Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

New Approaches to Naturalness in the LHC Era: From a Radiative Top Yukawa to a Light Composite Higgs

Bally, Andreas Patrice Beatrijs

[thumbnail of ThesisBally.pdf]
PDF, English
Download (5MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.


The puzzling lightness of the Higgs boson, when one considers the Standard Model as an effective field theory to be completed, has driven much of the particle physics research over the last decades. Two paradigms have emerged as solutions to this puzzle: supersymmetry and compositeness. The absence of signals at the LHC pushes these solutions into regions of evermore fine-tuning. We present three novel approaches aimed at explaining the absence of these signatures. The first one, exploiting the large contribution of the top Yukawa to the Higgs mass, proposes a non-symmetry-based solution in which the top Yukawa only obtains its sizeable value in the IR and we discuss its new phenomenological signatures. Secondly, we present a minimal model of 5D warped gauge-Higgs grand unification, study its compelling flavor structure and analyse the resulting constraints. Although these constraints push the model to high scales, additional scalars that reside below the Kaluza-Klein states may provide accessible experimental signatures. Finally, we provide a novel model of composite Higgs generating the Higgs potential at subleading order using a remarkable property of group representations. The model is analysed and can evade existing bounds with little tuning. New light particles are predicted with unusual decays in which naturalness at the LHC may be hidden.

Document type: Dissertation
Supervisor: Goertz, Dr. Florian
Place of Publication: Heidelberg
Date of thesis defense: 15 November 2023
Date Deposited: 28 Nov 2023 14:48
Date: 2023
Faculties / Institutes: The Faculty of Physics and Astronomy > Dekanat der Fakultät für Physik und Astronomie
Service facilities > Graduiertenschulen > Graduiertenschule Fundamentale Physik (HGSFP)
Service facilities > Max-Planck-Institute allgemein > MPI for Nuclear Physics
DDC-classification: 530 Physics
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative