Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Non-Perturbative Aspects of Quantum Field Theory: From the Quark-Gluon Plasma to Quantum Gravity

Christiansen, Nicolai

[img]
Preview
PDF, English
Download (24MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

In this dissertation we investigate several aspects of non-perturbative quantum field theory. Two main parts of the thesis are concerned with non-perturbative renormalization of quantum gravity within the asymptotic safety scenario. This framework is based on a non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity. We employ functional renormalization group (FRG) techniques that allow for the study of quantum fields even in strongly coupled regimes. We construct a setup for the computation of graviton correlation functions and analyze the ultraviolet completion of quantum gravity in terms of the properties of the two- and three point function of the graviton. Moreover, the coupling of gravity to Yang–Mills theories is discussed. In particular, we study the effects of graviton induced interactions on asymptotic freedom on the one hand, and the role of gluonic fluctuations in the gravity sector on the other hand. The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge theories. We determine the viscosity over entropy ratio in SU(3) Yang–Mills theory as a function of temperature and estimate its behavior in full quantum chromodynamics (QCD).

Item Type: Dissertation
Supervisor: Pawlowski, Prof. Dr. Jan M.
Date of thesis defense: 8 July 2015
Date Deposited: 26 Aug 2015 06:47
Date: 2015
Faculties / Institutes: The Faculty of Physics and Astronomy > Institute for Theoretical Physics
Subjects: 500 Natural sciences and mathematics
530 Physics
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative