Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Unsupervised Learning for Anomaly Detection in Medical Images

Zimmerer, David

German Title: Unüberwachte Lernmethoden zur Anomalie-Erkennung auf medizinischen Bildaten

[thumbnail of dissertation_david_zimmerer.pdf]
PDF, English - main document
Download (46MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.


Anomaly detection and localization can learn what data looks like and point out anomalous data samples, which may then be utilized to assist clinicians in identifying anomalies. We employ a Variational Autoencoder (VAE) to learn the distribution of the data and demonstrate several ways for highlighting abnormalities. We show that using self-supervised learning and hierarchical representations can increase performance, especially in situations with smaller and more difficult-to-detect cases. We further investigate the approaches’ performance and assessment in two contexts: an international public competitive setting and a real-world use case for discovering incidental findings in a population study. Overall, the results are encouraging, and the algorithms can detect anomalies and incidental findings, but they fall short in more complex and difficult cases and are not yet dependable enough for real-world usage.

Translation of abstract (German)

Mit Anomalie-Erkennung und Lokalisierung kann man die Verteilung von Daten lernen und dann abnormale Daten erkennen und damit Ärzte bei der Identifkation von Krankheiten und abnormalen Konditionen unterstützen. Wir benutzen einen Variational Autoencoder (VAE) um diese Verteilung der Daten zu lernen und presentieren verschiedene Methoden wie man mit einem VAE Anomalien aufzeigen kann. Wir zeigen, dass hierarchiche Representationen oder Representationen die via self-supervied learning gelernt wurden die Performance verbessern können, insbesodere für die kleineren und schwierigeren Anomalien. Wir untersuchen die Analysen, Evaluierung und Benchmarking der Methoden: In einem internationalen und öffentlichen Wettbewerb und einem realitätsnahem Anwendungsfall für die Identifkation von Krankheiten und abnormalen Konditionen in einer Populations Studie. Insgesamt sind die Ergebnisse gut und die Algorithmen können Anomalien und abnormale Konditionen identifizieren, aber sind jedoch noch nicht zuverlässig genung für einen Einsatz in der täglichen Praxis.

Document type: Dissertation
Supervisor: Maier-Hein, Prof. Dr. Klaus
Place of Publication: Heidelberg
Date of thesis defense: 14 December 2022
Date Deposited: 20 Dec 2022 08:02
Date: 2022
Faculties / Institutes: The Faculty of Mathematics and Computer Science > Department of Computer Science
DDC-classification: 004 Data processing Computer science
610 Medical sciences Medicine
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative