Kaul, David ; Belka, Claus ; Carle, Georg steht unter einer Creative Commons Namensnennung 4.0

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

The free flow of information is the lifeblood of the digital economy. In research, the exchange of data is a prime requisite for the generation of new knowledge. In practice, however, there are many barriers to data sharing. Collaborators are reluctant to reveal their proprietary knowledge, consumers are wary of large scale data collection and profiling, regulation restricts what personal information can and cannot be shared across institutional borders.

In clinical research and digital health, there are particulary strict data protection rules in force. Here, we are motivated to seek new methods for knowledge generation, without the problematic exchange of actual patient data. In fact, there is a technology, secure multiparty computation, which allows a number of collaborators to jointly compute about any function, without revealing their private inputs. The method relies entirely on calculations over an encrypted network, without the need for a trusted third party, a central data repository, or even trust between the collaborators.

In a pilot experiment, we demonstrate joint survival analysis based on two separate data bases at LMU Munich and Charité Berlin. Using secure multiparty computation, we are able to identify confounding factors for the survival of patients with glioblastoma. We obtain the same sensitivity as one would achieve by completely pooling the two data bases, and yet we do not actually need to exchange any patient data to perform the calculation.

Going forward, we hope to assemble a collection of libraries for secure multiparty computation in clinical research and digital health. By providing turn-key solutions to the most often used calculations, we hope to reduce barriers to entry for interested researchers and developers. We also hope to create a scientific network of interested institutions and individuals.

Dokumententyp: Konferenzbeitrag
Ort der Veröffentlichung: Heidelberg
Erstellungsdatum: 24 Jul. 2019 15:01
Erscheinungsjahr: 2019
Seitenanzahl: 1
Veranstaltungsdatum: 27.03. - 29.03.2019
Veranstaltungsort: Heidelberg
Veranstaltungstitel: E-Science-Tage 2019: Data to Knowledge
Institute/Einrichtungen: Zentrale und Sonstige Einrichtungen > Rechenzentrum der Universität (URZ)
DDC-Sachgruppe: 004 Informatik
020 Bibliotheks- und Informationswissenschaft
Sammlung: E-Science-Tage 2019
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative