Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Coherent control and manipulation of classical or quantum light via nonlocal effects

Zhang, Lida

[thumbnail of 2015 PhDThesis_Lida Zhang Coherent control and manipulation of classical or quantum light via nonlocal effects.pdf]
Preview
PDF, English
Download (10MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

The thesis is devoted to the theoretical studies of coherent control and manipulation of classical or quantum light via nonlocal effects. At the classical level, controllable light propagation dynamics in the paraxial regime is investigated. The specific type of nonlocal linear effects induced in thermal atomic vapor is explored to achieve diffraction-less and lossless propagation, uniform phase modulation, and frequency conversion with diffractionless image duplication for laser beams with arbitrarily encoded spatial profiles. Next, the study is extended to investigate propagation dynamics in the presence of nonlocal nonlinear effects generated in thermal interacting Rydberg atoms, which mainly reveals simultaneous competition between the nonlocal nonlinear absorption and the modulational instability for each wave component. Moreover, parity-time (PT) sym- metric dynamics in cold Rydberg atoms are exploited, and it is shown that a phase transition from unbroken to broken PT symmetry can be induced by nonlocal nonlinear effects. At the quantum level, it is further proposed to test the quantum nonlocality of single x-ray photons in a system where very weak x-ray pulses interact with 57 Fe nuclei in a thin cavity, such that a Bell-like inequality in the single-photon version is violated. All these proposals are feasible in current experimental settings.

Document type: Dissertation
Supervisor: Evers, PD Dr. Jörg
Date of thesis defense: 15 April 2015
Date Deposited: 22 Apr 2015 09:27
Date: 2015
Faculties / Institutes: The Faculty of Physics and Astronomy > Dekanat der Fakultät für Physik und Astronomie
DDC-classification: 530 Physics
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative