PDF, English
Download (41MB) | Terms of use |
Abstract
Detecting repeating firing motifs of neuron groups (so-called neuronal assemblies) and cell segmentation in calcium imaging, a microscopy technique enabling the observation of neuronal activity, are two fundamental and challenging tasks in neurophysiological data analysis. In this thesis, three novel approaches are presented, which use machine learning to tackle both problems from different perspectives. First, SCC is presented for the detection of motifs in neuronal spike matrices, which are gained from calcium imaging data by cell segmentation. SCC uses sparse convolutional coding and outperforms established motif detection methods by leveraging sparsity constraints specifically designed for this data type combined with a method to avoid false-positive detections. Second, LeMoNADe is the first method ever to detect spatio-temporal motifs directly in calcium imaging videos, eliminating the cumbersome extraction of individual cells. It is a variational autoencoder framework tailored for the extraction of neuronal assemblies from videos and matches the performance of state-of-the-art detection methods requiring cell extraction. Although LeMoNADe enables the detection of neuronal assemblies without previous cell extraction, this step is still essential for a wide range of downstream analyses. Therefore, the third method, DISCo, combines a deep learning model with an instance segmentation algorithm to address this task from a new perspective and thereby outperforms similarly trained existing models.
Document type: | Dissertation |
---|---|
Supervisor: | Hamprecht, Prof. Dr. rer. nat. Fred A. |
Place of Publication: | Heidelberg |
Date of thesis defense: | 5 November 2019 |
Date Deposited: | 09 Dec 2019 13:32 |
Date: | 2019 |
Faculties / Institutes: | The Faculty of Physics and Astronomy > Institute of Physics |
DDC-classification: | 004 Data processing Computer science 500 Natural sciences and mathematics 530 Physics |
Controlled Keywords: | Maschinelles Lernen |
Uncontrolled Keywords: | neuronal assembly detection, calcium imaging analysis, machine learning, motif detection, cell segmentation |