Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Stochastic dynamics of virus capsid formation: direct versus hierarchical self-assembly

Baschek, Johanna E. ; Klein, Heinrich C. ; Schwarz, Ulrich S.

In: BMC Biophysics, 5 (2012), Nr. 22. S. 1-18. ISSN 2046-1682

[thumbnail of 13628_2012_Article_43.pdf]
Vorschau
PDF, Englisch
Download (1MB) | Lizenz: Creative Commons LizenzvertragStochastic dynamics of virus capsid formation: direct versus hierarchical self-assembly von Baschek, Johanna E. ; Klein, Heinrich C. ; Schwarz, Ulrich S. steht unter einer Creative Commons Namensnennung 3.0 Deutschland

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

Background: In order to replicate within their cellular host, many viruses have developed self-assembly strategies for their capsids which are sufficiently robust as to be reconstituted in vitro. Mathematical models for virus self-assembly usually assume that the bonds leading to cluster formation have constant reactivity over the time course of assembly (direct assembly). In some cases, however, binding sites between the capsomers have been reported to be activated during the self-assembly process (hierarchical assembly). Results: In order to study possible advantages of such hierarchical schemes for icosahedral virus capsid assembly, we use Brownian dynamics simulations of a patchy particle model that allows us to switch binding sites on and off during assembly. For T1 viruses, we implement a hierarchical assembly scheme where inter-capsomer bonds become active only if a complete pentamer has been assembled. We find direct assembly to be favorable for reversible bonds allowing for repeated structural reorganizations, while hierarchical assembly is favorable for strong bonds with small dissociation rate, as this situation is less prone to kinetic trapping. However, at the same time it is more vulnerable to monomer starvation during the final phase. Increasing the number of initial monomers does have only a weak effect on these general features. The differences between the two assembly schemes become more pronounced for more complex virus geometries, as shown here for T3 viruses, which assemble through homogeneous pentamers and heterogeneous hexamers in the hierarchical scheme. In order to complement the simulations for this more complicated case, we introduce a master equation approach that agrees well with the simulation results. Conclusions: Our analysis shows for which molecular parameters hierarchical assembly schemes can outperform direct ones and suggests that viruses with high bond stability might prefer hierarchical assembly schemes. These insights increase our physical understanding of an essential biological process, with many interesting potential applications in medicine and materials science.

Dokumententyp: Artikel
Titel der Zeitschrift: BMC Biophysics
Band: 5
Nummer: 22
Verlag: BioMed Central
Ort der Veröffentlichung: London
Erstellungsdatum: 09 Feb. 2016 08:48
Erscheinungsjahr: 2012
ISSN: 2046-1682
Seitenbereich: S. 1-18
Institute/Einrichtungen: Fakultät für Physik und Astronomie > Institut für Theoretische Physik
Zentrale und Sonstige Einrichtungen > Bioquant
DDC-Sachgruppe: 530 Physik
570 Biowissenschaften, Biologie
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative