Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Particle-based computer simulations of biological reaction-diffusion systems

Schnellbächer, Nikolas David

[thumbnail of Dissertation_Schnellbaecher_Nikolas_2017-10-18_FINAL_HeiDOK_version.pdf]
Vorschau
PDF, Englisch
Download (12MB) | Nutzungsbedingungen

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

As the life sciences become more quantitative, particle-based simulation tools can be used to model the complex spatiotemporal dynamics of biological systems with single particle resolution. In particular, they naturally account for the stochastic nature of molecular reactions. Here I apply this approach to three different biological systems that are intrinsically stochastic. As an example for cellular information processing, we investigate the receptor dynamics of the interferon type I system and show that asymmetric dimerization reactions between signaling receptors in the plasma membrane enable cells to discriminate between different ligands. Using an information theoretic framework, we show why the binding asymmetry enables this system to become robust against ligand concentration fluctuations. As an example for structure formation, we analyze the role of stochasticity and geometrical confinement for the Min oscillations that bacteria use to determine their middle. We predict mode selection as a function of geometry in excellent agreement with recent experiments and quantify the stochastic switching of oscillation modes leading to multistable oscillation patterns. As an ex- ample for self-assembly, we use a multiparticle collision dynamics (MPCD) approach to address how shear flow modulates the assembly of rings and capsids. We find that an intermediate level of shear flow can help to suppress the emergence of malformed structures. Together, these projects demonstrate the power and wide applicability of particle-based computer simulations of biological reaction-diffusion systems.

Dokumententyp: Dissertation
Erstgutachter: Schwarz, Prof. Dr. Ulrich
Tag der Prüfung: 18 Oktober 2017
Erstellungsdatum: 24 Nov. 2017 12:53
Erscheinungsjahr: 2018
Institute/Einrichtungen: Fakultät für Physik und Astronomie > Institut für Theoretische Physik
DDC-Sachgruppe: 530 Physik
570 Biowissenschaften, Biologie
Normierte Schlagwörter: particle-based computer simulations, reaction-diffusion systems, cellular information processing, pattern formation, self-assembly
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative