Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

A Cell Mechanical Study on Adherent and Suspended Pancreatic Cancer Cells using AFM and Microfluidics

Walter, Nadine

German Title: Messung von mechanischen Eigenschaften von Pancreaskrebszellen im adhärenten und nicht adhärenten Zustand unter Benutzung von RKM und Mikrofluidik

[img]
Preview
PDF, English
Download (21Mb) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the persistent URL or the URN below, as we can guarantee their long-time accessibility.

Abstract

Cell mechanical responses are important in the context of physiologically relevant deformations and stresses that cells have to sustain inside the body. The cell material response to quasistatic and localized deformations, similar to those during active cell migration, is studied in the first part of this thesis. Living adherent pancreatic cells and their extracted subcellular keratin network were probed using Atomic Force Microscopy (AFM) indentation testing in order to determine if there is a significant mechanical contribution of the keratin network to living cell mechanics. It was found that the extracted keratin network elastic modulus was only 2 to 5 % of the living cell elastic modulus. No correlation of elastic moduli and keratin mesh densities was detected for living cells, whereas a huge cell-to-cell variation in the elastic moduli was present. Deformations mimicking those a cell may be subjected to during passive transport in the blood vessel system were studied in the second part of this thesis. Here, the dynamics of the same cells, but in a suspended state, was observed at high deformation rates and on a whole cell level during their transit through a microfluidic channel restriction. A novel cantilever-based method (microflap) was incorporated in the microrestrictions of a flow cell chip. For the first time, the cell mechanical response was assessed directly, and indepent of applied flow and frictional resistance, while the cell was squeezed through a microchannel restriction. Using the approximation of a uniformly loaded cantilever, the total force and the pressure exerted on the microflap by the cell can be calculated from the flap deflections.

Translation of abstract (German)

Im Körper müssen lebende Zellen physiologischen Deformationen und Kräften widerstehen. Beispiele hierfür sind die aktive Zellmigration im Gewebe und der passive Zelltransport im Gefäßsystem. Zellmechanische Eigenschaften sind bei diesen Prozessen bestimmend. Im ersten Teil der vorliegenden Arbeit werden die mechanischen Eigenschaften von lebenden adhärenten Pancreaskrebszellen und von deren extrahierten Keratinnetzwerken bei quasistatischer und lokaler Deformation mit Hilfe des Rasterkraftmikroskops (RKM) untersucht, was der Deformationsdynamik aktiver Zellmigration nahekommt. Das Ziel war es, den Einfluß des Keratinnetzwerkes auf die gesamte Zellmechanik zu testen. Die Ergebnisse zeigen, dass der Elastizitätsmodul des Keratinnetzwerkes nur etwa 2 bis 5 % dessen der lebenden Zellen beträgt. Weiterhin konnte keine Korrelation zwischen Keratinnetzwerkdichte und Elastizität bei lebenden Zellen nachgewiesen werden, wohingegen eine erhebliche Variation der Elastizitätsmodule zwischen den Zellen auftrat. In einem zweiten Teil wird die Deformationsdynamik derselben Zellen, jedoch nun in einem nicht adhärenten Zustand, bei schneller und globaler Deformation betrachtet. Dies ähnelt der Deformationsdynamik von Zellen z.B. im Blutkreislauf. Die Deformation von nicht adhärenten runden Zellen wurde in Mikrokanälen untersucht. Hierfür wurde ein biegbarer Mikrobalken als Deformationssensor in eine Mikroverengung eines Mikrofluidik Aufbaus eingearbeitet. Mit dieser neuen Herangehensweise ist es möglich den Deformationswiderstand von Zellen direkt und ohne Einfluss von Reibungs- oder Druckkraft zu messen, während die Zellen durch eine Mikroverengung gedrückt werden. Unter der Annahme, dass die Zellen einen gleichverteilten Druck auf die Fläche des Kraftsensors ausüben, können die gesamte Kraft und der Druck aus der Auslenkung des Mikrobalkens berechnet werden.

Item Type: Dissertation
Supervisor: Spatz, Prof. Dr. Joachim P.
Date of thesis defense: 5. February 2010
Date Deposited: 19. Feb 2010 12:25
Date: 2010
Faculties / Institutes: Fakultät für Chemie und Geowissenschaften > Institute of Physical Chemistry
Subjects: 530 Physics
Controlled Keywords: Biophysik
Uncontrolled Keywords: Mikrofluidik , Rasterkraftmikroskopie , Zellmechanik , Keratinintermediärfilamente , Pankreaskrebszellenmicrofluidics , atomic force microscopy , cell mechanics , keratin intermediate filaments , pancreatic cancer cells
About | FAQ | Contact | Imprint |
OA-LogoLogo der Open-Archives-Initiative