Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

XUV-IR pump-probe experiments: Exploring nuclear and electronic correlated quantum dynamics in the hydrogen molecule

Sperl, Alexander Georg

[thumbnail of phd_sperl.pdf]
Preview
PDF, English
Download (19MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

Wave packet dynamics and autoionization of doubly excited states in molecules can be studied by combining an intense, short-pulse infrared (IR) laser and a extreme ultraviolet (XUV) source with a Reaction Microscope, which allows for coincident measurements of ions and electrons. Furthermore, this detection system is capable of measuring the three dimensional momentum of each charged particle involved in the ionization process. This technique was used to investigate the autoionization of doubly excited H2 molecules, a process that occurs on a timescale of a few femtoseconds. Since this reaction time is of the order of the molecular motion, the nuclei can no longer be regarded as stationary. The coupling of the dissociation dynamics of H2+ to the corresponding electron, which is emitted through the autoionization of doubly excited states, leads to a symmetry breaking in the dissociation. In the conducted measurements, this translates into a localization of coincident electron-ion pairs. In order to study the temporal dynamics of these processes, the molecules were further probed with delayed IR pulses, revealing dynamics within the autoionization.

Document type: Dissertation
Supervisor: Ullrich, Prof. Dr. Joachim
Place of Publication: Heidelberg
Date of thesis defense: 8 February 2013
Date Deposited: 06 Mar 2013 13:15
Date: 2013
Faculties / Institutes: Service facilities > Max-Planck-Institute allgemein > MPI for Nuclear Physics
DDC-classification: 530 Physics
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative