Vorschau |
PDF, Deutsch
Download (304kB) | Nutzungsbedingungen |
Abstract
The focus of interest is the Cauchy problem of the nonlinear transport equation d_t u + div (f(u, ·) u) = g(u, ·) u together with its distributional solutions u(·) whose values are positive Radon measures on the Euclidean space with compact support. The coefficients f(u, t), g(u, t) are assumed to be uniformly bounded and Lipschitz continuous vector fields on the Euclidean space. Sufficient conditions on the coefficients for existence, uniqueness and even for stability of these distributional solutions are presented. Starting from the well-known results about the corresponding linear problem, the step towards the nonlinear problem here relies on Aubin's mutational equations, i.e. dynamical systems in a metric space (with a new slight modification).
Dokumententyp: | Preprint |
---|---|
Name der Reihe: | IWR-Preprints |
Erstellungsdatum: | 28 Feb. 2007 13:08 |
Erscheinungsjahr: | 2007 |
Institute/Einrichtungen: | Zentrale und Sonstige Einrichtungen > Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR) |
DDC-Sachgruppe: | 510 Mathematik |
Normierte Schlagwörter: | Transportgleichung, Nichtlineare partielle Differentialgleichung, Radon-Maß, Verallgemeinerte Differentialgleichung |
Freie Schlagwörter: | nonlinear transport equation , Radon measures on Euclidean space with compact support , mutational equations in metric space |