Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Modeling the interplay of mechanics and self-assembly in the actin cytoskeleton

Grewe, Justin Albert

[thumbnail of PhD_Justin_Grewe.pdf]
Preview
PDF, English
Download (22MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

Many cellular processes such as cell migration or division require a trade-off between structural integrity and dynamic reorganization of the load-bearing elements. The actin cytoskeleton has evolved to provide this function for animal cells, but a physical understanding of the interplay between its mechanics and self-assembly is missing. Here I model theoretically two paradigmatic situations of this kind. First, I consider the self-assembly of non-muscle myosin II minifilaments, with a special focus on the stochastic effects that arise due to the small system size of around 30 load bearing elements that turn-over simultaneously to producing contractile force. The self-assembly model follows a consensus architecture, thereby relating the geometrical neighborhood relations of the myosin II monomers with associated binding energies. I find that the turn-over of monomers depends on the mechanochemistry of the cross-bridge cycle by simulating the associated master equation explicitly and by a mean-field approach that maps the complex assembly structure to a simple monomer-addition scheme. Using a rheological framework, I characterize the distinct mechanical properties of non-muscle myosin II minifilaments that arise due to differences in the cross-bridge cycle of the different myosin II isoforms, that can co-assemble in one hetero-filament. Quantitative analysis of the frequency dependent response by a complex modulus, reveals a cross over from viscous to elastic behavior as the ratio of slow to fast isoforms working together is increased. Second I consider the dynamical stability of a peripheral stress fiber, that depends on the interplay of contraction by myosin II minifilaments, self-assembly of new actin filaments at both ends of the fiber and cortical tension. In collaboration with an experimental group, we could show how the myosin II isoform content is differentially reflected by the phenotype of peripheral stress fibers and show their position in a stability phase diagram of the stress fiber. These results demonstrate quantitatively how mechanics and self-assembly interact on different scales in the actin cytoskeleton.

Document type: Dissertation
Supervisor: Schwarz, Prof. Dr. Ulrich S.
Place of Publication: Heidelberg
Date of thesis defense: 29 July 2020
Date Deposited: 13 Aug 2020 12:03
Date: 2020
Faculties / Institutes: The Faculty of Physics and Astronomy > Institute for Theoretical Physics
DDC-classification: 530 Physics
570 Life sciences
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative