Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Determining physical properties of star-forming regions using conditional invertible neural network

Kang, Da Eun

[thumbnail of PhDThesis_KANG.pdf]
Vorschau
PDF, Englisch
Download (11MB) | Nutzungsbedingungen

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

Star formation is one of the most fundamental subjects in astronomy where astronomers have been seeking answers to key questions: how efficiently stars form and how newly born stars affect their surroundings. Our understanding of star formation relies mostly on the observations of star-forming regions. However, it is a non-trivial task to interpret the observations because diverse physical processes are non-linearly coupled so the observational data are highly degenerate. Additionally, the ever-expanding volume of observational data in recent days necessitates a new method that analyses large amounts of data more quickly and effectively.

In this thesis, we introduce deep learning-based tools we have developed to efficiently and effectively interpret massive data of observed star-forming regions. We adopt the conditional invertible neural network (cINN) architecture specialised in solving the inverse problem of degenerate systems. We introduce the cINNs developed for cloud-scale observations and cINNs for individual star-scale observations. Our networks are very useful tools that can consistently and quickly analyse large amounts of data. We evaluate the performance of the networks, demonstrating that our networks predict physical properties accurately and precisely.

Dokumententyp: Dissertation
Erstgutachter: Klessen, Prof. Dr. Ralf Stephan
Ort der Veröffentlichung: Heidelberg
Tag der Prüfung: 24 Mai 2023
Erstellungsdatum: 21 Jun. 2023 14:16
Erscheinungsjahr: 2023
Institute/Einrichtungen: Fakultät für Physik und Astronomie > Dekanat der Fakultät für Physik und Astronomie
DDC-Sachgruppe: 520 Astronomie
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative