Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Mutual control of x-rays and nuclear transitions

Gunst, Jonas Friedrich

[img]
Preview
PDF, English
Download (5MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

In the course of this Thesis the mutual control between x-rays and nuclear transitions is investigated theoretically. In the first Part, we study the nuclear photoexcitation with the highly brilliant and coherent x-ray free-electron lasers (XFELs). Apart from amplifying the direct resonant interaction with nuclear transitions, the super-intense XFEL can produce new states of matter like cold, high-density plasmas where secondary nuclear excitation channels may come into play, e.g., nuclear excitation by electron capture (NEEC). Our results predict that in the case of ${}^{57}$Fe targets secondary NEEC can be safely neglected, whereas it is surprisingly the dominating contribution (in comparison to the direct photoexcitation) for the XFEL-induced ${}^{93\rm{m}}$Mo isomer triggering. Based on these case studies, we elaborate a general set of criteria to identify the prevailing excitation channel for a certain nuclear isotope. These criteria may be most relevant for future nuclear resonance experiments at XFEL facilities. On the opposite frontier, the interplay between single x-ray photons and nuclear transitions offer potential storage and processing applications for information science in their most compact form. In the second Part of this Thesis, we show that nuclear forward scattering off ${}^{57}$Fe targets can be employed to process polarization-encoded single x-rays via timed magnetic field rotations. Apart from the realization of logical gates with x-rays, the polarization encoding is used to design an x-ray quantum eraser scheme where the interference between scattering paths can be switched off and on in a controlled manner. Such setups may advance time-energy complementarity tests to so far unexplored paramater regimes, e.g., to the domain of x-ray quanta.

Item Type: Dissertation
Supervisor: Keitel, Prof. Dr. Christoph H.
Date of thesis defense: 14 December 2015
Date Deposited: 12 Jan 2016 09:07
Date: 2016
Faculties / Institutes: Service facilities > Graduiertenschulen > Graduiertenschule Fundamentale Physik (HGSFP)
Service facilities > Max-Planck-Institute allgemein > MPI for Nuclear Physics
Subjects: 530 Physics
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative