Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Resolving particle acceleration and transport in the jets of the microquasar SS 433 with H.E.S.S. and HAWC

Olivera Nieto, Laura

[thumbnail of PhD_thesis_Laura_OliveraNieto.pdf]
Preview
PDF, English - main document
Download (37MB) | Lizenz: Rights reserved - Free Access

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

The microquasar SS 433 offers a unique laboratory to study the physics of mildly relativistic jets and the associated non-thermal processes. It hosts a compact binary system, from which a pair of counter-propagating jets is observed to emanate. The jets are resolved by observations out to distances of approximately 0.1 pc from the central source, but further out, they remain dark until they abruptly reappear at around 25 pc as bright X-ray sources. These outer jets were recently reported to be sources of TeV gamma-rays by the High Altitude Water Cherenkov (HAWC) observatory. This thesis presents a complete picture of the TeV emission from the jets of SS 433 including new data from the High Energy Stereoscopic System (H.E.S.S.) and the HAWC observatory.

To fully exploit the capabilities of the H.E.S.S. observations, a new approach to background rejection is presented. It is based on the detection of Cherenkov light from muons by large Imaging Atmospheric Cherenkov Telescopes (IACTs), such as the telescope located at the center of the H.E.S.S. array. The application of this technique leads to a factor four reduction in background above several tens of TeV in the H.E.S.S. stereoscopic analysis.

This thesis presents the detection of the SS 433 outer jets for the first time with an IACT array using H.E.S.S.. The superior angular and energy resolution of H.E.S.S. compared to HAWC allow for a detailed study of the emission from the jets, including a measurement of the physical extension of the emission and of the spectra out to tens of TeV. These observations also reveal the presence of striking energy- dependent morphology, ruling out a hadronic origin for the bulk of the gamma-ray emission. Photons above 10 TeV are observed only close to the base of the outer jets, implying efficient particle acceleration to very-high energies at that location. Evidence suggests that the acceleration is due to a shock, thus providing a clue to the long-standing question of the reappearance of the jets.

The observed energy-dependent morphology is modeled as a consequence of the particle cooling times and the advection flow of the jet, which constrains the jet dynamics and, in particular, results in an estimate of the velocity of the outer jets at their base. This solves several issues concerning the non-thermal processes occurring in the jets and their dynamics, but also opens up new questions that highlight our incomplete understanding of the SS 433 system.

A joint analysis of the H.E.S.S. and HAWC data would provide insights on the system across the entire range of TeV energies. To make this possible, a tool capable of reading and analyzing the data from both instruments is required. This thesis presents the extension and validation of an existing data format and analysis tool shared among IACTs to the data from particle detector arrays such as the HAWC observatory. This framework is then used to revisit the HAWC observations of the SS 433 region with the inclusion of additional data taken since the first detection was reported. The existence of this framework enables for the first time the joint analysis of the H.E.S.S. and HAWC data, the preliminary results of which are presented

Document type: Dissertation
Supervisor: Hinton, Prof. Dr. Jim
Place of Publication: Heidelberg
Date of thesis defense: 7 February 2023
Date Deposited: 16 May 2023 08:00
Date: 2023
Faculties / Institutes: The Faculty of Physics and Astronomy > Dekanat der Fakultät für Physik und Astronomie
The Faculty of Physics and Astronomy > Institute of Physics
The Faculty of Physics and Astronomy > Institute for Theoretical Physics
The Faculty of Physics and Astronomy > Kirchhoff Institute for Physics
DDC-classification: 520 Astronomy and allied sciences
530 Physics
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative